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Abstract
We consider load balancing in service systems with affinity relations between jobs and
servers. Specifically, an arriving job can be assigned to a fast, primary server from a
particular selection associated with this job or to a secondary server to be processed at
a slower rate. Such job–server affinity relations can model network topologies based
on geographical proximity, or data locality in cloud scenarios. We introduce load
balancing schemes that assign jobs to primary servers if available, and otherwise to
secondary servers. A novel coupling construction is developed to obtain stability con-
ditions and performance bounds. We also conduct a fluid limit analysis for symmetric
model instances, which reveals a delicate interplay between the model parameters and
load balancing performance.

Keywords Load balancing · Stochastic coupling · Fluid limit · Job scheduling ·
Network topology

Mathematics Subject Classification 60K25 · 68M20 · 90B15 · 90B22 · 90B35

1 Introduction

Load balancing algorithms play a crucial role in distributing jobs among multiple
servers and have attracted strong renewed interest due to proliferation of large data
centers and cloud computing. Well-known load balancing algorithms include, for
instance, the Join-the-Shortest-Queue (JSQ), Join-the-Shortest-Queue-d (JSQ(d)) and
Join-the-Idle-Queue (JIQ) policies. These policies have been extensively analyzed in
an overarching framework called the supermarket model. This framework consists of
a single dispatcher that immediately routes the arriving jobs to one of the N identical
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parallel servers according to the assignment policy under consideration. The servers
are identical in the sense that each of them can handle any arriving job and all servers
process jobs at the same rate. The JSQ policy assigns each arriving job to the server
with the shortest queue length and has strong stochastic optimality properties among
the class of policies without advance knowledge about the service requirements [5,28].
The JSQ policy involves a significant communication burden, however, which may be
prohibitive in large systems.

This scalability issue has spurred an interest in the JSQ(d) policy which assigns
a job to the server with the shortest queue length among d ≥ 2 randomly selected
servers. Mitzenmacher [18] and Vvedenskaya et al. [27] analyzed the JSQ(d) policy
in an asymptotic regime where the total arrival rate and the number of servers grow
proportionately larger. Substantial performance gains were established compared to
purely random assignment, even for d = 2.Mukherjee et al. [19] show that the waiting
time of an arriving job in fact vanishes when d tends to infinity as the number of servers
grows large. A vanishing waiting time is also achieved by the JIQ policy which directs
arriving jobs to an idle server or a randomly selected server if all servers are occupied
[16]. The JIQ policy only has a constant communication overhead per job, but requires
memory at the dispatcher. We refer to Van der Boor et al. [26] and Gamarnik et al. [8]
for further details.

As mentioned above, a key feature of the supermarket framework is the exchange-
ability of the servers in the sense that any job can be handled equally well by any
server, which is often not the case in practice. In the present paper, we will focus on
a scenario where jobs or servers are not intrinsically different, but where particular
servers might be better equipped to process certain jobs because of affinity or compat-
ibility relations. We refer to the model as the affinity-scheduling model. Such affinity
relations may, for example, arise due to geographical proximity in spatial settings, or
data locality in content distribution or transaction processing applications.

More concretely, once a job arrives, there is a subset of the servers (referred to as
the primary selection) that can process it at rate μ1. However, it might be beneficial to
assign this job to one of the remaining servers, if this allows an immediate start of the
service. Obtaining service at a server that was not in the primary selection comes with
a price; the service rate μ2 will be smaller than μ1. In a recent paper by Gardner et al.
[9], a similar assignment policy is considered for a loosely related but different model
where servers are heterogeneous. The jobs are statistically identical in this setting,
i.e., a specific subset of servers is faster for all jobs. In Sect. 2, the assignment and
scheduling policy of the affinity-scheduling model will be described in greater detail
as well as the similarity and difference with the setup in [9].

One particular model instance is the neighborhood model, where the geographical
proximity of the underlying network has been taken into account. Assume that the
service system is built on top of a graph structure GN , then the primary selection
for a job consists of the server where it arrives and the immediate neighbors of this
server determined by GN . The neighborhood model extends the models constructed
by Gast [10], Turner [25] andMukherjee et al. [19]. In these settings, it is assumed that
all nodes have equal arrival rates and jobs can only be forwarded to direct neighbors; it
is not possible to redirect an arriving job to any other nodes. The model constructed by
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Yekkehkhany et al. [29] does allow for jobs to be redirected to higher-degree neighbors
to be served at lower rates.

Another model instance that we will investigate is the combinatorial model. Let d
be a fixed integer, then any selection of d servers could occur as a primary selection for
an arriving job. In addition, the arrival rates will be equal among the server selections
which strengthens the symmetric nature of the combinatorial model.

The lack of exchangeability among the servers makes the affinity-schedulingmodel
complicated to analyze in general. The analytical techniques that are most commonly
used in the context of the supermarket model, such as mean field limits and even
standard coupling arguments, fundamentally rely on this exchangeability. These tech-
niques can only be applied for the combinatorial model. For the general model, and
in particular the neighborhood model, the investigation of load balancing issues is
challenging and enters largely uncharted methodological territory.

We will establish a stochastic dominance result for the occupancy process of the
general affinity-scheduling model, which will yield a sufficient stability constraint
as an immediate by-product. Exploiting the coupling of this dominance result, we
can derive two tighter dominance results for the neighborhood model, which will in
particular hold if the underlying graph structure is rather dense. To the best of our
knowledge, these are the first results that explicitly capture the impact of network
structure on load balancing performance.

For the combinatorial model, we will conduct a fluid limit analysis. A trajectory of
the fluid limit will converge to one of the possibly multiple fixed points, depending
on the mutual relationships of the model parameters and the initial configuration of
the system. When the fixed point is unique, we demonstrate that this provides a good
approximation for the intractable stationary distribution in a finite server setting.When
multiple fixed points occur, we observe the phenomenon of ‘tunneling’ described by
[11]. The stochastic process will switch between multiple modes corresponding to the
locally stable fixed points of the fluid limit.

The remainder of this paper is organized as follows: A detailed model description
is provided in Sect. 2. Next, the main stochastic dominance result and its associated
coupling are presented in Sect. 3, as well as two tighter results for specific instances
of the neighborhood model. In Sect. 4, we present a fluid limit analysis of the affinity-
scheduling policy for combinatorial models. The proofs of all results are deferred to
Sect. 5. Finally, Sect. 6 provides concluding remarks and some directions for further
research.

2 Model description

We now describe the affinity-scheduling model with N servers. Let P({1, . . . , N })
denote the power set of all servers. For a selection S ∈ P({1, . . . , N }), jobs arrive as
a Poisson process with rate λS ≥ 0. For these jobs, the servers in S and Sc are called
the primary and secondary servers, respectively. An arriving job can be assigned as a
type-I job to a primary server or as a type-II job to a secondary server. Type-I jobs have
independent and exponentially distributed service times with parameter μ1 > 0 and
are favored by the server over the type-II jobs. Type-II jobs have on average longer
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service times which are independent and exponentially distributed with parameter μ2
(0 < μ2 < μ1). It is important to note that the job type is not predetermined on arrival,
but established by the assignment policy. The main idea behind our assignment policy
is: ‘Assign a job to a server in the primary selection unless it might be beneficial to
assign it to a secondary server even though the service time might be longer.’ The
rationale for this is to reduce the waiting time of a job. More precisely, the assignment
policy goes through the following three steps:

1. If there is at least one completely idle server in the primary selection S, then assign
the arriving job as a type-I job to one of these servers.

2. Otherwise, if there is at least one completely idle server in the secondary selec-
tion Sc, then assign the arriving job as a type-II job to one of these servers.

3. If there are no idle servers present, then assign the job as a type-I job to the primary
server with the smallest number of type-I jobs. Ties are broken according to the
number of type-II jobs, in favor of a lower number.

When the second step is omitted, our policy resembles a JSQ(|S|) policy with |S| the
cardinality of the primary selection. However, the cardinality of the server selection
is allowed to differ among arriving jobs in our model and the server selection S itself
is not sampled uniformly at random as is the case in a JSQ(|S|) policy. Moreover, the
second step can be interpreted as a JIQ policy on the set of secondary servers. Our
affinity-scheduling policy thus shares similarities with both policies.

Denote the configuration of a server, i.e., the number of type-I and type-II jobs in
its queue, by (i, j), i ≥ 0 and j ∈ {0, 1}. As an illustrative example of the assignment
policy, suppose, for a given arriving job, the primary and secondary servers have
{(1, 0), (1, 1), (1, 1), (4, 0)} and {(1, 0), (1, 1), (1, 1), (3, 1)} as their configurations,
respectively.Under the assignment policy, the third stepwill be applied and the primary
server with configuration (1, 0)will receive an additional type-I job. Notice that under
this strategy, an arriving job will never be assigned as a type-II job to a server that
already has a job in its queue. This implies that if the initial configuration has at most
one type-II job, the number of type-II jobs per server will never exceed one. Without
essential loss of generality, wewill assume that the initial configuration indeed satisfies
this constraint. Furthermore, we assume that the routing decision time and transit times
are negligible.

There is no lower bound imposed on the value ofμ2, which strengthens the fact that
we focus primarily on the type-I jobs. In general, type-I jobs are the preferred type of
jobs, which also manifests itself in the scheduling policy. Each server operates under a
preemptive priority scheduling discipline in favor of the type-I jobs. Moreover, type-I
jobs are served in order of arrival.

Let Nn, j (t) denote the number of type- j jobs at server n ∈ {1, . . . , N } at time t .
The configuration of server n is then given by

(
Nn,I(t), Nn,II(t)

) ∈ N × {0, 1} with
state space (N × {0, 1})N . The vector

(
Nn,I(t), Nn,II(t)

)
n evolves as an irreducible,

time-homogeneous Markov process. However, the length of this vector grows with
the number of servers which is therefore not well suited for, for instance, a fluid limit
analysis. Consequently, we introduce different variables that are more server centric
and will be more convenient in proving stochastic dominance and analyzing the fluid
limit. Define Qi j (t) as the number of servers with i type-I jobs and j type-II jobs at

123



Queueing Systems (2019) 93:227–268 231

time t , with i ≥ 0 and j ∈ {0, 1}. Then,

Qi j (t)
.=
∑

k≥i

Qk j (t) (1)

denotes the number of servers with at least i type-I jobs and exactly j type-II jobs.

We note that Q
N
00(t) + Q

N
01(t) = N by definition. Since the stochastic dominance

result in the next section will focus on the type-I jobs, we also introduce the following
variables:

Qm+(t)
.=

∞∑

i=m

Qi (t), (2)

where Qi (t) denotes the number of servers with at least i type-I jobs, i.e., Qi (t) =
Qi0(t) + Qi1(t). It is important to note that these variables will no longer lead to a
Markov process representation in the general settings mentioned in the introduction.
This immediately limits the number of available techniques to analyze the perfor-
mance.

LetS denote the subset ofP({1, . . . , N })with strictly positive arrival rates. Besides
the general settingwhereS canbe any subset ofP({1, . . . , N }),wewill also investigate
some more restricted cases. In the neighborhood model on the graph topology GN ,
each node represents a server and the edges represent underlying relations between
them. Then each selection in S consists of a server and its neighbors determined by
GN . In total, S contains N different server selections and jobs arrive to each of them
independently at a uniform rate λ > 0. This model instance captures the situation
where a job’s physical arrival location plays a role in its service time at the various
servers.

Let S consist of all possible server selections of size d. The cardinality of S is(N
d

)
, and henceforth, we refer to this model as the combinatorial model. We assume

a uniform arrival rate ν per selection. We let ν = λN/
(N
d

)
per selection so that the

total rate is given by λN . Observe that the combinatorial model captures the situation
where a selection of d servers is drawn uniformly at random as the primary selection
for each job.

