
 

Combinatorial and dispersion activity coefficient models for
molecular solutions
Citation for published version (APA):
Krooshof, G. J. P. (2019). Combinatorial and dispersion activity coefficient models for molecular solutions. [Phd
Thesis 1 (Research TU/e / Graduation TU/e), Chemical Engineering and Chemistry]. Technische Universiteit
Eindhoven.

Document status and date:
Published: 17/12/2019

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/ff79e81d-c111-42e2-b5d4-55dcebff3354


Combinatorial and dispersion
activity coefficient models
for molecular solutions

Gerard J.P. Krooshof



Title: Combinatorial and dispersion activity coefficient models for molecular solutions
Author: G.J.P. Krooshof

ISBN: 978-90-386-4933-7
c© 2019, by G.J.P. Krooshof

Print: Gildeprint, The Netherlands.



Combinatorial and dispersion
activity coefficient models
for molecular solutions

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven,
op gezag van de rector magnificus prof.dr.ir. F.P.T. Baaijens,

voor een commissie aangewezen door het College voor Promoties,
in het openbaar te verdedigen op dinsdag 17 december 2019 om 11:00 uur

door

Gerardus Johannes Paulus Krooshof

geboren te Utrecht



Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de
promotiecommissie is als volgt

voorzitter: prof.dr.ir. E.J.M. Hensen
1e promotor: prof.dr.ir. R. Tuinier
2e promotor prof.dr. G. de With
leden: prof.dr. C. Storm

prof.dr.ir. J.A.M. Kuipers
prof.dr.ir. C.F.J den Doelder PDEng
prof.dr.ir. T.J.H. Vlugt (Technische Universiteit Delft)
prof.dr. D.N. Theodorou (National Technical University of Athens)

reserve: prof.dr. J. Meuldijk

Het onderzoek dat in dit proefschrift wordt beschreven is uitgevoerd
in overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

Eindhoven, 17 December 2019

ii



Summary

The objective of this thesis is to improve the robustness of activity coefficient models
(ACMs), so that the prediction of the phase behavior of molecules in multicomponent
molecular liquids and related physical properties become more accurate and reliable.
This addresses the industrial need to predict phase behavior in a robust way and to
make it for physical-chemists possible to design molecules with a specific property
or for a particular purpose.

The current and frequently applied predictive ACMs, versions of UNIFAC and COSMO-
RS, have three unsolved or questionable issues:

• the use of an ad-hoc adjusted combinatorial contribution,

• the neglect of a contribution for interaction by dispersive forces, and

• the loss of molecular structural information by cutting molecules into atom
groups (UNIFAC) or by collecting surface patches into histograms (COSMO-
RS).

In this thesis these issues are examined. New activity coefficient equations are de-
veloped, explored and tested. It starts with the theory on the combinatorial contri-
bution of the activity coefficient models, where it is shown that also an off-lattice
combinatorial activity coefficient can be obtained from Guggenheim’s theory. This
off-lattice equation in combination with the residual term of the COSMOSPACE
model gives better results for the description of phase equilibria behavior of alcohol-
alkane mixtures, than previous models did.

Subsequently, it is shown that all cubic equations of state (cEoS) yield a van Laar
type of ACM and that these models always overpredict the experimental activity
coefficients. This systematic error is a characteristic for all cEoS-based ACMs. It
is caused by the assumption introduced by van der Waals that all molecules are
spherical, while most molecules are polyatomic, and thereby non-spherical, which
reduces the covolume and intermolecular interaction.
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To account for this reduced interaction by molecular form and structure, the
perturbed hard-sphere chain model PC-SAFT equation of state is taken as starting
point. However, the 1st perturbation integral of this model is not parameterized in
the limit of random close-packed entities. Therefore, in order to define an effective
number of nearest neighbors, topology theory is applied. This approach leads to a
topology number that quantifies the dispersion interaction and to an expression for
the dispersion activity coefficient.

The combination of the generalized combinatorial contribution and this perturbed
and topology based dispersion contribution gives a very good correlation for the lim-
iting activity coefficients of alkane mixtures between model and experiment. This
method is extended to a group contribution activity coefficient model, which is ad-
vantageous to earlier group contribution methods, because it keeps the structural
information of the molecules intact. The current model set-up is envisaged as a
sound basis to construct a more robust version of COSMO-RS and UNIFAC.
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Preface

This thesis is a result of having the opportunity to investigate more deeply the
fundamentals of predictive activity coefficient models (ACMs). For many years I
applied these models to estimate phase equilibria, in particular the solubility of
solutes in solvents and polymers in the development of new products and processes
at DSM. The motivation to improve the basis of ACMs lies in the fact that the
group-contribution method UNIFAC and the a priori method of COSMO-RS [116]
are failing in some cases. The cause for these failures, are:

• the use of a modified combinatorial term with no physical basis,

• the omission of an explicit dispersion contribution, and

• the loss of 3D features and information by splitting molecules into atom groups
(UNIFAC) or surface patches (COSMO-RS).

The initial steps to improve the aforementioned weaknesses, prior to this thesis, were
made in an ISPT project in the period 2011-2015. It was a collaboration between
TU Delft (prof. Thijs Vlugt, Erin McGarrity, Juan Guttierez-Sevilla), University of
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UNIFAC model to fill the gaps of the interaction matrix. In 2011 I proposed 10 ways
to improve UNIFAC [128]. For the fruitful discussions and collaboration, I would
like to thank the ISPT team and the UNIFAC consortium members for these inter-
actions, which planted seeds, ideas, in my mind that led to the decision to carrying
out a 3 year project with this thesis as result.

I am infinite grateful to Johan Hoorn, who gave me the opportunity to carry out
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activity model parameters ãj parameters of Table 6.3. . . . . . . . . 118

6.6 Activity coefficients of n-hexane (left panel) and n-heptane (right
panel) in alkanes after optimization of the three PC-SAFT based
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Detailed summary

What can you expect to read in this thesis?

This thesis is organized as follows. In chapter 1 we start with an overview of activity
coefficient models. We explain the criteria to choose an activity model. An historical
overview highlights developments in the last century with respect to phase equilibria
description and prediction. An elaborate example is given on how an activity model
fits into the modeling of self-assembling molecules. Subsequently, we give in chapter
2 the most important equations related to activity coefficient equations and discuss
the different contributions that have been introduced to match the activity coefficient
model with experimental results. The first two chapters can be form the basis for
the chapters that follow. Chapters 3 and 4 are closely connected and discuss the way
the number of nearest neighbors are computed and how this can be used to obtain a
generalized expression for the combinatorial activity coefficient. This result is applied
in the UNIQUAC and COSMOSPACE activity coefficient models. Chapters 5 - 7
demonstrate how to derive the dispersive activity coefficient from an equation of state
and how this can be improved further. Chapter 8 shows how 3D information can
be used to improve the COSMO-RS family of coefficient models. Finally, in chapter
9, we summarize the main conclusions made in this thesis and give an outlook to
further research.

Outlook of chapters

Chapter 1

Here we give a general overview of activity coefficient models, explain the criteria to
choose an activity model, and show how these models are related to phase equilibria
description. In an overview we touch upon the key concepts that were introduced to
improve the models in time. We end this chapter by showing which physical property
methods other than phase equilibria are closely linked to a particular activity model.

xxvii
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Chapter 2

In this chapter we give the basic equations that are used in the field of phase equilibria
descriptions. We explain the different contributions in activity coefficient models.
The combinatorial and the free-volume contribution of activity models are discussed
in detail. There is a variety of expressions for these available in literature, though
never well scrutinized on consistency and interpreted from a physics point of view.
We show in some cases the errors that where made in the derivation. This chapter
also contains a number of basic equations that are frequently used in the subsequent
chapters of this thesis.

Chapter 3

This chapter concerns the proof that the Guggenheim model can be improved and
leads to an off-lattice model. Guggenheim proposed a theoretical expression for the
combinatorial entropy of mixing of unequal sized and linear and branched molecules
to improve the Flory-Huggins model. Later the combinatorial activity coefficient
equation, which was derived from Guggenheim’s model, was applied in the UNI-
QUAC, UNIFAC, and COSMOSAC models. Here we derive from Guggenheim’s
entropy expression a new function for the number of nearest neighbors of a com-
pound in a multicomponent mixture for which the knowledge of the coordination
number and a reference area are not needed. The obtained relation requires only
the mole, volume and surface fraction of the compounds in the mixture. The bene-
fit of the new relation is that both the combinatorial and the residual term in the
aforementioned models can be made lattice-independent. We demonstrate that the
proposed relation simplifies the Staverman-Guggenheim combinatorial model.

Chapter 4

We show that the generalized expression for the Guggenheim-Staverman model can
be applied with success to the UNIQUAC and COSMOSPACE model in the descrip-
tion of vapor-liquid phase equilibria and excess enthalpy. We also demonstrate that
the expression for the number of nearest neighbors, derived in Chapter 3, can be used
to replace the relative surface area and the number of surface patches in the residual
part of the UNIQUAC and the COSMOSPACE model, respectively. As a result a
more rigorous version of the UNIQUAC and the COSMOSPACE model is obtained.
This could serve as a better basis for predictive models like UNIFAC, COSMO-RS
and COSMOSAC.
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Chapter 5

In this chapter an explicit expression for dispersion in activity coefficient models is
derived from cubic equations of state (cEoSs). It is demonstrated that all the cEoSs
deliver a van Laar type of equation. The difference between these equations can be
characterized by a single parameter K, which can be computed directly from the
cEoS characteristic parameters. Because the theoretical value for K is always higher
than 9, the activity models derived from a cEoS yield always an activity coefficient
value, which is higher than the experimental value. It is shown that that mixtures
of linear and branched alkanes require K = 4.13 and K = 3.04, respectively. This
mismatch in parameter K is caused by the assumptions, which are made in the
derivation of the van der Waals equation of state and which remain present in later
developed cEoSs. One of these is that all molecules are spherical, which leads to the
inconsistency that the ratio of the covolume and the van der Waals volume is always
4, while this ratio for linear alkanes decreases rapidly to nearly 2 with increasing
chain length. Another assumption is that all molecules experience the same number
of external interactions, which neglects the fact that polyatomic molecules have less
intermolecular interactions per spherical segment due to the presence of covalent
bonds and the occurrence of intramolecular interaction. Therefore, the van Laar
type of activity coefficient equations are limited in their use as predictive model for
dispersion.

Chapter 6

Based on the mismatch in K revealed in chapter 5, which is the result of assuming
all molecules in a mixture to be spherical, we derive in this chapter an activity coef-
ficient model from the perturbed hard-sphere chain (PHSC) equation of state. We
apply the method of Huron-Vidal, which implies that the system is set to infinite
pressure, which place the molecules into close contact. We show that at this con-
dition the second perturbation integral of the PHSC models vanishes and only the
first perturbation integral survives. Because the power series expression of the first
perturbation integral of the PC-SAFT model fails at random close-packed (RCP)
condition, we derive, using the theoretical framework of PC-SAFT, another expres-
sion for the perturbation integral at RCP. Topology theory is applied to get realistic
values for this integral. The obtained equation in combination with a generalized
expression for the combinatorial activity coefficient of chapter 4 gives an excellent
description of activity coefficients of alkanes mixtures. The accuracy is of the level
of the UNIFAC(Do) model, which is regarded as the best predictive model for phase
equilibria description. These results also demonstrate that the systematic deviations
of the cubic equation of state based activity model are a result of neglecting the
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shape and polyatomic character of molecules.

Chapter 7

In this chapter we explore the model as was proposed in chapter 6. The PC-SAFT
model, and thereby the derived expression of the dispersion contribution of the activ-
ity model, applies a first order approach to quantify the total interaction energy
of the molecules. As is known from the COSMOSPACE model this approach ig-
nores that strong interaction are more persistent than weaker ones. Therefore, by
self-consistency, interactions require a Boltzmann weight, as has been done in the
COSMOSPACE model. We apply this model to quantify the interactions between
different methyl groups. It leads to a further, though small, improvement. The ob-
tained relative interaction energies between different alkyl groups are in qualitative
agreement with the expected theoretical results. It indicates that there is still room
for further improvement.

Chapter 8

This chapter concerns the improvement of the COSMO-SAC model. We improve
the COSMO-SAC model for the calculation of activity coefficients by incorporating
3-dimensional geometric information of molecules. This information is added to
the model by means of the effective contact area of the molecules. We define a
procedure to compute this contact area by using a probing sphere. The probing
sphere rolls around the COSMO surfaces of two contacting atoms to define a spherical
cap on each atom. The segments of the COSMO surfaces within the spherical caps
are marked and the summation of their areas defines the contact area for a pair
of contacting molecules. The effective contact areas are used to compute the σ-
profiles and the Onsager screening energies in the calculation of the surface activity
coefficients, allowing us to remove one parameter from the COSMO-SAC model.
The σ-profiles and effective areas need to be calculated only once and can be stored
in a database. We show that the new model, named COSMO-3D because some
3 dimensional information (the position of surface segments and atom centers in
3D-space) is taken from the COSMO-output files, agrees better with experimental
data than the COSMO-SAC implementation for non-polar and polar mixtures, even
though it uses one parameter less. We feel that the new concept of system dependent
effective contact area is a suitable starting point to improve COSMO-SAC further.
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Chapter 9

Here we give a summary of the main conclusions of this thesis and put some ideas
on paper for future research.
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Chapter 1

Activity Coefficient Models

1.1 Choice of an Activity coefficient model

For the description and prediction of phase equilibria scientists and engineers can
choose from a variety of equations of state (EoSs) and activity coefficient models
(ACMs). The choice for a particular ACM or EoS model to describe the chemical
potential of a component in the liquid phase depends mainly on the density of the
liquid state, which is related to the temperature and pressure of the system, and the
type of molecules in the mixture. Table 1.1 explains schematically when to choose
for an activity model to describe the chemical potential of a liquid.

Liquid phase Regular molecules Complex molecules
High density ACM GC-ACM
Low density EoS + classical mixing rules EoS + ACM mixing rule

Table 1.1: Model choice to calculate the chemical potential of compounds in liquid phase.

In general, when the temperature of the system is below the critical temperatures
of each of the pure components, the density of the mixture is high. The system is
in the condensed state and not expanded by a supercritical compound. In this case
an activity coefficient model would be a logical choice, because an ACM interpolates
between the liquid states of the pure compounds, while an EoS extrapolates from the
ideal gas state to the liquid state. Under such conditions an ACM provides a more
accurate prediction of the chemical potential than an EoS model. An example of a
frequently applied descriptive ACM is the Non-Random Two-Liquid (NRTL) model
of Renon and Prausnitz [186]. It is mainly used for regular molecules. However, for
’complex’ molecules, i.e. molecules containing one or more functional atom groups,
a predictive group contribution (GC) based ACM is frequently applied, because
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experimental data is in most cases lacking. Examples are the UNIFAC [59] and
COSMO-RS [114] models.

Oppositely, when the liquid phase contains a major compound, which has a
critical temperature that lies below the system temperature, then this compound
expands the liquid phase thereby reducing its density. In that case an equation
of state would be a better choice, because the interaction between the molecules is
reduced by the increase in free-volume. This free-volume effect can be incorporated in
an ACM, but this is not preferable, since volumetric changes are better described by
an EoS than by an ACM. For systems with regular molecules or molecules of one class
it is sufficient to use the classical mixing rule in the EoS. The Peng-Robinson [177]
or the Soave-Redlich-Kwong [206] cubic EoS are used frequently for this purpose.
Today the use of the PC-SAFT [78] EoS is more common. For liquid mixtures with
a variety of complex molecules, the classical mixing rules are not sufficient to describe
a phase equilibrium. In that case the classical mixing rules is replaced by activity
coefficient based mixing rule. The predictive Soave-Redlich-Kwong (PSRK) model
is an example of such an approach [91]. We mention that in the modeling of gasses
dissolved in a condensed liquid, where the concentration of the gas is below 1 mol%,
which implies that the liquid is still at high density, it is custom to use an ACM for
the condensables and a Henry equation to quantify the dissolved gas by means of
the partial pressure of the gas.

For the gas phase the chemical potential is either described by the ideal gas (IG)
equation, a virial expansion equation, or an equation of state (EoS). The choice to
use an EoS is made on basis of the system pressure and the presence of atom groups
that cause association in the gas phase. As a rule of thumb the choice between
an equation of state and ideal gas is on whether the pressure is above or below 10
bar, respectively. More precisely, the choice for an EoS is made, when the fugacity
coefficient of one of the components in the gas phase is deviating more that 10%
from unity, which happens to be around 10 bar. Virial expansion equations are also
applied, but with the introduction of advanced EoS models, such as PSRK and PC-
SAFT, the use of it has diminished. In fact, current chemical engineering flow-sheet
programs, such as AspenPlus, do not have this option in the basis set of models.
The use of a dimerization or strong association model for the gas phase is based on
the presence of molecules that have one or more acid groups. For low pressure the
fugacity of the gas phase is mainly calculated by chemical theory described by the
model of Marek [202]. At high pressure this is done by extending the EoS with the
1A association scheme of Wertheim [232].
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Gas phase No dimerization Dimerization
P < 10 bar IG IG with Chemical theory
P > 10 bar EoS EoS with 1A association scheme

Table 1.2: Model choice to calculate the chemical potential of compounds in gas phase.

1.2 Chemical potential, fugacity, and activity

The choice of an equation of state or activity coefficient model determines the way
the chemical potential of a compound is described in a fluid phase. At equilibrium
the chemical potential of a compound is the same in all phases. For instance, at fixed
pressure and temperature, the chemical potential of compound j in a multicomponent
mixture in a vapor-liquid-liquid equilibrium (VLLE) can be expressed as:

µgasj = µ
liq1
j = µ

liq2
j , (1.1)

where the superscript indicates the phase state (gas phase, liquid phase 1, liquid
phase 2).
The chemical potential of compound j in a mixture can be written in terms of the
fugacity, fj by:

µmix
j (T ) = µ0

j (T ) +RT ln(fj(T )), (1.2)

where R is the gas constant, T the absolute temperature, and µ0
j the chemical po-

tential of the compound in pure liquid or saturated gas state.
Substitution into Eq. 1.1 yields:

µ0
j +RT ln(fgasj ) = µ0

j +RT ln(f
liq1
j ) = µ0

j +RT ln(f
liq2
j ), (1.3)

so

fgasj = f
liq1
j = f

liq2
j . (1.4)

It follows that the criterion of isofugacity is equivalent to the definition of an equi-
librium in terms of the chemical potential.

The fugacity is commonly calculated in two ways, sometimes called the gamma-
phi and phi-phi route. The first refers to an equation using activity coefficients (γ),
the second to an equation using fugacity coefficients (φ) only. These routes can be
expressed by the following two equations for compound j between a liquid phase and
a gas phase:

gamma-phi route : xjγjf
0
j = yiφ

gas
j P, (1.5)
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and

phi-phi route : xjφ
liq
j P = yiφ

gas
j P ⇔ xjφ

liq
j = yiφ

gas
j , (1.6)

where xj and yj are the mole fractions of compound j in the liquid and gas phase,
f0
j is the fugacity of pure compound j at system temperature T , φliqj and φgasj are
the fugacity coefficients of compound j in the liquid and gas phase, respectively,
and γj is the activity coefficient of the compound in the liquid at temperature T and
pressure P . For pressures over 10 bar the calculation of the fugacity coefficient always
requires an equation of state or a virial coefficient equation. For lower pressures both
equations approximate the ideal gas equation of state, which implies that the fugacity
coefficient of the gas phase is set to unity and that any deviation of the gas phase
is lumped into the activity coefficient of the liquid phase. Since the fugacity of a
pure compound is at low pressures equal to its saturation pressure, P sat

j , it is custom
to approximate the gamma-phi route for a vapor-liquid equilibrium (VLE) at low
pressures by:

xjγjP
sat
j = yiP (1.7)

For a liquid-liquid equilibrium (LLE), regardless of the pressure, we get:

x
liq1
j γ

liq1
j f0

j = x
liq2
j γ

liq2
j f0

j , (1.8)

which leads to the equation:

x
liq1
j γ

liq1
j = x

liq2
j γ

liq2
j (1.9)

This equation shows that for LLE isoactivity rules the equilibrium.
We mention that the interaction parameters of an activity model, which are

obtained from fitting experimental VLE data, are not applicable to describe LLE
behavior. The reason is that in the fitting of experimental VLE data one uses the
approximation that the gas fugacity coefficient is unity (Eq. 1.7), while this is not the
case for LLE. In other words, small non-ideal behavior in the gas phase is transferred
by the fitting procedure into the interaction parameters of the activity coefficient
model. Since isoactivity of LLE is very sensitive to small differences, the resulting
equilibrium concentrations between two liquid phases can differ a great deal. From
a mathematical point of view it is better to start by fitting the parameters using
experimental LLE data only, and subsequently fit experimental VLE data by using
an equation of state to account for small non-ideal behavior in the gas phase. This
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applies especially when the interaction between two compounds is strongly repulsive
or attractive.

The activity coefficient γj of Eqs. 1.7 and 1.9 is calculated by an activity coeffi-
cient model (ACM). In section 1.3 we give a short overview of the most important
ACMs. Commonly the activity coefficient is sequestered into an entropic (S) and
an enthalpic (H) contribution. There are of course exceptions, such as the Non-
Random Two-Liquid (NRTL) model [186], where such a differentiation is not made.
The entropy and enthalpy parts are frequently denoted as combinatorial (comb) and
residual (res) contributions. The combinatorial part of the activity coefficeint and is
obtained from the ACM equation by setting the temperature to infinite value. This
means that the athermal part of the ACM is seen as the combinatorial part. The free-
volume contribution (fv), when included in the ACM, is an enthalpy contribution,
because it changes with temperature. Other temperature dependent contributions
are the dispersion (disp), permanent dipole-dipole or quadrupole-dipole interaction
(pol), association and hydrogen bonding, denoted as acid-base interaction (AB). This
gives the following forms for the total activity coefficient of non-electrolyte systems:

ln γtot = ln γS + ln γH

= ln γcomb + ln γres

= ln γcomb + ln γfv + ln γdisp + ln γpol + ln γAB, (1.10)

which can also been written as:

γtot = γcombγfvγdispγpolγAB (1.11)

In the next section we give a short overview of available models and the developments
that have been made over the years.

1.3 Overview of activity coefficient models

There is a variety of descriptive and predictive activity coefficient models (ACMs).
Table 1.3 shows a chronological list of the most common ACMs with their key feature
that was introduced to improve the ACM in comparison to early models. The model
of Margules is noted as the first activity model, though Margules is not the inventor
of the concept of fugacity and activity. These concepts were introduced by Lewis in
1901 [137] and 1907 [138]. The Margules model is mentioned here, because it fre-
quently gives a better description of activity coefficients than other models. Evidence
for this can be found in the DECHEMA [68] data series on vapor-liquid equilibria,
where model parameters for the Margules and other ACMs are given, together with
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the absolute average deviation between model and experimental data.

First author ACM name Key feature Year Ref.
Margules first known ’activity’ model 1895 [160]
van Laar - derived from van der Waals’ EoS 1910 [223]
Fowler - size effect of dimers in a lattice 1937 [57]
Huggins - solvent-polymer Lattice model 1941 [95]
Flory - solvent-polymer Lattice model 1942 [53]
Hildebrand Regular solution Solubility parameter 1947 [87]
Staverman - modification of combinatorial term 1950 [209]
Guggenheim - modification of combinatorial term 1952 [81]
Guggenheim - (binary) quasi-chemical theory 1952 [81]
Wilson - local composition for internal energy 1964 [234]
Renon a NRTL local composition for Gibbs energy 1968 [186]
Hansen - set of 3 solubility parameters 1967 [84]
Derr ASOG group contribution model 1971 [39]
Donohuea - fractal volume term 1975 [43]
Abramsa UNIQUAC (simplified) quasi-chemical theory 1975 [2]
Fredenslund a UNIFAC group contribution form of UNIQUAC 1975 [59]
Thomas MOSCED split of interaction types 1984 [214]
Huyskens - mobile order theory 1985 [98]
Aranovich AD local surface fraction composition 1996 [5]
Klamt COSMO-RS ab initio model 1995 [114]
Lin COSMO-SAC COSMO-RS like but other averaging 2002 [144]
Klamt COSMOSPACE descriptive self-consistent field model 2002 [117]
Bronneberg MOQUAC orientation effect in GEQUAC 2013 [22]
Krooshof COSMO-3D orientation effect in COSMO-RS 2015 [82]

a Co-author Prausnitz.

Table 1.3: Chronological overview of frequent applied activity models.

Deviations of entropy with respect to the ideal entropy, were first investigated by
Fowler and Rushbrooke [57]. They investigated the size effect of molecules by cal-
culating the entropy of mixtures of monomers and dimers. Huggins [95], and later
Flory [53] extended this approach to polymers, which leads to the conclusion that
instead of mole, volume fractions are needed to quantify entropy differences, as was
already indicated by Hildebrand [87]. The Flory-Huggins (FH) combinatorial expres-
sion, however, turned out to give too strong negative deviation from ideal solubility
for the mixtures of alkanes. Staverman and Guggenheim (SG) tried to solve this by
correcting the FH equation with a term that accounts for the probability to place
subsequent segments of one molecule in a lattice. It was an adjustment in the right
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direction, but not sufficient for alkane mixtures. In Chapter 3 we will take a closer
look at the FH-SG model. Hansen [84] modified the Flory-Huggins model by repla-
cing the the empirical Flory-Huggins χ-parameters by an expression involving the
so-called solubility parameters, which are derived from pure component properties,
i.e. the enthalpy of evaporation and liquid density. In some cases these parameters
are tuned further to provide an accurate phase equilibrium prediction. The handbook
of solubility parameters [10] lists these parameters for a wide range of molecules.

Meanwhile, Wilson [234], Renon [186], Abrams [2] and Aranovich [5] considered
that, due to interaction, the molecules in a mixture are not randomly distributed.
Molecules of compound 1 cluster differently around a molecule of type 2, than mo-
lecules of compound 2 cluster around molecule 1. This approach yields a certain
degree of non-randomness. Guggenheim used a quasi-chemical bond to quantify
the non-randomness and to arrive at expressions for the Gibbs energy of mixing for
binary systems [81]. However, Guggenheim’s equations become complicated for mul-
ticomponent mixtures, and require extensive computation when there are different
types of quasi-bonds between molecules. Therefore, Wilson and followers worked
on less complicated Gibbs energy equations to quantify the non-randomness and
derived simpler ACMs. Later the non-randomness concept was also applied in the
development of the predictive models ASOG [39] and UNIFAC [59]. Wu et al. [236]
summarize the differences between several local composition models. In short, one
could conclude that that Guggenheim’s quasi-chemical theory [81] and the general-
ization of it in the COSMOSPACE model are the most accurate models to describe
non-randomness, followed by the Aranovich-Donohue model, the UNIQUAC, the
NRTL and the Wilson model, respectively. Worthwhile to mention is that the Flory-
Huggins model as well as the Hansen method assume mixtures where molecules are
randomly distributed. This simplification makes the interaction parameter concen-
tration dependent.

The ASOG [39] and UNIFAC [59] methodologies are predictive models that divide
molecules in groups. These approaches are more versatile than the method of Hansen,
because it enables scientists and engineers to predict the phase behavior of molecules
for which no physical data is available.

The original UNIFAC group contribution method gives large deviations from
Raoult’s law for asymmetric alkane mixtures, due to the absence of a dispersion
contribution. In the UNIFAC methodologies the interaction energy between CH3,
CH2, CH and C is assumed to be zero. Instead of assigning interaction energies
between these subgroups to repair this omission, the developers of the modified
UNIFAC models applied the ad-hoc proposal of Donohue and Prausnitz [43]. In here
the volume fraction is raised to a power between 0 and 1 (see 2.3.3). By doing this
they placed an enthalpic contribution, i.e. dispersion, into an entropic contribution,
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i.e. the combinatorial part. This approach has lead to a series of modified versions of
UNIFAC, of which the Dortmund [231] and Lyngby [133] approaches survived, while
others [112, 47] are not used anymore.

The omission or neglect of a dispersion term, as done in the UNIFAC models,
is also a problem in the COSMO-RS and COSMO-SAC models [114, 94, 142, 141,
229, 239, 82]. Improvements were made, but still the modified UNIFAC(Do) model
gives a better prediction than the COSMO-RS family of models does. This is be-
cause a systematic deviations arising from the combinatorial term can be repaired
in the UNIFAC model by the adjustment of the interaction energy parameters or
the subgroup area parameter. This option of tuning the model is not as such avail-
able in QM-based models. The COSMO-RS family of models has only a limited
number of universal parameters (<10), while that for the UNIFAC is large (>100).
A way to overcome this problem, is to define in the COSMO-RS type of models
specific classes of molecules, for which the universal parameters are optimized. But
such an approach is not only elaborate, it also deteriorates the robustness of the
COSMO-RS models. In order to improve UNIFAC and COSMO-RS type of models
it is important to investigate what the most accurate model is for the combinatorial
activity coefficient and how the dispersion can be formulated in an activity coefficient
contribution.

1.4 The importance of activity models in applications

Activity models are mainly applied in the description and prediction of phase equilib-
ria like VLE, LLE, SLE (solid-liquid equilibria), and combinations of these equilibria.
In chemical processes it is crucial to quantify the phase behavior and stability of it,
because these help the chemical engineer to understand how to optimize a process
step and can alert him on show-stoppers that might happen in production. An
example of a show-stopper is the oiling-out of pharmaceuticals, where one of the
demixing liquid phases forms an organic phase prior to the crystallizing of an active
pharmaceutical ingredient. The organic phase will form an oily layer on the crystals,
which should be avoided. The use of a heterogeneous azeotrope in distillation is a
way by which the separation of a low volatile from a solution or substrate can be
improved. For instance, in the low volatility of essential oil in rose petals is en-
hanced by adding water (i.e. steam distillation). The oversaturation of a dissolved
compound in a (polymeric) matrix is another example that can occur during product
development. In this case a dissolved additive will diffuse out of the polymer mat-
rix when the activity of the solute is higher than the equilibrium activity at room
temperature. Such a phenomenon happens when producers dissolve an additive at
process temperature, which has a higher concentration than matrix can contain at
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room temperature. As a result, a softener in a plastic will eventually migrate to the
surface and make the product more tacky in time.

Besides the description and prediction of phase equilibria, the ACMs are also
applied in the calculation of other physical properties. Table 1.4 gives an overview
of ACMs and binary interaction parameters (BIPs), which are applied into another
physical property model or method.

Property/Theory ACM BIP Lit.
Flash point of mixtures UNIFAC - [69]
Viscosity of mixtures UNIQUAC - [25]
Surface tension NRTL - [208]
Thermal conductivity of mixtures NRTL - [191]
Solvent diffusion in polymers - χ-parameter [244]
Self-consistent field theory - χ-parameter [196]
Dissipative particle dynamics - χ-parameter [75]

Table 1.4: Applications of ACMs and BIPs in other physical property calculation and theory
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Chapter 2

Gibbs energy of mixing and
activity coefficient contributions

2.1 Introduction

In this chapter we start with basic equations related to the Gibbs energy and activity
coefficients. Subsequently, we review the entropy part of activity coefficients. We
derive expressions for the combinatorial and free-volume activity coefficient models
and the modifications which have been proposed. Next, we discuss the enthalpy part,
but restrict ourselves to the excess enthalpy caused by dispersive interactions.

2.2 Excess Gibbs energy

Non-ideal solvation of compounds is characterized by the excess Gibbs energy, ∆GE,
which is the difference between the Gibbs energy of the mixture and that of the pure
compounds in reference to an ideal mixture. The excess Gibbs energy is related to
the excess enthalpy and entropy, according to the thermodynamic relation:

∆GE = ∆HE − T∆SE, (2.1)

where ∆HE and ∆SE are the excess enthalpy and entropy, respectively. Mixtures
with ∆GE = 0 are called ideal mixtures. Mixtures that have ∆HE = 0 are called
athermal systems, because it shows neither exothermal (∆HE < 0), nor endothermal
(∆HE > 0) behavior. Mixtures that have ∆SE = 0 are called regular mixtures.
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2.2.1 Activity coefficient and the excess Gibbs energy

The changes in these thermodynamic properties are measured in different ways. The
change in excess enthalpy is often quantified by calorimetry, while the change in Gibbs
free energy can be determined by measuring phase equilibria. This can be performed
in various ways, for instance, by measuring the pressure and vapor composition as
a function of liquid composition in VLE systems, the mutual solubility (LLE) of
demixing liquids, or the solubility of solids in a liquid (SLE). From the obtained
mixing enthalpy and Gibbs energy Eq. 2.1 yields the mixing entropy.

The relation between excess Gibbs energy, GE, and the activity coefficient, γk,
of compound k in a mixtures is given by the thermodynamic equation:

ln γk =

(
∂∆GE

kBT

∂Nk

)
T,P,Nj 6=Nk

(2.2)

The right-hand side of the equation can be split into a residual enthalpic part, γresk ,
and a combinatorial entropic part, γcomb

k :

ln γresk =
1

kBT

(
∆HE

∂Nk

)
T,P,Nj 6=Nk

(2.3)

ln γcomb
k = − 1

kB

(
∆SE

∂Nk

)
T,P,Nj 6=Nk

(2.4)

2.2.2 Gibbs-Duhem and consistency of activity coefficient models

The thermodynamic consistency of activity models can always be double checked
by using the Gibbs-Duhem relation, which under isothermal and isobaric conditions
reduces to: ∑

j

Njdµj = −SdT + V dP = 0, (2.5)

where µj is the chemical potential of compound j, and S and V the entropy and
volume of the system. The Gibbs-Duhem equation relates the chemical potential of
one of the components in a mixture to the other ones. In terms of activity coefficients
we have:

M∑
j=1

xjd ln γj = 0. (2.6)
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This equation holds for any contribution of the activity coefficient, whether it is the
combinatorial, the residual, or a part of the residual contribution. There are two
ways to make use of this expression to test whether experimental data or a model
is consistent with the Gibbs-Duhem criterion. These are the differential and the
integral test.

Differential test
Differentiation of Eq. 2.6 with respect to x1 yields for a binary system:

x1

(
∂ ln γ1

∂x1

)
T,P

+ x2

(
∂ ln γ2

∂x1

)
T,P

= 0. (2.7)

The equation can be used to check any activity coefficient equation numerically. For
simple algebraic equations an analytic proof is possible. As an example we take the
symmetrical activity coefficient, known as the Porter model, expression which has
the form: {

ln γ1 = Ax2
2

ln γ2 = Ax2
1

(2.8)

Differentiation with respect to x1 and substitution into Eq. 2.7 yields:

x1 (−2Ax2) + x2 (2Ax1) = 0, (2.9)

which proofs that the symmetrical activity coefficient equation is thermodynamically
consistent. In practice, one notices an inconsistency by plotting the activity coeffi-
cient as function of the mole fraction. In a binary system the slopes of the activity
coefficients should be of opposite sign. When the slope of γ1 zero then that of γ2 has
also be zero.

Integral test
The integral form of the Gibbs-Duhem relation for a binary system is given by the
equation: ∫ 1

0
ln

[
γ1

γ2

]
dx1 = 0, (2.10)

where γ1 and γ2 are the activity coefficient of any contribution of components 1 and
2, respectively. Fig. 2.1 depicts the integral form of the Gibbs-Duhem test.
In this particular case it depicts the consistency check for the free-volume contri-

bution of the PC-SAFT based hard-sphere chain model for the system n-hexane -
eicosane. Since the areas A and B have equal size, the free-volume model is thermo-
dynamically consistent.
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x1  [mol/mol]

Figure 2.1: Gibbs-Duhem test (Eq. 2.10) applied to the system n-hexane-eicosane. A/B-1<0.5%.

It is worthwhile to mention that the early version of COSMO-RS was not ther-
modynamically consistent. An ad-hoc expression for the combinatorial term was
applied. I informed Klamt about this inconsistency in 2001. In later versions of
COSMO-RS this inconsistency was removed [115].
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2.3 Entropy and the combinatorial activity coefficient

2.3.1 The entropy of ideal fluids

The entropy of a monoatomic ideal fluid consisting of Nj molecules of type j in an
enclosed volume Vj is given by the Sackur-Tetrode [192] equation:

Sj
kB

= Nj ln(Vj)− ln(Nj !) + 5
2Nj ln(2πemjkBT )− 3Nj ln(h), (2.11)

with kB is the Boltzmann constant, T the absolute temperature, mj the molar mass
of molecules of type j, and h the Planck constant. The interpretation of Eq. 2.11
is that the number of microstates is related to several different contributions related
to the position of the molecules, the differences between these molecules in size,
shape, translational momentum, and the quantum mechanical state. Ben-Naim [12]
explains it in terms of uncertainty. In this view, the first term reflects the uncertainty
in position, the second the uncertainty to distinguish differences between atoms of
the same type, the third the uncertainty in translational momentum, and the last
the quantum mechanical uncertainty principle, where the de Broglie wavelength:

Λj =

√
kBTh2

2πmj
, (2.12)

marks the transition from the quantum mechanical to the classical regime. For
Λj >> Vj/Nj the wave functions overlap and the individual character of particles is
lost.

When N1 molecules of type 1, which are initially in volume V1, are set into
communication with another ideal fluid of N2 particles of type 2 in volume V2, the
final entropy of the mixed fluid is given by:

S1+2

kB
= N1 ln

(
V1 + V2

N1Λ3
1

)
+N2 ln

(
V1 + V2

N2Λ3
2

)
+

5

2
(N1 +N2). (2.13)

The difference in entropy with the pure state is given by:

∆Smix

NtkB
=
S1+2 − S1 − S2

NtkB
= x1 ln

(
V1 + V2

V1

)
+ x2 ln

(
V1 + V2

V2

)
. (2.14)

In here Nt is the total number and xj is the mole fraction of molecules of type j.
Generalization to a mixture of M different compounds gives:

∆Smix
ideal

NtkB
= −

M∑
j=1

xj ln
Vj
M∑
j=1

Vj

. (2.15)
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Assuming that there exists no difference in the translational and rotational mo-
mentum of a particle in the pure and mixed state Eq. 2.15 can be extended to
polyatomic molecules. Eq. 2.15 points out that the entropy change upon mixing
pure ideal fluids is actually the entropy change of expansion of fluids [12].

Only when the volume is completely described by the ideal gas law, the partial
volume can be replaced by mole fractions, since: Vj = NjkBT/P or in general Vj/Nj

= constant. In that particular case Eq. 2.15 reduces to:

∆Smix
ideal

NtkB
= −

M∑
j=1

xj lnxj . (2.16)

The ideal entropy of mixing, as it is frequently named, is thus actually the entropy of
expansion and the resulting equation depends on how this expansion is equated. In
the following paragraphs different expressions for the volume and thereby different
forms of entropy of expansion will be discussed.

2.3.2 The original Flory-Huggins combinatorial model

The Flory-Huggins (FH) model is one of the most frequently used theoretical con-
cepts in the area of multicomponent liquid mixtures containing polymers. It is a
relative simple model in use. The total model consists on an entropy part and an en-
thalpy part. We focus on the entropy part. The concept of FH theory is based upon
describing a fluid as a lattice, in which the space is completely filled by solvent(s)
and one or more polymers. This concept of a lattice is, however, not necessary as was
shown in the work of Longuet-Higgins [152]. The volume occupied by compound j is
defined by the product of a hard-core reference volume or a rigid lattice cell volume,
v0, the number of units, rj , and the number, Nj , of molecules of type j by:

Vj = Njrjv0. (2.17)

Substitution of Eq. 2.17 into Eq. 2.15 yields the FH entropy:

∆Smix
FH

NtkB
= −

M∑
j=1

xj lnφj , (2.18)

where φj is the volume fraction of the molecules of type j:

φj =
Njrjv0
M∑
j=1

Njrjv0

. (2.19)
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The excess entropy change for the FH fluid follows from SE = Smix − Sid, which
Eqs.2.18 and 2.15 yields:

∆SE
FH

kB
= −

M∑
j=1

Nj ln
φj
xj
. (2.20)

For athermal mixtures, where the enthalpy of mixing is zero, ∆HE = 0, the Gibbs
energy of mixing, ∆GE, reduces to ∆GE = −T∆SE. Substitution of Eq. 2.20 into
Eq. 2.4 then gives the activity coefficient of component k:

ln γFHk = ln
φk
xk

+ 1− φk
xk

(2.21)

As was noted by Nicolas et al . [170], and in line with statistical theory of Longuet-
Higgins [152], the volume fraction is insensitive to the definition of a reference volume
v0. Key is the ratio in (rigid) volumes between the molecules, which is denoted by
the dimensionless parameter rj in equation 2.17. The assumption is that the mixing
of the pure compounds involves no expansion or contractions. From an historical
perspective the FH-equation gave an improvement for the entropy of mixtures con-
sisting of molecules of different size, but it was soon recognized that the model gave
large deviations from the ideal mixing of pure components. For example, the calcu-
lated activity coefficients of compounds in alkane mixtures were much lower than was
found by experiment. For that reason scientists started to modify the Flory-Huggins
concept.

