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Forming Tile Shapes with Simple Robots

Robert Gmyr · Kristian Hinnenthal · Irina Kostitsyna · Fabian Kuhn ·
Dorian Rudolph · Christian Scheideler · Thim Strothmann

Abstract Motivated by the problem of manipulating 
nanoscale materials, we investigate the problem of re-
configuring a set of tiles into certain shapes by robots 
with limited computational capabilities. As a first step 
towards developing a general framework for these prob-
lems, we consider the problem of rearranging a con-
nected set of hexagonal tiles by a single deterministic 
finite automaton. After investigating some limitations 
of a single-robot system, we show that a feasible ap-
proach to build a particular shape is to first rearrange 
the tiles into an intermediate structure by performing 
very simple tile movements. We introduce three types 
of such intermediate structures, each having certain ad-
vantages and disadvantages. Each of these structures 
can be built in asymptotically optimal O(n2) rounds, 
where n is the number of tiles. As a proof of concept, 
we give an algorithm for reconfiguring a set of tiles into 
an equilateral triangle through one of the intermedi-
ate structures. Finally, we experimentally show that the
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algorithm for building the simplest of the three inter-
mediate structures can be modified to be executed by

multiple robots in a distributed manner, achieving an
almost linear speedup in the case where the number of
robots is reasonably small, and explain how the algo-

rithm can be used to construct a triangle distributedly.

Keywords Finite Automata · Reconfiguration · Tiles ·
Shape Formation

1 Introduction

Various models and approaches for designing and ma-
nipulating nanoscale materials have already been pro-

posed. A prominent approach in the DNA community
has been to use DNA tiles [16]. In the most basic ab-
stract tile-assembly model (aTAM), there are square

tiles with a specific glue on each side [19]. Here, stan-
dard problems are to minimize the tile complexity (i.e.,
the number of different tile types) in order to form cer-
tain shapes, and to intrinsically perform computations

guiding the assembly process. While in aTAM only in-
dividual tiles can be attached to an existing assembly,
in more complex hierarchical assembly models, partial
assemblies can also bind to each other (e.g., [6,7]). How-
ever, these approaches are based on strictly passive el-
ements, so any changes to the structure have to be en-
forced externally (e.g., by changing the temperature or
exposing the structure to certain kinds of radiation). A
limited number of approaches has been proposed that
are based on active elements instead [8, 11, 26]. How-
ever, since these elements are presumably more difficult
to build, it might be far more costly to realize these ap-
proaches than the approaches based on DNA tiles.

In this paper, we investigate a hybrid approach for
the shape formation problem, in which we are given a
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(a) (b)

Fig. 1: (a) A connected set of tiles positioned on the

triangular lattice. The black dots indicates the position

of the robot. (b) Possible movements of tiles u, v, and

w. Tile w cannot be moved anywhere without violating

connectivity.

set of passive tiles, which are uniform and stateless, and

(a limited number of) active robots. The robots, which

only have the computational power of a finite automa-

ton, can transport tiles from one position to another in

order to form a desired shape. Compared to the DNA

tile-based approach, this approach has the advantage

that all tiles are of the same type and movements are

exclusively performed by the robots. Furthermore, in

contrast to the approaches based entirely on active ele-

ments, we believe that many problems can be solved in

our hybrid model using only a few active elements. In

this paper, we support this claim by showing that al-

ready a single robot is able to solve simple shape forma-

tion problems. Our ultimate goal is to investigate how

multiple robots can cooperate to speed up the process

of shape formation.

Although the complexity of our model is very re-
stricted, actually realizing such a system, for example

using complex DNA nanomachines, is currently still a

challenging task. However, in recent years there has

been significant progress in this direction. For exam-

ple, nanomachines have been demonstrated to be able

to act like the head of a finite automaton on an input

tape [18], to walk on a one- or two-dimensional sur-

face [12, 15, 25], and to transport cargo [20, 22, 24]. We

therefore believe that, in principle, it should be feasible

to build nanomachines with the capabilities assumed in

this paper.

1.1 Model and Problem Statement

We assume that a single active agent (a robot) operates

on a set of n passive hexagonal tiles. Each tile occupies

exactly one node of the infinite triangular lattice G =

(V,E) (see Fig. 1a). A configuration (T, p) consists of a

set T ⊂ V of all nodes occupied by tiles, and the robot’s

position p ∈ V . We assume that the initial position of

the robot is occupied by a tile. Note that every node

u ∈ V is adjacent to six neighbors, and, as indicated in

the figure, we describe the relative positions of adjacent

nodes by the six compass directions N, NE, SE, S, SW

and NW.

Whereas tiles cannot perform any computation nor

move on their own, the robot may change its position

and carry a tile, thereby modify a configuration. The

robot must stand on or be adjacent to a node occupied

by a tile. Additionally, if the robot does not carry a

tile, we require the subgraph of G induced by T to be

connected; otherwise, the subgraph induced by T ∪{p}
must be connected. In a scenario where a tile structure

swims in a liquid, for example, this restriction prevents

the robot or parts of the tile structure from floating

apart. Some examples of possible tile moving steps are

shown in Fig. 1b.

The robot operates in rounds of Look-Compute-Move

cycles. In the Look phase of a round the robot can ob-

serve its node p and the six neighbors of that node.

For each of these nodes it can determine whether the

node is occupied or not. In the Compute phase, the

robot may change its internal state and determines its

next move according to the observed information. In

the Move phase, the robot can either (1) lift a tile from

p, if p ∈ T , (2) place a tile it is carrying at p if p /∈ T , or

(3) move to an adjacent node while possibly carrying a

tile with it. The robot can carry at most one tile.

Formally, we model the execution of an algorithm

by the robot as transitions in a deterministic finite au-

tomaton (Q,Σ, δ, q0, F ). Q is a finite set that contains

all of the robot’s possible states. Σ = {0, 1}7 represents

the set of possible views of the robot: The first bit of

an element in Σ indicates whether p is occupied, and

the other bits indicate, in order, whether the robot’s

N, NE, SE, S, SW, and NW neighbor is occupied. In

each round, the robot executes one transition of the

transition function δ, which is defined as

δ : Q×Σ × {0, 1}
→ Q× {none, liftT, placeT,moved},

The input of δ is the current state and view of the robot,

as well as a bit that indicates whether the robot carries

a tile. As an output, the transition function determines

the robot’s next state as well as one of the following

actions: do nothing (none), lift a tile (liftT ), place a

tile (placeT ), or move in some direction d of the six

cardinal directions (moved). q0 ∈ Q is the initial state

of the robot, and F ⊆ Q contains all final states. If

in some round the robot is in a final state, it will not

perform any further state transition; in this case we say

the robot has terminated.
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Note that we use the above definition to formally

argue about the robot’s capabilities and limitations.

However, we will present our algorithms from a higher

level by describing their behavior textually and through

pseudocode. We remark that all our algorithms can eas-

ily be transformed into actual state machines. Further,

note that even though we describe the algorithms as if

the robot knew its global orientation, we do not actually

require the robot to have a compass. For the algorithms

presented in this paper, it is enough for the robot to be

able to maintain its orientation with respect to its ini-

tial orientation.

We are interested in Shape Formation problems,

where the goal is to transform any initial configuration

into a configuration in which the tiles form a certain

shape on the lattice. Particularly, the goal of the Tri-

angle Formation Problem is to bring the set of all tiles

into a triangular form.

