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H I G H L I G H T S

• A novel numerical technique to simulate exothermic catalytic packed bed reactors.

• Fluid phase and solid phase events are intrinsically coupled.

• Ignition/Extinction phenomena due to the multiplicity of steady states are captured.

• The hot-spot formation in a wall cooled reactor is analyzed.

• The model is free of empiricism with results dependent only on transport and kinetic values.

A R T I C L E I N F O
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A B S T R A C T

A fundamental continuum-based numerical model was developed to simulate a non-isothermal non-adiabatic
reactor which does not employ any empirical closures. The model was able to capture unique features of an
exothermic catalytic reactor such as parametric sensitivity, hot-spot formations and multiplicity of steady states.
Furthermore, the model inherently accounts for the various aspects of classical phenomenological models such
as axial and radial dispersion of heat and mass and the intrinsic coupling of heat and mass transport between the
fluid phase and the solid phase. The numerical procedure was validated with existing literature data before
moving on to the simulation of a bed consisting of 340 spherical particles packed using the Discrete Element
Method. Five simulations were performed by varying the rate of reaction and keeping all other parameters
constant to capture the ignition/extinction phenomena exhibited by exothermic packed bed reactors.

1. Introduction

Tubular packed bed reactors have been widely used in the chemical
process industry for decades in various chemical conversion processes
such as the selective oxidation of ethylene [1], oxidative coupling of
methane [2] and the synthesis of phthalic anhydride [3]. Multi-tubular
packed-bed reactors are generally preferred for exothermic reactions
where a cooling jacket enclosing the tubular wall is used for controlling
the reactor temperature. Highly exothermic systems employ a multi-
tubular design where each individual tube has a low tube-to-particle
diameter ratio to ensure sufficient cooling across the entire length of the
reactor. The dynamics of the non-isothermal reactor are described by
non-linear partial differential equations having an Arrhenius type de-
pendency for the rate of reaction and the heat production terms. The
intrinsic two-way coupling between temperature and concentration
along with the self-dependency of temperature on the heat produced

during exothermic reactions causes the system to exhibit many unique
features, such as a small change in the inlet feed concentration or
temperature that can cause a dramatic change in the reactor effluent
conditions, a phenomenon termed parametric sensitivity by Bilous and
Amundson [4] who were the first to characterize it. If the system ex-
hibits a large transient temperature rise it is generally said to be in a
state of ignition and analogously if the system cools rapidly, the system
is in a state of extinction. In the non-adiabatic case, if the reactor does
get ignited, the fluid phase temperature profile exhibits a maximum
along the axial direction, generally termed hot-spot formation in a
packed bed reactor. Also, if there exists a sufficient amount of thermal
feed-back the reactor may exhibit multiple steady states depending on
how the reactor was started up [5]. The non-linearity of the differential
equations describing non-isothermal catalytic processes has proven to
make it extremely challenging to analyze them analytically, if not im-
possible. Thus the numerical treatment of these differential equations
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has attracted the interest of chemical engineers for over half a century
due to their complexity and importance in reactor design.

Following the seminal contributions by Bilous and Amundson [4] on
reactor stability and Van Heerden [5] on heat balance diagrams, many
models were developed over the forthcoming decades to determine the
performance of an exothermic catalytic reactor. The starting point was
the simple one-dimensional homogeneous model used in the aforme-
netioned works where no discrimination was made between the fluid
and solid phases. It was shown by Weisz and Hicks [6] that a single
catalyst pellet can exhibit the similar dynamics as a homogeneous re-
actor if intra-particle gradients are non-negligible and the analogous
case for inter-phase gradients was demonstrated by Cresswell [7]. This
paved the way for the 1-D heterogeneous reactor model [8–10] where
the fluid and catalyst phases were distinguished but coupled via a heat
and mass transfer term. Simultaneously, two-dimensional models
[11,12] were developed to account for radial gradients of concentration
and temperature and wall-to-bed heat transfer . This enhanced the
predictive capabilities of the model for a non-isothermal non-adiabatic
catalytic reactor [13]. However there still seemed to be inconsistencies
in the quantitative results of the 2-D model with its experimental
counterpart as noted by Paterson and Carberry [14] and they attributed

the unsatisfactory agreements to the empirical transport coefficients
used in the contemporary models. Lerou and Froment [15] indicated
that the effective radial thermal conductivity kr and the wall-to-bed
heat transfer coefficient hw, which essentially control the magnitude of
the hot-spot, needed revision and suggested that the plug-flow as-
sumption widely used in phenomenological models needed to be dis-
pensed with and the radial profile of axial velocity should be con-
sidered. This was substantiated by other works that had revealed the
radial distribution of porosity [16] in a packed bed and consequently a
radially varying effective stagnant thermal conductivity [17]. Kaltho
and Vortmeyer [18] performed simulations of the ignition and extinc-
tion phenomena in an exothermic fixed bed reactor by considering the
radial variations of porosity, effective thermal conductivity and velo-
city. Vortmeyer and Schuster [19] developed a semi-analytical ex-
pression for the radial variation of the axial superficial velocity in a
packed bed of spheres so as to account for the velocity ‘hump’ near the
wall, sometimes also referred to as flow by-pass or channeling. It was
suggested by Cheng and Vortmeyer [20] that flow maldistribution
significantly influences the estimation of the hot-spot magnitude as the
magnitude of channeling directly influences tranverse thermal disper-
sion which provides a supplementary resistance in the heat removal

Nomenclature

v̄ velocity, m/s
f fluid phase density, kg

m3

µ fluid phase dynamic viscosity, kg
ms

Cpf fluid phase specific heat capacity, J
kg K

kf fluid phase thermal conductivity, W
mK

Df fluid phase molecular diffusivity, m
s
2

cf fluid phase concentration, mol
m3

Tf fluid phase temperature, K

s solid phase density, kg
m3

Cps solid phase specific heat capacity, J
kg K

ks solid phase thermal conductivity, W
mK

Ds solid phase molecular diffusivity, sm2

cs solid phase concentration, mol
m3

Ts solid phase temperature, K
rs volumetric rate of reaction inside the solid phase, mol

m s3
k first order reaction rate constant, 1/s
A Arrhenius pre-exponential factor, 1/s
E activation energy, J/mol
R universal gas constant, J

mol K
r radial coordinate, m
Rsp radius of sphere, m
co reference/inlet concentration, mol

m3
To reference/inlet temperature, K

H heat of reaction, J/mol
cavg averaged surface concentration across the solid phase, mol

m3
Tavg averaged surface temperature across the solid phase, K
km mass transfer coefficient, m/s
hf heat transfer coefficient, W

m K2
Tmax maximum temperature within the system, K
Tb velocity averaged bulk temperature, K
cb velocity averaged bulk concentration, mol

m3

cf bulk fluid film concentration, mol
m3

Tf bulk fluid film temperature, K
Vs volume of solid phase, m3

As surface area of solid phase, m2

Acyl inner surface area of tubular column, m2

vin inlet velocity, m/s
Sf cross-sectional surface area occupied by the fluid along the

column, m2

Rcyl radius of cylindrical column, m
dsp diameter of sphere, m
Tcyl cylindrical wall temperature, K
hw wall-to-bed heat transfer coefficient, W

m K2

j mass flux, mol
m s2

G number of grid cells across the radius, –
N number of particles across the tubular column, –
p pressure, kg

m s2
particle effectiveness factor, –
Thiele modulus, –

ko reaction rate constant at reference temperature, 1/s
o Thiele modulus at reference temperature, –

