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ABSTRACT
We present a weighted sampling strategy for distributing a system
of taxi agents on a road network. We consider a setting, in which
each agent operates independently, following a prescribed strategy
based on historical data. Furthermore, customer requests appear
dynamically and are assigned to the closest unoccupied taxi agent.

We demonstrate that in this setting a simple sampling strategy
based on the spatial distribution of historical data performs well
in minimizing the average time that agents are unoccupied. The
strategy is evaluated on taxi trip data in Manhattan and compared
to various, more complex strategies.

CCS CONCEPTS
• Information systems → Geographic information systems;
• Computing methodologies→ Multi-agent planning.
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1 INTRODUCTION
With the advent of distributed taxi services (such as Uber, Lyft, and
others), and with the promising developments in the self-driving
car technologies, interest in the field of multi-agent systems is
increasing. An interesting feature of these ride-sharing services is

∗Bram Custers is supported by the Netherlands Organisation for Scientific Research
(NWO) under project no. 628.011.00

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6909-1/19/11. . . $15.00
https://doi.org/10.1145/3347146.3363348

that a central authority assigns customers, while the taxi drivers
operate independently of each other.

The problem of assigning taxi drivers to customers has been
carried out by performing fairness calculations at the central au-
thority [3]. This approach puts all computation at the central au-
thority, requiring it to track the locations of the drivers as well as
the state of the drivers and possibly the preferences of drivers and
customers.

The goal of the ACM SIGSPATIAL GIS Cup 20191 is to follow
an alternative approach. The drivers in the system operate inde-
pendently and follow a prescribed strategy for moving around the
road network. The central authority only tracks the location of the
drivers and whether they can pick up a new customer within a
given time window. The drivers may use some historical model of
the customer demand to determine their movement, but have no
notion of the other drivers in the system. The goal is then to find
a strategy for the drivers that maximizes the total time when the
drivers are busy with customers.

Bai et al. [1] studied the problem of dynamic scheduling for
independent, competing taxis. Their work focuses on assigning
taxis to customers in an optimal way. Similarly, much related work
focuses on pairing taxis with customers, referred to as online taxi
routing by Bertsimas et al. [2]. Online taxi routing is a special case
of the dynamic dial-a-ride problem with time windows, which in
turn is a special case of the well studied dynamic vehicle routing
problem (see [4, 5] for surveys).

In our setting, however, taxis and customers are simply paired
based on nearest neighbors. Therefore the task is rather to distribute
taxis on the network, in such a way that demands can be served
within the time windows. On the level of individual taxis, this prob-
lem is related to recommender systems for taxis to find customers
based on historical trajectories [8]. In our problem, we however do
not aim to optimize for an individual taxi but for the overall system.

In this short paper, we present a strategy for the problem de-
scribed above. The strategy revolves around weighted randomiza-
tion of the destination of the drivers. This paper is organized as
follows: In Section 2, we provide a more detailed description of the
problem. In Section 3, we present our strategy and data model used.
Then in Section 4, we present alternatives strategies, and compare
these experimentally to our main strategy in Section 5. We then
discuss variations of our data model in Section 6.

1https://sigspatial2019.sigspatial.org/giscup2019/, last retrieved 07/09/2019. In this
paper we use the date format dd/mm/yyyy.
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2 PROBLEM DESCRIPTION
We now give a condensed description of the problem as formulated
by the GIS Cup competition committee2.

We are given a strongly-connected directed graph G = (V ,E)
and a set of agents A, initially placed at random locations within
G. The digraph has associated travel times τ (e) for every edge e
in G. In addition, we are given a simulation period T , starting at
t = 0 and ending at some t = T . During the simulation period, an
agent a ∈ Amoves around in the network according to a routing
strategy π : V × T → V . This strategy gives a destination location
in the graph G based on the agent’s current knowledge, which
includes: (1) its location p ∈ V , (2) its state, (3) the current time
t ∈ T , (4) the current day of the week3, (5) the data model (see
below). The strategy is applied whenever an agent reaches a node
in the graph. The movement of the agent takes into account the
travel times and directions of the edges it travels on.

At unknown moments in time within the period T , resources
(customers) appear in the network. A resource has an associated
source and destination locations. A central entity assigns the closest
unoccupied agent to a resource. Additionally, the agent should be
able to reach the resource within a fixed time limit of 10 minutes,
while obeying predefined travel times on the links of the graph.
If no agent can reach the resource, the resource expires. Once the
assigned agent has transported the resource to the destination
location, it can again be assigned to a new resource.

