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Abstract

Cellular communication and especially mobile handsets are an essential part of
our daily lives. Therefore, they need to be secure and work reliably. But mobile
handsets and cellular networks are highly complex systems and securing them
is a challenging task. Previously, most efforts concentrated on the handsets.
These efforts only focused on the mobile phone operating system and appli-
cations in order to improve cellular system security. This thesis takes a new
path and targets the cellular modem as the route to improve the security of
mobile handsets and cellular networks. We target the modem since it is one of
the essential parts of a mobile handset. It is the component that provides the
radio link to the cellular network. This makes the modem a key element in the
task to secure mobile phones. But cellular modems are proprietary and closed
systems that cannot be easily analyzed in the full or even modified to improve
security. Therefore, this thesis investigates the security of the cellular modem
at its border to the mobile phone operating system. We suspect that the secu-
rity of mobile handsets and cellular network strongly depends on the security
of the modem interface. This is our hypothesis, which we seek to prove in this
work.

We solve this in three steps. In the first step, we analyze the interaction be-
tween the cellular modem and the other parts of amodernmobile phone. Based
on the analysis we develop two novel vulnerability analysis methods. Using
this methods we conduct vulnerability analysis of the Short Message Service
implementations on various mobile phones. In the second step, we investigate
the possible capabilities that malware has through unhindered access to the
cellular modem. For this, we develop a cellular botnet where the bots utilize
the modem for stealthy communication. In the third step, we use the results
from the previous analysis steps to improve the security at the cellular modem
interface.

In our analysis step, we abused the cellularmodem for vulnerability analysis.
We discovered several security and reliability issues in the telephony software
stack of common mobile phones. Using our cellular botnet implementation,
we show how malware can abuse access to the cellular modem interface for
various kinds of unwanted activities. In the final step, we show that through
improving the security at the cellular modem interface the security of mobile
handsets as well as the security of cellular networks can be increased. Through-
out this thesis we show that the cellular modem has a significant impact on
mobile phone security.
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Zusammenfassung

Mobile Kommunikation, Mobiltelefone und Smartphones sind einwesentlicher
Bestandteil unseres täglichen Lebens geworden. Daher ist es essentiell, dass
diese sicher und zuverlässig funktionieren. Mobiltelefone undMobilfunknetze
sind hoch komplexe Systeme. Solche Systeme abzusichern ist eine anspruchs-
volle Aufgabe. Vorangegangene Arbeiten haben sich meist auf die mobilen
Endgeräte, im Speziellen auf die Betriebssysteme sowie Endanwendungen,
konzentriert. Die vorliegende Doktorarbeit untersucht einen neuen Weg im
Bereich Mobilfunksicherheit. Im Fokus steht das Modem als Schnittstelle zum
Mobilfunknetz. Das Mobilfunkmodem ist die Komponente, welche die Funk-
verbindung zumMobilfunknetz herstellt und ist nach unserer Auffassung eine
der Schlüsselkomponenten bei der Untersuchung undVerbesserung derMobil-
funksicherheit. Mobilfunkmodems sind proprietär und können nur mit extrem
hohem Aufwand untersucht werden. Für den Einbau zusätzlicher Sicherungs-
maßnahmen gilt dasselbe. Aus diesen Gründen analysiert diese Arbeit nicht
das Innenleben eines Modems, sondern dessen Schnittstelle zum mobilen
Betriebssystem. In dieser Arbeit untersuchen wir daher die folgende von uns
aufgestellte These: Die Sicherheit mobiler Endgeräte sowie derMobilfunknetze
hängt direkt mit der Sicherheit der Modemschnittstelle zusammen.

Diesen Zusammenhang legen wir anhand von drei Schritten dar. Im ersten
Schritt führenwir eine Untersuchung derModemschnittstelle durch. Basierend
auf den Ergebnissen der Untersuchung führenwirmehrere Sicherheitsanalysen
von Short-Message-Service- (SMS) Implementierungen von verschiedenen Tele-
fontypen durch. Im zweiten Schritt untersuchen wir die Möglichkeiten, die
sich Schadcode auf mobilen Endgeräten zu Nutze machen kann. Für diese
Untersuchung entwickeln wir ein Proof-of-Concept-Botnetz, welches mittels
des Modems verdeckt kommuniziert. Im dritten Schritt implementieren wir,
basierend auf den Ergebnissen der vorangegangenen Schritte, einen Schutzme-
chanismus zur Absicherung des Modems gegen bösartige Zugriffe.

Durch unsere Untersuchungen sind wir zu mehreren Ergebnissen gekom-
men. Die Software für den Empfang von SMS-Nachrichten beinhaltet oftmals
(zumTeil kritische) Sicherheitsprobleme. Diese Sicherheitsprobleme haben auch
Auswirkungen auf andere Komponenten der Endgeräte. Mit unserem mo-
bilen Botnetz zeigen wir, welche Möglichkeiten Schadcode auf Mobiltelefo-
nen grundsätzlich zur Verfügung stehen. Durch den von uns entwickelten
Schutzmechanismus derModemschnittstelle bestätigenwir unsere anfangs for-
mulierte These. Die Absicherung der Modemschnittstelle verhindert die zuvor
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präsentierten Angriffe und zeigt hierdurch, dass die Modemschnittstelle einen
entscheidenden Faktor der Mobilfunksicherheit darstellt.
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1 Introduction

Cellular communication and mobile phones are deeply anchored in our daily
lives as we rely on them every day, equally, for work and leisure. With this
heavy reliance, security and reliability become a necessity. Unfortunately, mo-
bile phones and cellular communication in general are complex and securing
them is a challenging task. The task becomes even more challenging as sophis-
ticated attacks (with clear financial goals) are becoming common place. Nowa-
days, mobile malware [53] brings the necessary capabilities to gain full control
over the infected phones and thus has unlimited access to stored data and the
cellular network.

Our society’s strong dependence on reliable and secure mobile communica-
tion has sparked a lot of research effort in order to secure mobile handsets and
cellular networks, alike. The security of cellular networks has been studied and
improvements have been suggested [26,84–86]. In this work, we investigate the
security of mobile handsets.

Mobile handsets have many interesting properties when it comes to the secu-
rity of the whole cellular infrastructure. Mobile handsets come in many differ-
ent flavors. From very simple phones that can only make voice calls to high end
smartphones that have more storage and computing power than a laptop com-
puter from a few years ago. Especially the capabilities of high end smartphones
can pose a real threat to the user and the cellular network. An example is the
rich API set that exposes most of the hardware capabilities to the hosted appli-
cations. To counter threats arising from mobile malware and hijacked handsets
a plethora of research has been carried out to understand and demonstrate the
security issues of cellular handsets [37, 45, 57, 58, 62, 63, 81]. Likewise, effort has
gone into improving the security of mobile handsets [25, 64, 94].

However, so far the majority of work has been conducted on the operating
system and application side of mobile phones whereas the cellular modemwas
neglected. The cellular modem is one of the essential parts of cellular phones
since it provides the interface to the cellular network. The negligence most
likely roots from the closed nature of cellular modems where manufacturers
regard every detail as a trade secret. Hence, only few studies [91] have looked
into cellular modem security. The Federal Communication Commission (FCC)
also raised some security concerns related to the cellular modem [30] but did
not further enforce any regulations. Because of these shortcomings we investi-
gate the security at the boundary of the cellular modem and the mobile operat-
ing system.
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1 Introduction

This thesis investigates the impact of the cellular modem on the security of
mobile phones. The goal is to understand the security issues and shortcomings
of the modem interface and to propose systematic improvements to it. We for-
mulate the following hypothesis:

Securing the cellular modem interface improves the security of mobile handsets and
the cellular infrastructure.

We further claim that:

(i) The cellular modem plays a significant role in securing mobile handsets.

(ii) Access and usage of the cellular modem is so far only coarse-grained.

(iii) Unhindered access to the cellular modem presents a security threat to
both, the network and the individual user.

We begin our investigation by analyzing the cellular modem interface and
how it interacts with the mobile operating system. We interpose between the
cellular modem interface and telephony software stack on current smartphone
platforms. Using this capability, we develop a method for vulnerability analy-
sis for Short Message Service (SMS) implementations. Our analysis shows that
the telephony stack of many modern smartphone platforms contain security
critical software bugs.

Following up on the first part, we continue the vulnerability analysis of SMS
implementations on feature phones. Feature phones are mobile phones that
have additional features besides voice calls and text messaging such as a web
browser. Feature phones are of particular interest because of their large field de-
ployment (smartphones only account for about 16% of all mobile phones [11])
and the fact that feature phones only consists of a single CPU. The single CPU
implements both the cellular modem as well as the mobile phone operating
system and applications (smartphones normally have a dedicated CPU for each
task). The single CPU architecture bears the potential of security and reliability
issues due to unwanted side effects between the software module that imple-
ments the cellular modem and the module that implements the operating sys-
tem. We conceive an analysis method and tool to investigate feature phones.
We determine and show that SMS implementations of all major feature phone
platforms contain security relevant issues.

Now that we understand the interaction between the cellular modem and
the operating system we investigate malicious modem access. Specifically, we
address the question about the capabilities of malicious software that has direct
access to the cellular modem. Therefore, we create a Proof-of-Concept mobile
botnet where the bots utilize the access to the modem to silently communicate.
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1.1 Contributions

Here we demonstrate that such a botnet is practically feasible and discuss de-
tails of such communication.

The final part of this work concentrates on possible countermeasures to pre-
vent malicious access to the cellular modem. We design a protection system to
control access to the cellular modem. Our system prevents unlimited access to
the modem by malware that is executed on the mobile operating system. The
evaluation of our protection system shows that it can mitigate different kinds
of malicious access such as SMS-based botnet communication and cellular sig-
naling attacks.

1.1 Contributions

The thesis provides an insight on the impact of the cellular modem interface
to the security of mobile phones. The thesis makes several contributions to the
area of cellular security and its main contributions are the following.

1.1.1 Vulnerability Analysis for Mobile Handsets

Vulnerability analysis of mobile phones is a challenging task especially if the
targets are the software modules that interact with the cellular network. Ana-
lyzing and testing these components for security defects is challenging because
of the cellular network infrastructure that is required in order to stimulate the
target software module. Cellular networks are large, unpredictable, and slow
and thus unsuited to produce reliable and reproducible test results.

We solve these challenging tasks and design vulnerability analysis methods
that besides other properties cut out the complicated cellular network infras-
tructure. On smartphones we slightly modify the cellular software stack to in-
terpose between the cellular modem and the application processor. This allows
for emulating rogue behavior of the cellular network. The stack modification
relies on an ubiquitous design that is common to most smartphones.

For mobile phones that do not allow software modifications, we develop an
analysis method that is based on a private GSM base station. The base station
is operated by our custom (open source) software. This setup not only allows
sendingmessages to phones, to trigger software faults, but also is able to collect
feedback from the phones. Based on that feedbackwe create amethod that uses
the private base station as a debugging tool for mobile phones.

1.1.2 Cellular Malware Communication Capabilities

Mobile malware is on the rise. To better understand it and to provide insights
into the capabilities of malware residing on cellular phones, we create a Proof-
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1 Introduction

of-Concept cellular botnet. We mainly focus on the command and control com-
munication since this is the primary toehold for fighting botnets.

We design, implement, and evaluate several communication methods for cel-
lular botnets. We emphasize stealthy SMS-based communication through di-
rect access to the cellular modem interface by the bots. Our work shows that
stealthy SMS-based communication is feasible and that mobile network oper-
ators have the best vantage point for detecting and fighting cellular bots that
purely leverage the cellular infrastructure for communication.

1.1.3 Mitigation of Cellular Signaling Attacks on Smartpho nes

Cellular signaling attacks carried out by compromised smartphones are a se-
rious security threat to cellular networks. The attacks are based on flooding
the network with specific messages that create a high load on various network
components and thus cause specific parts of cellular networks to fail. Attacks
like these have been demonstrated in the past. Such attacks are carried out by
hijacked smartphones where the hijacker or malware has unlimited access to
the cellular modem interface.

We propose a protection system for smartphones that prevents malware from
abusing the cellular modem interface for carrying out signaling attacks. Eval-
uation of our protection system shows that it can limit the rate of harmful sig-
naling messages that a phone can send towards the network and thus protect
cellular infrastructure and its users.

1.2 Structure of the Thesis

The rest of the thesis is structured as follows: Chapter 2 provides necessary
background information on cellular communication systems. In Chapters 3
and 4 we present two studies on vulnerability analysis methods of feature
phones and smartphones. The studies themselves focus on SMS implemen-
tations. Chapter 5 presents a study on the communication capabilities of cel-
lular malware under the premise that the malware has direct access to cellular
modem interface. This chapter focuses on implementing a cellular botnet that
mainly communicates via SMS messaging. Chapter 6 introduces a security ar-
chitecture for smartphones to mitigate malicious access to the cellular modem
from the application processor. The architecture presents a method to protect
cellular networks from compromised smartphones. In Chapter 7, we summa-
rize the presented work, draw our conclusions, and briefly discuss potential
future work.
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2 Background

In this chapter we provide the necessary background information on cellular
communication and the commonly found smartphone architecture to under-
stand the details of the thesis. Specific details and related work is covered later
in the individual chapters.

First, we briefly introduce the cellular network components and some parts
of cellular signaling. This is to get a rough overview of how cellular networks
operate and the kind of infrastructure components mobile network operators
(MNOs) have deployed. We focus on the global system for mobile communica-
tion (GSM) throughout this thesis. Second, we give a short introduction to the
Short Message Service. The Short Message Service is an essential part of cel-
lular communication and is covered in depth in this thesis. Third, we provide
some details on the common hardware design that is found in almost every
modern smartphone today. The common design is leveraged throughout this
work and thus introduced here.

2.1 Cellular Network Architecture

The basic architecture of cellular networks are described in [73]. Figure 2.1
shows a simplified version of a cellular network based on [73]. We only in-
cluded the network components that are important in the scope of this work.
The figure leans towards a GSM network but is very similar to a 3G network at
least for the scope of this work.

The architecture of a cellular network is separated into three logical subsys-
tems. The radio subsystem (RSS), the networking and switching subsystem (NSS),
and the operation subsystem (OSS). For packet-data service a fourth subsystem
the general packet radio service (GPRS) is added. Below we will briefly introduce
each subsystem. We vary the details depending on the need for understanding
this work.

The radio subsystem (RSS) comprises all radio specific entities of a cellular net-
work. First, the base transceiver station (BTS) that basically is the radio equip-
ment such as the actual transceiver and the antennas. Second, the base station
controller (BSC) that manages one to multiple BTSs. The BSC handles tasks
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such as channel allocation, paging of mobile devices, and handover between
BTSs. In figure 2.1 we show a compressed version of the BTS and BSC as the
base station (BS). The third part of the radio subsystem is the mobile station
(MS) the actual mobile phone. The mobile station comprises all the necessary
hardware and software to communicate with the cellular network. A little more
detail of the inner workings of a modern smartphone is described in Section 2.4.

The networking and switching subsystem (NSS) is the core of the cellular net-
work. This subsystem connects the radio subsystem with the Public Switched
Telephone Network (PSTN) and other necessary systems. Its duties are local-
ization of mobile stations in the network, accounting, and charging. The two
most important components of the NSS are the following. First, the mobile
switching center (MSC) is the connection between the BTSs and the fixed line
network. A MSC connects to multiple BSCs and interconnects to other MSCs.
Second, the home location register (HLR) is the central user database of a cel-
lular network. The HLR stores all information about a mobile subscriber from
charging records and call forwarding settings to his current network location.
The HLR is one of the most important components in a mobile network. There
is a third component in the NSS, the visitor location register (VLR). The VLR is
more or less a cache of the HLR to reduce load on the central HLR.

The operation subsystem (OSS) hosts some components for operating andmain-
taining a cellular network. It contains systems such as the authentication center
(AuC) which contains the credentials of the mobile subscribers. In actual net-
works the AuC is part of the HLR.

The general packet radio service (GPRS) subsystem hosts the components neces-
sary for packet-data access. The GPRS subsystem consist of two major entities.
First, the Gateway GPRS Support Node (GGSN) which is the component that
connects the GPRS network to the packet-data/IP network. Its duties are rout-
ing, address conversions, and providing tunnels for the actual data transport.
The GGSN is the gateway to the public network such as the Internet. Second,
the Serving GPRS Support Node (SGSN) which is responsible for authentica-
tion, billing, and mobility management (keeping track of the mobile stations
that use GPRS). The GPRS subsystem interfaces with the MSC and HLR.

2.2 Cellular Signaling

Signaling traffic generated by the Mobile Equipment (ME) is sent to the MSC
and HLR in case of voice calls, SMS, and updating account settings (such as
call-forwarding). Packet-data related signaling is mainly directed towards the
SGSN, the GGSN, and of course the HLR.More details on cellular signaling can
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Figure 2.1: The basic setup of a cellular network.

be found in [73].

Packet Data Protocol (PDP) setup in order to establish IP connectivity is a com-
plex process. When a ME wishes to establish a PDP context it sends a GPRS-
attach message to the SGSN. The SGSN authenticates the ME using the HLR.
Next, the PDP context is established and stored at the SGSN and GGSN. This
includes records and parameters for billing, quality of service information, and
the IP address assigned to the specific PDP context. Maintenance and distribu-
tion of the PDP context information across the different network components
is a costly process as it involves many components across the cellular network.

2.3 The Short Message Service

The Short Message Service (SMS) [6] is one of the basic services of the mobile
phone network. SMS is used for many different purposes besides text messag-
ing and thus is one of the key components of cellular networks. As SMS plays
such an important role it is studied heavily throughout this thesis.

The Short Message Service is a store and forward system. Messages sent to
and from a mobile phone are first sent to an intermediate component in the
mobile phone operators network. This component is called the Short Message
Service Center (SMSC). After receiving a message, the SMSC forwards the mes-
sage to another SMSC (in case of inter-operator messages or an operator with
multiple SMSCs) or if the receiving phone is handled by the same SMSC, it de-
livers the message to the recipient without invoking another party. SMS mes-
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sages can also be sent from entities other then mobile phones. These entities
are called External Short Message Entity (EMSE). Internet-based SMS services
use such EMSEs to send messages to mobile subscribers.

The format of an SMS differs depending on whether the message is Mobile
Originated (MO) or Mobile Terminated (MT). This is mapped to the two for-
mats SMS_SUBMIT (MO) and SMS_DELIVER (MT). In a typical GSM network, as
shown in Figure 2.1, an SMS message that is sent from a mobile device is trans-
ferred Over-the-Air to the Base Station (BS) of an operator in SMS_SUBMIT for-
mat. To reduce the complexity in our example cellular network we define that
a BS always consists of a Base Transceiver Station (BTS) and a Base Station Con-
troller (BSC). Every BS interacts with a Mobile Switching Center (MSC), which
acts as the central entity handling traffic within the network. The MSC relays
the SMS message to the responsible SMSC.

The details of the SMS message formats and SMS delivery are covered in
Chapters 3 and 4 where we analyze client side implementations of the Short
Message Service.

2.4 Smartphone Architecture

Modern smartphones consist of two individual subsystems, the application
processor and the baseband processor. Together with the peripheral hardware
such as the touch screen, audio input and output, and the GPS receiver these
two systems form the actual smartphone. Figure 2.2 depicts the conceptual sys-
tem design of a smartphone. This common design can be found across almost
all chipset manufacturers, i.e. [72, 79]. This is how an iPhone, Android, and
Windows Mobile device look on the inside.

The application processor usually comes in form of a System on a Chip (SoC)
design. The CPU and many of the controllers for connected peripherals shown
in Figure 2.2 are included on the same chip. The application processor runs
the smartphone OS such as Android or iOS and all the applications (e.g., email
client or telephone).

The baseband (cellular modem) processor is the communication interface to
the cellular network. It consists of a general purpose CPU, a Digital Signal
Processor (DSP), and the necessary radio components such as a signal ampli-
fier. The baseband processor runs a specialized real-time operating system.
Baseband chipsets are a highly specialized field since they have to be certified
by multiple institutions before they are allowed to operate on public cellular
networks. Because the process of development and certification is very costly,
there are only a few baseband manufacturers [77].

The application processor and the baseband processor are connected at few
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Figure 2.2: The basic design of a modern smartphone.

points. This allows for better flexibility for the various phone manufacturers.
The connections are for digital audio input and output (voice calls) and for
controlling the baseband’s functionality. The control channel is conceptually
a serial connection that can be implemented using buses such as SPI or USB.
Through this serial connection, the application processor uses an extended ver-
sion of theHayes1 Attention (AT) command set [5] to interact with the baseband.

In Section 3.4 we will further explain the communication that takes place
between the baseband and the application processor in the casewhen the phone
receives a SMS messages from the cellular network. Chapter 6 deals with the
commands that are emitted from the application processor to the baseband.

1Hayes Microcomputer Products initially developed the AT command set, the company does
not exist anymore. http://en.wikipedia.org/wiki/Hayes_Microcomputer_Products
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Smartphones

We start our investigation by analyzing the communication between the cellu-
lar modem and the application processor. Based on the results of this analysis
we design a vulnerability analysis method for SMS clients of smartphones. Our
resulting tool impersonates the cellular modem to emulate messages from the
cellular network.

3.1 Introduction

The Short Message Service (SMS) is the most popular secondary service on
mobile phones beloved by both the users and the service providers for its ease
of use and for the generated revenue, respectively. Besides the use for simple
text messaging, the Short Message Service has many applications on a mobile
phone. It is used as a control channel for services like voice mail where it is used
to notify the user about new messages. Another SMS-based service is remote
over-the-air (OTA) phone configuration. SMS further is used as a transport for
the Wireless Application Protocol (WAP).

The Short Message Service in all its functionality is complex and therefore
security issues based on implementation faults are common. In the past years
SMS-based security issues for almost everymobile phone platformwere known.
Furthermore, no possibility exists to firewall or filter SMS messages, therefore,
SMS-based attacks are hard to prevent especially since user interaction is not
required. Therefore, it is necessary to develop techniques and tools to ana-
lyze and improve the security of SMS-implementations and SMS-based appli-
cations.

In this chapter we present a novel approach to the vulnerability analysis of
SMS-implementations on smartphones. To the best of our knowledge, no at-
tempt has been made before to analyze and test Short Message Service imple-
mentations and SMS-based applications in a methodical way. We believe that
the main reason for this situation is that SMS testing would be very cost inten-
sive since SMS messages would have to be sent to the tested phones in large
quantities.

The analysis of SMS-implementations on smartphones is difficult for sev-
eral reasons besides the cost factor. The reasons all tail from the fact that SMS
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messages are delivered through infrastructure controlled by an operator and
thus is outside the control of the researchers who are conducting the vulnera-
bility analysis. One problem is the uncertainty of whether a message is deliv-
ered to the target in its original form. This is because mobile phone operators
have the ability to filter and modify short messages during delivery. Also, it is
possible that the operator might not filter messages on purpose but might use
equipment that can not handle certain messages. Second, SMS is an unreliable
service, meaning messages can be delayed or discarded for no deterministic
reason. This makes the testing very time-consuming and hard to reproduce.

We addressed these problems by removing the need for a mobile phone net-
work all together through injecting short messages locally into the smartphone.
Injection is done in software only and requires only application level access to
the smartphone. The injection is taking place below the mobile telephony soft-
ware stack and therefore we are able to analyze and test all SMS-based services
that are implemented in the mobile telephony software stack.

The vulnerability analysis itself was conducted using fuzzing. In this work,
we present the possibilities for fuzzing-based testing of SMS-implementations.
Further, we present our testing methodology and the tools we have developed
in the process. To show that our approach is generic we implemented and
tested our analysis framework for three different smartphone platforms.