¯ reactor bed effectiveness factor, –
kr effective radial thermal conductivity, W

mK
Re Reynolds number, –
Nu fluid-to-particle heat transfer Nusselt number, –
Nuw wall-to-bed heat transfer Nusselt number, –
Sh Sherwood number, –
Bih heat transfer Biot number, –
Bim mass transfer Biot number, –

fluid phase kinematic viscosity, m
s
2

L reactor bed length, m
Dax axial mass dispersion coefficient, m

s
2

kax axial thermal dispersion coefficient, W
mK

s catalyst porosity, –
s catalyst tortuosity, –

reactor bed void fraction, –
Arrhenius number, –
Prater number, –

Pr Prandtl number, –
Sc Schmidt number, –
Le Lewis number, –
C̄f 1-D model fluid phase concentration, mol

m3

C̄s 1-D model particle phase concentration, mol
m3

T̄f 1-D model fluid phase temperature, K
T̄s 1-D model solid phase temperature, K
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process near the wall. This led Vortmeyer and Haidegger [21] to pro-
pose a model where the wall-to-bed heat transfer coefficient was
completely discarded and an accurate incorporation of the radial dis-
tribution of velocity, porosity and dispersion coefficients was suggested
for the evaluation of the non-isothermal non-adiabatic reactor. A more
comprehensive literature survey of the radial heat transfer problem
may be found in Dixon [22].

As the level of sophistication involved in the description of fixed bed
reactors increased, the number of parameters required to close the
complex system of equations increased simultaneously. Winterberg
et al. [23] provided a review of empirical coefficients determined under
non-reactive conditions required for the design of a reactor randomly
packed with spherical particles and concluded that the usage of the
examined correlations were sufficient to accurately capture transport
phenomena of a reactor undergoing chemical reactions. While these
empirical coefficients are still widely used in the design of industrial
reactors, the validity of these correlations has been eyed with skepti-
cism [24,22].

Inreased advances in computational resources over the last few
decades have enabled the simulation of pore-scale resolved transport of
momentum, heat and mass in dense gas-solid systems [25]. Direct nu-
merical simulation (DNS) broadly refers to the numerical study of the
fundamental continuum based transport equations where the fluid and
solid phase transport are fully resolved. These models account for the
local interaction between each particle and the surrounding fluid by
directly imposing the appropriate boundary conditions along the fluid-
solid interface across the entire computational domain, whereas the
traditional reaction engineering models account for these interactions
in a homogenized manner using empirical correlations. The smoothing
out of these local heterogeneities can have a significant influence on the
macroscopic performance of the system [26] and the effect of homo-
genization can be evaluated by performing DNS of the fluid-solid
system and use concepts of volume-averaging theory to determine the
corresponding empirical values; ex: drag correlation [27], heat and
mass transfer coefficient [28], wall-to-bed heat transfer coefficient
[29], dispersion coefficients [30] etc. Though a fully resolved simula-
tion of a large scale fixed bed reactor is still a daunting prospect, the
level of intricacy of the DNS model in describing transport phenomena
such as multi-component diffusion, compressibility, non-ideality, etc.,
has a large room for improvement [25].

A review of the state-of-the-art simulations conducted on packed
bed reactors was presented by Dixon et al. [31] and more recently by
Jurtz et al. [32]. Some of the early DNS studies on packed bed reactors
neglected intra-particle transport due to the difficulty in meshing the
solid phase regions using commercial codes [33]. Recently, there have
been several studies which have successfully simulated the intra-par-
ticle reaction-diffusion mechanism [34–36] with Maffei et al. [36] in-
troducing a technique which treat the solid and gas phase events in-
dividually and then iteratively solved to enforce continuity of fluxes
between the two phases. There have been other studies where detailed
kinetics have been coupled with pore-scale simulations for endothermic
reactions such as dry reforming of methane [33,37]. However, there
exist very few studies which directly tackle the exothermic case where
coupled intra-particle heat and mass transfer gradients are considered
with the recent work by Partopour and Dixon [38] being one. The
primary objective of this work is to develop a model devoid of em-
piricism and yet capture all the essential characteristics manifested by a
packed bed reactor undergoing exothermic reactions.

In this manuscript we expand upon the work of Das et al. [29]
where flow and heat transfer was studied in a cylindrical column
packed with spherical particles using the Discrete Element Method
(DEM). Here, we consider intra-particle diffusion of heat and mass
along with a simple first-order irreversible reaction governed by the
Arrhenius equation. This paper extends on the model developed by Lu
et al. [39] where an isothermal surface reaction is considered and Lu
et al. [40] where an exothermic non-isothermal surface reaction

governed by the Arrhenius equation is considered. Here, a volumetric
reaction within the solid phase is considered where a novel fluid-solid
coupling technique is presented with the dynamic issues of ignition/
extinction which arises from the intrinsic coupling between the gas and
solid phase events are addressed. The basis of our DNS technique is the
Immersed Boundary Method (IBM), which is used for enforcing the
appropriate boundary conditions along the fluid-solid interface and the
wall enclosing the bed. In Section 2 we present the governing system of
equations and boundary conditions used for simulating the packed bed
reactor. Subsequently, the numerical procedure is described followed
by an explanation of the Immersed Boundary Method. The numerical
procedure is validated in Section 3 and the results of the full bed si-
mulations are discussed in Section 4.

2. Governing equations and numerical details

2.1. Model description

The artificially generated fixed bed consists of 340 spheres ran-
domly packed in a slender tubular column using the DEM approach.
The tube-to-particle diameter ratio is 5 and the details of the packing
procedure may be found in Das et al. [29]. The DEM packing is mapped
on to the computational domain where the following system of equa-
tions are solved on a uniform 3-dimensional Cartesian grid. The mass
and momentum balance for an incompressible Newtonian fluid reads

=v· ¯ 0 (1)

+ =v
t

vv p¯ ·( ¯¯) · ¯̄f f (2)

where f and µ represent the fluid’s density and viscosity rescpectively
and ¯̄ is the stress tensor with = +µ v v¯̄ [ ¯ ( ¯) ]T .

The no-slip boundary condition is enforced along the solid interface
of the spherical catalyst particles and the cylindrical wall with

=v A A¯ 0on ands cyl (3)

where As refers to the surface area of the solid particles within the
tubular column and Acyl refers to the inner surface area of the cylidrical
wall enclosing the catalyst particles.

The fluid phase governing equations for concentration and tem-
perature are

+ =
c
t

vc D c· ¯ ·f
f f f (4)

+ =C
T
t

vT k T· ¯ ·f pf
f

f f f (5)

Here Df is the molecular diffusivity of the reactant in the fluid phase
and kf and Cpf are the thermal conductivity and the specific heat ca-
pacity of the fluid respectively. The solid phase governing equations are

= +c
t

D c r·s
s s s (6)

= +C T
t

k T H r· ( )s ps
s

s s s (7)

Here Ds is the effective molecular diffusivity of the reactant in the solid
phase where =D Ds f

s
s

with s and s referring to the internal porosity
and tortuosity of the catalyst particles. Usually, the values of s and s
are determined experimentally, but in all the numerical studies per-
formed here we consider the value of = D

D
s
s

s
f
to be some predetermined

value. k ,s s and Cps refer to the thermal conductivity, density and the
specific heat capacity of the solid phase respectively. rs is the rate of
reaction and H is the heat of reaction whose value is negative for
exothermic reactions.