1.2 Related Work

There is a number of approaches to shape formation

in the literature that use agents that fall somewhere

in the spectrum between passive and active. For exam-

ple, tile-based self-assembly [16] uses passive tiles that

bond to each other to form shapes. Here, the way in

which the tiles attach to each other is defined by dif-

ferent types of glues rather than deliberate movements

from one position to another. A variant of population

protocols proposed in [13] uses agents that are partly

passive (i.e., they cannot control their movement) and

partly active (i.e., upon meeting another, they can per-

form a computation and decide whether they want to

form a bond). Finally, the amoebot model [8], the nubot

model [26], and the modular robotic model proposed

in [11] use agents that are completely active in that they

can compute and control their movement. Shape forma-

tion has also been investigated in the field of modular

robotics (see, e.g., [2,14,23]); here, the robots typically

have much greater computational capabilities than in

our model.

In contrast to the above models, our model is speci-

fied by exactly two types of agents, i.e., an active agent

that acts on a set of uniform passive agents. We remark

that some of the above models are more powerful than

our model and could therefore easily simulate our algo-

rithms. For example, in the amoebot model a set of n

active agents could form the initial tile structure and

simulate movements of the active agent by transferring

its role from one agent to another. As every agent is

able to move in that model, modifications of the tile

structure could also be simulated. However, the sim-

plicity of our model allows us to focus on the question

whether already a single active agent with the power to

manipulate the structure of passive agents suffices for

complex, e.g., shape formation tasks.

When arguing about a robot traversing a tile struc-

ture without actually moving tiles, our model reduces to

an instance of the ubiquitous agents on graphs model.

The vast amount of research on this model covers many

problems, including Gathering and Rendezvous (e.g.,

[17]), Intruder Caption and Graph Searching (e.g., [1,

9]), and Graph Exploration (e.g., [3]). Other approaches

allow agents to move tiles (e.g., [5, 21]) but these focus

on computational complexity issues or agents that are

more powerful than finite automata.

Notably, [10] considers almost exactly the same hy-

brid model proposed in this paper with only a single

robot, but instead of moving tiles the robot is only al-

lowed to place pebbles. The authors study shape recog-

nition problems and investigate the impact of equip-

ping the robot with a set of pebbles; we briefly study a

problem that has similar difficulties (i.e., finding a tile

whose removal does not disconnect the tile structure)

in Section 2.

1.3 Our Contribution

In this paper we mainly focus on the Triangle Forma-

tion Problem with a single robot. We begin with point-

ing out one of the limitations of our model: It is in

general impossible for one robot to find a tile that can

be removed without disconnecting the tile structure.

We contrast this result by showing that having a single

pebble already suffices to solve this problem.

We then show how to construct intermediate struc-

tures by using simple tile movements that allow for

easy navigation and tile removal. More specifically, we

present three intermediate structures. The simplest

among them is a line structure; it can be constructed in

O(n2) rounds. The second structure we introduce is a

block. It has O(D) diameter (D being the initial diam-

eter of the tile set), and can often be constructed more

efficiently than the line, namely in O(nD) rounds. Fi-

nally, we describe a tree structure, which, in contrast

to the previous structures, can be built completely in-

side the convex hull of the original tile set in O(n2)

rounds. Using the block structure as an example, we

argue that each of these intermediate structures can be

transformed into a triangle by performing an additional

O(nD) rounds (D being the intermediate structure’s di-

ameter).

We finally discuss how the algorithm to construct a

line can be transferred to the multi-robot case. We pro-

vide some first simulation results showing that a small
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number of robots can speed up line formation by a sig-

nificant amount. As the number of robots becomes high,

we observe the anticipated decline in speedup. We then

describe how a triangle can be built from a line in a

distributed manner.

2 Finding Safely Removable Tiles

In a naive approach to shape formation, the robot could

iteratively search for a tile that can be fully removed

from the structure without disconnecting the tile struc-

ture (a safely removable tile) and then move that tile to

some position such that the shape under construction

is extended. More formally, a safely removable tile is a

tile that does not occupy a cut vertex v of the subgraph

H of G induced by the nodes of T (i.e., a node whose

removal from H does not increase the number of com-

ponents in H). Since H is finite, not every node of H

can be a cut vertex; therefore, there always is a safely

removable tile. However, the following theorem shows

that, in general, a single robot cannot decide whether

a tile is safely removable, which makes this naive ap-

proach infeasible.

Theorem 1 There does not exist a deterministic finite

automaton A so that if the robot executes A on any

configuration starting on an occupied node and without

carrying a tile, it (1) never performs a tile lift, (2) ter-

minates on a safely removable tile.

Proof Suppose that there is such an automaton A, and

let s = |Q|. We consider the configuration H` in which

the tiles form a hollow hexagon of side length `, and

place the robot on the southernmost tile of the hexagon

as depicted in Fig. 2a (we call this node the southern

vertex of H`). We define the set of border nodes to be

all vertices (i.e., the corners) of the hexagon, all empty

nodes inside the hexagon that are adjacent to a ver-

tex, and all empty nodes outside the hexagon whose

only neighbor is a vertex (see Fig. 2a). Consider the fi-

nite sequence of system states (S1, S2, . . . , ST ) through

which the robot progresses while executing A, where

Si = (pi, qi) contains the robots position pi and state qi
before executing round i. S1 corresponds to the initial

system state, and ST is the first system state for which

qT ∈ F . We partition this sequence into phases, where

we define a new phase to start whenever the robot visits

a border node (i.e., for every phase (Si, . . . , Sk), pi is a

border node, and for all j, i < j ≤ k, pj is not a border

node).

Note that since there are at most 18 border nodes,

there can be at most 18s phases: Otherwise, there must

be two phases that begin with system states Si, Sj ,

(a) (b)

Fig. 2: (a) The hollow hexagon of side length ` = 4.

The border nodes of the hexagon are marked by dashed

frames. (b) An example of the tile structure T . In both

figures, the black dot indicates the initial position of

the robot.

respectively, such that Si = Sj (w.l.o.g., let i < j).

Since the tile structure is never altered by the robot,

Si+1 = Sj+1, and, inductively, Si+k = Sj+k for all

k ≥ 0, which implies an infinite loop and contradicts

the assumption that the sequence of system states is

finite.

The way the robot traverses the hexagon depends

on the side length `. We define the traversal sequence

associated with ` as the sequence (S1, S2, . . . , Sk ) of all

system states a phase begins with when A is executed

on H` (i.e., Si is the first system state of phase i, and

k is the total number of phases). Note that a traversal

sequence may be of length 1, i.e., if the robot never

visits a border node except for its initial position. Since

the algorithm takes at most 18s phases to choose the tile

(for any choice of `), there can only be at most (18s)18s

distinct traversal sequences for different choices of `.

Hence, there is a finite number of traversal sequences

and an infinite number of side lengths, which, according

to the pigeonhole principle, implies that there must be

an infinite set L of side lengths corresponding to the

same traversal sequence.

Based on this observation, we now define a tile struc-

ture T for which the robot terminates on a tile that is

not safely removable. This tile structure essentially con-

sists of a spiral as depicted in Fig. 2b. We start at an

arbitrary node of the triangular lattice and construct an

outward spiral consisting of 72s line segments of tiles.

The first line segment of the spiral goes NW and each

subsequent line segment takes a 60◦ clockwise turn. The

lengths of the line segments are chosen from L in such

a way that the smallest side length `min is larger than

s + 2, and such that the segments stay well-separated.

This is possible since L is an infinite set and therefore
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we can always choose sufficiently large segment lengths.

We initially place the robot at the last tile of the (36s)-

th line segment, which is a tile with neighbors at NW

and NE.