So far we have found several flaws in the tested SMS-implementations, some
of which can be exploited for Denial-of-Service attacks. One particular vulnera-
bility allows us to disconnect a device from the mobile phone network through
crashing the telephony application, leaving the phone in state where it cannot
receive calls.

Contributions of this chapter are the following:

• We introduce a novel method to test SMS-implementations that circum-
vents filters and any other restrictions that might be put in place by a
mobile phone service operator. It further prevents the provider from eas-
ily detecting that testing is taking place. Furthermore, it allows analysis
of services and applications built on top of SMS such as WAP.

• We developed a testing framework that allows one to perform SMS vul-
nerability analysis at high speeds and without costs.

• We developed a tool that performs security testing of SMS-implementati-
ons through fuzzing. The tool found a number of previously unknown
vulnerabilities.
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Chapter Organization

The rest of this chapter is structured as follows: Section 3.2 presents related
work. Section 3.3 describes the Short Message Service message format. Sec-
tion 3.4 describes in great detail how SMS messages are received and han-
dled on a smartphone. Section 3.5 describes our SMS injection framework. In
Section 3.6 we present our fuzzing tools, the methodology, the results of our
fuzzing approach, and the possible attacks based on the results. In Section 3.7
we briefly conclude.

3.2 Related Work

Previous research in the area of SMS security can be divided into two areas. The
first area consists of research that investigated protocols that facilitate SMS as
a transport such as WAP and MMS. Here the creators of the PROTOS [66] test-
ing suite implemented test cases for WAP implementations. In [63] the authors
build a framework for analyzing the security of MMS client implementations.

The second area of research conducted in [26] focused around the possibil-
ity of mobile phone service disruption based on the ability to send excessive
amounts of short messages from the Internet to individuals and groups of peo-
ple in a certain area.

In the past, SMS bugs [22,48,93] were found by accident rather than through
thorough testing. One notable example of this kind of bug discovered is the
Curse of Silence [27] bug which existed in most of Nokia’s Symbian S60-based
smartphones. The bug consisted of a single malformed SMS message that,
upon reception, prevented further SMS messages from being displayed to the
user. The work presented in this chapter provides a method for conducting
thorough security analysis of SMS-implementations without the burden of ser-
vices fees.

3.3 The SMS_DELIVER Format

The SMS_DELIVER format is used for messages sent from the SMSC to the
mobile phone. Since our testing method is based on local message injection
that replicates an incoming message, we are interested in the SMS_DELIVER
format.

An SMS_DELIVER message consists of the fields shown in Figure 3.1. The
format is simplified since our main fuzzing targets are the Protocol ID, the Data
Coding Scheme, and the User Data fields. Other fields such as the User Data
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Name Bytes Purpose
SMSC variable SMSC address
DELIVER 1 Message flags
Sender variable Sender address
PID 1 Protocol ID
DCS 1 Data Coding Scheme
SCTS 7 Time Stamp
UDL 1 User Data Length
UD variable User Data

Figure 3.1: SMS_DELIVER Message Format

Field Bytes
Information Element (IEI) 1
Information Element Data Length (IEDL) 1
Information Element Data (IED) variable

Figure 3.2: The User Data Header (UDH)

Length and the DELIVER flags will be set to corresponding values in order to
create valid SMS_DELIVER messages.

The User Data Header

The User Data Header (UDH) provides the means to add control information
to an SMS message in addition to the actual message payload or text. The
existence of a User Data Header is indicated through the User Data Header
Indication (UDHI) flag in the DELIVER field of an SMS_DELIVER message. If
the flag is set, the header is present in the User Data of the message. The User
Data Header consists of the User Data Header Length (UDHL), followed by
one or multiple headers. The format for a single User Data Header is shown in
Figure 3.2.

3.4 Mobile Phone Side SMS Delivery

Most current smartphones are composed of two processors. The main CPU,
called the application processor, is the processor that executes the smartphone
operating system and the user applications such as the mobile telephony and
the PIM applications. The second CPU runs a specialized real time operating
system that controls the mobile phone interface and is called the modem. The
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modem handles all communication with the mobile phone network and pro-
vides a control interface to the application processor.

Logically the application processor and the modem communicate through
one or multiple serial lines. The mobile telephony software stack running on
the application processor and communicates with the modem through a text-
command-based interface using a serial line interface provided by the operat-
ing system running on the application processor. The physical connection be-
tween the application processor and the modem solely depends on the busses
and interfaces offered by both sides but is irrelevant for our method.

The modems of our test devices (the iPhone, the HTC G1 Android, and the
HTC Touch 3G Windows Mobile) are controlled through the GSM AT com-
mand set [28]. The GSM AT commands are used to control every aspect of the
mobile phone network interface, from network registration, call control and
SMS delivery to packet-based data connectivity.

3.4.1 The Telephony Stack

The telephony stack is the software component that handles all aspects of the
communication between the application processor and the modem. The lowest
layer in a telephony stack usually is a multiplexing layer to allow multiple ap-
plications to access the modem at the same time. The multiplexing layer also is
the instance that translates API-calls to AT commands and AT result codes to
status messages. The applications to allow the user to place and answer phone
calls and to read andwrite short messages exist on top of themultiplexing layer.

3.4.2 SMS Delivery

Short messages are delivered through unsolicited AT command result codes
issued by the modem to the application processor. The result code consists of
two lines of ASCII text. The first line contains the result code and the number of
bytes that follow on the second line. The number of bytes is given as the num-
ber of octets after the hexadecimal to binary conversion. The second line con-
tains the entire SMS message in hexadecimal representation. Figure 3.3 shows
an example of an incoming SMS message using the CMT result code which is
used for SMS delivery on all of our test devices. Upon reception of the message
the application processor usually has to acknowledge the reception by issuing
a specific AT command to the modem. All interaction to the point of acknowl-
edging the reception of the CMT result is handled by the multiplexing layer of
the telephony stack.
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+CMT: ,22
07916163838450F84404D0110020009030329
02181000704010200088000

Figure 3.3: Unsolicited AT result code that indicates the reception of an SMS
message

3.4.3 The Stacks of our Test Devices

We will shortly describe the parts of the telephony stack that are relevant for
SMS handling on each of our test platforms.

iOS/iPhone

On the iPhone, the telephony stack mainly consists of one application binary
called CommCenter. CommCenter communicates directly with the modem us-
ing a number of serial lines of which two are used for AT commands related to
SMS transfers. It handles incoming SMS messages by itself without invoking
any other process, besides when the device notifies the user about a newly ar-
rived message after storing it in the SMS database. The user SMS application is
only used for reading SMS messages stored in the database and for composing
new messages and does not itself directly communicate with the modem.

Android

On the Android platform the telephony stack consists of the radio interface
layer (RIL) that takes the role of the multiplexing layer described above. The
RIL is a single daemon running on the device and communicates with the mo-
dem through a single serial line. On top of the RIL daemon, the Android phone
application (com.android.phone) handles the communication with the mobile
phone network. The phone application receives incoming SMS messages and
forwards them to the SMS and MMS application (com.android.mms).

Windows Mobile

In Windows Mobile, the telephony stack is quite a bit larger and more dis-
tributed compared with the iPhone and the Android telephony stacks. The
parts relevant to SMS are: the SmsRouter library (Sms_Providers.dll) and the
tmail.exe binary. The tmail.exe binary is the SMS and MMS application that
provides a user interface for reading and composing SMS messages. Other
components such as the WAP PushRouter sit on top of the SmsRouter.
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3.5 SMS Injection

Based on the results of our analysis on how SMS messages are delivered to the
application layer, we designed our SMS injection framework.

Our method for SMS injection is based on adding a layer between the se-
rial lines and the multiplexer (the lowest layer of the telephony stack). We
call this new layer the injector. The purpose of the injector is to perform a
man-in-the-middle attack on the communication between the modem and the
telephony stack. The basic functionality of the injector is to read commands
from the multiplexer and forward them to the modem and in return read back
the results from the modem and forward them to the multiplexer.

To inject an SMS message into the application layer, the injector generates
a new CMT result and sends it to the multiplexer just as it would forward a
real SMS message from the modem. It further handles the acknowledgement
commands sent by the multiplexer. Figure 3.4 shows the logical model of our
injection framework.

We implemented our injection framework for our three test platforms. We
believe that our approach for message injection can be easily ported to other
smartphone platforms if these allow application level access to the serial lines
of the modem or the ability to replace or add an additional driver that provides
the serial line interface.

We noticed several positive side effects of our framework, some of which can
be used to further improve the analysis process. First of all, we canmonitor and
log all SMS messages being sent and received. This ability can be used to ana-
lyze proprietary protocols based on SMS, such as the iPhone’s visual voice mail.
The ability to monitor all AT commands and responses between the telephony
stack and the modem provides an additional source of feedback while conduct-
ing various tests. On the iPhone, for example, messages are not acknowledged
in a proper way if these contain unsupported features.

3.5.1 The Injection Framework

Belowwewill briefly describe the implementation issues of the injection frame-
work for each of our target platforms. Every implementation of the framework
opens TCP port 4223 on all network interfaces in order to receive the SMS mes-
sages that should be injected. This network based approach gives us a high
degree of flexibility for implementing our testing tools independent from the
tested platform.

So far we are able to install our injection framework on all the test targets and
continue to use them as if the injection framework was not installed, therefore
giving us high degree of confidence in our approach.
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Figure 3.4: Logical model of our injector framework

iOS/iPhone

On the iPhone, SMS messages are handled by the CommCenter process. The
interface for CommCenter consists of sixteen virtual serial lines, /dev/dlci.h5-
baseband.[0-15] and /dev/dlci.spi-baseband.[0-15] on the 2G and the 3G
iPhone, respectively.

The implementation of our injection framework for the iPhone is separated
into two parts, a library and a daemon. The library is injected into the Comm-
Center process through library pre-loading. The library intercepts the open(2)
function from the standard C library. Our version of open checks for access to
the two serial lines used for AT commands. If the respective files are opened the
library replaces the file descriptor with one connected to our daemon. The cor-
responding device files are the serial lines 3 and 4 on the 2G and 3G iPhones.
The library’s only function is to redirect the serial lines to the daemon. The
daemon implements the actual message injection and log functionality.

Android

The implementation for the Android platform consists of just a single daemon.
The daemon talks directly to the serial line device connected to the modem and
emulates a new serial device through creation of a virtual terminal.

The injection framework is installed in three steps. First, the actual serial line
device is renamed from /dev/smd0 to /dev/smd0real. Second, the daemon is
started, opens /dev/smd0real and creates the emulated serial device by creat-
ing a TTY named /dev/smd0. In the third step, the RIL process (/system/bin/
rild), is restarted by sending it the TERM signal. Upon restart, rild opens the
emulated serial line and from there on will talk to our daemon instead of the
modem.
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Windows Mobile

The Windows Mobile version of our injection framework is based on the sim-
ple log-driver [40] written by Willem Hengeveld. The original log-driver was
designed for logging all AT communication between the user space process
and the modem. We added the injection and state tracking functionality. To
do this, we had to modify the driver quite a bit in order to have it listen on
the TCP port to connect our test tools. The driver replaces the original se-
rial driver and provides the same interface the original driver had and loads
the original driver in order to communicate with the modem. The driver is
installed through modifying several keys of the Windows Mobile registry at:
/HKEY_LOCAL_MACHINE/Drivers/BuiltIn/SMD0. The most important change is
the name of the Dynamic Link Library (DLL) that provides the driver for the
interface, whose key is named Dll. Its original value is smd_com.dll.

3.6 Fuzzing SMS Implementations

Fuzzing is one of the easiest and most efficient ways to find implementation
vulnerabilities. With this framework, we are able to quickly inject fuzzed SMS
messages into the telephony stack by sending them over the listening TCP port.
In general, there are three basic steps in fuzzing. The first is test generation.
The second is delivering the test cases to the application, and the final step is
application monitoring. All of these steps are important to find vulnerabilities
with fuzzing.

3.6.1 Fuzzing Test Cases

We took a couple of approaches to generating the fuzzed SMS messages. One
was to write our own Python library which generated the test cases while the
other was to use the Sulley [12] fuzzing framework. In either case, the most im-
portant part was to express a large number of different types of SMS messages.
Below are some examples of the types of messages that we fuzzed.

Basic SMS Messages As from Figure 3.1, we fuzzed various fields in a stan-
dard SMSmessage including elements such as the sender address, the user data
(or message), and the various flags.

Basic UDH Messages As seen in Figure 3.5, we fuzzed various fields in the
UDH header. This included the UDH information element and UDH data.
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IED Byte Index Purpose
0 ID (same for all chunks)
1 Number of Chunks
2 Chunk Index

Figure 3.5: The UDH for SMS Concatenation

IED Byte Index Purpose
0 - 1 Destination Port (16bit)
2 - 3 Source Port (16bit)

Figure 3.6: The UDH for SMS Port Addressing

Concatenated SMS Messages Concatenation provides the means to compose
SMSmessages that exceed the 140 byte (160 7-bit character) limitation. Concate-
nation is achieved through the User Data Header type 0 as specified in [6]. The
concatenation header consist of five bytes, the type (IEI), the length (IEDL), and
three bytes of header data (IED) as seen in Figure 3.5. By fuzzing these fields
we force messages to arrive out of order or not at all, as well as sending large
payloads.

UDH Port Scanning SMS applications can register to receive data on UDH
ports, analogous to the way TCP and UDP applications can do so. Without
reverse engineering, it is impossible to know exactly what ports a particular
mobile OS will have applications listening on. We send large amounts of (un-
formatted) data to each port. The structure of the UDH destined for particular
applications of designated ports is indicated in Figure 3.6.

Visual voice mail (iPhone only) When a visual voice mail arrives, an SMS mes-
sage arrives on port 5499 that contains a URL in which the device can receive
the actual voice mail audio file. This URL is only accessible on the interface that
connects to the AT&T network, and will not connect to a generic URL on the
Internet. The URL is clearly to a web application that has variables encoded in
the URL. We fuzz the format of this URL.

3.6.2 Delivery

Once the test cases are generated, they need to be delivered to the appropriate
application. In this case, due to the way we have designed the testing frame-
work, it is possible to simply send them to a listening TCP port. All of this work
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is designed to make it easy to deliver the test cases.

3.6.3 Monitoring

It does no good to generate and send fuzzed test cases if you do not know
when a problem occurs. Device monitoring is just as important as the other
steps. Unfortunately, monitoring is device dependent. There are two important
things to monitor. We need to know if a test case causes a crash. We also need
to know if a test case causes a degradation of service, i.e. if the process does not
crash but otherwise stops functioning properly.

On the iPhone, the crash of a process causes a crash dump file to be writ-
ten to the file system compliments of Crash Reporter. This crash dump can be
retrieved and analyzed to determine the kind and position of the crash. In be-
tween each fuzzed test case, a known valid test case is sent. The SMS database
can be queried to ensure that this test case was received and recorded. If not,
an error can be reported. In this fashion, it is possible to detect errors that do
not necessarily result in a crash.

The Android development kit takes a different approach by suppling a tool
called the Android Debug Bridge (ADB), this tool allows us to monitor the sys-
tem log of the Android platform. If an application crashes on Android the sys-
tem log will contain the required information about the crash. If a Java/Dalvik
process crashes, it will contain information including the back trace of the ap-
plication.

The Windows Mobile development kit on the other hand provides the tools
for on-device debugging. This meansWindowsMobile allows traditional fuzz-
ing by attaching a debugger to the process being fuzzed.

3.6.4 Fuzzing Results

iOS/iPhone: Our iPhone targets were running software versions 2.2, 2.2.1, and
3.0. We discovered multiple Denial-of-Service attacks and one code execution
bug. One of the flaws we discovered here is a null pointer dereference in
the handling code of Flash-SMS messages. The flaw causes SpringBoard (the
iPhone window manager) to crash forcing the user to slide to unlock his
iPhone. The crash and restart of SpringBoard blocks the phone for about 15
seconds. Second we discovered a memory corruption bug in CommCenter.
When CommCenter crashes all wireless interfaces are disconnected, allowing
to interrupt phone calls in process! Later we discovered that the bug allowed
arbitrary code execution. To gain control over to program counter 519 SMS
messages need to be sent. Although the user only sees the last message.

Android: For Android, the targets were the development firmware versions
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1.0, 1.1 and 1.5. Here we found several flaws that cause an array index out
of bounds exception. Multiple of the flaws cause com.android.phone to crash
and thereby disconnect the phone from the mobile phone network. Addition-
ally, if the SIM card had a PIN set the phone will be disconnected until the user
enters the PIN. Thus leaving the phone disconnected from the cellular network
until the user discovers the PIN entry request.

Windows Mobile: On our Windows Mobile target (a HTC Touch 3G) we dis-
covered a bug in the HTC TouchFlo (Manila2D.exe) application. TouchFlo
provides the user interface to this series of Windows Mobile phone. The bug
crashes the TouchFlo application thus rendering the phone unusable. To make
things worse TouchFlo stores the message in its Inbox before parsing it and
thus crashes again after restarting while trying to read the Inbox. The bug was
a simple format string bug that can be send from any phone. It consists of only
the two characters %n and thus can be exploited by anyone who is able to send
a simple text message.

In order to determine if a specific flaw can be exploited the particular SMS
message needs to be sent over the mobile phone network. If the message is
delivered to the target, and was not modified in the process, it can be utilized
for an attack.

3.7 Conclusions

We presented a novel method for performing vulnerability analysis of SMS-
implementation on smartphones. Our method removes the cost factor and thus
enables large scale fuzz-based testing. In addition, it removes the intermediate
infrastructure that otherwise would make obtaining conclusive results difficult.
Removing the infrastructure further creates the possibility to discover flaws
that could not haven been discovered through testing using a service providers
infrastructure. Through the use of our testing tools, we identified a number
of vulnerabilities that can be abused for critical Denial-of-Services attacks and
in one case for arbitrary code execution. Especially the confirmation of the
arbitrary code execution would not have been possible without our injection
framework.

Future work will focus on porting our framework to other mobile phone
platforms for testing and analyzing more SMS-implementations. We further
believe that our injection framework can be used beyond the focus of fuzz-
based testing, since it provides an unfiltered and cost free path for delivering
SMS messages to a smartphone.
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Implementations on Feature Phones

In this chapter we continue with vulnerability analysis of SMS implementations
but switch the target to phones that implement the cellular modem and the
applications on the same CPU. We present the resulting impact of this design
on the security and reliability of the respective mobile phones.

4.1 Introduction

In recent years a lot of effort has been put into analyzing and attacking smart-
phones [37,45,57–59,62,63,81], neglecting the so-called feature phones. Feature
phones, mobile phones that have advanced capabilities besides voice calling
and text messaging, but are not considered smartphones, make up the largest
percentage of mobile devices currently deployed on mobile networks around
the world. In comparison, smartphones only account for about 16% of all mo-
bile phones [11]. The lack of security research into the far more popular fea-
ture phones is explained by the fact that smartphones share much commonal-
ity with desktop computers, and, therefore, are easier to analyze. Researchers
are able to use the same or similar tools that they are already familiar with on
desktop computers. Feature phones on the other hand are highly embedded
systems that are closed to developers. This results in billions (there are about
4.6 billion mobile phone subscribers [9,11]) of potentially vulnerable mobile de-
vices out in the field, just waiting to be taken advantage of by a knowledgeable
attacker.

In this chapter, we investigate the security of feature phones and the possibil-
ity for large scale attacks based on discovered vulnerabilities in these devices.
We present a novel approach to the vulnerability analysis of feature phones,
more specifically for their SMS client implementations. SMS is interesting be-
cause it is the feature that exists on every mobile phone. Furthermore, security
issues related to SMS messaging can be exploited from almost anywhere in the
world, and thus present the ideal attack vector against such devices. To the best
of our knowledge, no attempt has been made before to analyze or test feature
phones for security vulnerabilities.

Analyzing feature phones is difficult for several reasons. First of all, feature
phones are completely closed devices that do not allow for development of na-
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tive applications and do not provide debugging tools. Moreover, analyzing the
part of the phone that interacts with the mobile phone network is hard since
the mobile phone network between us and the target device is essentially a
black box. As a consequence, analysis becomes time consuming, unreliable,
and costly.

We address these problems by building our own GSM network using equip-
ment that can be bought on the market. We use this network not only for sending
SMS messages to the phones we analyze, but also as an advanced monitoring system.
The monitoring system replaces our need for debuggers and other tools that are nor-
mally required for thorough vulnerability analysis, but do not exist for feature phones.

Vulnerability analysis was conducted using fuzzing. We chose fuzzing as the
testing technique because we did not have access to source code and reverse
engineering a large number of devices is not feasible. Additionally, fuzzing
proved to be very efficient since this allowed us to analyze a large amount of
mobile handsets with the same set of tests.

So far, we have found numerous vulnerabilities in feature phones sold by the
six market leading mobile phone manufacturers. The vulnerabilities are secu-
rity critical as they can remotely crash and reboot the entire target phone. In the
process the mobile phone is disconnected from the mobile network, interrupt-
ing any active calls and data connections. Such bugs and attacks have existed
before on the Internet, known as Ping-of-Death [49]. We believe this represents
a serious threat to mobile telephony world wide.

To complete our research we further analyzed the effect of such attacks on the
mobile phone core network. This resulted in two interesting findings. First, the
mobile phone network can be abused to amplify our Denial-of-Service attacks.
Second, by attacking mobile phones one can attack the mobile phone network
itself.

The main contributions of this chapter are:

• Vulnerability Analysis Framework for Feature Phones: We introduce a
novel method to conduct vulnerability analysis of feature phones that is
based on a small GSM base transceiver station. We solve the major issue
of such analysis: the monitoring for crashes and other unexpected behav-
ior. We present multiple solutions for monitoring such devices while ana-
lyzing them. Our method furthermore shows that once a system, such as
GSM, becomes partially open, the security of the entire system, including
the parts that are still closed, can be analyzed and exploited.

• Bugs Present in Most Phones: We show that vulnerabilities exist in most
mobile phones that are deployed on mobile networks around the world
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today. The bugs we discovered can be abused for carrying out large scale
Denial-of-Service attacks.

• Attack Impact: We show that a small number of bugs in the most popu-
lar mobile phone brands is enough to take down a significant number of
mobile phones around the world. We further show that bugs present in
mobile phones can possibly be used to attack the mobile phone network
infrastructure.

Chapter Organization

The rest of this chapter is structured in the following way. In Section 4.2 we
discuss related work and show how our research extends previous work in this
area. In Section 4.3 we explain how we selected our targets for analysis and
resulting attacks. In Section 4.4 we show in great detail how to analyze feature
phones for security vulnerabilities. In Section 4.5 we layout methods to use
the vulnerabilities discovered for large scale attacks on mobile communication.
In Section 4.6 we present methods for detecting and preventing the attacks we
designed. In Section 4.7 we briefly conclude.

4.2 Related Work

Related work is separated into four parts. First, smartphone vulnerability anal-
ysis. Second, mobile and feature phone bugs, which were all found purely by
accident. Third, studies on attacks against mobile phone networks. Fourth,
Denial-of-Service (DoS) attacks since we are going to present a large scale mo-
bile phone DoS attack in this chapter.

The authors of [63] built a framework for security analysis of Multimedia
Messaging Service (MMS) implementations on Windows Mobile based smart-
phones. In Chapter 3 we conducted vulnerability analysis of Short Message
Service (SMS) implementations of smartphones. Both cases used traditional
techniques such as debuggers and analysis of crash dumps to catch exceptions
generated during fuzzing.