We restrict our analyses to an irreversible first-order reaction given
as
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=r kcs s (8)

where k is the first-order rate constant of the reaction and the negative
sign in the above equation refers to the consumption of the reactant
within the solid phase. We further consider the non-linear coupling
between the rate constant and the local temperature in the catalyst
phase given by the Arrhenius equation

=k Ae
E

RTs (9)

Here, E refers to the activation energy of the reaction with R being the
universal gas constant and A is the Arrhenius pre-exponential factor.

Furthermore, we assume there is continuity of fluxes between the
fluid phase and the solid phase and thus we impose the interface
boundary condition for the scalar transport variables as follows

= =D c n D c n c c A· ¯ · ¯; onf f s s f s s (10)

= =k T n k T n T T A· ¯ · ¯; onf f s s f s s (11)

Finally, we model the tube wall to provide a cooling effect across
the entire packed bed. Thus we impose a constant temperature across
the inner face of the cylindrical wall and the wall is assumed to be inert
to the reacting species. While the solid particles form one continuous
phase, it is assumed that the particles do not touch the inner face of the
wall. Thus the cooling of the particles is done via a thin layer of fluid
surrounding the wall. The boundary conditions for temperature and
species concentration are

=T T Aonf cyl cyl (12)

=D c n A· ¯ 0 onf f cyl (13)

Thus having defined the wall boundary conditions, we now have a
complete system of equations which may be solved numerically.

2.2. Numerical procedure

The governing equations are solved on a 3-D Cartesian domain
employing uniform grids. The initial task is to map the solid phase on to
the computational domain which is done by identifying the position of
the sphere(s) and then flagging the grid cells with cell centres that lie
inside the solid and fluid phases respectively using the analytical ex-
pression governing a sphere. The equations governing both the fluid
and solid phase are then discretized, followed by the imposition of the
wall and interface boundary conditions and then solved simultaneously
on a single computational domain. The solution of the momentum, heat
and mass transport equations are treated in a sequential manner; i.e.,
within a single time-step the Navier-Stokes equations are first solved
followed by the solution of the fluid and solid phase temperature
equations and finally the mass transport equations. While the 3 trans-
port mechanisms (momentum, heat, mass) are decoupled, the fluid
phase events and the solid phase events of each transport are coupled
and treated in a semi-implicit manner (described below), thus main-
taining the stability of the numerical technique. The detailed descrip-
tion of the numerical procedure to solve the Navier-Stokes equations
can be found in the works of Deen et al. [41] and Das et al. [29].

The scalar transport equations are solved using a finite volume
approach. The discretization schemes used are presented Table (1)
where the fluid phase concentration balance equation has been used as
an example. In the solids phase, a diffusion-reaction equation is solved
for concentration, with both the diffusion and reaction terms evaluated
fully implicitly. For all cases considered in this manuscript, the reaction
term is linearly dependent on concentration and thus no linearization is
required. In the general case of non-linear dependencies of the reaction
term on concentration, the iterative Newton-Raphson technique is used.
The coupling between the fluid and solid phases is discussed extensively
later. Following the solution of the concentration field, the temperature
field is then updated. In the fluid phase it obeys a convection-conduc-
tion equation that is discretized in the same way as the equation for

concentration. The solids phase temperature is governed by a conduc-
tion equation that includes a source term. The conduction term is
evaluated implicitly and the source term is treated fully explicitly, i.e.,
the reaction term already computed for the diffusion-reaction equation
is just multiplied by the heat of reaction. The heat generated is self-
dependent on the temperature value via the Arrhenius relation and the
explicit treatment keeps the numerical technique unconditionally
stable. A by-product of this unique self-generation source term is the
possibility of multiple steady states and is discussed in more detail later.
The rate of reaction term is of larger significance as its explicit treat-
ment can cause the numerical technique to become unstable and pro-
duce negative values of concentration when the rate of consumption of
reactant increases rapidly due to temperature excursions. For first order
irreversible reactions, the implicit treatment of the term is again
straightforward as = =+ + + +f c r k c( )s

n
s
n n

s
n1 1 1 1 as it is a linear term

with +kn 1 referring to the rate constant evaluated using the recently
updated temperature field. All simulations conducted in this manuscript
employ an irreversible first order reaction, however, the extension of
the methodology to solve complex kinetics with different orders is also
presented. In the scenario that the rate of reaction term is non-linear
with concentration, a linearization technique would need to be used.
This would then require the term, +f c( )s

n 1, to be first linearized and
then solved in iterative manner. This may be done using the classical
Newton-Raphson iterative technique.

The discretized form of the p.d.e.’s governing the concentration
(fluid and solid) values at all grid nodes across the computational do-
main of the form shall yield a set of linear algebraic equations

+ =a c a c bP P
nb

nb nb P
(14)

where aP is the coefficient of the central grid node concentration and bP
is the production term, where both contain linearized parts of the re-
action term. ‘nb’ refers to the 6 neighboring nodes of the central grid
node within the 3-D Cartesian grid and anb their respective coefficients.
The set of linear algebraic equations represented by Eq. (14) is then
solved for all grid nodes. It must be noted that the coefficients and the
production vector bP in Eq. (14) have been modified to account for the
fluid-solid interactions applied using the Immersed Boundary Method
described below. The interaction between the two phases is accounted
for such that the coefficient values in Eq. (14) are modified so that the
fluid-solid interface transport value is satisfied by changing the trans-
port values in the neighbouring cells.

A crucial component of the numerical procedure is the Immersed
Boundary Method [41,42] that is used to enforce the appropriate fluid-
solid interface boundary conditions given by Eqs. (10) and (11) and the
wall boundary conditions given by Eqs. (12) and (13). The imposition
of the no-slip boundary condition for velocity has been described by
Das et al. [29] and shall be omitted here. Different types of boundary
conditions may be enforced such as the Dirichlet b.c. where a specific
constant value is imposed over the entire interface, or the Neumann b.c.
(constant flux) or boundary condition of the 4th type (continuity of
fluxes). The Dirichlet b.c. forms the base recipe over which the other
boundary conditions may be imposed in an extended manner.

For enforcing the Dirichlet b.c., the value of c at the fluid-solid in-
terface is known a priori. In Fig. 1a, the solid phase grid node P

Table 1
Discretization schemes used for solving the scalar transport equations.

Term Discretization Scheme

c
t

Cp Cpo

t
Euler forward

vc
x

ve ce vw cw
x

TVD Min-Mod scheme

( ( )Dx f
c
x ( ) ( )D Df e

cE eP
x f w

cP cW
x, ,

Central differencing scheme
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neighbors a fluid node E and another fellow solid node W. The value of
c at the solid surface is a known value, indicated by cS. To enforce the
fluid-solid coupling, a directional quadratic fit is used whose procedure
may be found in Deen and Kuipers [43]. The directional quadratic fit
gives us an expression for concentration c in the fluid node E as follows:

= + +c c c c
2

1 2
2

(1 )(2 )E
s

s
P

s

s
W

s s
S

(15)

The above fit is now used to rewrite the discretized Eq. (14) gov-
erning the concentration c in grid node P. This results in a set of
modified coefficients for Eq. (14) which reads

= +a a a
2

1P P E
s

s (16)

= +a a a
2W W E

s

s (17)

=a 0E (18)

=b b a c2
(1 )(2 )P P E

S

s s (19)

The above set of modified coefficients have now been changed to

account for the interface boundary condition for the grid node P that
lies in the immediate vicinity of the fluid-solid interface. The above
mentioned procedure must be carried out for all such other grid nodes
whose neighboring node lies in the opposite phase and for all co-ordi-
nate directions. The methodology explained above used a solid phase
grid node P as an example whose neighbor is a fluid phase cell, and the
analogous case of a fluid cell whose neighbor is a solid cell also requires
the same treatment with a directional fit now pointing in the fluid phase
direction.