It remains to show that the algorithm fails to find

a tile that can be safely removed when being executed

on T . As above, we subdivide the execution of the algo-

rithm into phases, where we define a new phase to start

whenever the robot visits a border node of the spiral

(which, analogous to the definition for the hexagon, we

define as the three nodes at each turn of the spiral).

Using induction on the phases, we show that the robot

traverses T in a way that corresponds to the traversal

sequence associated with the side lengths in L.

More specifically, we show that the i-th border node

visited by the robot on T (1) has the exact same neigh-

borhood as the i-th border node visited by the robot in

a hexagon H` for all ` ∈ L, and (2) is visited in the same

state. This initially holds, as the robot is placed on a

tile with only NW and NE neighbors in both struc-

tures, and starts in the initial state. For 1 < i ≤ 18s,

w.l.o.g., assume that the i-th border node visited in

T is occupied and has a tile at NW and NE (all the

other cases are analogous), and the robot is in state

q (note that the robot cannot have reached either end

of the spiral after having visited fewer than 36s border

nodes). Let `NE be the length of the line segment in

direction NE from the robot’s current position, and let

`NW be the length of the line segment in direction NW.

By the induction hypothesis, we have that the i-th bor-

der node v visited on H` is the the southern vertex of

the hexagon for all ` ∈ L, and the robot is in state q

when visiting the i-th border node.

W.l.o.g, assume that the next border node visited

by the robot on H` is not adjacent to the south-east ver-

tex of H` (i.e., the robot does not follow the hexagon

in direction NE ). Then, in any H`, the robot will never

move away from v in direction NE by more than `min−
2 steps, as otherwise it would visit two nodes with

the same neighborhood in the same state, which would

cause a repetition that leads the robot to a border node

at the south-east vertex. Thus, for every node visited

by the robot on H`NW before the next border node is

visited, the robot visits a node with the exact same

neighborhood on T . Therefore, the next border node

visited by the robot on T has the same neighborhood

than the next border node visited by the robot on H`

for all `, and is visited in the same state.

Therefore, the (18s)-th visited border node on T

corresponds to the last border node visited by the robot

on H` for all `, from where the robot will not move far-

ther away than by `min steps before terminating on a

tile (otherwise, there would again be a repetition lead-

ing the robot to a border node). However, since the

robot has only visited at most 18s border nodes, it

cannot have reached either end of the spiral, and thus

terminates on a tile that is not safely removable. This

directly contradicts the assumption that the automa-

ton works correctly and therefore shows that there is

no such automaton. ut

In contrast, the problem can be solved by equipping

the robot with a single pebble, which we describe in

the following. Here, we additionally assume that the

robot is given a single pebble that it can pick up, carry,

or place on a tile. Formally, we extend the set Σ that

represents the possible view of the robot to be Σ =

{0, 1, 2}7, which for each of the seven nodes within the

robot’s vicinity indicates whether the node is empty (0),

occupied (1), or occupied by a tile on which a pebble is

placed (2). Further, we extend δ to

δ : Q×Σ × {0, 1}2 → Q

× {none, liftT, placeT,moved, pickP, placeP},

whose input now contains an additional bit indicating

whether the robot currently carries a pebble, and whose

set of actions contains one action for picking up a peb-

ble, if the robot stands on a tile on which the pebble

is placed (pickP ), and one action for placing the peb-

ble, if the robot carries its pebble and stands on a tile

(placeP ).

To that end, we first describe how the robot can use

a single pebble to detect whether a given tile is safely

removable. Let S be a maximal set of connected empty

nodes. If S is finite, then it is a hole; otherwise, it is

the infinite set of empty nodes around the structure.

We refer to the subset of S adjacent to tiles as the

boundary of S. Any tile t can be adjacent to at most

three boundaries (see Fig. 3). We define the outline of a

boundary as the set of its adjacent occupied nodes. For

a tile t, consider the subgraph H of G induced by the

empty nodes adjacent to the node of t; H has at most

three components, which we call t’s regions. For exam-

ple, the two end tiles of a line have only one region,

whereas all the tiles with two neighboring tiles have ex-

actly two regions. Note that every region is contained

in some boundary that we call its corresponding bound-

ary ; in the example of a line, all regions correspond to

the same boundary.

Lemma 1 A tile t is safely removable if and only if all

of its empty regions correspond to different boundaries.

Proof First, assume that t has at least two empty re-

gions that belong to the same boundary (e.g., the outer

boundary in Fig. 3). Consider a path P of empty nodes

along the boundary that connects the two regions of t
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Fig. 3: A tile t (black) that is not safely removable with

its three empty regions (dashed outlines). t is adjacent

to two boundaries (black lines). The dotted path could

be extended to a cycle if t was removed.

(the dotted path in Fig. 3). After the removal of t, we

can extend P to a cycle C using the remaining empty

node of t. C consists of empty nodes and surrounds a

set of tiles A. However, as t had at least two empty

regions, there must remain a tile t′ adjacent to t that

is not connected to any tile of A (as otherwise the two

regions would belong to separate boundaries). Hence,

the configuration is not connected anymore.

Now assume all empty regions of t belong to sep-

arate boundaries, and consider two different outlines

containing t. The empty regions that are part of the

corresponding boundaries are connected via tiles in t’s

neighborhood. Hence, any two outlines containing t are

connected via tiles adjacent to t and thus remain con-

nected after removing t. Thus, t is safely removable. ut

Now we are ready to give our automaton to find a

safely removable tile, which, for simplicity, we describe

as an algorithm for the robot. To search for a safely

removable tile, the robot first walks N, NW, and SW

(in that precedence) until it reaches a locally north-

westernmost tile t (i.e., a tile with no neighbors at N,

NW, and SW ). The empty node NW of t belongs to a

boundary whose outline O contains t. As can easily be

seen, O must contain a safely removable tile. To find

it, the robot traverses O in clockwise order and checks

each tile t′ of O separately by the following procedure.

First, it places the pebble on t′. Then, it traverses each

boundary adjacent to t′ and verifies whether it returns

to t′ within the same region, in which case all empty

regions belong to separate boundaries. Together with

Lemma 1, we conclude the following theorem.

Theorem 2 There exists a deterministic finite automa-

ton that the robot can execute to find a safely removable

tile in O(n2) rounds with the help of a single pebble.

3 Forming an Intermediate Structure

Although the robot cannot always find a safely remov-

able tile (unless being equipped with a pebble), it can

always perform local tile movements that preserve con-

nectivity. In this section, we show how to construct in-

termediate structures by performing such movements.

In the resulting structures the robot can easily navigate

and move tiles without possibly violating connectivity.

Therefore, it can easily disassemble such a structure

and rearrange its tiles into the desired shape.

We aim to construct simply connected intermediate

structures (i.e., structures without holes), as removabil-

ity of a tile can easily be determined locally in such a

structure: a tile is safely removable if and only if it only

has one empty region. Such a tile can always easily be

found in a simply connected structure. Note that al-

though in the presented intermediate structures it is

easy to determine a location where an arbitrarily sized

shape can be built, a robot may not easily find such a

location in an arbitrary simply connected structure.