The agent strategy may use a historical data model to base its
routing on. This data model is based on data of resource source and
destination locations and associated times of past days.

We define S(a,π ) = {[t0, t1] | t0, t1 ∈ T } for agent a ∈ A
following strategy π as the set of disjoint time intervals in T during
which agent a is not transporting a resource. The problem is now
to devise a strategy π∗ for the agents such that the average search
time, i.e., the time when the agent is unoccupied, for all agents is
minimized:

π∗ = argmin
π

1∑
a∈A
|S(a,π )|

∑
a∈A

∑
s ∈S (a,π )

duration(s) . (1)

During the contest the simulation is run on a random subset of
days within the provided data set (refer to Section 3.2). For each of
the chosen days the simulation starts one second before the first
resource after 8:00, and ends after the expiration time of the last
resource before 22:00.

3 MAIN ALGORITHM
3.1 Strategy: Weighted random destinations
The main challenge in developing a strategy is that each individual
agent has almost no knowledge of the positions of the other agents,
and has only partial knowledge about where customers may arrive.
Ideally, the agents should spread in the network according to the
aggregate distribution of the resources over space and time without
coordinating their actions. We propose to use randomisation to
resolve this issue. Concretely, in the weighted random destinations
strategy (WR), each of the agents samples a random node from
the graph and travels along the shortest (in travel time) path to
2https://sigspatial2019.sigspatial.org/giscup2019/problem, last retrieved 07/09/2019.
3This underlines the assumption that customers probably follow a seasonal pattern.

Figure 1: (Left) The Manhattan network, used in the simu-
lation. (Right) Probability distribution for the weighted ran-
dom strategy. The size of nodes is logarithmically scaled to
highlight the distribution.

that node. Whenever an agent reaches the node it has sampled or
it has become free after being assigned a customer, it samples a
new destination. The random sampling is done according to a data
model, a discrete probability distribution that models the likelihood
of a customer appearing near a node.

Since the agents all sample from the same discrete distribution,
we can use the aliasmethod to create a data structure of size linear in
the number of nodes that allows sampling in constant time. We use
the Java-implementation of Vose’s algorithm [7] by Keith Schwarz4
in our implementation.

3.2 Data model
The area of interest for the GIS Cup is restricted to the island of
Manhattan, for which the Yellow Taxi Trip Data (YTTD) data set
is available5. We derive the data model from the historical pickup
and drop-off locations in the YTTD data set.

We simplify the graph by replacing chains of degree-2 nodes
with a single edge. Thus the only nodes left in the graph correspond
to proper intersections in the road network.

Next, using all resources of a given day that fit in the simulation
period, we compute the weights on the nodes of the graph. For each
node v we compute the total number of drop-offs d and pickups
p on the edges outgoing from v , and add the value p − λd to the
weight of v , for some parameter λ.6 Finally, we reset the negative
weights to 0. The resulting distribution is shown in Figure 1.
Rationale behind approach. Since we do not know what the
initial distribution of the agents is nor the distribution for any later
times, we assume no knowledge of the agent distribution at any
time. The aim of the strategy is to then spread the agents according
to the underlying distribution as much as possible. Parameter p is
4http://www.keithschwarz.com/interesting/code/?dir=alias-method, last retrieved
06/09/2019.
5https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page, last retrieved
06/09/2019.
6In our experiments we settled on λ = 0.2.
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weighted positively, so that the agents gravitate towards locations
where customers are likely to appear. Parameter d is weighted
negatively, as a location with a close-by drop-off is going to be
visited by the agent delivering the corresponding customer (if the
customer gets transported).