2.3.3 Modification of the Flory-Huggins model

An ad-hoc modification of the combinatorial contribution of the FH model is the
approach of Donohue and Prausnitz [43]. They defined the entropy of mixing as:

∆SE
FHD
kB

= −
M∑
j=1

Nj ln
ψj
xj
, (2.22)

where ψj is the fractal volume fraction of the molecules of type j defined by:

ψj =
Njrj

aj

M∑
j=1

Njrjaj
. (2.23)

Here the exponent aj is a parameter that tunes the equation from the ideal equation
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(aj = 0) to the FH equation (aj = 1). This implies that not the volume but a
fractal of the volume is used to define the combinatorial entropy. A value of 2/3
would indicate that the key property is the surface of the molecule, 1/3 the length,
and 0 that only the position (e.g. center of mass of the molecule) is important. The
last will lead to mole fractions instead of volume fractions, which implies that the
mixture behaves like an ideal solution. The expression for the Donohue modified
Flory-Huggins (mFH) combinatorial activity coefficient is:

ln γmFH
k = ln

ψk
xk

+ 1− ψk
xk
. (2.24)

We note that the concept of Donohue and co-workers is in agreement with the Gibbs
entropy expression, which is defined as:

S = −kB
∑
j

Pj ln(Pj), (2.25)

where the index j denotes all the microstates with energy Ej , and Pj the probability
of finding a particular configuration associated with Ej . Garces [63] showed that this
can be written as:

S = −kB
∑
j

Nj ln(pj), (2.26)

where Nj is the number of molecules of type j and pj denotes the probability of
finding molecules j in a particular configuration. In terms of the excess entropy we
have:

∆SE
Gibbs = −kB

M∑
j=1

Nj ln(
pj
xj

). (2.27)

This equation shows that for the FH model pj = φj , for the ideal solution model
pj = xj , and for the mFH model pj = ψj .

The excess entropy equation, which was introduced by Huyskens [98] is:

∆SE
Huy

kB
= −

M∑
j=1

Nj ln(φj
αxj
−α), (2.28)

with α is the mobile order parameter. Initially, Huyskens set α = 1
2 , because he

assumed that this parameter reflects the average path length of a molecule to diffuse
from the center to the border of a lattice cell, the place where it can interchange with
another molecule. In fact, his view introduces a free-volume concept to the lattice
model, since there is space for the molecules to move before they interchange from
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lattice cell position. Later, Huyskens [99] proposed that α can be any value between
0 and 1, which implies that he rejected the concept of mobile order and used an
engineering approach. However, in view of the aforementioned Gibbs entropy, i.e.
Eq. 2.27, the Huyskens model uses a probability, defined by:

pj = φαj x
1−α
j = φj

(
xj
φj

)1−α
. (2.29)

The format at the right-hand side shows that the probability can be seen as a condi-
tional probability. In Bayesian statistics φj would be the prior probability function,
while the term with the exponent is the likelihood function. When we normalize this
probability we get the expression

pj =
φαj x

1−α
j

M∑
k=1

φαkx
1−α
k

=
(xjrj)

αx1−α
j

M∑
k=1

(xkrk)
αx1−α

k

=
xj(rj)

α

M∑
k=1

xk(rk)α
=

ψj
M∑
k=1

ψk

= ψj , (2.30)

and observe that the normalized Huyskens equation is a particular form of the Dono-
hue equation, in which the fractal aj = α is the same for all molecules. The activity
coefficient of the Huyskens model is found by substitution of Eq. 2.28 into Eq. 2.4,
which yields:

ln γHuyk = α

[
ln
φk
xk

+ 1− φk
xk

]
. (2.31)

This equation with α = 0.5 was applied in a comparative study of Bronneberg
et al . [22] and in the work of Guttierez et al . [82]. These studies demonstrate that
Huyskens model with α = 1

2 gives good results for alkane mixtures. However, both
studies neglect the effect of a dispersion contribution. Therefore, we can conclude
that the Huyskens model is physically inconsistent.

Another example of a conditional probability is given by the Staverman and
Guggenheim (SG) entropy concept, where molecules are placed on a lattice. We will
discuss it in the next section.

2.3.4 Probability and segment connectivity

In the FH-model each segment of the long molecule can be placed in the lattice
without taking into account the connectivity of segments. Staverman [209] and Gug-
genheim (SG) [81] independently showed that the probability of placing subsequent
segments of a polymer chain into the Flory-Huggins lattice increases with chain
length, because the number of nearest neighbors, zqj , decreases with the number of
segments, rj :

zqj = zrj − 2(rj − 1). (2.32)
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Here z is the coordination number of the lattice and qj the relative area of molecule
of type j. In the SG concept the connectivity changes the entropy, and thereby the
excess entropy change upon mixing:

∆SE
SG

kB
= −

M∑
j=1

Nj

[
ln
φj
xj

+ z
2qj ln

θj
φj

]
, (2.33)

where the surface fraction of compound j in the mixture is defined by:

θj =
Njqj∑
Njqj

. (2.34)

It is worthwhile to mention that the limit of z → ∞, sets all qj = rj and thereby
θj = φj . This a mathematical way to approximate the system as a random ensemble
of segments. It reduces the Staverman-Guggenheim equation to the Flory-Huggins
equation. In the SG-model the first term, the FH-term, is related to the probability
for placing the first segment of a chain in the lattice, while the second term accounts
for the conditional probability for placing the subsequent segments of the chain, i.e.
the connectivity. If we compare Eq. 2.33 with the Gibbs’ entropy equation, Eq. 2.26,
than the probability would be:

pj = φj

[
θj
φj

] z
2
qj

. (2.35)

We recognize in Eq. 2.26 the Bayes’ theorem, where φj is the prior function and the
term with the exponent the reduced likelihood function. The exponent is half the
number of nearest neighbors of compound j (see Eq. 4.2). In Bayesian statistics the
question is: What is the probability that a segment of compound j is covered with
segments of molecules of type j? In chapter 3 we discuss this in detail.

The combinatorial activity coefficient equation for the Staverman-Guggenheim
model is:

ln γcomb
k = ln γFHk + ln γSGk , (2.36)

of which we denote the last term as the Staverman-Guggenheim (SG) contribution.
This term reads:

ln γSGk = −z
2
qk

[
ln

(
φk
θk

)
+ 1− φk

θk

]
(2.37)

In the UNIQUAC model [2] and in different versions of the UNIFAC model the
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coordination number, z, is usually set to the value 10, which can be seen as an average
value between a cubic (z = 6) and a hexagonal closed packed structure (z = 12), but
also as the value of an infinite chain in a hexagonal closed packed structure, where
2 of the 12 surrounding sites of a central segment are already occupied by 2 of its
adjacent segments. However, when transforming Eq. 2.32 into:

z = 2(rk − 1)/(rk − qk), (2.38)

and using the reported values for the relative volume and area of compounds in the
original UNIFAC model and the Dortmund modification of it, we obtain remarkable
results for the coordination number of these molecules as listed in Table 2.1. The

Model UNIFAC(Orig.) UNIFAC(Do.)
Parameter rk qk z rk qk z

Ethane 1.802 1.696 15.1 1.265 2.122 -0.7
Propane 2.476 2.236 12.3 1.898 2.830 -2.0
n-Butane 3.151 2.776 11.5 2.530 3.538 -3.1
n-Hexane 4.499 3.856 10.9 3.795 4.954 -4.9
(CH2)∞ ∞ ∞ 10 ∞ ∞ -16.6

Table 2.1: Check on the coordination number (z) using the original and modified UNIFAC volume
(rk) and area (qk) parameters and Eq. 2.38.

most salient finding is that UNIFAC(Do) produces negative coordination numbers,
because the relative area is always larger than the relative volume for all alkanes.
The original UNIFAC model gives, unphysically high coordination number values
for ethane and propane, but converges to the end value of 10 for the series of n-
alkanes, which is in agreement with the model. The inconsistency in coordination
number shows that developers of the UNIFAC models have loosened the connectivity
condition, eq. 6.8, in order to get better agreement with experimental results. Such
an approach deteriorates the robustness of the model.

Besides this inconsistency there are four issues in the development of UNIFAC
and COSMO-RS type of models that remained unsolved:

• Is the ’Donohue’ exponent to define volume fractions correct, and what value
is the best?

• What is the size of the reference area?

• Does the SG-model contrast with the Gibbs probability definition for entropy?
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The ’Donohue’ exponent:
It is known that the SG-term improves the combinatorial activity coefficient of the
FH-model. It increases the activity coefficient by a factor 1.05-1.10. This improve-
ment is too small to get agreement with experiments. Therefore, developers tried
several modifications of the combinatorial contribution to bring the results of the
UNIFAC and COSMO-RS type of models in agreement with experimental phase
equilibrium data. For example in the Dortmund and Lyngby versions of UNIFAC,
the volume fraction for the Flory-Huggins part of the SG-model is modified with a
’Donohue’ exponent; p = 3

4 and p = 2
3 respectively. On the other hand Kikic et

al. [112] abandoned the SG model and used for the FH-term p = 1
3 . Soares [205]

found the infinite dilution activity coefficients of binary systems that Eq. 2.23 in the
COSMO-SAC model requires a volume fraction defined by the exponent pj = 0.637
on basis of analysis of experimental infinite dilution activity coefficients. In a sub-
sequent study Soares [51] showed that after introduction of a dispersive energy con-
tribution in the COSMO-SAC model the SG-correction is obsolete, and that it is
sufficient to use the FH-model with pj = 0.75.

Size of the surface area:
While the reference volume has no effect on the outcome of the activity coefficient,
the reference surface has influence on the result. Originally, the area size, Aref,
was set equal to the van der Waals area of a repeating methylene group (CH2):
Aref = 41.5 Å2. This corresponds to a sphere with radius Rref = 1.82 Å. Bronneberg
[22] questioned this choice and used Rref = 0.505 Å, a value, according to him, at
which molecules "feel" their geometric details. This might be an appropriate value
for the calculation of the interaction energy in the residual part of the UNIQUAC
activity coefficient, but this value is smaller than the Bohr radius, i.e. 0.529 Å. In
other words, this choice breaks down the lattice concept, because one can not split
an atom over cells. Therefore, Bronneberg’s solution has to be regarded as a math-
ematical result with no physical meaning. Against it, Soares [205] found by analysis
of experimental data, in this case the infinite dilution activity coefficients of binary
systems, that Eq. 2.23 that Aref = 124 Å2, which is about three times larger than
the area of a methylene group.

Gibbs probability
It seems that the SG-term, where the probability of placing subsequent chain seg-
ments, i.e.:

pj =

(
φj
θj

) z
2
qj

, (2.39)
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does not follow the concept of Gibbs entropy, since summation of it does not lead
to unity. But this conclusion is not correct, because the SG-term is a conditional
probability term that quantifies the probability of placing subsequent segments, after
the first has been placed in the liquid volume.

In Chapter 3 we revisit Guggenheim’s derivation to derive from the same equa-
tions, which Guggenheim used in 1950, an off-lattice expression, that does not require
a reference area, and a coordination number. It provides a solution for the afore-
mentioned issues.

2.3.5 The Free Volume contribution

The free-volume contribution in the activity coefficient is a temperature-dependent
contribution for compounds that expand with temperature. This contribution can
be combined with the FH-SG model. In the FH and SG model the change in free
volume upon mixing liquids is neglected. Although this assumption holds for most
liquid mixtures, free volume effects are not negligible for systems in which one of the
components is less tightly packed in the pure and mixture state such as gas-solvent,
polymer-solvent [172, 47], and some solvent-solvent solutions [58, 126, 47]. Free-
volume corrections on the activity coefficient model are derived from the repulsion
term of the equation of state. For that reason the free-volume contribution is also
called the equation of state contribution [172].

Free-volume contribution from a cubic equations of state

In the cubic equations of state (cEoS) the compression factor is given by:

ZcEoS =
V

V − b
= 1 +

4η

1− 4η
= ZIG + ZFV, (2.40)

where V and b are the molar and van der Waals volume respectively, and η the
packing factor. The compression factor of an ideal gas ZIG ≡ 1, which defines the
free-volume (FV) contribution of the compression factor to:

ZFV,cEoS =
4η

1− 4η
. (2.41)

The free-volume entropy departure function, SEoS − SIG, is found by integration:

− SEoS − SIG

NtkB
=

∫ η

0

ZEOS − ZIG

η
dη =

∫ η

0

ZFV,EOS

η
dη. (2.42)

This gives for the cEoS the expression

− SFV

NtkB
=

∫ η

0

4

1− 4η
dη = − ln (1− 4η) . (2.43)

23



CHAPTER 2. GIBBS ENERGY & ACM CONTRIBUTIONS

The entropy of mixing is:

−
∆SE

FV,cubic

kB
=

M∑
j=1

Nj ln

(
1− 4ηj
1− 4η̄

)
, (2.44)

where η̄ is the average packing fraction of the mixture. Substitution of Eq. 2.44 into
Eq. 2.4 gives the free-volume contribution to the activity coefficient equation:

ln γFV,cEoSk = ln

(
1− 4ηk
1− 4η̄

)
+
φk
xk

(ηk − η̄)
4

1− 4η̄
(2.45)

It is important to note here that this contribution vanishes when the average packing
fraction is equal to the packing fraction of compound k. In that case the molecules
of compound k have in the pure liquid and in the mixture the same free-volume. We
also see that γk ≡ 0 when η = η̄ = ηk = 0, which is the ideal gas situation.

There is another interesting point to mention here. We can rewrite the sum of
the combinatorial and free-volume activity coefficient equation as follows:

ln γFHk + ln γFV,cEoSk = ln
φk
xk

+ 1− φk
xk

+ ln

(
1− 4ηk
1− 4η̄

)
+

4 (ηk − η̄)

1− 4η̄

φk
xk
.

= ln

(
φk
xk

1− 4ηk
1− 4η̄

)
+ 1− φk

xk

(
1− 4ηk
1− 4η̄

)
= ln

(
Wk

xk

)
+ 1− Wk

xk
, (2.46)

where the free-volume fraction Wk is defined by:

Wk = φk
(1− 4ηk)

(1− 4η̄)
=

xkvk∑
xkvk

1− bk
vk

1−
∑
xkbk∑
xkvk

=
xk (vk − bk)∑
xk (vk − bk)

. (2.47)

This result can also be derived from Eq. 2.15 by replacing the partial volume by the
partial free-volume. It shows that a free-volume model derived from a cEoS can be
merged into the Flory-Huggins equation. This equation was also derived in another
way by Elbro et al. [47], who applied it to polymer solvents systems. Eq. 2.46 yields
activity coefficients that are closer to unity than the FH activity coefficient equation,
i.e. Eq. 2.21.

Another interesting point to mention is that Eq.2.46 is in line with Gibbs defini-
tion for entropy (i.e. Pj = Ωj). But this agreement is a result of the silent assumption
that the excess volume is zero; i.e. the summation term in Eq. 2.44 does not con-
tain excess volume terms. It also shows that the Flory-Huggins concept can only be
aligned to Eq. 2.46, when Njrj = Vj −Njbj .
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Free-volume contribution from a non-cubic equation of state

An example of a non-cubic equation of state is the Tonks-Flory equation of state
[55], which has been used by Oishi and Prausnitz (OP) in the Free-Volume UNIFAC
model [172]. The model has been developed for the description of solvent activity in
polymer-solvent mixtures. Like in the cubic equations of state the activity coefficient
is divided in a Flory-Huggins combinatorial and a free-volume contribution:

ln γj = ln γFHj + ln γOP
j . (2.48)

According to Oishi et al. [172] the free-volume contribution in terms of the average
packing factor η and the packing factor of compound j is:

ln γOP
j = 3cj ln

[
η
−1/3
j − 1

η̄−1/3 − 1

]
+ cj

[ 1−η̄
ηj

1− η1/3
j

]
. (2.49)

A liquid in which molecules can only translate in 3 directions would have c1 = 1,
while a liquid in which the molecules can also rotate on three different axis would
have c1 = 2. Frequently developers set cj = 1.1 to obtain the best agreement
with experiments. However, Fried et al. [62] showed that with c1 = 2 also a good
description of polymer-solvent equilibria is obtained. We might question the choice
for cj = 1.1. Could it be that this choice is biased by omitting the implementation
of a dispersion term?

Although the OP model has proven to be successful for solvent solubility calcu-
lations, the equation contains an inconsistency. We can already notice it from the
singularity of the second term at the r.h.s. when η = ηj = 0, where the expression
should recover the ideal mixture case. A more appropriate expression (see Appendix
A.2) is:

ln γFV,Tk = 3ck ln

1− η̃
1
3
k

1− η̃
1
3

+ c̄
η̃

1
3

1− η̃
1
3

(
ηk
η̃
− 1

)
φk
xk

(2.50)

But besides this inconsistency, it is essential to understand that Eq. 2.49 is based on
the work of Tonks [218], who obtained this equation of state for spherical molecules
caged in dodecahedronal cells in a 3-dimensional lattice. The Tonks (T) equation of
state is in terms of the compression factor, Z, the packing factor η, and maximum
packing factor η∞:

ZT =
1

1−
(

η
η∞

) 1
3

=
1

1− η̃
1
3

. (2.51)
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The Tonks equation is not accurate enough as shown in Fig. 2.3. Therefore free-
volume models based on this equation are expected to be less robust. The Carnahan-
Starling and the SAFT equations of state are better options to apply. We will discuss
these equations of state in the next sections.

Free-volume contribution derived from a hard-spheres EoS

Carnahan and Starling [26] introduced a simple algabraic expression for the compres-
sion factor of hard-sphere fluids. They obtained this from the Padé approximation
of Ree and Hoover [185] by setting the six constants in this equation equal to integer
values. This was done in such a way that it yielded a geometric series, which could
be transformed into a closed-form equation. Later, Mansoori et al. [159] showed that
the CS approximation can also be derived from the exact solutions of the Percus-
Yevick integral equation for hard spheres. The two solutions, which are obtained
via the compressibility and the pressure route, are summed with a weight factor 2/3
and 1/3, respectively. The derivation steps that Carnahan and Starling followed are
given below

ZHS ≈ 1 + 4η + 10η2 + 18.3648η3 + 28.2243η4 + 39.8153η5 + 53.3418η6 + 68.526η7

+ 85.83η8 + 105.6η9 + 126.5η10 + 158.3η11 + ...

≈ 1 + 4η + 10η2 + 18η3 + 28η4 + 40η5 + 54η6 + 70η7 + 88η8 + 108η9 + ...

≈ 1 +
∞∑
n=1

(
n2 + 3n

)
ηn

≈ 1 + η + η2 − η3

(1− η)3
. (2.52)

The first line of Eq. 2.52 shows additional constants for the Padé approximation.
These were computed years after the publication of the Carnahan and Starling paper
[101], when the CPU speed and the memory of computers increased. The differences
between the accurate computed constants and the constants of the CS equation are
relatively small, making the CS equation still a versatile expression for equations of
states. There are better descriptions for the compression factor available, see e.g.
the review of Gow [73], and recently the work of Hansen-Goos [85]. However, for
liquids with a packing factor in the range of 0.4 to 0.5 the CS-equation is sufficiently
accurate and easy to understand from a mathematical point of view.

For a mixture the average packing factor of the hard-sphere fluid is defined by:

η̄ =
π

6
ρ

M∑
i,j=1

xixjd
3
ij , (2.53)
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where dij is the average hard-core diameter between two spheres i and j, vj the
molar liquid volume and xj the mole fraction. In the case that d3

ij = (d3
i + dj3)/2,

Eq. 2.53 reduces to:

η̄ =
π

6
ρ

M∑
i=1

xid
3
i , (2.54)

Substitution of the compression factor into Eq. 2.43 gives the entropy departure and
subsequently the excess entropy of mixing:

−
∆SE

CS
kB

=
M∑
j=1

Nj

[
4η̄ − 3η̄2

(1− η̄)2
−

4ηj − 3η2
j

(1− ηj)2

]
, (2.55)

where η̄ and ηj denote the packing factor of the mixture and the pure compound
j, respectively. We mention that Dodd and Sandler [42] uses the Boublik-Mansoori
equation for the mixture entropy. This expression is more precise, but it complicates
the expression for the excess entropy and makes it more difficult to understand what
the magnitude of the free-volume contribution is. The activity coefficient contribu-
tion from the Carnahan-Starling EoS is obtained with Eq. 2.4:

ln γFV,CSk =

[
4η̄ − 3η̄2

(1− η̄)2
−

4ηk − 3η2
k

(1− ηk)2

]
+
φk
xk

(ηk − η̄)
4− 2η̄

(1− η̄)3
(2.56)

We see that this activity coefficient contribution becomes unity when there is no
difference between the packing fractions of the mixture and the pure compounds.
The contribution vanishes also when both η and ηk go to zero (ideal gas). A property
that we also observed in the van der Waals equation of state (Eq. 2.45). The use of
this equation is limited to spherical molecules, such as the noble gases. This equation
also holds for methane and neopentyl, due their globular structure. However, in the
area of material and life sciences most molecules are polyatomic and non-globular.
Flexible and elongated polyatomic molecules can be represented by a hard-sphere
chain EoS, which we will discuss in the next section.

Free-volume contribution derived from SAFT

An improvement over the hard-sphere model is the SAFT [29, 27] and the PC-SAFT
[78] EoS, where these spheres are connected to define chains of various lengths. We
consider the case that all the chains have equal sized hard spheres. Compounds differ
in the chain length, i.e. the number of spheres. In this situation the compression
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factor of the SAFT and the PC-SAFT EoS is given by:

ZHC = mZHS − (m− 1)η

(
∂ ln gHS(σ)

∂η

)
, (2.57)

where
gHS =

ZHS − 1

4η
=

(2− η)

2(1− η)3
, (2.58)

is the value of the radial distribution function for hard-spheres at contact according
to the Carnahan-Starling model. Substitution of the radial function gives for the
compression factor of a pure liquid of hard-sphere chains yields:

ZHC
pure − Z ig

pure = ZHC
pure − 1 = m

2η(2− η)

(1− η)3
− (m− 1)

(
η(5− 2η)

(1− η)(2− η)

)
. (2.59)

The first term on the r.h.s. reflects the addition of m independent spheres to a
volume, which increases the compression factor, while the last term is the contri-
bution of linking these spheres, which happens (m − 1) times. This reduces the
compression factor.

Applying Eq. 2.43 we find for the entropy departure function:

−S
HC − Sig

NtkB
= m

4η − 3η2

(1− η)2
− (m− 1) ln

2− η
(1− η)3 . (2.60)

With the entropy departure function of the mixture and the pure components the
excess entropy change upon mixing becomes:

−
∆SE

HC
kB

=
M∑
j=1

Njmj

[
(4η̄ − 3η̄2)

(1− η̄)2
−

(4ηj − 3η2
j )

(1− ηj)2

]

−Nj (mj − 1) ln
(2− η̄) (1− ηj)3

(2− ηj) (1− η̄)3 . (2.61)

Subsequently, with Eq. 2.4 we find the free-volume contribution of the activity
coefficient of hard-sphere chains:

ln γFH,HCk = mk

[
4η̄ − 3η̄2

(1− η̄)2
−

4ηk − 3η2
k

(1− ηk)2

]
− (mk − 1) ln

(2− η̄) (1− ηk)3

(2− ηk) (1− η̄)3

+ (ηk − η̄)
φk
xk

{
m

[
4− 2η̄

(1− η̄)3

]
− (m− 1)

5− 2η̄

(1− η̄) (2− η̄)

}
(2.62)
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The first term between the square brackets is the contribution from the single sphere
equation, while the second term is the contribution of the bonds between the spheres.
The last term is the effect of packing fraction differences. Eq. 2.62 reduces to the
Carnahan-Starling hard-sphere model (i.e. eq. 2.56), when the mixture consists of
spheres only.

According to Vahid [1] the sPC-SAFT of Tihic et al . [215, 216] and the Elliott-
Suresh-Donohue (ESD) model [48], are equations of state that have no free-volume
’entropy’ of mixing. But this conclusion can only be made when the packing fraction
is the same for all compounds; ηk = η. Fig. 2.2 depicts the packing fraction of
normal alkanes at 25 ◦C between ethylene and eicosane, using the parameters of the
original PC-SAFT model. It shows that the assumption that the constant packing
assumption is only valid for mixtures of molecules larger than pentadecane. We

Figure 2.2: Packing fraction η of n-alkanes at T=25 ◦C as a function of the carbon number, NC.
Calculation performed with PC-SAFT using the original parameters [78] and the liquid density
from DIPPR [23].

observe in Fig. 2.2 that above tetradecane the packing fraction is nearly constant,
implying that here the free-volume contribution is negligible. Between hexane and
hexadecane the packing fraction increases nearly linear with carbon number. In the
next section we compare the free-volume models.

29



CHAPTER 2. GIBBS ENERGY & ACM CONTRIBUTIONS

Comparison of the Free-Volume ACMs

Fig. 2.3 illustrates the compression factors of the the aforementioned free-volume
activity coefficient models. We see in the left panel that the reciprocal compression
factor of a fluid of spheres is best represented by the Carnahan-Starling EoS (CS).
Especially in the liquid region, where 0.3 < η < 0.55. The van der Waals EoS
(vdW) is only applicable up to a packing factor of 0.05, which implies a gas phase,
while Tonks equation deviates +10% in the liquid range where 0.4 < η < 0.5. The
right panel tells that the hard-sphere chain equation, Eq. 2.59, also known as Wer-
theim TPT-1 model [105], lies close to the by Molecular Dynamics (MD) determined
values for fluids consisting of linear chains containing m = 16 and m = 32 spheres.
Therefore, the hard-sphere chain free-volume model is expected to give better results
for the free-volume contribution in activity coefficient models than the other models.

Figure 2.3: Reciprocal compression factor of hard-sphere (left panel) and linear hard-sphere
chain fluids (right panel) with 16 and 32 spheres. Curves are calculated by Eqs. 2.40, A.7 and
2.59. Symbols represent MD results of Kolafa [121] (yellow circles), Escobedo (green triangles and
squares) [50] and Jover (blue diamonds) [105]. Uncertainty range of the MD-results is smaller than
the symbol width.

The maximum contribution of the free-volume is for the solute at infinite dilution
in the solvent. In this limit we have:

lim
xk→0

φk
xk

=
vsolute
vsolvent

=
ρsolvent
ρsolute

. (2.63)

The example given by Oishi and Prausnitz [172] gives us an idea about the mag-
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nitudes of the FV contribution and the results are shown in Table 2.2.

ACM FV Model η(solvent) η̄ ln γbenzene γbenzene
Oishi-Prausnitz (Eq. 2.49) 0.69 0.84 0.55 1.67
Oishi-Prausnitz (Rq. 2.50) 0.69 0.84 3.24 14
Tonks 0.69 0.84 8.11 26
Carnahan-Starling 0.421 0.424 -0.047 0.95
Hard-sphere chain 0.421 0.424 -0.096 0.91

Table 2.2: Example of free-volume contribution for benzene in polyisobutylene for various free-
volume models with η defined by the models.

The packing factors of 0.69 and 0.84 originate from the publication of Oishi and
Prausnitz. The liquid densities of benzene and polyisobutylene are 0.873 and 0.917
g/cm3, respectively (see appendix A.2). The packing factor values for the hard-sphere
and the hard-sphere chain length were taken from the PC-SAFT model [78, 79]. We
see that the early models give large deviation from unity, while the hard-sphere and
hard-sphere models are close to ideal behavior.

In this thesis we focus on condensed systems, where volume contraction/expansion
of the liquid is small, so that free-volume changes can be ignored. We will not in-
vestigate the free-volume effect of the activity model. In Chapter 3 we show that
the Guggenheim-Staverman correction of the Flory-Huggins term can be general-
ized. Subsequently, in Chapter 4, we will show that this correction can be applied in
models like UNIQUAC and COSMOSPACE. It implies that the free-volume effect is
lumped into the residual part of the activity coefficient model.
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2.4 Enthalpy and the activity coefficient of dispersion

The enthalpy of mixing, more commonly known as the excess enthalpy, is observed by
an endothermal (∆H > 0) or exothermal (∆H < 0) change, when two or more fluids
are mixed. In general, an observer will notice endothermal behavior when associating
bonds break or polar interactions weaken. Opposite to this exothermal behavior is
observed when bonds are formed or polar interactions have become stronger. These
processes are dependent on system and concentration.

Fig. 2.4 shows in the left and right panel the excess enthalpy of mixing hexane
in dodecane and hexadecane, respectively at 25 ◦C. In both cases heat is added to
maintain the temperature. Both systems show over the whole concentration range
endothermal behavior, implying that the net result is the breaking of bonds and
weakening of interactions. It demonstrates, as was also pointed out by Kontegeorgis
[125], that mixtures of alkanes are not athermal, as is assumed in the UNIFAC and
COSMO-RS models. Due to the differences in the packing factor of these alkanes,
n-dodecane and n-hexadecane have η = 0.42 and η = 0.43, respectively, while n-
hexane has η = 0.39, the overall distance between the molecules increases, thereby
weakening the interaction, which implies an endothermal process.

Figure 2.4: Excess enthalpy of the systems n-hexane(1)-n-dodecane(2) at 25◦C (left panel) and
the system n-hexane(1)-n-hexadecane(2) at 25 and 35 ◦C (right panel). Data from [174, 167, 162].
Curves depict the NRTL model [186].

The mixing enthalpy of alkanes is much smaller than, for instance, the case of
toluene and phenol, where hydrogen bonds are broken (see Fig. 2.5). Table 2.3
demonstrates the magnitude of the excess enthalpy for typical systems.
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binary system hEextr/RT comment ref.
n-hexane - n-dodecane 0.016 dispersion [174]
n-hexane - n-hexadecane 0.046 dispersion [167]

n-pentane - acetone 0.86 dispersion/polar [67]
acetone - water −0.31 and +0.08 hydrogen bonds [67]
toluene - phenol 0.28 hydrogen bonds [171]

Table 2.3: Excess enthalpy extrema in binary systems.

2.4.1 Basic equations for the excess enthalpy

The excess enthalpy at constant pressure is the sum of changes in dispersion energy
(∆Udisp), dipole-dipole interaction energy (∆Upol), association energy (∆UAB) and
free-volume (∆VFV ). In mathematical form we have:

∆HE = ∆Udisp + ∆Upol + ∆UAB + P (∆VFV ) . (2.64)

The molar excess enthalpy, hE can be written as:

hE =
M∑
j=1

xj h̄j (xj) = −RT
M∑
j=1

xj ln γresj , (2.65)

where h̄j (xj) is the partial molar enthalpy of component j, and γresj the residual
activity coefficient. When the mixture contains molecules, which have no permanent
multipole nor association sides to form a hydrogen bonds, then the molecules will
interact by dispersion. This situation is present for all alkanes, see Fig. 2.4. For
these molecules the residual activity coefficient reduces to the dispersion activity
coefficient. We can write for the dispersion contribution to the excess enthalpy:

hE,disp = RT

M∑
j=1

xj ln γdispj , (2.66)

The dispersion activity coefficient is obtained by:

ln γdispk =
1

RT

(
hE,disp

∂xk

)
T,P,xj 6=xk

(2.67)
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2.4.2 Temperature derivative of the activity coefficient

The temperature derivative of the activity coefficient of compound j at constant
pressure is related to the partial molar excess enthalpy of compound j by the relation:(

∂ ln γj (xj)

∂T

)
P

= −
h̄Ej (xj)

RT 2
, (2.68)

where h̄Ej (xj) is the partial molar excess enthalpy of compound j at concentration xj .
Eq. 2.68 tells that an endothermal mixing process implies an activity coefficient drop
with increasing temperature. For small temperature differences, we can approximate
Eq. 2.68 by the relation:

ln γj (xj , T2)− ln γj (xj , T1)

T2 − T1
= −

h̄Ej (xj , T1)

RT 2
1

⇔

γj (xj , T2) = γj (xj , T1) exp

[
− (T2 − T1)

h̄Ej (xj , T1)

RT 2
1

]
. (2.69)

In the case of toluene-phenol the tangent line located at x1 = 0.4, where hE = 0.79
kJ/mol, has a slope of 1.23 kJ/mol. This gives for the partial excess enthalpy of
toluene and phenol h̄E1 = 1.58 kJ/mol and h̄E2 = 0.35 kJ/mol, respectively. The
largest change in activity coefficient is for this case at the limiting concentrations,
since there the slope of the excess enthalpy is the largest.

Table 2.4 summarizes the excessenthalpy and activity coefficient results of the
toluene phenol binary at the given finite and the two limiting liquid concentrations.

T = 414 K T = 414 K T = 424 K (Eq. 2.69)
x1 γ1 γ2 h̄E1 (kJ/mol) h̄E2 (kJ/mol) γ1 γ2

0 2.03 1 2.85 0 1.99 1
0.4 1.36 1.11 1.59 0.35 1.34 1.11
1 1 2.52 0 5.47 1 2.43

Table 2.4: Activity coefficient change of the binary mixture Toluene-Phenol.

The table demonstrates that an endotherm mixture yields activity coefficients, which
drop with temperature.
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Figure 2.5: Excess enthalpy of toluene(1)-phenol(2) at 140 ◦C. Exp. data from [171]. Dashed
curve depicts NRTL model [186]. The tangent lines at x =0, 0.4 and 1 are required to determine
the partial molar enthalpy of the compounds as explained in text.

2.5 Concluding remarks

This introduction chapter supports the work discussed in the next chapters. We
showed how expressions for the combinatorial activity coefficient can be obtained.
We look into this matter in more detail in chapters 3 and 4.

The paragraph on the free-volume contribution showed that this contribution
does influence the total activity coefficient, and can not be neglected. When mo-
lecules are treated as chains of spheres, the differences in diameters cause a positive
deviation from the law of Raoult, as we showed by the CS-based free-volume activity
coefficient, while the formation of chains causes a negative contribution. We pointed
out that the free-volume term of the Oishi-Prausnitz model, has to be treated with
caution. A more consistent version is derived, but we do not recommend to use this
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corrected equation for future research, since the hard-sphere chain model, including
sphere diameter differences, offers a better alternative. In conclusion, the free-volume
contribution mediates the activity coefficient, when packing fractions differ signific-
antly. The effect of this in parametrization of a dispersion contribution is out of the
scope of this thesis. Including free-volume implies that the activity model requires
information on the packing fraction of the compounds. This can be supplied by a
Rackett equation or an equation of state.

Instead of incorporating a free-volume contribution, we investigated the disper-
sion contribution by deriving expressions from the van der Waals and the PC-SAFT
EoS. The reason for this choice is made at the time when this work was not con-
clusive on free-volume models. The dispersion contribution is discussed in chapters
5 and 6, respectively. In chapter 6 we derive an elegant equation that incorporates
the effect of chain architecture, which is also applied in chapter 7 when we invest-
igate the improvement of the interaction energy by applying the self-consistent field
equation of the COSMOSPACE model [115]. In chapter 8 we will show that, due
to the 3D structure of molecules, a part of the interactions have to be disregarded.
This development that was undertaken before we investigated the combinatorial and
dispersion contribution in detail. On purpose we omitted systems with large size dif-
ferences in this work, in order to avoid large deviating effects from the combinatorial
and free-volume term. Instead we used the Huyskens equation as a temporarily solu-
tion, which would bring deviation down to an estimated maximum error of 10%. We
expect, however, that an update of the COSMO-3D electrostatic energy-parameters
is required after the dispersion term (e.g. Eq. 6.16) has been implemented.
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Chapter 3

Generalized combinatorial activity
coefficient model1

3.1 Introduction

After Huggins [95] and Flory [52] introduced a lattice model to quantify the Gibbs
energy of an athermal mixture, i.e. a mixture in which there is no energetic in-
teraction between molecules, Guggenheim [80] refined it. While according to the
Flory-Huggins model small molecules can be placed at random in a lattice, Gug-
genheim took into account that the placement of mono-segmented molecules in a
lattice is influenced by the presence of multi-segmented molecules. Although Gug-
genheim’s model has been applied in many activity coefficient models later, there are
two important issues in the Guggenheim model to be aware of. First, Guggenheim
considers that all molecules have the same coordination number, while it is known
that the coordination number ranges from 6 to 12. Secondly, liquids do not posses
a long range order, and therefore the concept of a lattice will limit the number of
possible configurations that molecules can make in a liquid. We will touch upon
these two issues by going through Guggenheim’s derivation and propose a general-
ized expression for the Gibbs energy of mixing. Finally, we derive a new relation
for the combinatorial activity coefficient, which can be applied to mixtures having
molecules of arbitrary shape.

1Based on the publication: Generalization of Guggenheim’s combinatorial activity coefficient
equation, J. Mol. Liq. 266 (2018) 467-471, by Gerard J.P. Krooshof, Remco Tuinier, and Gijsbertus
de With.
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3.2 Theory

3.2.1 Definition of volume and surface area fractions

We start with a liquid mixture consisting of two components, A and B. When we
consider that molecules A and B fit exactly into rA and rB lattice cells, respectively,
and assume that there are no empty cells, then the total number of lattice cells is
given by

rtot = rANA + rBNB, (3.1)

where Nj is the number of molecules of type j. On the other hand, we can treat the
system as a fluid, which has a total volume defined by the number and molecular
volumes of the molecules Vj

Vtot = VANA + VBNB. (3.2)

In the lattice model the probability that a lattice cell is populated by a segment of
molecule A or B is given by the volume fraction, defined as

φA =
NArA

NArA +NBrB
and φB =

NBrB
NArA +NBrB

, (3.3)

respectively, while in the fluid model the volume fractions are expressed by

φA =
NAVA

NAVA +NBVB
and φB =

NBVB
NArA +NBVB

, (3.4)

respectively. The definition of Eq. 3.3 is used in the Flory-Huggins model, while
Eq. 3.4 is due to Hildebrand [87], who demonstrated by this that the equation of
the Flory-Huggins model does not require a lattice definition.
Both methods assume that molecules are randomly positioned in the liquid space.

Guggenheim, Stavermann [209], and Tompa [217] pointed out, however, that the
placement of segments can not be performed randomly, because the segments of
chain molecules have a higher probability to be placed aside each other. To correct
the volume-based probability, they introduced the surface area fraction to account
for the probability to form a contact pair of lattice cells. The surface area fractions
can be defined as

θA =
NAzAqA

NAzAqA +NBzBqB
and θB =

NBzBqB
NAzAqA +NBzBqB

. (3.5)

In this generalized Guggenheim expression, zj is the coordination number of the
lattice of the pure component j and qj the relative surface area of molecule j. Gug-
genheim used one lattice number for all molecules and put the relative surface area
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of one of the molecule types to unity. We do not use this simplification, so that we
can interchange the indices A and B in equations later on.

As we mentioned above, the volume fraction can be defined using the lattice
approach (Flory-Huggins), as well as the fluid approach (Hildebrand). The same can
be done for the surface fraction. In a fluid the external surface area of the molecules
can be used to define the probability that the molecules make contact, therefore

θA =
NAaA

NAaA +NBaB
and θB =

NBaB
NAaA +NBaB

. (3.6)

In here aj is the external contact area of molecule j.
It is worthwhile to mention that the volume and surface area fractions are related

to each other by the expressions

θA =
φA

φA + fφB
and θB =

fφB
φA + fφB

, (3.7)

where the factor f can be calculated from

flat =
zBqBrA
zAqArB

and ffluid =
aBVA
aAVB

, (3.8)

for the lattice and the fluid approach, respectively. These relations enable us to
simplify the expressions above, which will be used later on. Further, we mention
that in the original lattice model of Guggenheim rA = qA = 1, rB = r, qB = q, or
zA = zB = z, which makes flat = q/r.