Other forms of boundary conditions may be represented as follows
respectively

=D c
n

j A
¯

on s (20)

= =D c
n

D c
n

c c A
¯ ¯

; onf s f s s (21)

where D refers to the molecular diffusivity of either the fluid or solid
phase denoted by the subscripts f and s respectively. In such cases, the
interface value represented by cS is not known a priori. In Fig. 1b we
again have a grid node P whose neighbours are a fluid cell E and a solid
cell W. The value of the scalar quantity at the fluid-solid intersection
point is unknown in this case and must be calculated prior to using the
Dirichlet b.c. framework as described earlier. To compute the value at
the intersection point indicated by the position vector d̄s , 4 probes
normal to the intersection point are drawn such that

= + = + = =d d x n d d x n d d x n d d x n¯ ¯ ( ) ¯, ¯ ¯ (2 ) ¯, ¯ ¯ ( ) ¯, ¯ ¯ (2 ) ¯s s s s1 2 3 4

(22)

Thereby we have 4 probes whose locations are indicated by the position
vectors d d d¯ , ¯ , ¯1 2 3 and d̄4 where ( x) is the Eulerian grid spacing (grid
size) to maintain second order accuracy of the numerical procedure as a
whole. In order to impose the boundary conditions given by Eqs. (20)
and (21), the derivatives are expanded using Taylor series up to the
second degree with a step size x and may be expressed algebraically as
follows

=D c c c
x

j(4 3 )
2f

S1 2
(23)

=D c c c
x

D c c c
x

(4 3 )
2

(4 3 )
2f

S
s

S1 2 3 4
(24)

where c c c, ,1 2 3 and c4 refer to the positional values of concentration at
the location of d d d¯ , ¯ , ¯1 2 3 and d̄4 respectively. The values of c c c, ,1 2 3 and
c4 are calculated by trilinear interpolation using concentration values at
grid positions from the previous time-step. Rearranging Eqs. (23) and
(24), we may now estimate the concentration values at the fluid-solid
intersection point represented by cS as follows

=c c c j
D

x1
3

4 2S
f

1 2
(25)

=
+
+

c
D c c D c c

D D
(4 ) (4 )

3( )S
f s

f s

1 2 3 4

(26)

Once the fluid-solid intersection point value is estimated using the
above two equations, the aforementioned Dirichlet b.c. framework is
applied to impose the appropriate interface boundary conditions.

It must be noted that the above mentioned Immersed Boundary
procedure described for concentration may analogously be extended to
temperature. During exothermic reactions, there may be large tem-
perature gradients due to the ignition of particles. In such a scenario,
there may be sharp spatio-temporal gradients in the solid phase with
T T4 3 which may result inTS having a negative value. Thus in order to
ensure that the fluid-solid interface value does not have a negative
value, we may employ a linear interpolation so that the numerical
technique reaches the steady state solution in a stable manner. The first
order interpolation to estimate the fluid-solid intersection point value is

Fig. 1. Pictorial depiction of the implementation of the Immersed Boundary
Method to impose the different fluid-solid interface boundary conditions.
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given by

=
+
+

T
k T k T

k kS
f s

f s

1 3

(27)

It must be noted that the estimation of TS is treated explicitly,
however the fully implicit implementation of the Dirichlet b.c. frame-
work maintains the stability of the procedure. When the particles are
fully ignited or extinguished, the spatial gradients inside the catalyst
particles are not extremely sharp and the second order interpolation
given by Eq. (26) may be used. The switching of the first order esti-
mation to the second order estimation is done when TS evaluated using
Eq. (26) is non-negative with >T 0S . It must also be noted that in many
situations the second probe vector normal to the solid surface into the
fluid may lie inside another solid particle. In such situations, a first-
order interpolation must again be used. The validity of the numerical
technique is presented in the next section for various cases.

3. Verification and validation

The validation of the numerical procedure to study non-isothermal
reactive transport in a full packed bed reactor is done by validating
each key ingredient comprising transport in a packed bed. First, we
verify the numerical methodology to study intra-particle mass and heat
transport by comparing our results using the Immersed Boundary
Method with the classical solutions of Thiele [44] and Weisz and Hicks
[6] for a single catalyst pellet. Next, we validate the enforcing of the
continuity of fluxes boundary condition via the IBM for cases when
there is forced convection around a single spherical catalyst. Subse-
quently, the enforcing of the cylindrical wall boundary conditions are
verified. The validation of the implementation of the Navier-Stokes
equations and the fluid phase heat and mass transport equations are not
presented in this paper as they have been thoroughly validated pre-
viously, and may be found in Das et al. [41,43,42,29].

3.1. Intra-particle heat and mass transport

As an elementary verification case we first numerically simulate
intra-particle diffusion and reaction under isothermal conditions. The
equation governing the transport in a spherical catalyst is given by

=c
t

D c kc·s
s s s (28)

where k is the isothermal rate-constant, with the boundary condition
along the interface of the catalyst

=c c Aons o s (29)

The Dirichlet boundary condition assumes that there is no external
mass transfer resistance and a constant uniform concentration is present
along the interface of the catalyst and radial symmetry is implicitly
assumed. The above system is replicated in 3 dimensions as depicted in
Fig. 2a with the interface boundary condition enforced using the IBM
described in the previous section. The analytical solution for the con-
centration profile at steady-state is

=c
c

R
r

r k Dsinh( / )
sinh( )

s

o

sp s

(30)

where is the Thiele Modulus [44] and Rsp is the radius of the sphere
with = Rsp

k
Ds
. The analytically obtained concentration profile is

plotted against the concentration profile obtained along the radius of
the sphere simulated using DNS and is presented in Fig. 2b for = 10. 2
different grid resolutions were used with =G 10, 20 where G refers to
the number of Eulerian grid cells across the radius of the spherical
catalyst. The effectiveness factor of the catalyst is computed as follows

=
kc dV

R kc
V s

sp o
4
3

3
s

(31)

The analytically derived expression for the effectiveness factor in a
spherical catalyst is given by

= 3 ( coth 1)2 (32)

The effectiveness factor numerically computed using Eq. (31) was
compared with the analytical solution of Eq. (32) for varying Thiele
moduli. The Thiele Modulus was varied by changing the rate constant
values and keeping the radius and diffusivity values constant. The re-
sults are plotted in Fig. 3 where all simulations were performed with a
grid resolution of =G 10. A grid dependency test for = 2.0 is pre-
sented in Table (2).