Our work presented in this work is different, as we do not rely on debug-
ging capabilities provided by the various manufacturers, which mostly do not
provide such capabilities at all. Instead we use a small GSM base station to
monitor and catch abnormal behavior of the phones by monitoring and ana-
lyzing radio link activity. MMS-based attacks that lead to battery exhaustion
due to increasing power consumption have been studied in [70]. They utilized
the fact that MMS messages use more battery resources because of GPRS and
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increased CPU usage. However, we did not conduct this kind of analysis since
our focus was software bugs in SMS implementations.

Over the last few years a small number of bugs have been discovered by
individuals. Most of them have been found by accident. To our knowledge
no systematic testing has been conducted. Some examples are: the Curse-of-
Silence [27] named bug for Symbian OS that prevents a phone from further re-
ceiving any SMS after receiving the curse SMS message. The WAP-Push vCard
bug on Sony Ericsson phones [60] that caused a target phone to reboot. Some
Nokia phones [93] contained a bug that could be abused to remotely crash a
phone by sending it a specially crafted vCard via SMS. Some mobile phones
produced by Siemens contained a bug [48] that would shutdown the phone
when displaying an SMS message that contained a special character. Bugs like
these fuelled our research effort since we believed that most phones contain
similar bugs. A large number of similar issues in an exploit arsenal can likely
be used to carry out attacks against a bigger percentage of mobile phone users
around the world.

Enck et al. show in [26] that SMS messages sent over the Internet can be
used to carry out a Denial-of-Service attack against mobile phone networks.
The attack focused on blocking the mobile network’s control channels, there-
fore, no more calls could be initiated. Solutions against this type of resource
consumption attack are investigated in [84]. However our attacks, described in
this work, are not based on attacking the radio link (the control channel) in any
way. We attack the handsets directly without targeting the control channel. A
study on the capabilities of mobile phone botnets [85] shows that these could
be used to carry out DoS attacks against a mobile network. The attack works
by overloading the Home Location Register (HLR) by triggering large amounts
of state changes by zombie phones. However, in this work we show that one
can achieve a similar kind of DoS attack against an operators network by dis-
connecting large amounts of mobile phones from the network. The difference
to the botnet approach is that we do not need to have control over the zombie
phones in the first place. We can remotely force them to reboot and disconnect
and re-authenticate to the network and thus cause a higher load on the network
core infrastructure.

Denial-of-Service attacks such as the one presented in this work have been
studied in a wide area. Attacks ranging from the Web to DNS [29]. More inter-
esting in our context are attacks that disable real-world systems and processes
such as emergency services [61] (although just as a side effect) or even postal
services [15].

Essentially the work presented in this work is different in many aspects. We
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focus on feature phones because feature phones are much more popular than
smartphones. Therefore, attacks against feature phones have a larger global
impact. In this work we present a security testing framework for analyzing
SMS implementations of any kind of mobile phone. We used this framework
to analyze feature phones of the most popular manufacturers in the world, as
shown in Section 4.3. We also performed this type of analysis because it has not
been done in the past, even though these devices are widely deployed.

4.3 Target Selection

To achieve maximum impact with an attack, it makes sense to target the most
popular devices. We determined that feature phones are the dominant type of
mobile phones. They account for 83% of the U.S. mobile market [33], smart-
phones in comparison just make for 16% of all mobile phones world wide [11].
We acknowledge that today smartphone sales are rising very fast, but feature
phones still dominate when it comes to deployed devices in the field.

Most of the definitions of the term feature phone are a bit fuzzy. A loose def-
inition of the term is: every mobile phone that is neither a dumb phone nor
a smartphone is considered a feature phone. Dumb phones are phones with
minimal functionality, often they only support voice calls and sending SMS
messages, just basic functionality. Feature phones have less functionality than
smartphones but still more than dumb phones. Feature phones have propri-
etary operating systems (firmware) and have additional features (thus the term
feature) such as playing music, surfing the web, and running simple applica-
tions (mostly J2ME [78]). Despite this lack of functionality (compared to smart-
phones) they are quite popular because they are cheap and offer long battery
life.

Technically interesting is the fact that feature phones are based on a single
processor that implements the baseband, the applications, and user interface.
Smartphones usually have a dedicated processor for the baseband. The con-
sequence of this is that a simple bug on a feature phone may bring down the
complete system.

Mobile phones are produced by many different manufacturers that all have
their own OS, therefore, targeting a single one of them will not result in global
effect. Since we can not simply target all mobile phone platforms we have to
select the few ones that have enough market share to be of global relevance.

To determine the major mobile phone manufacturers we analyzed various
market reports: World wide [10] and European [43] market share. Market
shares in the United States [20] and in Germany [19]. We compiled the essence
of these reports as four tables in Table 4.1.

Through this analysis we got a clear picture about the top manufacturers.
These are Nokia, Samsung, LG, Sony Ericsson, and Motorola. We further chose
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to add Micromax [56] to the list of interesting mobile phone manufacturers be-
cause we read [82] that they are the third most popular brand of mobile phones
in India.
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(a) Germany, November 2009

Manufacturer Market Share
Nokia 35.4%
Sony Ericsson 22.0%
Samsung 15.0%
Motorola 8.6%
Siemens 5.4%

(b) U.S.A., May 2010

Manufacturer Market Share
Samsung 22.4%
LG 21.5%
Motorola 21.2%
RIM 8.7%
Nokia 8.1%

(c) Europe, June 2010

Manufacturer Market Share
Nokia 32.8%
Samsung 12.5%
LG 4.1%
Sony Ericsson 3.7%
Apple 3.0%
RIM 2.4%
Others 3.0%

(d) World, for the year 2009

Manufacturer Market Share
Nokia 38.0%
Samsung 20.0%
LG 10.0%
Sony Ericsson 5.0%
Motorola 5.0%
ZTE 4.5%
Kyocera 4.0%
RIM 3.5%
Sharp 2.6%
Apple 2.2%
Others 5.0%

Table 4.1: Mobile phone manufacturer market shares
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4.4 Security Analysis of Feature Phones

Analyzing feature phones for security vulnerabilities is hard for several rea-
sons. There is no access to source code of the OS and applications. There are
no existing native-SDKs, therefore, there is no way to run native code on the
device and further no access to a debugger. JTAG-based debugging is also no
option since not all devices have JTAG enabled. Furthermore, deeper knowl-
edge of the hardware and software is required in order to use JTAG debugging
in a meaningful way.

Because of these reasons we choose to conduct fuzz-based testing. The test-
ing is carried out on our own GSM network. In order to monitor for misbe-
havior, crashes, and to find the related bugs, we designed our own monitoring
system. Throughout this section we will first describe the setup of our GSM
network. Followed by the way we send SMS messages in this setup. Then
we will describe our novel monitoring setup. The final part of the section will
discuss test cases and the resulting bugs that were discovered throughout this
work.

4.4.1 Network Setup

Since we want to send large amounts of SMS messages we decided to build
our own GSM network rather than sending SMS messages over a real network.
On the one hand this has the advantage of not costing any money and on the
other hand we do not risk to interfere with the telecommunication networks.
We want to avoid crashing the operator’s network equipment by either content
or quantity of SMS messages. Having our own network assures reproducible
results because we have control of the entire system and are able to quickly
find parameters that cause unexpected results. Analysis over a real operator
network would only leave us with the possibility of guessing in many cases.
In addition, the delivery of SMS messages is much faster on our small network
compared to a production setup of a mobile operator.

On the hardware side we decided to use an ip.access nanoBTS [46], which
is a small, fairly cheap (about 3500 Euro) GSM Base Transceiver Station (BTS)
that provides an A-bis over IP interface. The A-bis interface is used to com-
municate between the BTS and the Base Station Controller (BSC). The BSC part
of our setup is driven by OpenBSC [92]. OpenBSC is a Free Software imple-
mentation of the A-bis protocol that implements a minimal version of the BSC,
Mobile Switching Center (MSC), Home Location Register (HLR), Authentica-
tion Center (AuC) and Short Message Service Center (SMSC) components of a
GSM network. Figure 4.1 shows a picture of our setup.

As GSM operates on a licensed frequency spectrum we had to carry out our
experiments in an Faraday cage.
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Figure 4.1: Our setup: A laptop that runs OpenBSC and the fuzzing tools, the
nanoBTS, and some of the phones we analyzed.

Utilizing this setup we are able to send SMS messages to a mobile phone.
OpenBSC allows us to either send a text message from its telnet interface to a
subscriber of our choice or it processes an SMS message that it received Over-
the-Air in a store and forward fashion. As we later see the existing interface is
not feasible for fuzzing since we need the ability to closely control all parame-
ters in the encoded SMS format as well as a way to inject binary payloads.

Using a mobile phone to inject SMS messages into the network is not an
option as this would be very slow as we show later. Instead we built a software
framework based on a modified version of OpenBSC that allows us to:

• Inject pre-encoded SMS into the phone network

• Extensive logging of fuzzing related feedback from the phone

• Logging of non-feedback events, i.e. a crash resulting in losing connection
to the network

• Automatic detection of SMS that caused a certain event

• Process malformed SMS with OpenBSC

• Smart fuzzing of various SMS features

• Ability to fuzz multiple phones at once

• Sending SMS at higher rate than on a real network

Compared to a real cellular network, like the one shown in Figure 2.1, in our
setup OpenBSC acts as BSC, MSC, and SMSC. During the final transmission to
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the destination the SMS will get converted to SMS_DELIVER, this is taken care
of by OpenBSC. Our fuzzerwe presented in Chapter 3 generated SMSmessages
in the SMS_DELIVER format since we directly fuzzed on the phone without
using any kind of cellular network. Both formats are similar and no field that
is subject to our fuzzing is lost. SMS_SUBMIT only contains the destination
number and since SMS works in a store-and-forward fashion, the destination
address is replacedwith the sender number on the final transmission to the des-
tination. SMS_DELIVER does not include the destination number but instead
relies on an existing channel to the phone (after the phone has been paged). For
this reason we utilize the SMS_SUBMIT format when injecting messages.

4.4.2 Sending SMS Messages

OpenBSC itself does not provide an interface to submit pre-encoded SMS mes-
sages to the network, but only an interface to submit text SMS messages that
are then converted into the corresponding encoding. We added a new interface
to OpenBSC that allows us to submit SMS messages directly in SMS_SUBMIT
format. These messages are inserted into a database that is used by OpenBSC
as part of the SMSC functionality. In our version not only the parsed SMS val-
ues are stored, but also the complete encoded message for easy reproducibility.
Modifying the existing text message interface to be capable of handling binary
encoded SMS messages proved to be infeasible. Messages submitted over this
interface are instantly transmitted to the subscriber if he is attached to the net-
work. This means opening a channel, initiating a data connection, sending the
message and tearing down the connection. This works, but is very slow and
takes about seven seconds per message. This is also the reason why we did not
want to use a mobile phone to send our fuzz-messages in the first place. Our
method of injecting messages is much faster. Prior to testing we use our new
interface to inject thousands of messages into the SMSC database. Next, we
send these messages. Ideally, this only opens a channel once and sends all SMS
messages (pending delivery) to the recipient and then closes the connection.
This greatly improves the speed at which we can fuzz since the actual message
transfer only takes about one second.

In essence we removed the sending mobile phone and replace it with a direct
interface to the network. This way it was not necessary to modify the target
mobile phone in any way.

4.4.3 Monitoring for Crashes

In fuzz-based testing, monitoring is one of the essential parts. Without good
monitoring one will not catch any bugs.

OpenBSC itself already has an error handler that takes care of errors reported
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from the phone, which we modified to fit our fuzzing case. The default error
handler does not differentiate between errors and is not taking the cause of
an error into account. It simply stops the SMS sending process in case of an
error. The only exception is a Memory Exceeded error, which causes OpenBSC to
dispatch a signal handler to wait for an SMMA signal (released short message
memory) indicating that there is enough space again.

The mobile phone as well as the MSC are usually divided into separated lay-
ers for transferring and processing a message. As shown in Figure 4.2 they con-
sist of a Short Message Transport Layer (SM-TL), Short Message Relay Layer
(SM-RL) and the Connection Sublayer (CM-Sub). The SM-TL [2] receives and
relays messages that it receives from the application layer in TPDU form (Trans-
port Protocol Data Unit). This is the original encoding form that we describe
later in this chapter. Themessage is passed to the SM-RL to transport the TPDU
to the mobile station. At this point the TPDU is encapsulated as an RPDU. As
soon as a connection is established between the mobile station and the network
the RPDU is transferred Over-the-Air encapsulated in a CP-DATA unit that is
part of Short Message Control Protocol (SM-CP). Both sides communicate via
their CM-Subs with each other. The CM-Sub on the phone side will unpack
the CPDU and forward the encapsulated TPDU to the Transport Layer using
an RP-DATA unit. At this point the mobile phone stack has already performed
sanity checks on the content of the SMS and parsed it. The resulting reply,
passed to CM-Sub, will include an acknowledgement of the SMS message and
it will then be passed to the higher layers. From there it will end up in the user
interface or an error message is encapsulated and sent back to the network. For
our monitoring we need to log these replies carefully to observe the status of
the phone.

From the wide variety of error messages a phone can reply to a received
SMS message (defined in [3]), we observed during our fuzzing experiments
that all of the tested phones either reply with a Protocol Error or Invalid
Mandatory Information message in the case of a malformed message. These
two responses besides the memory error have been the only errors that we ob-
served in practice. We added code to flag such an SMSmessage as invalid in the
database and continue delivering the next SMS that has not been flagged as in-
valid. OpenBSC would otherwise continue trying to retransmit the malformed
SMS message and thus block further delivery for the specific recipient.

SMS messages are usually sent over a SDCCH (Stand-alone Dedicated Con-
trol Channel) or a SACCH (Slow Associated Control Channel). The details of
such a channel are not important for the scope of this work. However the use
of such a logical channel is an important measurement to detect mobile phone
crashes. Such a channel will be established between the BTS and the phone on
the start of an SMS delivery by paging the phone on a broadcast channel. As we
explained earlier, we only open the channel once and send a batch of messages
using this one channel. The channel related signaling between the BSC and the
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Figure 4.2: Mobile terminated SMS

BTS happens over the A-bis interface over highly standardized protocols. We
added modifications to the A-bis Radio Signaling Link code of OpenBSC that al-
lows us to check if a channel tear down happens in a usual error condition, log
when this happens and which phone was previously assigned to this channel.

So while we lack possibilities to conduct traditional debugging methods on
the device itself we can use the open part - OpenBSC - to do some debugging
on the other end of the point-to-point connection.

The difference to traditional debugging techniques is that we are mostly lim-
ited towards noticing an error condition and monitoring the impact of such an
error. We are not able to peek at register values and other software related de-
tails of the phone firmware. However, it is enough to be able to reliably detect
and reproduce the error. Using this method it also possible to find code exe-
cution flaws. However exploiting them and getting to know the details about
the specific behavior requires the effort of reverse engineering the firmware for
a specific model. We try to avoid such a large scale test of phones but these
bugs are a good base for further investigations such as reverse engineering of
firmware.

In the next step we have written a script that parses the log file, evaluates it
and takes actions in order to determine which SMS message caused a problem.

When delivering an SMS message to a recipient phone under the assumption
that it is associated with the cell in practice three things can happen. Either the
message is accepted and acknowledged, it is rejected with a reason indicating
the error, or an unexpected error occurs. Such an unexpected error can be that
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the phone just disconnected because it crashed or due to other reasons the re-
ceived message is never acknowledged. In the latter case, OpenBSC stores the
SMS message in the database, increases a delivery attempt counter and tries
to retransmit the SMS message when the phone associates with the cell again.
For our fuzzing results this means that this method detects bugs in which the
SMS message either results in a phone crash after it accepted the message or al-
ready during receiving it in which it will never be acknowledged and OpenBSC
continuously tries to deliver the SMS message.

Detecting the SMS message that caused such an error condition then is fairly
simple. Our script checks the error condition and if it occurred because of the
loss of a channel it first looks up the database to find SMS messages that have
a delivery count that is bigger or equal to one and the message is not marked
as sent (meaning it was not acknowledged). In this case we can with a high
probability say that the found SMS message caused the problem. If there is
no message the script checks which messages have been sent in a certain time
interval around the time of the log event. During our testing we decided that
a one minute time interval works well enough to have a fairly small subset of
candidate SMS messages that could have caused a problem. Figure 4.3 shows
the logical view of our monitoring setup.
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Figure 4.3: Logical view of our setup

4.4.4 Additional Monitoring Techniques

In addition to the aforementioned OpenBSC setup we have developed more
methods for monitoring for abnormal behavior.

Bluetooth: Bluetooth can be used to check if a device crashes or hangs. Our
monitor script connects to the device using a Bluetooth virtual serial connection
(RFCOMM) by connecting to the RFCOMMchannel for the phone’s dial-up ser-
vice. The script calls recv(2) and blocks since the client normally is supposed
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to send data to the phone. When the phone crashes or hangs, the physical
Bluetooth connection is interrupted and recv(2) returns, thus signaling us that
something went wrong.

J2ME: Almost every modern feature phone supports J2ME [78] and this is pro-
viding uswith the onlyway to domeasurements on the phone since they do not
run native applications. Applications running on the mobile phone can register
a handler in an SMS registry similar to binding an application to a TCP/UDP
port. SMS can make use of a User Data Header [2] (UDH) that indicates that a
certain SMS message is addressed to a specific SMS-port. When the phone re-
ceives a message this header field will be parsed and the message is forwarded
to the application registered for this port. Our J2ME application that is installed
to the fuzzed phone registers to a specific port and receives SMS messages on
it. For each chunk of fuzzed SMS messages we inject a valid message that is
addressed to this port. The application then replies with an SMS message back
to a special number that is not assigned to a phone. Figure 4.3 shows this as the
J2ME echo server. The message is just saved to the SMS database. This allows
us to easily lookup the count of SMS messages for this special number in the
database and check if it increased or not. If not, it is very likely that some odd
behavior was triggered. This kind of monitoring is useful to identify bugs that
block the phone from processing received messages such as those described
in [27].

4.4.5 SMS_SUBMIT Encoding

The SMS_SUBMIT format as defined in [2] consists of a number of bit and byte
fields, the destination address, and the message payload. Below we briefly de-
scribe the parts the are important for our analysis. Figure 4.4 shows the struc-
ture of an SMS_SUBMIT message.

TP-Protocol-Identifier (1 octet) describes the type of messaging service being
used. This references to a higher layer protocol or telematic interworking being
used. While this is included in the specifications, we believe that these inter-
workings are mostly legacy support and not in use these days. This makes it
an interesting target to study unusual behavior.

TP-Data-Coding-Scheme (1 octet) as described in [1] indicates the message
class and the alphabet that is used to encode the TP-User-Data (the message
payload). This can be either the default 7 bit, 8 bit or 16 bit alphabet and a re-
served value.

The TP-User-Data field together with the TP-Protocol-Identifier and the TP-
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Field Size
TP-Message-Type-Indicator 2 bit
TP-Reject-Duplicates 1 bit
TP-Validity-Period-Format 2 bit
TP-Status-Report-Request 1 bit
TP-User-Data-Header-Indicator 1 bit
TP-Reply-Path 1 bit
TP-Message-Reference integer
TP-Destination-Address 2-12 byte
TP-Protocol-Identifier 1 byte
TP-Data-Coding-Scheme 1 byte
TP-Validity-Period 1 byte/7 byte
TP-User-Data-Length integer
TP-User-Data depends on DCS/UDL

Figure 4.4: Format of the SMS_SUBMIT PDU

Data-Coding-Scheme are themain targets for fuzzing. The receiving phone parses
and displays the message based on this information.

However these fields are not enough to cover the complete range of possible
SMS features. If the TP-User-Data-Header-Indicator bit (one of the earlier men-
tioned bit fields) is set this indicates that TP-User-Data includes a UDH.

The UDH is used to provide additional control information like headers in
IP packets. It can hold multiple so called Information Elements [6] (IEI), for
example elements for port addressing, message concatenation, text formatting
and many more. IEIs are represented in a simple type-length-value format.
Figure 4.5 shows an example UDH with multiple IEIs.

4.4.6 Fuzzing Test-cases

We have implemented a subset of the SMS specification as a Python library to
create SMS PDUs (Protocol Data Unit) and used this to develop a variety of
fuzzers. This includes fuzzers for vCard, vCalendar, Extended Messaging Ser-
vice, multipart, SIM-Data-Download, WAP push service indication, flash SMS,
MMS indication, UDH, simple text messages and various others fuzzing only
single fields that are part of a specific SMS feature. Some of these features can
also be combined. For example most of the features can either consist of single
SMS message or be part of a multipart sequence by adding the corresponding
multipart UDH.
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Field Size
UDHL 1 byte

IEI1 1 byte
IEIDL1 1 byte
IEID1 n bytes
...

IEIn 1 byte
IEIDLn 1 byte
IEIDn n bytes

Figure 4.5: The User Data Header

For the scope of this work we focused on fuzzing multipart, MMS indication
(WAP push), simple text, flash SMS, and simple text messages with protocol
ID/data coding scheme combinations. These test cases cover a wide variety of
different SMS features.

Multipart: SMS originally was designed to send up to 140 bytes of user data.
Due to 7-bit encoding it is possible to send up to 160 bytes. However various
SMS features rely on the possibility to send more data, e.g. binary encoded
data. Multipart SMS allow this by splitting payload across a number of SMS
messages. This is achieved by using a multipart UDH chunk (IEI: 0, length:
3). This UDH chunk comprises three one byte values. The first byte encodes
a reference number that should be random and the same in all message parts
that belong to the same multipart sequence. Based on this value the phone is
later able to reassemble the message. The second byte indicates the number
of parts in the sequence and the last byte specifies the current chunk ID. By
fuzzing these three values we were mainly looking for abnormal behavior re-
lated to combinations of the current chunk ID and the number of chunks in a
sequence. For example missing chunk and chunk IDs higher than the number
of total chunks.

MMS indication: When a subscriber receives an MMS (Multimedia Messag-
ing Service) message an MMS notification indication message [89] is sent to
him. This MMS indication is in fact a binary encoded WAP-push message sent
via SMS. The notification contains multiple variable length fields for subject,
transaction ID and sender name. There are no length fields for these values.
They are simple zero terminated hex strings. An MMS indication message can
also consist of multipart sequences. Therefore, our fuzzing target were the vari-
able length field values included in the message seeking for classic issues like
buffer overflow vulnerabilities.
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Simple text: Implementations of decoders for simple 7 bit encoded SMS often
work with a GSM alphabet represented for example with an array. The decoder
first needs to unpack the 7 bit encoded values and convert them to bytes. Af-
ter this step it can lookup the character values in the GSM alphabet table. Our
fuzzers mixed valid 7 bit sequences with invalid encodings that would result
in no corresponding array index. This could trigger all kinds of implementa-
tion bugs but most noteworthy out of bounds access resulting in null pointer
exceptions and the like.

TP-Protocol-Identifier/TP-Data-Coding-Scheme: The combination of both of
these fields defines how the message is displayed and treated on the phone.
Both of these fields are one byte values and also cover several rather unpopular
features and reserved values. With fuzzing combinations of these values with
random lengths of user data payload we were aiming for odd behavior and
bugs in code paths that are seldom used by normal SMS traffic.

Flash SMS: Flash messages are directly displayed on the phone without any
user interaction and the user can optionally save the message to the phone
memory. Our observations made it clear that often the code that renders the
flash SMS message on the display is not the same as the one that displays a
normal message from the menu. Therefore, it can be prone to the same imple-
mentation flaws as simple text messages. Additionally, flash SMS can consist of
multipart chunks and there are several combinations of TP-Protocol-Identifier
and TP-Data-Coding-Scheme that cause the phone to display the SMS as flash
message. Our flash SMS fuzzers aim to cover a combination of all of the above
possible implementation weaknesses.