3.2.2 Generalized Gibbs energy of mixing expression: Lattice-based
derivation

We follow the work of Guggenheim [80] and Tompa [217] to derive an expression
for the Gibbs energy of mixing of an athermal system. Suppose that a lattice cell
is occupied by a segment of molecule B, then the ratio of the probability that a
given neighboring cell is occupied by a segment of another molecule B’, pBB’, or by
a segment of molecule A, pBA, is equal to the ratio in number of nearest neighbors,
zBqBNB and zAqANA

pBB’
pBA

=
NBzBqB
NAzAqA

=
θB
θA
. (3.9)

Since the total number of nearest neighbors of molecule B is zBqB and not zBrB due
to the connectivity of the segments, the sum of these probabilities, i.e. pBB’ + pBA,
is equal to the rescaled value of the volume fraction of molecule B:

pBB’ + pBA = φB
zBqB
zBrB

= φB
qB
rB
. (3.10)
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Combining the two equations leads to

pBB’ = φB
qB
rB
θB and pBA = φB

qB
rB
θA. (3.11)

We note that the probability that the neighboring cell is occupied by the same B
molecule is calculated by

pBB = φB − pBB’ − pBA = φB

(
1− qB

rB

)
. (3.12)

Likewise, when a lattice cell is occupied by a segment of molecule A, the probability
that a given neighboring site is occupied by molecule B or by another molecule A is

pAB = φA
qA
rA
θB and pAA’ = φA

qA
rA
θA, (3.13)

This procedure can be extended to the situation that a lattice cell is surrounded by
more neighboring sites. For the probability that segment A has x − 1 neighboring
sites of type A we obtain

pAxA = φA
qA
rA

(θA)x−1 . (3.14)

In the same way, the probability that segment B has y − 1 adjacent sites of type B
we have

pByB = φB
qB
rB

(θB)y−1 . (3.15)

We mention that Guggenheim derived Eqs. 3.14 and 3.15 by the concept of exchange
rate, where a segment of a molecule having r segments, here molecule B, is replaced
by the mono-segmented molecule A. In the above equation this implies that rA =
qA = x = 1, rB = r = y, and qB = q. We continue with Guggenheim’s derivation,
but use the term probability, instead of the term exchange rate, and we take a small
volume element in the liquid, which has the size of the least common multiple of the
number of segments of the molecules in the mixture. Suppose, for instance, a mixture
of trimers and tetramers. This requires a partial liquid volume element equivalent to
12 lattice cells, in which 4 trimers or 3 tetramers fit. In general, this volume element
is equivalent to rA · rB adjacent lattice cells. The ratio of the probability that this
liquid volume contains a cell of type A and rB − 1 adjacent cells of type A and the
probability that the cell is of type B and has rA − 1 adjacent cells of type B is

αliq = C
φB

qB
rB

(θB)rA−1

φA
qA
rA

(θA)rB−1 = Kliq
φB (θB)rA−1

φA (θA)rB−1 , (3.16)

where C is a proportionality constant, that is independent of concentration, and
Kliq is a constant that includes the size parameters rj and qj of the components.
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Guggenheim’s formula is recovered when rA = 1 and rB = r. In order to connect
this probability to the Gibbs energy, Guggenheim used the thermodynamic constraint
that at equilibrium the Gibbs energy of the liquid and gas are equal. We now
consider a gas volume element. The probability to fill this volume element by A or
B molecules is proportional to the partial pressures, PA and PB. Therefore, the ratio
of the probability to fill this gas volume element with rA molecules of type B and
the probability to fill it with rB molecules of type A is

αgas = Kgas
P rAB
P rBA

. (3.17)

with Kgas a constant that is concentration independent. The partial vapor pressure
Pj of compound j can be expressed in terms of the chemical potential µj or the
reduced chemical potential µ̃A by

Pj = exp
( µj
RT

)
= exp (µ̃j). (3.18)

Substitution of Eq. 3.18 into the logarithmic expression of Eq. 3.17 gives

lnα = lnKgas + rA lnPB − rB lnPA

= lnKgas + rAµ̃B − rBµ̃A. (3.19)

Differentiation yields
d lnα = rAdµ̃B − rBdµ̃A. (3.20)

By using the Gibbs-Duhem equation∑
j

Njdµ̃j = 0, (3.21)

the reduced chemical potential of compound B can be eliminated and we obtain

µ̃A = − NB

(NArA +NBrB)
d lnα = −φB

rB
d lnα = − φB

rBα
dα. (3.22)

Integration of Eq. 3.22 from the pure state of compound A, φB = 0, to a final
concentration φB provides the change in Gibbs energy upon mixing of compound A
with B to concentration φA∫ mixture

pure A
dµ̃A = ∆µ̃A = − 1

rB

∫ φB

0

φB
α

(
∂α

∂φB

)
dφB. (3.23)
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Substitution of Eq. 3.16 into Eq. 3.23 gives for the chemical potential difference of
compound A in the pure liquid state and the mixture

∆µ̃A = − 1

rB

∫ φB

0

1

φA
+ (rA − 1)

φB
θB

(
∂θB
∂φB

)
− (rB − 1)

φB
θA

(
∂θA
∂φB

)
dφB. (3.24)

After evaluating the partial derivatives the integral reduces to

∆µ̃A = − 1

rB

∫ φB

0

rAθA + rBθB
φA

dφB. (3.25)

With Eqs. 3.7 and 3.8 the surface area fractions in the integral can be written in
terms of φA, after which the integration yields

∆µ̃A = − 1

rB

[
rA ln (φA + flatφB)

flat − 1
− rB ln (1− φB)− rB ln(φA + flatφB)

flat − 1

]
= ln (φA) +

1− rA/rB
flat − 1

ln

(
φA
θA

)
= ln (φA)− ΓA ln

(
φA
θA

)
. (3.26)

Interchanging the indices results for component B in

∆µ̃B = ln (φB)− ΓB ln

(
φB
θB

)
. (3.27)

In the above equations we defined the concentration independent factors:

ΓA ≡
zAqArA − zAqArB
zBqBrA − zAqArB

and ΓB ≡
zBqBrB − zBqBrA
zAqArB − zBqBrA

. (3.28)

From Eq. 3.26 and Eq. 3.27 follows that the total reduced Gibbs energy change
upon mixing of compounds A and B is given by

∆G̃ = NA ln(φA) +NB ln (φB)−
[
NAΓA ln

(
φA
θA

)
+NBΓB ln

(
φB
θB

)]
. (3.29)

Again, Guggenheim’s original equation is recovered by setting rA = qA = 1, rB = r,
qB = q, and zA = zB = z, which yields ΓA = (r − 1)/(r − q) and ΓB = qΓA.
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3.2.3 Generalized Gibbs energy of mixing expression: Off-lattice
derivation

The above derivation was carried out in terms of lattice parameters, but the same
results can be derived without the definition of a lattice. We start by considering a
small volume element in the liquid with volume Vbox. The number of molecules of
type j that fit into this volume element, mj , is determined by the molecular volume
of molecule Vj given by

mj =
Vbox
Vj

. (3.30)

The ratio of the probabilities that this volume element is filled with only A or B
molecules from the liquid phase, and which are all adjacent to each other, is

αliq = Kliq
φB (θB)mA−1

φA (θA)mB−1 . (3.31)

In the gas phase the ratio of the probabilities that a volume element is filled with
only A or B molecules, is ruled by the partial vapor pressures

αgas = Kgas
PmA
B
PmB
A

. (3.32)

By applying the same procedure as in section 3.2.2 we obtain again Eq. 3.29, but
now the factors, Γj , are defined by the molecular volume and external surface area
of the compounds

ΓA =
aAVA − aAVB
aBVA − aAVB

and ΓB =
aBVB − aBVA
aAVB − aBVA

. (3.33)

3.2.4 Combinatorial activity coefficients

Differentiation of Eq. 3.29 with respect to NA yields the combinatorial activity
coefficient of component A

ln (γA) =

[
ln

(
φA
xA

)
+ 1− φA

xA

]
− ΓA

[
ln

(
φA
θA

)
+ 1− φA

θA

]
. (3.34)

The factor ΓA can be written in terms of xA, φA, and θA by substitution Eqs. 3.3
and 3.5 into Eq. 3.28

ΓA =
1− φA

xA

1− φA
θA

.. (3.35)
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The same result is obtained when Eqs. 3.4 and 3.6 are substituted into Eq. 3.33.
The factor ΓA as we will discuss in Chapter 4 is equal to half the number of nearest
neighbors. Here we note that, regardless of whether a lattice- or fluid-based model
is used, and regardless of the shape of the molecules, the general expression for the
combinatorial activity coefficient of component j in a multicomponent mixture is
given by

ln (γj) = ln

(
φj
xj

)
+

(
1− φj

xj

) ln
(
φj
θj

)
φj
θj
− 1

 . (3.36)

Here, the term in the square brackets defines the Guggenheim correction with respect
to the Flory-Huggins model. For φj = θj the correction term is unity. Fig. 3.1 shows
the correction term as a function of the ratio φj/θj .

Figure 3.1: Correction term of Eq. 3.36 as a function of ratio of volume and surface fraction of
compound j.
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3.3 Discussion and concluding remarks

We recall that Guggenheim used a simplified form for Γj . He imposed rA = qA = 1,
rB = r, qB = q, and zA = zB = z and applied the lattice relation:

zq = zr − 2 (r − 1) , (3.37)

which is valid for linear and branched molecules. As a result Guggenheim obtained
ΓA = z

2 and ΓB = q z2 for Eq. 3.29. Later, Vera et al. [224] used this equation to
derive the following restricted form of the combinatorial activity coefficient

ln (γj) = ln

(
φj
xj

)
− zqj

2
ln

(
φj
θj

)
, (3.38)

but this form was seldom applied in activity coefficient models. Instead, lattice activ-
ity coefficient models still contained the combinatorial term of the original UNIQUAC
model [2]; Eq. 3.34 with ΓA = zqA/2. See, for instance, the development of the UNI-
FAC [59], the COSMOSPACE [117], the MOQUAC [22] and the COSMOSAC [144]
model. Our result of Eq. 3.36 shows that there is no need to define:

• a coordination number (z), since the concept of a lattice is obsolete

• a relative volume (rj) to calculate volume fractions (φj)

• a relative surface area (qj) to calculate surface area fractions (θj)

• the number of nearest neighbors by the term z.qk/2

Therefore, the original and restricted form of the combinatorial activity coefficient
could be replaced by Eq.3.36, and supplemented with an activity coefficient model
that accounts for the dispersive interaction between non-polar molecules. Such an
approach has been applied in the MOSCED model [214], which is used to calculate
the activity coefficients at infinite solution of binary mixtures. In here the disper-
sion is based on the Hansen solubility model [84], while the combinatorial activity
coefficient at infinite dilution of solute A in solvent B is computed by

ln(γ∞A ) = ln

(
VA
VB

)0.953

+ 1−
(
VA
VB

)0.953

. (3.39)

This is a modified form of the combinatorial activity coefficient of the Flory-Huggins
model. The use of an exponent was proposed by Donahue and Prausnitz [43] to
tweak the Flory-Huggins model, where the exponent is 1, towards the ideal solution
model, where the exponent is zero. This modification, however, has no physical
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Figure 3.2: Comparison of models to predict the combinatorial activity coefficient of hexane in
n-alkanes at infinite dilution as function of the carbon number. Right graph is a detail of the left
graph to emphasize differences.

basis. Fig. 3.2 shows that this correction of the combinatorial term is larger than
the Stavermann-Guggenheim correction used in the UNIQUAC model and also lar-
ger than the correction given by Eq. 3.36. Since Eq. 3.36 is a generalized form of the
UNIQUAC model and has a physical meaningful basis rather than being an ad-hoc
modification, it could replace the combinatorial term in the MOSCED model. How-
ever, this implies that the dispersion contribution needs to be made more repulsive
in order to bring the MOSCED model in agreement with the experimental activity
coefficients of alkane mixtures.

The essence of the derivation, which leads to the generalized expression for the
combinatorial activity coefficient, is the introduction of a reference volume, in which
only a limited number of molecules fit due to their size and shape. The probability
to fill this volume with one type of molecules is the second essential step in the
derivation. Because of the existence of a gas-liquid equilibrium, it is permitted to
relate these probabilities to the probabilities to fill a reference volume in the vapor
phase. This relation in combination with the Gibbs-Duhem law leads to a general
expression of the Gibbs energy of mixing and subsequently a general expression for
the combinatorial activity coefficient.
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Chapter 4

On the Number of Nearest
Neighbors1

4.1 Introduction

In this chapter we show how the generalized Guggenheim combinatorial activity coef-
ficient equation, Eq. 3.36 and the formula for the number of nearest neighbors, Eq.
3.35 can be implemented in the UNIQUAC and the COSMOSPACE models. The
new expressions are compared to the original form used in UNIQUAC and COSMO-
SPACE. In this comparison we will also consider the effect of the molecular size and
shape defined by the Pauling bond lengths and the set of van der Waals radii, defined
by Rowland and Taylor [190], respectively. Subsequently, the revised UNIQUAC and
COSMOSPACE models are evaluated by comparing the description of vapor-liquid
phase equilibria and excess enthalpy for alkane-alcohol binary systems.

4.2 Theory

4.2.1 The generalized and the Gugenheim Staverman combinator-
ial activity coefficient equations

In chapter 3 we showed how a generalized expression for the combinatorial activity
coefficient can be derived, Eq. 3.36. The expression that was derived for the original

1Based on the publication: On the calculation of nearest neighbors in activity coefficient models.
Fluid Phase Equil. 465 (2018) 10-23 by Gerard J.P. Krooshof, Remco Tuinier, and Gijsbertus de
With.
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UNIQUAC model [158] is:

ln(γcomb
k ) =

[
ln(

φk
xk

) + 1− φk
xk

]
− zqk

2

[
ln(

φk
θk

) + 1− φk
θk

]
, (4.1)

where xk, φk and θk are respectively the mole, volume and surface area fraction of
compound k in the mixture and qk is the relative surface area of this compound.
The latter is obtained by defining a reference area. In Eq. 4.1 we recognize as first
term the Flory-Huggins contribution and as second term the Staverman-Guggenheim
correction [112, 126]. The coordination number in the UNIQUAC model z is set as
a constant and has often the value 10. When we define the term Qk, which is half
the number of nearest neighbors of compound k, we can write:

Qk ≡
zqk
2

=
1− rk
1− rk

qk

. (4.2)

As was proven in chapter 3, but also by comparison of Eq. 4.1 with Eq. 3.36, we
have:

Qk =
1− φk

xk

1− φk
θk

. (4.3)

This tells us that Qk can be calculated from the mole, area and volume fraction,
and that zqk is not a free parameter anymore, as it was considered in the original
UNIQUAC model. In appendix B we show that Eq. 4.3 yields a constant, despite
the fact that it contains functions of mole fraction. In order to apply Eq. 4.3 in the
original UNIQUAC model it was required to define a reference area and a specific
lattice coordination number z. In the past this Qk was obtained by setting z = 10
and by calculating qk using a reference area. We remark that the reference volume
Vref = 25.17 Å3 was never changed after Abrams and Prausnitz [2] introduced it.
The reference area, however, has been optimized several times in order to bring the
activity models more in agreement with experimental results. Table 4.1 shows several
values for the reference area for different models, in which the SG-combinatorial
correction term was implemented. In here the lattice coordination number was always
fixed on the value z = 10, as was proposed by Abrams and Prausnitz [2]. We
remark that with smaller values of the reference area, the number of nearest neighbors
of a compound increases. This has little impact on the combinatorial term, but
has large effect on the residual activity coefficient. In fact, the binary interaction
parameter needs to be adjusted to lower values in order to keep the description of
the experimental phase equilibria data in agreement.
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Author Aref(Å2) Model
Abrams and Prausnitz[2] 41.56 UNIQUAC
Wang et al.[229] 79.53 COSMOSAC
Soares [205] 124 COSMOSAC
Bronneberg and Pfennig [21, 22] 3.21 MOQUAC

Table 4.1: Values of the reference surface areas Aref proposed by various groups.

4.2.2 Lattice independent UNIQUAC

In chapter 3 is was shown that choosing a reference area and a lattice coordination
number for the Stavermann-Guggenheim expression for the combinatorial activity
coefficient is no longer required, and that Eq. 4.3 defines the combinatorial part of
the activity coefficient model. Substituting Eq. 4.3 into the original combinatorial
activity coefficient, Eq. 4.1, gives

ln(γcomb
k ) = ln(

φk
xk

) + (1− φk
xk

)

[
ln(φk

θk
)

1− φk
θk

]
= ln(

φk
xk

)−Qk ln(
φk
θk

). (4.4)

The latter equation is referred to Vera et al. [224] as the restricted form of the
UNIQUAC equation. However, we point out that Vera et al. [224] apply Eq. 4.2,
while we use Eq. 4.3, which requires no definition of the reference area Aref. We
mention that in the limit θk → φk, the term between the square brackets becomes
unity, and the Flory-Huggins equation is obtained. This also happens when we set
qj = rj, which by Eq. 3.37 gives rj = qj = 1 or z = ∞2, from which it follows that
θj = φj. The derived equation for Qk is also directly applicable in the residual part
of the UNIQUAC model. It is noted that the residual part of the original UNIQUAC
model contains an inconsistency. Instead of the frequently published equation, our
analysis leads to

ln(γres,UQk ) = Qk

1− ln(
M∑
j=1

θjτjk)−
M∑
j=1

θjτkj
M∑
i=1

θiτij

 . (4.5)

This expression contains a factor Qk instead of qk, which has been used in the
original UNIQUAC model (see appendix C). In Eq. 4.5 τij denotes the Boltzmann
weighting factor given by the contact energy of a lattice cell of compound i and that

2Note: rj = qj = 1 implies that all molecules have same shape. z = ∞ implies that molecules
have no local molecular orientation and thus randomly distributed
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of compound j

τij = exp

[
−∆Uij

RT

]
. (4.6)

The total activity coefficient for the lattice independent UNIQUAC model can there-
fore be expressed as

ln(γUQk ) = ln(
φk
xk

)−Qk ln(
φk
θk

) +Qk

1− ln(

M∑
j=1

θjτjk)−
M∑
j=1

θjτkj
M∑
i=1

θiτij

 . (4.7)

The above principle holds also for the UNIFAC model. The difference between
UNIQUAC and UNIFAC is that in the latter not molecules but molecule fragments
are used as interacting entities in the residual part. Although UNIQUAC has been
applied with success, we must not forget that the UNIQUAC model is based upon a
first order approximation of the local concentration around a molecule in a mixture.
This approach is accurate for systems having weak interactions, but for strongly
interacting molecules the activity coefficient of the solute is underestimated. In that
case the local activity instead of the local concentration of the solute should be used.
This has been done in the COSMOSPACE [117] and GEQUAC [46] models.

4.2.3 Lattice independent COSMOSPACE

For a binary system, where each molecule can have two types of surfaces, the COS-
MOSPACE activity coefficient is expressed as [117]

ln(γres,CSk ) =
nk
2

(
ζAk ln

[
γA,x
γA,k

]
+ ζBk ln

[
γB,x
γB,k

])
, (4.8)

where nk is the total number of surface segments of molecule k, and ζJk is the fraction
of surface type J on molecule k. The x ≡ (x1, x2) is used to define the fractions of the
two components in the mixture and the pure state. We mention that in the original
publication the total number of surface patches is calculated by the relative area as
defined in the UNIQUAC model: nk = 2qk. Since we consider a fully occupied lattice,
i.e., there are no empty cells in the lattice, the total number of surface segments on
a molecule has to be equal to the number of nearest neighbors. That is to say, we do
not subdivide the contact area into smaller patches, as is done in COSMOSAC [145],
because the patches of opposite segment sides make simultaneous contact, thereby
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averaging the interaction energy of the two contacting surface segments. Therefore
we consider

nk
2

=
zqk
2
≡ Qk. (4.9)

The variables γJ,x and γJ,k in Eq. 4.8 denote the activity coefficient of surface type
J in the mixture and the pure state, respectively. They can be calculated by

ln(γA,x) = ln

[
1

θA,x
+

1−
√

(1 + 4θA,xθB,xω)

2ωθ2
A,x

]
, (4.10)

and

ln(γB,x) = ln

[
1

θB,x
+

1−
√

(1 + 4θA,x̄θB,xω)

2ωθ2
B,x

]
, (4.11)

with ω = 1/τ2−1 reflecting the interaction between the two different surface segments
A and B, and where τ is the Boltzmann weighting factor of the COSMOSPACEmodel
which is for weak interactions related to the interaction parameters of UNIQUAC;
τ ≈ √τ21τ12. In the limit ω → 0 the surface activity coefficients become unity,
and the binary system becomes an ideal solution. The surface fractions of the two
components in the mixture and the pure state are calculated by

θA,x =
x1q1ζ

A
1 + x2q2ζ

A
2

x1q1ζA1 + x2q2ζA2 + x1q1ζB1 + x2q2ζB2
, (4.12)

and

θB,x =
x1q1ζ

B
1 + x2q2ζ

B
2

x1q1ζA1 + x2q2ζA2 + x1q1ζB1 + x2q2ζB2
. (4.13)

The total activity coefficient of the lattice independent COSMOSPACE model can
be expressed by the sum of Eqs. 4.4 and 4.8

ln(γCSk ) = ln(
φk
xk

)−Qk ln(
φk
θk

) +Qk

[
ζAk ln

[
γA,x
γA,k

]
+ ζBk ln

[
γB,x
γB,k

]]
(4.14)

4.3 Results and discussion

In this section we evaluate the accuracy of the renewed expression for half the number
of neighbors, Eq. 4.3. For this purpose we chose binary mixtures of n-alkanes and
1-alcohols. Subsequently, we investigate how the UNIQUAC and COSMOSPACE
models perform using the new definition for the number of nearest neighbors.
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4.3.1 The number of nearest neighbors of n-alkanes

The calculation of the number of nearest neighbors by Eq. 4.3 for binary mixtures
of alkanes between methane and nonacosane has been carried out for a series of 200
mole fractions between 0.001 and 0.999. Outside this range Eq. 4.3 suffers from
computational inaccuracy due to the vanishing denominator, approaching zero. To
calculate the volume and surface fractions in the binary mixture we used the van der
Waals volume (VvdW) and surface area (AvdW) given by Bondi [18]. For n-alkanes
Bondi gives the following relations

VvdW =
6.88 + 10.23NC

0.6022
, (4.15)

and
AvdW =

1.54 + 1.35NC

0.06022
, (4.16)

where we kept the original Bondi parameters and used the factors 0.6022 and 0.06022
to scale from molar size (cm2/nmol, and cm3/mol) to molecular area (Å2) and volume
(Å3), respectively. As can be seen from the equidistant lines in Fig. 4.1, there is a
clear linear relationship between zqk and NC. Methane, depicted at the bottom line,
has a constant value for zqk over the entire range from ethane to n-nonacosane. The
same holds for the higher alkanes. The explanation for this is given in B. The open
space in Fig. 4.1 represents the position of the pure liquid, to which Eq. 4.3 does not
apply. However, since the values on the left and the right side of the open space are
the same, it seems logical to assign this value as zqk of the pure compound. This is
an important observation, which we will use later. Based on the results depicted in
Fig. 4.1, the relation between the number of nearest neighbors of the pure compound
and the alkane number is given by

zqk = 4.87 + 4.27NC. (4.17)

Sayegh and Vera [195, 224] proposed the following empirical relation for the number
of nearest neighbors based on an analysis of 15 classes of compounds

zqk = 0.4228VvdW + 2(1− lk), (4.18)

where lk is the number of internal contacts in a molecule and the van der Waals
volume is expressed in cm3/mol. The empirical constant 0.4228 has the dimension
mol/cm3 and is equal to the quantity (z − 2)/Vref. We see that the value for the
reference volume is dependent on the value of z. E.g. if z = 10, then the reference
volume is 18.92 cm3/mol or 31.4 Å3/molecule, which gives Aref = 48.2 Å2/molecule,
which is 20% higher than applied in the original UNIQUAC model (see Table 4.1).
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Figure 4.1: The number of nearest neighbors (zqk) of two n-alkanes between methane and
nonacosane calculated by Eq. 14 using the van der Waals volumes and areas of Bondi [18], as
has been shown in appendix B. In the bottom row the zq of methane in a mixture of ethane
(NC = 2) to nonacosane (NC = 29) is shown, continuing to the top row where the zq of nonacosane
in mixture of methane (NC = 1) to octacosane (NC = 28) is given.

For n-alkanes, where lk = 0, and using the van der Waals volumes defined by the
van der Waals radii of Bondi, Eq. 4.18 becomes

zqk = 4.91 + 4.33NC. (4.19)

This relation is close to Eq. 4.17. Although the van der Waals radii as proposed by
Bondi are often used in the calculation of molecule dimensions, they are still matter
of debate. We refer to the review article of Batsanov [11], in which it is argued that
the van der Waals radii of Rowland and Taylor [190] should be considered as more
reliable, because a much larger experimental XRD-data set has been used. The
van der Waals radii of Rowland and Taylor for hydrogen, carbon and oxygen are
RH = 1.09 Å, RC = 1.75 Å, and RO = 1.56 Å, respectively. With these values and
the Pauling bond lengths [176] the van der Waals volume and surface area can be
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Figure 4.2: The number of nearest neigh-
bors (zqk) of n-alkanes calculated by Eq. 4.20
(solid line), Eq. 4.17 (dashed-dotted line),
Eq. 4.18 (dotted line) and Eq. 4.21 (dashed
line).

Figure 4.3: The number of nearest neigh-
bors (zqk) of 1-alcohols calculated by Eq.
4.23 (solid line), Eq. 4.22 (dashed-dotted
line), Eq. 4.18 (dotted line) and Eq. 4.21
(dashed line).

calculated. Subsequently, using the same procedure as before, the number of nearest
neighbors is obtained

zqk = 4.37 + 3.55NC. (4.20)

For comparison we recall that in the original UNIQUAC model the number of nearest
neighbors is calculated by

zqk = z
AvdW

Aref
=
AvdW

4.15
, (4.21)

where z is set to 10, Aref = 41.5 Å2 and AvdW is calculated with the Bondi set of
van der Waals radii (i.e. Eq. 4.16). Figure 4.2 shows a comparison of the aforemen-
tioned equations for zqk of n-alkanes. We see that the set of van der Waals radii of
Rowland and Taylor, i.e. Eq. 4.20, gives the lowest values for zqk, while Eq. 4.21
gives significantly higher values, which might lead to systematic deviations in the
UNIQUAC model.

4.3.2 The number of nearest neighbors of 1-alcohols

Another class of linear molecules are the 1-alcohols. The required van der Waals
radii of Bondi [18] and those of Rowland are (in Å): RH = 1.20, RC = 1.70 and
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RO = 1.52, and RH = 1.09, RC = 1.75 and RO = 1.56, respectively. Using the same
method as described in the section on n-alkanes, this leads to

zqk = 6.24 + 3.78NC (4.22)

for the Bondi parameter set of van der Waals radii. The set of van der Waals radii
of Rowland and Taylor yields

zqk = 6.14 + 3.39NC (4.23)

Results of the various equations for zqk of the 1-alcohols are depicted in Fig. 4.3.
Like in the case of the n-alkanes, Eq. 4.3 gives for the alcohol mixtures lower

values for the number of nearest neighbors than those calculated by the original
UNIQUAC formula. Comparing Fig. 4.2 with Fig. 4.3 it follows that the relation
based on the van der Waals radii of Rowland and Taylor are more in line with the
expectation that the alcohols have more nearest neighbors than the alkanes with the
same carbon number, as long as NC < 11. This suggests that further optimization
of the van der Waals radii is still needed. In fact, we expect that the slope of the
number of nearest neighbors as function of the carbon number of the alcohols should
be the same as that of the alkanes, because in both cases this only depend on the
number of the CH2 groups. Batsanov [11] indicated that the concept of spherical
atoms in a molecule probably needs to be adjusted to ellipsoids, because the radius
in the bond direction is smaller that the one perpendicular to it, which might also
be important in a further refinement.
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4.3.3 The number of nearest neighbors of mixtures of n-alkanes and
1-alcohols

While zqk of an alkane is independent of the other alkanes in the mixture, it becomes
NC dependent when an 1-alcohol is added. Fig. 4.4 shows the case of n-hexane

Figure 4.4: Results for Qk of hexane dissolved in alkanes (green dots/diamonds) and alcohols
(blue squares/triangles) with Eq. 4.3 using Rowland’s set (solid curves) or Bondi’s set (dashed
curves) of van der Waals radii.

dissolved in an n-alkane and in a 1-alcohol. Although the number of nearest neighbors
for n-hexane in a 1-alcohol does not vary with concentration, we observe that it
becomes 1-alcohol dependent over a small range of NC-values. When the carbon
number of the alcohol is low, the number of nearest neighbors of n-hexane is slightly
below the value of that in an alkane. In the case of Bondi’s set of van der Waals
radii it even gives negative values when the difference in carbon number becomes
smaller, which is unphysical. This artefact is caused by small errors in the calculation
of the van der Waals volume and area, which is magnified by the denumerator of
Eq. 4.3. This artefact would also occur in the original UNIQUAC method, if the
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developers had use the right part of Eq. 4.2, instead of the applied zq/2, for which
an ad-hoc value of the coordination number (z = 10) and the reference area (aref =
41.56 Å2) had to be defined. Above the carbon number of hexane the number of
nearest neighbors approaches the pure component value. This makes sense, because
the alcohol starts to increasingly resemble an alkane. The presence of an apparent
singularity around molecules of equal size, however, demonstrates that the choice for
a value of the number nearest neighbors is still a critical issue. In order to make the
new expression for the UNIQUAC model applicable for all types of solvent mixtures,
we take the value obtained from the calculation of the compound in a mixture of
molecules of its own class. This is equivalent to the number of nearest neighbors of
the compound in its pure state. This choice implies that the coordination of other
molecules in the first shell around a central molecule is set equal to that of the pure
state.

4.3.4 The Staverman-Guggenheim correction term

We will now compare the combinatorial activity coefficient using the different ex-
pressions for the number of nearest neighbors and apply these to the binary system
hexane - hexadecane. Fig. 4.5 shows the comparison between the combinatorial
activity coefficient of the different models and parameter sets for the binary system
of n-hexane (1) and n-hexadecane (2). The activity coefficients of the Flory Huggins
model, for which we used the original UNIQUAC parameters r1 = 4.5 and r2 = 11.25,
are plotted as dashed curves, which end at the limiting activity coefficient values
of γcomb,∞

1 = 0.729 and γcomb,∞
2 = 0.558. The different Staverman-Guggenheim

models give curves which nearly coincide. The original UNIQUAC model, where
z = 10, q1 = 3.86 and q2 = 9.26, gives curves that end at γcomb,∞

1 = 0.7404 and
γcomb,∞

2 = 0.5798. The refined Staverman-Guggenheim model, i.e. Eq. 4.4 with
Qk defined by Eq. 4.3, gives using the van der Waals molecular volume and area
based on the radii set of Bondi: γcomb,∞

1 = 0.7380 and γcomb,∞
2 = 0.5752, while the

set of Rowland and Taylor gives: γcomb,∞
1 = 0.7404 and γcomb,∞

2 = 0.5798. These
values demonstrate that the difference between the original and the refined UNI-
QUAC models is negligibly small; less than 0.1%. This observation shows that the
new equation for the number of nearest neighbors (Eq. 4.3) gives nearly the same
result as the equation used in the original UNIQUAC equation (Eq. 4.2) for which a
reference surface area had to be defined. Our approach demonstrates that the lattice
model of UNIQUAC can be transformed into a fluid model without the definition of
a reference area. This transformation is also observed in the Flory-Huggins model.
Initially the number of lattice cells for each molecule was defined, but in the end the
activity coefficient equation contains only mole and volume fractions, for which this
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Figure 4.5: Combinatorial activity coefficient γcomb of the binary n-hexane and n-hexadecane.
Flory-Huggins model (small dashed curve, γcomb,∞

1 = 0.729). The curves of the original UNIQUAC
and the refined Staverman-Guggenheim models based on Bondi’s and Rowland’s set of van der
Waals radii nearly coincide.

definition is not needed. Likewise, the Staverman-Guggenheim correction requires
the definition of the number of sites of each molecular surface, i.e. zq/2, but this
is later replaced with Eq. 4.3, and the activity becomes a function of mole, volume
and surface fractions only. In other words, in both cases the concept of a lattice
has served as a vehicle to reveal the dependency between activity coefficient and
concentrations.

4.3.5 Activity coefficient models

UNIQUAC

In the theoretical section of this work (see appendix C) we show that the residual
part of the original UNIQUAC model contains an error. The correct derivation
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delivers a residual activity coefficient equation with Qk and not qk as molecular
dependent variable. Fig. 4.6 depicts several experimental isothermal vapor-liquid
equilibria data and the UNIQUAC descriptions in three different ways: the original
UNIQUAC model (dashed curves), and the lattice independent UNIQUAC model as
given in Eq. 4.7 using Eq. 4.3. The optimized UNIQUAC interaction parameters
are given in Table 4.2. The key quantity Qk is calculated by the volume and the

Table 4.2: UNIQUAC binary interaction parameters for n-hexane and a 1-alcohol using number
of nearest neighbors of the pure compound as given in Figs. 4.2 and 4.3.

Original Bondi Rowland
1-Alcohol (T ◦C ) τ12 τ21 τ12 τ21 τ12 τ21

Methanol (25) 0.129 1.017 0.237 1.733 0.165 1.814
Ethanol (45) 0.161 1.289 0.282 1.785 0.261 1.787
Propanol (50) 0.395 1.898 0.432 1.568 0.397 1.578
Pentanol (30) 0.370 1.293 0.528 1.477 0.431 1.601

surface area fractions defined by the molecular volumes and areas from Bondi’s (solid
curves) and Rowland’s (dashed-dotted curves) set of van der Waals radii. We observe
in Fig. 4.6 that the three different forms of the UNIQUAC model give equivalent
descriptions of the vapor-liquid equilibria. The new equation somewhat overpredicts
the pressure in the case of ethanol, and gives lower pressures in the case of pentanol.
These deviations are not caused by the new expression, but by the combination of
parameters and the first order approximation of the local concentration. This is more
clear in the description of the binary n-hexane and ethanol, where all three models
yield a heterogeneous azeotrope, while the experimental data show a homogeneous
azeotrope. The exaggeration in pressure exists for all UNIQUAC models, but is more
present in case of the lattice independent versions. The left plot of fig. 4.7 shows that
the lattice independent UNIQUAC models yield higher activity coefficients than the
original UNIQUAC model; for hexane at mole fractions between 0.1 and 0.5 and for
ethanol at mole fractions between 0.7 and 0.9. This difference between the two types
of UNIQUAC models is caused by the small qk in the original UNIQUAC model
versus the applied correct factor Qk in the lattice independent models; qEthanol =
1.97, qHexane = 3.86, and Rowland’s data give QEthanol = 6.48 and QHexane = 12.85.

To compare the parameters of the different UNIQUAC models, it is convenient to
take the mean interaction parameter (i.e. τ298 =

√
τ12τ21) at 25 ◦C. Table 4.3 shows

that with increasing alkane number of the alcohol the binary system becomes more
ideal; the mean interaction parameter shifts to unity and the interaction energy,
calculated by ln(τ298), goes to zero.

The interaction parameters for the original UNIQUAC model are the smallest in
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τ298 ∆E298(kJ/mol)
2ndCompound UQ Bondi Rowl. UQ Bondi Rowl.
Methanol 0.362 0.641 0.547 2.52 1.10 1.50
Ethanol 0.456 0.710 0.683 1.91 0.85 0.95
1-Propanol 0.584 0.810 0.776 1.33 0.52 0.63
1-Pentanol 0.687 0.881 0.828 0.93 0.31 0.47

Table 4.3: Mean UNIQUAC interaction parameter, τ298, and interaction energy, ∆E, values for
the binary pair n-hexane - alcohol at 298.15 K. UQ denotes original UNIQUAC model. Bondi
denotes the lattice independent UNIQUAC model with Bondi’s basis set of van der Waals radii.
Rowl. denotes the lattice independent UNIQUAC model with Rowland’s basis set of van der Waals
radii.

value, followed by those of the lattice independent model based on Rowland’s and
Bondi’s basis set of van der Waals radii. This is in line with the fact that the original
UNIQUAC model uses the smallest value for the relative area, while in the refined
models the van der Waals radii of Bondi give a larger molecular surface area than
those of Rowland.

COSMOSPACE

In the article on the COSMOSPACE model [117] it was already made clear that poor
results are obtained when the molecular surface of each compound is considered
to be made of one type of surface. This so-called homogeneous surface approach
fails, because in reality each interacting molecule, even an alkane, consists of at
least two different types of surfaces. Therefore the most comprehensive form of
the COSMOSPACE model is the so-called non-homogeneous double-binary set-up.
We note that more surface types of interaction can be taken into account, but this
requires more computation [117]. For this work, however, we can show that the non-
homogeneous double-binary set-up is sufficient to demonstrate that Eq. 4.3 provides
an accurate description for a series of vapor-liquid equilibria of hexane and an alcohol.
For the description of the isothermal experimental vapor-liquid equilibria we have
used two parameters: the number of nearest neighbors of the hydroxyl group (nOH)
in the alcohol and the alkyl-hydroxyl interaction parameter (τ298) at the reference
temperature of 298.15 K. An Arrhenius equation is used to define the interaction
parameter τ at other temperatures

ln(τ) = −∆E298

RT
=

298.15

T
ln(τ298), (4.24)

where ∆E298 is the interaction energy between the alkyl and the hydroxyl surfaces at
298.15 K. Simultaneous optimization of the isothermal vapor-liquid equilibria yields
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COSMOSPACE Model Original New New
Parameter Bondi Bondi Rowland
QOH(−) - 1.18 1.25
nOH(−) 2.29 2.35 2.50
τ298(−) 0.0979 0.0409 0.0471
∆E298(kJ/mol) 5.76 7.92 7.58
nOH∆E298(kJ/mol) 13.4 18.6 18.9

Table 4.4: COSMOSPACE parameters for alkane-1-alcohol systems derived from fitting VLE data
(table 4.5).

to a set of parameter values listed in Table 4.4. Figure 4.8 shows that the COS-
MOSPACE model gives an excellent description of the phase equilibria data. The
two lattice independent COSMOSPACE models show hardly any difference between
the results obtained with the van der Waals radii of Bondi and Rowland; the curves
almost coincide. Statistical information in the form of the average absolute deviation
indicates that Bondi’s set of van der Waals radii gives slightly better results than
Rowland’s set (See table 4.5).

Binary VLE T NPS CS (Original) CS (New) CS (New)
Alkane-Alcohol ◦C - Bondi Bondi Rowland lit.
Hexane-Methanol 25 4 18.7 3.5 5.1 [100]
Hexane-Ethanol 40 38 2.9 1.2 2.4 [173]
Heptane-Ethanol 30 50 6.4 3.3 4.1 [16]
Nonane-Ethanol 25 25 3.8 0.9 1.6 [16]
Hexane-1-Propanol 50 20 3.2 1.4 2.3 [40]
Hexane-1-Butanol 60 24 0.8 1.5 2.4 [15]
Hexane-1-Pentanol 40 13 0.9 1.7 2.2 [189]
Hexane-1-Hexanol 30 21 7.2 4.1 5.4 [235]
Average 4.3 2.1 3.1

Table 4.5: Average absolute deviation in pressure: 100× |1− Pcalc/Pexp| of the various COSMO-
SPACE (CS) models. NPS = number of mixture data points in regression. Pure data points are
used to scale pressure.

In comparison to the UNIQUAC approach the COSMOSPACE model clearly
gives a better quantitative description of the experimental vapor-liquid phase equi-
libria, especially the transition from heterogeneous to homogeneous azeotrope is cap-
tured well. This is caused by the better activity coefficient description in the mid
concentration range as can be observed by comparing the two plots in figure 4.7. The
description of the experimental data is best performed by the lattice independent
COSMOSPACE model with Bondi’s set of van der Waals radii. With the number of
contacts associated with hydrogen bonding, nOH = 2QOH, the change in pair interac-
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tion energy is calculated. The obtained values of 13.4, 18.6 and 18.9 kJ/mol indicate
that the lattice independent model is closer to the energy of hydrogen bonding of
alcohols (20 kJ/mol for methanol/ethanol [90]) than the original COSMOSPACE
model.

In Fig. 4.9 we depict the prediction of the excess enthalpy of the binary systems
n-hexane - ethanol at 40 ◦C [173] and n-nonane - ethanol at 25 ◦C [31], for which the
parameters are taken from the vapor-liquid equilibria optimization. The prediction
is qualitatively very good with respect to the location of the maximum. The average

Binary HE T NPS CS (Original) CS (New) CS(New)
Alkane - Alcohol ◦C - Bondi Bondi Rowland lit.
Hexane - Ethanol 40 21 15 9 9 [173]
Heptane - Ethanol 30 26 14 14 15 [203]
Nonane - Ethanol 25 26 14 21 22 [31]
Average 14 15 15

Table 4.6: Absolute average deviation in excess enthalpy: 100 × |1 − HE
calc/H

E
exp| of the various

COSMOSPACE (CS) models.

absolute deviation of the predicted excess enthalpy is about 15%. This deviation
is understandable from the fact that the induced dipole interaction between the
alkyl parts of the alkane and the alkanol has not been taken into account in the
calculations. It is expected that the inclusion of a dispersion term, as has been
done in the DISQUAC [109, 110], will improve the prediction of the excess enthalpy.
Figure 4.10 shows the fraction of the number of nearest neighbors, ζOH, that acts
as hydroxyl surface according to the optimization of the COSMOSPACE parameter
nOH and the total number of nearest neighbors nk given by Eq. 4.22 (dashed curve)
and Eq. 4.23 (solid curve). For comparison also the ratio in the van der Waals surface
area of the -OH group and the total molecule are plotted. The van der Waals surface
areas of the hydroxyl group are 24.3 Å2 and 23.7 Å2, for the Bondi and Rowland
sets of van der Waals radii, respectively. The total van der Waals surface areas of
the 1-alcohols are given by the linear relations

AvdW = 37.03 + 22.41NC, (4.25)

and
AvdW = 36.37 + 20.09NC, (4.26)

for the Bondi and Rowland set of van der Waals radii, respectively. We observe that
the COSMOSPACE model gives lower values for the fraction of hydrogen bonding
area, than is predicted by the ratio of van der Waals surface areas. This is logical
because only a part of the hydroxyl van der Waals surface area is involved in hydrogen
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bond breaking. The original model overpredicts the surface area involved in hydrogen
bonding, as a result of incorrect use of the qk parameter, instead of Qk. This also
explains why the incrementation of the hydroxyl group in the UNIFAC method failed
for methanol, which would consist of one methylene group and one hydroxyl group.
In UNIFAC the surface area of the strongly interacting part of the hydroxyl group was
set equal to the van der Waals surface of the hydroxyl group. Extrapolation towards
methanol would make it a strongly hydrophilic compound. Therefore methanol was
defined as a new UNIFAC group.
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Figure 4.6: Experimental data and UNIQUAC description of binaries between n-hexane(1) and
alcohol(2). From left to right, and from top to bottom respectively: methanol (25 ◦C, from [100]),
ethanol(40 ◦C, from [173]), propanol(50 ◦C, from [40]) and pentanol(40 ◦C, from [189]). Dashed
curves (Original UNIQUAC model), solid and dashed-dotted curve (Eq. 4.7) with Qk based on
Bondi’s and Rowland’s set of van der Waals radii, respectively.
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Figure 4.7: Activity coefficient of hexane-ethanol. Experimental data (symbols) [173]. Left plot:
original Uniquac model (dashed curves), new UNIQUAC models with Bondi’s (solid curves) and
Rowland’s (dashed dotted curves) set of van der Waals radii. Right plot: original COSMOSPACE
model (solid curves), new COSMOSPACE models with Bondi’s (dashed curves) and Rowland’s
(dashed dotted curves) set of van der Waals radii.
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Figure 4.8: Experimental data (symbols) and COSMOSPACE description (curves) of vapor-
liquid equilibria between alkane(1) and alcohol(2). From left to right and from top to bottom:
hexane-methanol [100], hexane-ethanol [173], heptane-ethanol and nonane-ethanol [15]),hexane-
propanol [40], and hexane-1-hexanol [235]. Solid curves represent the original COSMOSPACE
model, the dashed and dashed-dotted curves are the lattice independent COSMOSPACE model
based on Bondi’s and Rowland’s set of van der Waals radii, respectively.