Remark 1 There are also instances of the affinity-scheduling model that are not cap-
tured by either the neighborhood model or the combinatorial model. On the one hand,
there are also model instances with non-uniform arrival rates (λS)S per server selec-
tion. On the other hand, some model instances could be intermediate versions of the
neighborhood model and the combinatorial model. As an example, suppose a job
arrives to a primary selection that consists of the servers 1, . . . , 5 or an arbitrary selec-
tion of size two of the remaining servers. Then, S consists of {1, . . . , 5} and all pairs
of servers of 6, . . . , N .

As mentioned in introduction, Gardner et al. focus on a model with heterogeneous
servers which is loosely related to ours. The system under consideration consists of
exactly kF servers operating at rate μ1 (fast servers) and kS servers operating at rate
μ2 < μ1 (slow servers) [9]. For each arriving job, a primary selection of size dF
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is uniformly selected from the fast servers and a secondary selection of size dS is
selected from the slow servers. Then, an allocation strategy similar to ours, referred
to as JSQ(dF , dS), is applied with the only difference that the second and third steps
are not always applied even if the conditions are fulfilled. For instance, even if the
condition in step two is fulfilled, with probability 1−pS the arriving job will still be
forwarded to the (busy) fast server with the shortest queue length. Similarly, the third
step is only applied with probability pF once its condition is fulfilled and there are
no idle severs in both selections. So, the major difference between the two models is
the way heterogeneity between the servers manifests itself. Both models coincide in
the very special case when the allocation strategy in [9] utilizes the model parameters
dF = kF , dS = kS and pF = pS = 1 and the set of server selections S in the
affinity-scheduling model consists of only one set of servers that coincides with the
fast servers in [9].

3 Stochastic dominance and coupling

In this section, we establish several stochastic dominance results for our affinity-
scheduling strategy. We will construct a stochastic coupling that allows a comparison
with various reference systems in terms of the ordered server states, and refer to this
coupling as the restructure coupling, or shorter R-coupling. In contrast to the affinity
system, the various reference systems all involve N exchangeable servers and are
therefore far more amenable to (asymptotic) analysis, yielding tractable performance
bounds. So, the coupling builds a bridge between a structured system on the one hand
and an unstructured system on the other hand, hence the name of the coupling. From
the previous section, we know that there is at most one type-II job present. Due to this
boundedness of the number of type-II jobs, we will only count the number of type-I
jobs in the affinity system. One reason for this is that only these jobs could possibly
lead to unstable behavior.

3.1 General framework

Before we elaborate on the specific results, the general framework of the R-coupling
is presented. The common features and differences of the specific generalizations of
the coupling for different model instances are exposed.

While each of the N servers in the reference system processes jobs in a FCFS
manner at rateμ1, the various specific incarnations differ in the value of the normalized
arrival rate per server λ0 and the policy for assigning jobs. The choice of the specific
reference system is aligned with the properties of the affinity system in terms of the
server selections S and the associated arrival rates λS , S ∈ S. Loosely speaking, we
obtain increasingly tight dominance results under increasingly restrictive symmetry
and structural conditions on the server selections S and the associated arrival rates.
The three specific variants for the reference system that we consider operate under
either (i) a purely random assignment (RA) policy, (ii) a MJSQ(k) policy (as specified
later) or (iii) a JSQ(k) policy (as described in the introduction). While the RA system
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provides exact upper bounds in terms of independent M/M/1 queues, the MJSQ(k)
and JSQ(k) systems yield asymptotic upper bounds based on fluid limits.

The dominance results revolve around stochastic majorization properties in terms

of the ordered server states. Specifically, define Q
aff
m+(t) and Q

ref
m+(t) as the variables

in (2) for the affinity and reference system, respectively. We will establish results of
the form

{(Qaff
m+(t))m≥1}t≥0 ≤st {(Qref

m+(t))m≥1}t≥0.

This majorization result indicates that the number of type-I jobs residing in the mth
or higher-ordered queue position in the affinity system is stochastically bounded from
above by the number of jobs residing in the mth or higher-ordered queue position in
the reference system. In particular, taking m = 1, this implies that the total number
of type-I jobs in the affinity system is stochastically bounded from above by the total
number of jobs in the reference system.As noted earlier, we know the exact distribution
of the latter quantity in the RA system and have an asymptotic result for the MJSQ(k)
and JSQ(k) systems.

In order to prove the stochasticmajorization properties,we introduce theR-coupling
to construct sample paths for the affinity and reference systems on a joint probability
space for which the stated inequalities hold in a deterministic way [15,22,24]. The
servers in both systems can be ordered in an ascending way according to number of
(type-I) jobs in their queue. Let N[n],I(t) and N[n](t) denote the number of type-I jobs
in the affinity system and in the reference system at the nth ordered server at time t ,
respectively. For all three specific reference systems, the common proof concept is
to ensure that under the coupling the two following key properties always hold with
respect to the ordered server states as illustrated in Fig. 1. Let t indicate the moment
that an event occurs in the coupled systems.

(a) If N[n],I(t) = N[n],I(t−) + 1, then N[ñ](t) = N[ñ](t−) + 1 with ñ ∈
{n, . . . , N }.
So, an arrival of a type-I job in the affinity system must give rise to an arrival
at a higher-ordered server in the reference system.

(b) If N[n](t) = N[n](t−) − 1, then N[n],I(t) = max(N[n],I(t−) − 1, 0).
So, a service completion in the reference system must force a service com-
pletion of a type-I job at the same ordered server in the affinity system (unless
there is no type-I job at this server).

We can prove the following general lemma.

Lemma 1 (R-coupling) If a stochastic coupling between the affinity system and the ref-

erence system can be constructed such that (a) and (b) are satisfied, then (Q
aff
i (t))i≥1

is majorized by (Q
ref
i (t))i≥1 for t ≥ 0, that is,

∞∑

i=m

Q
aff
i (t) ≤

∞∑

i=m

Q
ref
i (t) (3)
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affinity system

Position 1 2 3 4 5 6
Server 1 4 6 5 2 3

Q
aff
2 (t) = 3

Q
aff
1 (t) = 5

1

6

2 3

4

5

ordering

reference system

ordering

Position 1 2 3 4 5 6
Server 3 6 5 2 1 4

Q
ref
2 (t) = 4

Q
ref
1 (t) = 5

1

2

3

4

5

6

coupling

Fig. 1 A schematic representation of the two ordered systems with N = 6 servers at time t . The affinity
system, operating under the affinity-scheduling policy, consists of type-I (squares) and type-II (pentagons)
jobs. The N exchangeable servers in the reference system make no distinction between the jobs

for all m ≥ 1, provided that the initial configurations of both systems satisfy this
inequality.

More precisely, the vector (Q
ref
i (t))i≥1 weakly submajorizes the vector (Q

aff
i (t))i≥1.

If for m = 1 the inequality in (3) holds with equality, then this result implies that
the affinity-scheduling policy disperses the type-I jobs more evenly among the servers
than the considered assignment policy in the reference system. The proof of Lemma 1
is discussed in Sect. 5.1. In the remainder of this section, we will precisely describe
the affinity coupling for each of the reference systems under consideration and verify
that the properties (a) and (b) are satisfied. The coupling at service completion epochs
to ensure property (b) as further detailed below is fairly standard and common across
all three reference systems. The coupling at arrival epochs depends on the assignment
policy under consideration in the reference system. Although the general framework
is highlighted below, the precise realizations will be illustrated in the following sub-
sections.
Coupling at arrival epochs In contrast to the service completions, the coupling at
arrival epochs to guarantee property (a) is novel and highly specific to the reference
system under consideration. Due to the lack of exchangeability among servers, the
coupling at arrival epochs involves a further subtle complication that does not arise
in constructing sample path comparisons in the context of the ordinary supermarket
model. Even though we compare the evolution of the two systems in terms of the Qi
variables as usual, these generally do not provide aMarkovian state description for the
affinity system as noted earlier in Sect. 2. In particular, the transitions at arrival epochs
intricately depend on the server selections S and cannot be suitably represented in
terms of the Qi variables.
Coupling at service completion epochs The coupling generates potential service
completions at rate μ1N , but the aggregate service rate in either the affinity or the
reference system might be lower than μ1N because of servers being idle or only
working at rate μ2 on type-II jobs. Let Paff and Pref be the sets of ordered positions of
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servers in the affinity and reference system, respectively, that are working on (type-I)
jobs just before some time t at which a potential service completion occurs. Define
P as the intersection Paff ∩ Pref which equals Paff or Pref due to the ordering and the
preemptive strategy of the affinity-scheduling policy. A random variable Xt , drawn
fromauniformdistribution on [0, 1], decideswhichof the following actions is selected:
(i) 0 ≤ Xt ≤ |P|

N : Sample uniformly at random a position n from P; a departure
will take place at time t in both systems at the nth ordered server.

(ii) |P|
N < Xt ≤ |Pα |

N where α is ‘aff’ or ‘ref’: Sample uniformly at random a server
position from Pα \ P; one job will be removed from the corresponding server in
system α at time t .

(iii) Xt >
max{|Paff |,|Pref |}

N : No real departure will occur among the type-I jobs in the
affinity system or the jobs in the reference system.

We note that the total departure rate of type-I jobs from the affinity system is indeed
given by μ1|Paff |, likewise for the reference system with a total departure rate of
μ1|Pref |. The idea to work with intersections of the active server sets comes from [20,
Section 4].

3.2 R-coupling with the general model

We now consider a general structure for the server selections S and the corresponding
arrival rates {λS | S ∈ S} per server selection. The reference systemwill operate under
the RA policy with arrival rate λ0 per server. Thus, λ0 < μ1 is a sufficient stability
condition for the reference system. So the purpose of this subsection is twofold: the
affinity coupling is illustrated in the general setting of our affinity-scheduling policy
in order to obtain a stochastic dominance result, and a stability condition is obtained
as an immediate by-product.

The choice of λ0 is determined by the arrival rates per server selection in the affinity
system, namely

λ0
.= min

pSn

{

max
n

{

λ∗
n =

∑

S∈S:n∈S
λS pSn

∣∣∣∣
∣

∑

n∈S
pSn = 1 with pSn ≥ 0,∀n ∈ S

}}

.

(4)
In order to achieve a meaningful upper bound, we chose λ0 as small as possible.
Since we only count the number of type-I jobs in the affinity system, λ0 must also be
large enough to cope with ‘worst-case scenarios’ where no arriving job is assigned
as a type-II job. Therefore, the optimization problem in (4) computes a solution that
distributes the arriving jobs as type-I jobs among the servers as uniformly as possible.
The variable pSn may be interpreted as the fraction of jobs with server selection S that
are assigned to server n ∈ S. With this interpretation in mind, it is easily seen that at
least one server must handle an arrival rate of λ0 or larger in case jobs are only allowed
to be executed as type-I jobs. Thus, λ0 < μ1 is clearly a necessary stability condition
for any policy in this case. The condition is sufficient as well, for instance for a simple
static strategy that assigns a job with server selection S to server n with probability
pSn . However, the implementation of this policy would require full knowledge of the
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arrival rates λS . We will establish that the condition is also sufficient for the stability of
our affinity-scheduling strategy, which does not rely on any knowledge of the arrival
rates λS at all.

We now specify the R-coupling for the reference system with the RA policy.
Coupling at arrival epochs The coupling generates potential arrival events at rate
λ0N . If a potential arrival occurs at time t , a position n∗ from the set {1, . . . , N } is
selected uniformly at random. For brevity, we simply refer to the server at the ordered
position n∗ as server n∗. An addition of a new job in the reference system will take
place at this server n∗. Since this position was randomly selected, the coupling strategy
will give rise to an addition according to the RA policy in a system with arrival rate
λ0 per server.