The intra-particle mass transport may be coupled with intra-particle
heat transport where we consider an exothermic reaction with heat
production dependent on the rate of reaction. Eq. (28) is now coupled
with the following temperature balance equation given by

= +C T
t

k T H kc· ( )s ps
s

s s s (33)

where k is now a non-isothermal rate constant given by the Arrhenius
expression described in Eq. (9). Once again, a Dirichlet b.c. is assumed
for temperature along the interface of the catalyst particle to replicate
the Weisz and Hicks [6] case:

=T T Aons o s (34)

No analytical solution is available for the case considered here due
to the Arrhenius coupling between heat and mass, while the numerical

Fig. 2. Dimensionless concentration profiles for isothermal diffusion and re-
action for = 10.0.
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solutions were originally provided by Weisz and Hicks [6]. The 2
coupled p.d.e.’s under the steady state assumption were transformed
into a single o.d.e. as is done in Weisz and Hicks [6] and solved using
MATLAB’s in-built ode15s solver. The numerically obtained MATLAB
results were compared with the numerical results obtained by per-
forming DNS using the Immersed Boundary Method. The rate of heat
generation is dependent on temperature as mentioned earlier and intra-
particle heat conduction provides a feed-back of heat towards the sur-
face of the particle helping enhance the rate of reaction due to the
Arrhenius coupling. This mechanism causes certain cases to have
multiple steady states with 2 stable points and one meta-stable point.
The meta-stable point is physically unstable and a transient numerical
procedure shall not be able to capture these points. The lower steady
state is the point of low conversion with very small intra-particle gra-
dients of temperature and concentration, while the higher steady states
have effectiveness factors much greater than unity, 1, with sharp
gradients of temperature and concentration close to the catalyst sur-
face. The multiple steady states are captured by imposing different in-
itial conditions and the convergence to either of the 2 steady states is
dependent on the value of the initial particle concentration or tem-
perature. The criteria for multiple steady states were identified by
Weisz and Hicks with the help of 2 dimensionless parameters:

= E
RTo (35)

= c H D
k T

( )o s

s o (36)

where and are sometimes referred to as the Arrhenius Number and
Prater Number respectively. is a measure of the rate constant’s sen-
sitivity to temperature and is the dimensionless heat of reaction
which is also the maximum dimensionless temperature rise possible
within the catalyst pellet ( = T T

T
max o

o
). The results obtained from DNS

are compared with the results of Weisz and Hicks [6] computed using
MATLAB in Fig. 4. was fixed to be 20, with the value of varied from
0.4 0.8 for varying Thiele Moduli ( o). Here the Thiele Modulus is
normalized by using the rate constant at surface conditions, ko, where

= Ro sp
k
D

o
s
with =k Aeo

E
RTo . Similarly, the effectiveness factor is cal-

culated as is done for the isothermal case given by Eq. (31), but with
=k ko in this case. The steady state profiles of the multiple solutions of

the Weisz and Hicks case captured using DNS are presented in Fig. 5.

3.2. Conjugated mass transport

Intra particle mass transport in packed bed reactors is influenced by
the effect of the flow field around the catalysts. Only in rare circum-
stances can we consider the external mass transfer resistance to be
completely neglected such that a uniform concentration around the
catalyst is obtained as described by the boundary condition in Eq. (29).
That would require the mass transfer Biot Number to be extremely high
(Bim ). As both internal and external mass transfer limitations exist
in common gas-solid heterogeneous catalyzed systems, a more appro-
priate interface condition is the continuity of fluxes as described in Eq.
(10). We may analytically solve Eq. (28) using the following boundary
condition:

=D c n k c c A· ¯ ( ) ons s m s o s (37)

where km is the fluid-to-particle external mass transfer coefficient. Upon
non-dimensionalizing, we rewrite the above boundary condition in 1-D
spherical coordinates as

=c
r

Bi c A¯
¯

(1 ¯ ) ons
m s s (38)

where the mass transfer Biot Number (Bim) is

=Bi
k R

Dm
m sp

s (39)

The analytically derived expression for the overall effectiveness
factor with the above boundary condition is

=
+( )

3 ( coth 1)

1 Bi
2 ( coth 1)

m (40)

The enforcing of the continuity of fluxes boundary condition is va-
lidated by simulating forced convection around a single stationary
sphere with an inlet feed concentration of co. Accurate enforcement of
the boundary condition given by Eq. (10) will ensure that both the
internal and external mass transfer resistances are captured and for a
specific value of the Biot Number, the effectiveness factor is calculated
and compared with the analytical values given by Eq. (40). The external
mass transfer coefficient from the DNS study is calculated by evaluating
the mass flux across the surface of the sphere numerically as follows

=j
D c ndA

R
· ¯

4
A f f

sp
2

s

(41)

with the mass transfer coefficient computed by

Fig. 3. Validation of the DNS technique for isothermal diffusion and reaction.

Table 2
Grid dependency study for isothermal diffusion and reaction for = 2.0.

Grid resolution (DNS) (Analytical) Error

=G 10 0.8146 0.8060 1.07%
=G 20 0.8073 – 0.16%
=G 40 0.8060 – 0%

Fig. 4. Validation of the DNS technique with the Weisz and Hicks case for
= 20. The = 0.8 case and the = 0.6 case contain multiple steady states at
= 0.3o and = 0.4o respectively. = 1.121 and = 138.052 are the two stable

steady state effectiveness factor values for the = =0.8, 0.3o case with
= 8.163 being the meta-stable point which cannot be captured using the

transient DNS technique. Similarly, = 1.161 and = 44.942 are the two stable
steady states for the = =0.6, 0.4o case and = 6.813 being the meta-stable
point.
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=k j
c cm

o avg (42)

where cavg refers to the averaged point concentration values along the
interface of the 3 dimensional sphere present within the DNS domain. A
similar analysis was performed Sulaiman et al. [45] recently to verify
their code.

The fully resolved velocity profile for flow past a single sphere is
depicted in Fig. 6a. We may verify the implementation of boundary
condition in Eq. (10) by varying the diffusivity in the solid phase, thus
changing the Biot Number values to study the effect of internal mass
transfer resistances on the effectiveness factor. It must be noted that the
rate constant (k) values are changed to ensure that the Thiele Modulus
remains constant, with = 2.0 for all cases studied. Decreasing the
ratio of solid to fluid diffusivities significantly affects the overall ef-
fectiveness factor as is evident from Eq. (40), where as Bim the
effectiveness factor expression results in the more familiar one given in
Eq. (32).

In general gas-solid systems, the fluid-solid diffusivities range be-
tween 0.1-0.5 and are based on the tortuosity and porosity values of the
particle. Here, 3 different ratios of fluid to solid diffusivities (1.0, 0.1,
0.01) were investigated along with the effect of 3 different Reynolds

numbers. The computed effectiveness factors and the Sherwood num-
bers from the DNS study were compared with the analytical solution
given by Eq. (40) and the empirical Frossling correlation given by (43)
respectively and the results are presented in Table (3). The concentra-
tion contour plots are presented in Fig. 6b–d) for the 3 different dif-
fusivity values. It is seen that at = 0.01D

D
s
f

, an almost uniform con-
centration profile is formed along the catalyst surface as one would
expect. To ensure that the external mass transfer coefficient value cal-
culated is correct, we may compare the values obtained numerically
with the empirical Frossling correlation. The Frossling correlation
characterizes the external mass transfer resistance for flow past a single
sphere with the Sherwood number (Sh) expressed as a function of the
Reynolds number (Re):

= +Sh Re Sc2.0 0.6 1/2 1/3 (43)

where the Sherwood number is defined as follows

= =Sh
k R

D
Bi D

D
(2 )

2m sp

f
m

s

f (44)

with the Reynolds number given by

Fig. 5. Dimensionless contour plots of the multiple steady state profiles of the Weisz and Hicks case for = =0.4, 20o and = 0.6.
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=Re
v R(2 )in sp

(45)

In Eq. (43), Sc refers to the Schmidt number which is the ratio of the
kinematic viscosity to the diffusivity of the fluid (Df ) and v̄ is the
inlet velocity. The results of the comparison with the Frossling corre-
lation are also presented in Table (3) and it must be noted that the
correlation was experimentally determined for extremely fast surface
reactions ( 1) while we have considered = 2.0 for all cases.