4.4.7 Fuzzing Trial

After each fuzzing-test-run we evaluate the log generated by our monitoring
script. All of the bugs described later in this chapter were triggered by one or
very few SMS messages and reproducing problems from log entries was rarely
problematic. However, during our fuzzing studies we stumbled across various
forms of strange behavior. Problems we faced included non-standard conform-
ing message replies and various kinds of weird behavior. Some phones were
not properly reporting memory exhaustion. Others did not notice free mem-
ory until a reboot. Some did not display a received SMS message on the user
interface which made it hard to tell if the phone accepted a message or silently
discarded it on the phone. Almost every phone we fuzzed needed a hard re-
set at some point because it became simply unusable for unknown reason, the
mass of messages or a specific SMS needed to be deleted from the SIM card
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using another phone. One of the biggest issues we came across was that very
few manufacturers’ hard reset actually restored the phone to an initial factory
state. From what we know this is done as a feature for customers in order to
ensure no personal data is lost. The behavior also differed between phones of
the same manufacturer. When testing a bug on the Samsung B5310 it was al-
ways sufficient to remove the offending SMS message from the phone’s SIM
card while the Samsung S5230 needed an additional hard reset. Understand-
ing such issues proved to be extremely time-consuming. However, it is worth
noting that purging a phone of all personal information can prove to be nearly
impossible for a user. This can become an issue whenever a user plans to sell a
used handset to a third party.

4.4.8 Results

During our fuzz-testing we discovered quite a few bugs that lead to secu-
rity vulnerabilities. The bugs mostly lead to phones crashing and rebooting,
which disconnected the phones from the mobile network and interrupted on-
going voice calls and data connections. Our testing even resulted in two bricked
phones that could no longer be reset and brought back into working order. We
did not investigate the bricking in-depth because this would have gotten quite
costly. Furthermore, some of the phones crash during the process of receiving
the SMS message, and, therefore, fail to acknowledge the message thus causing
re-transmission of the SMS message by the network.

Below we present some of the bugs we discovered on each platform. In most
cases we fuzzed only one phone from each platform and later only verified the
bugs on other phones we had access to. This is expected because most man-
ufacturers base their entire product line on a single software platform. Only
customizing options such as the user interface depending on the hardware of a
specific device.

We reported all bugs to the manufacturers including full PDUs in order to
verify and reproduce them. The feedback we received indicates that the bugs
are present in most of their products based on their feature phone platforms.
So far we have not received any information about fixes or updates.

Nokia S40: On our test devices 6300, 6233, 6131 NFC, 3110cwe found a bug
in the flash SMS implementation. The phones run different versions of the S40
operating system, the oldest of which was over 3 years older than the newest.
The manufacturer confirmed that this bug is present in almost all of their S40
phones. By sending a certain flash SMS the phone crashes and triggers the
"Nokia white-screen-of-death". This also results in the phone disconnecting
and re-connecting to the mobile phone network. Most notably, the SMS actu-
ally never reaches the mobile phone. The phone will crash before it can fully
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process and acknowledge the message. On the one hand this has the side effect
that the GSM network performs a Denial-of-Service attack for free as it con-
tinuously tries to transmit the message to the phone. On the other hand this
has a side effect on the phone since there seems to be a watchdog in place that
is monitoring such crashes. This watchdog shuts down the phone after 3 to 5
crashes depending on the delay between the crashes.

Sony Ericsson: Our test devices W800i, W810i, W890i, Aino running OSE
have a problem similar to the Nokia phones. When combining certain payload
lengths together with a specific protocol identifier value it is possible to knock
the phone off the network. In this case there is no watchdog, but one SMS
message is enough to force a reboot of the phone. As in the case of the Nokia
bug, this SMS message will never be acknowledged by the phone. To get an
idea on how wide spread the problem is, we investigated the age of the devices
and found that the oldest phone (W800i) is from 2005 while the newest phone
(Aino) is from late 2009.

LG: Our LG GM360 seems to do insufficient bounds checking when parsing an
MMS indication message. This allows us to construct an MMS indication SMS
message containing long strings that span over three or more sms. This crashes
the phone and thus forces an unexpected reboot when receiving the message
or as well when trying to open the SMS message on the phone.

Motorola: As aforementioned, SMS supports telematic interworking with other
network types. By sending one SMS message that specifies an Internet elec-
tronic mail interworking combined with certain characters in the payload it is
possible to knock the phone off the mobile network. Upon receiving the mes-
sage the phone shows a flashing white screen similar to the one shown by the
Nokia phones. The phone does not completely reboot; instead it simply restarts
the user interface and reconnects to the network. This process takes a few sec-
onds and depending on the payload it is possible to achieve this twice in a row
with one message. We verified this on the Razr, Rokr, and the SVLR L7 – older,
but extremely popular devices. The devices span 3+ years, providing us with
confidence that the bug is present in their entire platform.

Samsung: Multipart UDH chunks are commonly used for payloads that span
over multiple SMS messages. The header chunk for multipart messages is sim-
ple.

Our Samsung phones S5230 and B5310 do not properly validate such multi-
part sequences. This allows us to craft messages that show up as a very large
SMS message on the phone. When opening such a message the phone tries to
reassemble themessage and crashes. Depending on the exact model one to four
SMS messages are needed to trigger the bug.
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Micromax: The Micromax X114 is prone to a similar issue like the Samsung
phones but behaves slightly differently. When sending one SMS that contains a
multipart UDHwith a higher chunk ID than the overall number of chunks and
a reference ID that has not been used yet, the phone receives the SMS message
without instantly crashing. However a few seconds after the receipt the display
turns black for some seconds before the phone disconnects and reconnects to
the network.

4.4.9 Validation and Extended Testing

After the initial fuzz-testing we needed to validate our results over a real oper-
ator network since we tested in a closed environment – our own GSM network.
We need to evaluate if the bugs can be triggered in the real world or if operator
restrictions prevent this. For the validation we put an active SIM card (of the
four German operators) into our test phones and connected them to a real mo-
bile phone network. We sent the SMS PDUs that triggered the bugs using the
AT command interface of another mobile phone. These tests validated all the
bugs described in the previous section.

During our fuzzing tests we deactivated the security PIN on the SIM cards
we used in the target phones so that we did not have to enter the PIN on every
reboot. We also tested the phones with an enabled SIM PIN. Our goal was to
determine if such reboots also reset the baseband and the SIM card. If the SIM
card is blocked after reboot the phone is not reconnected to the GSM network,
and, thus, the user is cut off permanently. We determined that this is true for
our LG, Samsung, and Nokia devices.

4.4.10 Bug Characterization

We group the discovered bugs depending on the software layer they trigger.
The first group are bugs that require user interaction such as the bug we dis-

covered in the Samsung mobile phones. In this case the user has to view the
message in order to trigger the bug.

The second group are bugs that crash without user interaction. These bugs
occur as soon as the phone has completed receiving the entire message and
starts processing it. In this group we put the bugs we found on the Motorola,
LG, and Micromax devices.

The third and last group are bugs that trigger at a lower layer of the soft-
ware stack. With lower layer we mean during the process of receiving the SMS
message from the network. A crash during the transfer process means that the
process is not completed and the network believes the message is not success-
fully delivered to the phone. We categorize the bugs discovered in our Nokia
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S40 and the Sony Ericsson devices in this third group.

4.5 Implementing the Attack

The attacks presented in this work utilize SMS messages to trigger software
bugs and crash mobile handsets, interrupting mobile communications. These
bugs cover the mobile phone platforms of all major handset manufacturers and
a wide variety of different models and firmware versions. The resulting bug
arsenal can potentially be abused to carry out a large scale attack.

4.5.1 Building a Hit-List

To launch an attack phone numbers of mobile phones need to be acquired since
simply sending SMS messages to every possible number is problematic. Fur-
thermore, sending SMS messages to a large number of unconnected phone
numbers dark address space could trigger some kind of fraud prevention sys-
tem, such as observed on the Internet to detect worms [80]. In addition, for the
described attack only phone numbers that are connected to a mobile phone are
of interest. Depending on the kind of attack, a different set of phone numbers
is required. In one case an attack might be targeted towards a specific mobile
operator, therefore, only phone numbers that are connected to the specific op-
erator are of interest.

Regulatory Databases: In many countries around the world mobile network
operators have their own area codes. Some examples are Germany1, Italy2, the
United Kingdom3, and Australia4. Such area codes can be readily acquired to
help building a hit-list. Likewise one can use the North American Numbering
Plan (NANP) to determine which area exchange codes are used by mobile op-
erators.

WebScraping: Web Scraping is a technique to collect data from theWorldWide
Web through automated querying of search engines using scripted tools. Find-
ing German mobile phone numbers can be easily done through queries like
"+49151*" site:.de. Moreover, online phonebooks [23] also include mobile
phone numbers. These sites often allow wild card searches, and, thus can be
abused to harvest mobile phone numbers.

1http://en.wikipedia.org/wiki/Telephone_numbers_in_Germany
2http://en.wikipedia.org/wiki/Telephone_numbers_in_Italy
3http://en.wikipedia.org/wiki/Telephone_numbers_in_the_United_Kingdom
4http://en.wikipedia.org/wiki/Telephone_numbers_in_Australia
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HLRQueries: Some Bulk SMS operators [71] offer a service to query the Home
Location Register (HLR) for a mobile phone number. These queries are very
cheap (we found one for only 0.006 Euro) and answers the question if a mobile
phone number exists and where it is connected. Together with the information
from the regulatory databases one can easily generate a list of a few thousand
mobile phone numbers that belong to a specific mobile network operator.

4.5.2 Sending SMS Messages

SMS messages can be sent by a mobile phone that provides either an API that
allows it to send arbitrary binary messages or through its AT command inter-
face. We used the AT interface for most of our testing and validation. To carry
out any kind of large scale attack a way for delivering large quantities of SMS
messages for low price is needed. Multiple options exist to achieve this:

Bulk SMS Operators: Bulk SMS operators such as [18, 39, 71] offer mass SMS
sending over the Internet providing various methods ranging from HTTP to
FTP and the specialized SMPP (Short Messaging Peer Protocol). Bulk SMS
operators are so-called External Short Message Entity (EMSE) that are often
connected via Internet to the mobile operators but sometimes have their own
SS7 connection to the Public Switched Telephone Network (PSTN). Figure 2.1
shows the various connections of an EMSE. All Bulk SMS operators operate in
the same way. For a given amount of money they deliver SMS messages to the
specified destination(s). No questions asked. Most of the APIs support send-
ing a single message to a list of recipients. Prices range from 0.1 to 0.01 Euro
depending on the volume and destination of the messages. The APIs among
the bulk SMS operators differ. Usually they allow to set a number of SMS fields
from which they assemble the actual payload. Not all of them are offering the
same predefined fields. For example [39] was the only one that allows us to
set a TP-Protocol-Identifier field. However, we verified that the provided APIs
are sufficient to carry out the presented attacks and to generate attack payloads
that are identical to those sent from one of our phones.

Mobile Phone Botnets: A botnet consisting of hijacked mobile or smartphones
[69] could also be used for such attacks since every mobile phone is capable
of sending SMS messages. A mobile botnet has the distinct advantage of free
message delivery and high anonymity for the attacker. using a mobile phone
botnet one could circumvent restrictions Bulk SMS operator might have in dif-
ferent countries.

SS7 Access: With direct access to the Signaling System 7 (SS7) of the Public
Switched Telephone Network (PSTN) an attacker can very easily send SMS
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messages in large quantities, for example to send SMS spam [16]. Figure 2.1
shows the basic network connections of a mobile network operator. SMS send-
ing via SS7 also has the advantage of not being easily traceable, thus an attacker
can stay hidden for a longer period of time. Additionally, SMS messages sent
via SS7 are not restricted by the Bulk SMS Operators (APIs) in terms of content
or header information that they contain.

4.5.3 Reducing the Number of Messages

There is one issue left with our attack. That is how can one determine the type
of mobile phone that is connected to a specific phone number. If money does
not play a role in carrying out the attack this issue is easily resolved. The at-
tacker just sends multiple SMS messages, each one containing the payload for a
specific type of phone, to each phone number. One of the messages will trigger
the bug if the phone is vulnerable at all. This works well but is not optimal. To
reduce the number of messages an attacker has to send we developed a tech-
nique that allows the attacker to determine what kind of phone is connected to
a specific phone number. Actually we can only determine if a specific malicious
message has an effect on the phone that is connected to a specific number.

Our method abuses a specific feature present in the SMS standard. This fea-
ture is called recipient notification, it is indicated through the TP-Status-Report-
Request flag in an SMS message. If the flag is set the SMSC notifies the sender
of the message when the recipient has received the message. Most Bulk SMS
operators support this feature through their APIs. Our method works by mea-
suring the delay between sending the message and receiving the reception no-
tification.

The technique works as follows: First, we send the message containing the
payload for crash(1). Second, when we receive the receipt for that message we
send the payload for crash(2). Third, we measure the time difference between
the two notifications. If the difference is equal we continue with the next pay-
load. If the difference between both notifications is significant we determine
that the first message crashed the phone. The phone needed to reboot and reg-
ister on the network before being able to accept the next message. If there is no
notification we determine that the phone did not receive the message because
it crashed before completely accepting the message. Fourth, we continue until
all crash payloads are sent. If none of them trigger, the phone number is re-
moved from the hit-list. The method can be optimized through ordering the
crash payloads according to the popularity of mobile phones in the targeted
country.

With this method an attacker can optimize a hit-list during an ongoing attack
by matching bug-to-phone-number. This optimized hit-list could as well be
used for highly targeted attacks. For example against the network operator as
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described in Section 4.5.5, which explains our attack scenarios.

4.5.4 Network Assisted Attack Amplification

Some of the bugs we discovered prevent the phone from acknowledging the
SMS message to the network. Figure 4.2 shows the states that happen during
a message transfer from the network to the phone. In the case of some of our
bugs (Nokia S40 and Sony Ericsson; Bug Characterization Section 4.4.10) the
message RP-ACK is not sent by the phone. This leads the network to believe
that the message was not received, therefore, the SMSC will try to resend the
SMSmessage to the phone. This re-delivery attempt is a perfect attack amplifier
somewhat similar to smurf attacks [17] on IP networks.
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Figure 4.6: Timing of SMS message delivery attempts

In our tests, sending malicious SMS messages over real operator networks,
we discovered that operators have different re-transmit timings, shown in Fig-
ure 4.6. Furthermore, they also seem to have different transmit queues. We
measured the delivery timings of some German mobile network operators in
order to determine how one could abuse the delivery attempts for improving
our Denial-of-Service attacks. We conducted the test by attacking one of our
Sony Ericsson devices and monitoring the phone using the Bluetooth method
described in Section 4.4.4.

The tests were carried out on the networks of Vodafone, T-Mobile, O2 (Tele-
fonica), and E-Plus. The initial delivery attempt is at minute 0. It shows that
all operators do a first re-transmit after 1 minute, and a few more re-transmits
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every 5 minutes. In addition to what Figure 4.6 shows, Vodafone does an addi-
tional re-delivery 24 hours after the last delivery shown in the graph. O2 also
attempts an additional re-delivery 20 hours after the last delivery shown in the
graph.

Through the same test we determined that SMSmessages are not queued, but
have an individual re-transmit timer. That means an attacker can send multi-
ple malicious SMS messages to a victim’s phone with a short delay between
each message and thus can increase the effect of the network assisted attack by
sending multiple messages.

4.5.5 Attack Scenarios and Impact

There are multiple possible attack scenarios such as organized crime going af-
ter the end-user, the mobile operator, and the manufacturer to demand money.
Attacks could also be carried out for fun by script kiddies and the like. Below
we discuss some possible scenarios. We acknowledge that some scenarios such
as the attack against individuals are more likely then an attack against a manu-
facturer.

Individuals: Individuals could be pressured to pay a few Euros in order to
keep their phone operational. This has happened with the Ikke.A [69] worm
that requested the user to pay 5 Euros in order to get back the control over
their iPhone. In our case the victim could be forced to send a text message to a
premium rate number in order to be taken off the hit-list.

Another attack against an individual or a group could aim to prevent them
from communicating. This can be efficiently carried out if the target uses a SIM
card with security PIN enabled, as we describe in Section 4.4.9.

Operators: Operators could be threatened to have all their customers attacked.
Such an attack would mainly kill the operator’s reputation as being reliable.
The operator might also lose money due to people being unable to call and
send text messages. In order to have a global impact such an attack has to be
carried out on a very large scale for a longer time. As a result, customers could
possibly terminate their contract with the operator. Such extortion scams were
and still are popular on the Internet [21].

Furthermore, the operator’s mobile network can be attacked directly or as a
side effect of an large attack against its users. This could work when thousands
of attacked phones drop off the network and try to re-connect at the same time.
This can cause an overload of the back-end infrastructure such as the HLR.
This kind of attack seems likely since mobile networks are not optimized for
these specific kinds of requests. A similar attack based on unusual requests
was shown in [85]. It is not normal that thousands of phones try to connect and
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authenticate at the same time over and over again. To optimize this DoS attack,
the attacker needs to make sure to target phones connected to different BTSs
and MSCs (Figure 2.1) of the targeted operator in order to circumvent bottle-
necks such as the air interface at the BTS. A clogged air interface would throttle
the attack.

Manufacturers: Likewise manufacturers could be threatened to have their bra-
nd name destroyed or weakened by attacking random people owning their
specific brand of mobile phones. The attack could cost them twice. Once for
the bad reputation and second for replacement devices. Even if the phones are
not broken victims of such an attack will still try to claim their device broken to
get a replacement.

Public Distress: A carefully placed attack during a time of public distress could
lead to large scale problems and possibly a panic. One example occurred in Es-
tonia [13] in 2007 when a group of people carried out a Denial-of-Service attack
against the countries Internet infrastructure. Additionally, cutting off certain
user groups such as fireman or police officers during an emergency situation
would have a critical impact. Not every country has special infrastructure for
emergency personal, and, therefore, rely on mobile phones to communicate.
This is even true in countries like Germany where every police officer carries a
mobile phone since their two-way-radios are often not usable.

4.6 Countermeasures

In this section we present countermeasures to detect and prevent the kind of
attacks we developed. First, we present a mechanism to detect our and similar
attacks through monitoring for a specific misbehavior. Second, we discuss fil-
tering of SMS messages. Filtering can be done on either the phones themselves
or on the network. We discuss the advantages and disadvantages of each of
them. Third, we briefly discuss amplification attacks.

4.6.1 Detection

To prevent our attacks, operators first need to be able to detect them. Detection
is not very easy since the operator does not get to look inside the phone during
runtime. Therefore, the only possible way to monitor the phone is through the
network. We propose the following:

Monitor Phone Connectivity Status: Monitor if a phone disconnects from the
network right after receiving an SMS message.
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Log last N SMS Messages: Log the last N SMS messages sent to a particular
phone in order to analyze possible malicious messages after a crash was de-
tected. Use the message as input for SMS filters/firewall.

Use IMEI to Detect Phone Type: The brand and type of a mobile phone can be
derived from the IMEI (International Manufacturer Equipment Identity). This
is useful to correlated malicious SMS messages to a specific brand and type of
phone.

Using this technique it is possible to catchmalicious SMSmessages that cause
phones to reboot and lose network connectivity. This should especially help to
catch unknown payloads that cause crashes. Such a monitor is also capable of
detecting if a large attack is in progress by correlating multiple SMS-receive-
disconnect events in a certain time-frame.

4.6.2 SMS Filtering

SMS filtering can be implemented either directly on the phone or within the
operator’s network. Both possibilities have inherent benefits and drawbacks
that are presented in this section.

It is important to reconsider the process of SMS delivery. First, an SMS mes-
sage is sent from the sender phone to the senders SMSC. Next, the senders
SMSC queries for the SMSC of the recipient and delivers the message to the
responsible SMSC. Finally, the relevant SMSC locates the recipient’s phone and
delivers the SMS message via the BTS Over-the-Air.

Client-side SMS Filteringwould need to be done right after the modem of the
phone received and demodulated all the frames carrying the SMS message and
before pushing it up the application stack. The filter would need to parse the
SMS message and check for known bad messages similar to signature-based
antivirus software or a packet filter firewalls. The problem with this solution
is the update of the signatures. Of course, the parser in the SMS filter must be
bug free otherwise the attack just moves from the phone software to the filter
software. Also, devices that are already in the field would not profit from such
a filter since only new phones will have this. Also, newer phones will likely not
contain bugs that are known at the time they are manufactured. Therefore, we
believe network-side filters make more sense.

Network-side SMS Filtering takes place on the SMSC of the mobile network
operator. Therefore, it can inspect all incoming and outgoing SMS messages.
There are multiple advantages of network-side filtering. First, the filter soft-
ware runs on the network, therefore, it covers all mobile phones connected
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to that network. Second, changing the filter rules can be done in one central
place. Third, malicious SMS messages are not sent out to the destination mo-
bile phones, therefore, reducing network load during an attack.

Network-side filters also have drawbacks. First, if a phone is roaming within
another operator’s network, the SMS message does not travel through the net-
work of the home operator. Thus the filters are not touched. This is the only
advantage of phone-side SMS filtering. In this case the user becomes attack-
able as soon as he leaves his home network. For traveling business people in
Europe, this is quite normal. The GSMA already has a solution for this issue
called SMS homerouting. SMS Homerouting as specified in [7] defines that SMS
messages are always routed through the receiver’s home-network. Meaning
that all SMS messages travel through SMSCs of his service provider at home.
SMS messages, therefore, can be filtered by the receiver’s service provider. The
second issue with network-side filtering is privacy. In order to do SMS filtering
the operator must be allowed to inspect SMS messages. This could be an issue
in some countries where mobile telephony falls under special regulations.

4.6.3 Preventing Network Amplification

Attack amplification through re-transmissions of SMSmessages should be avoi-
ded since this greatly helps an attacker. We suggest that operators limit the
number of re-transmissions. Some operators re-send the messages 10 times,
this seems unnecessary.

4.7 Conclusions

In this work we have shown how to conduct vulnerability analysis of feature
phones. Feature phones are not open in any way, the hardware and software
are both closed and thus do not support any classical debugging methods.
Throughout our work we have created analysis tools based on a small GSM
base station. We use the base station to send SMS payloads to our test phones
and to monitor their behavior. Through this testing we were able to identify
vulnerabilities in mobile phones built by six major manufacturers. The discov-
ered vulnerabilities can be abused for Denial-of-Service attacks. Our attacks
are significant because of the popularity of the affected models – an attacker
could potentially interrupt mobile communication on a large scale. Our further
analysis of the mobile phone network infrastructure revealed that networks
configured in a certain way can be used to amplify our attack. In addition, our
attack can be used to not only attack the mobile handsets, but through their
misbehavior can be used to carry out an attack against the core of the mobile
phone network.
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4.7 Conclusions

To detect and prevent these kind of attacks we suggest a set of countermea-
sures. We conceived a method to detect our and similar attacks by monitoring
for a specific behavior.
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5 Cellular Malware Communication
Capabilities

In this chapter we discuss the security impact of malware that has unlimited
access to the cellular modem. We create a Proof-of-Concept cellular botnet that
facilitates the cellular modem for command and control.

5.1 Introduction

It is clear that mobile and smartphones are the future of personal computing —
just as the personal computer was many years ago, and additionally also their
IP connectivity follows this trend, i.e., more and more phones have a pervasive
IP connectivity, i.e., WiFi, GPRS, EDGE, 3G, etc.