In order to determine whether an arrival event of a type-I job takes place in the
affinity system and at which server this will happen, we follow the strategy described
below. Two random variables, Yt,1 and Yt,2, are sampled from a uniform distribution
on [0, 1] to take into account that the total arrival rate in the affinity system might
be smaller than λ0N and to select a server selection S for an arriving job. To make
the decisions, we rely on the variables (p∗

Sn)S,n that attain the minimum in (4). First,
Yt,1 establishes if an arrival occurs to a primary selection containing server n∗, which
happens with probability λ∗

n∗/λ0. If an arrival will take place, then a server selection S
containing n∗ is selected as the primary selection with probability λS p∗

Sn∗/λ∗
n∗ for

which Yt,2 is used. All remaining servers form the secondary selection. Note that the
total arrival rate to a server selection S,

λ0N
∑

n∈S

1

N

λ∗
n

λ0

λS p∗
Sn

λ∗
n

, (5)

will indeed be equal to λS in the affinity system as
∑

n∈S p∗
Sn = 1 by definition. So,

this approach will coincide with the arrival process of the general model described
in Sect. 2. Once these selections are set for an arriving job, the assignment policy is
applied as defined in Sect. 2. Due to the general structure of S, it is not possible to
determine the exact server at which a job is assigned in terms of the variables (Qi j )i, j .
However, if the new job is assigned as a type-I job in the affinity system to one of the
servers in S, it is known that the position of this server will be at most n∗. Since the
newly arrived job in the reference system is assigned to server n∗, property (a) of the
coupling is maintained.

We can state the following theorem that will lead to a sufficient stability con-
dition. This theorem follows from the majorization result in Lemma 1 since the
above-described coupling satisfies the general framework of the R-coupling.

Theorem 1 (General affinity-schedulingmodel)Letλ0, as defined in (4), be the arrival
rate per server in the reference systemoperating under theRApolicy. Then, for suitable
initial conditions,

{(Qaff
m+(t))m≥1}t≥0 ≤st {(QRA

m+(t))m≥1}t≥0 (6)

holds for the general affinity-scheduling model with N servers.
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Theorem 1 provides a stochastic upper bound for the total number of type-I jobs
in the affinity system in terms of the number of jobs in a reference system with the
RA policy by taking m = 1. Although this upper bound is sufficient to guarantee
stochastic stability for λ0 < μ1, we will develop tighter majorization results for
particular instances of the neighborhood model in the next subsection.

It can be shown that the condition λ0 < μ1 indeed implies the necessary and
sufficient stability condition for a broader class of flexible parallel server systems in
Harrison and López [12] and Stolyar [23]. In the setting of the affinity-scheduling
model without type-II jobs, i.e., μ2 = 0, the condition λ0 < μ1 is also necessary for
stability. This scenario in fact falls in the framework with partially accessible servers
considered by Foss and Chernova [7]. While the corresponding stability condition
derived in [7] has a somewhat different form, it can be shown that it is equivalent
to ours using the max-flow min-cut theorem of Ford–Fulkerson [6]. This proof is
discussed in Sect. 5.2.

Remark 2 (General applicability of the R-coupling) The scope of application of the
R-coupling is much broader than the general affinity-scheduling model. The described
method is powerful enough to handle any assignment policy for the type-II jobs as
long as the type-I jobs are assigned to a server with the shortest queue length within the
primary selection. This implies that the number of type-I jobs will still be dominated
by the number of jobs in the reference system. Furthermore, if the assignment policy
for the type-II jobs only allows a finite number of them in each queue, then stability
is guaranteed once λ0 < μ1. For instance, this method could also be applicable in a
setting without type-II jobs as the general compatibility model. In this setting, arriving
jobs can only be served at predetermined server selections.

3.3 Neighborhoodmodel

We will further investigate our model on a graph topology GN as described in Sect. 2.
It is challenging to get a grip on the performance of an assignment policy that is applied
in a network structure, and establishing stochastic dominance relations can give an
initial insight into the theoretical behavior of load balancing algorithms in structured
environments. It is mentioned in Sect. 2 that the arrival rate over all server selections
established by the graph structure GN is given by λ, and, thus, Theorem 1 is still valid
if we set λ0 = λ. However, we will make two different assumptions on the structure
of the graph topology, and for each of them a tighter dominance result than Theorem 1
is obtained. The first scenario assumes that the minimum degree of GN is sufficiently
high and the second scenario entails regular graph topologies.

3.3.1 Minimum degree

The reference system with N exchangeable servers operates under a modified version
of the JSQ assignment policy, namely MJSQ(k) [19]. In this setting, new jobs arrive
at a total rate of λN and are processed at a server according to a FCFS policy at rate
μ1 > λ. An arriving job is assigned to the server with the (k + 1)th shortest queue
length. A clear analogy can be seen if the system is initially completely empty; then,
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k servers will constantly remain idle. The system operates as if only N−k servers are
present and applies a JSQ policy restricted to these servers. If N is sufficiently large
compared to k, i.e., if

λN < μ1(N − k), (7)

then the MJSQ(k) policy is stochastically stable.
Suppose that the minimum degree of the graph GN is at least N−k−1, without any

other structural assumptions. Letting N and k satisfy the relation in (7),we can describe
a coupling between our neighborhood model with underlying topology GN and the
reference systemwith theMJSQ(k) policy. The coupling between both systems will fit
the general framework of the affinity coupling. The coupling method for the arriving
jobs will differ from the general setting in the previous subsection, and the coupling
between the service completions follows the methodology explained in Sect. 3.1.

Coupling at arrival epochs For each of the neighborhood sets in S, there is a uniform
arrival rate λ such that the total arrival rate in the affinity system is also given by λN .
Assuming that an event in the coupled sample path is an arrival, it is always directed
to the server at position k+1 under the MJSQ(k) policy. For the neighborhood model,
the primary selection S consists of a randomly selected server and its neighbors under
the topology GN and the secondary selection Sc contains all other servers. We do not
know the exact ordered positions of the servers in the primary selection that is of size
at least N − k in terms of the Qi variables. The worst-case scenario that could arise
is a primary selection of size exactly N−k where the servers are the N−k highest
ordered servers. Then, a type-I job is assigned to the server at position k+1. All other
scenarios where an arriving job is labeled as a type-I job in the affinity system will
lead to an assignment that is at most at the (k + 1)th position. Hence, property (a) of
the affinity coupling is satisfied.

Theorem 2 follows from the majorization result in Lemma 1 under the above-
described coupling.

Theorem 2 (Neighborhood model with minimum degree N − k − 1) Consider
the neighborhood model with an underlying graph topology with minimum degree
N−k−1 and a reference system that operates under the MJSQ(k) policy. Then, for
suitable initial conditions,

{(Qaff
m+(t))m≥1}t≥0 ≤st {(QMJSQ(k)

m+ (t))m≥1}t≥0. (8)

Once the reference system is stochastically stable, if condition (7) is fulfilled,we can
give a meaningful upper bound on the total number of type-I jobs in the neighborhood
model in terms of the total number of jobs under the MJSQ(k) policy. Note that the
stability region in (7) for fixed values of N is smaller compared to the general setting
in Sect. 3.2. However, when N is sufficiently large, the MJSQ(k) will outperform the
RA policy, implying better performance results on the fluid level. So this upper bound
will then be tighter compared to the result in Theorem 1.

Remark 3 Theorem 2 can be generalized for scenarios of the affinity-schedulingmodel
where each server selection S has a size of at least N−k and a non-uniform arrival
rate λS .
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3.3.2 Regular graph

Asmentioned in introduction, JSQ(k) gives already substantial performance improve-
ments for small values of k compared to the RA policy.With this inmind, we show that
the number of type-I jobs under our affinity-scheduling policy on a d-regular graph is
stochastically dominated by the total number of jobs under a JSQ(k) policy, when d
and k satisfy the following relation:

N−d−1∑

i=1

(
N − i

k − 1

)
≤ d + 1

N

(
N

k

)
. (9)

This condition manifests itself in the coupling construction between the arrival
events in both systems such that feature (a) of the R-coupling is maintained. We will
introduce a novel approach to represent or visualize all possible server selections in S
that an arriving job can choose from.

An arriving job in the reference system with JSQ(k) is assigned to the lowest
positioned server among k randomly selected servers. In total, there are

(N
k

)
server

selections and each server belongs to
(N−1
k−1

)
different server selections. Thus, the

lowest positioned server of the system belongs to
(N−1
k−1

)
different server selections;

the second lowest server is part of precisely
(N−2
k−1

)
different server selections without

the lowest ordered server. One can continue this reasoning up to the (N − k + 1)th
lowest ordered server; this server belongs to only one more server selection that is not
yet observed at any of the lower-ordered servers. All higher-ordered servers cannot
be part of an unobserved server selection. We will construct a step function from the
positions {1, . . . , N } to the interval [0, 1] based on the so-called block interpretation
of the server selections. Assume that the servers are ordered from 1 to N and the
lowest ordered position of the k selected servers is denoted by n. We represent this
selection as a block from position n to N with height 1/

(N
k

)
. This procedure can be

repeated for each of the
(N
k

)
possible selections, and these corresponding blocks can

be stacked according to their length. This procedure is called the block interpretation
of the server selections. The outer edges of these stacked blocks will give rise to the
following step function:

fref : {1, . . . , N } → [0, 1] : x 
→
{

1
(Nk )

∑x
i=1

(N−i
k−1

)
, 1 ≤ x ≤ N − k + 1,

1, N − k + 1 < x ≤ N .
(10)

A visualization is shown in Fig. 2.
We aim to construct a similar step function based on the possible primary server

selections for the affinity system when the underlying graph topology is a d-regular
graph. Jobs arrive at a total rate λN , and an arriving job selects uniformly at random
a server selection S from S. By construction, S contains N different primary server
selections, each of size d + 1. Then, the lowest ordered server in the system belongs
to d + 1 different server selections. However, it is not possible to count the number
of additional server selections containing the second lowest ordered server without
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Position
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nrefnaff
N

0

1

Xt

faff (d = 2)
faff (d = 7)
fref

Fig. 2 A visualization of the step functions of the server selections in both systems. There are N = 12
servers, d = 2 (or d = 7) and k = 3. The block interpretation of server selection S = {8, 9, 11} of the
affinity system is represented with a gray block

knowing the position of each of the servers, sincewe operate on a fixed graph structure.
We construct a step function based on the worst-case scenario to maintain property (a)
of the couplingwhere the lowest positioned server of each of the server selections is still
at the highest possible position. The first jump occurs at the lowest positioned server,
while all remaining jumps will occur at the highest possible positioned servers. This
induces stronger correlations between the servers that have more type-I jobs. Notice
that the worst-case ordering of the servers might not align with the real underlying
d-regular structure, so that this approach might be too conservative. The step function
of this worst-case scenario is given by

faff : {1, . . . , N } → [0, 1]

x 
→
⎧
⎨

⎩

d+1
N , 1 ≤ x ≤ N − d − � N

d+1� + 1,
1 − d+1

N (N − d − x), N − d − � N
d+1� + 2 ≤ x ≤ N − d − 1,

1, N − d ≤ x ≤ N .

(11)

An example of this step function is shown in Fig. 2.

Coupling at arrival epochs Let the total arrival rate be λN in both systems. For an
arriving job at time t , we determine the servers of interest using the inverse transform
sampling method [4, Chapter 2]. First, we note that the functions faff and fref are
cumulative distribution functions by construction. Second, the only server of interest
of the server selection S in the affinity system or the server selection in the reference
system is the lowest positioned server. So we sample a random variable Xt from a
uniform distribution on [0, 1] and determine the two servers positions, naff and nref , of
interest of both systems. This procedure is visualized in Fig. 2. In the affinity system,
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Table 1 Smallest possible value
of d, d∗, that satisfies condition
(9) is listed for a system with
N = 50 servers and given values
of k

k 2 3 4 5 10 15 25

d∗ 31 34 36 38 42 44 46

a job can be assigned as a type-I job to the selected server, or it may be assigned to
any other server as a type-II job.