66



CHAPTER 4. NUMBER OF NEAREST NEIGHBORS

Figure 4.9: Predicted excess enthalpy of alkane-ethanol binaries with parameters from Table 4.4.
Symbols represent experimental data. From top to bottom: hexane-ethanol [173], heptane-ethanol
[203], and nonane-ethanol [31]. The solid curves represent the original COSMOSPACE model, the
dashed and dashed dotted curves the lattice independent COSMOSPACE model based on Bondi’s
and Rowland’s set of van der Waals radii, respectively.
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Figure 4.10: Fraction of hydroxyl surface to total surface area as function of alkane number.
From bottom to top: Lattice-free COSMOSPACE model based on Bondi’s (dashed curve) and
Rowland’s (dashed-dotted curve) set of van der Waals radii, geometric model using on Bondi’s
(long dashed curve) and Rowland’s (dashed-double dotted curve) set of van der Waals radii, and
original COSMOSPACE mocel (solid curve).
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4.4 Concluding remarks

We have shown that two expressions for the combinatorial activity coefficient can
be derived from Guggenheim’s model for the entropy of mixing of linear molecules.
These expressions yield a unique expression for the number of nearest neighbors of a
molecule in a multicomponent mixture. This formula is a function of mole, volume
and area fractions only, and makes a choice for the value for the lattice coordination
number and the reference surface superfluous. In other words, in combination with
the (revised) residual term as obtained for the COSMOSPACE model, it makes the
total activity coefficient model lattice independent. We expect that the new formula
also works for more complicated molecules, but this still needs to be verified.
We have demonstrated that the new expression for the number of nearest neighbors
leads to lattice independent versions of the UNIQUAC and COSMOSPACE models.
In order to put the various models in perspective, Table 4.7 shows a comparison
indicating the lattice (in)dependency of the combinatorial and residual activity coef-
ficients. In this table we use the label σ-profiles, by which we indicate the whole
procedure starting with QM-calculations, the averaging of surface charge densities
of molecules and the collection of surface area into histograms. Hence, the three-
dimensional lattice information vanishes in these conversions prior to the calculation
of the surface and residual activity coefficients.

For the UNIQUAC model we first had to remove an inconsistency from the resid-
ual term of the UNIQUAC model in order to show this possibility. The original and
the lattice independent version of UNIQUAC describe the investigated vapor-liquid
phase equilibria with the same quality and accuracy as before. A much better de-
scription of these phase equilibria is obtained with the lattice independent version of
the COSMOSPACE model. For 1-alcohols mixed with n-hexane at moderate temper-
atures it captures the transition from a heterogeneous to a homogeneous azeotrope
when changing from methanol to ethanol. The number of parameters is substan-
tially lower than those for the original and the lattice independent version of the
UNIQUAC model. Especially for strongly interacting systems the lattice independ-
ent COSMOSPACE model is recommended above the UNIQUAC model.

The new formula gives a constant value for the number of nearest neighbors
of a compound dissolved in a mixture composed of molecules of the same class.
This value stays constant over the entire concentration range, except at limiting
concentrations, where computational accuracy plays a role. Because the value of the
number of nearest neighbors of a compound is independent from the other molecules
of the same class in the mixture, one can assign this value as the number of nearest
neighbors of the pure compound. This has shown to be a useful choice, because
sometimes unphysical values are obtained. This happens when one of the compounds
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Model Combinatorial term Residual term Lattice model?a
and parameters and parameters

UNIQUAC FH-SGb , Q = zq/2 1st order solution of QCTc , C: Yes
z = 10, Aref, Vrefg Q = q R: Yes

COSMOSPACE FH-SG, Q = zq/2 Self-consistent solution of QCT C: Yes
UNIQUAC parameters = CS-solutiond , Q = n = 2q R: No

COSMO-RS Generic model with CS-solutione , C: Yesf
FH and SG factors Q = n = ACOSMO/aeff and σ-profiles R: No

λ0, λ1, λ2
g aeff = 7.1Å2

COSMOSAC FH-SG, Q = zq/2 CS-solutione, C: Yes
z = 10, Aref, Vrefh Q = n = ACOSMO/aeff and σ-profiles R: No

aeff = 7.5Å2

This paper FH-SG revised UNIQUAC residual: C: No
Q = (1−φ/x)

(1−φ/θ) Q = (1− φ/x)/(1− φ/θ) R: No
no parameters revised CS residual

n = (1− φ/x)/(1− φ/θ)
a C = Combinatorial term, R = Residual term.
b FH-SG = Flory-Huggins with Staverman-Guggenheim correction.
c QCT = Guggenheim’s Quasi-Chemical Theory.
d Homogeneous and non-homogeneous double binary solution.
e General CS-solution.
f Contains FH-SG terms, therefore debatable.
g Parameters for the combinatorial term in COSMOTherm C1.2.
h Reference area as given in Table 4.1, Vref = 25.17Å.

Table 4.7: Comparison of the various models.

has nearly equal length as the compound of interest. Although this deviation is
not significant for the combinatorial term, because the SG-term suppresses this by
the φk/θk term, it is not acceptable for the residual term. For the time being the
proposed procedure for defining the number of nearest neighbors works well as shown
by the results in this work. It is hypothesized that the strong deviation is a result of
Guggenheim’s entropy model, where a single lattice coordination number was used.
It seems that the Guggenheim model can be improved by introducing a molecule
dependent lattice number, which is invariant for concentration, and to define the
area fraction, θk, by the product zkqk instead of qk. This has been proven later by
us in [129] and discussed in 3.
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Chapter 5

Dispersion ACMs.
Part I: Cubic Equations of State1

5.1 Introduction

Activity coefficient and equation of state models enable us to describe or predict
phase equilibria. Both approaches can be used to give an accurate phase equilibrium
description by adjusting the pure component and binary interaction parameters. In
the prediction of phase equilibria activity coefficient models are often preferred over
equation of state methods, when the mixture contains no supercritical compounds
and the liquid density is far from the critical density. One of the reasons for this is
that the reference state of an activity model is the pure liquid state of the compounds,
while for an equation of state this is the ideal gas. One could say that activity
models interpolate between the pure liquid states of compounds, while equations of
state extrapolate from the ideal gas to the condensed state using the critical point
as a reference. This implies that in the case of predicting of phase equilibria, the
predictive activity models are often more accurate than equation of state models,
where the interaction parameters of the latter are set to zero and not predicted by
an activity model, such as is done in the PSRK model [92].

Activity models such as UNIFAC [59], COSMO-RS [116] and COSMOSAC [145],
often reasonably predict solid-liquid, liquid-liquid and vapor-liquid phase equilib-
ria, especially for molecules with polar and associating groups. A weak point of
these predictive models is that they do not contain a contribution that accounts
specifically for the dispersive interaction between molecules, while in the family of

1Based on the publication: Dispersion activity coefficient models. Part 1: Cubic equations of
state. Fluid Phase Equil. (2019), by Gerard J.P. Krooshof, Remco Tuinier, and Gijsbertus de With.

71



CHAPTER 5. DISPERSION ACMS I

SAFT equations of state [29, 28, 78] this contribution is actually one of the corner
stones. To repair the absence of an explicit contribution for the dispersive interac-
tion, predictive activity models frequently use a modification of the Flory-Huggins
(FH) combinatorial term [52], which goes back to the work of Donahue and Praus-
nitz [43]. The modification is done by fitting alkane mixtures. In other words the
dispersion contribution eminent in alkane mixtures is lumped into the combinatorial
part. However, this approach represents an ad-hoc modification that lacks a physical
basis and introduces a systematic error in the interaction between molecules with a
small alkyl fraction, such as water, methanol, acrylonitrile, which do not require a
modified Flory-Huggins term. MOSCED [214] is one of the models that does expli-
citly take this dispersive contribution into account. However, MOSCED is developed
for binary systems and yields only the activity coefficient at infinite dilution.

A way to obtain an activity coefficient expression for dispersion is to derive it from
an equation of state. Van Laar [223] was the first who derived such an expression
from the van der Waals (vdW) cubic equation of state [221]. His equation was
criticized, because binary mixtures of compounds which have nearly the same critical
pressure would yield ideal behavior, while a binary mixture of methanol (Pc = 79
bar) and carbon disulfide (Pc = 81 bar) was known to demix at 36 ◦C. However,
this reasoning is not justified, because the critical pressures of these compounds
have a different cause. Methanol interacts mainly by hydrogen bonds and only
slightly by dispersion, while carbon disulfide interacts mainly via a strong permanent
quadrupole-quadrupole interaction. Both the hydrogen bond and the quadrupole
interaction are orientation-dependent. These are specific interactions which are not
included as separate contributions in the van der Waals cEoS and its derivative, the
van Laar activity coefficient equation. Besides the omission of specific interaction
in the van der Waals cEoS, there are also two other important points to mention.
First, the van de Waals equation is based on the assumption that all molecules are
spherical [219], and second, that each molecule interacts with the same extent with its
surroundings [220]. Therefore, the van der Waals and van Laar models would perform
well as a predictive model for compound mixtures, in which the interactions are weak
and without a preferred orientation, such as noble gases, and small hydrocarbons.
However, the van Laar model is seldom applicable for these compounds, because
most mixtures contain large molecules and the temperature is often above the critical
temperature of these compounds. As a result, the van Laar model and derivatives
of it use adjusted parameters; i.e. liquid volume instead of co-volume, solubility
parameter instead of critical parameters. The work of Kontogeorgis and Folas [124]
shows that the Peng-Robinson cubic EoS with classical mixing rules yields limiting
activity coefficient values above unity, while an a/b mixing rule gives values below
unity, which agree with experimental observation. However, such an approach is not
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easy applicable in combination with the existing UNIFAC and COSMO-RS models,
and has not been tested on branched alkanes, as we will do in this work.

Kontogeorgis and Coutsikos [127] derived expressions for the activity coefficient at
infinite dilution of a solute in binary mixture from the Soave-Redlich-Kwong (SRK)
[206, 184] and the Peng-Robinson (PR) [177] cEoS. This was done in a study on
gE-EoS models, which is a hybrid form of a cEoS, where an activity model is applied
to adjust the mixing rule. A critical issue is the definition of a consistent reference
state, for which the activity coefficient model and the equation of state should yield
the same excess Gibbs (or Helmholtz) energy. Basically, there are two options. The
Vidal and Huron method [225, 97] takes as reference state the mixture at infinite
pressure. The Mollerup and Michelsen method [168, 166] uses the liquid at zero
pressure as reference state. Other methods interpolate between these two approaches.
For example, Tassios et al ., who introduced a linear combination of the Vidal and
Michelsen (LCVM) model [19], or Ahlers and Gmehling [3], who introduced a volume
translated PR cEoS with UNIFAC mixing rules at 1 atm. However, the developments
of cEoS where the reference state is set at intermediate or zero pressure, should be
seen in the context of trying to improve the description of phase equilibria near and
above the critical point, where the system has a packing fraction of about 0.2. Since
we are developing an activity coefficient model for the condensed state, or in general
a system where the packing fraction is above 0.45, the Huron and Vidal method is
the best option of the aforementioned methods.

In this work we start with the derivation of dispersion activity coefficient models
using existing cEoS models. We compare two different size and energy combining
rules with the classical combining rule for the binary energy and size parameters of
the cEoS. We introduce a group contribution method to change the activity model
from a descriptive to a predictive model. The models for the dispersive activity coef-
ficient are combined with an off-lattice combinatorial contribution [129] to obtain
the total activity coefficient. Results derived with the total activity models are com-
pared to experimental data and discussed. We emphasize that our objective is not to
define a model for hydrocarbons, but to show that the modified Flory-Huggins com-
binatorial term, can be replaced by a generalized Guggenheim combinatorial activity
coefficient [129] in combination with an explicit dispersion activity coefficient, in or-
der the arrive at a more robust basis for the predictive activity coefficient models
like UNIFAC and COSMO-RS. In a follow-up paper we will develop a more refined
dispersive activity coefficient model derived from the perturbed chain equation of
state.
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5.2 Theory

5.2.1 Cubic equations of state

There are two good reasons to look at cubic equations of state first, before we discuss
the perturbed chain equations of state in a second paper. First, they are popular
in flow-sheeting programs, because the cubic form is easy to solve. It makes flow-
sheets, where the number of flash calculations can be huge, fast and robust. Second,
it shows more clearly the key factors in activity models, as we will come across in
this work. We start with a general form for the cubic equation of state (cEoS):

P =
RT

V − b
− a(T )

(V + λ1b)(V + λ2b)
, (5.1)

where P is the pressure, V the volume, b the excluded covolume of the molecules, T
the absolute temperature, and a(T ) an energy term, which is temperature dependent
in order to describe accurately the saturation pressure of pure liquids from their
melting point up to their critical point. The parameters λ1 and λ2 are empirical
constants, which have been introduced mainly to improve the description of the
liquid density. Table 5.1 gives typical values for the parameters λ1, λ2 for the most
common cubic equations of state. Cismondi and Mollerup (CM) [32] introduced

cEoS Name Reference λ1 λ2
van der Waals (vdW) [221] 0 0
Soave-Redlich-Kwong (SRK) [206, 184] 0 1
Peng-Robinson (PR) [177] 1 +

√
2 1−

√
2

Cismondi-Mollerup (CM) [32] < 0, 1 +
√

2 > Eq. 5.2

Table 5.1: Cubic equation of state parameters.

a three-parameter cEoS and showed that it can be made equally accurate as the
PC-SAFT model when λ2 is linked to λ1 by:

λ2 =
1− λ1
1 + λ1

. (5.2)

Basically, the CM model interpolates for each compound and mixture between the
SRK and the PR cEoS. The λ1 parameter is found by fitting the cEoS to pure com-
ponent density and saturated vapor pressure data. In the computation of properties
of mixtures, λ1 is the molar average value of the pure liquids. The λ2 parameter is
still calculated by Eq. 5.2, but now using the average value of λ1. In this paper we
use the CM notation, Eq. 5.2, to define a class of two-parameter cubic equations of
state.
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Mixing and combining rules

For multicomponent mixtures Eq. 5.1 is often used in combination with mixing rules
that quantify the parameters a and b for each fluid phase. The classical mixing rules
are given by:

a =
∑
j,k

xjxkajk and b =
∑
j,k

xjxkbjk, (5.3)

where xj is the mole fraction of compound j, and ajk and bjk are binary mixture
parameters, which are often defined by the generalized Berthelot [17] and Lorentz
[153] combining rules:

ajk =
√
ajak(1− kjk) and bjk =

(bj + bk)

2
(1− ljk). (5.4)

The interaction parameters kjk and ljk are used to adjust the energy and excluded
volume mixing rule, respectively, in order to bring the results of the cEoS model in
agreement with experimental phase equilibria data. In this work we use the term
ideal classic (IC) to denote mixtures where these parameters are zero; i.e. Eq. 5.4
with kjk = ljk = 0.

In the molecular dynamics field molecular interactions are frequently described
using Lennard-Jones (LJ) potentials. Then other combining rules are applied and
here we investigate two of them. Kong [123] defined three energy criteria for the
repulsive and attractive part of the LJ potential and obtained mixing rules, which
we have rearranged to:

σ6
ij =

1
√
εiiεjjσ3

iiσ
3
jj

[
(εii)

1
13 (σii)

12
13 + (εjj)

1
13 (σjj)

12
13

2

]13

and

εij =
√
εiiεjj

σ3
iiσ

3
jj

σ6
ij

, (5.5)

where εjj and σjj are the Lennard-Jones energy and size parameters between two
molecular segments of the same kind j, while subscript ij refers to the unlike pairs.
Waldman and Hagler (WH) [228] applied mathematical scaling and symmetry rules,
leading to:

σ6
ij =

(
σ6
ii + σ6

jj

2

)
and εij =

√
εiiεjj

σ3
iiσ

3
jj

σ6
ij

. (5.6)

We mention that the WH size combining rule yields always larger values than the
IC size combining rule, when we replace the bj by σ3

jj and bij by σ
3
ij .
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The IC, Kong and WH combining rules can be evaluated by comparing the cal-
culated results of the unlike size and energy parameters of the noble gases ranging
from He to Xe with the accurate parameter values of Kestin et al . [111]. The WH
combining rules give the highest accuracy in calculating the unlike parameters of
noble gases (See appendix F). Kong is second best. In our work we will further
apply only the classical and the WH combining rules for the cEoS. In order to do
so, we have to convert the WH rules into terms of the cEoS parameters a and b. For
monoatomic spherical molecules this results in:

bij =

√
b2i + b2j

2
and aij =

√
aiaj

2bibj
b2i + b2j

. (5.7)

For polyatomic molecules Eq. 5.4 and 5.7 are not applicable, because the molecular
shape is no longer spherical as is schematically shown in Fig. 5.1. The excluded
covolume of a polyatomic molecule and a monoatomic molecule is defined by half
the volume enclosed by a surface, which is defined by the center of the monoatomic
molecule that is rolled around the polyatomic molecule. Here, the factor half is the
correction that eliminates double count in the summation of the enclosed volumes of
all the molecules in the mixture. Fig. 5.1 implies that the excluded covolume depends
on the size of the monoatomic molecule that touches the polyatomic molecule and the
size mixing rule. We denote the excluded covolume by the type of the rolling sphere;
e.g. bH is the excluded covolume of a molecule calculated by rolling a hydrogen atom
around it. The core or the van der Waals volume of a molecule is readily calculated by
the method described in the appendix of Bondi’s book [18]. For this calculation one
needs the van der Waals radii of the atoms and the bond lengths between the atoms.
Pauling [176] tabulated lengths of a large set of bonds, but we will restrict ourselves
to carbon-carbon and hydrogen-carbon bonds, which have an average length of LCC
= 1.54 Å and LCH =1.10 Å, respectively. The van der Waals radii of the carbon
and hydrogen atoms are RC = 1.70 Å and RH =1.20 Å, respectively. The volume
defined by touching an atom of a polyatomic molecule around another polyatomic
molecule, is calculated in the same way, but now the radii are no longer the atomic
radii, but the sum of the radius of the atom of the core molecule and that of the
touching atom. In case the two atoms are alike, we have for two hydrogen atoms
RHH = 2.40 Å, and for two carbon atoms RCC = 3.40 Å. In case the touching atom is
different from the atom of the core molecule, i.e. the unlike situation, the sum of the
radii is defined by a size mixing rule. For the IC and WH mixing rules this yield in
case of alkanes RCH = 2.90 and 2.94 Å, respectively. In Fig. 5.1 the gap between the
carbon and the hydrogen atom illustrates the effect of the mixing rule, which makes
the center to center distance larger than the sum of the two atom radii. The left
and right panels of Fig. 5.1 show that the carbon atom, as part of a molecule, gives
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a larger covolume to the polyatomic molecule than the hydrogen atom does. The

Figure 5.1: Schematic picture that illustrates the calculation of the excluded covolumes. A
hypothetical molecule, formed by a carbon and a hydrogen atom and having bond length dHC, is
scanned by a touching carbon (left) and a hydrogen (right) of another polyatomic molecule. The
center to center distance of an unlike pair, here RCH = RHC is computed by the size mixing rule and
is equal or larger that the sum of the two radii. The center to center distance of an alike contact is
simply the sum: RHH = 2RH and RCC = 2RC. The blue area depicts the excluded volume added
to the core volume, where the center of the red or green sphere defines the outer surface.

obtained volumes are divided by two to get the excluded covolumes for a touching
carbon and hydrogen atom, bC and bH, respectively. These are listed in Table 5.2 in
the form of linear relations in terms of the carbon number NC, which were obtained
by a linear regression of the obtained results.

Method bC bH bjj (pure)
4× vvdW - - 67.8 NC + 45.9

IC 37.5 NC + 64.8 26.9 NC + 38.2 30.5 NC + 43.5

WH 39.1 NC + 66.5 26.6 NC + 39.1 30.9 NC + 44.2

Table 5.2: Excluded covolume between an atom (Carbon and Hydrogen) of n-alkanes (Å3) as a
linear function of the carbon number NC (Eq. 5.8).

The covolume of a central molecule, as pure liquid bjj or as solute in a mixture,
bj , can be defined by the external contact fraction of the atoms in the surrounding
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liquid. As a first order approximation the carbon and hydrogen contact probability,
PC and PH, can be set equal to the mole fraction of the atoms in the surrounding.
This yields the following equation for the covolume of a molecule bj :

bj = PCbC (NC) + PHbH (NC) ≈ xCbC (NC) + xHbH (NC) , (5.8)

where xC and xH are the mole fractions of the carbon and hydrogen atoms in the
surrounding medium, respectively. The functions bC (NC) and bH (NC) are linear
relations of NC, which were obtained by a least-squared regression of the results
obtained by contacting a carbon and hydrogen atom around an n-alkane, respectively.

The covolume of the pure compound is calculated by setting the carbon and
hydrogen fractions equal to the composition of the central molecule. The obtained
results for the covolumes of the n-alkanes in the pure state are regressed by a linear
fit. This leads to the bjj parameters given in the right column of Table 5.2. When
we compare these values, we see that the IC and WH combining rules give nearly
the same result (Fig. 5.2a). However, these linear relations have a lower slope than
those coming from the simple calculation of 4 times the van der Waals volume. In
fact, the ratio of covolume b and van der Waals volume vvdW drops with increasing
chain length to an asymptotic level, just below the value known for infinite cylinders,
where b/vvdW = 2 (Fig. 5.2b).

Figure 5.2: Left panel: Covolume of pure n-alkane as function of the alkane number, NC , cal-
culated by the classical hard sphere result b = 4vvdW (circles), and the rolling ball method, where
the unlike size parameter, RCH, is calculated with the WH (squares) and IC (triangles) combining
rules. Lines are linear regressions with parameters given in table 5.2. Right panel: Ratio of the
covolume and the van der Waals volume as function of NC .

Because the relations of Table 5.2 are linear, the average covolume of a mixture
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can be written as:

b = xCbC
(
NC
)

+ xHbH
(
NC
)
, (5.9)

where bC
(
NC
)
and bH

(
NC
)
are the carbon- and hydrogen-based covolume, and the

system average alkane number NC is given by:

NC =
∑
j

xjNC,j . (5.10)

Eq. 5.9 can also be written as:

b = β0 + β1

∑
j

xjNC,j , (5.11)

where β0 and β1 are the intercept and the slope of the linear relations given in the
right column of Table 5.2. This implies:

b = β0 + β1

∑
j

xjNC,j =
∑
j

xj (β0 + β1NC,j) =
∑
j

xjbjj . (5.12)

In other words, in hydrocarbon mixtures the (atomic) size combining rule is not im-
portant for the cubic equation of state, because the high number of atoms average
its value to the result of the classical combining rule. We observe that the covolume
b of a long linear molecule is no longer 4vvdW, but is reduced to about 2vvdW when
we apply for the contact probability the mole fraction of the atoms in the mixture.
This behavior changes a little, when the external contact probability is defined by
surface fractions instead of mole (See supporting material: Excel workbook). Also in
this case the covolume will decrease with increasing chain length. This is an import-
ant finding, which helps us to understand the systematic error of activity coefficient
equations, which are derived from the cubic equation of state.

Gibbs energy of mixing at infinite pressure

The molar Gibbs energy of mixing, gmix, for the two-parameter cEoS is given by the
equation:

gmix

RT
= Z −

∑
j

xjZj +

∑
j

xj ln

(
Vj − bj
V − b

)
+

1

RT (λ1 − λ2)

∑
j

xj
aj
bj

ln

(
Vj + λ1bj

Vj + λ2bj

)
− a

b
ln

(
V + λ1b

V + λ2b

) . (5.13)
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Here Z and Zj are the compression factors of, respectively, the mixture and that
of component j. The second line of the equation is the dispersive energy term,
while the first part describes the Flory-Huggins contribution. In the limit of infinite
pressure the volume shrinks to the covolume, and all atoms make maximum contact
with the surrounding atoms. We mention that this expression does not hold for the
aforementioned three-parameter model of Cismondi and Mollerup (See appendix H).
Here we use their notation to denote a two-parameter cEoS, which lies between the
SRK and the PR cEoS. In the high pressure limit, introduced by Vidal [225], the
dispersive part of Eq. 5.13 becomes:

gmix,∞

RT
=

κ

RT

∑
j

xj
aj
bj
− a

b

 , (5.14)

where the parameter κ is a cEoS constant defined by the parameters λ1 and λ2
according to:

κ ≡ ln (1 + λ1)− ln (1 + λ2)

λ1 − λ2
(5.15)

Values of the κ parameter are given in Table 5.3. The characteristic pure compound
parameters a and b of the cEoS are defined by the critical volume Vc, the critical
temperature Tc, and the critical pressure Pc. We mention that the repulsive part goes
to infinity, due to the infinite pressure. It places the molecules into close contact and
therefore this part of the Gibbs energy of mixing can be expressed by the generalized
Guggenheim combinatorial model [129].

Dispersive activity coefficient and enthalpy of mixing from cEoS

The activity coefficient equation can be derived from the excess Gibbs energy gE, by
applying the thermodynamic relation:

ln γk =
1

RT

(
∂ntg

E

∂nk

)
T,P,nj 6=k

≈ 1

RT

(
∂nta

E

∂nk

)
T,V,nj 6=k

, (5.16)

where nt is the total number of moles, nk the number of moles of molecule k in the
mixture, and aE is the excess Helmholtz energy. The approximation made in the last
part of Eq. 6.15 holds for mixtures where the excess volume is negligible. In order to
arrive at an expression for the activity coefficient, we write Eq. 5.14 into the form:

ntg
mix

RT
=

κ

RT

∑
j

nj
aj
bj
− nt

∑
j,k njnkajk∑
j,k njnkbjk

 . (5.17)
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Substitution of Eq. 5.17 into Eq. 6.15 yields the following general expression for the
activity coefficient of a two-parameter cEoS:

ln γdisp, cEoSj =
κ

RT

[
aj
bj
−

2
∑

k xkajk∑
k,m xkxmbkm

]

+
κ

RT


(

2
∑

k xkbjk −
∑

k,m xkxmbkm

)∑
k,m xkxmakm(∑

k,m xkxmbkm

)2

 , (5.18)

where ajk and bjk are defined by one of the aforementioned combining rules. We
mention that a similar relation is obtained for the three-parameter cEoS of Cismondi
and Mollerup (See appendix H). The excess enthalpy of component j is given by the
relation:

hEj = −RT 2∂ ln γj
∂T

(5.19)

With the general expression for the activity coefficient of a cEoS, and assuming
that the cEoS parameters a and b are temperature- independent, we obtain for the
enthalpy change on mixing:

Hmix =
∑
j

xjh
E
j = κ

∑
j

xj
aj
bj
−
∑

j,k xjxkajk∑
k,m xkxmbkm

 (5.20)

It shows that, under the assumption that a and b are temperature-independent, the
enthalpy of mixing of a cEoS is also temperature-independent. Next, we discuss the
effect of the difference types of combining rules for the activity coefficient equation
derived from the two-parameter cEoS.

A. Ideal classical combining rules
The classical combining rules (see Eq. 5.4) with the approximation ljk = kjk = 0,
yields the following expression for the activity coefficient of component j:

ln γcEoS-ICj =
κ

RT

aj
bj
− 2

∑
k xk
√
ajak∑

j,k xjbj
+
bi
∑

j,k xjxk
√
ajak(∑

j,k xjbj

)2

 . (5.21)

By defining the volume fraction as:

φj =
xjbj∑
k xkbk

, (5.22)

81



CHAPTER 5. DISPERSION ACMS I

eq. 5.21 can be written as:

ln γICj = κ
bj
RT

aj
b2j
− 2

√
aj

bj

∑
k

φk

√
ak
bk

+
∑
j,k

φjφk

√
ajak

bjbk


= κ

bj
RT

[√
aj

bj
−
∑
k

φk

√
ak
bk

]2

, (5.23)

which, we recognize that the equation attains the van Laar equation for κ = 1. We
also mention that Hildebrand’s solution theory result is obtained [88], when the van
der Waals covolume is replaced by the volume of the pure liquid at 25◦C and the term√
aj/bj , usually denoted as the solubility parameter, is optimized to experimental

data. This approach has also been applied in the Hansen solubility model [84, 10],
where besides dispersion, also solubility parameters for polar and hydrogen bonding
are included.

In PC-SAFT the size of molecules are defined by a number of spheres, where
methane has a normalized size of m1 = 1. In a similar way we can take the covolume
of the two-parameter cEoS as a measure to define the relative length of an alkane.
As is explained in the work of Kontogeorgis and Folas [124], the covolume can be
obtained from the van der Waals volume and the ratio of the critical temperature
and pressure, b ∝ RTc/Pc. We opt for the relation b = y.Vc, where y is a cEoS
specific constant (Table 5.3), to reduce the deviations arising from the difference
between experimental and mean-field theory Zc values, which can be explained by
crossover theory [226, 238] (see appendix I). By doing this, we can define the number
of units in an alkane by the ratio in covolumes. Therefore, with the critical volume
of methane, vc,1, we can define the relative size of an alkane by:

mj =
bj
b1

=
Vc,j
Vc,1

. (5.24)

The a and b parameters in Eq. 5.23 can be replaced by the critical pressure Pc,j , the
critical temperature Tc,j , and the critical volume Vc,j of compound j (see appendix D)
and we obtain the following expression for the dispersive activity coefficient equation
derived from a cEoS.

ln γcEoS-ICj = K mj

(
T0

T

)[
∆j −

∑
k

φk ∆k

]2

, (5.25)

where ∆j is the dimensionless Hildebrand parameter of compound j, defined as:

∆j =

√
Pc,j Vc,1

RT0
, (5.26)
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with the reference temperature T0 set at 298.15 K. The parameter K is a cEoS spe-
cific component independent constant and follows from the cEoS parameters λ1 and
λ2. In appendix E we show how the value of K can be calculated and Table 5.3
shows typical values for each cEoS. The model of Cismondi and Mollerup yields for

EoS Ωa Ωb y a Zc κ(Eq.5.15) K b K/KvdW
vdW 0.4219 0.1250 0.333 0.375 1 9 1
SRK 0.4275 0.0866 0.259 0.333 0.6931 10.3 1.14
PR 0.4527 0.0778 0.253 0.307 0.6232 11.9 1.32

a Note: y see appendix E.
b Note: K = κyΩa/Ω2

b = κΩa/(ΩbZc).

Table 5.3: Cubic equation of state constants.

the pure components values for K, which run along the curve as depicted in Fig.
5.3, starting from K = 9.97, when λ1 =

√
2 − 1. Values for the size parameter mj

and the dimensionless solubility parameter ∆j can be calculated directly from the
experimental critical pressure and volume. Experimental values of the critical para-
meters are for most compounds available in the DIPPR database [23]. An accurate
series of critical volume measurements of n-alkanes between pentane and octadecane
has been measured by Ansalme et al. [4]. Values of mj and ∆j for some alkanes are
given in Table 5.4.

In case no experimental critical parameters are available, an appropriate group
contribution (GC) method, such as the method of Marrero and Gani [161], can be
applied to estimate the critical parameters Pc and vc to calculate ∆ and m. Instead

Alkane Source mj = Vc,j/Vc,1 ∆j

Methane exp. 1 0.428
Ethane exp. 1.476 0.440
n-Pentane exp. 3.174 0.366
n-Hexane exp. 3.763 0.346
n-Heptane exp. 4.341 0.330
n-Octane exp. 4.929 0.315
n-Hexadecane pred. 9.574 0.235
Squalane pred. 16.63 0.186

Table 5.4: Alkane activity model parameters at T0 = 298.15K. Experimental (exp.) and predicted
(pred.) values

of this method, we found it more convenient to create a predictive method for the
size parameter m and the parameter ∆, since they show a clear relationship with

83



CHAPTER 5. DISPERSION ACMS I

Figure 5.3: Value of parameter K using the CM model parameter λ1 (Eq. 5.1). The green circle
is the minimum value, where λ1 =

√
2 − 1, the yellow and red circles denote the K-value for the

SRK and PR cEoS, respectively.
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the carbon number and type of atom groups. Fig. 5.4a shows that size parameter
m increases linearly with carbon number NC. Because of this, we can use the same

Figure 5.4: Size parameter of n-alkanes, cyclo-alkanes and branched alkanes as function of carbon
number (left panel). Parity plot of m calculated by ratio in critical volume and group contribution
method after optimization of primary and secondary increments (right panel).

methodology as was applied by Marrero and Gani, and use:

m =
∑
j

pjNj +
∑
k

skNk, (5.27)

where pj is the increment of a primary group j (i.e. an atom group), sk the increment
of a secondary group k (i.e. a proximity correction), and Nj and Nk are the number
of atom groups or proximity corrections in the molecule, respectively. Values for the
primary and secondary increments were obtained by a least-squared regression of
the deviation in m and ∆ data, which were calculated from the critical pressure and
volume data of alkanes retrieved from the DIPPR database [23] (See appendix E).
The increments for the group contribution (GC) formula are given in Table 5.5.

Fig. 5.5 shows that the values of the parameter ∆ decrease with increasing
relative size m. Eventually ∆ vanishes for m→∞ due to the fact that an infinitely
large molecule has zero critical pressure. For this parameter we opted for a power-law
description of the following form:

∆ =

[
t1

1 +
∑

j pj Nj +
∑

k sk Nk

]t2

, (5.28)

85



CHAPTER 5. DISPERSION ACMS I

Group Type Order a m ∆

CH3- linear p 0.728 0.268
-CH2- linear p 0.580 0.206
>CH- linear p 0.318 0.083
>C< linear p 0.153 −0.004
-CH2- cyclic p 0.526 0.134
>CH- cyclic p 0.340 0.096
-C(CH3)2- linear s −0.095 −0.065

a p: primary group, s: secondary group.

Table 5.5: GC increments for m and ∆.

where the parameters t1 and t2 are independent of the molecular structure. The
equation is based on the GC model for the critical pressure as proposed by Marrero
and Gani [161], since the dimensionless solubility parameter, ∆, is in fact the critical
pressure times a constant Vc(methane)/(R.T0). The parameters of Eq. 5.28 are
obtained by a least-squared fit of the experimental based ∆ values of alkanes. We
obtained t1 = 0.392 and t2 = 0.594. The group contribution increments for the
dimensionless solubility parameter are given in Table 5.5.

Figure 5.5: Left panel: ∆ of n-alkanes, cyclo-alkanes and branched alkanes as function of size
parameter m. Right panel: Parity plot of ∆ calculated by the ratio in critical volume and the group
contribution method after optimization of primary and secondary increments.
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The activity coefficient equation of a binary mixture now follows from Eq. 5.25
as:

ln γICj = K mj

(
T0

T

)
[∆j −∆k ]2 (1− φj)2 . (5.29)

Subsequently, we can deduce the equation for the case where solute j is dissolved at
infinite dilution in solvent k:

ln γIC,∞j = K mj

(
T0

T

)
[∆j −∆k ]2 . (5.30)

An important observation can be made from Eqs. 5.25, 5.29 and 5.30. The para-
meters mj , ∆j , and ∆k are invariant, because they are determined by the critical
parameters of the compound. As a result, K is the only parameter that could be
used to downscale the value of the activity coefficients. But K is determined by
the λ1 (and λ2) values for the equation of state, and therefore only has a limited
range. The vdW cEoS has K = 9, while the SRK and the PR cEoS give a value
of 10.26 and 11.92, respectively. Cismondi and Mollerup [32] and later Cismondi
et al . [33] showed that a very good phase equilibria description is obtained when
the λ1 parameter is optimized for each pure component. The results of Cismondi
et al . [33] show that the λ1 parameter of the pure alkanes between methane and
n-hexatriacontane ranges between 0.92 and 2.88, which sets the range of K for the
two-parameter cEoS somewhere between 10.2 and 12.5.

The expression for the enthalpy of mixing of a binary mixture is derived by
applying Eq. 5.20 to Eq. 5.29 yielding:

hICmix = κ

[
x1
a1

b1
+ x2

a2

b2
−
x1x1a1 + 2x1x2

√
a1a2 + x2x2a2

x1b1 + x2b2

]
= κ b

[√
a1

b1
−
√
a2

b2

]2

φ1φ2, (5.31)

where b is the average covolume of the binary mixture. The enthalpy of mixing
can also be written in terms of the average chain length m and the dimensionless
solubility parameter ∆j :

hICmix = K m [∆1 −∆2]
2RT0 φ1φ2. (5.32)

We mention that this expression is temperature-independent and has a maximum
at: φ1 = x2 = 1/(1 +

√
m2/m1) or, equivalently, at x1 = φ2 = 1/(1 +

√
m1/m2).

B. The Waldman and Hagler combining rules
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The WH combining rule describes the unlike LJ-parameters of noble gases the best
(See appendix F). Substitution of this rule into Eq. 5.18 gives for polyatomic mo-
lecules an expression that cannot be simplified into terms of

∑
j njbj due to the

square root terms. To gain insight, we can elaborate on a binary mixture. The
equation of a compound j in a binary mixture with compound k is:

ln γWH
j = K mj

(
T0

T

)
∆2

j

[
1 −

2xj + xk
∆k
∆j

4r2

1+r2

x 2
j + xj xk

√
2 + 2r2 + rx 2

k

+

(
2xj + x2k

√
2 + 2r2 − x2

j − rx2
k

)(
x2
j + xjxk

∆k
∆j

4r2

1+r2 + x2
kr

2
(

∆k
∆j

)2
)

(
x2
j + xjxk

√
2 + 2r2 + rx2

k

)2

]
,

(5.33)

where r is the solvent-size ratio, r = mk/mj . At infinite dilution, where solute j is
dissolved in solvent k, Eq. 5.33 reduces to:

ln γWH,∞
j = K mj

(
T0

T

)[
∆2

j −
4r

(1 + r2)
∆j ∆k +

(√
2 + 2r2 − r

)
∆2

k

]
. (5.34)

The second and third terms within the square brackets of Eq. 5.34 are different from
Eq. 5.30, due to the functions with argument r. When the molecules are of equal
size, i.e. r = 1, Eq. 5.34 reduces to Eq. 5.30. However, for r >> 1, Eq. 5.33 and
5.34 diverge exponentially. It demonstrates in a way that the use of this equation is
limited to monoatomic molecules, such as the noble gases, and that for polyatomic
molecules the classical combining rule is preferred.

Systematic deviation

Eq. 5.29 yields unrealistic high values for the activity coefficient, due to the high
value for K. This can be repaired by using the approach of Hildebrand [87, 89], who
proposed to replace the covolume bj by the molar liquid volume vliq,j of compound j
and the ratio of

√
a and b by the cohesion energy. Because vliq,j about 1.9 vvdW, while

the covolume bj is 4 vvdW for spherical molecules, the logarithmic activity coefficient
is by this replacement improved by a factor two The introduction of the cohesive
energy, which reflects the effective intermolecular interaction, further reduces the
deviation.