Sadly enough, this success of an (almost) single platform architecture (mainly
MSWindows-based) installed on a nearly infinite number of IP-connected PC’s
has led to an unforeseen security crisis for the PC platform which culminated
in one of the largest security threats for the IP world: large scale criminal bot-
nets [85].

Given this similarity between the PC platform and the emerging (and domi-
nating) smartphone platforms like iPhone, Android (Google) phone, and Win-
dows Mobile, it is a legitimate question whether the cellular world could also
enter a severe security crisis like the PC itself? Especially, we are interested in
answering this question with regard to the existence of practical and functional
cellular botnets.

The practical existence question is especially important, as the theoretical
threat of cellular botnets was just recently investigated and emphasized by
Traynor et al. [85] — simply assuming the theoretical existence of such botnets.
Moreover, their focus was on the security impact for the fragile and compli-
cated cellular architecture on which we are all depending on — day by day.
Their main research result showed that a relatively small number of cellular
bots can already force the collapse of a targeted victim core network. Interest-
ingly, they smoothly concluded that the challenges for a functional and large-
scale cellular botnet are noteworthy and that such botnets might not be too
quickly seen in the wild.

Thus, the present work perfectly complements their research from the cellu-
lar platform side, as we solve their cellular challenges and describe the architec-
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ture and even the implementation of a practical and simply realizable cellular
botnet for the iPhone.

Especially, we showhowwe designed, implemented and evaluated an iPhone-
based mobile botnet. We did this to understand what it takes to build a botnet
that resides on mobile phones and on a mobile phone network. We think this is
an important first step in order to start thinking about urgently needed counter
measures for mobile phone botnets.

We started by following the current developments in botnet research and
built a Peer-to-Peer (P2P) based mobile phone bot. The P2P bot was quite sim-
ple to design and implement, and, therefore, presents an easy path for an un-
skilled botmaster.

Diving deeper in to the specifics of mobile phone botnet we further created a
Short Message Service (SMS) [6] based bot. A bot that can be controlled entirely
via SMS. We further improved our SMS bot by turning it into a hybrid of SMS
and HTTP in order to reduce the number of SMS messages that need to be sent
for controlling the bots.

In the end we showed how powerful a mobile phone botnet could be if one
combines the P2Pwith the SMS-HTTP hybrid approach. A bit frightened by the
success of our cellular bots we recognized that this hybrid bot would be very
hard to be detected and stopped if controlled by a skilled botmaster. Thus, we
also stopped our further research at this point as our main questions and moti-
vations were completely solved.

This chapter makes the following main contributions:

• We showed a cellular botnet architecture and even evaluated it with sev-
eral practical implementations.

• We solved the environmental challenges of such cellular botnets.

• We implemented and evaluated a P2P-based command and control mech-
anism for mobile phone botnets. Our bot implements the Kademlia P2P
protocol and joins the Overnet network.

• We designed, implemented, and evaluated multiple SMS-based C&C
mechanisms. The SMS approach raises the bar for the anti-botnet com-
munity.

• We created communication strategies for mobile phone-based botnets.
The strategies are designed to increase the stealthiness of mobile phone
botnets.
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Chapter Organization

The rest of this chapter is structured in the following way. In Section 5.2 we
show how easy it can be to hijack many thousand iPhones using the Internet.
Section 5.3 discusses the intrinsic challenges that cellular networks pose for
botnets. In Section 5.4 we present our command and control mechanisms for
mobile botnets, while Section 5.5 continues elaborating on our communication
strategies for mobile phone botnets. Eventually, Section 5.6 details our Proof-of-
Concept implementation of our mobile bots including a self-critical evaluation.
Finally, Section 5.7 draws some important conclusions.

5.2 Howto hijack many thousand iPhones

In November 2009 somebody exploited the facts that jailbroken1 iPhones get a
default root password assigned, often have the secure shell daemon (sshd) in-
stalled, and get an public IP address assigned to create a mobile phone worm.
The worm was named ikee.A [69] and infected around 22,000 iPhones within
two weeks by simply copying itself via secure copy (part of ssh) from iPhone
to iPhone. Later somebody added a very simple command and control mecha-
nism to ikee to turn it into a botnet, this botnet was called ikee.B. The command
and control mechanism was simply polling a web server to download and run
a shell script.

This example shows how easy it is to hijack many thousand mobile phones
through the Internet without any special knowledge about mobile phones or
mobile phone security. Therefore we believe that this was just a first taste of
what will happen in the future. Also if you look at vulnerabilities like the one
we presented in Chapter 3 through witch an iPhone could have been hijacked
through SMS it becomes clear that mobile botnets are sure to come to existence.

5.3 Cellular Challenges

Mobile and smartphones present a number of challenges that need to be meet
in order to design a botnet that is able to exist and thrive in the mobile phone
environment. The problems range from: 1) limited run time due to the use of
batteries as the power source, to 2) connectivity problems due to the absence
of public IP addresses, 3) constant change of connectivity, 4) the problem of
diversity of mobile phone platforms, and 5) the costs of mobile communication.
In the following we will discuss these problems in further detail.

1http://en.wikipedia.org/wiki/Jailbreak_(iPhone_OS)
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5.3.1 Absence of Public IP Addresses

Public IP addresses are needed for direct communication of bots. Without pub-
lic IP addresses an intermediate communication hub is required, unfortunately
most mobile phone service operators put their customers behind a Network
Address Translation (NAT) gateway and thus the devices are not directly reach-
able. Although the attack vector presented in Section 5.2 shows the picture of
a mobile operator providing public IP addresses to customer phones, this is
not the common case. Even if a mobile operator chooses to provide public IPs
to his customers, mobile phones will still sit behind a NAT gateway for many
hours during the day. This is the time the user spends at home where his phone
is connected to the local wireless LAN in order to benefit from higher Internet
speeds and to lower the services charges by using his DSL or cable line.

5.3.2 Platform Diversity

The size of a mobile phone botnet will be relatively small compared with bot-
nets based on hijacked desktop computers. The main reason for the size limi-
tation is related to the diversity of mobile phone platforms, therefore we think
each mobile phone botnet will be targeted towards a specific device, platform,
or platform version. Due to the small number of bots in a mobile phone botnet
it will be hard and maybe impossible to build an independent communication
infrastructure such as P2P network that exclusively consists of hijacked mobile
phones.

5.3.3 Constant Change of Connectivity

Constant change of connectivity is something that is normal for a mobile phone
compared with a desktop computer that is connected to the Internet via a DSL
line. The connectivity of a mobile phone changes for many reasons. First, mo-
bile phones move around the physical world. Their wireless connection comes
and goes depending on the position of the device and the available type of mo-
bile network capabilities. GPRS vs. EDGE vs. 3G. Individual phones might be
disconnected for a relatively long time even though the phone itself is powered
up. Second, is the earlier mentioned use of local wireless networks, this again
would change the connectivity properties of a mobile bot. Therefore, a mobile
phone botnet is likely to be very unstable in terms of the size and the kind of
network connectivity of an individual node. Table 5.1 shows the connectivity
times of the mobile phones of the authors and some of their colleagues.
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Connectivity Hours
WiFi Early morning (still at home)
GSM/3G Morning (travel to work/school)
GSM/3G Day time (while at work/school)
WiFi Early evening (back at home)
GSM/3G Early Night (going out)
WiFi Night (bed time)

Table 5.1: Connectivity times.

5.3.4 Communication Costs

In the world of mobile telecommunication most types of communication result
in costs for the ones who communicate. These costs have to been taken into
account when designing a botnet Command and Control mechanism since a
significant rise of the phone bill will lead to investigation of the cause and thus
may lead to detecting the bot infection. Especially interesting is SMS, since here
each message sent costs money. Also deepening on the type of mobile phone
contract SMS messages can be completely free when sent to subscribers on the
same network. Further things such as roaming has to be considered since the
charges for communication are significant higher during roaming. Mobile-data
usage might be disabled during roaming but services like SMS still work. A
mobile phone bot therefore might need to query the roaming status in order to
fit in with the other applications running on the device.

5.4 C&C for Mobile Botnets

Command and Control (C&C) is the most important part of a botnet. For the
botmaster it is the path to deliver commands to his botnet and for the defender
it is the major attack vector in order to dismantle and destroy a botnet. The
C&C channel therefore has to be carefully designed to be reliable for command
delivery as well as resilient against many kinds of attacks.

In [76] the authors use Bluetooth as the transport channel for Command and
Control of their mobile phone botnet. We believe that a botnet based on local
wireless communication will be large enough to be of any use for a botmaster,
therefore, we focus our research on Internet and mobile phone network based
C&C.

Over the past years there has been some major development in botnet C&C.
Earlier botnets used IRC (Internet Relay Chat) for C&C but countermeasures
against IRC-based C&C such as Botnet Tracking [32] has made IRC useless for
C&C. The botnet can be tracked down by analyzing the bot to identify the IRC
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channels to finally find the master server that can be taken down to destroy
the botnet. Today most botnets use some kind of P2P scheme for C&C such
as discussed in [35]. P2P-based C&C botnets are more resilient against attacks
then IRC-based botnets but still can be tracked using methods like the Sybil
attack [24] and infiltrated as happened with the Storm Worm botnet [41]. Still
we decided to implement a P2P-based approach since this is currently is the
best known schema for IP-based C&C. Our goal here is to show that P2P-based
C&C works for mobile botnets.

In our work we have followed two major paths for C&C. First, we evaluated
a P2P-based approach since this seems to be the current overall trend in botnet
research. Also we did not create our own P2P network as suggested in [42].
The second path we followed is a SMS-based approach. We chose SMS because
we think that SMS communication is much harder to observe, analyze and disrupt by
security researchers and the anti-botnet community, and, therefore, it is likely to be
chosen as the C&C channel by knowledgeable botnet creators. We actually designed
two SMS-based C&Cmechanisms to get a broader overview of the possibilities
and problems of SMS-based bot communication.

In the following we will first discuss the P2P-based approach since it is a
bit simpler than the approach based on SMS. Before we discus the actual C&C
channel we briefly talk about the additional required features in order to secure
the commands sent over the C&C channel.

5.4.1 Securing the C&C Communication

In order to protect the commands sent over the Command and Control chan-
nel from tempering all commands carry a digital signature using public-key
cryptography. Further to prevent replay attacks, commands carry a sequence
number. Only commands that carry a sequence number that is higher then the
one from the last accepted command will be accepted as a valid command.

5.4.2 Peer-to-Peer C&C

For our P2P-based approachwe choose Kademlia [55] as the protocol andOver-
net2 as the P2P-network to join. We chose to rather join an existing network
instead of creating our own because of the mobile phone related problems and
issues that we discussed in Section 5.3. The main reason being the unavailabil-
ity of a stable set of public IP addresses.

The basic design idea for our P2P-based Command and Control channel is to
use the P2P network as a kind of rendezvous point. The P2P network is only
used as a basic communication channel using the publish and search function-
ality of the distributed hash table (DHT). The botmaster publishes a command

2http://en.wikipedia.org/wiki/Overnet
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Figure 5.1: Kademlia P2P C&C

to the P2P network and the bots search for a specific key in order to retrieve
the command. The publish and search functionality is solely based on function-
ally offered through the DHT, and, therefore, no actual file sharing functionally
needs to be present on either the botmaster nor the bot side. Figure 5.1 shows a
high level view of a P2P-based mobile phone botnet.

Battery consumption plays a very important role in the mobile phone world,
therefore it is very important for a mobile phone bot to not drain the battery
significantly. A significant battery drainage will otherwise lead to detection
of the bot rather easily. Battery drain is mostly related to two operations, high
CPU load and heavy radio usage. Our main concern is the radio usage. In order
to reduce the network activity of our bot it connects only briefly to the P2P
network to search for the key that results in the command from the botmaster.
After the search, the bot quickly disconnects from the P2P network. Initially
we designed the bot in a way that it connects to the Peer-to-Peer network about
every 15 minutes. Upon connection it waits until the connection has stabilized
and is ready to fire search queries (this seems to take between 30-60 seconds).
In a 20 second interval in searches three times for the rendezvous key and then
disconnects. This communication pattern is very similar to a background email
poll, and, therefore, should not cut to deep into battery consumption. For times
where the botmaster needs faster responds times for his botnet he can issue a
command that changes the time interval of connecting to the P2P network. The
interval can of course also be increased for less battery consumption and lower
responds times (for times where the botnet is not heavily used).

5.4.3 SMS C&C

In this section we present our two SMS-based C&Cmechanisms. Both schemas
are based on the fact that the botmaster has a complete list of bots or actually a
list of phone numbers that correspond to the bots, at all times.
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Below we will first provide a brief introduction to the Short Message Service,
then we will discuss each SMS C&C schema and finally we will briefly talk
about obfuscation of the C&C SMS messages.

The Short Message Service is one of the basic services of the mobile phone
network. SMS is used for text messaging by users and for background services
that are not directly visible to the user. SMS supports transport of binary data,
and, therefore, can be used to send arbitrary data such as Command and Con-
trol information for a botnet. Although SMS messages are limited to 140 octets
each, we show that this is enough for a highly flexible and secure botnet com-
munication. In this work we will not discuss the details of the Short Message
Service itself and will stick to the parts that are important for the design of the
C&C channel.

The basics of SMS communication are. The sender only needs to know the
phone number of the receiver in order to send him a message. To send a mes-
sage, the sender encodes the phone number together with some flags and the
payload in to the SMS PDU format and hands it over to the mobile phone mo-
dem using the GSM AT command set. The modem takes care about delivering
the message to the mobile phone network.

In the network SMSmessages are handled by the Short Message Service Cen-
ter (SMSC). The SMSC forwards the message to the receiving mobile phone. If
the receiving mobile phone is switched off the SMSC buffers the message until
the receiver is switched back on. The receiver, upon reception of the SMS, ex-
tracts the payload from the PDU. The payload is just a number of octets at the
end of the PDU.

SMS-only C&C

In this scenario all communication from the botmaster to the botnet is carried
out over SMS. There are a few exceptions such as an update of the bot software
or data transfer back to the botmaster which are still carried out over IP. Send-
ing SMS messages costs money in most cases (see our discussion on SMS in
Section 5.3.4), therefore it does not make sense for the botmaster to send mes-
sages to each bot directly. In this section we describe our SMS-only communica-
tion schema. We separated the schema in four parts: infection, communication,
repair, and management.

• Infection takes part in three steps. In the first step the bot-software is in-
stalled on the hijacked phone using a software or configuration vulnera-
bility. In the second phase the newly installed bot sends an SMS message
to its infector, the infector provides his own phone number during bot in-
stallation. The SMS is sent in order to determine the phone number of the
new bot. Sending a SMS message is the only reliable way to determine
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Figure 5.2: SMS only C&C

the phone number of a mobile phone, since it is not necessarily stored on
the SIM card or on the phone itself. In the third and last step the infector
dumps his list of phone numbers of devices he infected to a drop-site to
be collected by the botmaster.

• Communication takes place in a tree model as shown in Figure 5.2. Mean-
ing the botmaster sends a command message to the root node of his bot-
net. Each individual bot forwards the message to all bots known to them.

• Repair takes place after the botmaster determined that the communication
tree has broken at some point. In order to determine if the tree is intact
once in a while the botmaster sends a broadcast ping that every node needs
to answer. Nodes that fail to answer the ping message are removed from
the tree. If a none leave node is removed all its sub-nodes are reassigned
to other nodes. This is done by sending a message containing a list phone
number(s) to an active node. Since the botmaster has at any time a com-
plete overview of his botnet he can carry out a more intelligent repair
phase by checking smaller sub-trees instead of the whole tree (the whole
botnet) at once.

• Management of the botnet is required since it must be taken care of that a
single node does not have too many direct sub-nodes. Each direct sub-
node will require one SMS message to be send to in case of a message
being forwarded. Further if a node with many direct sub-nodes disap-
pears all the direct sub-nodes need to be moved to another node, leading
in more SMS messages being sent.
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In the ideal case the botmaster only needs to send out one SMS message to
reach every node in the botnet, also hemight not even need to send themessage
himself but rather have a hijacked phone send the initial message.

The SMS only design has a weak point, that is the existence of node lists
(phone numbers) in most of the bot hosts. Therefore, making it easy for an at-
tacker or anti-botnet researchers to warn the individual owner of an infected
phone by simply sending him an SMS message. In order to partially prevent
this from happening and to improve and ease the management and repair steps
we designed a SMS-HTTP hybrid communication schema. This schema is dis-
cussed in the next Section.

SMS-HTTP Hybrid

After realizing that a SMS-only-based Command and Control channel bears
certain problems and the fact that IP communication is still required to ac-
complish any meaningful data transfer we designed a SMS-HTTP hybrid C&C
channel for our mobile phone botnet.

The SMS-HTTP hybrid design additionally improves the SMS-only design in
following ways. First, it removes the necessity to keep information about the
botnet at each of the nodes. Therefore, making it a bit more resilient against
attacks. Second, it eases the botnet management and repair by moving these
task from the botnet to the botmaster. Third, it splits up the botnet in tomultiple
subnets and thus makes it harder to be detected.

The hybrid schema shares many properties of the SMS-only schema. The
infection part of the hybrid schema works in exactly the same way. The only
difference is that both, the newly infected bot and the infector, do not store the
phone number of each other. The newly infected bot deletes the phone number
of its infector after sending him the SMS message to determine his own phone
number. The infector deletes the phone number of the newly infected phone
right after dumping it at the drop-site in order to be collected by the botmaster.

The basic idea of the hybrid schema is to split the communication in to a
HTTP and an SMS part. Command SMS messages are pre-crafted by the bot-
master and are uploaded as encrypted files to some website. The URL to these
files are then sent to random bots of the botnet via SMS. The bots download
and decrypt the files and sent out the pre-crafted SMS messages. The encryp-
tion key is part of SMS message that contains the URL to the file. Figure 5.3
shows the three steps of the SMS-HTTP hybrid communication. In a decent
sized botnet the first round of pre-crafted SMS messages could again contain
URLs to another batch of pre-crafted command messages. Due to the fact that
in the SMS-HTTP hybrid there is no fixed structure through that all communi-
cation is happening it is quite hard to determine if a botnet is active on a mobile
phone network by just looking at the SMS traffic.

The repair part of the hybrid schema works in the same way as the repair
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Figure 5.3: SMS-HTTP hybrid C&C

part of the SMS-only schema. The botmaster has to regularly probe each bot
to determine if it is still part of the botnet. The difference is that the botmaster
does not need to move individual bots around the botnet in order to keep them
in the working communication tree. Hosts that are no longer part of the botnet
are just removed from the global bot list and thus are not considered the next
time a command is sent out to the botnet. The management part as such does
not exist in the hybrid design.

Obfuscation

One idea for obfuscation is to encrypt all C&C SMSmessages with a symmetric
key. The key would be globally known by all bots, and, therefore, it will not
prevent reverse engineering or off-line command analysis. But it will make life
much harder for the mobile operators to filter out the messages, since they can
not really tell what kind of message they see. To prevent hard coding of the key
in to any IDS and anti-virus system there will be regular key updates. The key
updates must be frequent enough so that C&C message parsing is required in
the IDS. This will make it more costly to keep track of the botnet.

5.5 Communication Strategies

Communication is the most important part of a botnet, especially on a mobile
phone since mobile phones have limited resources. A battery that drains faster
than it used too, a high phone bill, slow or clogged 3G data can easily lead to
detection and removal of the bot. In this Section we discuss our ideas for how
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a mobile phone botnet should carry out it’s communication in order to stay
hidden and still have maximum functionality.

5.5.1 IP-based Communication

Even with a SMS-based C&C channel a bot still requires IP-based communica-
tion in order to transport larger chunks of data to and from the hijacked device.
The data can be anything ranging from harvested information to a software
update of the bot itself.

The problem with bulk data transfer on mobile phones is that the mobile
connection can be slow, and, therefore, the transfer will take time and thus
becomes detectable by the user. Especially if the user is also trying to use the
network connection at the same time. If done regularly the costs might show
up on the phone bill.

Internet Peer-to-Peer based botnets will more or less constantly communicate
using IP packets, therefore, in order to decrease the possibility for detection the
IP-based communication should be kept as hidden as possible.

We developed some strategies for IP-based communication for mobile bot-
nets in order to keep the bots as hidden as possible. Themain idea is to commu-
nicate mainly using the mobile phone network since this is somewhat harder
to monitor. Bulk data should only be transfered using WiFi, if possible.

First, a bot should only initiate a bulk data transfer when connected through
WiFi or a high speed 3G network. The 3G network should only be used if the
bot some how determined that the phone it is running on has not used anyWiFi
network for some amount of time. This might be necessary since some mobile
phone users will not pay for mobile-data usage, and, therefore, will not bother
to use WiFi at all.

Second, all background communication (such as P2P chatter) should be car-
ried out over the 3G network. The P2P chatter does not produce any significant
amount of traffic. Also file transfer is not happening at all. This is in order to
avoid detection of P2P traffic on the WiFi and DSL link. Also we anticipate that
mobile phone network operators do not really monitor the traffic on their net-
work. At least not traffic that does not require a lot of bandwidth, such as the
P2P chatter.

Third, all bulk data transfer should be carried out using HTTP. This is to
avoid blocked ports and any kind network monitoring.

5.5.2 SMS-based Communication

Each SMS sent might produce costs on the sender and on the receiver side,
depending on the contract. Therefore, we created a set of rules in order to
reduce the number of SMS messages to send. Also not only the number of

80



5.6 Bot Implementation

messages sent need to be considered but also the destination of the message.
Destinations such as foreign countries are likely to be more expensive, but also
phone numbers that are routed on another operators network could introduce
more costs.

In order to design a useful strategy for sending SMS messages one has to
analyze the most common mobile phone contracts that are attached to the tar-
geted mobile platform. For example a big German mobile operator offers four
different contracts for the iPhone. Only the contract with lowest monthly rate
charges for individual SMS messages. The other contracts include free SMS
messages sent within the same network. The contract with the highest monthly
charges include 3000 SMS messages sent to any destination.

Taking these facts into account we came up with a simple rule for SMS com-
munication. Grouping of bots by country and by operator. Limit sending SMS mes-
sages between these groups to a minimum. Messages sent within an operator can
be considered free.

Determination of country is easy because of the country code. Determination
of the operator is a bit more complex. In certain countries this can be done
by looking at the mobile number area code. If it is not possible to determine
the operator from the area code each bot can still query the SIM card for the
operator name.

This information needs to be communicated back to the botmaster. This
could be done during infection time since here the infector has to deliver the
phone number of the new bot to the botmaster anyways.

5.5.3 Data Delivery

Mobile phone resident bots have access to interesting data. In order to trans-
port data from the device back to the botmaster the bot encrypts the data to
avoid detection during either transport or through a raid on the drop-site. The
encryption is done using public key cryptography to prevent data decryption
by extracting the key from a bot infected phone. Therefore, each bot carries the
botmaster’s public key and uses it to encrypt a random symmetric key that is
used for data encryption.

5.6 Bot Implementation

We created a Proof-of-Concept implementation of our bot design. The imple-
mentation includes both the SMS and the P2P-based Command and Control
schemas.

We begin with a general description of how command-packets are structured
in our botnet. The packet-format is designed in a way that fits both the P2P
and SMS-based approaches. We chose to do this since our overall goal was to
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Content Bytes
Signature length 1
ECDSA Signature variable
Sequence Number 4
Command Type 1
Command variable

Figure 5.4: Basic command structure

build a super-hybrid bot that features both C&C schemas. This way the botnet
becomes more flexible and very hard to disrupt. The actual implementations
are still separated but with spending a little more time on the implementation
the super-hybrid bot can be easily build.