3.3. Cylindrical wall boundaries

Cylindrical wall boundaries for the tubular bed are imposed using
the Immersed Boundary Method. A Dirichlet boundary condition is used
for temperature and a Neumann boundary condition is imposed for
concentration. We verified both by simulating a single-phase laminar
flow through a cylindrical conduit with the boundary conditions for
temperature given by Eq. (12) and by specifying a non-zero finite
constant mass flux (j) along Acyl. The Nusselt Number and the Sherwood
number can be calculated at the fully developed section of the tube. The
Nusselt number for the Dirichlet b.c. case is described by the Graetz-
Nusselt problem and the analytically derived value is =Nu 3.657. For
the constant mass flux case, the Sherwood number is described by the
extended Graetz-Nusselt problem [46] and =Sh 4.364. The numerically
computed values for both the problems is given in Table (4) showing a
very good agreement between the simulation results and the ‘exact’
solutions reported in literature.

4. Results and discussion

Five simulations were performed to study non-isothermal non-
adiabatic reactive transport in a low tube-to-particle diameter ratio
( =N 5) packed bed reactor consisting of 340 spherical particles ran-
domly packed inside, with the objective being to capture the unique
phenomena exhibited by gas-solid catalyzed systems experiencing
intra-particle diffusion limitations. A grid resolution of 20 cells across
the particle radius ( =G 20) is used for all simulations based on the grid
dependency analysis presented in the previous section. In order to
portray this, the dimensionless numbers presented in Table (5) were
fixed for all 5 simulations conducted. In principle, the parameters and
vary spatially throughout the reactor as the temperature has spatial

gradients, which in return influences the value of the Thiele modulus
to vary across the reactor. However, the values of and presented in
Table (5) is non-dimensionalized using the inlet feed temperature, To.
The Thiele modulus that is reported, = Ro sp

k
D

o
s
is computed using the

reaction rate constant at To. The settings chosen in Table (5) are based
on the McGreavy and Thornton [47] stability analysis who showed that
the performance of a reactor may be determined based on a new form of
the Thiele modulus non-dimensionalized using the Arrhenius pre-factor
A rather than the classical definition. The term Rsp

A
Ds

has a fixed value

across the reactor while the term Rsp
k

Ds
has spatial gradients depen-

dent on the local temperature value. Thus having fixed the base di-
mensionless parameters presented in Table (5) to be constant for all 5
simulations, the Arrhenius pre-factor is changed systematically such
that = 0.5, 1.0, 2.0, 3.0, 5.0o for the 5 cases studied respectively.

Another aspect which is taken into consideration is the multiplicity
of steady states of individual catalyst particles experiencing interphase

Fig. 6. Dimensionless contour plots depicting isothermal reactive transport for a single sphere case, for =Re 80p and = 2.0.

Table 3
Validation of internal and external mass transport for flow past a single sphere
for = 2.0.

Ds
Df

Re Bim (DNS) (Analytical) Sh (DNS) Sh (Empirical)

1.0 80.0 3.671 0.630 0.624 7.342 7.367
0.1 80.0 36.740 0.785 0.783 7.348 7.367
0.01 80.0 383.45 0.869 0.804 7.669 7.367
0.1 10.0 19.635 0.762 0.764 3.927 3.897
0.1 40.0 29.045 0.780 0.777 5.809 5.795

Table 4
Grid dependency study for the Graetz-Nusselt problems.

Case Grid resolution Nu (DNS) Nu (Analytical) Error

Constant temperature =G 10 3.667 3.657 0.27%
Constant temperature =G 40 3.657 – 0%

Constant Flux =G 10 4.545 4.364 4.15%
Constant Flux =G 40 4.387 – 0.53%
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and intra-particle gradients. It has been shown by Cresswell [7] that a
spherical particle experiencing inter-phase and intra-phase gradients
has a unique steady state solution if the following criterion is satisfied

< +Bi
Bi

8 h

m (46)

where and chosen here satisfies Cresswell’s parametric study range
( Bi Bi: 10 40; : 0 0.1; : 0.1 10; : 100 500h m ) where =Bih

h R
k

f sp

s

and =Bim
k R

D
m sp

s
refer to the heat and mass Biot numbers respectively.

These parametric values are generally obtained in heterogeneous gas-
solid catalyzed systems where km and hf are usually determined em-
pirically. For systems with Lewis number unity ( = =Le 1Sc

Pr ) such as

the one considered here, the Sherwood number ( =Sh k R
D
2m sp

f
) equals the

Nusselt number ( =Nu h R
k
2f sp

f
) [48]. Thus the ratio of the Biot numbers

are given by

= =Bi
Bi

Nu
k
k Sh

D
D

k
k

D
D

1h

m

f

s

s

f

f

s

s

f (47)

which would then yield = 0.02Bi
Bi

h
m

. Thus substituting the parametric
values into Eq. (46) gives

= + =Bi
Bi

0.4;8 0.32h

m (48)

thus dissatisfying Cresswell’s criterion with the particles potentially
having multiple steady states. A final aspect on stability is the issue of
local and global stability [47]. Local stability refers to the ignition and
extinction of individual particles while global stability analyzes the
system from the macroscopic point of view, where the reactor as a
whole may exhibit multiple steady states due to the ignition/extinction
of all individual particles. An entire packed bed reactor may exhibit
multiple steady states depending on how the reactor is started up;
however, the window of operation for such a behavior is extremely
narrow and impractical in large-scale reactors [49]. Thus the issue of
global stability is not addressed in this work.

Each individual particle in the packed bed reactor under steady
state conditions should satisfy the heat balance given by the following
expression

=h T T k c c H( ) ( )( )f avg f m avg f (49)

where Tavg and cavg refer to the average surface temperature and con-
centration values of the particle respectively. Tf and cf refer to the
corresponding bulk fluid temperature and concentration values sur-
rounding the thin film resisting the transport of heat and mass towards
the surface of the particle. It was reported earlier that under the con-
ditions of no external transport limitations (Bi Bi,m h ), the

maximal temperature rise within a catalyst pellet is governed by
= =T T

T
c H D

k T
( )max avg

avg
o s

s o
where the underlying assumption is that

=T Tavg o and =c cavg o with To and co being the inlet feed temperature
and concentration respectively. While the mass Biot number is gen-
erally very large, this is generally not the case for the heat Biot numbers
in gas-solid systems. It was shown by Carberry [48] that when a system
does experience interphase gradients, the maximal temperature rise in a
catalyst can exceed when 1Bi

Bi
m
h

which is generally the case for gas-
solid systems. This happens when the thin film of heat transfer re-
sistance cooling the catalyst particle breaks during ignition leading to a
rapid temperature rise within the catalyst. Hatfield and Aris [50] set
forth a priori bounds on the maximal temperature rise within a catalyst
experiencing interphase gradients with 1Bi

Bi
m
h

as follows

+
T
T

Bi
Bi

1 1 Max 1,avg

o

m

h (50)

Thus the maximum dimensionless temperature possible within the
reactor at steady state for the current system =( )50Bi

Bi
m
h

would be

= + =T
T

Bi
Bi

1 2max

o

m

h (51)

Furthermore, another important observation from the Hatfield and
Aris [50] analysis is the significance of the ratio Bi

Bi
m
h
. The greater the

value of Bi
Bi

m
h
, the greater is the maximal dimensionless temperature rise

across the catalyst. Such large ratios are generally observed when a
system experiences large intra-particle mass transfer resistances (ex -
Fischer-Tropsch synthesis), with pore diffusion actually enhancing the
exothermic nature of the system resulting in larger temperature gra-
dients.