We can understand the systematic deviation also from a theoretical point of view.
Fig. 5.2 shows that the ratio of covolume and van de Waals volume decreases with
increasing chain length; the covolume changes from 4 vvdW to about 1.9 vvdW. This
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implies that for long molecules it looks as if the K parameter should reduced by
a factor two as well. The second correction comes from the assumption, that all
molecules experience the same average concentration of the mixture. It neglects that
the shape of a molecule affects the intermolecular interaction. In case of polyatomic
molecules some atoms of the molecule are shielded or hindered by other atoms of
the same molecule. This can also be interpreted by the fact that part of the inter-
molecular interaction is replaced by intramolecular interaction and covalent bonds,
which do not contribute to the activity coefficient. This local field effect reduces
the value of the parameter a. The overall effect is that the parameter K is more
than two times smaller than the λ1 and λ2 or a and b parameters suggest. In the
application of cEoS-based activity coefficient models, we are thus forced to optimize
the K parameter, since the theoretical values are useless for real systems.

5.2.2 The total activity coefficient

In general, the total activity coefficient of molecules, which interact by dispersion
forces only, is given by the sum of a combinatorial and a dispersive contribution.

ln γtotk = ln γcomb
k + ln γdispk . (5.35)

For the combinatorial activity coefficient we take the generalized Guggenheim com-
binatorial activity coefficient of Krooshof et al. [129]:

ln γcomb
k = ln

(
φk
xk

)
+

(
1− φk

xk

) ln
(
φk
θk

)
φk
θk
− 1

 , (5.36)

where φk and θk are the volume and surface fraction of compound 1 in the mixture,
respectively. This expression in combination with the residual part of the UNIQUAC
model or COSMOSPACE model gives better results for binary equilibria of alkane-
alkane and alkane alcohol systems (Chapter 4) than the combination with original
Staverman-Guggenheim combinatorial activity coefficient model. Substitution of
Eqs. 5.29 and 5.36 into Eq. 5.35 leads to the following expression for the cEoS-based
total activity coefficient equation:

ln γtot,cEoSk = ln

(
φk
xk

)
+

(
1− φk

xk

) ln
(
φk
θk

)
φk
θ1
− 1


+Kmk [∆k −∆j ]

2 (1− φk)2 (5.37)
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5.3 Results

To optimize theK parameter of Eq. 5.37, we need activity coefficient data, which are
consistent according to the rule of Gibbs-Duhem, and which are sufficiently accurate
to reveal deviations between different activity coefficient models. Therefore, vapor-
liquid equilibria (VLE) data of alkane mixtures with a difference in carbon number
below three, which yield activity coefficients close to unity, are not useful to observe
differences between the models. On the other hand, isothermal or isobaric VLE data
of asymmetric systems are in most cases incomplete in vapor composition or are
unreliable with respect to the largest compound, because the low partial pressure of
this compound is difficult to quantify. Besides VLE data, literature provides us with
a large set of activity coefficients at infinite dilution. For such data the standard
deviation of measurement is in the order of 10%. Note that in some cases the
experimental activity coefficient of volatile compounds are subjected to systematic
errors of calculation, due to the assumption that the gas is ideal. Excess enthalpy
data, which measures the temperature dependency of the activity coefficient, is in
general of good quality and sufficiently available, and enables us to determine the
temperature dependence of activity coefficients.

5.3.1 The total activity coefficient of the cEOS

As explained above, we can not apply the cEoS-based activity coefficient equation,
Eq. 5.18, directly in the form of Eq. 5.37, due to the systematic deviation in the
parameter K. The theoretical minimum value for parameter K is 9 for the van der
Waals cEoS, while the two-parameter cEoS between the SRK and the PR model give
values in the range 10 . K . 12. The three-parameter cEoS of CM gives values
of the same magnitude (See appendix H). In general these K-values yield too large
activity coefficients, and thus re-evaluation of K is inevitable. The optimization of
K was performed for two data sets, that were retrieved from DDBST [38]. Data set 1
contains the infinite dilution activity coefficients of linear n-alkane binary mixtures.
Data set 2 contains data of alkane binary mixtures with at least one them branched.
We use these two classes, because they enable to quantify differences in the value
of K and help us to understand the deficiencies of the cEoS-based activity model.
From both experimental data sets we excluded experimental data, which shows a
systematic deviation. These are 1) data having limiting activity coefficients above
1, 2) data having limiting activity coefficients lower than 0.8, while the difference in
carbon number is smaller than 2 carbons, and 3) data, where the activity coefficient is
too close to unity than one can expect from a physical point of view. These excluded
data points are shown as crosses in the left and right panel of Fig. 5.6. The left panel
depicts data set 1 covering a carbon range from butane to tetracosane. The right
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Figure 5.6: Correlation plot of activity coefficients at infinite dilution for data set 1 of linear
alkanes (left panel) and data set 2 of branched alkanes (right panel) between experimental data
and results obtained with Eq. 5.37 Data retrieved from DDBST [38]. Cross symbols are rejected
experimental data points, as explained in text.

panel shows the correlation for data set 2 within the carbon range of dimethylbutane
to dioctadecyldotetracontane. Table 5.6 shows that data set 2 requires a 26% lower
value for K than data set 1. Fig. 5.7 shows the results of the limiting activity

Table 5.6: Fit results for cEoS parameter K using
Eq.5.37 as depicted in Fig. 5.6.

Set N (total) N (excluded) K AAD%
1 690 95 4.13 4.9
2 655 109 3.04 7.8

coefficients as function of alkane number for linear and branched alkane mixtures.
The description of the experimental limiting activity coefficients with the cEoS-based
activity model looks fine at first sight, the average error is 5 to 8 %, although the
model is not optimal, as is illustrated by the experimental activity coefficient data
of Ashworth [6] depicted in Fig. 5.8. We observe that with increasing chain length
the calculated values deviate more from the experimental values. This shows that
the constant K needs adjustment for each binary.

Secondly, as has been noted in the theory section, the cEoS based activity models
can not describe the temperature dependency of the enthalpy of mixing. This is
illustrated by the binary system n-hexane - n-hexadecane (Fig. 5.9). The cEoS-based
activity model gives a correct endothermal description, but the isothermal curves at

91



CHAPTER 5. DISPERSION ACMS I

Figure 5.7: Experimental data (symbols) compared to cEoS activity model prediction (curves) for
hexane in n-alkanes (top left), heptane in n-alkanes (top right) with K = 4.13, and 2-methylpentane
in alkanes (bottom left) and alkanes in squalane (bottom right) with K = 3.04. In these plots the
top and middle curves (Eq. 5.37) are the results at indicated lower and higher temperatures,
respectively. The bottom dashed curves are the predictions of the combinatorial contribution Eq.
6.36.

298.15, 303.15 and 313.15 K coincide, while in reality there is a clear reduction in
enthalpy with increasing temperature, and the maximum of the model is shifted to
a higher concentration than is measured. This implies that the parameter K is not
only temperature dependency, but also concentration dependent.
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Figure 5.8: Experimental activity coefficient data from [6] (symbols) and theoretical cEoS activity
model predictions Eq. 5.37, with K = 3.04, for the binary systems n-pentane, n-hexane, n-heptane
and n-octane in squalane at 298.15 K.

Figure 5.9: Experimental enthalpy of mixing data in comparison to cEoS activity model for the
binary hexane - hexadecane. Solid curve is Eq. 5.32 which is temperature independent. Data from
[167, 162].

5.4 Concluding remarks

A general expression for the activity coefficient of molecules that interact by disper-
sion only was derived from the cubic equations of state (cEoS). We have shown that
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the cEoS based activity models can be characterized by a single parameter K, which
for the van der Waals, Soave-Redlich-Kwong and Peng-Robinson equations of state
has the values 9, 10.3 and 11.9, respectively. Experimental data, however, indicate
that K = 4.13 for linear and K = 3.04 for branched alkanes. With these parameters
we obtain realistic predictions without the necessity to optimize the size parameter
mj and the solubility parameter ∆j . Both dimensionless parameters can be calcu-
lated from the normalized critical experimental parameters of the compounds using
methane as a spherical reference, or by using a group contribution method. However,
we also encountered small, but systematic deviations. Binary mixtures of n-alkanes
with squalane increasingly deviate with increasing chain length of the n-alkane.

The cause for the systematic differences between the cEoS based activity coeffi-
cient model and the experimental results lie in two assumptions that were made in
the derivation of the cEoS. The largest impact has the assumption that all molecules
are spherical. This leads to a systematic error, because the ratio of the covolume and
the van der Waals volume is taken to be 4, while it decreases to nearly 1.9 for long
chains. In relation to this we also showed that the combining rules of Waldman and
Hagler, and of Kong reduce to the classical combining rule of Lorentz and Berthelot,
as soon as the mixture contains molecules which are polyatomic. The use of the
classical combining rules for dispersion therefore appears to be sufficient, at least for
alkanes. It might not apply to mixtures containing molecules with large atoms, such
as the halogenated hydrocarbons.

The assumption that all molecules interact with the same extent with the sur-
roundings is another assumption that is not valid for polyatomic molecules. In the
van der Waals mean-field approximation the average interaction between two particle
centers is taken as the integral of interaction of a particle in a uniform spherical po-
tential field in analogy of a charge in a uniform electric potential field. Applying
this methodology neglects the fact that polyatomic molecules behave differently. For
polyatomic molecules one part of the molecule can prevent another part to interact
with its immediate surrounding; end groups have more space to interact than chain
groups, or groups located near branches. Equivalently, the intramolecular interac-
tion and the covalent bonds reduce the number of intermolecular interactions. This
is reflected by the reduced parameter K, which drops further when the molecule con-
tains branches. This difference between mono- and polyatomic molecules becomes
more pronounced when the density of the fluid is high, because the effective number
of interactions increases with density. Effectively this results in a smaller value of
cEoS parameter a for polyatomic molecules than the value of a obtained from the
critical parameters of the compound, because proximity effects are less prominent at
the critical point.

Another deficiency of the cEoS-based activity coefficient contribution is that,
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although the model yields a reasonable result for the enthalpy of mixing, it can not
describe its temperature dependence. This is cause by the Huron-Vidal method,
which sets the thermal expansion of the liquid to zero. One way to address this,
would be to make the parameter K temperature-dependent, for instance, by scaling
it with the liquid volume at given temperature and the reference temperature T0.

The generalized form of the cEoS-based activity coefficient model demonstrates
that there is a physical way to close the gap between the combinatorial and the ex-
perimental activity coefficient for systems, in which molecules interact by dispersion
only. The introduced GC-method could be used in models, like the original UNI-
FAC [59] and the family of COSMO-RS models, to account only for the dispersion
interaction between alkyl groups.

In part 2 we will derive from the perturbed hard-sphere chain equations of state
a more accurate dispersion activity coefficient equation.
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Chapter 6

Dispersion ACMs.
Part II: Perturbed Chain
Equations of State1

6.1 Introduction

In this chapter we aim at developing a contribution for the activity coefficient that
accurately accounts for the dispersion interaction between molecules. We have shown
in part 1 that the cubic equations of state (cEoS) give a van Laar type of activity
model, and that these models systematically predict too high activity coefficients.
This systematic deviation is caused by the assumptions embedded in the van der
Waals cEoS. It is assumed that all molecules are spherical, which sets the normal-
ized excluded covolume to 4, while linear molecules have a value close to the covolume
of cylinders, which is 2. Van der Waals further assumed that the effective number of
interactions around a molecule is not influenced. However, the polyatomic character
of most molecules effectively reduce intermolecular interaction, because of proximity
effects of the same molecule. The change of the cEoS parameters a and b, as used in
the van Laar activity coefficient equation, into the liquid volume and the Hildebrand
solubility constant, respectively, is an ad-hoc way to eliminate this systematic er-
ror. We showed in part 1 that all van Laar type equation can be characterized by a
unique parameter, K, which is directly related to the critical parameters and volume
correction parameters of the cEoS. This parameter, K, however, needs adjustment

1Based on the publication: Dispersion activity coefficient models. Part 2: Perturbed Chain
equations of state. Fluid Phase Equil. (2019), by Gerard J.P. Krooshof, Remco Tuinier, and
Gijsbertus de With.
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in order to give reasonable predictions, but it does not fully address the differences
in molecular shape and polyatomic character of molecules. In this work we evaluate
whether this issue can be solved by using as starting point the perturbed chain equa-
tions of state. It is noted that Lee and Sandler [134] derived an activity coefficient
model from a perturbed mean sphere equation of state. In this model small molecules
are regarded as spheres. This approach contains a systematic error for non-spherical
molecules in the form of overestimating the number of interaction pairs around a mo-
lecule, because spheres do not have intramolecular interactions and covalent bonds
that hinder the intermolecular interaction.

Another dispersion activity coefficient model is that of Hsieh et al . [93], who
applied this within the COSMO-SAC model. However, their proposed dispersion
activity coefficient model is a crude simplification. First, they use the single para-
meter Margules model, which indicates that dispersion is treated as an interaction
of entities of the same size. Secondly, their choice of a fitted coordination number of
0.275 is physically impossible. Third, the unlike energy parameter for alkanes is zero,
thereby yielding no dispersion contribution for alkane mixtures, which is incorrect.
To this we mention that the MOSCED model [214] of Thomas et al . is an activity
coefficient model that also includes dispersion interaction. The model is limited its
use, as it provides the activity coefficient at infinite dilution of binary mixtures only.
UNIQUAC [2], UNIFAC [59], COSMO-SAC [145] and COSMO-RS [116] model are
activity models that do not have a dispersion interaction contribution. In particular
the UNIFAC, COSMO-SAC and COSMO-RS models can not describe accurately
the phase equilibrium behavior of alkane mixtures. In the modified UNIFAC model
[231] this omission has been repaired by introducing an ad-hoc modification of the
combinatorial contribution proposed by Donahue and Prausnitz [43]. This correction
has, however, no physical meaning.

In this work we start with the derivation of activity coefficient models from the
perturbed chain equations of state, using the method of Huron and Vidal [97, 225],
in which the pressure is set at infinity. Infinity in this context means that the
molecules are set into close contact. The models for the dispersive activity coefficient
are combined with an off-lattice combinatorial contribution [129] to obtain the total
activity coefficient. We show that the existing parametrization of the perturbed chain
models is not applicable in the limit of infinite pressure, and that the theory can be
improved by using another method to compute the first perturbation integral at this
limit. This method can be formalized by topology theory, where the first Zagreb
index is the key property. In addition, we introduce a new method to calculate
the interaction energy between methyl groups of hydrocarbons, in which only the
number of hydrogen atoms per carbon atom is required. This model is evaluated
using three combining rules, compared to experimental data and applied to predict

98



CHAPTER 6. DISPERSION ACMS II

phase equilibria of systems that were outside the set of used experimental data. In
the last section we summarize our findings and discuss the key elements obtained.

6.2 Theory

6.2.1 Perturbed chain equations of state

Besides the cEoS, a whole series of equation of state models has been developed that
specifically account for the chain-like structure of molecules [14, 44, 29, 28]. One of
the successful models is the Perturbed Chain Statistical Associating Fluid Theory
(PC-SAFT), developed by Gross and Sadowski [78] in 2001. This model yields ex-
cellent vapor-liquid phase equilibria predictions of hydrocarbon mixtures. Therefore,
it is expected that PC-SAFT provides a better way to define the dispersive term in
activity coefficient models. One of the main differences between the cEoS models
and PC-SAFT is that the cEoS, due to the spherical nature of the molecule, treats
the composition and density of the space around a molecule as uniform, while PC-
SAFT accounts for local composition. Because PC-SAFT considers chains instead of
spheres, a part of the space around a sphere in a chain is filled by neighbor spheres
of the same chain, which increase the density locally, while the remaining part is uni-
form and determined by the statistics of chain collisions. We note further that prior
to the PC-SAFT model Gross and Sadowski [77] developed a perturbed hard-sphere
chain (PHSC) model. It differs from the PC-SAFT model in the definition of the
segment diameter, which is in PHSC temperature independent.

In PC-SAFT the Helmholtz energy for dispersive interaction adisp is expressed
by:

adisp

RT
= −1

2
[4πρI1]m2εσ3 − πρmC1I2m2ε2σ3, (6.1)

where ρ is the total number density of the fluid, I1 and I2 are the first and second
order perturbation integrals, m is the the average chain length of the molecules in
the system, m2εσ3 and m2ε2σ3 are energy averages of the system energy and C1 is
a function. The first perturbation integral is defined by:

I1 (η,m) = −
∫ ∞

0
ũ (x) ghc (m;x, ρ)x2dx, (6.2)

where ũ is the reduced pair potential and ghc the pair correlation function with x the
scaled center-to-center distance between spheres. The second perturbation integral
I2 and the function C1 are defined by:

I2 (η,m) =
∂

∂ρ

[
ρ

∫ ∞
0

ũ2 (x) ghc (m;x, ρ)x2dx

]
, (6.3)

99



CHAPTER 6. DISPERSION ACMS II

and

C1 =

(
1 + Zhc + ρ

∂Zhc

∂ρ

)−1

=

(
1 +m

8η − 2η2

(1− η)4 + (1−m)
20η − 27η2 + 12η3 − 2η4

[(1− η) (2− η)]2

)−1

, (6.4)

respectively, where Zhc is the compression factor of a hard-sphere chain fluid and η
is the total packing fraction given by:

η =
π

6
ρ
∑
j

xjmjd
3
j , (6.5)

where dj is the segment size of compound j, which is a constant in the PHSC model
and temperature dependent in the PC-SAFT model:

dj =

{
σj PHSC

σj

[
1− 0.12 exp

(
− 3εj
kBT

)]
PC-SAFT.

(6.6)

In the PC-SAFT model alkanes larger than ethane have εj/kB > 200 K, which
implies that the segment diameter shrinks at most 2% going from 0 to 350 K. In
other words, the temperature dependence is very weak and will only be noticeable
in isobaric equilibria with large temperature differences. The averages involved are
defined by:

m =
∑
j

xjmj

m2εσ3 =
∑
j,k

xjxkmjmk
εjk
kBT

σ3
jk

m2ε2σ3 =
∑
j,k

xjxkmjmk

(
εjk
kBT

)2

σ3
jk, (6.7)

where εjk is the average square-well potential depth for the dispersion interaction
between a segment of molecule j and a segment of molecule k, σjk is the center-
to-center distance between these segments, mj and mk are the number of segments
in a chain of molecule type j and molecule k, respectively, and kB is Boltzmann’s
constant. The calculation of εjk and σjk of the unlike pairs will be explained in
section 6.2.3.

100



CHAPTER 6. DISPERSION ACMS II

For a pure component, of which dj ≈ σj , we can define the number of interacting
segments around a central segment by:

Zj = 4πρI1mjσ
3
j = 24ηI1

mjσ
3
j

mjd3
j

≈ 24ηI1, (6.8)

where Eq. 6.1 is used. This number is also known as the coordination number of the
average segment of compound j.

In order to arrive at an expression for the activity coefficient from the perturbed
hard-sphere chain models, we set the system to infinite pressure according to method
that was applied by Huron and Vidal [97, 225] for cEoS. At this condition the liquid
is compressed to its maximum value (ηLCP ' 0.637). We note that solid structures,
for which the perturbed hard-sphere chain models do not apply, can have a packing
fraction between that of a random close-packed (RCP) solid (ηRCP ' 0.637), and
a face-centered cubic (FCC) ordered close-packed structure (ηFCC = π/

√
18). The

value for the solid depends on the process path towards infinite pressure. For the
liquid state it is important to understand that at LCP the very large compression
factor of the hard-sphere chain, Zhc, brings C1 to zero (see appendix M). Hence, at
infinite pressure only the first perturbation integral matters.

First perturbation integral

In the PC-SAFT model the first perturbation integral is represented by a power
series introduced by Liu and Hu [148]:

I1 =

6∑
j=0

âjη
j . (6.9)

The constants, âj , are given by the expressions:

âj = â0,j + â1,j
m− 1

m
+ â2,j

m− 1

m

m− 2

m
(6.10)

in which m is the number of segments in a chain, and â0,j , â1,j , and â2,j are model
constants. Substitution of η by ηLCP into Eq. 6.9 gives:

I1 (ηLCP) = ã1 +
ã2

m
+
ã3

m2 , (6.11)

where ã1, ã2, and ã3 are constants given in Table 6.3. The PHSC model [77] con-
tains the same equations as the PC-SAFT model, but uses a square-well potential for
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the interactions, instead of the softer, modified square-well potential that has been
defined for the PC-SAFT EoS (see Eq. 6.6). The 21 parameters for the first perturb-
ation integral of the PHSC model were optimized by a set of generated data points,
for which equation 6.2 was used, in the ranges of 0 < η < 0.6 and 1 < m < 1000,
while those of the PC-SAFT model parameters were determined by fitting exper-
imental vapor pressures and liquid densities of the n-alkanes up to decane, except
ethane, in. The temperature range given in Table 2 of the PC-SAFT paper [78], see
also [76], indicate that the experimental data covers a packing ranges of 0 < η < 0.45
(though a valid range to 0.74 is stated). Due to the difference in the potential well
and the applied strategy to determine the parameters of Eq. 6.9, the values of the
parameters of Eq. 6.11 for the PHSC and the PC-SAFT model are different (see
Table 6.3). The top panels of Fig. 6.1 show the value of I1 as function of η for
both models from zero to 0.74. The bottom panels show the coordination number
of a pure component j when dj = σj as function of the packing fraction. We have
plotted results for various m values up to 20, because for longer chains the results
are very close to m = 20. We observe that the first perturbation integral and the
coordination number of the PHSC model run nearly parallel and that with increas-
ing chain length the difference in I1 becomes smaller. This is not the case for the
PC-SAFT model. First, we observe that the curves of the PC-SAFT model start at
a significantly higher value at η = 0. From a theoretical point of view it is expected
that the relative difference would be at most 3%, as explained in J. Another point
of concern is that all curves of the PC-SAFT model, except for methane, converge
just outside the experimental data range at η ≈ 0.46 to a value of I1 ≈ 1.05, cross
and diverge in the high η limit. This is physically impossible, because long chains
have more covalent bonds, and therefore miss more sites for intermolecular interac-
tion. This crossing point lies outside the range of experimental data and, therefore,
should be regarded as an artifact of the parametrization process. For the use of the
PC-SAFT EoS model in fluid phase equilibria description this issue is not a problem,
because the model is meant to be applied for fluids with η < 0.46. But for solid-liquid
equilibria or gas-liquid phase equilibria at very high pressures, the PC-SAFT EoS
could give erroneous results for the liquid phase, because the packing fraction of the
liquid can be larger than 0.46. This problem has been studied by Yelash et al. [241],
and Privat et al. [181]. On the other hand Polishuk [179] showed that also SAFT
contains certain pitfalls. In short, these publications indicate that re-optimization of
the I1 parameters is required to obtain a proper liquid description beyond η = 0.45.
This has been done by Liang and Kontogeorgis [140]. They have proposed a new set
of model parameters, but as can be noticed in Fig. 7 of this publication, also here
exists a cross-over of the I1 curves, which makes extrapolation to the solid state im-
possible. We therefore need to optimize the ã1, ã2, and ã3 parameters to define the
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Figure 6.1: First perturbation integral, I1, (top panels), and coordination number, Zj (bottom
panels), of a pure component as function of the packing fraction given by PHSC and PC-SAFT
(tags). Curves show the results for chain lengths of (from top to bottom) m = 1, 2, 3, 4, 7, and 20
segments. The solid part of each curve indicates the experimental data range, while the dashed
part is an extrapolation of Eqs. 6.9 and 6.8, respectively. The vertical dashed lines indicate the
critical volume (η ≈ 0.18) and LCP (η ≈ 0.64). The solid vertical line denotes η ≈ 0.74. The
yellow and black points indicate the coordination number of single spheres, m = 1 at LCP. These
are Zj = 14.4, according to Klumov’s work [119], and at FCC Zj = 18, respectively.

first perturbation integral at maximum density. The work of Klumov [119] points out
that the number of hard spheres is 14.4 at liquid closed packed condition (η = 0.64),
when the integration runs between 1 < r/σ < 1.5. This is indicated by the yellow
data point in the bottom panels of Fig. 6.1. Interesting to observe is that the PHSC
model gives Zj = 13.7 at m = 1 , which is close to Klumov’s value. We will use
Klumov’s value, Zj = 14.4, as the limit for monosegmented molecules.
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Perturbed chain activity coefficient model

At infinite pressure the Helmholtz energy of mixing for the PC-SAFT model is de-
termined by I1 only (see Appendix M). With the definition for the coordination
number, Eq. 6.8, it has the following expression:

nta
E,disp

RT
=

(
T0

T

)∑
j

Zj
2
njmj ε̃j

(
σj
dj

)3

−
∑

j,k Zjnjnkmjmk ε̃jkσ
3
jk

2
∑

j njmjd3
j

 , (6.12)

where ε̃j is the reduced dimensionless interaction energy at reference temperature,
T0, defined by:

ε̃j =
εj

kBT0
, (6.13)

and

Zj = 24ηLCP

(
ã1 +

ã2

mj
+
ã3

m2
j

)
. (6.14)

For single spheres we have Zj = 24ηLCP (ã1 + ã2 + ã3). This gives for the PHSC and
PC-SAFT model Zj = 13.7 and Zj = 15.3 respectively. For infinite homonuclear
chains, where m =∞, the last two terms of Eq. 6.14 vanish, and we get Zj = Z∞ =
24 ηLCP ã1. For this case the PHSC and PC-SAFT model have Zj = 11.88 and 19.10,
respectively. Since the face centered cubic (FCC) or hexagonal close-packed (HCP)
packing of spheres gives the maximum value of the coordination number Zj = 18,
the result of PC-SAFT model for the LCP condition is physical impossible. It is a
mathematical error caused by the extrapolation beyond the singular point η > 0.46,
as we pointed out when discussing the results of Fig. 6.1.

Assuming that the weak dispersion gives negligible excess volume, we have gE ≈
aE,disp,∞, and the activity coefficient γk can be calculated from:

ln γk =
1

RT

(
∂ntg

E

∂nk

)
T,P,nj 6=k

≈ 1

RT

(
∂nta

E

∂nk

)
T,P,nj 6=k

, (6.15)

Substitution of Eq. 6.12 in Eq. 6.15 gives the expression

ln γdispk = mk
Zk
2

(
T0

T

)(σk
dk

)3

ε̃k − 2

∑
j xjmj ε̃jkσ

3
jk

md3
+
d3
km

2εσ3(
md3

)2


+mk

Z∞
2

(
T0

T

)[
ã2

ã1m2 +
2ã3

ã1m3

](
1− m

mk

)
m2εσ3

md3
, (6.16)
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where we defined the average

md3 =
∑
j

xjmjd
3
j . (6.17)

Note that the volume term is absent in Eq. 16, as at infinite pressure the fluid is
incompressible (η = ηLCP). The activity coefficient of compound k at infinite dilution
in solvent j then reads:

ln γdisp,∞k = mk
Zk
2

(
T0

T

)(
σ3
k

d3
k

ε̃k − 2
σ3
jk

d3
j

ε̃jk +
d3
k

d3
j

σ3
j

d3
j

ε̃j

)

+mk
Z∞
2

(
T0

T

)[
ã2

ã1mj
+

2ã3

ã1m2
j

](
1− mj

mk

)(
σj
dj

)3

ε̃j . (6.18)

In here the segment diameter dj is defined by Eq. 6.6. With dj = σj the finite
and limiting activity coefficients of the PHSC model is obtained. In appendix K we
demonstrate how the PC-SAFT based dispersion activity coefficient model is related
to the equation of van Laar [223] and the regular solution theory of Hildebrand
[86]. Table 6.1 provides an overview of PC-SAFT parameters of some n-alkanes as
published by Gross and Sadowski [78], as well as the parameters of squalane, which
we obtained by fitting experimental saturated vapor pressure and liquid density data
taken from DIPPR [23]. More m, σ, and ε values can be found in the work of Gross
[78] and Tihic et al. [215]. Tihic et al. provides also equations to predict these
parameters for alkanes with NC > 20, which we will use in the results section.

The last three columns of Table 6.1 list the calculated values for Zj , showing how
the coordination number of the alkanes vary with chain length and structure. Both
PHSC and PC-SAFT use Eq. 6.14, but the results differ due to the difference in
ãj parameters given in Table 6.3. Squalane has a smaller coordination number than
an infinite n-alkane, because the presence of methyl side groups along the squalane
chain reduce the space of interaction. In general, small molecules should have more
interaction per segment with the surrounding molecules than large molecules, because
the space around such a small molecule is less hindered by other parts of the molecule.
Therefore, methane should interact with more spheres than hexadecane per segment,
which is also observed in Table 1 for the PHSC and the IPC model, but not for the
PC-SAFT due to the error of extrapolation.

6.2.2 The improved perturbed chain activity coefficient model

Based on the results of the PC-SAFT model, Eq. 6.16 in combination with Eq. 6.36,
as depicted in Fig. 6.4, we concluded that the ãj parameters of the PC-SAFT model
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PC-SAFT PHSC PC-SAFT IPC
EoS and activity model Zj (ηLCP)

Alkane m σ (Å) ε̃ Eq. 6.14 Eq. 6.14 Eq. 6.22
C1 1 3.7039 0.503 13.72 15.30 14.40
n-C5 2.6896 3.7729 0.775 12.59 16.41 11.60
n-C6 3.0576 3.7983 0.794 12.50 16.66 11.40
n-C7 3.4831 3.8094 0.800 12.43 16.89 11.26
n-C8 3.8176 3.8373 0.814 12.38 17.05 11.16
n-C12 5.306 3.8959 0.836 12.24 17.55 10.90
n-C16 6.6485 3.9552 0.854 12.17 17.83 10.78
n-C∞ ∞ 4.0829 0.882 11.84 19.10 10.40
Squalane 10.37 (3) 4.153 (6) 0.858 (1) 12.06 18.37 10.20

Table 6.1: PC-SAFT parameters for n-alkanes [78, 215] with T0 = 298.15 K. Squalane paramet-
ers were obtained in this work by regression of liquid density and saturated vapor pressure data.
Between parentheses the standard deviation in the last digit. The coordination numbers are ob-
tained by Eq. 6.14 with the ãj parameters from Table 6.3. In the last column the results of the
IPC model where Zj is defined by Eq. 6.22

.

for I1 (Eq. 6.11) are not suitable to obtain an accurate value for Zj at LCP condition.
In order to arrive at a more suitable description, we take a closer look at I1, which
effectively means that we investigate the way in which the coordination number of
a sphere in a chain is defined. This leads to a dispersion activity coefficient model,
which we call the improved perturbed chain activity coefficient model, abbreviated
to IPC model.

Perturbation integral at infinite pressure

The general idea for the IPC model is that under high pressure the molecules will be
at their most compact conformations. Both the PHSC and the PC-SAFT model take
the ad-hoc interaction range 1 ≤ x/σ ≤ 1.5 to define a shell of interaction around
a sphere. This choice gives in a hexagonal close-packed structure (HCP) 18 spheres
within this shell. There are 12, respectively, 6 spheres in the first and second shell
around a central sphere. The third shell of spheres is located at

√
3σ > 1.5σ, which

falls outside this range. This situation is valid for solids.
For liquids the number of spheres within the interaction range is lower. According

to the works of Bennett, Parisi and Klumov [175, 13, 119] there are 6 spheres in
direct contact with the central sphere. Scott [201] showed that besides these 6 there
are on average 3.3 spheres, which are are not in direct contact with the central

106



CHAPTER 6. DISPERSION ACMS II

sphere, but still belong to the first shell. Klumov et al . [119] calculated with a
modified Lubachevsky-Stillinger algorithm the radial and cumulative distribution of
hard spheres in the packing fraction range of 0.64 to 0.68. In Fig. 1 of Klumov’s
paper we can read that at LCP the average total number of hard spheres within the
PC-SAFT defined shell is Zj = 14.4. Hence, the average number of spheres, which
are not in direct contact with the central sphere are Ns2 = 14.4− 6 = 8.4. The value
of Zj = 14.4 is valid for disconnected spheres. We denote these covalent bonded
spheres in the first and second coordination shell by Nx1 and Nx2, respectively. The
number of first (Nx1) and second (Nx2) bonded spheres in a linear chain is given by:

Nx1 = 2
m− 1

m
and Nx2 = 2

m− 2

m
, (6.19)

respectively. These equations hold for linear molecules with m ≥ 2. Methane has no
carbon bonds; Nx1 +Nx2 = 0.

For non-linear chains, or in general poly-segmented structures, the total number
of spheres in the range of interaction of a central sphere will be higher than that of
a linear chain due to the presence of branches. At this point our model starts to
become different from the PC-SAFT and the PHSC model, where all molecules are
treated as a homonuclear linear chains and where the effects of more space at chain
ends and less space at branches are ignored. This approach is known as the Percus-
Yevick 2 approximation [30]. In our proposed model, denoted as improved perturbed
chain (IPC), we will account for branching and proximity effects, for which we use the
carbon skeleton of the molecule. This approach is known as the full Percus-Yevick
approximation [30]. Hence, in the IPC model m = NC, where NC is the carbon
number, while in the PC-SAFT model, according to Table of the original PC-SAFT
paper [78], m assigns several methyl groups, which is about 2.775 for n-alkanes.

Fig. 6.2 schematically illustrates examples of poly-segmented chains, when they
are at close packed condition.

Interestingly, topology theory [83, 37] provides a way to generalize Eq. 6.19 to
branched structures, where proximity effects play no role. For m ≥ 2, the sum
of spheres bonded in the first and second coordination shell, which we will call the
occupation number, can be calculated from the first Zagreb index [83, 37], ZM1. This
topology index was actually introduced for quantifying the polarity of molecules, but
here it is the average occupation number of spheres in the interaction shell of a central
sphere. The first Zagreb index for linear, branched and cyclic structure is calculated
by:

ZM1 = 0mv,0 + 1mv,1 + 4mv,2 + 9mv,3 + 16mv,4 =

4∑
j=0

j2mv,j , (6.20)
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Figure 6.2: Schematic projected view of molecule configurations for the calculation of topology
number D in the IPC model. Top row: ethane, propane, isobutane and cyclohexane. Bottom
row: 2-methylbutane, methylcyclohexane, and 3,3-diethylpentane. Numbers between the accolades
denote the carbon position in the molecule, which have the same number of spheres that occupy
the square-well space (red spheres). The occupation number is denoted between square brackets.
The green spheres are outside the interaction range of the central sphere (blue). The orange sphere
is excluded due to proximity effect of adjacent spheres.

where mv,j is the number of carbon groups, which have j covalent bonds to other
carbon groups. The subscript v comes from the topology term ’vertex’, which is a
connection point with a certain number of connections to other points. In chemistry
a vertex means an atom, which has a certain number of bonds to other atoms. In
our case the carbon-carbon bonds. For instance, CH4 has no carbon connection,
CH3- has one, -CH=, =C= CH2< groups have two bonds, -CH< three, and >C<
four. By counting these carbons Eq. 6.20 gives ZM1.The first Zagreb index can
not be applied for molecular structures, where rigidity or proximity effects prevent
that a next nearest neighbor sphere of the same molecule is within the shell of
interaction as is defined in the PHSC and PC-SAFT model. It also happens for cyclic
structures with no alkyl branches Nx1 = 2 and Nx2 = 0. It yields for cyclobutane,
cyclopentane and cyclohexane D = 8, 10 and 12, while the Zagreb indices are 16,
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20, and 24, respectively. To extend the ZM1 we define the quantity D, which we
call the dispersion topology number:

D = mv,1 + 4mv,2 + 9mv,3 + 16mv,4 + 2mv,c2, (6.21)

where mv,c2 denotes the number of cyclic carbons in a ring, which has no branches.
There are however structures, for which it is more difficult to express D and which
are more easily obtained graphically. For instance for structures where the methyl-
ene group can be pressed into the dimple of a cyclic structure, such as the alkyl-
cyclohexanes (see Fig. 6.2). In Table 6.2 we give molecular structures that have a
D number that differs from Eqs. 6.20 and 6.21, due to the rigidity of a ring or the
proximity of groups. The effective coordination number Zj can now be written as:

Compound m ZM1 D Zj
Cyclohexane 6 24 12 12.40
Cycloheptane 7 28 14 12.40
Methyl cyclohexane 7 30 21 11.40
2,2,3-trimethyl butane 7 33 29 10.26
1,1-dimethyl cyclohexane 8 38 28 10.90
2,2,3-trimethyl pentane 8 34 30 10.66
2,3,3-trimethyl pentane 8 34 30 10.66
2,2,3,3-tetramethyl butane 8 38 30 10.66
1,2,4,-trimethylcyclohexane 9 42 30 11.06
3-ethyl,2,3-dimethyl pentane 9 38 34 10.62
3,3-diethyl pentane 9 36 32 10.84
3,3,4-trimethyl hexane 9 38 34 10.62
2,2,3,3-tetramethyl pentane 9 42 34 10.62
2,3,3,4-tetramethyl pentane 9 40 32 10.84
Adamantane 10 60 24 12.00
Bicyclohexyl 12 58 26 12.24

Table 6.2: Examples of alkanes for which D differs from ZM1, due to rigidity of a cyclic structure
or proximity of branched groups.

Zj = Ns1 +Ns2 −Nx1 −Nx2 = Z0 −
D

m
, (6.22)

where Z0 has a value of 14.4, which holds for methane and other single spheres. The
subscript j to Z denotes a compound number, to indicate that it is a pure compound
specific quantity.
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It is noteworthy to mention that an infinitely long linear chain, which has D/m =
4, gives with Eq. 6.22 Zj = 10.4. This value is closer to the value of the PHSC-
model at LCP, where Zj = 11.84, than the unrealistic value of the PC-SAFT based
model, where Zj = 19.10. Salient is that the coordination number in the UNIQUAC
and UNIFAC models has always been set to the value of 10. This value is obtained
by considering a HCP lattice, where a central cell has 12 nearest neighbors, but of
which 2 sites are already occupied by 2 neighbors of the same chain. There are,
however, two concerns with this choice for the UNIQUAC and UNIFAC models.
Firstly, molecules are not always infinite long, thereby giving on average a lower
correction than 2 neighbors. For instance, small molecules like water, ammonia and
methane should have at HCP Zj = 12, while ethane, methanol require Zj = 11.
Secondly, the choice for a HCP lattice is valid for crystals, but a liquid would be
better described by a RCP lattice, which has a coordination number of about 9.2 for
the first shell according to the work of Scott [201]. This would lead to a value of 7
for UNIQUAC and UNIFAC, if one takes into account the occupation of 2 sites by
the same molecule. In other words the assumption in UNIQUAC and UNIFAC that
Zj = 10 for all molecules is incorrect. With Eq. 6.22 this could be corrected.

For pure components where σj = dj , Eq. 6.22 yields for the perturbation integral
at LCP (η = 0.64 ≈ 2/π) the formula:

I1 =
Zj
24η

=
π

48
Zj =

14.4π

48
− π

48

D

m
= 0.942− 0.0654

D

m
. (6.23)

According to this expression, the coefficients of Eq. 6.11 for single spheres, where
D = 0, would be ã1 = 0.942, ã2 = 0, and ã3 = 0, and for linear chains, where
D = 4m − 6, ã1 = 0.680, ã2 = 0.393, and ã3 = 0. The m−2 term is zero, which
implies that in the power series of Liu and Hu [148] the third term should vanish at
RCP. The PHSC model seems to point to this criterion. It has a small value for this
term; ã3 = −0.006. We have denote the values of a linear chain as theoretical values
in column 4 of Table 6.3.