The two bots basically are composed of a single executable, a ECC public
key to be used for command authentication using ECDSA, and a RSA public
key for encrypting data sent from the bots to the botmaster. The P2P version
additionally carries a initial peer-list for the Overnet P2P network. The SMS-
client carries an additional dynamic link library for library injection.

5.6.1 Commands

Commands are composed out of four elements, shown in Figure 5.4. The com-
mand type, the command itself, a sequence number, and a signature. The com-
mand type simply specifieswhat kind of command the packet contains, this can
be a shell sequence such as ping -c 3 www.wired.com. We will discuss some of
the important command types later. The sequence number is a 32-bit counter to
prevent replay attacks of commands. The bot will only execute commands with
a sequence number higher then the one he has stored. The command packeted
is signed and the signature is stored in the packet. The signature guarantees
that only the botmaster can send commands to the botnet. In order to keep the
command packets as small as possible ECDSA [47] is used for signing. ECDSA
signatures are between 70 and 72 bytes, and, therefore, fit in to SMS messages
while still leaving space for the actual command. In order to be able to use
ECDSA on the iPhone we had to build our own versions of libssl and libcrypto,
these were statically linked to our bot executable.

5.6.2 Kademlia P2P Client

We based our Peer-to-Peer bot on the KadC3 Kademlia implementation. We
chose KadC because it has no dependencies other than a minimal POSIX API

3http://kadc.sourceforge.net/
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which makes it highly portable. In theory one should be able to compile it
for all current smartphone operating systems (including Android, Windows
Mobile and Symbian). Further KadC only implements the DHT and not the file
transfer part of the P2P network, thus making it the perfect candidate for our
purpose. Below we discuss how we use Kademlia and Overnet as our C&C
channel.

Once our bot joins the network it starts searching for a specific hash every
15 minutes. In order to send a command to the botnet the botmaster pub-
lish a entry in the DHT using the hash the clients search for. The command
is transported using the meta information that can be published together with
the hash. If the hash is found the client extracts the command from the meta in-
formation. The command-data is stored inside the meta information returned
with the search result. Since Kademlia only seems to support ASCII data in
meta information the command-data is based64 encoded. Although we had to
change the actual alphabet used for encoding since Kademlia does not support
uppercase characters.

5.6.3 SMS Client

We implemented the SMS bot-client to piggy back on the iPhone’s telephony
stack (com.apple.CommCenter). This was done using library pre-loading to sit
between the iPhone’s modem and the telephony stack in order to intercept SMS
messages before the SMS application sees them. We use the technique that is
described Chapter 3. The technique also works on other smartphone platforms
such as Android and Windows Mobile, therefore we think this is a reasonable
approach. The pre-loaded library monitors open(2) calls and replaces the file
descriptors for the modem lines with file descriptors connected to the actual
bot application. Thus all AT commands and results to and from the modem
first pass through the bot. If the bot recognizes an incoming SMS message it
tries to parse it, if the parsing is successful the SMS is so to say swallowed and
not passed on to the telephony stack. All other SMS messages are passed on.
Therefore, the control SMS messages never touch the SMS application or SMS
database and stays hidden.

Sending SMS messages is done by issuing AT commands to the modem de-
vice (/dev/tty.debug). This again is not seen by the user in anyway since the
SMS message is not handled by the telephony stack.

5.6.4 Evaluation

We evaluated our bot design and implementation by installing the bot on a
number of iPhones in our lab. The bot did not have any kind of spreading
functionality implemented in order to make sure it does not escape our test
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environment. Also the evaluation was focused on the Command and Control
(C&C) functionality, rather than the infection routines.

The evaluation was conducted by running the bot and sending it commands,
either via the P2P network or directly via SMS. We constantly monitored the
bot activity in order to determine if the commands were successfully received
and executed. We did not only sent correct commands to the bots but also com-
mands with broken signatures and invalid sequence numbers.

For evaluation we implemented a number of commands, these are:

• Add phone number(s). This command adds a list phone numbers to the
forwarding list of a bot.

• Set sleep interval. This command is used to set the sleep time between
connecting to the P2P network for searching for commands.

• Execute shell sequence. This command is used to execute a shell sequence.

• Download URL. This command is used for the SMS-HTTP hybrid to down-
load a command file. Besides the URL the command also includes a 128-
bit key which is used to decrypt the downloaded file.

Belowwe will first discuss the P2P-based approach followed by the SMS and
SMS-HTTP hybrid design.

Kademlia P2P

We evaluated two scenarios, one where the devices are connected to the In-
ternet via WiFi and one where the devices are connected using a mobile-data
connection. The botnet was controlled by a special version of the bot that can
issue commands, this version was running on a laptop connected to the uni-
versity network.

We ran several tests where we executed shell commands and changed the
sleep interval for connecting to the P2P network. A basic test was to ping one
of our servers on the Internet, here we could easily monitor that all our bots
actually executed the command.

All in all we where more then satisfied with the performance of our P2P bot-
client, especially since it was rather easy to implement.

SMS and SMS-HTTP Hybrid

In order to evaluate and test the SMS-based C&C design we implemented a
small tool that crafts a command SMSmessage for our botnet. The tool takes the
phone number, the type of command, and the command parameters as input
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and generates a ready to send SMS PDU. The PDU can then either be sent via
the GSM AT command-set or be stored in a file to be used for the SMS-HTTP
hybrid C&C mechanism.

We ran a number of tests in order to verify that our SMS C&C mechanism
actually works. We again ran the ping-based test to verify that commands with
a correct signature and sequence number are accepted. We further verified
the basic functionality of file downloads by submitting a URL download com-
mand. Forwarding of command messages also worked as expected.

5.7 Conclusions

Through our workwe practically confirmed that the theoretical threat of mobile
botnets as pointed out by Traynor et al. [85] is real and concrete. We determined
that it is easily possible to create a fully functional mobile phone botnet on
the most popular smartphone — Apple’s iPhone. A mobile phone botnet has
many similarities with a desktop computer based botnet but also has certain
properties that need to be considered in order to keep the botnet running and
hidden. We investigated those cellular specific challenges and properties. We
determined that the hybrid approach of SMS and HTTP is the most promising
and most dangerous botnet Command and Control structure. Our successful
mobile bot implementation stresses that this mobile specific hybrid approach
would require very specific and difficult counter measures from a telco. The
reason is that two totally different cellular subsystems, i.e., SMS and IP, would
be needed to monitor and synchronized for specific, but yet unknown events
and messages. This would cause cumbersome burdens for a telco to detect and
prevent such mobile botnets. Given our preliminary but devastating results
from our research journey we feel that there is an urgent need for novel and
appropriate cellular phone and network protection mechanisms.
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6 Improving the Security of the
Cellular Modem Interface

In the preceding chapters we analyzed the security properties of the cellular
modem interface and developed Proof-of-Concept attacks that leverage it. In
this chapter we present a system to control access to the cellular modem. Our
respective architecture prevents malware from carrying out attacks by abusing
parts of the cellular modem interface.

6.1 Introduction

In the past years a lot of effort has gone into securing smartphones. There are
academic contributions [25, 64, 94] and work performed by smartphone oper-
ating system (OS) vendors such as Apple, Google, Symbian, RIM or Microsoft.
However, the efforts concentrated on the OS, to protect users from attacks and
to mitigate malware such as Trojans.

Despite recent attacks, which target the cellular core network, few methods
of defense are known. These attacks are based on hijacked mobile phones (mo-
bile botnets) that produce signaling traffic sent from mobile phones to the cel-
lular network core conducting Denial-of-Service attacks. These attacks demon-
strate that current security improvements seek to protect the actual device and
not the environment in which they operate, namely, the cellular core network.

Related security and reliability problems are caused by rooted (fully user
controlled) smartphones. The problem is that rooting disables protection mech-
anisms of the OS, allowing the user to install arbitrary applications to his de-
vice. Such applications might leverage extended access privileges and may use
them for intentional malicious activity and accidental harmful operations.

In this work we present our novel solution for protecting the cellular network
infrastructure frommalicious smartphones. Our protection system is called the
virtual modem. It secures the baseband (the cellular modem), the entity that
communicates with the cellular network. To the best of our knowledge nobody
has yet attempted this path for securing cellular communication.

In contrast to a network side solution, our protection system is designed to
run on the mobile phone. Changes to the cellular network equipment are very
expensive and time consuming which would result in a slow adoption of any
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newly proposed protection mechanism. On the other hand, smartphone de-
velopment cycles are very short. New smartphones are brought to the market
every 6 months. Thus, we believe a device-side protection system has a signifi-
cantly higher chance to be adopted.

Instead of implementing our protection system directly on the cellular con-
nectivity hardware, we achieve protection by controlling the communication
channel between the OS and the baseband. The smartphone is partitioned and
the OS is separated from the baseband. The separation is implemented through
virtualization. The actual core of our protection system is comprised of an AT
command filter. With the implementation of our protection system based on
the Android [34] platform we show that our approach is feasible for real-world
smartphones. Still we think its design is general enough to be used for other
smartphone OSes as well.

The main contributions of this chapter are:

• Categorization of Signaling Issues: We categorize different security and
reliability issues that are caused by signaling traffic related to smartphone
use and abuse. The issues can be separated into intentional actions (at-
tacks), and side effects that can be abused for attacks.

• Cellular Signaling Filter: We introduce a novel mechanism to protect cel-
lular network infrastructure against overloading from smartphones. This
is achieved by filtering the signaling channel directly on the smartphone.
This avoids expensive changes on the cellular core network. We further
show that our novel security mechanism can be used to protect the user
from Trojans that cause premium rate charges via SMS.

• Safe-to-root virtualized Android: We designed and built a safe-to-root
virtualized Android. Our virtualized Android can be rooted and modi-
fied as the owner of the device wishes. The device manufacturer together
with the operator retain full control over the cellular network interface
(the baseband) and thus can prevent the device from being abused for
launching attacks.

Chapter Organization

The rest of this Chapter is organized as follows. In Section 6.2 we give a de-
tailed overview of the threats to both the network and the phone owner that
are related to the baseband of a modern smartphone. The design of our protec-
tion system tomitigate these threats is described in Section 6.3. Implementation
details of our prototype system are described in Section 6.4. In Section 6.5, we
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discuss our actual mitigation technique in great detail. The evaluation of our
protection system is presented in Section 6.6. In Section 6.7, we discuss related
work before we conclude and outline future improvements in Section 6.8.

6.2 Threats

In this section we introduce the different classes of threats that we address with
the protection system presented in this work. There are three basic classes:
threats that hijacked smartphones pose to the cellular core network, malware
residing on the smartphone – with and without system privileges, and rooted
devices.

6.2.1 Hijacked Phones and Mobile Botnets

The threats that hijacked phones and mobile botnets pose to the cellular net-
work infrastructure and mobile customers is an emerging trend. A good exam-
ple is the ikee.B [69] iPhone botnet. The bot infected about 22,000 devices and
contained a HTTP-based Command and Control system.

Traynor et al. show in [85] that smartphone-based botnets can pose a seri-
ous threat to the cellular core network. They demonstrated that mobile botnets
can overload backend systems such as the HLR and thus bring down the cel-
lular network itself. Their attack is based on AT commands issued by zombie
phones, which cause a high load on the HLR. Specifically, they issue the AT
command to configure and enable call-forwarding settings. We discuss the ac-
tual details of the attack in Section 6.6 where we evaluate our protection system
against the various attacks.

The second issue with mobile botnets is their use of SMS messages for their
Command and Control (C&C) communication, as we demonstrated in Chap-
ter 5. Our Proof-of-Concept bot uses SMS messages for delivering the C&C
messages between the nodes of the botnet. A similar Proof-of-Concept SMS
controlled botnet was created in [90].

The SMS messages must be blocked to prevent botnet communication and
to ensure that the subscriber (owner) does not incur any additional charges
related to the increased SMS traffic.

6.2.2 PDP Context Change

Fast PDP context activation and de-activation leads to high network load on the
GGSN and SGSN infrastructure. This is performed by either malicious appli-
cations or badly configured mobile phones. This is possible because on smart-
phone platforms such as Android any application has access to the network
configuration and thus is able to change the packet-data settings.
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On Android it is possible to force an PDP context change every 2 seconds.
This will result in roughly 43,200 PDP activations per day (24 hours). A rogue
application can easily carry out a Denial-of-Service attack against an operator’s
packet-data infrastructure, if it is installed on enough devices.

The GSM Association (GSMA) points out a similar problem [36] through the
use of pre-paid SIM cards. Travelers who do not want to pay high roaming
costs often buy pre-paid SIM cards. A flood of PDP context activation attempts
can occur under two conditions: First, the pre-paid SIM card does notmatch the
configured packet-data settings (the one of the home operator), but the phone
keeps trying to activate packet-data every few seconds. Second, the pre-paid
account is below the number of credits that are required to establish a PDP
context. In both cases the PDP context creation is rejected by the network, but
for the phone it looks like a technical error, and thus it repeatedly attempts to
reconnect to the network.

6.2.3 Premium Rate SMS Trojans

Fraud caused by SMS Trojans such as FakePlayer-A [31] is a long standing
problem in the mobile phone world costing consumers a considerable amount
of money every year [65]. This kind of fraud is possible since onmodern smart-
phones any application has access to the cellular API and is therefore able to
send SMS messages. The same problem applies to voice calls to premium num-
bers.

Smartphone platforms such as Android or Symbian implement mandatory
access control to restrict arbitrary access to system resources such as location,
Internet, or cellular access. These permissions are hard coded into the applica-
tion. At installation time of an application the user is shown a list of required
permissions. The user can accept these or cancel the installation process. It is
not possible to selectively accept or deny access privileges. Thus, many users
simply accept such permission requests without considering their implications.

For example, on Android the permission required to send SMS messages is
called android.permission.SEND_SMS.

6.2.4 Rooted Phones

Rooted or jailbroken smartphones are a serious security risk. Once a device is
rooted, many security features of the operating system, such as network and
cellular access restrictions as well as data-caging, are gone. Thus, the entry
barrier for malware such as Trojans or botnets is much lower on rooted phones.

Rooting can happen in two ways. First, voluntarily by the owner who wants
to be able to install additional, potentially unauthorized, applications. This
type of rooting is often done by simply installing a modified firmware on the
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device. Thus, no security flaws are actually exploited.
Second, by malware such as DroidDream [53] in order to gain maximum

privileges on the infected system. This type of rooting is achieved by exploiting
known security flaws in the respective smartphone OS.

6.3 Design

Our aim is to mitigate Denial-of-Service attacks based on signaling traffic sent
frommobile phones. As described in Section 2.4 the baseband is a phone’s gate-
way to the cellular network. Consequently, our protection system must have
exclusive control over the baseband hardware. For clarification, we define the
following criteria for our protection system.

Integrity Our protection infrastructure must withstand attacks from the smart-
phone OS. Even a rooted phone must not be able to directly tamper with the
baseband. This can only be achieved, if our protection system is spatially iso-
lated from the smartphone OS, e.g. it must not depend on its correct operation.

Completeness All cellular network access must be mediated and controlled by
our trustworthy components.

Universality Our solution must be applicable to all cellular networks without
requiring modifications to the operator’s equipment.

Portability Our solution shall be usable on commercial off-the-shelf smart-
phones. It must not require additional hardware or hardware modifications.
Our system has to support different baseband chips as well as popular smart-
phone CPUs. The solution must not depend on a certain smartphone OS. How-
ever, for practical reasons (open source, popularity) we chose the Android OS
for this work.

Security Our protection system must not pose additional threats to the smart-
phone OS. This criterion is similar to the integrity criterion, but also includes
availability and confidentiality of the whole system.

Upgrades andmodifications to the cellular operator’s equipment are very ex-
pensive and take a lot of time. In contrast, the smartphone market is advancing
rapidly, with frequent releases of new smartphone generations. Each smart-
phone generation might bring new issues that would require new measures
on the operator’s side. We opted for a solution that addresses the signaling
problem directly at its root, the smartphone itself (Universality Criterion).
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A reasonable place for our protection system is the baseband as this is the
smartphone’s gateway to the cellular network (Completeness Criterion). The
baseband processor has its own memory and is physically isolated from the
application processor (Integrity Criterion and Security Criterion).

Baseband chipsets are under tight control by their manufacturers. Hardware
details and the software stack are kept as trade secrets. Thus, no SDK or devel-
oper documentation is available. The Portability Criterion requires us to imple-
ment our protection system on commonly used basebands, which could turn
out to be inherently difficult as the basebands might vary vastly. Also, a mod-
ified baseband would probably require re-certification, which due to time and
cost constraints is infeasible.

Instead we chose to build our protection system on the application processor.
The Completeness Criterion requires that the smartphone OS cannot directly ac-
cess the baseband hardware. All cellular network access needs to be mediated
by a custom proxy component. We call this component the virtual modem. The
virtual modem runs as a separate task. We ensure spatial isolation between the
smartphone OS, in our case Android, and the virtual modem by running An-
droid in a virtual machine (VM). Figure 6.1 shows this setup. Direct hardware
access of the Android VM to the baseband is denied. Instead we present the
Android VM with an interface to the virtual modem. This ensures that even
in the event of a rooted Android, the network operator cannot be adversely af-
fected. For all other hardware, e.g. wireless LAN and graphics, we allow the
VM exclusive access to the underlying hardware interfaces. We assume that the
device’s DMA feature can be restricted to safe memory locations1

6.3.1 Micro Kernel as Secure Foundation

In contrast to a monolithic kernel such as Linux a micro kernel merely imple-
ments essential mechanisms. This dramatically reduces the complexity of the
kernel. Components such as device drivers or protocol stacks are implemented
as user-level tasks [52]. Isolation between user-level tasks is enforced with ad-
dress spaces. All communication between tasks is done via efficient explicit
kernel-mediated inter-process communication (IPC).

Modern third-generation micro kernels implement object-capabilities. This
access control scheme makes it possible to build systems that implement the
principle of least authority (POLA). POLA states that each component is equip-
ped with the minimum set of permissions necessary to fulfill its task.

Themicro kernel ensures spatial and temporal isolation of its user-level tasks.
It guarantees safe object access via object-capabilities. This ensures the Integrity
Criterion.

1Technology such as IO-MMUs is already available in personal computers. Similar technology
is likely to be implemented in future smartphone CPUs.
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Figure 6.1: The architecture of our protection system. All interaction with the
baseband is mediated by the virtual modem. Android runs inside its
own virtual machine.

6.3.2 Virtualized Android

As outlined in the previous section the micro kernel partitions the system in
a secure way. The partition running Android is implemented as a virtual ma-
chine.

Virtualization requires the Android OS to run with less privileges than the
micro kernel. On the other hand, the Android kernel expects to have exclu-
sive control of the hardware. Unfortunately, today’s smartphone CPUs are not
natively virtualizable, which prevents virtualization in the form of trap and
emulate [68].

Fortunately, it is possible to run monolithic OS kernels such as Linux as a
user-level task on top of a micro kernel. Härtig et al. [38] showed that the over-
head of running a monolithic OS on top of a micro kernel is between 5 and 10
percent. We believe that this is acceptable on modern smartphones, given the
merits it brings in terms of security.
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In our setup the Android kernel is modified to run as an application on top
of the micro kernel. As such, it can only access memory pages that we present
it with. By granting a predefined set of IO memory pages, we can restrict the
hardware that the Android kernel can access. We enforce that Android can-
not directly access the baseband by not giving it access to the baseband’s IO
memory. Instead, we present it with an interface to our virtual modem. This
ensures that all cellular communication is mediated by our protection system
(Completeness Criterion).

Whereas we slightly modify the Android kernel, its user-level software stack
remains unmodified. We designed the Android VM to be safe-to-root, be it
voluntarily by the user, or by malware. If the user wants to flash his device,
he is free to exchange the content of the Android partition. A commercial ver-
sion of our protection system requires a bootloader that is capable of restricting
updates to the Android partition. Required adjustments of currently used boot-
loaders are minimal.

6.3.3 Virtual Modem

The virtual modem is the only software that is allowed direct access to the base-
band hardware. As such, it mediates all cellular network access of Android. It
consists of the following components.

Baseband Driver The baseband driver contains all the logic needed to com-
municate with the baseband hardware. The actual implementation is specific
to the device, and often contains numerous dependencies such as drivers for
I2C or SPI buses. The baseband driver also contains the logic to tunnel IP data
packets through the cellular data network.

Virtual Serial Interface Our virtual modem provides its client (the virtualized
Android) with a virtual serial interface for sending and receiving the AT com-
mand stream.

AT Command Filter All AT commands are mediated and filtered by our AT
command filter. The AT command filter is the central component that enforces
our policies on the baseband. It will be explained in detail in Section 6.5.

Virtual Network InterfaceOnce a data connection is established, all data pack-
ets are transfered between the baseband driver and Android via a virtual net-
work interface.

IP Filter The virtual modem includes the infrastructure for network address
translation (NAT).
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6.4 Implementation

We built our prototype around an Intel x86-based smartphone. However, the
design described in Section 6.3 applies equally well to the widely used ARM
architecture.

We picked the Fiasco.OC [88] micro kernel as the foundation of our system.
Fiasco.OC is a modern third-generation micro kernel, which provides the fea-
tures outlined in Section 6.3.

6.4.1 Hardware

We developed our prototype on an Aava [8] development phone. The phone
hardware is built around the Intel Moorestown [44] platform. It consists of a
SoC that contains a graphics accelerator (GPU) and a low voltage Atom core.
The Atom CPU is clocked at 1.5Ghz and supports hyperthreading. The board
is equipped with 512MB RAM. For debugging purposes a UART is connected
via SPI. The phone contains a ST-Ericsson U300 series baseband.

A picture of one of our development phones is show in Figure 6.2.

6.4.2 L4Android

The L4Android project [51] is based on L4Linux [87], a version of Linux that
was ported from themachine interface to themicro kernel interface of Fiasco.OC.
In addition to L4Linux, which is derived from themainline Linux kernel, L4An-
droid incorporates Google’s Linux kernel modifications to support the Android
software stack.

L4Android runs as an application in its own address space on top of the
micro kernel. Each of the Android processes runs in its own address space and
benefits of the same isolation capabilities as on the stock Android kernel. As
the L4Android kernel ABI is compatible with Android, we can run all Android
applications without modifications, even those containing native code.

L4Android supports the Android user-level software stack in versions 2.1
(Eclair) up to 2.3 (Gingerbread) and enables us to even run multiple instances
of Android in parallel on one device.

6.4.3 System Setup

Our setup is depicted in Figure 6.3. It is made up of two logical partitions: The
Android VM and the virtual modem partition. The former runs the L4Android
kernel and the Android user-level software stack (including applications).

The virtual modem partition consists of a L4Linux instance, the Forwarder
and our AT command filter. We grant L4Linux exclusive access to the baseband.
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Figure 6.2: One of our Aava devices. A debug board is attached to the right and
provides a serial line.

This has the benefit of allowing the use of the vendor supplied native Linux
driver, and we do not need to implement our own one.

L4Linux is responsible for:

• Booting and initializing the baseband. This potentially includes loading a
firmware to the baseband.

• Running the baseband driver. This includes the driver for the serial line
that connects the baseband to the application CPU, and all the logic need-
ed to demultiplex the serial stream into data packets and commands. Fur-
thermore, it implements the protocol stacks needed to tunnel IP packets
over the cellular network.
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Figure 6.3: Our implementation consists of two components running on the
Fiasco.OC micro kernel, the L4Android running the Android soft-
ware stack and the virtual modem. The virtual modem is composed
of three parts, the AT command filter, a Linux kernel that contains
drivers and the Forwarder.