We show how to construct three different interme-

diate structures. As a first simple example, we demon-

strate how to construct a line in time O(n2). Clearly,

the main drawback of this algorithm is that tiles might

need to be moved by a distance linear in n. Our sec-

ond algorithm avoids this pitfall by building a structure

called a block in time O(nD). Here, D is the diameter

of the initial tile configuration, which is defined as the

maximal length of a shortest node path between any

two occupied nodes of the triangular lattice. The algo-

rithm further ensures that no tile is moved farther than

by a distance of D. The last and most complex algo-

rithm builds a simply connected structure called a tree

in time O(n2). The main advantage of this solution is

that no tile is ever placed outside of the convex hull of

the initial configuration. Here, we refer to the convex

hull of the corresponding set of hexagonal tiles in the

Euclidean plane.

3.1 Forming a Line

We present an algorithm for the robot to rearrange any

connected tile configuration into a line (i.e., a sequence

of connected tiles from north to south) in O(n2) rounds.

The robot first moves S as far as possible, i.e., as long

as there is a tile in direction S. Then, it alternates be-

tween a tile searching phase, in which it moves N, NW,

and SW (in that precedence) until there is no longer a

tile in any of these directions; and a tile moving phase,

in which it lifts the tile, moves one step SE, moves S

until it reaches an empty node, and then places the tile.

The line is complete once the robot does not encounter
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Fig. 4: First several steps of line formation. The black

tiles are moved to the positions marked by dashed out-

lines.

any adjacent tiles to the east or west in the tile search-

ing phase. Fig. 4 shows the first several steps of this

algorithm.

Theorem 3 There exists a deterministic finite automa-

ton that the robot can execute to transform any con-

nected tile configuration into a line and terminate after

O(n2) rounds.

Proof We define a column to be a maximal sequence

of connected tiles from N to S. The correctness of the

algorithm follows from the following observations: (1)

the robot always finds a locally northwesternmost tile

in the tile searching phase, (2) if there is more than

one column in the tile configuration, the tile searching

phase does not terminate in the northernmost tile of an

easternmost column, (3) the tile moving phase does not

disconnect the tile configuration and (4) the algorithm

terminates when a line is formed. Together with the

fact that every tile is moved exactly one step in SE

direction, it follows from (1) - (3) that the line will

eventually be built, in which case the robot terminates

by observation (4).

The first observation is obvious by the definition of

the first phase of the algorithm. The second observation

follows from the fact that preference is given to the NW

and SW directions when searching: If the target tile

configuration has not yet been achieved, and the robot

stops at some locally northwesternmost tile, there must

be tiles east of that position.

For the third observation, suppose that the tile mov-

ing phase disconnects the tile configuration. Let t be

the locally northwesternmost tile being moved. The tile

configuration can get disconnected after removing t only

if there are adjacent tiles NE and S of t, but no adja-

cent tile SE, since otherwise the adjacent tiles will still

be locally connected after removing t. But in that case

the tile t will be placed in the empty position at the SE

neighbor and reconnect the adjacent NE and S tiles.

Therefore, during the second phase of the algorithm

the tile configuration does not get disconnected.

Finally, for the fourth observation consider the fol-

lowing two cases: (1) if the structure is initially a line,

then the robot completely traverses the line from south

to north in the first tile searching phase and finds no tile

to the east or west; (2) otherwise, the structure eventu-

ally becomes a line after the robot has placed the line’s

southernmost tile, in which case the robot terminates

after the next tile searching phase.

Finally, we show that the algorithm takes O(n2)

rounds. The first steps of moving south take O(n)

rounds. For the two phases, we first bound the number

of times the robot moves a tile by one step in the tile

moving phase. By the above observations, the tiles of an

easternmost column in the initial tile configuration are

never moved. Since furthermore the initial tile configu-

ration is connected, and tiles are exclusively moved SE

and S, each tile is moved at most 2n steps. Therefore,

smove = O(n2) move steps are performed in total.

Now, consider the tile searching phase. We assign

coordinates to each node, where the x-coordinate grows

from west to east and the y-coordinate grows from north

to south (e.g., moving S increases y by 1 while moving

SW decreases x by 1 and y by 1
2 ). Whereas the sum

of the coordinates of the robot increases at every step

in the tile moving phase, and decreasing at every step

in the tile searching phase. More specifically, at each

step of the tile moving phase, the sum of the coordi-

nates of the robot increases by at most 3
2 , and at every

step of the tile searching phase, the sum of the coordi-

nates decreases by at least 1
2 . Thus, the total number

of steps in the tile searching phase can be bounded by

ssearch < 3 · smove + (x0 + y0) − mini(xi + yi) , where

(x0, y0) denotes the robot’s initial coordinates, and the

value mini(xi +yi) is taken over all possible placements

of all tiles. As the initial tile configuration is connected,

(x0 + y0)−mini(xi + yi) = O(n), and ssearch = O(n2).

Therefore, the total number of search steps is O(n2).

Since each move and search step takes O(1) rounds,

the total number of rounds is O(n2). ut

Note that it is not hard to see that Ω(n2) rounds are

necessary to rearrange an arbitrary initial tile configu-

ration into a line by a single robot. If starting from an

initial configuration with diameter O(
√
n), a constant

fraction of the tiles has to be moved by a distance linear

in n and thus, in total, Ω(n2) move steps are necessary.

3.2 Forming a Block

Although a line can be constructed efficiently, its lin-

ear diameter might make it an undesirable intermediate
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Fig. 5: Transformation of an initial structure into a

block. The gray lines indicate some fixed x- and y-

coordinates for reference.

structure. In fact, if both the initial diameter and the

diameter of the desired shape are small, moving tiles

by a linear distance seems to be an excessive effort.

Therefore, we introduce another intermediate structure,

which is called a block : In a block, all tiles except those

farthest to the west have a neighbor to the northwest.

Therefore, a block has only one westernmost column,

and every row (i.e., a maximal sequence of connected

tiles from NW to SE ) begins with a tile from that col-

umn (see right picture in Fig. 5). Clearly, a line is a

special case of a block that only consists of one column.

Our algorithm builds a block in O(nD) time and does

not move any tile farther than by a distance D (recall

that D is the diameter of the initial structure). An ex-

ample of a transformation of an initial structure into a

block is shown in Fig. 5.

We present the algorithm in two steps. First, we

describe a non-halting algorithm by giving simple tile

moving rules similar to the rules of the line construc-

tion algorithm. Eventually this algorithm will build a

block structure. We then extend the algorithm with ad-

ditional checks to detect whether a block structure has

been built.

As in the line algorithm, the robot alternates be-

tween a searching and a moving phase: It first searches

for a locally northwesternmost tile by repeatedly mov-

ing NW, SW, or N (in that precedence). The robot then

picks up the tile, moves SE until it reaches an empty

node, and places the tile there.

We first show the correctness of this simple algo-

rithm in the following sequence of lemmas. In the fol-

lowing, we assign coordinates to each node, where the x-

coordinate grows from west to east and the y-coordinate

grows from north to south (e.g., moving N increases y

by 1 while moving SW decreases x by 1 and y by 1
2 ).

For the following three lemmas, let 0 be the maximum

x-coordinate of all tiles in the initial tile configuration,

i.e., the x-coordinates of the easternmost tiles are 0 and

all others have negative x-coordinates.

Lemma 2 During the algorithm’s execution, any two

tiles with x-coordinate 0 are connected via a simple path

of tiles whose x-coordinates are at most 0.