Derivation of a new dispersion activity model

For the derivation of the dispersion activity coefficient model proposed here, which
we will denote as the improved perturbed chain (IPC) activity coefficient model,
we consider a mixture composed of nj molecules of type j. The average segment
of molecule j has interaction with Zj spheres as follows from Eq. 6.22. The total
number of interactions of all molecules j with its local surrounding is therefore:
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njmjZj . When we define the volume fraction of a compound by:

φ̂i =
nimid

3
i∑

j njmjd3
j

, (6.24)

we can calculate the contribution in interaction energy between molecule j and seg-
ment i by njmjZjφ̂i. We note that at infinite pressure all compounds have a pure
molar volume of nimid

3
i /ηLCP. The factor ηLCP drops out of equation 6.24. Sub-

sequently, the following expression for the excess Helmholtz energy of mixing is
obtained:

nta
E,disp

RT
=
∑
j

njmj
Zj
2

(
T0

T

)(
ε̃j −

∑
i

φ̂iε̃ij

)
. (6.25)

Here the factor 1
2 is used to eliminate double counting of interactions. Substitution

of Eq. 6.25 into Eq. 6.15 yields the following expression for the dispersive activity
coefficient:

ln γdisp,IPCk = mk
Zk
2
ε̃k

(
T0

T

)
×1−

∑
j

[
1 +

Zj
Zk

(
dk
dj

)3
]
φ̂j
ε̃jk
ε̃k

+
∑
i,j

Zi
Zk
φ̂iφ̂j

ε̃ij
ε̃k

 . (6.26)

In the derivation of the IPC dispersion activity coefficient model mk is defined by
the total number of methyl groups, dk follows from the van der Waals volume, and
Zk from Eq. 6.22. This implies that in this model ε̃k is the reduced energy of an
average methyl group in the molecule, which needs another quantification than the
one which is used in the PC-SAFT model, because we have another definition for
the number of segments m. For this we take a closer look at the theory on dispersion
as was introduced by London [151], who quantified the dispersion energy U by the
expression:

U = −3

4

hν0α
2

R6
0

, (6.27)

where h is the Plank constant, while ν0, R0 and α are the characteristic frequency, the
distance, and the polarizability of the two identical systems, respectively. In our case
the two identical systems are two identical methyl groups. Since the polarizability
of a methyl group is linear related to the number of hydrogens in it (see Fig. 6.3),
while the dispersion energy is related to the square of the polarizability, the dispersion
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Figure 6.3: Polarizability of methyl groups as function of the number of hydrogen in a methyl
group. Experimental data from [132, 169] yellow symbols, and from [222] red symbol. Computed
data from [227] are indicated by blue circles.

energy should quadratically depend on the number of hydrogen atoms. We opted for
the following relation:

ε̃j =
ε0 + ε1JQH

mj
, (6.28)

where ε0 are ε1 are IPC model constants. The parameter JQH, which we have named
the quadratic hydrogen number, is a constitutional index, and depends on the struc-
ture of the molecule. It is equated as:

JQH =
4∑
j=0

(4− j)2mv,j , (6.29)

where j denotes the number of non-hydrogen bonds in a methyl group, and mv,j

the number of methyl groups with j non-hydrogen bonds. The methyl groups -
CH3, >CH2, -CH< and >C< have therefore j = 1, 2, 3 and 4, respectively. Let
us exemplify Eq. 6.29 with the compound 2,2,4-trimethylpentane. This compound
has 5 -CH3 groups, 1 >CH2 group, 1 -CH< group and 1 >CH group. Therefore,
JQH = 9 × 5 + 4 × 1 + 1 × 1 = 50. This value is higher than that of the linear
isomer, n-octane, where JQH = 42. As one can observe from Eq. 6.29, in this
approach carbons without hydrogen do not contribute to the total dispersion energy.
The IPC activity coefficient equation differs from the PC-SAFT activity coefficient
equation on three aspects. First, we use another definition for m. Second, we
replaced in the numerator the hard-core segment size by a temperature-dependent
diameter, because we consider volume fractions to define the number of segments of
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a particular molecule within the range of interaction of a central segment. Third, the
Zj-term and the dispersion energy are calculated from two molecular descriptors, D
and JQH, respectively.

For convenience, we report that the infinite dilution activity coefficient (IDAC)
of compound k in solvent j is given by:

ln γdisp,∞k = mk

(
T0

T

)[
Zk
2

(ε̃k − ε̃jk) +
Zj
2

(
ε̃j −

d3
k

d3
j

ε̃jk

)]
. (6.30)

For a mixture, where the molecules have the same diameter and Zk = Zj , and where
the classical combining rules, i.e. Eq. 6.32, can be applied, Eq. 6.30 reduces to:

ln γdisp,∞k =
mkZk

2

(
T0

T

)[√
ε̃k −

√
ε̃j

]2
, (6.31)

which is a van Laar activity model. It points out that the difference between a
dispersion activity coefficient models derived from a cubic and a perturbed chain
dispersion activity coefficient model is a result of differences in segment diameters
and coordination numbers, since branched structures exclude more segments from
the spherical interaction volume than linear molecules do. Therefore Zj is lower and
by this the prefactor of the cEoS based dispersion activity model drops from 4.13 for
linear alkane mixtures to 3.04 for mixtures involving branched alkanes.

6.2.3 Combining rules

The calculation of the unlike interaction dispersion energy, εjk, requires the use of
a combining rule. In our previous paper on dispersion activity coefficient models
derived from cubic equations of state [130], we evaluated three different rules. The
generalized Lorentz [153] and Berthelot [17] combining rules, the Kong [123] com-
bining rules and the Waldman and Hagler [228] mixture rules.

The generalized Lorentz size and Berthelot energy combining rules are:

σij = (1− lij)
(
σii + σjj

2

)
and εij = (1− kij)

√
εiiεjj , (6.32)

where σjj and εjj is the diameter of and the dispersion energy between two spheres
of type j. The parameters kij and lij are the energy and size interaction parameters,
respectively, which are used in the PC-SAFT equation of state to bring the calculated
phase equilibrium results in agreement with experimental data. In the prediction of
phase equilibria the parameters kij and lij are set to zero, which implies that for
the unlike diameter the arithmetic mean, and for the unlike interaction energy, the
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geometric mean is taken. We will denote this as the ideal classical (IC) combining
rule. Other combining rules are those of Kong [123] and Waldman and Hagler [228].

Kong [123] sets three energy criteria for the repulsive and attractive part of the
6-12 Lennard-Jones potential and obtains combining rules, which we have rearranged
into:

σ6
ij =

1
√
εiiεjjσ3

iiσ
3
jj

[
(εii)

1
13 (σii)

12
13 + (εjj)

1
13 (σjj)

12
13

2

]13

and

εij =
√
εiiεjj

σ3
iiσ

3
jj

σ6
ij

, (6.33)

with εjj and σjj are the Lennard-Jones energy and size parameters between two
molecular segments of the same kind j, while subscript ij refers to the unlike pairs.

Waldman and Hagler (WH) [228] applied mathematical scaling and symmetry
rules, which led to a less complicated equation for the unlike size parameter σij:

σ6
ij =

(
σ6
ii + σ6

jj

2

)
. (6.34)

The unlike energy parameter εij is the same as that of Kong.

6.2.4 The total activity coefficient

In general, the total activity coefficient of molecules, which interact by dispersion
forces only, is given by the following sum of a combinatorial and a dispersive contri-
bution:

ln γtotk = ln γcomb
k + ln γdispk . (6.35)

For the combinatorial activity coefficient we use the generalized Guggenheim-Staverman
combinatorial activity coefficient derived previously by us [129]:

ln γcomb
k = ln

(
φk
xk

)
+

(
1− φk

xk

)[
ln (φk/θk)
φk
θk
− 1

]
, (6.36)

where φk and θk are respectively the volume and surface fraction of compound k in
the mixture, which in the PC-SAFT and PHSC based activity models is defined by
σ, while in the IPC model this is the segment diameter d (Eq. 6.24. Since the volume
and area fractions in the perturbed chain model are equal the term within the square
brackets of Eq. 6.36 becomes unity. This reduces Eq. 6.36 to the combinatorial term
of the Flory-Huggins (FH) model. By combining Eqs. 6.36 with 6.16 and 6.26 one
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obtains the total activity coefficient of the PC-SAFT based and the IPC model,
respectively:

lnγtot,PC-SAFTk = ln

(
φk
xk

)
+ 1 +

φk
xk

+
mkZk

2

(
T0

T

)(σk
dk

)3

ε̃k − 2

∑
j xjmj ε̃jkσ

3
jk

md3
+ d3

k

m2εσ3(
md3
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− mkZ∞

2
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T0

T

)(
ã2

ã1m
+

2ã3
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)(
1

mk
− 1

m

)
m2εσ3

md3
(6.37)

ln γtot,IPCk = ln

(
φ̂k
xk

)
+ 1 +

φ̂k
xk

+
mkZk

2

(
T0

T
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ε̃k

1−
∑
j
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φ̂j +

Zj
Zk

(
dk
dj
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ε̃jk
ε̃k

+
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i,j

Zi
Zk
φ̂iφ̂j

ε̃ij
ε̃k

 (6.38)

The equation for the PHSC dispersion activity coefficient model is obtained by setting
dj = σj in Eq. 6.37.

6.2.5 The enthalpy of mixing

The excess enthalpy of component j is obtained by applying the relation:

hEj = −RT 2∂ ln γj
∂T

, (6.39)

Subsequently, the enthalpy of mixing follows from:

Hmix =
∑
j

xjh
E
j . (6.40)

We used these expression to calculate the enthalpy of mixing. Because the PC-
SAFT based as well as the IPC have a dispersion contribution, which is inversely
proportional to temperature, the enthalpy of mixing is temperature independent.
In order to make it temperature dependent the IPC model requires a temperature
dependent Zj . For instance one could opt for the equation:

Zj = Z0
ρ (T )

ρ (Tfus)
− D

m
, (6.41)

115



CHAPTER 6. DISPERSION ACMS II

where Z0 is scaled by the density of the liquid at system temperature, T , and melting
point, Tfus. We will not investigate the temperature dependency of the enthalpy of
mixing in this work.

6.3 Results

6.3.1 The total activity coefficient of the perturbed chain models

Fig. 6.4 displays the total activity coefficient model based on the PC-SAFT and
PHSC models (Eq. 6.37) using for both models the original PC-SAFT compound
parameters [78, 215] and using different size and energy combining rules to quantify
the unlike segment and energy parameters. We note that there exist no compound
parameters for the PHSC model, but since the temperature dependence of the seg-
ments size is weak, as we discussed at Eq. 6.6, the PC-SAFT parameters should
be applicable for the PHSC model. The difference between the PC-SAFT and
PHSC with IC combing rule are caused by the difference in the âj parameters of
Eq. 6.9. In the same figure the Flory-Huggins combinatorial activity model is plot-
ted as reference. The difference between the perturbed chain activity models and
the Flory-Huggins model is the effect of the dispersion contribution. We observe
that the PHSC activity model with IC combining rules gives a better description of
the activity coefficient than the PC-SAFT activity model with any of the combining
rules, which is mainly due to the lower value of the parameter Z∞. The results of
the PHSC model lie close to those of the cubic equations of state, where theoretical
result had to be reduced by a factor 3 to 4 [130]. It shows that the PHSC activ-
ity model has a better physical basis than the cubic equations of state, because no
adjustment of the theoretical result is required. The results of the PC-SAFT based
activity coefficient model with IC combining rule gives higher values than the PHSC
based model. This was expected, as we indicated when we discussed Fig. 6.1. The
WH and Kong combining rules lead to more deviation. This is an important ob-
servation, because it shows that small differences in the size and energy parameters
of the compounds are amplified when using the WH and Kong combining rules. In
other words, in order to obtain similar results with PC-SAFT with the WH or the
Kong combining rules, the ã parameters have to be optimized in combination with
the combining rules. We can not interchange the combining rules afterwards. To
illustrate the effect of not doing so, we optimized the three model parameters, ã1, ã2

and ã3, using the consistent set of experimental activity coefficient data of Ashworth
[6], who accurately measured and computed the activity coefficients of pentane, hex-
ane, heptane and octane in squalane. The optimization of the ãj parameters, while
keeping the PC-SAFT compound parameters fixed, was carried out by least-squares
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Figure 6.4: Prediction of the activity coefficients at infinite dilution of n-hexane dissolved in
alkanes with different carbon numbers NC. Experimental data at temperature range 293-303 K
(yellow circles) and 363-383 K (red triangles) from [38]. Curves from bottom to top: FH combin-
atorial activity coefficient model (Eq. 6.36 dotted), PHSC based activity model, Eq. 6.37, with
dj = σj and Z∞ = 11.88 and IC combining rules (solid curve), and the PC-SAFT activity model,
Eq. 6.37, with Z∞ = 19.10 with IC (long dashed), Kong (dashed-dotted) and WH (short dashed)
size and energy combining rules, respectively. The compound parameters m, σ, and ε are taken
from [78, 215].

fitting. The optimized ãj parameters with applied combining rules are given in the
last 3 columns of Table 6.3. The results before and after fitting are displayed in Fig.
6.5. The differences between the 3 different combining rules are nearly imperceptible;
the average absolute difference between the model and the experimental data is less
than 1%.

The new parameters also give a good prediction for other alkane system as is
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Figure 6.5: Composition dependency of the activity coefficients of n-pentane (triangles), n-hexane
(circles), n-heptane (diamonds) and n-octane (squares) dissolved in squalane at 303 K from [6].
Results of Eq. 6.37 with IC, WH and Kong combining rules are depicted by curves for n-pentane
(dotted), n-hexane (small dashed), n-heptane (large dashed), and n-octane (solid). Top row panels
(A,B,C) and bottom row panels (D,E,F) are the results with the original and optimized PC-SAFT
activity model parameters ãj parameters of Table 6.3.

depicted in Fig. 6.6. Here we used for the calculation T = 298 K. Any influence of
temperature on the curves is directly related to a reciprocal temperature dependence
of the dispersion term, which moves the curves towards the Flory-Huggins model.
When comparing the average absolute deviations (AAD) it follows that the most
accurate prediction is obtained with the IC combining rules. On the other hand,
the optimization of the PC-SAFT activity coefficient model in combination with the
IC combining rules shows that there is still an inconsistency in the perturbation
integral at LCP condition, because the Z-parameter of the PC-SAFT activity model
in combination with the IC combining rule (see Table 6.3) is 4.8 instead of a value
close to 11, and for single spheres is it even worse (Z = 0).

Another point to mention to Fig. 6.6 are the ripples on the curve for the regime
11 < NC < 20. This is an artifact caused by the m, and σ parameters of the pure
components. The density of a pure liquid is directly related to the hard-core volume
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Published ãj This work Optimized ãj PC-SAFT
Param. PHSC PC-SAFT IPC IC WH Kong
ã1 0.7778 1.2504 0.681 0.3163 0.0047 0.0048
ã2 0.1263 −0.6073 0.393 −0.452 −0.066 −0.067
ã3 −0.0062 0.3585 0 0.1370 a 0.2287 0.2312

Zj(m = 1) 13.7 15.3 14.4 0.0 2.6 2.6
Zj(m =∞) 11.9 19.1 10.4 4.8 0.07 0.07

AAD [%] - - - 0.4% 0.8% 0.8%
a Note: Although ã3 should be zero, the used set of experimental data (C5-C8 in
squalene) forces non-zero values. Either the PC-SAFT compound parameters are sub-
optimal or the accuracy of the experimental data is not that accurate as assumed. A
combination of both is possible as well.

Table 6.3: I1 parameters of Eq. 6.11 at η = 0.636. Zj calculated with Eq.6.14. AAD values for
Fig. 6.5

Figure 6.6: Activity coefficients of n-hexane (left panel) and n-heptane (right panel) in alkanes
after optimization of the three PC-SAFT based activity model parameters ãj (see Table 6.3).
Experimental data from DDBST [38] at temperature ranges: 293 K - 303 K (yellow circles) and
373 K - 393 (red triangles). Curves from bottom to top: FH combinatorial activity model (dotted),
and the PC-SAFT activity model (Eq. 6.37) with IC (long dashed), WH (dashed-dotted) and Kong
(short dashed) combining rule, respectively, at 298 K. Compound parameters m, σ, and ε from
[78, 215].

of the molecule. One can obtain the same density by increasing m and decreasing
σ. In other words, the m and σ parameters are highly negative correlated. The
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ripples are no longer present in the curve for NC > 20, because in that regime the
relations of Tihic et al . [215] for m, σ and ε/kB were used. These relations smooth
the deviations arising from parameter fitting. A strategy to avoid the occurrence
of ripples is therefore to optimize the compounds parameters of the same class of
compounds simultaneously, and using, for instance, for the alkanes a linear function
that correlates the m parameter with the carbon number. The main message from
the above results and observations is, that we need to revise the perturbation integral
yielding an activity coefficient model and parameters that are physically meaningful.
This is why we introduce a new model, which we will discuss in the next section.

6.3.2 The improved perturbed chain based activity coefficient model

As was explained above, the activity model derived from PC-SAFT gave disappoint-
ing results, which urged us to re-examine the perturbed chain model and to improve
it. Here we show how well this improvement, the IPC model, worked out. The
first step we made is that we set the parameter m equal to NC. In the PC-SAFT
EoS model the value of the m parameter is smaller than carbon number NC. This
is done to effectively reduce the flexibility of the chain to limit self-interaction. In
the IPC model, the flexibility is controlled by parameter Zj . In the Supplementary
Material we show that this parameter can be used to predict the normal boiling
points of alkanes ranching from methane to tetracosane with an accuracy of 3.3 K.
This supports the idea that the Zj parameter is a suitable measure to define the
number of maximum possible intermolecular interactions per segment of molecule
j. The second step in the development of the IPC model is the calculation of the
segment diameter. This is done via the van der Waals volume, VvdW,j , which can
be computed by Bondi’s method [18] or retrieved from the DIPPR database [23].
From the van der Waals volume and the number of segments, in our case equal to
the carbon number, mj = NC,j , we obtain the effective diameter σj :

σj =

(
6

π

VvdW,j

mj

) 1
3

. (6.42)

The third step is the determination of the energy parameters ε0 and ε1 by fitting the
total activity coefficient data of alkane mixtures with the IPC activity model and
the three combining rules. From more than 1000 infinite dilution activity coefficient
(IDAC) data points retrieved from the DDBST [38], 157 data points were excluded
because a) the experimental temperature was above 400 K which gives values that
differ too much from the γ-values at 298 K, b) the value was above 1, or c) the
γ-value deviated too much from other sources. Simultaneously, we regressed the
experimental finite activity coefficient data of alkanes dissolved in squalane [6] and
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the IDACs of long n-alkanes in small alkanes, which were compiled by Kniaz [120].
Table 6.4 summarizes the obtained model parameters, the average absolute deviation
of the models for the three types of data, and the overall accuracy of the fit expressed
by the reduced χ-squared at 5%. The table shows that the three combining rules give

combining rules
Energy parameters of Eq. 6.28 No. data IC WH Kong
ε0 125.24 107.35 97.73
ε1 12.69 9.28 7.40
AAD% C5-C8 in squalane [6] 32 1.4% 2.1% 1.5%
AAD% IDAC [38] 1188 4.2% 4.4% 4.4%
AAD% IDAC [120] 52 25% 25% 25%
χ2
red 1262 2.85 2.91 2.95

Table 6.4: IPC model parameters and performance of combining rules.

nearly the same accuracy, though with different energy equation parameters. The
average absolute deviation (AAD) of the IDAC of the IPC activity model with IC
combining rules is 4.2%. This is at the level of the UNIFAC(Do) model [240] (3.6%
for n-alkanes, 4.9% for saturated hydrocarbons). Fig. 6.7 depicts the correlation
plot of the experimental and computed activity coefficients and the description of
the alkane-squalane binaries for the IPC model (Eq. 6.38) with IC combining rules
(Eqs. 6.33). Similar results are obtained with the Kong and WH combining rules (see
Supplementary Material). In comparison to the results of Fig. 6.5 it follows that the
description of the squalane systems by the IPC model with the IC combining rules is
similar as those obtained by the PC-SAFT based activity model with IC combining
rules. The main difference is the more tangible calculation method, yielding realistic
values for Zj .

Kniaz [120] calculated activity coefficients of long alkanes dissolved in small al-
kanes from solubility data. The correlation plot of these data and the IPC model
results is depicted in the right panel of Fig. 6.7. We observe a larger scatter in
results than obtained with small alkanes in long alkanes.

Figure 6.8 depicts the series of measurement of Madsen and Boistelle [156, 157].
We observe that the experimental results of dotriacontane lie outside expected range
of octacosane and hexatriacontane, which are well described by the IPC model.
There is no theoretical molecular explanation for the higher solubility and thereby
lower activity coefficient of dotriacontane. In appendix O we take a closer look at
the data of Madsen and Boistelle [156, 157] to understand the larger deviation of the
IPC model from the parity line and explain possible causes for systematic errors.

Fig. 6.9 shows the limiting activity coefficients of hexane and heptane in alkanes
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Figure 6.7: Left panel: Activity coefficients of n-pentane (triangles), n-hexane (circles), heptane
(diamonds), n-octane (squares) in squalane at 303 K from Ashworth [6]. Solid curves depict IPC
model Eq. 6.38 with IC energy and size combing rules for the alkanes dissolved in squalane. Dashed
curve depicts IPC model for squalane in n-octane. Middle/Right panel: Parity plot of IDAC of
binary alkane mixtures between experimental data and IPC model with IC combining rules, where
dashed lines indicate the 10% error level from the y=x solid line. Middle panel: Yellow dots and
crosses represent, respectively, included and excluded experimental IDAC data from DDBST [38]
used for fitting of the energy parameters ε0 and ε1. Right panel: Experimental IDAC data compiled
by Kniaz [120] for long n-alkanes in small alkane solvents.

and the results obtained with the IPC activity model with Kong combining rules.
The results are similar as obtained with the PC-SAFT based activity model (Fig.
6.6).
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Figure 6.8: IDAC of long n-alkanes (see legenda) as function of the carbon number NC of the
n-alkane solvent. Data points are the values at 300 K of table O.2. Curves are the results of the
IPC activity coefficient model (Eq. 6.38) at 300 K.

Figure 6.9: Limiting activity coefficients of n-hexane (left panel) and n-heptane (right panel)
in alkanes. Experimental data as in Fig. 6.6. Curves are the FH combinatorial activity model
(dotted), and the IPC activity model Eq. 6.38 with Kong size and energy combining rules at 298
K (solid) and 373 K (dashed).
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6.3.3 Enthalpy of mixing

The PC-SAFT activity model (Eq. 6.16) with the original perturbation parameters
predicts too high values for the enthalpy of mixing for the binary systems n-hexane
- n-dodecane and n-hexane - n-hexadecane as can be observed by the small dashed
curves in left and right panel of Fig. 6.10. With the optimized model parameters

Figure 6.10: Enthalpy of mixing of the binary systems n-hexane - n-dodecane (left panel) and of
n-hexane - n-hexadecane (right panel) as function of n-hexane concentration. Experimental data
of n-hexane - n-dodecane at 298 K (circles) and 308 K (triangles) from [174], and of n-hexane -
n-hexadecane at 298 (circles) and 303 K (triangles) from [167]. Small dashed curves are the results
of Eqs. 6.39, 6.40 and 6.16 with IC combining rules and the original ãj parameters at 298 K. Solid
curves, and the overlapping large dashed and dashed-dotted curves are the results with optimized
ãj parameters for the IC, WH and Kong combining rules, respectively, at 298 K.

(Table 6.3) a good prediction of the experimental results is obtained. The WH
and Kong combining rules yield curves that overlap. These curves lie closer to the
experimental data, than those obtained with the IC combining rules. The model
with optimized parameters shows correctly the trend of increasing mixing enthalpy
with increasing difference in molecular size, but a temperature dependency is hardly
discernible. The maximum difference between the results of 298 and 303 K for the
binary system of n-hexane and n-dodecane is only 0.3 J/mol. This indicates that
the temperature-dependency of the diameter has little influence on the enthalpy of
mixing.

In Fig. 6.11 the results of the IPC model (Eq. 6.26) with the IC, WH and Kong
combining rules are compared to the same experimental data as shown in Fig. 6.10.
The IPC activity model yields results, which are of similar quality as those of the
PC-SAFT activity model with optimized ãj parameters. Here the IPC activity model
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Figure 6.11: Enthalpy of mixing of the binary systems n-hexane - n-dodecane (left panel) and of
n-hexane - n-hexadecane (right panel). Experimental data as in Fig. 6.10. Curves are the results
of the IPC model (Eqs. 6.39, 6.40 and 6.26) with the WH (small dashed curve), the Kong (large
dashed curve) and the IC (solid curve) combining rules at 298 K. The dotted curve on top of the
solid curve is the IPC model with IC combining rules at 303 K.

with the Kong combining rules provides the best results. The IPC activity model
with IC combining rules gives less accurate results than the PC-SAFT activity model
with optimized ãj parameters. We expect that the curves can be further improved
by introducing a temperature dependence of the Zj parameter as proposed in Eq.
6.41.

6.4 Concluding remarks

In this paper dispersion activity models were derived from perturbed chain equations
of state by using the limit of infinite pressure. In this limit molecules are set into
close contact. At this point the second perturbation integral vanishes, while the first
perturbation integral simplifies to a function of molecular chain lengths only.

It was shown that the original set of perturbation integral parameters of the PC-
SAFT equation of state is not applicable in the derivation of a predictive dispersion
activity coefficient model, due to the impossibility to extrapolated the first perturb-
ation integral beyond a packing fraction η = 0.46. Optimization of the ãj model
parameters, while keeping the compound parameters fixed, for this close packed li-
quid condition was possible and yielded a good activity coefficient description. How-
ever, the resulting average coordination numbers, Zj , are physically impossible for
single spheres and infinite long chains. This implies that the PC-SAFT compound
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parameters of the EoS are not applicable for an activity coefficient model.
Therefore, we introduced another method to quantify the first perturbation in-

tegral. In here the effective coordination number of a molecule is quantified by means
of a topological descriptor. For branched and linear chains this can be done by the
first Zagreb index, which requires the carbon structure of a molecule. For cyclic
structures and hyperbranched structures, in which proximity effects exclude more
intramolecular configurations, the first Zagreb index was adjusted to a new topology
number called the dispersion index, D. For the quantification of the dispersion en-
ergy a hydrogen based topology index was introduced, which is a simplification based
on the London dispersion theory. The derived dispersion activity coefficient model
with these descriptors gives in combination with the Flory-Huggins combinatorial
activity coefficient model excellent results for the prediction of activity coefficients
of alkane mixtures. The average absolute deviation of this new model is at the level
of the UNIFAC(Do) model, which is regarded as the best today.

In the limit of molecules having the same coordination number, which happens for
long linear chains, the improved perturbed chain model yields a similar expression
as the van Laar type of activity models. This similarity can be understood from
the fact that a mixture of molecules having equal coordination number is similar to
a cubic equation of state, where all molecules are equal sized spheres, which have
identical coordination number. In other words, in systems where molecules have
the same shape and proximity effect the van Laar type of activity coefficient model
can be used to predict phase equilibria. In general branching reduces the number
of intermolecular interaction and thereby changes the van Laar type of modelling
to a model that quantifies differences in shape and interaction. This is done in the
proposed IPC model.

The evaluation of three different combining rules to quantify unlike interaction
energies and center-to-center distances, which are needed in the calculation of activity
coefficients, shows that nearly the same accuracy in activity coefficients is obtained,
though with different model energy parameters. Therefore, the classical combining
rules of Lorentz and Berthelot seem to be sufficient in the prediction of the dispersion
activity coefficient contribution.

The enthalpy of mixing calculated by the proposed dispersion activity coefficient
models gives qualitatively good results. It yields a correct dependency in chain
length. Binary systems with a larger difference in chain length show a larger enthalpy
of mixing. But the models lack a correct temperature dependency description. We
attribute this deficiency to the absence of a term that accounts for the reduction in
the number of interacting spheres as a result of volume expansion. A way to improve
this could be by scaling the maximum number of interacting spheres with the liquid
density, as proposed by Eq. 6.41.
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In conclusion, the dispersion activity coefficient model as introduced in this paper
is a new way to improve the existing activity coefficient models, where an explicit
term for dispersion interaction has been neglected, and offers the possibility to im-
prove existing predictive models, such as UNIFAC(Do) and COSMO-RS, in a more
robust way.
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Chapter 7

Dispersion ACMs.
Part 3: Group Contribution
Methodology 1

7.1 Introduction

We have shown in the previous chapter how the dispersion contribution of an activity
model can be derived from the PC-SAFT equation of state, developed by Gross
and Sadowski [78]. In combination with an off-lattice combinatorial contribution
[129] this yields the total activity coefficient model for hydrocarbon mixtures. This
model, which we called the improved perturbed chain (IPC) activity model, can be
extended to systems containing polar and hydrogen bond forming molecules by using
the energetic contribitions derived from the original UNIFAC [59], COSMO-RS [116]
or COSMOSAC [145] model. The benefit of the IPC activity model is that only the
topology of the molecule is required [130].

In this work we will refine the IPC acitivity model by introducing a group con-
tribution method which includes the topology of the molecule. This information is
stored by means of a local topology index. A further improvement is made by using
Boltzmann weights to account for differences in submolecular interactions by using
the concept of the COSMOSPACE [117] and COSMO-RS [116] models. This implies
that the interaction energy of a molecule is not averaged by the local mole fraction,
but by the local activity.

1To be submitted for publication as "Dispersion activity coefficient models. Part 3: A structural
preserving group contribution method.", by Gerard J.P. Krooshof, Remco Tuinier, and Gijsbertus
de With.
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First we summarize the IPC activity dispersion model and point out the key
features. Subsequently, we will derive the group contribution method for dispersion
contribution in the activity coefficients of alkanes. The obtained GC model is com-
pared to experimental data and compared to earlier models. Finally, we discuss the
obtained results.

7.2 Theory

7.2.1 The dispersion activity coefficient model

The dispersion contribution can be calculated by the improved perturbed chain (IPC)
activity coefficient model [130]. This model gives for component k, which consists of
mk segments having an average diameter dk, the activity coefficient:

ln γdispk = mk
Zk
2
ε̃k

(
T0

T

)1−
∑
j

[
1 +

Zj
Zk

(
dk
dj

)3
]
φ̂j
ε̃jk
ε̃k

+
∑
i,j

Zi
Zk
φ̂iφ̂j

ε̃ij
ε̃k

 ,
(7.1)

where the hard-core volume fraction φ̂k is calculated with the mole fraction xk:

φ̂k =
xkmkd

3
k∑

j xjmjd3
j

. (7.2)

The quantity Zk defines the average number of interacting spheres per molecule
segment:

Zk = Zmax −
Dk

mk
, (7.3)

where Zmax = 14.4 is the maximum number of spheres around a sphere at random
close-packed (RCP) density. This parameter could be made temperature dependent
to account for expansion of the liquid. We will mot explore this in this work. Dk is
the dispersion number of molecule k, which is temperature independent. For linear
and branched alkanes this topology index is equal to the Zagreb topology index [83]
and is given by the equation:

D =

4∑
j=1

mv,j × j2, (7.4)

where the mv,j denotes the number of vertices, in our case non-hydrogen atoms, that
have j covalent bonds with other non-hydrogen atoms. In the case of alkanes, for
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instance, the 3-methyl-pentane molecule has 3 vertices (-CH3) with 1 non-hydrogen
bond, 1 vertex (>CH2) with 2 non-hydrogen bonds, and 1 vertex (>CH-) with 3
non-hydrogen bonds. In this case Eq. 7.4 reads: D = 3× 12 + 1× 22 + 1× 32 = 16.
Subsequently, Eq. 7.3 gives the average number of segments that interact with a
segment of 3-methyl-pentane at random close-packed condition: Zk = 14.4−16/(6) =
11.74.
The quantity ε̃k is the reduced interaction energy of pure compound k at reference
temperature, T0, and given by:

ε̃k =
εk
kBT0

, (7.5)

where kB is the Boltzmann constant, and εk the dispersion energy of molecule k,
which is calculated by the equation:

εk =
ε0 + ε1JQH

mk
, (7.6)

where ε0 are ε1 are constants, which were derived by fitting experimental data and
given in table 6.4. The parameter JQH is a constitutional index, called the quadratic
hydrogen number, and is defined by the number of hydrogen atoms attached to
carbons in molecule k.

JQH = 32NCH3 + 22NCH2 + 12NCH + 02NC. (7.7)

In here the parameter NCH3, NCH2, NCH, NC is the number of carbons that have
3, 2, 1 and 0 hydrogen atoms, respectively. For instance, the compound 2,2,4-
trimethylpentane, which has 5 -CH3, 1 >CH2, 1 -CH< and 1 >C< group. This
gives D = 5 + 4 + 9 + 16 = 34 and JQH = 9× 5 + 4× 1 + 1× 1 = 50. The calculation
of the unlike interaction energy in Eq. 7.1 requires a mixing rule, which has been
discussed in detail elsewhere [130].

The main feature of the IPC model is the parameter Qj, which contains topolo-
gical information of the molecule. One of the weak point in the PC-SAFT model is
the calculation of the average interaction energy. It is an average, treating molecules
as randomly distributed. As has been pointed out by Guggenheim [81] interaction
creates non-randomness. His quasi-chemical approach, in which molecules make a
quasi-bond between contacts, leads to explicit equations for binaries of molecules,
which have one or two types of contacts. In COSMOSPACE [117] equivalent equa-
tions as those of Guggenheim are obtained, but also formula’s that can handle mo-
lecules having more than two different contact types. This formulation will be used
in this chapter.
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7.2.2 Improvement towards a group contribution method

The IPC model requires as input for the dispersion contribution of the activity
coefficient model only the molecular formula of the alkanes in the mixture. From
this information the topology indices D and the constitutional indices JHQ can be
calculated, and subsequently Qk and εk. For the development of a group contribution
method we have to define molecular groups. In the next sections we show how this
is done. To address the weakness of the PC-SAFT model, where the mole average
instead of a Boltzmann weighted average is used for the calculation of the average
interaction enrgy, we apply the concept of COSMOSPACE.

Definition of group increments

From the molecular model we learned that a key parameter is the dispersion number,
defined by Eq. 7.4. It defines the average number of interacting segments around a
segment of molecule by Eq. 7.3. To transpose this into a group contribution model,
we define main groups, which are characterized by the same dispersion energy, and
subgroups which are defined by the connectivity. The topology index Dd of the
molecule is now reduced to a summation of group increments. Each subgroup k is
defined by the connectivity with its neighbors:

D(mv,k) =
k∑
i=1

j(i), (7.8)

where mv,k defines the number of vertices of a segment with k covalent bonds to
non-hydrogen atoms, and j(i) denotes the type of the subgroup to which is bonded
to. For example a -CH3 group makes only one covalent bond with another methyl
group. This case reduces Eq. 7.8 to just one value depending to which type of methyl
group it is bonded. When a -CH3 group is bonded to a -CH3, to >CH2 ,-CH , or
>C< group, the value of Dd is 1, 2, 3 and 4, respectively. A >CH2 group has two
covalent bonds with non-hydrogen atoms, k = 2. Therefore the summation is over
two types of methyl groups. This yields values ranging from 2 (bonded to 2 CH3)
to 8 (bonded to 2 >C<). In appendix P a full table of 68 possibilities for branched
alkanes and the D increments are given. Table 7.1 shows the groups in n-alkanes.
We see that at the chain ends the number of interactions Z is higher than in the
chain middle due to the presence of neighboring carbons. Tables 7.1 gives for the
entire molecule nonane D = 30 and Z = 99.6. An example of a branched alkane is
given in Table 7.2. We note that the value for D of a molecule can be calculated
by summing up the contributions of the groups, as was done in the tables above,
or directly by Eq. 7.4 or Eq. 7.8. In the case of 2,2,4-trimethylhexane Eq.7.4 gives
D = 5× 12 + 2× 22 + 1× 32 + 1× 42 = 38.
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Position 1 2 3 . . .NC-2 NC-1 NC
Group CH3 CH2 CH2 CH2 CH3 Sum
Dj 2 3 4 3 2 4NC-6
Zj = Zmax −Dj 12.4 11.4 10.4 11.4 12.4 6+10.4NC

Table 7.1: Example: Increments of D for an n-alkane with NC > 4 and the calculation of Zj when
Zmax = 14.4.

Position 1 2 3 4 5 6 7 8 9
Group CH3 C CH2 CH CH2 CH3 CH3 CH3 CH3 Sum
Dj 4 5 7 5 4 2 4 4 3 38
Zj = Zmax −Dj 10.4 9.4 7.4 9.4 10.4 12.4 10.4 10.4 11.4 91.6

Table 7.2: Example: Increments of D for 2,2,4-trimethylhexane and the calculation of Zj when
Zmax = 14.4.

Eq. 7.8 plays an important role in the calculation of interacting spheres per main
group, which denotes a type of an induced dipole. Therefore, all subgroups, which
belong to the same main group, have the same dispersion energy. The Q values of
these subgroups can be summed to quantify the total amount of interactions that
will give the same interaction energy with another main group. Table 7.3 gives some
examples of this procedure.

Main group n-alkane (NC > 3) n-Nonane 2,2,4-trimethylhexane
Zk3 =

∑
Z-CH3 24.8 = 4 + 10.4× 2 24.8 55.0

Zk2 =
∑
Z>CH2 2 + 10.4 (NC − 2) 74.8 17.8

Zk1 =
∑
Z>CH- 0 0 9.4

Zk0 =
∑
Z>C< 0 0 9.4

Ztot 6 + 10.4NC 99.6 91.6
Ztot/NC = Zk(Eq.7.3) 10.4 + 6/NC 11.06 10.18

Table 7.3: Dispersion profile of n-alkanes and 2 nonane isomers.

The table shows that for nonane the two CH3 groups and the seven CH2 groups
interact in total with 24.8 and 74.8 methylene groups from the surrounding, respect-
ively. By dividing these number with the number of groups, we get the average value
per group: 12.40 and 10.68, respectively. In general for n-alkanes with NC ≥ 3, we
have always 12.4 for the CH3 groups and 10.4 + 2/ (NC − 2) for the CH2 group. The
last results shows that the interaction with CH2 is dependent from chain length of
the molecule. It is a topology effect, for which the UNIFAC and COSMO-RS family
of models do not account. It plays a role for relatively short chains, since long chains
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have a contribution of 10.4 neighbors per CH2 group.

Definition of interaction energy

In the COSMOSPACE and COSMO-RS models interactions are computed on the
basis of pairwise interacting surface areas. In these models a molecule is divided
in different surface types and the local interaction energy is dependent from the
charge density between surface patches. We will use this idea for the induced dipole
interaction between a pair of methylene groups. Further, instead of segment surface
fractions, we take Zj , to quantify the fraction of induced dipole interactions. This
fractions is defined by the expression:

ψj =

∑
k xkZk,j∑
k,j xkZk,j

, (7.9)

where xk is the mole fraction of compound k in the mixture and Zk,j is the number
of alkyl groups of type j in molecule k. We will use subscripts j = 3, 2, 1 and 0 as
short-cut to denote the CH3, CH2, CH, and C group, respectively.

Let us take as example pure n-nonane. From Table 7.3 it follows that ψ3 =
24.8
99.6 = 0.249 and ψ2 = 74.8

98.6 = 0.751, while ψ1 = ψ0 = 0. A 50:50 mixture of n-
nonane and 2,2,4-trimethylhexane has ψ3 = 39.90

95.6 = 0.417, ψ2 = 46.30
95.6 = 0.484, and

ψ1 = ψ0 = 4.70
95.6 = 0.049. The activity coefficient of an methylene group in a mixture,

γ̂j, is found by using the concept of the COSMOSPACE model [117]. With the group
fractions, ψk the group activity coefficients are defined by the expression:

1

γ̂j
=
∑
k

ψkγ̂kτkj , (7.10)

where j and k run from 0 to 3 to denote the four alkyl groups by their hydogen
number. The model can easily be extended to other groups that interact by disper-
sion, but for this work we limit ourselves to linear and branched alkanes, to show
that this concept works. The above set of four equations is solved iteratively starting
with γk = 1 at the right side of Eq. 7.10. The parameter, τij, is the coefficient of
interaction between two alkyl groups and is defined by:

τij = exp

[
−εij − (εii + εjj) /2

kBT

]
= exp

[
−∆εij
kBT

]
, (7.11)

where εij is the dispersion energy between an alkyl pair, which is computed by the
dispersion energy of the groups. In appendix Q we show that in the approximation
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that all carbons have the same induced dipole strength, that Eq. 7.11 reduces to:

τij = exp

[
−(i− j)2 εHH

2kBT

]
, (7.12)

where i and j denote the number of hydrogen atoms in the segments that interact,
and εHH is the induced dipole interaction energy between two hydrogens of different
alkyl groups. This implies that the energy differences of unlike pairs are correlated
by the ratio:

(∆ε1,2 : ∆ε2,3 : ∆ε3,4) : (∆ε1,3 : ∆ε2,4) : ∆ε1,4 = (1 : 1 : 1) : (4 : 4) : 9 (7.13)

We can expect that, due the bonding between the carbon atoms, the induced dipole
energy is shifted. We optimize the ∆εij of Eq. 7.11 to the experimental infinite
dilution activity coefficient data by assuming that there is not such a correlation
between these energy differences.

In chapter 6 on the derivation of an improved perturbed chain activity model,
we demonstrated that topological information improves the description of non-ideal
behavior of alkane mixtures, and with the work on the nearest neighbor theory [129]
we showed that the molecular activity of a compound k is calculated from surface
activity coefficients by using the number of nearest neighbors, Z. Therefore, with
the Zkj of the alkyl groups in this work, calculated by the D parameters in P, we
get:

ln
(
γdispk

)
=
∑
j

Zkj

2
ln

(
γ̂xj
γ̂pj

)
(7.14)

where γ̂xj and γ̂pj denote the activity coefficient of group j in the mixture and in
the pure compound, respectively, which are calculated by Eq. 7.10. An important
difference with the COSMOSPACE method is that the Qkj in this work contains
topological information of the molecule, while in COSMOSAC [145] and COSMO-
RS [116] this information is lost by the computation of sigma-profiles. In the next
section the dispersion energy between two hydrogen atoms of different segments will
be obtained by fitting the limiting activity coefficients of linear and branched alkanes.
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7.3 Results

7.3.1 Activity coefficients

Fig. 7.1 depicts the results obtained with the GC-IPC model, which is the combin-
ation of Eq. 7.14 and Eq. 3.36. We observe a good correlation between experiment
and model for the limiting activity coefficients of binary hydrocarbon mixtures with
equation and for the activity coefficients of pentane to octane in squalane. In fact, it

Figure 7.1: Left panel: Parity plot between experimental data and GC-IPC model data for the
limiting activity coefficients of binary alkane mixtures. Right panel: Activity coefficients of alkanes
in squalane as function of alkane mole fraction. Symbols and solid curves as in Fig. 5.8. Dashed
curves represent the activity coefficient of squalane dissolved in octane (top), heptane, hexane and
pentane (bottom), respectively.

is slightly better than the molecular approach. The average error for the activity at
infinite dilution is for the GC model 4.4%, while it is 4.5% for the molecular model
with Kong mixing rules. The average error for the activity coefficients of alkanes dis-
solved in squalane <0.1%, while it is 0.8% for the molecular model. Fig. 7.2 shows
the activity coefficient at infinite dilution of n-hexane and n-heptane in alkanes as
function of carbon number. We see that model and experiment agree well. The level
of accuracy is the same as the molecular model. Table 7.4 shows at the left side
the absolute interaction energies, ∆εij , and on the right the values relative to the
interaction energy between a CH3 group and a CH2 group, where we have denoted
the expected theoretical values within parentheses.
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Figure 7.2: Limiting activity coefficients of hexane (left panel) and heptane (right panel) in
alkanes. Blue and red symbols are experimental data at low and high temperature collected from
DDBST [38]. Red and blue curves are the results of GC-IPC model at 313 and 373 K.