4.1. Ignition and extinction phenomena

The steady state contour plots of velocity, dimensionless tempera-
ture ( =T T

To
) and dimensionless concentration ( =c c

co
) for the = 0.5o

case is presented in Fig. 7. A negligible temperature and concentration
gradient is observed across the length of the reactor with +1T

T
max

o
[50]. The system has a unique steady state solution (globally stable)
and the rate of reaction is not fast enough for the particles to self-ignite.
Thus the reactor is said to be in a state of extinction. The flow-averaged
dimensionless concentration and temperature along the axial direction
is plotted in Fig. 8 where

= =c x
c v dS

v dS
T x

T v dS

v dS
( ) ; ( )b

S x

S x
b

S x

S x

f

f

f

f (52)

with Sf referring to the cross-sectional area occupied by the fluid along
the x coordinate, being the direction of macroscopic flow. The di-
mensionless axial superficial velocity distribution (v r( )x ) across the
cross-sectional radius of the reactor is presented in Fig. 8 whose value is
averaged across the length of the reactor with

=v r
v

v r dxd
dxd

( ) 1 ( )
x

in

x

(53)

The effect of flow-maldistribution is clearly visible due to the por-
osity distribution across the radius with the channeling of flow along
the reactor wall being prominent with vin being the inlet velocity. The
radial concentration and temperature contour plots at 3 different axial
positions are presented in Fig. 9 and the corresponding profiles are
depicted in Fig. 10. In Fig. 10 it is observed that the radial gradients of
concentration and temperature are not monotonic in nature. This non-
monotonic behaviour can be related to various factors with the most
important one being the local packing structure of the particles within
the bed. Local sharp gradients in temperature and concentration also
contributes to the non-monotonic behaviour. Now, we may define a

Table 5
Dimensionless numbers and their values used for the simulation of the full bed
reactor.

Dimensionless number Definition Value

Reynolds number =Re
vin Rsp(2 ) 100

Prandtl number =Pr
Cpf µ

kf

1

Schmidt number =Sc Df
1

fluid-to-solid thermal conductivity kf
ks

0.1

fluid-to-solid molecular diffusivity Df
Ds

5

wall-to-inlet temperature ratio Tcyl
To

1

Arrhenius number = E
RTo

20

Prater number = co H Ds
ksTo

( ) 0.02
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total effectiveness factor to evaluate the enhancement in the reaction
rate due to the exothermic nature of the system as follows:

=
r dV

V k c
¯ V s

s o o

s

(54)

where Vs refers to the volume of solid catalysts present within the re-
actor. ¯ was to found to be equal to 1.25 for the = 0.5o case suggesting
a slight enhancement in the reaction rate as compared to the reaction
being carried out at inlet conditions.

Upon increasing the rate of reaction to = 1o and keeping all other
parameters same as before, we observe the appearance of creeping re-
action zones [9]. The particles at the end of the reactor first start to self-
ignite followed by a high temperature wave that moves in the upstream
direction igniting the particles in the core of the bed. The contour plots
depicting the moving reaction zone are presented in Figs. 11 and 12.
The reaction front almost propagates towards the entrance of the re-
actor and eventually reaches steady state with intermediate conversion
as seen in Fig. 13a where the temporal evolution of the dimensionless
bulk temperature is plotted. Some of the particles reside in the lower
steady state while the rest of the particles are in the higher steady state

Fig. 7. Steady state contour plots of velocity, heat and mass of the packed bed
reactor for the = 0.5o case.

Fig. 8. Steady state dimensionless profiles for the = 0.5o case.

Fig. 9. Radial contour plots at different axial positions for = 0.5o case.
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( 65%). The corresponding dimensionless radial concentration profiles
are presented in Fig. 13b which are in accordance with the temperature
evolution. The moving reaction zone phenomena has been studied ex-
tensively previously primarily using 1-D models [51–53] with Parto-
pour and Dixon [38] recently studying the wrong-way behavior of
packed beds using a DNS model. The DNS model inherently accounts

for axial thermal dispersion which is the main driving mechanism for
the moving reaction zone [54] while the classical models require the
incorporation of the axial heat dispersion coefficient to accurately
capture this phenomena. The catalyst particles in the DNS model form a
single continuous phase that accounts for particle-particle heat con-
duction, thus driving the reaction front against the direction of flow.
The radial contour plots along 3 different axial cross-sections are pre-
sented in Fig. 14 and their corresponding profiles are plotted in Fig. 15.
The calculated total effectiveness factor, ¯, was found to be equal to
14.13 implying a significant enhancement in the reaction rate due to
most of the particles residing at the higher steady-state.

As the reaction rate is increased to > 1o we observe that all the
particles in the reactor get ignited followed by the formation of a hot-
spot at steady state. Furthermore, we observe that the dimensionless
profiles for cases = 2, 3, 5o are almost identical with the curves su-
perimposing as observed in Fig. 16. The reactor is now fully controlled
by external transport limitations with the main resistance provided by
the thin fluid film surrounding the particles inhibiting the transport of
reactants to the catalyst. The total effectiveness factor ¯ for the 3 cases
was found to be 7.05, 3.91, 1.81 respectively with the effectiveness factor
decreasing upon increasing the reaction rate with the exothermicity
playing a less prominent role at high Thiele Moduli. The contour plots
of the reactor is presented in Fig. 17. For the > 1o cases, the rate of
reaction is so large that all the particles get ignited simultaneously
across the length of the reactor followed by a large temperature rise in
the fluid phase. The T x( )b curve then exhibits a maximum followed by
the cooling of the particles at the downstream section of the reactor.
The temporal evolution of the concentrations and temperature profiles
are depicted in Fig. 18a and b respectively.

4.2. Comparison with a 1-D heterogeneous model

In this subsection, the results from the Direct Numerical Simulation
model are compared with a simple 1-D heterogeneous reactor model
employing empirical correlations to qualitatively and quantitatively

Fig. 10. Radial profiles at different axial positions for = 0.5o case.

Fig. 11. Contour plots depicting the temporal evolution of the dimensionless
temperature profile for the = 1.0o .

Fig. 12. Contour plots depicting the temporal evolution of the dimensionless
concentration profile for the = 1.0o .