Proof The claim initially holds. Let P be the simple

path connecting two tiles u and v with x-coordinate

equal to 0. We show that after the robot has moved any

other tile, there remains a path between u and v. Note

that the robot does not violate the claim by picking

a tile with x-coordinate greater than 0. If the robot

picks up a tile t with x-coordinate equal to 0, then t

cannot lie on P , as t does not have adjacent tiles at

N, NW, and SW. Thus, moving t does not affect the

path. Now, assume the robot picks up a tile t with x-

coordinate smaller than 0. If t lies on P , then, since P

is simple, t must have two adjacent tiles t′ and t′′ at

NE, SE, or S that are part of P . If the SE position is

not empty, t′ and t′′ remain connected after the removal

of t. Otherwise, t will be placed there. In both cases a

path between u and v is maintained. ut

Lemma 3 If there is a tile with x-coordinate 0, and the

robot picks up a tile at some node v with x-coordinate

xv, then xv ≤ 0.

Proof The node of the first tile the robot picks up has x-

coordinate at most 0. Now assume that afterwards the

robot picks up a tile at some node v of the triangular

lattice with x-coordinate xv. If there is a tile at the

S neighbor of v, then the next tile the robot will lift

has x-coordinate at most xv. If there is no tile at the S

neighbor of v, the next tile the robot will lift is at the

SE neighbor of v.

This implies that in order for the robot to first lift

a tile t2 with x-coordinate greater than 0, it has to

have previously lifted a tile t1 at 0 with no neighbor at

S. Therefore, t1 could not have been connected to any

other tile at 0 via a path of tiles with x-coordinate at

most 0. Thus, by Lemma 2, t1 was the only tile at 0

when it was lifted. Therefore, there is no tile with x-

coordinate 0 when t2 is lifted. ut

Note that in the next lemma we do not yet assume

that the algorithm will terminate when a block struc-

ture has been built, but only show that a block will

eventually be built.

Lemma 4 Let the maximum x-coordinate of the tiles

in the initial tile structure be 0. Then the algorithm re-

arranges the tiles into a block, in which the westernmost

column of tiles has x-coordinate 1, in O(nD) rounds.
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Proof We first show the correctness of the algorithm.

First, note that the robot always finds a tile to move.

By Lemma 3, the robot will repeatedly pick tiles with x-

coordinate at most 0 until there is no such tile anymore.

At this point, every tile with x-coordinate at least 2 has

a neighbor at NW. This is due to the fact that each such

tile must have had a NW neighbor at the time of its

placement, and by Lemma 3 none of these tiles have

been moved yet. Therefore, the tiles are arranged as a

block in which the westernmost tiles have x-coordinate

at most 1.

We now turn to the runtime of the algorithm. It

is easy to see that each tile is moved for at most 2D

steps until the block is established, which implies that

at most O(nD) move steps are performed in total. Note

that each time a tile is moved the sum of the robot’s co-

ordinates increases by 3
2 . On the other hand, each search

step decreases this sum by at least 1
2 . Thus, the total

number of search steps is bounded by 3m+O(n), where

m = O(nD) is the total number of move steps. There-

fore, the total number of search steps is also bounded by

O(nD). Since each step is performed within a constant

number of rounds, the number of steps the algorithm

takes until it builds a block structure, with x-coordinate

of a westernmost tile equal to 1, is O(nD). ut

Next, we show how the robot can detect when a

block has been successfully built by performing a series

of tests alongside the algorithm’s execution. Consider

a block as a stack of rows, i.e., sequences of consecu-

tive tiles from NW to SE. Note that according to the

above algorithm the robot will move each tile of the

westernmost column of a finished block, starting with

the northernmost tile, placing each at the first empty

position SE of it. Thereby, the robot can detect that

a block has been built by verifying the following con-

ditions: (1) after placing a tile, the robot performs at

most one SW movement before it lifts the next tile,

(2) while moving a tile t, the robot does not traverse a

node (except for t’s previous position) that has a neigh-

bor at NE, but not at N, or a neighbor at S, but not at

SW, (3) the robot never places a tile at a node that has

a neighbor at SE. A test verifying the above conditions

is initiated whenever the robot picks a tile that does not

have a NE neighbor. If thereafter any of the above con-

ditions gets violated, the test is aborted. If otherwise

the robot places the southernmost tile without encoun-

tering any violation, the algorithm terminates.

Theorem 4 There exists a deterministic finite automa-

ton that the robot can execute to transform any con-

nected tile configuration into a block and terminate af-

ter O(nD) rounds.

Proof By Lemma 4, the robot builds a block within

O(nD) rounds. Assume the robot lifts a tile t that does

not have a NE neighbor and initiates the test sequence.

If the structure is a block already, the robot will move

its westernmost tiles as described above and, after mov-

ing the last tile, the test series finishes without any vi-

olation.

Now assume the structure is not a block at the time

t is lifted by the robot. We show that in this case the

test series fails. If a tile s of the column below t has

a neighbor at SW, the test series will fail at the latest

when the robot moves the northern neighbor of s and

afterwards takes at least two steps SW , thereby violat-

ing Condition 1. If otherwise no such tile exists, i.e., no

tile in the column below t has a neighbor at SW, then

there must be a tile s farther east than t that has no

neighbor at NW and that is adjacent to a tile of a row

r of t’s column; if no such tile existed, the structure

would be a block already. We distinguish the following

two cases: (1) s is a southern neighbor of r, in which

case the test series fails at the latest when the robot

traverses r’s row by Condition 2. (2) s lies NE to a tile

of r. If the robot places a tile NW of s (by moving a

tile in the row above r), the test series will fail by Con-

dition 3. Otherwise, the NW neighbor of s will still be

empty when r is traversed by the robot, in which case

the test series fails by Condition 2. ut

Note that since tiles are exclusively moved SE, the

resulting block has at most D rows consisting of at most

D tiles each, and therefore diameter O(D). Similar to

the construction of a line, it can be easily seen that the

runtime to construct a block is asymptotically optimal:

Consider a line of tiles from SW to NW. In order to

transform the initial structure into a block, a constant

fraction of tiles needs to be moved by a distance linear

in D.

3.3 Forming a Tree

So far we have been mainly focusing on how to quickly

construct suitable intermediate structures. However, re-

garding potential practical applications, it may also be

desirable to minimize the required work space. Whereas

the previous structures are in many cases built almost

completely outside of the initial configuration’s convex

hull, in this section we present an algorithm that builds

a simply connected structure by exclusively moving tiles

inside the structure’s convex hull.

First we introduce some additional notation. An

overhang is a set of vertically adjacent empty nodes

such that (1) the northernmost node has a tile at N,

(2) the southernmost node has a tile at S, and (3) all
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(a) (b) (c) (d)

Fig. 6: (a) The traversal of the robot in an arbitrary connected structure, starting from an easternmost column,

until detecting an overhang (dashed outlines). (b) The first three tiles are placed into the overhang. (c) Tiles (1)

and (2) are moved south before (3) is brought into the overhang. (d) The resulting tree.

nodes have adjacent tiles at NW and SW. A tree is a

connected tile configuration without an overhang. Ex-

amples of an overhang and a tree are shown in Fig. 6a

and 6d, respectively. Since the westernmost nodes of a

hole are part of an overhang, a tree is simply connected.

The branches of a tree’s column are defined as its west-

ern adjacent columns, where two columns are called ad-

jacent if at least two of their tiles are adjacent. Finally,

a local tree is a column whose connected component,

obtained by removing all of its eastern neighbors, is a

tree.

We present an algorithm that transforms any ini-

tial tile configuration into a tree in O(n2) rounds and

without ever placing a tile outside the initial structure’s

convex hull. The pseudocode of the algorithm is given

in Algorithm 1. From a high-level, the algorithm works
as follows. The robot first traverses the tile structure in

a recursive fashion until it encounters an overhang. It

then fills the overhang with tiles and afterwards restarts

the algorithm. Once the whole structure can be tra-

versed without encountering any overhang, the tiles are

arranged in a tree and the robot terminates.