∆εij [K] -CH3 -CH2− -CH< >C<
-CH3 0 42 177 294
-CH2− 42 0 36 71
-CH< (168) (42) 0 0
>C< (378) (168) (42) 0

∆εij/∆ε12 -CH3 -CH2− -CH< >C<
-CH3 0 1 4.24 7.07
-CH2− (1) 0 0.87 1.69
-CH< (4) (1) 0 0
>C< (9) (4) (1) 0

Table 7.4: Absolute and relative dispersion interaction energies.

We observe that the regression gives for the relative interaction of CH3 with the
other alkyl groups the ratios of 1:4.24:7.07, which roughly follows the tendency of the
expected ratio of 1:4:9. The difference indicates that the induced dipole of each alkyl
group does not follow the quadratic relation with hydrogen number, which indicates
that Eq. 7.12 can not be applied or requires a modification involving the effect of
carbon-carbon and carbon-hydrogen interaction.

7.3.2 Excess enthalpy

The prediction of the excess enthalpy, calculated from Eq. 6.26 and 6.39, is shown
in Fig. 7.3. It is qualitatively correct, and comparable to the results depicted in Fig.
5.9 and 6.10, when the classical combining rules of Lorentz and Berthelot are used.
Since Kong’s model gives better results, it might be that Eq. 7.12 requires a mixing
rule for the interaction energy. Comparing these results with the results obtained
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Figure 7.3: Enthalpy of mixing of the binary systems n-hexane - n-dodecane (left panel) and of
n-hexane - n-hexadecane (right panel). Experimental data measured at T = 298 K from [174] and
[167]. Curves are the results of Eq. 6.26 and 6.39 at T = 298 K.

with Eq. 5.31 and Eq. 6.26 with 6.39, as depicted in Fig. 5.9 and 6.10, respectively,
show similar deviation from experimental results when the classical mixing rules of
Lorentz and Berthelot are used.

7.4 Discussion and Conclusions

In this chapter we have shown that the IPC model for the calculation of the dispersion
activity coefficient contribution can be converted into a group-contribution method.
Key is the calculation of Zk,j , which is the number of interacting spheres of a group
j in molecule k. The interaction energies for these groups obtained by regressing
experimental infinite dilution activity coefficient data follow roughly a quadratic
relation with the difference in hydrogen atoms between two groups. The origin
of the difference between the regressed and the expected values for the interaction
energies (Table 7.4) is not yet clear. The assumption that the carbon atoms in a
chain are not spherical but rather ellipsoids [11], might change the ratio in area and
surface fraction of compounds, but is expected not to exceed a change of 5% in
the combinatorial activity contribution, as was discussed in chapters 3 and 4. For
that reason shape effects are regarded as negligible. On the other hand, the work
of Schneider et al. [199] could be important. They showed that steric crowding of
carbons, such as is present in molecules that contain, for instance, tertiary butyl
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side groups, stretches the adjacent C-C bond, but does not lead to a lower stability
of this covalent bond, because the crowded side groups give a compensating force
that stabilizes the stretched bond. This finding could imply that the intramolecular
bonding between adjacent methyl groups makes these groups less probable available
for intermolecular bonding. This hypothesis could be explored with the current
model set-up by introducing a second order effect. In practice this implies that the
dispersion index, D, of methyl and methylene side groups, which are attached to
neighboring >C< or >C- groups, should be higher than the covalent connectivity
of the molecule indicates. Effectively, the number of interactions has to be reduced.
The current work neglects this effect and therefore, in order to compensate the too
high number of interacting spheres, the regression of the activity coefficient data
possibly yields a lower value for the interaction energy parameter than is expected
from theory.
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Chapter 8

COSMO-3D1

8.1 Introduction

In the design of chemical and pharmaceutical processes, the calculation of activity
coefficients is essential to know the volatility or solubility of compounds [180, 194, 9,
60, 230]. In the past, many methods have been developed for this purpose such as
group contribution methods (GCM) [146, 147, 142, 41, 34, 35, 91, 161, 243], or quant-
itative structure property relationships (QSPR) [70, 108, 183, 187, 207]. One of the
most successful approaches is based on the UNIFAC theory [178, 112, 133, 231, 21].
Quantum-mechanically based predictive models, like COSMO-RS [114, 116] and
COSMOSAC [144] methods form an important alternative when experimental data
is missing and group contribution methods like UNIFAC fail due to missing atom
groups or interaction energies. Typically, COSMO-based methods can be used to
screen a long list of solvents to select a suitable candidate to extract a solute. Re-
cently, COSMOSAC has become available in process simulators, where it can be
used to calculate the equilibrium distribution of compounds in distillation, extrac-
tion or crystallization [7, 45]. The screening process can save time and money since
experiments tend to be time consuming and expensive. However, the efficacy of com-
putational methods hinges upon the accuracy and robustness of their predictions.
Also computer simulation methods like Monte Carlo (MC) and Molecular Dynam-
ics (MD) can be used to compute activity coefficients [149, 131, 150, 198, 197]. It
is possible to obtain the center-of-mass averaged pair distribution function g(r) of
system using MC and MD methods [61]. The activity coefficients can be directly
derived from g(r) via the Kirkwood-Buff theory [113]. Liu et al. [149] showed that

1Based on the publication: COSMO-3D: Incorporating Three-Dimensional Contact Information
into the COSMO-SAC Model. Ind. Eng. Chem. Res. 54(2015) 2214-2226 by Juan J. Gutiérrez-
Sevillano, Kai Leonhard, Jan M. van der Eerden, Thijs J.H. Vlugt, and Gerard J. P. Krooshof.
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MD calculations using the OPLS force field [104] provides more accurate thermo-
dynamic factors than COSMO-based methods, but also that these calculations are
computationally more expensive. The COSMOSAC [144] model is based on the
conductor-like screening model (COSMO) [118, 114, 116]. In this approach, mo-
lecules are modeled with a quantum mechanical theory such as density functional
theory[36]. This results in a charge distribution for the molecules, which repres-
ents the average electronic structure in the ground state. This distribution is then
placed in a molecule-shaped cavity of a conductor (the so-called COSMO surface)
which screens the atomic charges by accumulating charge on the cavity surface.
This COSMO surface is composed of ”segments” with a constant charge density and
the charge distribution is determined by solving Poisson’s equation. The screening
charge is then used as an external field to recompute the charge distribution of the
molecule. This is repeated until the two calculations are self-consistent. The out-
come of this calculation is the charge distribution that the solvent would have to
provide in order to screen a single molecule. From the screening charge distribu-
tion it is possible to compute the interaction energy between molecules by placing
the COSMO charges into a thermodynamic ensemble in which they are allowed to
freely associate. This is the basis for the COSMO-RS [114, 115, 116], COSMOSAC
[94, 142, 141, 229, 239], and COSMO-RS(Ol) [74] algorithms. While these methods
are based on the quantum mechanical descriptions of the mixture constituents, they
still require a set of parameters that are fitted to experimental data. As these para-
meters seem to be universal for many liquid mixtures, the methods can be used to
make predictions for mixtures containing novel components.

Here, we introduce the COSMO-3D model which is a modification of the COS-
MOSAC model. The purpose of this modification is to incorporate 3-dimensional
geometric information related to the shape and size of molecules in a mixture. De-
pending on the shape and size of molecules, the contact area between them will be
different. So far, in COSMO-based models the pairing area of the segments (aeff)
has an universal value. Our idea is that, in order to obtain a better thermodynamic
description, this area should vary according to the molecular shape near the con-
tact point of molecules. Since the effective contact area is reciprocally related to
the coordination number of molecules, the choice of a universal effective area is like
setting the coordination number (z) to a universal value. In the UNIFAC models the
coordination number value is set to 10. In reality the value varies between 6 and 12,
depending on the average packing structure that molecules have in the liquid; 6 for
cubic packed molecules and 12 for close packed spheres. The simplification of z = 10
has little consequences in the UNIFAC model, since the developers had the option to
repair a deviation between model and measurement by adjusting the group surface
parameter and the binary interaction parameters. In the COSMOSAC model this
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option is not available. As a result the COSMOSAC model will yield less accurate
results for systems, in which the molecules have an average contact area that deviates
from the proposed universal value. Another approach to improve activity models is
given by the work on the MOQUAC activity coefficient model [22]. In this model
molecular orientation of two molecules is used to improve the Gibbs energy calcula-
tion. The developers show that the MOQUAC model gives better results than the
GEQUAC model. The latter has the same residual activity coefficient equation as the
COSMOSAC model. The work on MOQUAC indicates that 3-dimensional structure
information improves activity models. With the COSMO-3D model we will show
how 3-dimensional information, as is provided by the ADF COSMO output files, can
be used to improve the COSMOSAC model [94, 141, 145, 229, 239], where inform-
ation on the 3-dimensional structure of molecules is not explicit. In COSMO-3D,
3-dimensional information is included by a new molecular descriptor, the so-called
“molecule effective contact area”. This descriptor is unique for each species and it
is calculated in a preprocessing step. Their values are stored in a database and can
be employed in future calculations without additional cost. Using the concept of
molecule effective contact area allow us (1) to eliminate two parameters from the
COSMOSAC (2010) model (AES and BES), (2) to replace a parameter (aeff) by a
new one (R3), and (3) to add one parameter (bes). For mixture calculations with
non-hydrogen-bonding compounds, COSMOSAC (2010) has four adjustable univer-
sal parameters [94] (AES, BES, aeff , and fd), while our new method has three (R3,
bes and fd). Below we show that, although COSMOSAC uses BES as an independent
parameter to describe mixtures over a range of temperatures and COSMO-3D does
not need an additional parameter for temperature effects, COSMO-3D is significantly
more accurate in describing experimental data.

This paper is organized as follows. In the next section we introduce the key
concept: the molecule effective contact area, and how it is incorporated into the
COSMOSAC model. In section 8.3, we explain the applied numerical procedures.
In section 8.4 we show vapor-liquid equilibria predictions and activity coefficients
obtained using our model. To show the higher accuracy of this method, a comparison
with experimental data and with COSMOSAC model is also provided and discussed.
Our findings are summarized in section 8.5.
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8.2 Theory

8.2.1 Molecular Contact Areas

A premise of previous COSMO-based models is that the area used for segment pair-
ings, typically referred to as aeff , has a universal value [114, 144]. This contact area
is used to determine the electrostatic interaction energy for any given segment pair-
ing via Onsager’s theory. In general, the area of interaction is much larger than a
typical segment area on the COSMO surface, because electrostatic forces are long
ranged. In the revision of COSMOSAC model, as proposed by Xiong et al. [239], two
contact areas: aavg, used in the charge density averaging (see section 2.2) and aeff ,
to compute the restoring free energy of a solute molecule. In this work, we follow a
different approach by keeping the same parameter aeff for both purposes but making
it dependent on the components in the mixture. Since charges are distributed over
the 3-dimensional COSMO surface of the molecules, the interaction energy will de-
pend on the shape and size of the interacting molecules. Our new method provides
information in the form of pure component effective contact areas, which are derived
by a procedure that uses the 3-dimensional structure of the interacting molecules.
The pure component effective contact area can be seen as a molecular descriptor,
which is unique for every species. This new parameter will be used to improve the
COSMOSAC statistical thermodynamic calculations.

The effective contact area of a molecule is calculated using the output provided by
the ADF COSMO code. The ADF COSMO output file gives not only the position,
the surface charge, the area, and the potential of the surface segments at the inside
of the cavity surface, but also the position of the atom centers. To calculate the
effective contact area we start with two identical molecules. The choice for taking two
identical molecules (cavities) is because the reference state is the pure liquid, which
is expressed later in the sigma profile of the pure liquid. The procedure to determine
the molecule effective contact area continues by choosing a surface segment of the
first molecule. This surface segment and the center of the corresponding atom is
translated and rotated to the x-axis. Subsequently a segment of the second molecule
is placed against the first segment, in such a way that the vector between the segment
center and the atomic center lies anti-parallel to the x-axis (Fig. 1a). This operation
defines two translations and two rotations by which the coordinates of all the atom
centers and all the other segments of the two molecules are calculated. When this
is done a probing sphere with radius R3 is introduced (Fig. 1b). It rotates around
the x-axis over the surface of the two contacting atoms and defines on each atom a
spherical cap. The size of the caps is dependent on the radii of the rolling sphere,
and the two contacting atoms. By collecting the surface area of all the segments that
have the coordinates within the two spherical caps, we get the local contact area of
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the chosen pair of segments. Outside the spherical caps there are pairs of segments
(i, j) that are in close contact. To find them fast, we first collect atom-atom center
distances, rij , which fall within the rangeRi+Rj < rij < Ri+Rj+2R3. Subsequently
the pairs of close contacting segments are found by dij < rij − Ri cos θi − Rj cos θj
(Fig. 1c). In here rij is given by the position of the atom centers, Ri and Rj by the
atom radii and the angles are given by the position of the probing sphere. The sum
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Figure 8.1: Schematic picture of the calculation of the molecule effective contact area. (a) Two
identical molecules, colored green and blue, at one of the many contact configurations. (b) Close-up
of Fig 8.1.a. An atom of the blue molecule with radius R1 is within contact range of an atom of
the green molecule with R2. The probe sphere (orange) with radius R3 defines the collection of
surface pair segments (blue patches in the orange caps). (c) Plane projection of the two spheres of
(Fig. 8.1 b) explaining the distance criterion dij < dcrit by which the area of ’contact’ (gray) and
the blue patches shown in Fig. 8.1 b are defined .

of the local contact area and the external area is the total area of the established
configuration, aθuv. Subsequently, while keeping the contact point fixed, the second
molecule is rotated to 5 other angles (θ = π/3, 2π/3, π, 4π/3, 5π/3) to define 5
other configurations, for which the contact aθuv, is calculated. This operation will
not change the local contact area, since the spherical caps will not change. But the
rotation will change the distance between the segments of the two molecules and
thereby the area of the external contacts. This is repeated for all contact pairs that
can be made between the two molecules. So, for a molecule with NS surface segments
we evaluate in total 6N2

S of configurations. The sum of all contact areas is divided
by 12N2

S to give the effective contact area of one molecule as embedded in its own
pure liquid, the reference state. The molecule effective contact area in this work is
the average of all possible pairings between the atoms of two identical molecules (i
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and i):

ai =
1

2N2
SNθ

∑
u,v,θ

aθuv, (8.1)

where aθuv is the contact area calculated for the pairing of segments (u, v) from
molecules i and i′, respectively at angle θ, NS is the number of segments, andNθ is the
number of different configurations as a result of the rotation of the molecules around
the axis through the contact point, which in our case is 6. The factor 2 arises from the
fact that we summed the area of both caps in the calculation. The aforementioned
algorithm requires many translations, rotations, and distance calculations, e.g. in the
computation of the effective contact area of acetone there are 6× (853)2 = 4365654
configurations to evaluate. For each configuration the distance between all pairs of
segments have to be checked, which imply 8532 calculations. In order to reduce
the computation time quaternions [106, 71] are used for the 5 additional rotations
around the axis of contact. The calculation of the effective contact area is done
with two identical molecules and the result is stored in a database. For the effective
contact area of a mixture, we opted for the mixing rule of Eq. 8.2, instead of
calculating all pairs of molecule types that are in the mixture, in order to keep the
computational time acceptable in engineering flow-sheeting programs. Table 1 lists
the number of surface segments (NSS), the cavity volume, the cavity area from the
ADF COSMO file, and the molecule effective contact area as found by the above
explained algorithm. With the fitted value R3 = 0.5 Å(the fit of R3 is not very
sensitive and therefore we report just one digit), the contact areas of the molecules
of the investigated binary systems range from 5.6 to 6.5 Å2 and agrees very well with
the optimum value range of 4 to 7 Å2 for the group of neutral compounds in the
effective surface area sensitivity analysis of Wang et al. [229]. This is smaller than
the COSMOSAC effective area (7.25 Å2). Table 1 also shows that flat molecules
have larger contact area than bulkier molecules, as a result of the multiple contacts
outside the local contact area. For each mixture a system effective contact area is
calculated, according to

aeff =
1

N

N∑
j=1

aj , (8.2)

where aj is the molecule effective contact area of pure component j, and N the
number of species in the mixture. We mention that the above mixing rule is only
system dependent and not concentration dependent. This is a requirement that
follows from the Gibbs-Duhem criterion. The new universal parameter R3, i.e. the
radius of the probing sphere, substitutes the old parameter aeff . The benefit is that
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Molecule ADF COSMO ADF COSMO ADF COSMO COSMO-3D
NSS Volume (Å3) Area (Å2) aeff (Å2)

2-methoxy-2-methylpropane 1166 134.20 141.87 5.62
acetone 843 85.47 103.28 5.66
methylcyclohexane 1286 150.18 154.50 5.67
propanal 853 86.40 103.91 5.67
cyclohexane 1138 130.15 138.20 5.68
pentane 1172 124.01 140.11 5.68
oxolane 973 100.45 114.94 5.70
diisopropyl ether 1375 156.02 164.93 5.72
2-methylpropanal 1005 107.21 121.63 5.73
methyl acetate 930 97.15 114.98 5.75
hexane 1362 145.42 160.38 5.78
2-butanone 1002 107.04 122.86 5.79
1,4-dioxane 1022 110.99 123.10 5.81
heptane 1499 166.15 179.11 5.81
1-hexene 1271 139.35 154.42 5.83
3-pentanone 1177 128.78 143.08 5.84
ethyl acetate 1124 118.99 136.79 5.85
pentanal 1206 129.48 145.35 5.90
ethylbenzene 1308 154.16 160.57 6.14
benzene 958 111.88 123.02 6.27
benzaldehyde 1167 137.63 145.93 6.50

Table 8.1: Number of surface segments (NSS), cavity volume and cavity area from the ADF
COSMO QM calculation, and effective area of molecules obtained in this study. The areas were
computed using the method described in section 2 with R3 = 0.5 Å.

geometric information about the effective contact area of molecules is taken into
account in a more realistic way.

8.2.2 COSMO-3D model

In the COSMOSAC model, the computation of activity coefficients is based on the
charge density distribution of the molecular species. This distribution is obtained
from Quantum Mechanics (QM) calculations and incorporated in the form of so-
called σ-profiles. As in most previous COSMO-models, we smooth the raw QM
segment charge distribution to generate σ-profiles [144]. This procedure is introduced
to remove artifacts, i.e. high charge densities, which can occur near sharp zones of the
enclosing conductor surface. The applied function is actually a filter that smooths
out these outliers. We use the apparent screening charge distribution of previous
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models, which gives for the smoothed segment charge densities.

σu =

∑NS
v=1

(
σ∗v

avaeff
av+aeff

exp
[
−fd

πλ2uv
av+aeff

])
∑NS

v=1

(
avaeff

av+aeff
exp

[
−fd

πλ2uv
av+aeff

]) (8.3)

whereNS is the total number of segments of a COSMO surface, σ∗v and av are the raw
COSMO charge densities and areas of each segment v forming the COSMO surface,
λuv is the distance between segments u and v , and fd is a universal parameter that
defined the decay of the filter function. We mention that in Eq. 8.3 the system
effective contact area, aeff , is no longer a universal value, as it was in previous
COSMO models [94]. This aeff is a constant calculated by the system average (Eq.
8.3) and is used for all mixture concentrations of the investigated system, including
the pure components.

With the smoothed charged densities obtained using the aeff we can define the
σ-profiles for a given molecule,

pi(σm) =
Ai(σm)

Ai
(8.4)

where Ai(σm) is the area of molecule i with charge density σm, and Ai is the total
area of the molecule. The σ-profile for a mixture is obtained from:

P (σm) =

∑N
i=1 xiAipi (σm)∑N

i=1 xiAi
(8.5)

where xi and Ai are the mole fraction and surface area of component i , respectively.
Therefore the σ-profile of the mixture is the mole average of the σ-profiles of pure
compounds. According to the original COSMOSAC models [146, 144, 143], the
activity coefficients of solute i in the solution S (γi/S ) are given by:

lnγi/S = lnγres
i/S + lnγcomb

i/S (8.6)

where lnγres
i/S is the residual activity coefficient and lnγcomb

i/S is the combinatorial
contribution from mixing. This term, given by Huyskens [99], as discussed in chapter
2, reads:

lnγcomb
i/S =

1

2

[
ln
φi
xi

+ 1− φi
xi

]
(8.7)

where xi and φi = Vixi/
∑N

i Vixi are the concentration and volume fraction of com-
ponent i, respectively, N the number of components of the mixture, and Vi is taken
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to be the COSMO volume of each species. In our work, this volume is approximated
with the volume of the molecule-shaped cavity used in the QM calculations [200].
Essentially, Eq. 8.7 comprises an interpolation between the entropy of mixing for an
ideal gas and a Flory-Huggins [53, 96] term which is typically used to describe fluid
phases [21]. Note that we could use other, more complex forms of the combinatorial
term, but Eq. 8.7 shows to be sufficiently accurate. E.g. acetone and heptane are
the compounds in our set that have the largest difference in area and volume and
thereby show the largest deviation from ideal mixing. The limiting combinatorial
activity coefficients of acetone and heptane are 0.91 and 0.87, respectively, according
to Eq. 8.7. For the Staverman-Guggenheim combinatorial activity coefficient, which
is used in COSMOSAC model, the values are 6% lower (0.87 and 0.82 respectively).
The difference between the two combinatorial models is much lower than the over-
all improvement made by the COSMO-3D model as depicted in Fig. 3a, where we
observe a 36% difference in activity coefficients. For molecules of similar size the
difference in the combinatorial models is even smaller. Then, we turn to the residual
activity coefficients in Eq. 8.6. For component i in a mixture we write

ln γres
i/S =

Ai
aeff

∑
σm

P (σm)
{

ln
[
Γi/S(σm)

]
− ln

[
Γi/i(σm)

]}
(8.8)

where aeff is the effective contact area for the mixture as defined in Eq. 8.2 and Ai is
the surface area of component i. The summation is taken over all smoothed segment
charge densities σm in the σ-profile of the mixture, P (σm). The terms ln

[
Γi/S (σm)

]
and ln

[
Γi/i(σm)

]
are defined as the segment activity coefficients for the mixture and

for the pure component at some reference state. Following the work of Wang and
Sandler [229], the segment activities are functions of the species in the system via
the interaction energy and effective contact area, and they are given by

ln
[
Γi/S(σm)

]
= −ln

{∑
σm

P (σ′m)ln
[
Γi/S(σ′m)

]
exp

[
−E (σ, σ′)

RT

]}
(8.9)

In this equation, the segment-segment interaction energies are given by

E(σ, σ′) = cES(σ + σ′)2 (8.10)

The constant cES in Eq. 8.10 is typically obtained from fitting to experimental data.
Hsieh and Sandler [94] define cES as a function of the temperature and two fitting
parameters:

cES = AES +
BES

T 2
(8.11)
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Previously, Wang and Sandler [229] defined cES as follows:

cES = fpol
0.3 (aeff)3/2

2εo
, (8.12)

where εo is the permittivity of the vacuum, fpol is the polarization factor (which is
a universal constant coming from the used QM-model), and aeff is a fit parameter.
At this point we introduce a modification in Eq. 8.12 by using a system dependent
aeff parameter calculated by Eq. 8.2 and incorporating a new fit parameter bes. The
resulting expression equals

cES = fpol
0.3 (aeff)3/2

2εo
bes (8.13)

The polarization factor fpol can be calculated from the COSMO surfaces and the
molecular ground state energies for a given set of compounds [141]. For our data-
base of compounds, fpol = 0.71 [200]. The parameter bes should be unity according
to Onsager’s theory, but there are two steps in the computation procedure that are
sources for deviations. First, the discretization of the COSMO surface is purely arti-
ficial and therefore inexact. Secondly, the σ averaging procedure applies an empirical
formula, and although it is meant to smooth out inconsistencies in the charge densit-
ies on the COSMO surface, it loosens the boundary condition of a perfect conductor.
After all, changing a surface charge density is changing the local electric field near
the surface of a conductor according to Gauss law [102]. The systematic error of the
smoothening function can be seen from the change in total charge of the molecule,
which should be zero. The sum of the original COSMO segment charges is of the
order of 10−9 e. But after smoothening this has become of the order of 10−3 e. To
minimize this error, bes is introduced as a fit parameter (see section 8.3). Note that
in Eq. 8.13, opposite to the work of Wang and Sandler where aeff is an universal
constant, aeff depends on the molecule effective contact areas of the molecules in the
mixture (Eq. 8.2).

This method for computing the energy parameter cES differs significantly from
previous methods, as the parameter (cES), is dependent on the species involved. Our
modification is based on the fact that the size and shape of the molecules should
play a role in the energies of contact through their nominal interaction areas. We
also note that this model does not take into account strong interactions related to
hydrogen bonds. The incorporation of this may be added in future work. With these
modifications our model has three universal fitting parameters (fd in Eq. 8.3, bes

in Eq. 8.13, and R3). The latter parameter is used to obtain aeff . In contrast, the
COSMOSAC (2010) method has four universal parameters (AES, BES, aeff , and fd).
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8.3 Numerical Procedure

The contact areas were computed using COSMO surfaces generated by the Amster-
dam Density Functional Theory code (ADF release 2010.01) [200, 56, 213]. These
surfaces are available in a database which comes with the COSMO-RS implement-
ation [200, 182]. Our area preprocessor was used to compute the optimal bes for a
discrete set of probe radii in the range R3 ∈ [0.1, 2.0] Å. In the calculation of the
contact area we ignored the occurrence of overlapping molecules. This is a systematic
error, which also exists in COSMOSAC. In fact, like COSMOSAC, all surface seg-
ments can make contact through the use of σ-profiles. This systematic error seems
to be of small magnitude, since the obtained phase diagrams are in close agreement
with the experimental results. This phenomenon of overlapping molecules is also
ignored in the UNIFAC models [60]. Also in here, all UNIFAC groups are assumed
to be accessible, although some interaction might be impossible due to the structure
of the interacting molecules.

The three general parameters for the new model (R3 = 0.5 Å, bes = 1.41, fd =
1.73) were fitted to experimental vapor-liquid equilibria data for the binary mixtures
of the training set (see Table 2). The value of fpol is obtained directly from the used
QM-model, i.e. ADF. Note that the element-specific parameters (Atom Dispersion
Constants) were not modified, keeping the default values of the ADF implementation
[200]. The objective function used for the minimization is

min


 1

Nexp

Nexp∑
k=1

(
P exp
k − P pred

k

P exp
k

)2
1/2

+

Nexp∑
k=1

(
yexp
k − ypred

k

)2

Nexp


1/2
 , (8.14)

where P exp
k is the experimental vapor pressure, P pred

k the predicted vapor pres-
sure, yexp

k the experimental vapor fractions, ypred
k the predicted vapor fraction, and

Nexp = 598 is the total number of experimental data points in the training set. All
calculations for COSMOSAC are also obtained using the ADF code [182] corres-
ponding to the COSMOSAC model of Hsieh et al. [94]. The contact areas for the
molecules used in this work are listed in Table 1.
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8.4 Results and Discussion

Prediction of thermodynamic properties of mixtures (vapor-liquid equilibria (VLE)
and activity coefficients) are obtained using our new COSMO-3D method. The
predictions are compared with those obtained using COSMOSAC (2010) [94]. Here
we note that we did not refit the COSMOSAC parameters to the training set. All
experimental data used for the training and the test set are summarized in table 8.2
in appendix S.

Mixture T (◦C) Ref.
1-hexene/ethyl acetate 60, 40 [66, 68]
2-butanone/heptane 45 [210]
2-methoxy-2-methylpropane 80, 90, 100 [135]
/methyl acetate
2-methylpropanal/heptane 45,61.85 [49, 68]
acetone diisopropyl/ether 70.11, 80.12, 90.14 [136]
acetone/heptane 0,40,50 [122, 68]
benzene/cyclohexane 10, 24.91, 25, 38.5, [154, 242, 68]

39.90, 40, 50, 55, 60, 70
benzene/heptane 25, 35, 40, 55, 60, 80 [72, 155, 68]
benzene/hexane 25, 30, 40,50, 60 [139, 193, 68]
cyclohexane/heptane 25, 40 [242, 193]
ethyl acetate/methylcyclohexane 56.85, 76.85 [233]
ethylbenzene/benzaldehyde 75, 85, 95 [107, 68]
heptane/3-pentanone 26, 65, 80, 95 [65, 68]
heptane/pentanal 75 [212]
hexane/1,4-dioxane 35 [24]
oxolane/benzene 30, 40, 50, 60 [64, 68]
oxolane/cyclohexane 30,40, 50, 60 [237, 68]
oxolane/ethyl acetate 40, 60 [237, 68]
oxolane/hexane 30, 40, 50, 60 [237, 68]
pentane/hexane 25.55, 30.55, 35.55 [188]
pentane/propanal 40 [49]
propanal/cyclohexane 45 [163]

Table 8.2: Mixtures and temperatures of the training and test (bold) set. Experimental data at
the listed temperatures were taken from references in the third column.

A first overall comparison between activity coefficients calculated by COSMOSAC
for non-polar/non-polar and polar/non-polar mixtures is shown in Fig. 8.2. As can
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Figure 8.2: Parity plot of experimental and computed activity coefficients of the training set for
COSMO-3D (blue circles) and standard COSMOSAC (red crosses). The solid line represents ideal
agreement.

be observed in this figure the COSMOSAC model gives for the training set under-
estimated values. The COSMO-3D model with optimized parameters gives better
results than the COSMOSAC model.

Two examples of the test set, the binaries acetone/heptane and cyclohexane/heptane
are shown in Fig. 8.3, where the activity coefficients are plotted as a function of the
mole fraction of component 1 in the liquid mixture. The left panel of fig. 8.3 shows
that COSMO-3D slightly overestimates the activity coefficients for the mixture acet-
one/heptane at 40◦C. Nevertheless, the results are in better agreement with exper-
imental data than those predicted by COSMOSAC, which clearly underestimates
experimental data. Accurate correlations are obtained for all the mixtures, which
were used in the training set, except for the systems pentane/hexane and cyclohex-
ane/heptane. The computed activity coefficients for the system cyclohexane/heptane
are shown in right panel of Fig. 8.3. This binary system shows experimentally a pos-
itive deviation from Raoult’s law, but COSMOSAC and COSMO-3D show a negative
deviation. The reason for this negative deviation is the combinatorial term (Eq. 8.7);
the σ-profiles of these compounds, which show a single sharp peak centered around
zero, give a residual activity which is very close to unity. A way to improve this is by
introducing a dispersive interaction term in the model [239]. The fact that PC-SAFT
[78] predicts a correct activity behavior supports this hypothesis. Activity coefficients
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Figure 8.3: Activity coefficients obtained with COSMOSAC (red line) and COSMO-3D (blue line)
as a function of the mole fraction in the liquid phase of the first component. Experimental data
(black crosses) from [122, 193].

for all the systems can be found in the Supporting Information of [82]. The accurate
description of the training set by the COSMO-3D model can also be observed in the
isothermal vapor-liquid equilibria. In the left panel of Fig. 8.4 the agreement of VLE
calculations for the mixture 2-methylpropanal/heptane at 45◦C can be observed. In
the right panel of Fig. 8.4 the VLE of the binary 1-hexene/ethyl acetate at 60◦C is
plotted. Note that COSMO-3D gives an azeotrope, while COSMOSAC gives a zeo-
tropic result. In many cases COSMO-3D provides a better azeotrope description than
the COSMOSAC model (acetone/diisopropylether, acetone/heptane, benzene/cyclo-
hexane, ethyl acetate/methylcyclohexane, heptane/3-pentanone, heptane/pentanal,
oxolane/hexane, pentane/propanal, and propanal/cyclohexane). These VLE dia-
grams are included in the Supporting Information of [82]. A concrete measure of the
model quality can be obtained using the average deviations calculated from exper-
imental thermodynamic data over the training and test sets. For the pressure this
deviation is defined by

P dev =
1

Nexp

Nexp∑
i=1

|P exp
i − P pred

i |
P exp
i

× 100 (8.15)

For the deviation in vapor fraction the average absolute deviation is used, which is
equated as:

ydev =
1

Nexp

Nexp∑
i=1

|yexp
i − ypred

i | × 100. (8.16)
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Figure 8.4: VLE curves obtained with COSMOSAC (red line) and COSMO-3D (blue line). Ex-
perimental data (black crosses) [66, 49].

For the deviation in activity coefficients the root mean square deviation is applied:

γdev =
1

Nexp

√√√√Nexp∑
i=1

(
γexp
i − γpred

i

)2
. (8.17)

Table 8.3 lists the values of these deviations of the mixtures obtained with COS-
MOSAC [94] and COSMO-3D models, for the training set. Detailed information for
each binary mixture is given in appendix S. The training set contained 598 experi-

P dev(Eq. 8.15) ydev(Eq. 8.16) γdev(Eq. 8.17)
Mixture SAC REF 3D SAC REF 3D SAC REF 3D
Training set 3.89 2.36 1.56 1.41 0.89 0.63 0.24 0.14 0.08
Test set 3.14 2.16 1.66 1.08 0.84 0.69 0.31 0.23 0.16

Table 8.3: Overall results of the training and test set for the COSMOSAC [94] (SAC), the refined
COSMOSAC (REF), and the COSMO-3D (3D) models. Details in appendix S
.

mental and computed data points. The overall deviations for the whole set of points
are lower using our new method (we removed one anomalous experimental data point
from the training set in the system oxolane/cyclohexane at 60 ◦C, (see appendix T,
Fig. S32). This also happens if we compute the three deviations defined earlier
for each system. As can be observed in Table 8.3, the new model has significantly
better performance. As mentioned before COSMOSAC (2010) underestimates the
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Figure 8.5: Parity plot of experimental and computed activity coefficients for the training set
using COSMO-3D method (blue circles) and the refined COSMOSAC (red crosses). The solid line
represents ideal agreement.

activity coefficients of our training set. A reason for this could be that the COS-
MOSAC misfit energy parameters is an average for a larger data-set, or that the
presence of associating systems in the training set of the COSMOSAC(2010) version
has biased the energy parameter. For that reason we have adjusted the energy para-
meter to get a better agreement in the training set. Instead of doing a refitting of
the COSMOSAC(2010) energy parameters it is sufficient to set the cES parameter of
the COSMOSAC model (Eq. 8.11) equal to the cES of the COSMO-3D model (Eq.
8.13) by using the average value of the effective area of the compounds used in the
training set (aeff = 5.82 Å2). Effectively this means that the energy parameter of
the COSMOSAC(2010) was scaled down by the effective contact area from 7.25 to
5.82 Å2. We denote this modification as the refined COSMOSAC model. As we can
see from the VLE diagrams of the mixture (Appendix T) and the statics in table
S.1 this gives a significant improvement for our training set (Fig. 8.5). These results
show also that the effective contact area is not a universal constant as was assumed
in the COSMOSAC model, but a system dependent constant.

The differences between the three models can be explained by comparing the
systems hexane/1,4-dioxane and pentane/propanal (Fig. 8.6). The left panel of
Fig. 8.6 shows that COSMO-3D and the refined COSMOSAC provides a more ac-
curate description of the phase envelope of hexane/1,4-dioxane than the original
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COSMOSAC model, while in the right panel of Fig. 8.6 COSMO-3D clearly outper-
forms the other two models. The better description of COSMO-3D is a result of the
system dependent effective area, which scales the interaction energy (Eq. 8.13). In
the COSMOSAC, where AES = 6525.69 (kcal/mol)·(Å4/e2), and the refined COS-
MOSAC model, where AES = 7850.69 (kcal/mol)·(Å4/e2), the effective areas, 7.25
Å2 and 5.82 Å2, respectively, are assumed to be a constant for all systems. For
the COSMO-3D model this is not the case. The binary system hexane/1,4-dioxane
in the left panel of Fig. 8.6) has a system effective area of (5.78 + 5.81)/2 = 5.80
Å2, while the binary system in the right panel of Fig. 8.6, pentane/propanal, has
(5.68 + 5.67)/2 = 5.68 Å2. Since the effective area of the COSMO-3D and the re-
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Figure 8.6: VLE curves obtained with original COSMOSAC 2010 in red, refined COSMOSAC in
green, and COSMO-3D in blue. Experimental data (black crosses) taken from [24, 49].

fined COSMOSAC model are nearly the same in case of the first binary system the
calculated activity coefficients and phase envelop are also nearly the same. How-
ever, in case of the second binary system there exists a significant difference in the
effective areas between the COSMO-3D and the refined COSMOSAC model. This
gives a significant difference in the activity coefficients. As a result the COSMO-3D
model shows a much better description of the phase envelope. The above shows that
the COSMO-3D model, due to the system dependent effective area, gives a better
phase equilibrium description than the two COSMOSAC models, which treat this as
a universal constant.

A second validation of our COSMO-3D model was carried out by performing
calculations on a test set of 455 data points, consisting of mixtures with molecules
of the training set but at different temperatures. The mixtures, temperatures, and
experimental data references are listed in Table 8.3. Detailed information on the

157



CHAPTER 8. COSMO-3D

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

-l
n

(γ
ca

lc
)

-ln(γexp)

Figure 8.7: Parity plot of experimental and predicted activity coefficients for the test set using
COSMO-3D method (blue circles), and the standard (red crosses) and refined COSMOSAC (green
crosses). The solid line represents ideal agreement.
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test set is given in appendix S. An overall comparison of the activity coefficients
predicted using the three models is shown in Fig. 8.7. Activity coefficients predicted
using COSMO-3D are closer to the experimental results than those predicted us-
ing original COSMOSAC and refined COSMOSAC. In all mixtures our new method
provides better agreement with experimental data except for the mixture benzene/-
cyclohexane, where at some temperatures, COSMOSAC is more accurate. This can
be observed from the activity coefficient plots in appendix T and deviations in Table
8.2 of Appendix S. Again, overall deviations and deviations of each system are lower
for our model (we removed one anomalous experimental data point from the train-
ing set in the system acetone/heptane at 50 ◦C, see appendix S, Fig. S58). Using
the refined COSMOSAC model we get a more accurate description than using the
original COSMOSAC model. This support the idea that COSMOSAC can be im-
proved by adjusting just one parameter (AES), resulting in a major improvement for
the mixtures of this work. Nevertheless, our COSMO-3D approach, though using
one fitting parameter less, produces a further improvement.

8.5 Conclusions

We have developed a variation of the COSMOSAC model, COSMO-3D, for com-
puting activity coefficients for non-polar and slightly polar systems (hydrocarbons,
ethers, ketons, esters, and aldehydes). We emphasize that the development has
not been carried out for systems that include hydrogen bonding or molecules that
strongly associate, since our objective was to explore a way to incorporate the 3-
dimensional structure of a molecule in the COSMOSAC model. For this purpose
COSMO-3D is based on a new descriptor called molecule effective contact area ai

(Eq.1), which is unique for each species. We have designed a method to calculate
this descriptor taking into account the 3-dimensional structure of a molecule. This
effective contact area needs only to be computed once for each species and can be
stored for later use. The molecule effective contact area has been incorporated into
the COSMOSAC formalism in such a way that the effective area (aeff) (Eq. 8.2) and
the segment-segment interaction energy (E (σ, σ′)) depend on it (Eq. 8.13. COSMO-
3D requires 3 parameters (R3, bes, and fd), to describe systems between 10 and 100
oC, this is one less than the COSMOSAC model (AES, BES, aeff , and fd)

At this point of the development it is unclear whether COSMO-3D requires a
temperature dependent parameter to make the model applicable for a larger temper-
ature range. A way to investigate this further would be to check the prediction of
the excess enthalpy. These parameters have been fitted using a training set of binary
mixtures containing non-polar and polar compounds. The fitted parameter values
are in a physically plausible range. The accuracy of the method has been tested

159



CHAPTER 8. COSMO-3D

by comparing with experimental data and with the COSMOSAC (2010) model. We
show (1) that COSMOSAC can be improved by adjusting the parameter AES, and
(2) that the COSMO-3D model, though with one parameter less, gives a further
improvement. COSMO-3D is computationally two-three times more expensive than
the traditional COSMOSAC, but the fitting parameters of the COSMO-3D model
have a more direct physical interpretation, suggesting that COSMO-3D will be a
better starting point for further improving COSMO approaches in the future. The
results here show that the COSMO screening models are sensitive to the shape of
the screening surfaces and for the temperature range studied, the screening energy
for a mixture can be computed directly from the molecule area.
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8.7 Note

To ensure that the method is thermodynamically consistent we have checked that
COSMO-3D obeys the Gibbs-Duhem equation, just like COSMOSAC. All the results
obtained have passed the ‘integration’ test and ‘differential’ test [103] described in
appendix R.2.In appendix S a comparison of activity coefficients and VLE diagrams
obtained with COSMO-3D and COSMOSAC for the training and the test sets is
given.
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Chapter 9

Main conclusions and outlook

9.1 Main conclusions

In this thesis we have discussed and evaluated various activity coefficient contribu-
tions, which were derived in different ways. In retrospect we summarize the following
main conclusions:

• A generalized equation has been derived to replace the Staverman-Guggenheim
combinatorial activity coefficient (Eq. 3.36).