4 ALTERNATIVE STRATEGIES
We considered a number of alternative strategies. Due to the initial
success of the main strategy, we investigated several other strate-
gies with simple, often randomised, behaviour. The following five
strategies work by iteratively selecting a new node in the graph
and taking the shortest path to it. The main difference between
them is the specifics of the node selection process.
Lévyflight strategy (LF). The Lévy flight is a type of randomwalk
in a continuous space, with the Pareto distribution as its survivor
function and is considered in foraging theory [6]. This randomwalk
balances exploration of an unknown environment with exploitation
of its resources. The Lévy flight strategy tries to apply this idea to
our setting and also adds the knowledge from the data model. First,
sample a value r from a Pareto distribution with scale parameter
xm and shape parameter α . Let R be the set of all nodes with travel
time to the current location less than r , but more than r · f , where
f is a parameter within (0, 1). The agent selects a destination from
R according to the weights of the data model.
Avoidance strategy (AV).Agents sample a weighted random node
only among the nodes with travel time from the current location at
least r . The idea here is to avoid getting stuck in the same region,
even if there are high weight nodes there.
Homebase strategy (HB). In this strategy, an agent marks its
initial location as its ‘home’ h. When sampling a new destination,
it assigns a weight of w(v) + ζd(h,v) to each node v , where w is
the weight of the node according to the data model, d(h,v) is the
travel time between v and the agent’s home, and ζ is a parameter.
The destination is sampled randomly according to these weights.
Fixed location strategy (FL).Given that the distribution ofweights
for the Manhattan network is skewed, a larger fraction of pickup
and drop-off locations are in the area of Pennsylvania Station, we
tested a strategy where all the agents concentrate at one node of the
graph. As by the rules of the contest, the agents could not stay in
one node, they traveled between the fixed location and a neighbor.
While we did not expect this strategy to be effective on its own, it
could be useful when mixed with other strategies.
Mixed strategy (MX).We have also experimented with compos-
ites of the above strategies, where each agent selects a strategy with
a certain probability at the start of the simulation. In particular, we
considered a mix of three strategies: the weighted random destina-
tion strategy (i.e, our main strategy), the avoidance strategy with
r = 600, and the fixed location strategy. We denote the distribution
of probabilities for selecting a strategy by p.

For a completely different approach, we explored a strategy based
on machine learning, which proved to be much more complicated
and time-consuming compared to our main strategy.
Reinforcement learning. The agents learn the appropriate ac-
tions to undertake, given the historical data, by applying reinforce-
ment learning.

We take a grid over the considered region, aligned to the principal
directions of the avenues and streets in the map. The state of an
agent is defined as the cell that it is currently in.

The possible actions an agent can take are moving to another
cell or staying in the same cell. Within the cell, an agent repeatedly
picks a random destination and moves there. We restricted the
movements between cells to the neighbouring cells only, including
diagonal neighbours.

To learn the best action for an agent, we apply Q-learning. Let
Q : S × A → R be the quality function that rates the quality of
taking an action a ∈ A given state s ∈ S . We then update this quality
function using the following update rule

Qi+1(s,a) ← (1 − α)Qi (s,a) + α

(
r + γ max

a′
Qi (a′(s),a′)

)
. (2)

Here, a(s) is the state after taking action a in state s , α ∈ [0, 1] the
learning factor, r the reward and γ ∈ [0, 1] the discounting factor
for later rewards. Initially, all Q(s,a) values are set to zero. The
quality function is shared among all agents.

We perform n training sessions. During training, the quality
function is updated whenever an agent selects a new destination in
the network. If the agent dropped off a resource before selecting a
new destination, the reward is positive and defined as 1/τ , with τ
the time since the last navigation moment. Otherwise, the reward
is defined by −1/(M − τ ), with M = 1500, chosen such that the
reward is negative. When τ ≥ M , we use a reward of −1.

During evaluation, all agents use the same quality function Q
that is now fixed.

Our initial experiments of this approach did not prove promising,
and since it was substantially more complicated than the weighted
sampling strategy, we chose to concentrate on the simpler ran-
domized strategies. Still, a further investigation into the machine
learning techniques in application to the studied problem is needed
and we believe can lead to good results.

5 PERFORMANCE OF STRATEGIES
Despite being very simple to implement, experimental evaluation
indicated that our main approach outperforms most of the alter-
native strategies on the given data set. We applied the strategies
described in the previous section on the data set of the 01/06/2016
for the agent cardinalities N = 5000, 7000 and 10000 for a selec-
tion of parameter values for the different strategies. The results are
shown in Table 1.

As can be seen from the table, the models all perform very similar
to the weighted random destination strategy, where only the fixed
location strategy is significantly worse than the other strategies. On
closer inspection, the strategies seem to perform better the closer
they are to the weighted random destination strategy. In particular,
the mixed strategy performs best, when the first weight is set to
0.8-0.9. Therefore, only the weighted random destination strategy
was used in our GIS Cup submission.