More precisely, the robot does the following. In the

initialize phase, it first successively moves to east-

ern columns until it reaches a locally easternmost col-

umn. Then the robot starts moving west. Upon entering

a column, it moves N and then enters the northern-

most branch. If the column has no branches, a locally

westernmost column has been reached. In this case the

robot checks whether the current column has an adja-

cent eastern overhang by traversing the column from

N to S. If so, it fills the overhang as described in the

next paragraph and afterwards restarts the algorithm.

Otherwise, the robot searches for an adjacent eastern

column (of which there can be at most one). If there

is none, then the algorithm terminates. Otherwise, the

robot either continues its traversal in the first branch

south to the branch from which it entered the current

column, or, if no such branch exists, verifies whether

the current column has an adjacent eastern overhang

and proceeds as described above. An illustration of a

traversal of the robot, in which the robot eventually

detects an overhang, is given in Fig. 6a.

We now describe how the robot fills an overhang.

First, to find a tile to place into the overhang, the robot

moves in a way that assures that it will find its way

back. The robot alternates between moving N as long

as there is a tile at N (get tile N phase), and moving

NW as long as there is a tile at NW and no tile at SW

or N (get tile NW phase). The robot’s path either ends

(1) in the get tile N phase at a tile that does not have

a neighbor at NW or SW, in which case the tile is lifted

(e.g., Tile 1 in Fig. 6b), (2) in the get tile NW phase

at a locally northwesternmost tile, which would also be

lifted (e.g., Tile 2 in Fig. 6b), or (3) in the get tile NW

phase at a tile t that has a SW neighbor (e.g., Tile 1

in Fig. 6c).

In the third case, t is moved one step S. If thereafter

t has a neighbor at S or SE, the robot lifts t’s NE

neighbor t′. Otherwise, it moves onto t′ and continues

its search. Both situations are illustrated in Fig. 6c:

First, the tile labeled 1 is moved south. As this tile does

not have a neighbor at S or SE, the robot continues

at the tile labeled 2, which, after having been moved

south as well, has a southern neighbor; therefore, the

robot lifts tile 3.

Once the robot has lifted up a tile, it returns to its

originating column c by moving S and SE (in this or-

der of precedence). As the robot has never stepped on

a tile with a southern neighbor outside of c, and has
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Algorithm 1 Algorithm to form a tree.

1: phase initialize:
2: Move to locally easternmost column
3: Move N as far as possible
4: goto search next branch

5: phase search next branch:
Branches farther north are local trees

6: Move S until
7: case tile at NW or SW then
8: Move NW (or SW )
9: Move N as far as possible

10: case reached column’s end then
11: goto check overhangs

12: phase check overhangs:
Current column is a local tree

13: Move N until end
14: Move S until
15: case found eastern overhang then
16: goto get tile N

17: case reached column’s end then
18: goto move E

19: phase move E:
Column is a local tree and has no overhangs

20: Move N until
21: case tile at SE or NE then
22: Move SE (or NE)
23: if tile at S then
24: Move S
25: goto search next branch

26: else
27: goto check overhangs

28: case reached column’s end then
29: terminate

30: phase get tile N:
31: Move N as far as possible
32: if no tile at NW or tile at SW then
33: goto bring tile

34: else
35: goto get tile NW

36: phase get tile NW:
37: if tile at NW and no tile at SW and N then
38: Move NW
39: else if tile at N then
40: goto get tile N

41: else if tile at SW then
There cannot be a tile at S

42: Lift tile and move it S
43: if tile at S or at SE then
44: Move NE
45: goto bring tile

46: else
47: Move NE
48: else

Reached locally northwesternmost tile
49: goto bring tile

50: phase bring tile:
51: Lift tile and move S, SE (in that precedence)

until there is tile at NE
52: Move S until there is no tile at SE
53: Move SE and drop tile
54: if tile at S then

Overhang was filled
55: goto initialize

56: else
57: Move SW
58: goto get tile N

never performed a SW movement, it thereby precisely

retraces its search path, and the first tile it encounters

that has a NE neighbor must lie in c. The robot con-

tinues to bring tiles as described until the overhang is

filled, in which case it again turns to the initialize

phase.

Lemma 5 If the algorithm is executed by the robot

starting on a tree, the robot traverses the tree com-

pletely and terminates within O(n) rounds. Otherwise,

the robot finds an adjacent eastern overhang of a local

tree within O(n) rounds.

Proof We first show the first part of the lemma. Assume

a configuration is a tree. Then, every column has at

most one adjacent eastern column. Furthermore, there

is exactly one column that does not have an eastern

neighbor. Following the initialize phase, the robot

first moves to the northernmost tile of that column and

then turns to the search next branch phase. We show

that the robot traverses the local tree of each column

completely in a recursive fashion. Since the local tree of

the easternmost column is the whole tree, this implies

the claim.

We claim that upon entering a column c, (1) the

robot first moves to the northernmost tile of c, (2) com-

pletely traverses its branches from north to south, (3)

verifies that c does not have any overhang, and then (4)

enters c’s adjacent eastern column c′ via the southern-

most tile of c′ that is adjacent to c. If there is no such

tile, then the robot has traversed the whole tree and

terminates in Line 29.

We prove the claim by induction on the depth of the

local tree of c. First, note that (1) holds due to Line 3

if c is the initial column, or Line 9 if c is reached via

an eastern column c′. Now assume c does not have any

branches. Then the robot traverses the column from

north to south (Line 6) and immediately turns to the

check overhangs phase (Line 11). It then traverses the

column once more to verify that is has no overhangs. Af-

terwards, by following the move east phase, the robot

traverses c from south to north until it reaches the

southernmost tile of c′ adjacent to c.
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Now assume c has branches. When first entering

c, the robot moves to the column’s northernmost tile,

and then enters the northernmost branch of c following

the search next branch phase. By the induction hy-

pothesis, it eventually reaches c again via its southern-

most tile t that is adjacent to that branch. If there are

branches further south, tmust have a southern neighbor

and the robot continues to search for the next branch

(Line 23). Following the above procedure, the robot tra-

verses all branches of c until it eventually reaches its

southernmost tile and turns to the check overhangs

phase (Line 11 or 27). As there are no overhangs, it en-

ters its adjacent eastern branch c′ via the southernmost

tile of c′ that is adjacent to c. We conclude that if the

configuration is a tree, then the robot moves through

the whole structure and eventually terminates in its

easternmost column.

If otherwise the configuration is not a tree, the robot

will traverse the structure as described above until it

eventually detects an eastern overhang in some column

c during the check overhangs phase in a column c.

Since the robot must have traversed all branches of c,

c is a local tree.

It is easy to see that in any case each tile is visited

no more than 6 times. Therefore, the robot halts within

O(n) rounds. ut

Lemma 6 After detecting the northernmost eastern

overhang of a column c in the check overhangs phase,

the robot will fill it and then turn to the initialize phase.

At all times, the structure remains connected and c re-

mains a local tree.

Proof First, after encountering the overhang, the robot

turns to the get tile N phase in Line 16 and moves to

the northernmost tile r of c. If r does not have a neigh-

bor at NW or does have a neighbor at SW, then the

robot lifts r and, by following the bring tile phase,

places it at the northernmost node of the overhang. As

c has an overhang, and thus consists of at least two

tiles, the robot can only disconnect the tile structure

by removing r if there is a tile NE but not SE of r’s

previous position, in which case r is directly placed SE,

reconnecting both parts (Tile 1 in Fig. 6b).