So in order to guarantee feature (a) of the affinity coupling, it needs to be ensured
that naff ≤ nref , i.e., faff(n) ≥ fref(n) for all positions n.We observe that the d-regular
graph must be rather dense in order to obtain a tighter upper bound than provided by
the RA policy. Once the degree d is at least N/2, the step function faff only makes two
jumps, at positions 1 and N − d of sizes (d + 1)/N and (N − d − 1)/N , respectively.
Since the step function fref is concave in its discrete points, we only need to ensure
that faff(N − d − 1) ≥ fref(N − d − 1) holds, so that the step function of the affinity
system is above the step function of reference system. This results in condition (9) on
the values of d and k. Due to the coupling construction, we can prove the following
dominance result.

Theorem 3 (Neighborhood model with d-regular graph) Consider the neighborhood
model with an underlying d-regular graph topology and a reference system operating
under a JSQ(k) policy. If the model parameters d and k satisfy condition (9), then, for
suitable initial conditions,

{(Qaff
m+(t))m≥1}t≥0 ≤st {(QJSQ(k)

m+ (t))m≥1}t≥0. (12)

Due to the coupling construction using the block interpretation of the server selec-
tions, the above-described coupling fits the general framework of the affinity coupling
as stated in Lemma 1. Therefore, the result of Theorem 3 follows from this lemma. If
λ < μ1, the reference system is stochastically stable and provides a meaningful upper
bound on the performance of the neighborhood model on a d-regular topology.

In Table 1, we list d∗, the minimum value of d as a function of k that guarantees
the required dominance of the step functions for a system with N = 50 servers.
Furthermore, Fig. 3 visualizes the behavior of d∗ for fixed values of k and increasing
graph sizes N . The minimum degree seems to grow linearly with N . For instance, it
is a straightforward computation to show that

d∗ =
⌈√

N 2 + 4(N − 1)2 − N

2

⌉

(13)

when k = 2. This expression is indeed of linear order in N .
From Table 1 and Fig. 3, we observe that the graph structure must be rather dense

in order to stochastically dominate the affinity-scheduling policy with a JSQ(k) policy
even for small values of k. One can argue that the primary selection of our affinity-
scheduling strategymust bemuch larger compared to the server selection under JSQ(k)
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Fig. 3 A visualization of the smallest possible value of d, d∗, that satisfies condition (9) as function of N
for fixed values of k

in order to guarantee better performance. But we should keep in mind that the underly-
ing graph structure is fixed and all possible server selections are predetermined, while
the JSQ(k) strategy can be seen as a strategy on a complete graph where an arbitrary
set of size k of the servers can be selected. This will affect the performance compared
to a system with N exchangeable servers, which is intuitively clear.

Moreover, it is important to note that the obtained value of d∗ might be too conser-
vative. Our coupling method using the step functions requires a degree that is at least
equal to N/2 in order to upper bound by the strategy JSQ(1), i.e., the RA policy. On
the other hand, we showed in the general result that the number of type-I jobs under
any structural interpretation S is stochastically dominated by the number of jobs under
a random assignment strategy.

Remark 4 (Combinatorial model) Applying our affinity-scheduling strategy to the
combinatorial model with N servers shows a lot of similarities with the JSQ(d) policy
in the setting of N exchangeable servers. Namely, an arriving job is assigned to the
server with the shortest queue length among d arbitrarily selected servers and some-
times the job can be directed to an idle server outside this selection. The coupling can
be adjusted such that the number of type-I jobs at the nth ordered position under our
affinity-scheduling policy is less than or equal to the number of jobs at the nth ordered
position under a JSQ(d) policy. The relation between the two policies will become
more apparent in Sect. 4 when fluid limit results are investigated.

Moreover, it can be shown that the combinatorial model is stochastically stable
under a preemptive and a non-preemptive scheduling policy using a Foster–Lyapunov
argument. This result is shown under the assumption that the number of type-II jobs at
each server never exceeds one. The fact that stability is preserved under a preemptive
policy in favor of the type-I jobs is no surprise due to the structure of the server
selections S and the resemblance of the first step in the assignment policy with the
JSQ(d) policy. Under a non-preemptive policy, it is no longer intuitively clear, as any
finite value of μ2 is allowed and one could imagine a situation where all servers are
processing a type-II job and type-I jobs start to accumulate behind these type-II jobs.
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4 Fluid limit and fixed point analysis

Asmentioned in the introduction, the affinity model in general lacks the exchangeabil-
ity among the servers that underpins the use of mean field limits as the main analytical
techniques in the supermarket model. Due to its inherent symmetry, the combinatorial
model with uniform arrival rates for each of the server selections in S as described in
Sect. 2 is one of the exceptions. The variables (QN

i j (t))i, j will give rise to a Markov
process representation in this case. The primary and secondary server selections for
an arriving job are of sizes d and N−d, respectively. In order to gain insight into the
system performance, we introduce the fluid-scaled variables, i.e.,

⎛

⎝
Q

N
i j (t)

N

⎞

⎠

i, j

,

and analyze a sequence of systems where the number of servers N tends to infinity.
The (weak) limit that arises is referred to as the fluid limit and is denoted by (qi j (t))i, j .
When it is helpful to stress the proportion of servers with exactly i type-I jobs, instead
of at least i type-I job, we consider the variables (qi j (t))i, j . It is clear that qi j (t) is
given by qi j (t)−qi+1, j (t) for any i and j . Furthermore, we assume that λ < μ1 to
guarantee stochastic stability. Throughout this section, we will consider a system with
λ = 0.8, μ1 = 1 and μ2 = 0.5 in the numerical and simulation experiments, unless
specified otherwise.

4.1 Fluid limit

We now provide a characterization of the (deterministic) fluid limit in terms of a set of
discontinuous differential equations. The t reference in the notation will be omitted,
if the context allows this.

We introduce a reduced arrival rate λ̃. A job will always be directed to an idle server
if available, either as a type-I job or a type-II job, and idle servers are generated at rate
μ1q10 + μ2q01. This implies that if λ is sufficiently high, i.e., λ > μ1q10 + μ2q01,
only a fraction of the arriving jobs will start to queue in front of a server as type-I jobs
on the fluid level. This fraction is given by λ̃/λ, with

λ̃ = (λ − μ1q10 − μ2q01)
+. (14)
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Then,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt q00 = μ2q01 − λ(1 − q00)d + λ̃1{q00 = 0},
d
dt q01 = −μ2q01 + 1{q00 > 0} [λ(1 − q00)d

]+ 1{q00 = 0}
[
λ − λ̃

]
,

d
dt q10 = −μ1q10 + 1{q00 > 0} [λ (1 − (1 − q00)d

)]
,

d
dt q11 = −μ1q11 + λ̃1{q00 = 0}

[(
q10 + q01

)d − (q10 + q11
)d]

,

for i ≥ 2,
d
dt qi0 = −μ1qi0 + λ̃1{q00 = 0}

[(
qi−1,0 + qi−1,1

)d − (qi0 + qi−1,1
)d]

,

d
dt qi1 = −μ1qi1 + λ̃1{q00 = 0}

[(
qi0 + qi−1,1

)d − (qi0 + qi1
)d]

,

(15)
with q00 + q01 = 1.

Since the system operates under a preemptive priority policy, the structure of the
departure rate in each of the equations in (15) is clear. For instance, in order to change
the proportion q11 due to a job completion, this job completion must take place at a
server with configuration (1, 1). Exactly a fraction q11 of the servers has this config-
uration, and since these servers each work at rate μ1, the total rate of change is given
by −μ1q11.

Let us illustrate the representation of the arrival term for the derivative of q11. Only
an arrival of a type-I job at a server with configuration (0, 1) can contribute to the
arrival term, and the probability that this configuration is the smallest among the d

servers in the primary selection is given by
(
q10 + q01

)d − (q10 + q11
)d . Ties are

broken according to the presence of a type-II job, in favor of having no type-II jobs.
Moreover, there should be no idle servers because otherwise an arriving job would be
assigned here as a type-II job. Since type-I jobs arrive at a reduced rate λ̃, the total rate
of change is given by λ̃1{q00 = 0}[(q10 + q01

)d − (q10 + q11
)d ].

The expressions for the arrival terms in the derivatives of (15) and the reduced
arrival rate λ̃ should be considered more carefully due to the discontinuity at q00 = 0.
We will give a sketch of the derivation of this fluid limit in Sect. 5.3. This derivation
relies on the martingale method for point processes and Markovian queueing settings
outlined by Pang et al. [21] and Brémaud [3].

The fluid limit expression can be validated with simulations of the fluid-scaled
stochastic process. Consider, for instance, Fig. 4, where the solution of the fluid
limit (15) is presented together with a simulated trajectory of a reasonably large sys-
tem. It can be observed that the simulated trajectory fluctuates closely around the
numerical solution of the fluid limit, which supports the connection between the fluid
limit and the behavior of the stochastic system in a many-server setting.

4.2 Fixed points

To investigate the long-run behavior of the fluid limit (15), we are interested in its
fixed points. It turns out that the mutual relationships between the model parameters
d, λ, μ1 and μ2 play a crucial role. In the remainder of this section, we investigate the

123



Queueing Systems (2019) 93:227–268 245

0 20
0

1

t

q 0
0

0 20
0

1

t
q 1

0
0 20

0

0.1

t

q 0
1

Fig. 4 A comparison between a simulated trajectory of the fluid-scaled stochastic process with N = 2000
servers (thin line) and the numerical solution (thick line) of the fluid limit (15). The model parameters are
given by d = 25, λ = 0.8, μ1 = 1 and μ2 = 0.5

setting where λ > μ2, in order to compare one of the fixed points with the fixed point
of a JSQ(d) policy with reduced load λ̃.

Theorem 4 (Fixed points) When λ > μ2 and d ≥ 2, the system of differential equa-
tions (15) always has the following fixed point:

⎧
⎨

⎩

q∗
i0 = 0,

q∗
i1 =

(
λ−μ2
μ1−μ2

) di−1
d−1

, i = 0, 1, 2 . . . .
(16)

Let d∗ .= d∗(λ, μ1, μ2) denote the minimum selection size that satisfies

d∗λ
(

1

μ2
− 1

μ1

)
> 1,

(
1 − 1

d∗

)
μ1

λ
>

(
d∗λ

(
1

μ2
− 1

μ1

)) 1
d∗−1

. (17)

If d ≥ d∗(λ, μ1, μ2), then precisely two more fixed points exist. These fixed points
are such that q00 + q01 + q10 = 1 and q00 > 0.

The proof of this theorem is discussed in Sect. 5.3. It can be observed that there
always exists a sufficiently larged value that satisfies both inequalities of condition (17)
for given values of λ,μ1 andμ2. This is trivial to see for the first inequality. The second
inequality can be rewritten as

(
1 − 1

d

)(
1

d · a
) 1

d−1

>
λ

μ1
(18)

with a
.= λ( 1

μ2
− 1

μ1
). The left-hand side is increasing as a function of d with limit 1 >

λ/μ1. Table 2 gives the values of d∗ satisfying (17) for a range of model parameters.
It can be seen that the higher the load, the larger the size of the primary selections
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Table 2 For given λ, μ1 = 1 and
μ2, the minimum value d∗ that
satisfies condition (17) is listed

λ 0.4 0.5 0.6 0.7 0.8 0.9

μ2 = 1/2 / / 5 9 18 46

μ2 = 1/3 3 5 7 12 22 54

must be for multiple fixed points to persist. The additional fixed points have a strictly
positive fraction of idle servers, and it is intuitively clear that the number of servers
where a job can be processed at rate μ1 must grow with the load in order for such
fixed points to persist.