6 VARIATIONS OF DATA MODEL
With the weighted random destinations strategy, we considered
different types of data models, based on the time span and number
of days the aggregate the model is based on.
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Strategy Parameters Agent cardinality
5000 7000 10000

WR λ = 0.2 453 779 1436
FL Penn. Station 486 854 1540

AV
r = 400 459 779 1436
r = 600 458 781 1436
r = 800 459 780 1436

HB
ζ = 1 · 10−3 454 780 1436
ζ = 2 · 10−3 454 780 1436
ζ = 1 · 10−2 460 780 1436

LF
α = 2.0, f = 0.5,xm = 200 508 798 1435
α = 2.0, f = 0.5,xm = 400 472 797 1435
α = 2.0, f = 0.5,xm = 600 471 799 1435

MX

p = (0.5, 0.5, 0) 455 778 1436
p = (0.6, 0.4, 0) 454 781 1437
p = (0.7, 0.3, 0) 454 781 1437
p = (0.8, 0.2, 0) 453 781 1437
p = (0.9, 0.1, 0) 453 781 1437
p = (0, 0.5, 0.5) 476 781 1437
p = (0, 0.6, 0.4) 470 781 1437
p = (0, 0.7, 0.3) 459 780 1437
p = (0, 0.8, 0.2) 459 781 1437
p = (0, 0.9, 0.1) 458 780 1437
p = (0.5, 0, 0.5) 478 781 1437
p = (0.6, 0, 0.4) 475 781 1437
p = (0.7, 0, 0.3) 467 781 1437
p = (0.8, 0, 0.2) 461 781 1437
p = (0.9, 0, 0.1) 456 781 1437

Table 1: Average search time in seconds per strategy, dis-
played per selection of the associated parameters of the
strategy. The strategies were tested on the data set of the
01/06/2016 for the cardinalities 5000, 7000 and 10000.

We considered the following approaches:
• take the distribution of a single day (SD)
• take the distribution of a single day, with time bins (TB)
• aggregate the distributions of weekdays (AWD)
• aggregate the distributions of weekdays, with time bins
(ABWD)
• aggregate the distributions of weekend days (AED)
• aggregate the distributions of weekend days, with time bins
(ABED)

We aggregate the distributions of multiple days by first con-
structing the probability distribution per day and/or time bin and
then taking the average distribution over all considered days. For
the single day and binned single day models (SD and TB), we used
a different day than the tested day for testing the performance. We
picked time bins of an hour in size. When selecting a new destina-
tion, the agent uses the data model that is associated with the time
bin in which the agent plans its next move.

As can be seen from Table 2, the influence of taking into account
the seasonality of the distributions has no significant influence. In
addition, aggregation of the data over multiple days also has no
significant influence.

N SD TB AWD ABWD AED ABED
5000 452 453 453 452 453 453
7000 779 778 779 778 779 778
10000 1436 1436 1436 1436 1436 1436

(a) Training day: 08/06/2016 (Wed). Simulation run: 01/06/2016
(Wed).

N SD TB AWD ABWD AED ABED
5000 497 496 497 497 497 498
7000 592 591 594 592 591 592
10000 1164 1164 1164 1164 1164 1164

(b) Training day: 26/03/2016 (Sat). Simulation run: 19/03/2016 (Sat).

Table 2: Average search times in seconds for the described
models, run on two single weekdayswith agent cardinalities
(N) 5000, 7000 and 10000.

7 DISCUSSION
While we considered a variety of strategies, in our experiments one
of the simplest strategy, the weighted random destination strategy,
performed best. This may indicate that with no information about
other taxis andwithout means to coordinate, it is difficult to domore
than to aim at distributing to the expected customer distribution.

In our experiments, more elaborate data models did not (sig-
nificantly) outperform a simplistic data model that only used the
spatial distribution of customers from one day. This may be due
to the fact that any distribution that we computed was skewed
towards one geographical location (Figure 1). We expect that taking
spatio-temporal variations into account would have a larger effect
for less skewed distributions.

There are several approaches that we considered, but did not
pursue. Firstly, one could take into account the general traffic pat-
terns: partition the map into regions and estimate the percentage
of vehicles flowing from one region to another from the historical
data. Secondly, it may be advantageous to smooth the probability
distribution, which would diversify the selected destination loca-
tions. This could spread the agents more over high pickup density
areas. Finally, in this work we chose not to pursue the machine
learning approach, which with carefully chosen model parameters
can lead to efficient solutions.
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