If otherwise r has a neighbor at NW but not at

SW, the robot initiates a search for a safely removable

tile by turning to the get tile NW phase in Line 35.

First, the robot moves NW as long as there is a tile at

NW, no tile at SW, and no tile at N. If it reaches a tile

that has a neighbor at N (Line 39), it again turns to

the get tile N phase and continues as above. Since the

robot only moves N and NW, and the tile set is finite,

the robot eventually faces one of three situations. We

show that in all three situations the robot identifies a

tile that can be taken away without disconnecting the

structure.

In the first situation, the robot reaches a locally

northwesternmost tile during the get tile NW phase

(Line 48, Tile 2 in Fig. 6b after Tile 1 has been moved).

Since this tile must have been reached via its SE neigh-

bor, it can be safely removed.

In the second situation, the robot encounters a north-

ernmost tile t that has no tile at NW or a tile at SW

during the get tile N phase (Line 32, Tile 3 in Fig. 6b

after 1 and 2 have been moved). As t lies in a branch

of c, in which there cannot be any overhangs by the

discussion of Lemma 5, t cannot have a neighbor at NE

and thus can be safely removed.

In the third situation, the robot reaches a tile t

that has no neighbor at N, but at SW, during the

get tile NW phase (Line 41, Tile 1 in Fig. 6c). t must

have been reached via its SE neighbor t′, which, con-

sequently, cannot have a neighbor at N nor SW. First,

the robot moves t one step south. If t does not have a

neighbor at S nor SE, then the robot moves onto t′ and

continues with the get tile NW phase (Tile 1 in Fig. 6c

after having been moved south). Note that the same

situation might happen again for t′, and may even re-

peat for every tile of the corresponding row, which will

be moved south one after the other.

However, the robot must eventually move a tile t

south that faces a neighbor at S or SE. In this case,

its NE neighbor t′ is lifted (Line 45). We have to show

that the structure remains connected and c remains a

local tree. We distinguish two cases. First, if t only has a

neighbor at S, then t′ 6= r (Tile 2 in Fig. 6c, after 1 and

2 have been moved south). As there are no overhangs in

the local tree of c, t′ therefore cannot have a neighbor

at NE ; furthermore, the tile south of t must be a tile

of a different branch than the branch of r. Therefore,

connectivity of the structure is preserved after lifting t′.

Furthermore, the new connection established by mov-

ing t cannot introduce any overhangs into c’s local tree.

Second, if t has a neighbor at SE, then t′ = r. By the

argument above, bringing r to the overhang cannot vi-

olate connectivity.

We finally argue that the lifted tile is correctly placed

into the overhang. If the robot lifts a tile in the first or

second situation above, then no tile traversed by the

robot can have a NE neighbor (except for r), and the

robot has never moved SW. If the robot lifts a tile in

the third situation, then the same holds for the search

path up to the position of that tile. Therefore, moving

S and SE (in that precedence) in the bring tile phase

(Line 51) precisely retraces the robot’s search path, and

brings the robot back into column c. As c has an eastern

overhang, there the robot must encounter a tile that has
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a neighbor at NE. The first empty SE neighbor south

of that position must be a node the northernmost east-

ern overhang of c. If after placing the tile at that node

there is a tile at S (Line 54), the overhang has been

filled and the initialize phase is entered. Otherwise,

the robot continues until all nodes of the overhang are

filled. ut

Lemma 7 Following the algorithm, the robot never places

a tile outside of the convex hull of the initial configura-

tion.

Proof The robot does not leave the convex hull by plac-

ing a tile t into an overhang. The only other movement

of t occurs in Line 42 in the situation depicted in Fig. 6c.

The robot has reached t by moving a sequence of NW

and N steps starting at the northernmost tile of a col-

umn c with an adjacent eastern overhang. Since c has

at least 2 tiles, the robot will not move t outside the

configuration’s convex hull. ut

Using the previous lemmas, we are now ready to

prove the following theorem.

Theorem 5 There exists a deterministic finite automa-

ton that the robot can execute to transform any con-

nected tile configuration into a tree in O(n2) rounds and

without placing a tile outside the initial configuration’s

convex hull.

Proof If the configuration is a tree, then by Lemma 5

the robot terminates within O(n) rounds. Therefore,

assume the configuration is not a tree. Lemma 5 states

that the robot will find an overhang, which, by Lemma 6,

will subsequently be filled. Afterwards, the algorithm

will be restarted (Line 55). We define a possible over-

hang as a maximal but finite column of vertically ad-

jacent unoccupied nodes. Nodes that are not part of

an overhang initially can only ever become part of one

if they are inside a possible overhang. Since the robot

does not create any new possible overhangs, it can only

fill finitely many overhangs before the tile configuration

is arranged as a tree. After performing a last traversal

through the tree, the robot terminates.

We now turn to the runtime of the algorithm. Clearly,

there are only O(n) possible overhangs in an initial con-

figuration. Since traversing the structure before finding

an overhang takes O(n) rounds by Lemma 5, and the

algorithm is restarted at most O(n) times, the total

number of rounds needed for traversing the structure

is O(n2). Since tiles are only moved S or SE and, by

Lemma 7, tiles are never moved outside the initial con-

figuration’s convex hull, each tile is moved at most O(n)

steps. Furthermore, for every search step in direction

N and NW in the get tile N phase and get tile NW

Fig. 7: Snapshots of triangle formation. If the number

of tiles is not triangular, the final layer will not be com-

pletely filled.

phase, the robot either moves a tile by one step in the

opposite direction, or moves a tile S and takes a sin-

gle step NE. Therefore, O(n2) rounds are needed for

searching and moving tiles, which implies that the robot

terminates within O(n2) rounds. ut

4 Forming a Triangle

We will now describe how the robot can transform an

intermediate structure into a triangle. More precisely,

a triangle consists of columns whose northernmost tiles

form a row, and each column consists of exactly one

tile more than its eastern adjacent column (except for

the westernmost column, which is only partially filled

if n is not a triangular number). In the following, we

assume that a block has already been built. It can be

easily seen that a line and a tree can be transformed in a

similar way. The triangle is built by repeatedly taking
the easternmost tile of the block’s northernmost row,

carrying it south to the vertex of the forming triangle,

and adding it to the westernmost layer of the triangle

(see Fig. 7).

First, the robot creates the vertex (i.e., the east-

ernmost column consisting of one tile) of the triangle

by placing a tile on the node v below the westernmost

column of the block. A second tile is then placed NW

of v. Every other tile of the triangle is then placed as

follows. The robot brings a tile to the triangle’s vertex,

and then walks NW and S (in that precedence) there

is not tile in any of these directions. If there is a tile

at SE, the robot moves one step S and places the tile.

Otherwise, the robot moves N to the top of the layer,

takes one step NW, and places the tile. In this man-

ner, the robot continues to extend the triangle tile by

tile until the block only consists of the triangle’s vertex.

By Theorem 4, and since each tile can be brought and

placed within O(D) rounds, we conclude the following

theorem.
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Theorem 6 There exists a deterministic finite automa-

ton that the robot can execute to transform any con-

nected tile configuration into a triangle and terminate

after O(nD) rounds.

It is not hard to see, using similar arguments as in

the previous sections, that the runtime is asymptoti-

cally optimal. In the case that an initial configuration’s

diameter is low, i.e., D = O(n1/2), we conclude that it

can be rearranged into a triangle in O(n3/2) rounds.