The long-term fraction of servers with at least i jobs under a JSQ(d) policy is
given by

q∗
i =

(
λ̃

μ1

) di−1
d−1

=
(

λ − μ2

μ1 − μ2

) di−1
d−1

, (19)

for i ≥ 0, with arrival rate λ̃ and service rate μ1 [18]. This shows a strong similarity
with the fixed point (16) where two types of jobs are taken into account. Next we
consider the case d = 1. When λ > μ2, there still is a unique fixed point with
q00 = 0, given by ⎧

⎨

⎩

q∗
i0 = 0,

q∗
i1 =

(
λ−μ2
μ1−μ2

)i
, i = 0, 1, 2, . . . .

(20)

This shows strong resemblance with the RA policy with load ρ = λ̃/μ1. Allowing
a primary selection of at least two servers leads to a super-exponential improvement
compared to a primary selection of size one. On the other hand, there is no fixed point
with λ ≥ μ2 and q00 > 0. Only if λ < μ2 can we show that there is a unique fixed
point with q00 > 0, namely

q∗
00 = (μ2 − λ)μ1

(μ2 − λ)μ1 + λμ2
. (21)

4.3 Further analysis

Wewill conduct a further analysis of the fluid limit (15) where we distinguish between
d < d∗ and d ≥ d∗.

4.3.1 Sufficiently small primary selections

When d is sufficiently small in terms of the model parameters λ, μ1 and μ2, i.e.,
d < d∗, the fixed point (16) of the fluid limit (15) is unique. Numerical experiments
suggest that this fixed point is a global attractor, i.e., the trajectories of the fluid limit
will converge to this fixed point for every initial state of the system. As an example,
we present Fig. 5, where the numerical solution of the fluid limit is visualized for
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Fig. 5 Ten solution trajectories (thin lines) of the fluid limit (15) are plotted for randomly generated initial
states, showing convergence of the cumulative distributions to the fixed point (thick dashed line). Themodel
parameters are given by d = 3, λ = 0.8, μ1 = 1 and μ2 = 0.5, and each of the servers has at most three
type-I jobs in the initial states

ten randomly sampled initial configurations. We consider a system with the above-
mentioned model parameters and a primary selection of size d = 3. As can be seen
from the figure, all cumulative fractions

(
qi0
)
i≥0 tend to zero. The fractions q01, q11,

q21 and q31 converge to 1, 0.6, 0.1296 and 0.0013, respectively.
In the previous section, we used the R-coupling to show stochastic stability and

the existence of an (unknown) stationary distribution for λ < μ1. Assuming global
stability of the unique fixed point, Theorem 1 by Benaïm and Le Boudec [2] ensures
that the large-N limit of the stationary distribution will converge to the fixed point.
Moreover, from simulations it can be observed that the trajectories indeed converge to
the unique fixed point of the fluid limit (15). As an example, consider a systemwith the
above-mentionedmodel parameters. Figure 6 shows a simulated trajectory of the fluid-
scaled variables for a systemwith N = 2000 servers that is initially completely empty.
It can be seen that the trajectory converges to the fixed point (q01, q11, q21, . . . ) =
(0.40, 0.4704, 0.1283, . . . ), rounded at four decimals.

The asymptotic approximation for the mean stationary queue length, excluding the
job in service, suggested by the fixed point is given by

E
[
QCM(d)

] =
∑

i≥1

iqi,1 =
∑

i≥1

(
λ − μ2

μ1 − μ2

) di−1
d−1

. (22)

HereCM(d) refers to the combinatorialmodelwith a primary server selection of size d.
It might be interesting to compare the performance of our affinity-scheduling policy
with the performance of the JSQ(d) policy in an ordinary supermarket model with
arrival rate λ and service rate μ1 [18,27]. The combinatorial model can be seen as an
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Fig. 6 A comparison between the long-term behavior of a simulated trajectory for N = 2000 servers (thin
line) and the unique fixed point (thick dashed line) of the fluid limit (15). The model parameters are given
by d = 3, λ = 0.8, μ1 = 1 and μ2 = 0.5

extension of the JSQ(d) policy with the additional feature that jobs can be assigned to
a distant server if this allows the service to start immediately. The mean queue length
under the JSQ(d) policy is given by

E
[
QJSQ(d)

] =
∑

i≥1

iqi+1 =
∑

i≥1

(
λ

μ1

) di+1−1
d−1

. (23)

Furthermore, the exact mean queue length under the RA policy is given by

E [QRA] =
(
1 − λ

μ1

)∑

i≥1

i

(
λ

μ1

)i+1

= (λ/μ1)
2

1 − λ/μ1
. (24)

Figure 7 presents a comparison of the number of waiting jobs as a function of λ,
with d = 3, μ1 = 1 and μ2 = 0.5. It is known that the mean queue length for the RA
policy tends to infinity when the offered traffic grows to one. We see that the mean
queue length in the combinatorial model is slightly larger than for the JSQ(d) policy.
On the other hand, the variance of the queue length in the JSQ(d) model is almost twice
as large compared to the combinatorial model. We conclude that the combinatorial
model still performs well from a queue length perspective, even though each server
has a type-II job and possibly multiple type-I jobs in its queue.
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Fig. 7 Comparison of the mean and variance of the queue length as a function of λ between three different
models on the fluid level for d = 3, μ1 = 1 and μ2 = 0.5

From the fixed point expression, it is not immediately visible that type-II jobs
finish their service, since the fraction q00 is zero. However, an idle server will be filled
instantly with an arriving job. A total fraction

λ − λ̃

λ
= μ2

λ

μ1 − λ

μ1 − μ2
(25)

of the arriving jobs undergo this ‘immediate switch’: they are assigned as a type-
II job to a server that just emptied its queue. This fraction decreases in λ, and for
example, for the above-mentioned model parameters, this leads to a fraction of 1/4.
Furthermore, the type-II jobs will leave the system at the same rate λ− λ̃ as they enter
the system, since we study the system in equilibrium. Moreover, due to Little’s law
we know that the expected waiting time of an arbitrary job is finite. Let W denote the
waiting time, then E

[
QCM(d)

] = λE[W ]. Since the expected queue length under our
affinity-scheduling policy is finite, this results in a finite expected waiting time for an
arbitrary job, so also for the type-II jobs.

Since each server operates under a preemptive scheduling policy, we can calculate
the average waiting time of a type-I job using Little’s law. Let QI denote the number
of type-I jobs at a server. Then,

E[QI] =
∑

i≥1

iqi+1,1 =
∑

i≥1

(
λ − μ2

μ1 − μ2

) di+1−1
d−1

. (26)

Furthermore, the reduced arrival rate λ̃ gives the arrival rate of type-I jobs on the
fluid level. If WI represents the waiting time of a type-I job, then due to Little’s law
E[QI] = λ̃E[WI]. Let QII and WII have the same interpretation as above but for the
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Fig. 8 A comparison of the
mean waiting times of the type-I
and type-II jobs with the mean
waiting times under the RA
policy or a JSQ(d) policy as
function of λ for d = 3, μ1 = 1
and μ2 = 0.5
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type-II jobs. We condition on the type of job to obtain

E[W ] = λ̃

λ
E[WI] + λ − λ̃

λ
E[WII]. (27)

Because of Little’s law, this results in

E[WII] = 1

λ − λ̃

(
E
[
QCM(d)

]− E[QI]
) = 1

λ − λ̃

λ − μ2

μ1 − μ2
. (28)

We can also immediately apply Little’s law to the type-II jobs. We know that they
arrive at rate λ − λ̃ and the mean waiting queue length is by definition given by

E[QII] =
∑

i≥1

qi1 = 1 − q01 = λ − μ2

μ1 − μ2
. (29)

In Fig. 8, we compare the mean waiting time of a type-I or type-II job with the mean
waiting time under the RA or the JSQ(d) policy. The mean waiting time of type-II
jobs is fairly high, but still lower than the waiting time under the RA policy. We also
observe that the mean waiting time of type-I jobs is significantly smaller than under
a JSQ(d) policy. We conclude that our assignment policy leads to a reduction in the
mean waiting time for a large group of arriving jobs at the expense of some other jobs
that encounter longer waiting times. The uniqueness of the fixed point allows us to
analyze the asymptotic stationary distribution of the model. On the other hand, we
observe that the value of the size of the server selection d is too small to achieve a
zero waiting time for an arriving job.

4.3.2 Sufficiently large primary selections

Assume that the primary selection has a sufficiently large size d for given model
parameters in terms of the conditions (17), i.e., d ≥ d∗. From Theorem 4, we know
that, in addition to the closed-form fixed point (16), there are two more fixed points
with q00+q01+q10 = 1.We prove the following theorem using the indirect Lyapunov
method.
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Fig. 9 An overview of the initial states with q00+q01+q10 = 1, if the corresponding trajectories converge
to the locally stable fixed point (triangle), then the initial states are indicated with a large dot, and otherwise,
they are indicated with a small dot. We consider a system with d = 25, λ = 0.8, μ1 = 1 and μ2 = 0.5

Theorem 5 (Local (in)stability) Of the two additional fixed points mentioned in The-
orem 4 with q00 + q01 + q10 = 1 when d ≥ d∗, one is locally stable and the other one
is unstable.

The proof of Theorem 5 is given in Sect. 5.3. In the remainder of this subsection,
we will provide a numerical illustration, where we consider a system with λ = 0.8,
μ1 = 1, μ2 = 0.5 and d = 25 throughout. We observed similar qualitative behavior
acrossmany different scenarios, but only present results for the above parameter values
because of space constraints. To get a better notion of the local stability, we present
Fig. 9. For several initial values such that q00+q01+q10 = 1, the system of differential
equations (15) is solved numerically. All trajectories with initial states indicated with
large dots will converge to the locally stable fixed point from the previous theorem and
a few of these trajectories are also visualized. All other initial states, indicated with
small dots, will not converge to this locally stable fixed point. We see that these states
have a large fraction of servers with a type-II job present and a small fraction of idle
servers, since there is a smaller probability of selecting an idle server in the primary
selection. So jobs will have a longer mean service time as a type-II job and jobs will
start to accumulate.

In total, this gives rise to two locally stable fixed points: the closed-form fixed
point (16) where each server has a type-II job and possibly multiple type-I jobs, and
the fixed point from Theorem 5 where at most one job is present at each server.
In the remainder of this section, we will refer to these fixed points as the queue-
ing fixed point and no-queueing fixed point, respectively. We do not formally prove
this statement, but we will illustrate it with a representative example. For a system
with the above-mentioned parameters, the two fixed points under consideration (non-
cumulative fractions) are given by

(q00, q01, q10) = (0.1966, 0.0067, 0.7967),

(q01, q11) = (0.4, 0.6). (30)
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Fig. 10 Trajectories for 20 randomly sampled initial states are visualized, with initial points such that
q00 + q01 + q10 + q11 = 1. The trajectories converge to one of the two fixed points; the no-queueing and
queueing fixed point are indicated with a thick dotted line and thick dashed line, respectively

Both fixed points are indicated in Fig. 10 with dotted and dashed lines, respectively.
Furthermore, the graphs contain 20 trajectories starting from randomly sampled initial
configurations with q00 + q01 + q10 + q11 = 1; all these trajectories converge to one
of the two fixed points. This implies that the convergence area presented in Fig. 9
to the no-queueing fixed point will in fact be larger. As can be seen, most of the
trajectories will converge to the queueing fixed point. This phenomenon will be even
more apparent if we allow initial states with more than two jobs.