L4Linux implements advanced functionality such as IP filtering or Network
Address Translation (NAT). It does not present a user interface as it does not
require user interaction.

Communication between Android and the virtual modem partition is estab-
lished via two channels. One is the virtual serial line to transmit the AT com-
mand stream. It is proxied by the AT command filter to implement the filtering.
The other channel is the virtual network for IP-based data connections.

Virtual Serial Device The virtual serial device is used for all baseband com-
mands. Both the L4Android and L4Linux kernel contain a custom driver that
presents a serial device to applications. The custom driver establishes a virtual
bidirectional serial line and sends all data via IPC.

Virtual Network Interface For data connections, we employ a shared memory
based virtual Ethernet driver. Packets are written into a shared memory region,
and the receiver is notified of incoming packets via IPC.

The L4Linux instance in the virtual modem partition forwards data received
on the virtual devices to the corresponding physical device and vice versa.
For the serial devices this task is performed by the Forwarder, which is imple-
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mented as a Linux application. It routes commands between the virtual serial
line and the serial control channel of the baseband. In addition, the Forwarder
parses the PDP context activation reply from the baseband (see Figure 6.4), ex-
tracts the parameters and applies them to the network interface presented by
the baseband driver. The original values are replaced with the parameters nec-
essary to configure the virtual network interface in the Android partition.

The forwarding of IP packets between the virtual network interface and the
one provided by the baseband driver is performed using the Linux netfilter in-
frastructure. We setup a simple IP masquerading rule, but more advanced fire-
wall rules can be added.

6.4.4 Modifications to the Android RIL

The Radio Interface Layer (RIL) daemon in Android abstracts details of the
baseband implementation for upper layers in the Android stack. This includes
voice calls, SMS messages, creation of PDP contexts, and configuration of the
baseband. Specifics of the baseband are implemented by the baseband manu-
facturers in separate libraries, such as libreference-ril.so. The libraries are
loaded by the RIL daemon to access the baseband functionality. Each vendor
has to develop such a library when adopting Android to a new baseband.

From Android’s perspective our virtual modem behaves like a specific base-
band implementation. Consequentlywe built our own abstraction library (lib-
sect-ril.so) for the RIL daemon. The rest of the Android user-level software
stack remains unmodified.

The Android RIL configures the network interface used for data connections.
As shown in Figure 6.4 the connection parameters of a PDP context are trans-
fered as XML. Our library extracts these parameters and applies them to the
virtual network interface.

6.5 The AT Command Filter

The baseband takes care of all interaction between the smartphone OS and the
cellular network. The interface between the OS and the baseband is a serial
character stream. The serial stream carries commands (signaling) and data
(packet-data; IP packets). Voice is handled through other interfaces. Our focus
is the signaling. Signaling is done via the GSM extensions to the AT command
set as standardized in [5].

The curious reader might also think about the so-called GSM-codes that one
can enter into a phone’s dialer application (e.g. ##002# to clear call-forwar-
ding settings). These GSM-codes are part of the Man-Machine Interface (MMI)
standard [4] and are simply translated into AT commands by the user-level
phone dialer application.
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In the rest of this section we first characterize the signaling relevant AT com-
mands and give some brief insights of our specific baseband. Then we discuss
special issues with filtering AT commands and how we solved them. In the
remaining part of the section we present our implementation, how we block
commands, and how we profiled the AT commands to determine the baseline
for configuring our filter.

6.5.1 AT Command Characterization

We analyzed the AT communication to determine what commands and com-
mand sequences are used to perform critical operations such as changing call-
forwarding or packet-data settings. Below we briefly discuss the relevant com-
mands.

AT+CGDCONT Configure a PDP context. This sets the connection parameters
such as the Access Point Name (APN), user name and password, and other op-
tional parameters. We provide an example of this command later in this section.

AT+CGACT Activate a configured PDP context. However, this standardized
command, is not used on the ST-Ericsson baseband that our hardware comes
with. There, activation of the PDP context works differently and is described
below. There are other commands to activate and de-activate a PDP context,
but these are not considered within the scope of this work.

AT*EPPSD PDP context control for our ST-Ericsson baseband. The command
takes the PDP context index and the new state (1 = up or 0 = down) as argu-
ments. In the next section we provide more details on the PDP context setup
and activation.

AT+CMGS Send an SMS message. The SMS message is provided as hex en-
coded Protocol Data Unit (PDU). The command below sends an SMS message
in PDU mode, the message consists of 17 bytes.

AT+CMGS=17
>
0001000c81101521436587000004d4f29c0e

ATD+4930835358585; Initiates a voice call to the given number. The semicolon
signals the baseband that the call is actually a voice call. Without semicolon the
baseband tries to establish a data call.
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AT+CCFC Configure, activate, and de-activate call-forwarding settings. The
command takes the type of call-forwarding such as when busy or unreachable,
and the destination number as arguments. The example below sets call-forward-
ing for the busy state to the given number.

AT+CCFC=1,1,"4915112345678",129,0

AT+CFUN Configuration of the baseband state. The most common states are:
Flight mode (stop all radio transmissions), GSM only, 3G only, and GSM+3G
(prefer 3G) mode. The command below switches the baseband to Flight mode.

AT+CFUN=4

6.5.2 PDP Context Setup on the STE Baseband

First, the PDP context is configured using the standardized command AT+CGD
CONT. Activation is performed by the custom AT*EPPSD command. The base-
band replies with a XML text block containing the IP address, subnet mask,
MTU, and DNS server IP addresses. Figure 6.4 shows an example of the whole
process including the context configuration.

AT+CGDCONT=1,"ip","internet.t-mobile","",0,0
OK
AT*EPPSD=1,1,1
<?xml version="1.0"?>
<connection_parameters>

<ip_address>10.165.132.86</ip_address>
<subnet_mask>255.255.255.255</subnet_mask>
<mtu>1500</mtu>
<dns_server>193.189.244.225</dns_server>
<dns_server>193.189.244.206</dns_server>

</connection_parameters>
OK
*EPSB

Figure 6.4: Configuration and activation of a PDP context on our ST-Ericsson
baseband hardware

6.5.3 Special Problems

While analyzing the AT command interface and experimenting with our device
we identified some additional issues with the AT commands.
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Special case APN. Some operators have an additional APN forMMS, therefore,
one has to take care of additional legal APN activate-deactivate sequences. Our
implementation includes additional checks which ensure that deliverability of
MMS messages is not restricted.

Command side effects. Certain AT commands have side effects that need to be
taken into account by our filter. We determined that the baseband state switch
command (AT+CFUN) is such a case. If the baseband is switched between 2G
and 3G the PDP context is disconnected and reconnected.

6.5.4 Filtering AT Commands

As shown in Figure 6.1 and 6.3, the AT command filter sits between the Android
user-level telephony stack and the baseband.

The filter parses commands issued by the RIL (the RIL daemon runs in the
Android partition) and enforces the configured filter rules. Commands that
are not relevant are forwarded to the baseband without applying any parsing.
Results are passed back to the RIL.

We implemented filters for all commandswe discussed earlier in Section 6.5.1.
These are: packet-data configuration and activation (AT+CGDMNT andAT*EP
PSD), call-forwarding (AT+CCFC), modem control (AT+CFUN), SMS (AT+CM
GS), and calls (ATD). The filter works as an intelligent rate limiter. It counts
how often a command is issued within a period of time (the interval). If the
count reaches the threshold all further commands issued within the interval are
blocked. The rule below will allow issuing 5 AT+CCFC commands within 60
seconds.

AT_CCFC_interval = 60 (seconds)
AT_CCFC_threshold = 5 (# commands)

Certain commands have to be combined (see special issues Section 6.5.3). The
core logic of our filter is shown in Figure 6.5.

6.5.5 SMS Filter

We implemented additional filters to inspect the PDU of SMS messages [6] sent
from Android to the virtual modem, more closely. We implemented two fea-
tures. First, a premium rate number detector. Second, a binary payload detec-
tor.

101



6 Improving the Security of the Cellular Modem Interface

lastcmd

+

intervall

>=

 now

count

>=

threshold

Block

No

Yes Yes

lastcmd = now

count = 0
Forward

No

Figure 6.5: For the commands of interest we track each instance of a com-
mand within the configured interval. If the configured threshold
is reached the command is blocked. When the interval expires the
counter is reset.

The Short Code Detector inspects the destination number of every SMS mes-
sage that is sent. Premium rate numbers are mostly implemented using so-
called short codes, telephone numbers as short as 4-6 digits. If a short code is
detected and short code blocking is activated the command is blocked.

Our prototype blocks all SMSmessages sent to short codes. To allow sending
legit SMS to short codes we need to complete the implementation of the secure
GUI we describe in the future improvements, in Section 6.8.1.

The Binary Message Payload Detector inspects the header and payload field
of every SMS message that is sent through the filter. It uses a simple heuristic
to determine if the message is binary. The heuristic checks one flag in the hea-
der and checks if the message bodymainly consists of non-printable characters.
The ratio of printable to non-printable can be configured. It further checks for
base64 encoding and flags the message as binary if this is detected. If the mes-
sage is determined to be binary it will be subjected to the rate limiting rule for
binary SMS messages.

6.5.6 Blocking Commands

Commands are blocked by simply not forwarding them to the baseband. To
not confuse the application logic in the RIL our filter issues an appropriate er-
ror message for each blocked command. The error message is injected into the
stream that otherwise carries the responses from the baseband to the RIL. Spe-
cial commands are never blocked due to various reasons. These are:

Switch to flight mode (AT+CFUN=4). This is necessary since flight mode is
a required functionality that must always work. Even if the threshold for the
CFUN command is reached a switch to flight mode is always permitted. In the
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worst case the phone will remain in flight mode until the interval expires.

PDP context deactivation (AT*EPPSD). This is necessary to prevent excessive
data costs. For example, when the phone is roaming and the user wants to de-
activate packet-data.

Emergency calls (ATD 911;) must always work due to regulations.

6.5.7 Profiling benign AT Command Usage

To determine useful and working intervals and thresholds for configuring our
filter we monitored the AT commands we are interested in. To determine how
often and when these commands are issued we set the intervals to 86,400 sec-
onds (one day). Thus, the filter only counts the number of commands but
never actually blocks anything. Table 6.1 shows AT command usage in general.
Note, that the call-forwarding command (AT+CCFC) is issued multiple times
at the point when the user opens the call-forwarding settings screen. This is
because the phone always queries the network for the settings since these can
be changed from multiple places. When the user changes a setting an addi-
tional command is issued. Followed by querying the state again. Therefore,
the call-forwarding filter has to take into account that at a certain time multiple
commands are executed in a row.

Command # When Why
AT+CFUN 2 Boot Flight mode. Normal mode.
AT+CFUN 1 Use Switch to GSM-only.
AT+CDGMNT 1 Boot Set PDP configuration.
AT*EPPSD 1 Boot Activate PDP context.
AT+CMGS 1 Use Send a SMS message.
ATD 1 Use Issue a voice call.
AT+CCFC 3 Use Query forwarding settings.
AT+CCFC 2 Use Set a call-forwarding.

Table 6.1: AT commands issued during runtime.

Figure 6.6 shows an example output of our filter log right after the phone
booted.
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current time: 3793
APN[ 1] : "internet.t-mobile"

state : 1
count : 1
last : 3793
cfg : 3793

APN current : 1
APN switch count : 1
APN switch interval (policy) : 86400
APN switch threshold (policy): 6
APN switch last : 3793
CALLFWD[0] interval (policy) : 86400
CALLFWD[0] threshold (policy): 5
CALLFWD[0] last : 0
CALLFWD[0] count : 0
CALLFWD[1] interval (policy) : 86400
CALLFWD[1] threshold (policy): 5
CALLFWD[1] last : 0
CALLFWD[1] count : 0
CALLFWD[2] interval (policy) : 86400
CALLFWD[2] threshold (policy): 5
CALLFWD[2] last : 0
CALLFWD[2] count : 0
CALLFWD[3] interval (policy) : 86400
CALLFWD[3] threshold (policy): 5
CALLFWD[3] last : 0
CALLFWD[3] count : 0
... ... ...
CALLFWD[5] count : 0
GSMONLY interval (policy) : 86400
GSMONLY threshold (policy): 4
GSMONLY last : 3778
GSMONLY count : 2
GSMONLY mode : 1
BINSMS interval (policy) : 86400
BINSMS threshold (policy): 1
BINSMS last : 0
BINSMS count : 0
SMSSHORT count : 0

Figure 6.6: The status of our AT command filter after booting the device for AT
command profiling.
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6.6 Evaluation

We developed a set of test applications to simulate rogue behavior such as up-
dating call-forwarding settings or changing the PDP context. We further ac-
quired a sample of an actual Premium Rate SMS Trojan for the Android plat-
form to test against a real-world malware. Below we first describe our evalua-
tion environment – our small GSM network, followed by the evaluation of our
protection system against the threats we described in Section 6.2.

6.6.1 Our GSM Test Network

Our setup consists of a small GSM network that is based on an ip.access nano-
BTS. The nanoBTS is managed by OpenBSC [92]. Our network is operated in
a Faraday cage, where we conduct all our experiments safely. OpenBSC comes
with additional components that provide a SGSN and a GGSN, which allows to
operate a packet-data network in addition to the voice and SMS services. The
setup allows us to monitor all relevant aspects of the cellular network. Such as
PDP context establishment and incoming and outgoing SMS traffic.

Through the use of this environment we can test and verify our implementa-
tion.

6.6.2 Limiting the Call-forwarding Attack

The call-forwarding attack as described by [85] is based on insertion of call-
forwarding settings by hijacked phones. Their attack requires 2,500 Transac-
tions Per Seconds (TPS) for low traffic networks and up to 30,000 TPS for high
traffic networks.

The victim phones issue AT+CCFC commands to configure and enable call-
forwarding. The authors of [85] calculated that on average a command takes
4.7 seconds to complete, meaning one can issue up to 12 commands perminute.
Thus, they require 11,750 bots to perform the attack on a low traffic network.

4.7 seconds∗2,500 T PS = 11,750 hosts

For our initial experiment we configured the filter to allow 5 commands per
minute. We chose this configuration because the Android call-forwarding con-
figuration panel issues 3 commands when it is started. These commands query
the network for the current state as shown in Table 6.1. The command that
causes high load (enable call-forwarding) is only issued when the user changes
a setting. After changing the setting the network is queried again. We, there-
fore, set the threshold = 5. With this setting the botnet’s size already has to more
than double in order to successfully perform the attack. Figure 6.7 shows the
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Figure 6.7: The increase in size of the botnet necessary to maintain the 2,500 TPS
with our protection system in place.

necessary size increase of the botnet described in [85] to perform the attack if
the zombie phones are equipped with our protection system.

To further improve the protection provided by our system we can increase
the interval of the call-forwarding filter, resulting in an even lower number of
commands per minute. For example, allowing just 10 call-forwarding com-
mands over a period of 10 minutes of time. Such a threshold results in 1 com-
mand per minute on average, which is reasonable for normal usage.

6.6.3 Limiting PDP Context Changes

To limit the number of PDP context changes we have to mediate two different
commands. The commands are described in Section 6.5.3 where the side effects
of these commands are presented. The side effect, which must be detected by
our system, is switching the baseband mode between GSM-only, 3G-only, and
GSM+3G. Calculating the threshold for PDP context changes is straightforward.

Defining pt as the threshold for PDP context changes, et as the threshold
for AT*EPPSD commands, and ct as the threshold for AT+CFUN commands,
yields

pt = et + ct .

The graph in Figure 6.8 shows the number of possible PDP context changes
depending on the settings of pt . Without any rate limiting applied, 30 changes
per minute is the maximum possible.
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Figure 6.8: The graph shows the number of PDP context changes possible based
on how many commands are allowed per minute. The last point at
288 PDP context per day is based on 0.2 commands per minute.

6.6.4 SMS Trojan

We installed the FakePlayer-A [31] premium SMS Trojan to a test phone equip-
ped with our protection system. The Trojan is built to send a SMS message to
a premium rate number to steal money from the victim. We closely monitor
the log output of our filter to determine what happens. In addition we also
monitor the phone’s behavior on our private GSM network, to see if it actually
sends any SMS message or not.

The Trojan tries to send an SMS message to the number 3353. As this number
is short (only 4 digits) it is detected by our Short Code Detector. Extensive anal-
ysis of this Trojan [31] determined that the Trojan sends a SMS to either 3353 or
798657. However, we only observed attempts to 3353 in our lab. Below is an
excerpt from our filter log.

AT+CMGS=15
00010004813335000006b71cce56bb01

number: 3353
short phone number >3353< detected, could be premium
filterd: filtered returned: 0
filterd: blocking >00010004813335000006b71cce56bb01<

107



6 Improving the Security of the Cellular Modem Interface

6.6.5 SMS Controlled Botnets

SMS controlled botnets such as discussed in Chapter 5 send and receive SMS
messages for their command and control channel. Since this work focuses on
outgoing signaling traffic we decided to only look at outgoing traffic, from the
phone to the network.

To prevent botnet communication we enabled our Binary Payload Detector to-
gether with the rate limiting for the AT+CMGS command (the command to
send SMS messages). The rate limiter will only prevent the phone from send-
ing binary SMS messages at a high rate. Binary SMS messages are rarely sent
by the user since these are mostly used by applications. Furthermore, the most
common usage of binary SMS are messages that are received by the phone (e.g.
as part of MMS). Text messages on the other side are often used in an instant
messaging scheme with a high rate of outgoing and incomingmessages. There-
fore, blocking text messages will be more complicated since they would need
to be analyzed thoroughly before one is able to safely block them.

6.7 Related Work

Related work falls into four categories. First, security enhancements for smart-
phones. Second, virtualization on smartphones. Third, Android specific secu-
rity extensions. Forth, infrastructure-based security enhancements for cellular
networks.

Traynor et al. summarize in [83] the lack of security features on mobile
and smartphones and discuss possible solutions. Part of their work presents
SELinux [54] as means of access control of system resources. But the authors
come to the conclusion that such an approach is infeasible. In our work, we
directly address the specific problems of signaling attacks. We not only pro-
pose a solution, but fully implemented a prototype and evaluated it. Mulliner
et al. [64] build a label based tracking system that tracks a process’ access to
network interfaces to limit future access to other network resources such as the
cellular modem. The SEIP [94] architecture uses D-Bus in combination with
SELinux to enforce access policies for applications accessing various system re-
sources on a smartphone.

Selhorst et al. [75] describe a Trusted Mobile Desktop prototype that, similar
to our approach, uses a micro kernel together with multiple virtualized Linux
instances. In their setup, a so-called User Linux partition drives the baseband
and runs the user’s applications. A separate component signs and encrypts
SMS. The encrypted SMS is then sent via the User Linux’s baseband driver.
They do not provide means for protecting the cellular network from malicious
behavior of the User Linux partition. Schmidt et al. [74] describe how a trusted
mobile platform can be built on a trustworthy platform. The authors employ
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the Turaya security kernel to run a virtualized legacy operating system (Linux)
side-by-side with multiple trusted engines. They do not propose to control
network interfaces. Klein et al. [50] design and implement seL4. In their work
the authors demonstrate that the implementation of a modern third-generation
micro kernel can be formally verified to match its specification. VMware [67]
ported their virtualization software to the Android platform. However, this
port runs a virtualized guest version of Android on top of a host Android.
Additionally, our solution is based on a micro kernel and has a significantly
smaller trusted computing base.

Enck et al. build TaintDroid [25] a taint tracking based security and privacy
enhancement for Android. TaintDroid is able to track which data an applica-
tion accessed. The MockDroid [14] Android enhancement adds the possibility
to selectively mock specific features such as Internet connectivity. Thus appli-
cations cannot use specific functionalities even if they actually are available.

Previous work on protecting cellular phone networks has targeted other at-
tack vectors such as [84] that investigates countermeasures for preventing re-
source exhaustion attacks against cellular phone networks carried out over the
Internet.

6.8 Conclusions

We designed and implemented our protection system called the virtual modem
to protect cellular network infrastructure from hijacked smartphones. The vir-
tual modem mediates all signaling traffic from the smartphone OS to the base-
band and thus protects the cellular network. The implementation is based on
running Android and our virtual modem in isolated partitions on top of a mi-
cro kernel. Our solution is independent from the baseband and thus supports
wide adoption.

We evaluated our implementation using real mobile phone hardware that
we connect to our own GSM network. Our GSM network allows us to monitor
all relevant activities of the phone. Part of the evaluation was installing a real-
world Trojan on the device. The Trojan was successfully launched, but our
virtual modem prevented the fraudulent access to the cellular network.

Signaling attacks are a serious threat and recognized as such by the GSMA.
The evaluation of our protection system showed that it can effectively prevent
these attacks and thus protect cellular core networks. In addition it protects the
end-user.

6.8.1 Future Improvements

Our virtual modem can be enhanced with the following functionality.
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VPN Gateway The modem can establish access to VPNs in a way that even a
rooted Android cannot access the key material.

Advanced Intrusion Detection/Prevention We can enhance our IP filter with
logic to detect and prevent attacks against the smartphone as well as against
the operator.

Policy Update Infrastructure The virtual modem can include an update infras-
tructure to allow the operator to update the filtering policies. Such an update
would be performed transparently to the user.

Secure GUI With the addition of a secure graphical user interface, we can imple-
ment a dialog that enables the virtual modem to ask the user for admission of
premium SMS and calls. To make sure that Android malware cannot mimic
the admission dialog, or automatically send the confirmation input, the dialog
must be presented in a way that does not depend on Android for input. Doing
so requires virtualization of the graphics and input hardware.

Hardware Virtualization Porting the Android kernel to our micro kernel re-
quires a significant amount of work. When hardware support for CPU virtu-
alization becomes available on smartphones, it can both reduce the amount of
modifications to the Android kernel, and may improve the performance of our
Android VM.
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In this thesis, we argued that the interface of the cellular modem is one key
element in the puzzle for securing mobile phones and cellular communica-
tions. So far the cellular modem interface has not gotten any attention in terms
of security. This work has described several approaches for analysis, attacks,
and defense of the cellular modem interface of cellular handsets and especially
smartphones.

Throughout this work, we analyzed the interface between the modem and
the mobile operating system in order to utilize it to conduct vulnerability anal-
ysis of SMS implementations on smartphones. Through our analysis, we dis-
covered several security issues in the analyzed targets. We further investigated
feature phones where the cellular modem and the application processor (that
runs the mobile operating system) are executed on the same CPU. Here, we
determined that software bugs on the application processor affect the modem
processor in a negative way. This results in security and reliability issues that
can be abused for Denial-of-Service attacks. In the next step of our work, we in-
vestigated the possibilities of malware that has unlimited access to the cellular
modem of a smartphone. We implemented and evaluated a Proof-of-Concept
cellular botnet that communicates through SMS messaging. The investigation
showed that such a botnet is feasible. Our investigation on defending against
this kind of cellular botnet showed that mobile operators will have to play a
primary role in this. Following up on our botnet investigation we conceived
a protection mechanism that mitigates attacks carried out by malware that has
unlimited access to the cellular modem. Our protection system mediates the
communication channel between the mobile operating system and the cellular
modem. The primary goal is to prevent Denial-of-Service attacks against cellu-
lar networks carried out from hijacked smartphones. Furthermore, it is able to
prevent fraud and SMS-based botnet communication.