5 Towards Multiple Robots

As a first step towards extending our algorithms to the

multi-robot case, we show that multiple robots can co-

operatively construct a triangle using a line as an inter-

mediate structure. We believe that some of our ideas

may also be useful to solve more difficult problems.

First, we present and discuss the underlying model as-

sumptions. Then, we briefly describe how the line for-

mation algorithm can be adapted for multiple robots.

We experimentally show that the construction of a line

can be sped up significantly by using multiple robots.

Finally, we describe a simple algorithm to transform a

line into a triangle using multiple robots.

Model Discussion. We consider the following extension

of our model to incorporate multiple robots. For brevity,

we leave out a formal definition as in Section 1.1. Each

node is occupied by at most one robot at any time. We

adapt our notion of connectivity and require all robots

to be adjacent to occupied nodes, and the subgraph of

G induced by all occupied nodes T and the positions Pc

of all robots carrying tiles to be connected. In the look

phase, for each adjacent node a robot can additionally

observe whether the node is occupied by another robot,

and determine the state of that robot. It then uses this

information to determine its next state and move in the

compute phase, and may change the state of each ad-

jacent robot. In the move phase, the robot is further

allowed to pass a carried tile to an adjacent robot that

does not yet carry a tile.

We assume an asynchronous model in which robots

are activated in an arbitrary sequence of activations,

where a robot performs exactly one look-compute-move

cycle before the next robot is activated (see, e.g., [4]).

Correspondingly, a round is over whenever each robot

has been activated at least once. For simplicity, we not

only assume that all robots have the same chirality,

but share a common compass. In fact, lifting this re-

striction imposes difficult challenges outside the scope

of this paper, since symmetry breaking is very hard in

our deterministic model. We leave this issue as a future

research question.

Fig. 8: Simulation results for 10000 tiles.

Distributed Line Formation. In order to extend the line

algorithm to work with multiple robots, we propose

three main modifications to the line formation algo-

rithm. The pseudocode of the algorithm can be found

in Algorithm 2. First, a robot r that carries a tile and is

blocked in S or SE direction by a robot that searches for

a tile can pass its tile and state to the blocking robot.

Additionally, if r stands on a tile, it turns to the search

phase. Otherwise, r has left the tile structure (we say

it is hanging) and subsequently traverses its boundary

in clockwise order, maintaining its connectivity to the

outline of the tile structure (i.e., the outermost tiles of

the tile structure), until it reaches an empty tile to step

on. We make sure that no hanging robot is disconnected

from the tile structure by a robot picking up a tile by

performing additional checks.

Second, we ensure that no hanging robot ever ends

up in a deadlock whilst traversing the boundary by

avoiding to walk into bottlenecks, i.e., empty nodes with

tiles on two non-adjacent sides. A traversal that avoids

bottlenecks is depicted in Fig. 9. Finally, in order to

eventually let each robot detect that the line has been

built, we slightly modify the way tiles are moved. More

specifically, we do not immediately move a lifted tile SE

and place it at the first empty position in the column

as in the single-robot algorithm. Instead, after lifting a

tile, a robot first walks S until it actually encounters a

column to its east, and only then moves SE to place its

tile there; if there is no such column, the tile is simply

placed at the bottom of the current column. This way,

termination of line formation can easily be determined

by all robots.

Simulation Data. Although correctness can be proven

for this multi-robot approach, it is difficult to make any

runtime guarantees. This is due to the fact that, when

there are many robots compared to the number of tiles,

many robots are blocked by others and must wait to
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Algorithm 2 Algorithm to form a line using multiple robots.

Remark: Whenever the movement of a robot r that carries a tile is blocked by a robot r′ that does not carry a tile, r passes
its tile and state to r′ and goes to phase search, if r stands on a tile, and to phase hanging, otherwise. In the latter case
r, sets next dir to N. If r is blocked by a robot also carrying a tile, it waits.

1: phase search:
2: find a locally northwesternmost tile by moving NW, SW, and N
3: wait whenever the next tile is already occupied by a robot
4: if removing the tile does not locally disconnect a hanging robot then
5: lift the tile
6: is_line ← TRUE
7: goto carry orig col

8: phase carry orig col: . Move tile S until an eastern column is reached
9: if there is western or eastern (carried) tile then . Not a line yet

10: is line ← FALSE
11: if (carried) tile at NE or SE then . Reached eastern column
12: move SE and goto carry_next_col

13: else if (carried) tile at N and not standing on tile then . End of column
14: drop tile
15: if is_line then goto done else goto search

16: else if robot in phase done at S then . Line has been built, pass tile down
17: pass tile and state to robot at S and goto done

18: else
19: move S

20: phase carry next col: . Move S as far as possible and drop tile
21: if standing on tile then
22: move S
23: else
24: drop tile and goto search

25: phase hanging: . Traverse the boundary of the tile structure until an empty node is reached
26: if adjacent to empty tile then
27: move there and goto search

28: for i in (−2,−1, 0, 1, 2) do . Choose next direction according to clockwise traversal; the or-
der ensures that the robot does not walk through a bottleneck

29: let d (d′) be the cardinal direction obtained by turning i (i + 1) steps in clockwise order starting at next dir

30: if no tile at d and tile at d′ then
31: next dir ← d
32: if no robot at next dir then
33: move next dir

34: break

Fig. 9: A boundary traversal that does not pass through

bottlenecks.

make progress. However, as a first step, we experimen-

tally evaluated the number of rounds until all robots

halt. The results for n = 10000 and a varying num-

ber k of robots can be found in Fig. 8. We conducted

50 simulations for each k, each initialized with a ran-

domly generated tile configuration on which the robots

were randomly placed. The robots were activated in a

random order, each exactly once in every round. Each

tile configuration was generated by the following proce-

dure: First, randomly choose 10000 · 162/2.02 nodes of

an equilateral parallelogram with side length
√

10000·16

to be occupied by a tile. Then, repeat the experiment

until the largest connected component of the generated

tile set contains at most 10500 tiles. The final configu-

ration is obtained by repeatedly removing random tiles

from the component whose removal does not disconnect

the structure until 10000 tiles remain.

The simulations show that using a reasonably small

number of robots significantly reduces the required num-

ber of rounds compared to using a single robot. The

curve on the left part of Fig. 8 first decreases almost

linearly (e.g., going from one to two robots essentially

halves the runtime). However, for a large number of
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robots the benefit gained from employing more robots

is almost negligible (right part of Fig. 8). This phe-

nomenon can likely be explained by the fact that the

likeliness of robots waiting on each other increases with

the number of robots. Nevertheless, these preliminary

results suggest that the model indeed allows multi-robot

algorithms whose runtime drastically decreases if the

number of robots is reasonably small.

Distributed Triangle Formation. If the structure is ar-

ranged as a line, a triangle can easily be built in a dis-

tributed manner: In order to retrieve tiles, the robots

traverse the line from south to north. Once a robot

reaches the northernmost tile, it waits until there is no

robot north of it anymore, then lifts the tile and car-

ries it to the triangle by following the boundary of the

structure in clockwise order. The next position to place

a tile into the triangle can easily be found, and the robot

returns to the line by moving to the triangle’s vertex.

Whenever a robot’s move is hindered by another robot,

it simply waits.

Arguably, this algorithm makes use of multiple

robots more effectively than the distributed line algo-

rithm: no robot is ever forced to leave the tile structure,

or to wait in order to preserve connectivity. This higher

degree of coordination between the robots is facilitated

using additional knowledge of the tile structure; com-

ing up with a similar strategy for arbitrary structures

seems to be rather difficult.
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