The literature often describes systems with a unique global attractor as a fixed point
of the fluid limit so that there is a direct connection between the stationary distribution
in a many-server setting and this fixed point. However, the non-uniqueness of the fixed
points does not imply that these two concepts are completely disjoint. For instance,
Fig. 4 presents a comparison between the numerical solution of the fluid limit and
a simulation with N = 2000 servers with the above-mentioned model parameters.
The system is initially empty, and the simulated trajectory seems to converge to the
no-queueing fixed point. We could present a similar figure, where in the initial con-
figuration each server has one type-II job, in which case both the numerical solution
and the simulation seem to tend to the queueing fixed point.

However, the stochastic process with a finite number of servers is an irreducible
Markov process which implies that any state can be reached as long as the process is
observed long enough and a unique equilibrium distribution must exist. Nevertheless,
it can be observed that the residence time near each of the locally stable fixed points,
which increases with N , is long before the process makes the transition to the other
locally stable fixedpoint.Gibbens et al. [11] describe this concept of switchingbetween
multiple modes by ‘tunneling.’

Examples of models where metastability plays an important role in loss and com-
munication networks can be found in [1,11,30]. More recent work byMartirosyan and
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Robert [17] considers an assignment policy closely related to the affinity-scheduling
policy in a loss network setting, i.e., jobs can be redirected to distant servers with a
penalty or can be omitted if none of the servers has enough spare capacity. Also in
this setting, a fluid limit analysis reveals multiple locally stable fixed points.

The combinatorial model was introduced as a highly symmetric model instance
of the more general affinity-scheduling model. This built-in symmetry allowed us to
conduct a fluid limit analysis. However, simulation results indicate that the observed
metastability is a more general phenomenon. The simulations were conducted for
server systems with various sizes and various underlying graph structures, includ-
ing 24-regular graphs and Erdös-Rényi random graphs with average degree 25. The
remaining model parameters were kept as λ = 0.8,μ1 = 1 andμ2 = 0.5, and the sys-
tem was initially completely empty. Note that for both instances of the neighborhood
model the (average) size of the primary selection is at least 25 as before, but the vari-
ability among the possible primary selections has been greatly reduced compared to the
combinatorial model instances. We chose for an average degree of 25 instead of 24 for
the Erdös-Rényi random graphs to ensure that most of the sizes of the primary selec-
tions indeed satisfy condition (17). The value of the corresponding no-queueing fixed
point when d = 26 slightly changes to (q00, q01, q10) = (0.1974, 0.0053, 0.7973).
There is no noticeable difference for the value of the queueing fixed point up to four
decimals. As an illustrative example, we present Fig. 11. To obtain this figure, 300 sim-
ulation runs were conducted for Erdös–Rényi random graphs consisting of N = 250
servers. The long-term fractions q00, q10, q01 and q11 were monitored and presented
in a histogram. The values of the two above-mentioned locally stable fixed points
are indicated with dotted and dashed lines, respectively. It can be observed that the
long-term fractions in this non-symmetric setting still converge to either of the two
fixed points. For increasing values of N , the simulated long-term fractions will be
even closer to the theoretical fixed points of the combinatorial model.

5 Proofs

5.1 Proof of Lemma 1: R-coupling

Since the system configurations between two consecutive events remain unchanged,
we will condition on the discrete event times and use forward induction.

Assume that (3) holds up to the time of the (k−1)th event. We will argue that the
majorization property still holds at time tk of the kth event by making a distinction
between arrival and departure epochs. But first we need a formal way to express the

effect of these events in terms of (Q
aff
i (t))i≥1 and (Q

ref
i (t))i≥1. For instance, the server

with the nth shortest queue length is selected for a departure. Due to the ordering, we
know that there are at least N −n+1 servers with the same number of jobs or more in
their queues as the server at ordered position n. It might also be possible that the server
at the ordered position n − 1 has the same number of jobs as the server at position n.
Then, there is no notable difference in terms of the variables Qi whether a removal
takes place at position n − 1 or at position n. Instead of removing from the server at
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Fig. 11 Long-term fractions q00, q10, q01 and q11 of 300 simulation runs on Erdös–Rényi random graphs
with average degree 25 and N = 250 servers. Indicated with dotted and dashed lines are the theoretical
locally stable fixed points for combinatorial model instances with model parameters d = 26, λ = 0.8,
μ1 = 1 and μ2 = 0.5

position n and reordering the servers before computing (Q
aff
i (t))i≥1 and (Q

ref
i (t))i≥1,

we can also immediately update these variables. The difference is subtle and valid
because the proof does not rely on the present type-II jobs or on the actual servers but
only on their relative positions. Therefore, we define two intermediate quantities:

Iaff(n)
.= max{ j : Qaff

j ≥ N − n + 1},
Iref(n)

.= max{ j : Qref
j ≥ N − n + 1}. (31)

For instance, in the affinity system in Fig. 1, Iaff(3) is given by 1. Furthermore, only
one job will be added or removed at a discrete time event. A new event at time tk could
only violate (3) if at time tk−1 (3) holds with equality, i.e.,

∞∑

i=m

Q
aff
i (tk−1) =

∞∑

i=m

Q
ref
i (tk−1) (32)

with m ≥ 1. Therefore, we only focus on this setting in the induction step.
Arrival. At time tk , an arrival occurs, and first the nth ordered position is selected.

The updated reference system looks as follows:

Q
ref
j (tk) =

{
Q

ref
j (t−k ) + 1, if j = Iref(n) + 1,

Q
ref
j (t−k ), otherwise.

(33)
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If the newly arrived job is assigned as a type-II job in the affinity system or no arrival
takes place due to the coupling, (3) is trivially satisfied. We consider the setting where
the job is assigned as a type-I job to a server at position naff ≤ n, such that

Q
aff
j (tk) =

{
Q

aff
j (t−k ) + 1, if j = Iaff(naff) + 1,

Q
aff
j (t−k ), otherwise.

(34)

Moreover, the left-hand side of (3) remains unchanged if m > Iaff(naff) + 1 so that
the order in (3) is preserved. Now, fix m ≤ Iaff(naff) + 1. If we now show that also
Iref(n) ≥ m−1, then (3) remains valid since both sides are raised by one. We use (32)
and the induction hypothesis for m − 1 at time t−k to obtain

Q
aff
m−1(t

−
k ) =

∞∑

i=m−1

Q
aff
i (t−k ) −

∞∑

i=m

Q
aff
i (t−k )

≤
∞∑

i=m−1

Q
ref
i (t−k ) −

∞∑

i=m

Q
ref
i (t−k ) = Q

ref
m−1(t

−
k ). (35)

Then, it follows that Iaff(naff) ≥ m − 1 implies Iref(n) ≥ m − 1, which concludes the
derivation if the event at time tk is an arrival.

Departure. If at time tk a departure takes place, one of the following four scenarios
will occur:

1. There is a job completion of a type-I job in the affinity system and of a job in the
reference system.

2. There is only a departure of a job in the reference system.
3. There is only a departure of a type-I job in the affinity system.
4. There is no departure of a type-I job in the affinity system or a job in the reference

system.

It is clear that we only need to investigate the first two scenarios.
Scenario 1. Let Paff and Pref be the sets of ordered positions of servers in the affinity
and reference system, respectively, that are working on (type-I) jobs just before time
tk . Define P as the intersection Paff ∩ Pref . Let n ∈ P be the position of the servers
in both the affinity and the reference system from which a job will be removed. The
updated states will be

Q
aff
j (tk) =

{
Q

aff
j (t−k ) − 1, if j = Iaff(n),

Q
aff
j (t−k ), otherwise,

Q
ref
j (tk) =

{
Q

ref
j (t−k ) − 1, if j = Iref(n),

Q
ref
j (t−k ), otherwise.

(36)

We will focus on m ≤ Iref(n), since for m > Iref(n) (3) remains trivially valid. A
similar argument as above will be used to show that Iaff(n) ≥ m, so that both sides

123



256 Queueing Systems (2019) 93:227–268

will be lowered by one compared to the event time tk−1. We use (32) and the induction

hypothesis for m + 1 at time t−k to obtain Q
aff
m (t−k ) ≥ Q

ref
m (t−k ). Then, it follows that

Iref(n) ≥ m implies Iaff(n) ≥ m which concludes the proof of scenario 1.
Scenario 2. Let n ∈ Pref \ P be the position where a job leaves the reference system.
Then for all j

Q
aff
j (tk) = Q

aff
j (t−k ),

Q
ref
j (tk) =

{
Q

ref
j (t−k ) − 1, if j = Iref(n),

Q
ref
j (t−k ), otherwise.

(37)

Again we focus on m ≤ Iref(n). Fixing m, we will show by contradiction that (32)
cannot occur, so that (3) is preserved at time tk since the right-hand side can be lowered
by at most one. Assuming that (32) does hold and using the induction hypothesis on

m + 1, we conclude that Q
aff
m (t−k ) ≥ Q

ref
m (t−k ). Now,

Q
aff
m (t−k ) ≥ Q

ref
m (t−k ) ≥ Q

ref
Iref (n)(t

−
k ) ≥ N − n + 1 ≥ |P| + 1, (38)

since N − |Pref | < n ≤ N − |P|. This implies that Q
aff
m (t−k ) > |P|; however, there

are only |P| = |Paff | servers working on a type-I job in the affinity system. This leads
to a contradiction and concludes the proof of Lemma 1.

5.2 Proof: equivalent stability conditions

As mentioned in Sect. 3.2, our affinity-scheduling model without any type-II jobs is
a special instance of the parallel server model with multiple job classes described by
Foss and Chernova in [7]. Each job class has its own arrival rate and set of available
servers with a server or class-dependent service time distribution. The JSQ policy is
one of the various potential allocation policies. Our model meets this description if
there is a job class for each of the different server selections S ∈ S and a common
service rate μ1 for all the servers.

In the above-described special setting, the necessary and sufficient stability condi-
tion in Theorems 2.5 and 2.7 in [7] reduces to

ρ0 = max
J⊆{1,...,N }

⎧
⎨

⎩
1

|J |μ1

∑

U⊆J

λU

⎫
⎬

⎭
< 1. (39)

With λU , the arrival rate to server set U if U is a server selection from S and zero
otherwise, this stability condition implies that the aggregate arrival rate to each set of
servers may never exceed the total service capacity of this set. Our stability condition,
on the other hand, guarantees this for each server individually by optimizing the way
the arriving streams of jobs can be divided among the servers, i.e., λ0 < μ1 with λ0 as
defined in (4). This constructive representation serves the purposes in the stochastic
coupling argument in Sect. 3.2.
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Fig. 12 a Graph model with four nodes and arrival rate λS for each of the server selections S in S =
{{1}, {2, 3}, {2, 3, 4}, {3, 4}}. b Corresponding flow network

Proposition 1 The conditions ρ0 ≤ 1 and λ0 ≤ μ1 are equivalent to ρ0 and λ0 as
defined in (39) and (4), respectively.

The proof of Proposition 1 consists of two parts: first a flow network is constructed
given themodel parameters under consideration; then, an argument using themax-flow
min-cut theorem [6] is applied to conclude the equivalence.

From a given instance of the affinity-scheduling model, a network is constructed
consisting of a source node (s), a sink node (t) andnodes for each servern ∈ {1, . . . , N }
and each server selection S ∈ S. There are directed edges from the source s to each
server node n with capacity c ≥ 0; the value of c will be specified in the second
part of the proof. Moreover, there are edges with infinite capacity from each server to
the server selections that include this server. Finally, each server selection node S is
connected to the sink node t with the arrival rate λS as its edge capacity. A visualization
of the flow network construction is shown in Fig. 12.