Fig. 13. Creeping reaction zones observed for the = 1.0o case.
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assess the performance of DNS against well-established models. The 1-D
model assumes plug-flow in the fluid phase where the fluid phase
concentration and temperature is coupled to a particle model via the
interphase heat and mass transfer coefficients. The description of the
heterogeneous reactor model is provided in the Appendix and is closed
by 3 empirical correlations being the Sherwood/Nusselt numbers by
Gunn [55], the heat and mass dispersion coefficients by Edwards and
Richardson [56] and the wall-to-bed heat transfer coefficient by Yagi
and Wakao [57]. All parameters presented in Table (4) for the DNS
model are consistent with the inputs for the 1-D model. The three cases
considered are = 0.5, 1.0, 3.0o as they represent the 3 distinct regimes
simulated. The results of the comparison are presented in Fig. 19. It is
observed that the DNS model qualitatively replicates the empirical 1-D
model with exceptional accuracy by predicting the ignition and ex-
tinction phenomena and the creeping reaction zone for the = 1.0o
case. The DNS model quantitatively predicts the 1-D model very ac-
curately for the = 0.5o as the temperature gradients within the reactor
are small and thus resulting in very low conversion. For the = 1.0o
case, the 1-D model overpredicts the temperature rise and the conver-
sion across the reactor as compared to the DNS model. This arises
primarily from the temperature gradients across the reactor as higher
temperatures leads to higher conversion and vice-versa. Furthermore,
another major assumption which affects the quantitative differences
between the two models is the consideration of plug-flow in the 1-D
model whereby the channeling effect which provides an extra re-
sistance in the heat removal process is neglected. The quantitative

deviations increase for the = 3.0o case and the reasons may be at-
tributed to the above mentioned reasons. Of the 3 empirical parameters
used in the 1-D model, the axial mass dispersion coefficient plays an
almost negligible role in the performance of the model while the axial
dispersion coefficient does play a significant role in controlling the hot-
spot magnitude. This essentially is due to the finite size of the bed
length considered. The heat and mass transfer coefficients play a
slightly less prominent role in the performance of the reactor as when
compared to the wall-to-bed heat transfer coefficient. The wall-to-bed
heat transfer dictates the temperature gradients within the reactor and
thus in return control the conversion across the bed. The wall-to-bed
Nusselt number (Nuw) is evaluated from the DNS model and compared
with the Yagi and Wakao [57] correlation. The wall-to-bed heat transfer
coefficient across the cylinder cross-section along the direction of
macroscopic flow (x) is evaluated as follows

= =h
k

T Tw

f
T
r r R

cyl b

f

cyl

(55)

The wall-to-bed Nusselt number is calculated as

Fig. 14. Radial contour plots at different axial positions for = 1.0o case.

Fig. 15. Radial profiles at different axial positions for = 1.0o case.

Fig. 16. Steady state dimensionless profiles for = 3.0o .
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=Nu
h R

k
(2 )

w
w sp

f (56)

The Nusselt numbers evaluated from the DNS results for the 3 dif-
ferent cases are plotted in Fig. 20 and the calculated values are in good
agreement with the empirical correlation. Furthermore, it is observed
that the rate of reaction has a negligible effect on the heat removal
process from the wall.

5. Conclusion

A novel numerical model that is free of empiricism was developed to

simulate a non-isothermal catalytic reactor. The model accounts for the
coupled interaction between the solid phase and the fluid phase by
imposing the appropriate interface boundary conditions using an
Immersed Boundary Method. The model was validated with existing
well-established cases for single-particle systems to ensure the accurate
incorporation of intra-particle heat and mass transport and its coupling
to the fluid phase. A non-adiabatic reactor consisting of 340 particles
was simulated where the random packing was generated using the
Discrete Element Method.

A key feature of the numerical procedure presented in this work is
the intrinsic coupling between the fluid phase transport and the solid

Fig. 17. Steady state contour plots of concentration and temperature for the
= 3.0o case.

Fig. 18. Temporal evolution of the reactor for the = 3.0o case.

Fig. 19. Comparison of the dimensionless bulk temperature and concentration
profiles obtained from DNS against the results from a 1-D heterogeneous model.

Fig. 20. Wall-to-bed Nusselt numbers evaluated using the DNS results for 3
different cases compared against the empirical correlation by Yagi and Wakao
[57].
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phase transport incorporated using the Immersed Boundary technique.
During exothermic catalytic reactions, the heat produced within the
catalyst phase causes a large transient temperature rise in the fluid
phase accounted for via the continuity of heat fluxes between the two
phases. Under non-adiabatic conditions, a hot-spot is formed within the
reactor whose magnitude is dictated only by the kinetic and transport
parameter values. Unlike the classical phenomenological models where
the inputted empirical parameters such as wall-to-bed heat transfer
coefficient, hw, and radial thermal dispersion coefficient, kr , control the
hot-spot magnitude, the DNS model inherently accounts for these fea-
tures thus avoiding the uncertainties involved in the accuracies of these
empirical coefficients. It was also observed and shown that the effec-
tiveness factor within the catalytic system can exceed unity due to the
autothermal reaction being carried out and that the assumption that
intra-particle mass transport can be modelled using the simple expres-
sion given by Eq. (32) may not be valid when performing DNS of
exothermic systems.

Finally, the simulations conducted in this work on the full bed re-
actor reveal the model’s capability to simulate the transient dynamics of
an exothermic catalytic system. Furthermore, a stability analysis is
performed to capture the phenomena of ignition and extinction of a
wall cooled reactor where the particles may be locally unstable due to
the existence of multiple steady states. The current developed model
signifies the importance of accounting for intra-particle gradients of
coupled heat and mass while studying exothermic catalytic reactions,

whereby, its negligence may yield qualitatively different results. The
exothermicity of the system can have many other implications on the
performance of the reactor with one good example being deviations
from ideality. A strong consequence of high temperature gradients
would result in changes of the viscosity of the fluid having an ex-
ponential dependency and large temperature changes may also induce
compressibility effects which cannot then be neglected within the
model and these considerations shall be addressed in future works.
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Appendix A

The 1-D heterogeneous plug-flow model used for comparison with the DNS results assuming steady state for the fluid phase concentration reads

= +v
C
x

D
C
x R

k C C
¯ ¯

(1 ) 3 ( ¯ ¯ )x
f

ax
f

sp
m s f

2

2 (57)

The fluid phase temperature reads

= +C v
T
x

k
T
x

h
R

T T
R

h T T
¯ ¯ 2 ( ¯ ) (1 ) 3 ( ¯ ¯ )f pf x
f
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w
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2

2 (58)

The particle phase concentration reads

= D
r r

r C
r

kC0 1 ¯ ¯s
s

s2
2

(59)

The particle phase temperature reads

= k
r r

r T
r

kC H0 1 ¯ ¯ ( )s
s

s2
2

(60)

The boundary conditions used for closing the above system of governing equations are
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3 empirical correlations are used for estimating D k h k h, , , ,ax ax f m w to complete the above described 1-D model.
The Edwards and Richardson [56] correlation to estimate the axial dispersion coefficients

= +
+

D D
v d

0.73
0.5

1
ax f

in sp
D

v d
9.7 f
in sp (65)

and assuming =D
D

k
k

ax
f

ax
f
.

The Edwards and Richardson [55] correlation to estimate the fluid to particle heat and mass transfer coefficients
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= + + + +Nu Re Pr Re Pr(7 10 5 )(1 0.7 ) (1.33 2.4 1.2 )2 0.2 0.33 2 0.7 0.33 (66)

with =Nu Sh for cases when =Pr Sc wherein we have =Nu h R
k

(2 )f sp

f
and =Sh k R

D
(2 )m sp

f
.

The correlation by Yagi and Wakao [57] is used for estimating the wall-to-bed heat transfer with the wall Nusselt number (Nuw) given by

= < = >Nu Re Re Nu Re Re0.6 ( 40); 0.2 ( 40)w w
0.5 0.8 (67)

where =Nuw
h R

k
(2 )w sp

f
.
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