In this thesis we proved that the modem interface plays an essential role in
securing mobile phones and cellular networks. The interface can be abused
for vulnerability analysis and likewise for malicious activities, as presented in
Chapters 3, 4, and 5. This shows the importance of the cellular modem interface
and confirms our claim (i). Our second claim (ii) states that access and usage of
the cellular modem is only controlled in a very coarse-grain way. We validated
this claim in Chapters 5 and 6 where we discuss malicious usage of the modem.
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We show that once an application has access to the modem it can freely interact
with the modem. Malware that has access to the cellular modem can leverage
all its capabilities and abuse it for carrying out attacks. Based on the previous
observation we validated claim (iii)where we state that unlimited access poses
a security threat to the handset and the cellular network. Unlimited access can
be abused for botnet communication, premium rate SMS fraud, or Denial-of-
Service attacks. Based on the validation of our three claims we proved that
our main hypothesis is valid – that the overall security of cellular handsets and
cellular networks can be strengthened through improving the security of the
cellular modem interface. In Chapter 6 we presented an implementation of a
strong access and usage control mechanism that improves the overall security
of both, the handset and the network.

We believe that protecting the cellular modem interface from unlimited ac-
cess from the mobile operating system is the necessary next step in the evolu-
tion of securing mobile handsets. Our work will help leading towards creating
more responsible devices that participate in the growing world of cellular com-
munication.

Future Work

We plan to enhance our virtual modem by adding features like intrusion de-
tection and prevention. We believe this is a promising path for future research.
Likewise, we want to further investigate mobile malware. Specifically mobile
malware that contains botnet-like functionalities such as remote control are be-
coming a serious threat to mobile phone users and mobile network operators.
Malicious code on smartphones is an ongoing trend that has to be followed.

Further directions will concentrate on the cellular modem itself, since only
very little work has been carried out on this topic so far. This includes vulner-
ability analysis of the software running on the modem CPU itself and incorpo-
rate protocol level security measures directly into the modem software.

We want to extend our work beyond mobile handset and investigate other
areas of cellular devices. Especially the area of cellular Machine-to-Machine
(M2M) communication is very interesting.

112



Acknowledgements

I am extremely grateful tomy advisor Jean-Pierre Seifert who providedmewith
an excellent environment for perusing my research. He always supported my
independent research and let me select my own research topics. His motiva-
tion and support during my work was always greatly appreciated. This thesis
would not have been possible without his support.

Next I want to thank my various research collaborators. Especially Nico
Golde and Charlie Miller for their work on the SMS projects; without them
the projects would not have been such great success. Furthermore, I want to
thank Steffen Liebergeld, Matthias Lange, and Dmitry Nedospasov for their
collaboration and support in general.

I want to thankmy colleagues and friends from the Security in Telecommunica-
tions (SECT) group for making this journey fun and productive. Special thanks
go to Patrick Stewin for many helpful discussions during the years of my re-
search.

Furthermore, I want to thankmy former advisor, colleagues and friends from
the SecLab at the University of California at Santa Barbara where I started
working on (smartphone) security while working onmyMaster’s degree many
years ago. This thesis still benefits from things I learned from my time there.

Additional thanks go to the many other people who helped and supported
me in various ways during my time as a PhD student and while writing this
thesis. This includes the time before I joined TU Berlin. The incomplete list is
(in no particular order): Volker Roth, Bernhard Ager, Sebastian Schinzel, and
Michael Kasper.

Very special thanks go to my parents. Thanks for your support and every-
thing else!

Finally, I want to thank Deutsche Telekom AG and specifically the people at
the Laboratories not only for general funding, but also for providing an out-
standing work environment.

113



Acknowledgements

114



List of Figures

2.1 The basic setup of a cellular network. . . . . . . . . . . . . . . . . 23
2.2 The basic design of a modern smartphone. . . . . . . . . . . . . . 25

3.1 SMS_DELIVER Message Format . . . . . . . . . . . . . . . . . . . 30
3.2 The User Data Header (UDH) . . . . . . . . . . . . . . . . . . . . . 30
3.3 Unsolicited AT result code that indicates the reception of an SMS

message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Logical model of our injector framework . . . . . . . . . . . . . . . 34
3.5 The UDH for SMS Concatenation . . . . . . . . . . . . . . . . . . . 36
3.6 The UDH for SMS Port Addressing . . . . . . . . . . . . . . . . . . 36

4.1 Our setup: A laptop that runs OpenBSC and the fuzzing tools,
the nanoBTS, and some of the phones we analyzed. . . . . . . . . 47

4.2 Mobile terminated SMS . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Logical view of our setup . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Format of the SMS_SUBMIT PDU . . . . . . . . . . . . . . . . . . . 53
4.5 The User Data Header . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6 Timing of SMS message delivery attempts . . . . . . . . . . . . . . 62

5.1 Kademlia P2P C&C . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 SMS only C&C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3 SMS-HTTP hybrid C&C . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4 Basic command structure . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1 The architecture of our protection system. All interaction with
the baseband is mediated by the virtual modem. Android runs
inside its own virtual machine. . . . . . . . . . . . . . . . . . . . . 93

6.2 One of our Aava devices. A debug board is attached to the right
and provides a serial line. . . . . . . . . . . . . . . . . . . . . . . . 96

6.3 Our implementation consists of two components running on the
Fiasco.OCmicro kernel, the L4Android running the Android soft-
ware stack and the virtual modem. The virtual modem is com-
posed of three parts, the AT command filter, a Linux kernel that
contains drivers and the Forwarder. . . . . . . . . . . . . . . . . . 97

6.4 Configuration and activation of a PDP context on our ST-Ericsson
baseband hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

115



List of Figures

6.5 For the commands of interest we track each instance of a com-
mand within the configured interval. If the configured threshold
is reached the command is blocked. When the interval expires
the counter is reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.6 The status of our AT command filter after booting the device for
AT command profiling. . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.7 The increase in size of the botnet necessary to maintain the 2,500
TPS with our protection system in place. . . . . . . . . . . . . . . . 106

6.8 The graph shows the number of PDP context changes possible
based on how many commands are allowed per minute. The
last point at 288 PDP context per day is based on 0.2 commands
per minute. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

116



List of Tables

4.1 Mobile phone manufacturer market shares . . . . . . . . . . . . . 45

5.1 Connectivity times. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1 AT commands issued during runtime. . . . . . . . . . . . . . . . . 103

117



List of Tables

118



Bibliography

[1] 3GPP/ETSI. 3GPP TS 03.38 Alphabets and language-specific information.
http://www.3gpp.org/ftp/Specs/html-info/0338.htm, 1998.

[2] 3GPP/ETSI. 3GPP TS 03.40 Technical realization of the Short Message
Service. http://www.3gpp.org/ftp/specs/html-info/0340.htm, 1998.

[3] 3GPP/ETSI. 3GPP TS 04.11 Point-to-Point (PP) Short Message Service
(SMS) Support on Mobile Radio Interface. http://www.3gpp.org/ftp/
specs/html-info/0411.htm, 1998.

[4] 3GPP/ETSI. 3GPP TS 02.30 - Man-Machine Interface (MMI) of the Mo-
bile Station (MS). http://www.3gpp.org/ftp/Specs/html-info/0230.htm,
June 2002.

[5] 3GPP/ETSI. 3GPP TS 27.007 - Technical Specification Group Terminals;
AT command set for User Equipment (UE). http://www.3gpp.org/ftp/
Specs/html-info/27007.htm, June 2003.

[6] 3GPP/ETSI. 3GPP TS 23.040 - Technical realization of the Short Message
Service (SMS). http://www.3gpp.org/ftp/Specs/html-info/23040.htm,
September 2004.

[7] 3GPP/ETSI. 3GPP TR 23.840 Study into routeing of MT-SMs via the
HPLMN. http://www.3gpp.org/ftp/Specs/html-info/23840.htm, 2007.

[8] Aava Mobile Oy. Aava Mobile. http://www.aavamobile.com/.

[9] ABI Research. Worldwide Mobile Subscriptions Number More than Five
Billion. http://www.abiresearch.com/press/3531-Worldwide+Mobile+
Subscriptions+Number+More+than+Five+Billion, October 2010.

[10] T. Ahonen. Mobile Phone Market Shares for year of 2009.
http://communities-dominate.blogs.com/brands/2010/02/phone-
market-shares-for-year-of-2009-and-last-quarter-2009.html,
February 2010.

[11] T. Ahonen. Tomi Ahonen Almanac 2010 Mobile Telecoms Industry Review.
February 2010.

119



Bibliography

[12] P. Amini and A. Portnoy. Sulley - Pure Python fully automated and unat-
tended fuzzing framework. http://code.google.com/p/sulley/.

[13] BBC News. Estonia hit by ’Moscow cyber war’. http://news.bbc.co.uk/
2/hi/europe/6665145.stm, 2007.

[14] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan. MockDroid: trading
privacy for application functionality on smartphones. In 12th Workshop on
Mobile Computing Systems and Applications, March 2011.

[15] S. Byers, A. D. Rubin, and D. Kormann. Defending against an Internet-
based attack on the physical world. ACM Trans. Internet Technol., 4(3):239–
254, 2004.

[16] cellular-news. A "rising Tide" of SS7 Based Mobile Network Fraud. http:
//www.cellular-news.com/story/46377.php, November 2010.

[17] CERT. Advisory CA-1998-01 Smurf IP Denial-of-Service Attacks. http:
//www.cert.org/advisories/CA-1998-01.html, January 1998.

[18] Clickatell (Pty) Ltd. Clickatell Bulk SMS Gateway. http://www.
clickatell.com.

[19] ComScore. German Mobile Market Share. http://www.comscore.com/
index.php/Press_Events/Press_Releases/2010/1/comScore_Reports_
November_2009_German_Mobile_Market_Share, November 2010.

[20] ComScore. U.S. Mobile Subscriber Market Share. http://comscore.com/
Press_Events/Press_Releases/2010/7/comScore_Reports_May_2010_U.
S._Mobile_Subscriber_Market_Share, May 2010.

[21] D. Danchev. DDoS extortion-themed scam circulating. http://www.zdnet.
com/blog/security/ddos-extortion-themed-scam-circulating/7180,
August 2010.

[22] J. de Haas. Mobile Security: SMS and a little WAP. http://www.itsx.com/
hal2001/hal2001-itsx.ppt, August 2001.

[23] Deutsche Telekom Medien GmbH. Das Örtliche. http://dasoertliche.
de.

[24] J. R. Douceur. The Sybil Attack. In Revised Papers from the First International
Workshop on Peer-to-Peer Systems, IPTPS ’01, 2002.

120



Bibliography

[25] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N.
Sheth. TaintDroid: an information-flow tracking system for realtime pri-
vacy monitoring on smartphones. In Proceedings of the 9th USENIX con-
ference on Operating systems design and implementation, OSDI’10, pages 1–6,
Berkeley, CA, USA, 2010. USENIX Association.

[26] W. Enck, P. Traynor, P. McDaniel, and T. La Porta. Exploiting Open Func-
tionality in SMS-Capable Cellular Networks. In Conference on Computer
and Communications Security, 2005.

[27] T. Engel. Remote SMS/MMS Denial of Service - Curse Of Silence. http:
//berlin.ccc.de/~tobias/cursesms.txt, December 2008.

[28] European Telecommunications Standards Institute (ETSI). GSM 06.06 (ETS
300 642): Digital cellular telecommunication system (Phase 2); AT Com-
mand set for GSMMobile Equipment (ME). http://www.etsi.org, 1999.

[29] R. Farrow. DNS Root Servers: Protecting the Internet. Network Magazin,
2003.

[30] Federal Communications Commission. Cognitive Radio Technologies and
Software Defined Radios (ET Docket No. 03-108; FCC 07-66), June 2007.

[31] Fortinet. Trojan-SMS.AndroidOS.FakePlayer-A. http://www.fortiguard.
com/encyclopedia/virus/android_fakeplayer.a!tr.html, August 2010.

[32] F. Freiling, T. Holz, , and G. Wicherski. Botnet Tracking: Exploring a Root-
Cause Methodology to Prevent Distributed Denial-of-Service Attacks. In
Proceedings of 10th European Symposium On Research In Computer Security
(ESORICS’05), July 2005.

[33] GigaOM. When It Comes to Apps, Feature Phones Are the
New Black. http://gigaom.com/2010/03/27/when-it-comes-to-apps-
feature-phones-are-the-new-black/, May 2010.

[34] Google Inc. Android. http://www.android.com/.

[35] J. B. Grizzard, V. Sharma, C. Nunnery, B. B. H. Kang, and D. Dagon. Peer-
to-peer botnets: Overview and case study. In Proceedings of the Workshop
on Hot Topics in Understanding Botnets, April 2007.

[36] GSM Association (GSMA). Network Efficiency Threats v0.4a, May 2010.

[37] C. Guo, H. J. Wang, and W. Zhu. Smartphone attacks and defenses. In
Third ACM Workshop on Hot Topics on Networks, 2004.

121



Bibliography

[38] H. Härtig, M. Hohmuth, J. Liedtke, J. Wolter, and S. Schönberg. The perfor-
mance of µ-kernel-based systems. In Proceedings of the sixteenth ACM sym-
posium on Operating systems principles, SOSP ’97, pages 66–77, New York,
NY, USA, 1997. ACM.

[39] Hay Systems Ltd. HSL Mobile Messaging Gateway. http://www.hslsms.
com.

[40] W. J. Hengeveld. WindowsMobile AT-command log-driver. http://nah6.
com/~itsme/cvs-xdadevtools/itsutils/leds/logdev.cpp.

[41] T. Holz, M. Steiner, F. Dahl, E. Biersack, and F. Freiling. Measurements
and Mitigation of Peer-to-Peer-based Botnets: A Case Study on Storm
Worm. In Proceedings of the First USENIX Workshop on Large-Scale Exploits
and Emergent Threats (LEET ’08), 2008.

[42] R. Hund, M. Hamann, and T. Holz. Towards Next-Generation Botnets. In
4th European Conference on Computer Network Defense (EC2ND 08), 2008.

[43] IDC. Western European Mobile Phone Market Grows. http://www.idc.
com/getdoc.jsp?containerId=prUK22402810, June 2010.

[44] Intel Corporation. Introducing the Next-Generation Intel® Atom™
Processor-based Platform. http://download.intel.com/pressroom/
kits/atom/z6xx/pdf/Fact_Sheet_Intel_Atom_Processor_Platform.pdf,
2010.

[45] V. Iozzo and R.-P. Weinmann. iPhone Safari vulnerability allowed to steal
the SMS database. http://news.cnet.com/8301-27080_3-20001126-245.
html, March 2010.

[46] ip.access Ltd. nanoBTS 1800. http://www.ipaccess.com/picocells/
nanoBTS_picocells.php.

[47] D. Johnson, A. Menezes, , and S. A. Vanstone. The elliptic curve digital
signature algorithm (ecdsa). Int. J. Inf. Sec., 1(1):36–63, 2001.

[48] B. Jurry. Siemens Mobile SMS Exceptional Character Vulnerability. http:
//www.xfocus.org/advisories/200201/2.html, January 2002.

[49] M. Kenney. Ping of Death. http://insecure.org/sploits/ping-o-
death.html, October 1996.

[50] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch,
and S. Winwood. seL4: Formal Verification of an OS Kernel. In ACM
Symposium on Operating System Principles, pages 207–220. ACM, 2009.

122



Bibliography

[51] M. Lange and S. Liebergeld. L4Android: Android on top of L4. http:
//www.l4android.org, 2011.

[52] J. Liedtke. Onmicro-kernel construction. In Proceedings of the fifteenth ACM
symposium on Operating systems principles, SOSP ’95, pages 237–250, New
York, NY, USA, 1995. ACM.

[53] Lookout Inc. DroidDream. http://blog.mylookout.com/2011/
03/security-alert-malware-found-in-official-android-market-
droiddream/, March 2011.

[54] P. Loscocco and S. Smalley. Integrating Exible Support For Security Poli-
cies Into The Linux Operating System. In Proceedings of the FREENIX Track
of the USENIX Annual Technical Conference, 2001.

[55] P. Maymounkov and D. Mazières. Kademlia: A peer-to-peer information
system based on the xor metric. In Revised Papers from the First Interna-
tional Workshop on Peer-to-Peer Systems, IPTPS ’01, pages 53–65, London,
UK, 2002. Springer-Verlag.

[56] Micromax. Micromax mobile. http://www.micromaxinfo.com.

[57] C. Miller. Exploiting the iPhone. http://securityevaluators.com/
content/case-studies/iphone/, August 2007.

[58] C. Miller, M. Daniel, and J. Honoroff. Exploiting Android. http:
//securityevaluators.com/content/case-studies/android/index.jsp,
October 2008.

[59] C. Miller and C. Mulliner. Fuzzing the Phone in your Phone.
http://www.blackhat.com/presentations/bh-usa-09/MILLER/BHUSA09-
Miller-FuzzingPhone-SLIDES.pdf, August 2009.

[60] Mobile Security Lab. SonyEricsson WAP Push Denial of Service. http:
//www.mseclab.com/?page_id=123, January 2009.

[61] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver.
Inside the Slammer Worm. IEEE Security and Privacy, 1:33–39, 2003.

[62] B. Müller. From 0 to 0-Day On Symbian. https://www.sec-
consult.com/files/SEC_Consult_Vulnerability_Lab_Pwning_Symbian_
V1.03_PUBLIC.pdf, 2009.

[63] C. Mulliner and G. Vigna. Vulnerability Analysis of MMS User Agents.
In Proceedings of the Annual Computer Security Applications Conference (AC-
SAC), Miami, FL, December 2006.

123



Bibliography

[64] C. Mulliner, G. Vigna, D. Dagon, and W. Lee. Using Labeling to Prevent
Cross-Service Attacks Against Smart Phones. In Proceedings of the Con-
ference on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA), volume 4064 of LNCS, pages 91–108, Berlin, Germany, July 2006.
Springer.

[65] J. Niemelä. Mobile Malware And Monetizing 2011. https:
//noppa.tkk.fi/noppa/kurssi/t-110.6220/luennot/T-110_6220_
mobile_maleware.pdf, 2011.

[66] Oulu University Secure Programming Group. PROTOS Security Testing
of Protocol Implementations. http://www.ee.oulu.fi/research/ouspg/
protos/, 2002.

[67] PC World. VMWare Shows off Mobile Virtualization on An-
droid. http://www.pcworld.com/article/219671/vmware_shows_off_
mobile_virtualization_on_android.html, 2011.

[68] G. J. Popek and R. P. Goldberg. Formal requirements for virtualizable third
generation architectures. Commun. ACM, 17:412–421, July 1974.

[69] P. A. Porras, H. Saidi, and V. Yegneswaran. An Analysis of the iKee.B
iPhone Botnet. In Proceedings of the 2nd International ICST Conference on
Security and Privacy on Mobile Information and Communications Systems (Mo-
bisec), May 2010.

[70] R. Racic, D. Ma, and H. Chen. Exploiting MMS vulnerabilities to stealthily
exhaust mobile phone’s battery. In Proceedings of the Second IEEE Com-
munications Society / CreateNet International Conference on Security and Pri-
vacy in Communication Network (SecureComm), Baltimore, MD, Auguest 28
- September 1, 2006.

[71] Routo Telecommunications Ltd. Routo Messaging. http://www.
routomessaging.com.

[72] Samsung. S3C6400. http://www.samsung.com/global/system/business/
semiconductor/product/2007/8/21/661267ptb_s3c6400_rev15.pdf,
2007.

[73] J. H. Schiller. Mobile Communications (second edition). 2003.

[74] A. U. Schmidt, N. Kuntze, and M. Kasper. On the deployment of mobile
trusted modules. In Wireless Communications and Networking Conference,
2008. WCNC 2008. IEEE, pages 3169–3174. IEEE, 2008.

124



Bibliography

[75] M. Selhorst, C. Stüble, F. Feldmann, and U. Gnaida. Towards a trusted
mobile desktop. In Proceedings of the 3rd international conference on Trust and
trustworthy computing, TRUST’10, pages 78–94, Berlin, Heidelberg, 2010.
Springer-Verlag.

[76] K. Singh, S. Sangal, N. Jain, P. Traynor, and W. Lee. Evaluating Bluetooth
as a Medium for Botnet Command and Control. In Proceedings of the Inter-
national Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA), July 2010.

[77] Strategy Analytics. Q3 2009 Cellular Baseband Market Review.
http://blogs.strategyanalytics.com/HCT/post/2010/03/09/Q3-
2009-Cellular-Baseband-Market-Review.aspx, March 2010.

[78] SUN Microsystems. Java Micro Edition. http://www.oracle.com/
technetwork/java/javame/index.html.

[79] Texas Instruments. OMAP3 Processors: OMAP3430. http:
//focus.ti.com/general/docs/wtbu/wtbuproductcontent.tsp?
templateId=6123&navigationId=12643&contentId=14649.

[80] The Honeynet Project. Honeynet Project. http://project.honeynet.org,
2005.

[81] The Intrepidus Group. WebOS: Examples of SMS delivered in-
jection flaws. http://intrepidusgroup.com/insight/2010/04/webos-
examples-of-sms-delivered-injection-flaws/, April 2010.

[82] TopNews.in. Micromax becomes the third largest handset manufacturer
in India. http://www.topnews.in/micromax-becomes-third-largest-
handset-manufacturer-india-2260105, April 2010.

[83] P. Traynor, C. Amrutkar, V. Rao, T. Jaeger, P. McDaniel, and T. La Porta.
From Mobile Phones to Responsible Devices. Journal of Security and Com-
munication Networks (SCN), 2010.

[84] P. Traynor, W. Enck, P. McDaniel, and T. La Porta. Mitigating Attacks on
Open Functionality in SMS-Capable Cellular Networks. IEEE/ACM Trans-
actions on Networking (TON), 2009.

[85] P. Traynor, M. Lin, M. Ongtang, V. Rao, T. Jaeger, T. La Porta, and P. Mc-
Daniel. On Cellular Botnets: Measuring the Impact of Malicious Devices
on a Cellular Network Core. In ACM Conference on Computer and Commu-
nications Security (CCS), November 2009.

125



Bibliography

[86] P. Traynor, P. Mcdaniel, and T. La Porta. On attack causality in internet-
connected cellular networks. In Proceedings of the USENIX Security Sympo-
sium, 2007.

[87] TU Dresden. L4Linux - Running Linux on top of L4. http://os.inf.tu-
dresden.de/L4/LinuxOnL4/, January 2011.

[88] TU Dresden. The Fiasco microkernel. http://os.inf.tu-dresden.de/
fiasco/, January 2011.

[89] WAP Forum. WAP-209-WSP Wireless Application Protocol MMS Encap-
sulation Protocol. http://www.wapforum.com, 2002.

[90] G. Weidman. Transparent Botnet Control for Smartphones over
SMS. http://www.grmn00bs.com/GeorgiaW_Smartphone_Bots_SLIDES_
Shmoocon2011.pdf, January 2011.

[91] R.-P. Weinmann. All Your Baseband Are Belong To Us. https://
cryptolux.org/media/hack.lu-aybbabtu.pdf, 2010.

[92] H. Welte. OpenBSC. http://openbsc.osmocom.org/trac/, 2008.

[93] O. Whitehouse. Nokia Phones Vulnerable to DoS Attacks. http://www.
infoworld.com/article/03/02/26/HNnokiados_1.html, February 2003.

[94] X. Zhang, J.-P. Seifert, and O. Acicmez. SEIP: Simple and Efficient Integrity
Protection for Open Mobile Platforms. In Information and Communications
Security, volume 6476 of Lecture Notes in Computer Science, pages 107–125.
Springer Berlin / Heidelberg, 2010.

126