Let F(c) and C(c) denote the maximum achievable flow and minimum cut that
separates the source s from the sink t in the constructed network, respectively, for a
given capacity c. Note that

F(c) ≤
∑

S∈S
λS (40)

since the edges (S, t), S ∈ S, form a cut, with equality once c ≥ λ0 due to the
definition of λ0. Furthermore, the edges connecting server nodes and server selection
nodes will never be included in the minimum cut, and the minimum cut has a specific
form. Namely, if Jc is a subset of {1, . . . , N }, then the cut consists of all edges (s, n)

with n ∈ Jc and the edges (S, t) with S ∈ S such that S is not included in Jc. Indeed,
note that given the set Jc, all edges (S, t) for which S is not included in Jc must be
captured in order to have a cut, but any edges (S, t) for which S ⊆ Jc can be omitted
while preserving the cut property. This implies that the minimum cut optimization
problem can be rewritten as
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C̃(c) = min
J⊆{1,...,N }

⎧
⎪⎨

⎪⎩
c|J | +

∑

S�J

λS

⎫
⎪⎬

⎪⎭
(41)

without changing the value of the objective function. An example of a cut with J =
{1, 2, 3} is presented in Fig. 12b by dashed lines. Moreover, due to the max-flow
min-cut theorem, it is known that

F(c) = C(c) = C̃(c). (42)

If λ0 ≤ μ1, then let λ0 ≤ c ≤ μ1. Using (40) and (41) together with (42) leads to

∑

S∈S
λS ≤ c|J | +

∑

S�J

λS

⇔
∑

S⊆J

λS ≤ c|J | (43)

for all J ⊆ {1, . . . , N }. Hence, ρ0 ≤ 1.
If ρ0 ≤ 1, then the equivalence in (43) holds for all J ⊆ {1, . . . , N } and c = μ1.

This implies in particular that

∑

S∈S
λS ≤ C̃(μ1) = F(μ1) ≤

∑

S∈S
λS . (44)

By construction, λ0 is the smallest possible value for c such that (40) holds with
equality. So, λ0 ≤ μ1.

5.3 Proofs: fluid limit and fixed point analysis

5.3.1 Derivation of fluid limit (15)

First, consider the stochastic process with N servers and its corresponding flow con-
servation equations. Next, the martingale methods as outlined by Pang et al. [21] and
Brémaud [3] are applied and the limit as N tends to infinity of the fluid-scaled process
is studied. Then, (15) is obtained from the resulting system of integral equations.

Step 1: flow conservation equations Let pNi j (q, t) be the probability that an arriving
job at time t is assigned to a server with i type-I jobs and j type-II jobs as a type-q job,
with q ∈ {I, II}. As before, we will omit the time dependence t to ease the notation.

We can only assign a job as a type-I or type-II job to an idle server; assignments
to servers with a higher configuration will always take place as a type-I job. The
corresponding transition probabilities are given by

pN00(I) = 1 −
(

1 − QN
00

N

)d

, (45)
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the probability that an idle server is present in the primary selection, and

pN00(II) = 1{QN
00 > 0}

(

1 − QN
00

N

)d

, (46)

the probability that the primary selection does not contain an idle server while they are
present. As mentioned in the model description, the secondary selection contains all
servers that are not in the primary selection. Hence, the indicator function 1{QN

00 > 0}
emerges in the probabilities.

An arriving job will be assigned as a type-I job to a server with configuration (i, 0),
with i ≥ 1, if the minimum configuration in the primary selection is given by (i, 0)
and when there are no completely idle servers that can be included in the secondary
selection. The corresponding probability is given by the probability that the primary
selection contains only servers with at least i type-I jobs minus the probability that all
d servers have a configuration strictly higher than (i, 0). Thus, for i ≥ 1,

pNi0(I) = 1{QN
00 = 0}

⎡

⎢
⎣

⎛

⎝
∑

k≥i

[
QN

k0

N
+QN

k1

N

]⎞

⎠

d

−
⎛

⎝QN
i1

N
+
∑

k≥i+1

[
QN

k0

N
+ QN

k1

N

]⎞

⎠

d
⎤

⎥
⎦ .

(47)

In a similar way, we obtain pNi1(I), for i ≥ 0:

pNi1(I) = 1{QN
00 = 0}

⎡

⎢
⎣

⎛

⎝QN
i1

N
+
∑

k≥i+1

[
QN

k0

N
+QN

k1

N

]⎞

⎠

d

−
⎛

⎝
∑

k≥i+1

[
QN

k0

N
+ QN

k1

N

]⎞

⎠

d
⎤

⎥
⎦ .

(48)

Once these probabilities are set, the flow conservation equations can be constructed.
The randomness in the stochasticmodel is caused byPoisson arrivals and exponentially
distributed service times, so that the number of arrivals and service completions can
be counted using Poisson processes with appropriately chosen rates. Define a set of
independent Poisson processes with rate 1. Let PA00,q denote the Poisson counting
process for the number of arriving type-q jobs at servers with configuration (0, 0),
and PAi j , i + j ≥ 1, reflects the number of arriving jobs at servers with configuration
(i, j). Similarly, define the counting process of the service completions PSi j , i+ j ≥ 1.
Furthermore, if i ≥ 1, the number of servers at time t with at least i type-I jobs and

exactly j type-II jobs depends on its initial state (Q
N
i j (0)), the number of service

completions of jobs at servers with configuration (i, j) and the number of arrivals at
servers in configuration (i−1, j)within the time interval [0, t).Weobtain the following

flow conservation equations for the stochastic model (Q
N
i j )i, j with N servers and total

arrival rate λN . Let i ≥ 2:
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Q
N
00(t) = Q

N
00(0) + PS01

⎛

⎝μ2

t∫

0

QN
01(s) ds

⎞

⎠

−PA00

⎛

⎝λN

t∫

0

[
pN00(I, s) + pN00(II, s)

]
ds

⎞

⎠ ,

Q
N
01(t) = Q

N
01(0) − PS01

⎛

⎝μ2

t∫

0

QN
01(s) ds

⎞

⎠+ PA00,II

⎛

⎝λN

t∫

0

pN00(II, s) ds

⎞

⎠ ,

Q
N
10(t) = Q

N
10(0) − PS10

⎛

⎝μ1

t∫

0

QN
10(s) ds

⎞

⎠+ PA00,I

⎛

⎝λN

t∫

0

pN00(I, s) ds

⎞

⎠ ,

Q
N
11(t) = Q

N
11(0) − PS11

⎛

⎝μ1

t∫

0

QN
11(s) ds

⎞

⎠+ PA01

⎛

⎝λN

t∫

0

pN01(I, s) ds

⎞

⎠ ,

Q
N
i0(t) = Q

N
i0(0) − PSi0

⎛

⎝μ1

t∫

0

QN
i0(s) ds

⎞

⎠+ PAi−1,0

⎛

⎝λN

t∫

0

pNi−1,0(I, s) ds

⎞

⎠ ,

Q
N
i1(t) = Q

N
i1(0) − PSi1

⎛

⎝μ1

t∫

0

QN
i1(s) ds

⎞

⎠+ PAi−1,1

⎛

⎝λN

t∫

0

pNi−1,1(I, s) ds

⎞

⎠ .

(49)

Due to the Poisson split property, we define PA00 as the sum of the two processes
PA00,I and PA00,II .

Step 2: Fluid-scaled process Dividing both sides of the equations by N results in
a fluid-scaled process. Further, because of the martingale results in [3] and [21], we
can define noise terms ei j (N ) that tend to 0 as N → ∞ with i ≥ 0 and j ∈ {0, 1}.
The fluid-scaled system can be rewritten as follows, for i ≥ 2:

Q
N
00(t)

N
= Q

N
00(0)

N
+ μ2

t∫

0

QN
01(s)

N
ds

−λ

t∫

0

[
pN00(I, s) + pN00(II, s)

]
ds + e00(N ),

Q
N
01(t)

N
= Q

N
01(0)

N
− μ2

t∫

0

QN
01(s)

N
ds + λ

t∫

0

pN00(II, s) ds + e01(N ),

Q
N
10(t)

N
= Q

N
10(0)

N
− μ1

t∫

0

QN
10(s)

N
ds + λ

t∫

0

pN00(I, s) ds + e10(N ),
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Q
N
11(t)

N
= Q

N
11(0)

N
− μ1

t∫

0

QN
11(s)

N
ds + λ

t∫

0

pN01(I, s) ds + e11(N ),

Q
N
i0(t)

N
= Q

N
i0(0)

N
− μ1

t∫

0

QN
i0(s)

N
ds + λ

t∫

0

pNi−1,0(I, s) ds + ei0(N ),

Q
N
i1(t)

N
= Q

N
i1(0)

N
− μ1

t∫

0

QN
i1(s)

N
ds + λ

t∫

0

pNi−1,1(I, s) ds + ei1(N ). (50)

Step 3: Toward fluid limits While making the transition from integral equations to
differential equations with N tending to infinity, the representation of the departure
terms in (15) is straightforward. The arrival terms in the differential equations, on the
other hand, are not immediately obvious.

To illustrate the difficulty, assume there are among the N servers only a small
number of idle servers. As the assignment policy describes, one of these servers will
be selected by an arriving job. If the number of idle servers is small and the arrival rate
is sufficiently high, rapid switches will occur in the indicator function 1{QN

00 = 0}.
A server that becomes idle due to a service completion will immediately be selected
again by the arriving job. However, the fraction of idle servers (QN

00/N ) will be more
robust against these changes due to the fluid scaling.

In general, this phenomenon is called ‘separation of time scales’ as described by
Hunt and Kurtz [14]. One observes the interaction of two processes. One process
evolves very fast, namely the number of idle servers, while the second process evolves
much slower, the occupancy fractions in this setting. In order to obtain the arrival
terms of the fluid limit, we should be able to combine these processes. Focusing on
the first arrival integral in (50), the question arises of how to handle the expression

lim
N→∞ λ

t∫

0

[
pN00(I, s) + pN00(II, s)

]
ds = lim

N→∞ λ

t∫

0

1{QN
00(s) > 0} ds. (51)

A similar problem is analyzed in [14], where one needs to take the limit of a integral
of an indicator function. The existence of a measure α is deduced such that

lim
N→∞ λ

t∫

0

1{QN
00(s) > 0} ds = λ

t∫

0

α(s) ds. (52)

The existence of this function α, which does not need to be continuous, can be jus-
tified by the following reasoning: In a small time interval, say [0, δt], the number of
idle servers is a heavily fluctuating process, though the process describing the occu-
pancy fractions is approximately constant. During this small interval, the number of
idle servers can be considered as a birth-and-death process with ‘death’ rate λ, since
an arriving job causes a reduction in the number of idle servers. The ‘birth’ rate is
determined by the occupancy fractions, i.e., the fraction of servers that is working on
type-I or type-II jobs. Then, it is argued in [14] that
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1

δt

∫ δt

0
1{QN

00(s) > 0} ds, (53)

after application of the ergodic theorem, converges to an invariant measure if N tends
to infinity. This invariant measure will give rise to the function α. One already senses
that the presence or absence of idle servers should be handled as two different cases.
Therefore, we make a distinction between q00 strictly positive or equal to zero in the
intuitive explanation of the structure of the fluid limit.
The case q00 > 0. When the number of idle servers is sufficiently large, each arriving
job will be assigned to an idle server for sure. A fraction

(1 − q00)
d (54)

of the arriving jobs will be assigned as type-II jobs, which causes the changes in (15)
for q00, q01 and q10.
The case q00 = 0. Idle servers are generated at rateμ1q10+μ2q01. Since d is finite, the
probability that the primary selection would contain an idle server is negligible; each
idle server will be provided with a type-II job when the arrival rate is high enough. If
λ̃ = (λ − μ1q10 + μ2q01)+ is strictly larger than zero, a fraction

μ1q10 + μ2q01
λ

= λ − λ̃

λ
(55)

of the stream of incoming jobs will immediately be redirected to the idle servers as a
type-II job. The excess stream of incoming jobs (fraction λ̃/λ) will not observe any
idle server and will start to form (type-I) queues in front of the servers of the primary
selection according to a straightforward generalization of the transition probabilities
mentioned in step 1.

This concludes the derivation of the fluid limit (15).

5.3.2 Proof of Theorem 4: fixed points

We will start with the proof of the closed-form fixed point and show that this is the
only fixed point without idle servers on the fluid level, i.e., q00 = 0. Next, we will
consider fixed points with q00 > 0.

Fixed points with q00 = 0. The correctness of the expression in (16) can easily be
confirmed by substitution into (15). The result can be established in two steps. First,
we observe that the derivatives of (qi0)i in (15) remain zero once (q∗

i0)i equals zero.
Then, we substitute (q∗

i0)i = 0 into the derivatives of (qi1)i . For i ≥ 1, we obtain

d

dt
q∗
i1 = μ1(q

∗
i+1,1 − q∗

i1) + λ̃
[
(q∗

i−1,1)
d − (q∗

i1)
d
]

= 0. (56)

These equations can be solved, and one obtains the fixed point as given in (16). Note
the similarity between (56) and the fluid limit of a JSQ(d) policy with reduced arrival
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rate

λ̃ = λ − μ1 − λ

μ1 − μ2
μ2 = λ − μ2q

∗
01, (57)

in a setting where each of the exchangeable servers works at rate μ1 [18].
Second, this fixed point is unique under the condition that q00 equals zero. From

Lemma 2 in [18], we know that the fixed point of the fluid limit in the JSQ(d) setting is
unique when d ≥ 2. This implies that under the condition that all servers have a type-II
job, i.e., q∗

i0 = 0 for all i , uniqueness is guaranteed. Assume by contradiction that
another fixed point exists without idle servers but with possibly a positive cumulative
fraction q∗

i0 for some i . We focus on the differential equations of (qi0)i≥1 under this
fixed point. From

d

dt
q∗
10 = μ1(q

∗
20 − q∗

10) = 0, (58)

we get that q∗
10 = q∗

20. Repeating this procedure for i = 2,

d

dt
q∗
20 = μ1(q

∗
30 − q∗

20) + λ̃
[
(q∗

10 − q∗
11)

d − (q∗
20 − q∗

11)
d
]

= μ1(q
∗
30 − q∗

20) = 0, (59)

resulting in q∗
20 = q∗

30. By induction, we could show that q∗
i0 = q∗

i+1,0; for i ≥ 1, this
leads to q∗

i0 = 0 for i ≥ 1. This proves the uniqueness of the fixed point when q00
equals zero.

Fixed points with q00 > 0. Under this setting, the fluid limit equations (15) simplify
significantly: ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt q00 = μ2q01 − λ(1 − q00)d ,
d
dt q01 = −μ2q01 + λ(1 − q00)d ,
d
dt q10 = −μ1q10 + λ

(
1 − (1 − q00)d

)
,

d
dt q11 = −μ1q11,

for i ≥ 2,
d
dt qi0 = −μ1qi0,
d
dt qi1 = −μ1qi1.

(60)

For any fixed point, it should hold that (q∗
i0)i≥2 = 0 and (q∗

i1)i≥1 = 0. This implies
that the only positive fractions are q00, q01 and q10. The resulting system of differential
equations is given by

⎧
⎪⎪⎨

⎪⎪⎩

d
dt q00 = μ1q10 + μ2q01 − λ,

d
dt q01 = −μ2q01 + λ(1 − q00)d ,
d
dt q10 = −μ1q10 + λ

(
1 − (1 − q00)d

)
.

(61)
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From the second and third equality, it is clear that once q∗
00 is known, we know the

entire fixed point: {
q∗
01 = λ

μ2
(1 − q∗

00)
d ,

q∗
10 = λ

μ1

(
1 − (1 − q∗

00)
d
)
.

(62)

The system in (61) is linearly dependent. We use the fact that q00, q01 and q10 must
sum up to one to determine q00. It must hold that

1 = q00 + (1 − q00)
d
(

λ

μ2
− λ

μ1

)
+ λ

μ1
.

Define x
.= 1 − q00. We are interested in the zero points of the polynomial f within

[0, 1), with
f (x) = xd

(
λ

μ2
− λ

μ1

)
− x + λ

μ1
. (63)

We will evaluate the existence of the fixed points based on the behavior of f and its
derivative,

f ′(x) = d

(
λ

μ2
− λ

μ1

)
xd−1 − 1. (64)

Furthermore,

f (0) = λ

μ1
> 0,

f (1) = λ

μ2
− 1 > 0, (65)

and f ′ is monotone increasing on (0, 1) with

f ′(0) = −1 < 0,

f ′(1) = dλ

(
1

μ2
− 1

μ1

)
− 1. (66)

Since f is positive in both its endpoints and the derivative f ′ is monotone increasing,
we need at least a vanishing derivative in (0, 1) in order to have a fixed point. This is
guaranteed when f ′(1) > 0; this is the first condition from (17). We now know that
f attains a local minimum at

x̃
.=
⎛

⎝ 1

d

1

λ
(

1
μ2

− 1
μ1

)

⎞

⎠

1
d−1

(67)

and is strictly positive in its endpoints. If f (x̃) is exactly zero, we have one fixed point,
namely q∗

00 = 1 − x̃ . But only in very special cases the second condition of (17) is
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satisfied with equality for an arbitrary choice of d1, λ, μ1 and μ2. On the other hand,
if f (x̃) < 0, i.e., if also

(
1 − 1

d

)(
1

d

) 1
d−1

>
λ

μ1

(
λ

(
1

μ2
− 1

μ1

)) 1
d−1

(68)

holds, then we have exactly two fixed points such that q00 + q01 + q10 = 1. There is
one fixed point situated at each side of x̃ in the interval (0, 1). This gives that for d
large enough we can find two solutions of the reduced system of differential equations.
It can be shown by contradiction that both fixed points are larger than λ/μ1, so the
corresponding fractions of idle servers are smaller than 1 − λ/μ1.

For completeness, we mention that λ = μ2 would imply that f (1) = 0 and so
the proportion of idle servers is zero, which violates the assumption that q00 > 0.
Moreover, if λ < μ2, then the polynomial f vanishes in the interval (0, 1). The
monotone increasing property of the derivative of f leads to the fact that there exists
a unique fixed point x∗ in (0, 1). This results in a unique fixed point (q∗

00, q
∗
01, q

∗
10)

with q∗
00 > 0.

This concludes the proof of Theorem 4.

5.3.3 Proof of Theorem 5: local (in)stability

We will prove local (in)stability using the indirect Lyapunov method based on the
Hartman–Grobman theorem [13]. This theorem states that a system of differential
equations behaves near its fixed points as its linearized version. The eigenvalues of
the linearized system will define the local behavior of the system unless one of the
eigenvalues has a real part equal to zero; then, the Hartman–Grobman theorem is
inconclusive. If we were to immediately apply this theorem to one of the two fixed
points of (61), wewould obtain an eigenvalue exactly equal to zero, but one can resolve
this issue since (61) is a redundant system. Since q00 + q01 + q10 = 1, it is sufficient
to know the instantaneous change of two variables. Each elimination will lead to the
same two eigenvalues so we can remove, for instance, the third equation from (61):

{
d
dt q00 = μ1(1 − q00 − q01) + μ2q01 − λ,

d
dt q01 = −μ2q01 + λ(1 − q00)d .

(69)

Let (q∗
00, q

∗
01, q

∗
10) denote a fixed point, then the matrix of the linearized system

looks as follows near its fixed point:

[ −μ1 μ2 − μ1

−λd1(1 − q∗
00)

d−1 −μ2

]
. (70)

The corresponding eigenvalues are given by

α± = 1

2

[
−(μ1 + μ2) ±

√
(μ1 − μ2)2 + 4λd(μ1 − μ2)(1 − q∗

00)
d−1

]
. (71)
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Since μ1 > μ2, the quantity under the root is always positive, so the square root is
real. This implies, furthermore, that α− < 0. To determine the sign of α+, we need
to make a distinction between the two fixed points. From the proof of Theorem 4, we
know that the two fixed points are on both sides of x̃ , with x̃ as in (67). For

1 − q∗
00 > x̃ =

(
1

d

μ1μ2

λ(μ1 − μ2)

) 1
d−1

, (72)

we have that

2α+ > −(μ1 + μ2) +
√

(μ1 − μ2)2 + 4λd(μ1 − μ2)

(
1

d

μ1μ2

λ(μ1 − μ2)

)

= −(μ1 + μ2) +
√

(μ1 + μ2)2

= 0. (73)

This shows that the fixed point with the smallest fraction of idle servers is unstable.
When 1 − q∗

00 < x̃ , it follows in a similar way that 2α+ < 0. This shows that the
fixed point with the largest proportion of idle servers is locally stable. This concludes
the proof of Theorem 5.

6 Conclusion and outlook

We investigated load balancing issues in a service system where particular servers are
better equipped to process certain jobs due to affinity or compatibility relations. The
generalmodel in particular covers the settingwith anunderlyingnetwork topologyGN ,
referred to as the neighborhood model. The analysis of the neighborhood model is
severely complicated by the lack of exchangeability among the servers; a feature
present in the supermarket modeling framework that allows mean field techniques.
We constructed the novel R-coupling, or restructure coupling, to obtain stochastic
performance bounds for the general model and more specific settings, for instance
model instances where the underlying graph topology GN has a specific minimum
degree or is a d-regular graph.

Another instance of the general model, the combinatorial model, has enough inher-
ent symmetry to conduct a fluid limit analysis. The fluid limit was stated in terms of a
set of discontinuous differential equations, and its fixed point sensitively depends on
the size d of the primary selection. When d is sufficiently small, a unique fixed point
exists, but the associated waiting time does not vanish. When the primary selection
is sufficiently large, a fixed point arises that does provide a zero waiting time. On
the other hand, the above-mentioned fixed point still persists, giving rise to bistability
issues.

As mentioned above, the stochastic upper bounds for the neighborhood model
in terms of a supermarket model with a JSQ(d) policy require the degrees in the
underlying graph to be relatively high compared to d. To some extent, this indicates
that the performance may be poor in certain pathological cases even when the node
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degrees are fairly high. An interesting topic for further research would be to extend the
R-coupling and possibly identify relevant structural conditions on the graph topology
in order to sharpen these bounds.

For a fixed set of model parameters with a uniform arrival rate per server selection
and the described affinity-scheduling policy, it seems plausible to expect an improve-
ment in performance when the set of server selections S grows bigger and becomes
more diverse in some appropriate sense. This would imply that the performance of
the combinatorial model provides a conservative estimate for the performance of,
for instance, the neighborhood model with an underlying regular graph structure.
Moreover, recall that a supermarket model with a JSQ(d) policy is equivalent to the
combinatorial model with server selection of size d when jobs cannot be assigned as
type-II jobs, which effectively occurs whenμ2 approaches zero. This suggests that, for
sufficiently small μ2, the supermarket model with a JSQ(d) policy provides stochas-
tic lower bounds for our affinity-scheduling model with server selections of size at
most d.

The bistability of the fluid limit of the combinatorial model for large values of d
not only precludes any convergence statements for the stationary distribution, but also
suggests that the assignment strategy could possibly be refined. In future work we
intend to examine such refinements and establish that these eliminate the queueing
fixed point and render the no-queueing fixed point globally stable.
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tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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