• It was revealed that the Donohue-Prausnitz exponent (Eq. 2.23) to modify
the volume fraction in the combinatorial Flory-Huggins equation is physically
incorrect, implying that UNIFAC models with this modification are subject to
systematic errors. In fact Table 2.1 shows that the UNIFAC(Do) model is not
self-consistent in view of the defined coordination number z = 10, while the
relative surface area and volume yield negative values. The original UNIFAC
model is less sensitive to it, although it would have been better to use equation
the general expression for the number of nearest neighbors.

• The Huyskens model (Eq. 2.31) and the original UNIFAC model, with or
without Donahue-Prausnitz modification, are athermal models for alkane mix-
tures, which conflicts with the experimentally observation that the mixing of
alkanes is endothermal. Models to describe the endothermal mixing of alkanes
need, therefore, at least a temperature-dependent activity coefficient, of which
the dispersion contribution is the most logical choice.

• We have shown that the original Oishi-Prausnitz free-volume model is incon-
sistent. This inconsistency might have its roots in an incorrect entropy expres-
sion proposed by Flory. A more consistent equation has been derived, but it
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is advised not to use this model to capture free-volume contributions in activ-
ity coefficient models (ACMs), since the compression factor, and thereby the
activity coefficient expression, deviates more than 10-20% from the Carnahan-
Starling (CS) model, while this model is generally accepted as the most accur-
ate model for liquid mixtures of hard-spheres for packing fractions below 0.5.
The CS model is widely used in hard-sphere chain equation of state models.
Therefore, the free-volume ACMs derived from a hard-sphere chain equation
of state models is a better option (Eq. 2.62) than the Oishi-Prasnitz model.

• We have demonstrated that dispersive interaction between the unequal sized
hard spheres leads always to positive deviation from Raoult’s law (Eq. 2.56),
while linking spheres into a chain invokes negative deviation from ideal solu-
bility (Eq. 2.62).

• A generalized expression for the number of nearest neighbors has been derived
(Eq. 4.3), which converts lattice models into off-lattice equivalents and elimin-
ates the requirements of defining a lattice coordination number and a reference
surface area.

• We have demonstrated that the aforementioned generalized expression for the
number of nearest neighbors and the generalized Guggenheim expression for
the combinatorial activity coefficient in combination with the COSMOSPACE
model gives excellent description for the phase behavior of alkane - alcohol
systems (Chapter 4).

• We have improved the derivation for the residual part of the UNIQUAC model
by removing an inconsistency in the definition of interaction energy (Appendix
C).

• We have revealed that all cEoS yield a van Laar type of expression for the
dispersion contribution of the activity coefficient, which differ only in a cEoS
specific constant, and that the expression do not match experimental results
due to the neglect of intramolecular interactions and the use of a too large
covolume. Therefore, these equations are applicable for the descriptions of
phase equilibria, rather than applicable for predictions.

• We have made clear that the PC-SAFT equation of state is only applicable for
mixtures and pure compounds, where the packing fraction of the liquid is below
0.46. For denser liquids the first perturbation integral gives nonphysical results
. In fact, the original expression for the first perturbation integral does not
have this issue and has a correct starting point at the ideal gas state. It might
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explain convergence problems of the PC-SAFT model at high pressures, and
the existence of multiple roots, as was pointed by Privat et al. [181]. It puts
also a question mark to the solubility of solids, which were calculated with the
PC-SAFT equation of state, since the solute probably has a packing fraction
exceeding 0.46. It is recommended to optimize the universal constants again,
using constraints to prevent that multiple chain lengths have the same first per-
turbation integral result at the same packing fraction. It is also recommended
to include statistical information for the obtained universal constants.

• We have improved the PC-SAFT based activity coefficient expression for the
dispersion contribution by introducing the concept of molecular topology. We
have shown that the Zagreb number and our proposed derivative, the dispersion
number, are topology numbers which are useful to define the effective number
of spheres that interact with a central sphere.

• Our dispersion number appears to be a good parameter to predict the normal
boiling point of alkanes within 3 K. Current methods are at a level of accuracy
of 6 K.

• We have extended the concept of topology into a group contribution method,
and derived interaction parameters for the energy between methyl groups.
(Chapter 7)

• A new way to determine the effective contact area in the COSMO-RS family
of models was introduced. Rotational hindrance between two molecules and
differences between atoms sizes determine an effective area, by which electro-
static surface charge density are averaged. (Chapter 8). It is an improvement
over the earlier COSMO-RS(ADF) model version, but it requires that each
multicomponent systems has an average area based on the number of com-
pound types, in order to make the model Gibbs-Duhem proof. The concept
of accessibility might also be solved by the topology design number, which we
introduced later in the development of the PC-SAFT based activity model for
dispersion.
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9.2 Outlook

The aforementioned conclusions and comments give rise to new ideas to improve the
current available equation of state and activity models. It also give seeds to other
areas like physical chemistry, chemical engineering, polymer and pharmaceutical sci-
ences. Here are some of these ideas.

• The applied way of topology by means of the dispersion number, D, introduced
by us, is in fact a way to quantify how many segments from the surrounding
account for interaction, denoted by the parameter Zk in Eq. 6.37, and 6.38.
This concept has been applied with success in the COSMOSPACEmethodology
(Chapter 7). The COSMOSPACEmodel is a particular form of the Ising model.
Since the Zagreb number or our dispersion number is very similar to a Google
engine, where search words are linked to other words, it seems worthwhile to
investigate whether the new ideas in information technology are also applicable
to the description of interaction between molecules.

• The successful introduction of the dispersion number for the normal boiling
point demonstrates that QSAR methodology can be made more accurate by
applying non-linear relations with positive curvature.

• The applied topology concept is comparable with the COSMO3D concept,
where the effective contact area is defined by rotating a probing sphere around
molecules. It seems that these two techniques are equivalent. A proof for this
would be useful, since topology numbers are easy definable. The COSMO3D
method, might help to clarify the use topology number D instead of the first
Zagreb number Z1 in case of strongly branched structures and structures con-
taining rings.

• The χ-parameter in the Flory-Huggins model is applied in many models to
quantify not only solubility, but also surface tension, and the computation
of self-organizing molecules by Dissipative Particle Dynamics (DPD) or Self-
Consistent Field (SCF)-theory. Our study shows that interaction can not be
fully characterized by a simple number. The interaction is influenced by in-
tramolecular bonds. In other words, the χ parameter obtained from phase
equilibria, should be adjusted by a topology index number, before it can be
applied in molecular models. One could say the χ-parameter obtained from
phase equilibria studies is a fluid-based interaction parameter value, while DPD
and SCF require a molecular based value.

• The activity coefficient model of dispersion, introduced in this work, has been
applied to hydrocarbon systems, in particular to linear and branched alkanes.
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This can be extended to systems that have permanent dipoles and associating
groups. These interactions are also present in the dipole-dipole and hydrogen
bonding interaction, since the EM-field of the electrons in the permanent dipole
or the associative bond will influence each other. In other words, dispersive in-
teraction always occurs between atoms that come into contact. Of course, the
level of interaction is smaller than the interaction between permanent dipoles
and hydrogen bonds, but by considering dispersive interaction as base to which
the other interactions can be added sets another way of creating activity mod-
els. Thus, on top of a dispersive interaction one builds the dipole-dipole and
hydrogen bonding contribution, instead of separating it as has been done in the
Flory-Huggins and UNIFAC family of models. This approach is already incor-
porated in the PC-SAFT models that include permanent dipole interaction and
associations schemes. PC-SAFT requires first a more solid parameterization of
the universal constants.
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List of symbols

Symbols in Chapter 1

fj fugacity of compound j [bar]
f0
j fugacity of pure compound j at T [bar]
xj mole fractions of compound j in the liquid at T [-]
m the number of spheres in a chain in PC-SAFT model [-]
yj mole fractions of compound j in the gas phase at T [-]

P pressure [bar]
P sat
j saturation pressure of compound j [bar]
R universal gas constant [J/mol.K]
T absolute temperature [K]

γ activity coefficient [-]
γH enthalpy part of total activity coefficient [-]
γS entropy part of total activity coefficient [-]
γcomb combinatorial part of activity coefficient [-]
γres residual part of activity coefficient [-]
γfv free-volume part of activity coefficient [-]
γdisp dispersion part of activity coefficient [-]
γpol polar part of activity coefficient [-]
γasso/hb association/hydrogen bonding part of activity coefficient [-]
ε the dispersion energy of a sphere in PC-SAFT model [K]
εAB the energy of association, i.c. hydrogen bond in PC-SAFT model [K]
κAB the covolume of the association bond in PC-SAFT model
µ0j ideal gas chemical potential [J/mol]
µgasj chemical potential of component j in gas phase [J/mol]
µliqj chemical potential of component j in liquid phase [J/mol]
µmix
j chemical potential of component j in mixture (gas/liquid) [J/mol]
φj fugacity coefficient of compound j in a fluid phase [-]
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σ the average diameter of spheres in a chain in PC-SAFT model [Å]
χ interaction parameter in Flory-Huggins model
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Symbols in Chapter 2

aj power to tune volume fraction, value between 0 and 1 [-]
dj diameter of a hard-sphere or chain segment [Å3]
h Plank constant 6.62606× 1034 [J.s]
h̄Ej (xj) partial molar excess enthalpy of compound j at concentration xj [J/mol]
hE,disp (xj) molar excess enthalpy of mixture [J/mol]
kB Boltzmann constant 1.3806488× 10−23 [J/K]
mj molecular mass of molecule j [kg/mol]
mk number of segments in hard-sphere chain[-]
pj probability to find a particular system configuration j [-]
qj relative area size of molecule j [-]
rj relative size of molecule j [-]
xj mole fractions of compound j in the liquid at T [-]
v0 reference size [Å3]
vj molecular liquid volume [Å3]
z coordination number, value between 2 and 12 [-]

Nj number of molecules of type j [-]
Nt total number of molecules in mixture [-]
Pj Gibbs probability associated with energy Ej [-]
R universal gas constant 8.3143 [J/mol.K]
Sj molecular entropy of molecule of type j [J/K]
ScEoS molecular entropy for cubic equation of state j [J/K]
SFV,cEoS free-volume part of ScEoS [J/K]
SIG molecular entropy of ideal gas [J/K]
T absolute temperature [K]
Tj absolute temperature at situation j [K]
Vj volume of container holding compound j
Wj free-volume fraction of compound j
ZcEoS compression factor of a cubic equation of state [-]
ZHS compression factor of Carnahan-Starling equation of state [-]
ZHC compression factor of hard-sphere chain equation of state [-]

α mobile order parameter [-]
γj activity coefficient of compound j [-]
γFH combinatorial activity coefficient of Flory-Huggins model [-]
γmFH modified combinatorial Flory-Huggins activity coefficient [-]
γSG combinatorial activity coefficient of Staverman-Guggenheim model[-]
γcomb combinatorial part of activity coefficient [-]
γres residual part of activity coefficient [-]
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γdisp dispersion part of activity coefficient [-]
γFV,T free-volume part of the activity coefficient from Tonks’ model [-]
γFV,cEoS free-volume part of the activity coefficient model from cEoS [-]
γFV,HS free-volume part of the activity coefficient model from hard-sphere EoS [-]
γFV,HC free-volume part of the activity coefficient from hard-sphere chain EoS [-]
η̄ packing fraction of mixture [-]
ηj packing fraction of pure component j [-]
η̃ normalized packing fraction [-]
η∞ maximum packing fraction [-]
φj volume fraction of compound j in a fluid phase [-]
ψj fractional volume fraction of compound j in a fluid phase [-]
ρ number density in mixture
ρj number density of compound j
θj surface area fraction of compound j in a fluid phase [-]

∆GE molecular excess Gibbs energy [J]
∆HE molecular excess enthalpy [J]
∆SE molecular excess entropy [J/K]
∆SE

FH molecular excess entropy in Flory-Huggins model[J/K]
∆SE

mFH molecular excess entropy in Donahue-Prausnitz model[J/K]
∆SE

Gibbs molecular excess entropy in Gibbs probability model[J/K]
∆SE

Huy molecular excess entropy in Huyskens model [J/K]
∆SE

HS molecular excess entropy in hard-sphere model [J/K]
∆SE

HC molecular excess entropy in hard-sphere chain model [J/K]
∆Udisp molecular dispersion energy [J]
∆Upol molecular dipolar energy [J]
∆UAB molecular association energy [J]
∆VFV molecular free-volume change [m3]
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Symbols in Chapter 3

flat ratio in nearest neighbors for a lattice
ffluid ratio in contact area for a fluid
rA, rB number of lattice cells of type A and B, respectively [-]
rtot number of lattice cells [-]
pXY probability that molecule segment X is neighbor of molecule segment Y
Pj partial pressure [bar]
q relative surface area of the largest molecule in a binary [-]
qj relative area size of molecule j [-]
r relative size of the largest molecule in a binary [-]
rj relative size of molecule j [-]
xj mole fractions of compound j in the liquid at T [-]
z coordination number of a lattice [-]
zA, zB coordination number for segments of molecule A and B, respectively [-]

Kgas,Kliq geometric constants [-]
NA, NB number of molecules of type A and B [-]
VA, VB molecular volume of molecule A and B, respectively [Å3]

αgas, αliq ratio in probabilities to fill a gas and liquid volume elements
with only compound A or B segments [-]

γj combinatorial activity coefficient [-]
γ∞j combinatorial activity coefficient of solute j at infinite dilution [-]
µ̃A, µ̃B reduced chemical potential of molecule A and B respectively [-]
φA, φB volume fraction of compound A and B, respectively, in a fluid phase [-]
θA, θB surface area fraction of compound A and B, respectively, in a fluid phase [-]

∆µ̃A,∆µ̃B reduced chemical potential of compound A and B, respectively [-]
∆G̃ total reduced Gibbs energy [-]
ΓA,ΓB half number of nearest neighbors [-]
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Symbols in Chapter 4

nk total number of surface segments of molecule k in COSMOSPACE model[-]
z.qk number of nearest neighbors of molecule k in UNIQUAC model[-]
nOH number of nearest neighbors of hydroxyl group [-]
qj relative area size of molecule j [-]
rj relative size of molecule j [-]
xj mole fractions of compound j in the liquid at T [-]
z coordination number, value between 2 and 12 [-]

AvdW molecular surface area [Å2]
HE (xj) excess enthalpy of mixture [J/mol]
NC carbon number of alkane or alcohol [-]
Qj half number of nearest neighbors of molecule j [-]
T absolute temperature [K]
AvdW molecular surface area [Å2]
VvdW molecular volume [Å3]
Vj volume of container holding compound j

γcomb
j combinatorial activity coefficient of compound j [-]
γA,x̄ surface coefficient of type A at concentration x̄ [-]
γA,k surface coefficient of type A of pure compound k [-]
φj volume fraction of compound j [-]
τ interaction parameter in COSMOSPACE model
τij interaction parameter pair in UNIQUAC model [-]
θj surface area fraction of compound j [-]
ω interaction parameter in COSMOSPACE model [-]
ζAj , ζ

B
j fraction of surface of type A and B on compound j [-]

∆E298 interaction energy at 298.15 K [J/mol]
∆Ui,j interaction energy pair in UNIQUAC model[J/mol]

194



BIBLIOGRAPHY

Symbols in Chapters 5

9.3 List of symbols

β empirical coefficients in linear relation for covolume [-]
γ activity coefficient [-]

εmin Lennard-Jones potential energy [J/mol]]
η packing fraction [-]
κ constant in cEoS [-]

λ1, λ2 cEoS parameters [-]
φj , ψj volume fractions [-]
σij diameter of segment pair i and j [Å]
θj surface area fractions [-]
∆j dimensionless Hildebrand parameter [Å]

Ωa,Ωb cEoS constants [-]

a, aj , aij attractive cEoS term, pure compound j compound pair i, j [Jm3/mol2]
b covolume of system [m3/mol]
bij covolume of molecule pair i, j [m3]

bC, bH partial covolume calculated by carbon and hydrogen atom [Å3]
hEj excess enthalpy of compound j [J/mol]
Hmix enthalpy change on mixing [J/mol]
kjk, ljk correction parameter in size and energy mixing rule[-]
mj number of repeating units in compound j given by

ratio of critical volume of compound and methane [-]
m molar average number of units in mixture [-]
nj number of molecules of type j [-]
ntot total number of molecules in fluid mixture [-]
pj number of primary groups in molecule [-]

PC , PH external contact probability of carbon and hydrogen atoms in a fluid[-]
r ratio in size [-]
sj number of secondary groups in molecule [-]
t1,t2 emperical GC parameters [-]
xj mole fraction of compound j in mixture [-]

K parameter in activity coefficient eq. and cEoS [-]
NC carbon (alkane) number [-]
P system pressure [Pa]
v system molar volume [m3/mol]
T system temperature [K]
T0 reference temperature 298.15 [K]
Pc,j critical pressure of compound j [Pa]
R universal gas constant: 8.3143 [J/mol.K]
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Vc,j critical volume of compound j [m3/mol]
Tc,j critical temperature of compound j [K]
Zc,j critical compression factor of compound j [-]
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Symbols in Chapters 6

α dispersion coefficient [Å3]
γ activity coefficient [-]

ε0, ε1 energy parameters of Eq. 6.28 [K]
εCHx energy increment of CHx group [K]
εij interaction energy between segments i and j [K]
ε̃ij reduced energy (Eq. 6.13) [-]
η packing fraction [-]
ν0 characteristic frequency [1/s]
φj volume fractions based on σj used in PC-SAFT model[-]
φ̂j volume fractions based on dj used in IPC model [-]
νCHx number of CHx fragment in molecule [-]
ρ mumber density [Å−3]
σij diameter of segment pair i and j [Å]
θj surface area fractions based on σj (PC-SAFT) or dj (IPC) [-]

âj chain-length dependent parameter of I1 [-]
â0,j, â1,j, â2,j constants in parameter function âj [-]
ã1, ã2, ã3 PC-SAFT perturbation integral I1 constants [-]
adisp Helmholtz energy [J.mol−1]

ã1, ã2, ã2 PC-SAFT activity model constant [-]
dj diameter of segment j [Å]
h Planck constant, 6.62607015× 10−34 [J.s]
hEj excess enthalpy of compound j [J.mol−1]

∆HE
mix enthalpy of mixing [J.mol−1]

kB Boltzmann constant, 1.380649× 10−23 [J/mol]
kjk correction parameter in size combining rule [-]
ljk correction parameter in energy combining rule[-]
mj number of repeating units in compound j [-]
mv,j number of units with j connections in compound j [-]
m molar average number of units in mixture [-]
nj number of molecules of type j [-]
ntot total number of molecules in fluid mixture [-]
xj mole fraction of compound j in mixture [-]

C1 PC-SAFT EoS function used in I2 [-]
D dispersion topology descriptor (Eq. 6.22) [-]

I1, I2 first and second perturbation integral [-]
JQH quadratic hydrogen number [-]
NC carbon (alkane) number [-]
Ns1 number of spheres in direct contact with central sphere [-]
Ns2 number non-contacting spheres within range of interaction[-]
P system pressure [Pa]
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R0 distance between polarizable systems
R universal gas constant: 8.3143 [J.mol−1K−1]
T system temperature [K]
To reference temperature 298.15 [K]
R universal gas constant: 8.3143 [J.mol−1K−1]
U London dispersion energy [J/mol]
V system molar volume [m3.mol−1]

ZM1 topological descriptor: first Zagreb index [-]
Z total compression factor in PC-SAFT [-]
Zhc hard-sphere chain compression factor in PC-SAFT [-]
Z0 coordination number for sphere m = 1 [-]
Zj coordination number of compound j [-]
Z∞ coordination number for infinite chains m >> 1 [-]
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Symbols in Chapter 7

γj activity coefficient of a component in a mixture [-]
γ̂j activity coefficient of a group in a pure compound or a mixture [-]
ε0, ε1 energy parameters of IPC activity model [K]
εCHx energy increment of CHx group [K]
εij interaction energy between segments i and j [K]
ε̃ij reduced energy (Eq. 6.13)[-]

φj , ψj volume fractions [-]
φ̂j volume fractions [-]
ψj group fractions [-]
νCHx number of CHx fragment in molecule [-]

dj diameter of segment j [Å]
hEj excess enthalpy of compound j [J/mol]
hEmix enthalpy of mixing [J/mol]
mj number of repeating units in compound j [-]
mv,j number of units with j connections in compound j [-]
xj mole fraction of compound j in mixture [-]

D topology number of as molecule (Eq. 7.3) [-]
Dj topology number of an atom group [-]
JQH quadratic hydrogen number [-]
NC carbon (alkane) number [-]
Ns1 number of spheres in direct contact with central sphere [-]
P system pressure [Pa]
Qj average number of local interacting spheres of compound j [-]
T system temperature [K]
To reference temperature 298.15 [K]
R universal gas constant: 8.3143 [J−1molK−1]

ZM1 first Zagreb index of a molecule [-]
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Symbols in Chapter 8

Γi/S (σm) segment activity coefficients for segments with charge density σm [-]
λuv distance between segments u and v [Å]
φj volume fraction of compound j [-]
σm smoothed surface charge density of segment m [e/Å2]
σ∗v raw COSMO charge densities [e/Å2]
θ angle of contact [rad]

Aj total inner surface area of COSMO cavity embedding compound j [Å2]
aeff effective (model reference) contact area [Å2]
av raw COSMO area of surface segment v [Å2]
aθuv contact area for segment pair (u, v) at angle θ [Å2]
AES parameters [J.Å2/mol.e/)]
BES parameters [J.Å2/mol.K.e/)]
bes COSMO-3D parameter (=1.41) [-]
cES COSMOSAC/COSMO-3D universal energy parameter [J/mol/(e/Å2)]
fpol COSMO-3D polarization factor (=1.73) [-]
fd decay parameter of filter function [-]

E(σ, σ′) electrostatic interaction energy [J/mol]
Nθ number of different configurations [-]
NS number of segments [-]

P (σm) sigma-profile [-]
rij distance between atom centers [Å]
Rj radius of cavity around atom j [Å]
R3 probe radius (0.5 Å) in COSMO-3D procedure [Å]
xj mole fraction of compound j [-]
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Appendix A

Free-volume model notes

Here we make some notes related to free-volume models and the use in activity
coefficient models.

A.1 Note on the derivative of the packing fractions

The derivative of the packing fraction of a mixture towards the mole fraction of a
component is an important factor in the derivation of the free-volume contribution.
The packing fraction of a mixture, η, can be equated as:

η = ρ

M∑
j=1

xjbj =

M∑
j=1

xjbj

M∑
j=1

xjvj

(A.1)

where ρ is the average number density (mol/m3), bj is the hard-core volume (m3/mol)
of molecule j, and vj the liquid volume (m3/mol). By differentiation of Eq. A.1
towards the mole fraction we get:

(
∂η

∂xk

)
T,P,xj 6=xk

= ρbk − η
φk
xk

=
φk
xk

(ηk − η) (A.2)

In the SAFT model [103] and the PC-SAFT [78] we have for the packing fraction
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of a mixture and a pure component consisting of equal sized spheres:

η =
πd3

6

∑M
j=1 xjmj∑M
j=1

xj
ρj

=
πd3

6
ρm̄

ηk =
πd3

6
ρkmk, (A.3)

where d is the diameter of the spheres, mj is the number of spheres of a molecule of
type j, xj is the liquid mole fraction in the mixture, ρj is the number density of the
pure compound and m̄ the average number of segments in the chains. The ratio of
the two equation gives the useful relation:

ηk
η

=
ρk
ρ

mk

m̄
. (A.4)

Differentiation of the average packing factor with respect to the mole fraction of
compound k yields:

∂η

∂xk
=
πd3

6
ρmk − η

ρ

ρk
= η

(
mk

m̄
− ρ

ρk

)
= (ηk − η)

φk
xk
, (A.5)

where the liquid volume fraction is defined by

φk =
xkvk∑M
j=1 xjvj

=
ρ

ρk
xk. (A.6)

A.2 Tonks EoS

The compressibility factor of the Tonks (T) equation of state [218], which holds for
spherical molecules, is:

ZT =
1

1−
(

η
η∞

) 1
3

=
1

1− η̃
1
3

, (A.7)

where we used the relative packing factor η̃ = η/η∞, so that the derived activity
coefficient expression can be compared later to the expression of Oishi and Prausnitz
[172], which was used unaltered in further developments of polymer-solvent activity
coefficient models. Since ZIG = 1, we get for a pure compound

SFV,T

NtkB
= −

∫ η̃

0

1

η̃

[
η̃

1
3

1− η̃
1
3

]
dη̃ = 3 ln

(
1− η̃

1
3

)
. (A.8)
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We note that this result is in line what we obtained for the van der Waals volume.
With this result we obtain for the entropy change upon mixing

∆SE
T

kB
= −

M∑
j=1

3Nj ln

(
1− η̃

1
3
j

)
(

1− η̃
1
3

) . (A.9)

The activity coefficient follows from Eq. C.19

ln γTk = −

(
∂∆SE

kB

∂Nk

)
P,T,Nj 6=Nk

= 3 ln

1− η̃
1
3
k

1− η̃
1
3

+
η̃−

2
3

1− η̃
1
3

M∑
j=1

xj
∂η̃

∂xk

= 3 ln

1− η̃
1
3
k

1− η̃
1
3

+
η̃

1
3

1− η̃
1
3

η̃k
η̃
. (A.10)

The Tonk activity coefficient is only valid for spherical molecules. For poly-
atomic molecules the free-volume contribution for each compound j is adjusted by
a factor cj . In Eqs. A.8,A.9 and Eq. A.10 this means that the numerical factor
3 is replaced by 3cj and 3ck, respectively. The product 3ck reflects the number of
freedom that molecule k has. A molecule that moves in the fluid by translation in
3 independent directions has ck = 1, while a molecule that also rotates around 3
independent molecular axis has ck = 2. Vibration of the molecule in the pure liquid
could be different from that in a mixture, but, in general, this is considered to be
negligible in the free-volume contribution. In the model of Oishi and Prausnitz [172]
the value is set to 1.1 for all molecules. When we replace in Eq. A.8 the factor 3
into 3cj we get for the entropy:

∆SE
T

kB
= −3

M∑
j=1

cjNj ln

(
1− η̃

1
3
j

)
(

1− η̃
1
3

) , (A.11)

where we assumed that the degrees of freedom of a molecule stay the same upon
mixing. The free-volume contribution to the activity coefficient of a poly-atomic
molecule is therefore

ln γTFk = 3ck ln

1− η̃
1
3
k

1− η̃
1
3

+

M∑
j=1

cjxj
η̃

1
3

1− η̃
1
3

(
ηk
η̃
− 1

)
φk
xk

= 3ck ln

1− η̃
1
3
k

1− η̃
1
3

+ c̄
η̃

1
3

1− η̃
1
3

(
ηk
η̃
− 1

)
φk
xk
, (A.12)
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where c̄ is the mole average degrees of freedom. This equation differs from the
published equation of Oishi-Prausnitz:

ln γOP
k = 3ck ln

η− 1
3

k − 1

η̄−
1
3 − 1

− ck
 η̄
η̄k
− 1

1− η
1
3
k

 . (A.13)

We see for example that there is no average degrees of freedom in the second term.
Oishi and Prausnitz refer to a work of Flory [54], who uses Eq. A.7, and obtains for
the entropy change:

∆SE
F

kB
= −3

M∑
j=1

cjNj ln

1− η̃−
1
3

j

1− η̃−
1
3

 . (A.14)

This implies that the entropy of a pure compound j is:

SFV,F

kB
= 3cj ln

[
1− η̃−

1
3

j

]
, (A.15)

but this equation has singular point at η = 0, while it should go to zero in the ideal
gas limit (η = 0). It seems that already in the Flory entropy definition exists an
error.

The example calculation of 10 vol% benzene in isobutylene gives η̃benzene = 0.69
and η̃ = 0.84. This gives:

ln γOP
Benzene = 2.55− 2.02 = 0.53 (A.16)

Applying Eq. A.10 and using c1 = c2 = 1.1 gives

ln γTBenzene = 2.83 + 0.33 = 2.67 (A.17)

This is a big difference.
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The number of nearest neighbors

In this appendix we demonstrate the usefulness of Eq. 4.3 by applying it to particular
geometric cases.

Chains of repeating units in a lattice

Lattices are in theory made out of space-filling structures. Table B.1 summarizes the
volume and area of some space-filling structures as function of the number of units
(N) in the chain structure. We also included the case of a chain of touching spheres.
In these expressions L is the length of a side of the regular polyhedron, and D the

Table B.1: Volume and surface area of a chain of structures.

Repeating unit Volume Area
Tetrahedron N 6√

2
L3 (N + 1)

√
3

2 L
2

Cube NL3 (2N + 1)2L2

Dodecahedron N 15+7
√

5
4 L3 (5N + 1)3

6

√
25 + 10

√
5L2

Touching spheres N π
6D

3 NπD2

sphere diameter. The mole, area and volume fractions of mixtures of chains of one
type of structure have the general forms

xj =
Nj
M∑
j=1

Nj

, (B.1)
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θj =
sN2

j +Nj

M∑
j=1

(sN2
j +Nj)

, (B.2)

and

φj =
N2

j
M∑
j=1

N2
j

, (B.3)

where the parameter s, which denotes the quadratic contribution of the surface
area, is 1, 2, and 5 for respectively, a tetrahedron, a cube, and a dodecahedron.
Substitution of B.1, B.2, B.3 into Eq. 4.3 gives for Q

Q(Nk) = 1 + sNk, (B.4)

which is concentration-independent. Eq. B.4 proofs that for the calculation of
the combinatorial activity coefficient of a mixture of space-filling chains, of which
the beads are made of tetrahedra, cubes, or dodecahedra only, the Staverman-
Guggenheim correction term is needed. For a mixture of chains of touching hard-
spheres, the situation is different, as in this case the ratio of volume and surface
fraction is always unity; (θj/φj = 1). This implies that in Eq. 4.1 the Staverman-
Guggenheim correction term becomes zero, and that only the Flory-Huggins term
survives.

Linear and branched molecules

Eq. 4.3 was derived by using the connectivity relation of linear and branched struc-
tures. Here we show how Eq. 4.3 leads to expressions for the number of nearest
neighbors as function of the number of repeating units. We start with a general
formula for the volume and the area of a molecule containing Nk repeating groups
and an end group.

Vk(Nk) = V0(1 + αNk), (B.5)

Ak(Nk) = A0(1 + βNk). (B.6)

The constants, A0 and V0 define the size of the end group, while α and β define the
ratio of the volumes of a repeating group and the chain end group. Substitution into
the equations for the volume and area fraction yield for mixtures that consists of
molecules of one class

φk =
xk(1 + αNk)
M∑
j=1

xj(1 + αNj)

, (B.7)
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θk =
xk(1 + βNk)
M∑
j=1

xj(1 + βNj)

. (B.8)

As a result we obtain

Qk =
1− φk

xk

1− φk
θk

=

1− (1+αNk)
M∑
j=1

xj(1+αNj)

1−

(1+αNk)

M∑
j=1

xj(1+αNk)

(1+βNk)

M∑
j=1

xj(1+βNj)

=
α

α− β
(1 + βNk). (B.9)

This result explains why Sayegh and Vera [195, 224] found a linear relation between
the van der Waals volume of molecules and the number of nearest neighbors.

As example we evaluate the binary propane - tetradecane the calculation of the
number of nearest neighbors using Eq. 4.3. According to Bondi’s table [18] pro-
pane has VvdW = 37.57 cm3/mol and AvdW = 5.59 cm2/nmol, and tetradecane
VvdW = 150.10 cm3/mol and AvdW = 20.44 cm2/nmol. With these values we can
calculate the volume and surface area fractions, and subsequently the number of
nearest neighbors for each alkane by applying Eq. 4.3. The step-by-step results are
given in Table B.2.

Table B.2: Step-by-step calculation of the number of nearest neighbors of propane(1) and tet-
radecane(2) using Eq. 4.3.

x1 φ1 θ1 φ1/x1 φ1/θ1 φ2/x2 φ2/θ2 Q1 Q2 zq1 zq2

0.50 0.200 0.2145 0.4004 0.9322 1.600 1.019 8.844 32.34 17.69 64.68
0.75 0.077 0.0835 0.3080 0.9218 1.231 1.231 8.844 32.34 17.69 64.68

The results of the other linear alkanes are shown in Fig. 4.1 of this work. Already
with the two values from the above example we can write for the n-alkanes

zqk = 64.68 +
64.68− 17.69

14− 3
(NC − 14) = 4.87 + 4.27NC (B.10)

This is equation 4.17 in this work. The above demonstrates that for a group of linear
molecules there is a linear relation between the number of repeating groups Nk and
the number of nearest neighbors Qk, which can be derived without the definition of
lattice coordination number, a reference area and volume.
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Appendix C

Corrected UNIQUAC model

The original UNIQUAC model contains some inconsistencies. In order to understand
this we need to go back to the concept of Wilson [234], who stated that molecules
in a fluid are not distributed randomly, but tend to cluster more around molecules
for which they have a higher affinity. This leads to the concept of local composi-
tion. Within this concept the first shell around a central molecule has a different
composition than the average concentration of the bulk. The local mole fractions of
compounds 1 and 2 around molecule 1 and those around molecule 2 are defined by
the quantities x11, x21, x12 and x22, respectively. A general expression for the local
mole fractions xij follows from the situation where molecules are distributed ran-
domly. This is certainly the case when the temperature is very high. We denote the
temperature of the random case by Tra. In the random configuration all molecules
are interacting with same, "random" interaction energy Ura. When we move mo-
lecule j from the random system to a system where it has a local configuration and
interacts with central molecule i and energy Uji, the ratio of the two mole fractions
can be quantified by the energy difference as

xji = xj exp

(
−
[
Uji

RT
− Ura

RTra

])
. (C.1)

Subsequently, the ratio of local mole fraction of molecules 1 and 2 around central
molecule 1 can be defined as

x21

x11
=
x2 exp

(
−
[
U21
RT −

Ura
RTra

])
x1 exp

(
−
[
U11
RT −

Ura
RTra

]) =
x2

x1
exp

(
−U21 − U11

RT

)
. (C.2)

While Wilson implicitly assumed that all molecules have the same size, Abrams and
Prausnitz [2] later took into account that the molecules are different in size and they
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used surface fractions instead of mole fractions. Hence the excess energy of mixing
two pure compounds was defined as

UE =
z

2
[N1q1Θ21(U21 − U11) +N2q2Θ21(U12 − U22)] , (C.3)

where Θji is the local surface fraction of compound j around central molecule i
in the mixture. We note that the factor zqj, i.e. the number of nearest neighbors,
indicates that the quantity Uij is the interaction energy between one side of compound
i and one side of compound j. Further we observe that the lattice coordination
number is identical for all types of molecules; z1 = z2 = z, which is set to 10 in the
original UNIQUAC model. However, this approximation made by the developers of
UNIQUAC is not neccesary for the residual part, as we will demonstrate below. In
fact the approximation z = 10 made for the original UNIQUAC, is one of the root
causes for systematic deviation in systems where molecules have a lower or higher
coordination number. However, the approximation of z = 10 is not necessary, as we
will demonstrate below.
Let us first recall the quantity that denotes half the number of nearest neighbors of
molecule j. This is identical to Eq. 4.2, but now we also include the possibility that
the lattice coordination number is different for each compound

Qj =
zjqj
2
. (C.4)

We mention that summation of this quantity equals to the total number of interacting
pairs. With Eq. C.4, Eq. C.3 can be written as

UE = Q1N1Θ21(U21 − U11) +Q2N2Θ12(U12 − U22). (C.5)

Here we implicitly assumed that the lattice coordination number of the pure com-
pound is not affected by the mixture. Subsequently we define the local surface
fractions. In line with Wilson’s concept it means that we unpair from the random
configuration one side of molecule j from one side of molecule i, this involves energy
Ura, and pair the two in the local configuration where molecule i is the central mo-
lecule. This local configuration requires energy Uji. Applying the same steps as in
the Wilson model the ratio of the local and random surface fractions can be written
as

Θji

Θii
=
θj
θi

exp

[
−Uji − Uii

kBT

]
. (C.6)

This equation differs from the original UNIQUAC equation, where the factor z/2 was
used in the exponent. The quantity z can not be present in the exponent, because
we place one side of a lattice cell from a molecule in random configuration in contact
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with one side of a lattice cell of the central molecule in the local configuration. The
other cell sides of the molecule, which are also taken from the random configuration,
can be placed to any other cell side, and do not take part in this calculation step! For
convenience we define the interaction energy difference of unequal pairs and equal
pairs on a temperature scale by

Tjk =
Ujk − Ukk

kB
. (C.7)

This gives the following two relations

Θ21

Θ11
=
θ2

θ1
exp

[
−T21

T

]
, (C.8)

Θ12

Θ22
=
θ1

θ2
exp

[
−T12

T

]
. (C.9)

The sum of the local surface fractions around a central molecule are unity, as imposed
by the full occupancy boundary condition

Θ21 + Θ11 = 1, (C.10)

and
Θ12 + Θ22 = 1, (C.11)

from which follows that

Θ21 =
θ2 exp

[
−T21

T

]
θ1 + θ2 exp

[
−T21

T

] , (C.12)

and

Θ12 =
θ1 exp

[
−T12

T

]
θ2 + θ1 exp

[
−T12

T

] . (C.13)

Substitution of Eqs. C.7, C.12 and C.13 into Eq. C.5 yields

UE

kB
= Q1N1T21

θ2 exp
[
−T21

T

]
θ1 + θ2 exp

[
−T21

T

]
+Q2N2T12

θ1 exp
[
−T12

T

]
θ2 + θ1 exp

[
−T12

T

] . (C.14)

The Helmholtz energy is obtained from the integral

AE

kBT
= −

1
T∫

0

UE

kB
d

1

T
. (C.15)
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Substitution of Eq. C.14 into Eq. C.15 gives

AE

kBT
= −Q1N1 ln

[
θ1 + θ2 exp

[
−T21

T

]]
−Q2N2 ln

[
θ2 + θ1 exp

[
−T12

T

]]
. (C.16)

Generalization of this binary case to a multicomponent system results in

AE

kBT
= −

M∑
j=1

QjNj ln

[
M∑
l=1

θlτlj

]
, (C.17)

where we defined
τlj = exp

[
−
Ulj − Ujj

kBT

]
. (C.18)

Using

ln γk =
∂ AE

kBT

∂Nk
, (C.19)

yields the correct residual term for the UNIQUAC equation

ln(γres,UQk ) = Qk

1− ln(
M∑
j=1

θjτjk)−
M∑
j=1

θjτkj
M∑
i=1

θiτij

 (C.20)

The crucial point in the original UNIQUAC derivation is the incorrect use of the
lattice coordination number to define the ratio of the local and random surface
fractions. Both Kontogeorgis and Folas [124] and Klamt et al. [117] mentioned that
the UNIQUAC equation was inconsistent and that the exponent required z = 2. This
value is unphysical, because in a 3-dimensional system the lowest value is z = 4 (i.e.
a lattice made of tetrahedrons). In a reply on the comment made by McDermott
and Ashton [165] also Maurer and Prausnitz [164] elaborated on the UNIQUAC
inconsistency. Their solution was to add a constant of proportionality c into the
denominator of the argument of the exponential in Eq. C.18. The value for c is
mixture dependent, and has an average value c = 0.27. This implies that the factor
z/2 in the Boltzmann factor of the original UNIQUAC model was reduced from 5
to 1.4. The deviation from unity could be caused by the choice of z = 10 as well
as the use of a fixed reference area Aref in the UNIQUAC model. But, as we have
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shown here, the origin for the aforementioned inconsistency and the need to use of
a proportionality factor to obtain better results lies in the incorrect definition of the
ratio of the local and random surface fractions. The correct derivation leads to Eq.
C.6. This also eliminates the use of a single value of z = 10.
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Appendix D

The dimensionless solubility
constant

Here we show how Eq. 5.30 can be derived. The cEoS parameters a and b can be
expressed in reduced in the critical constants of the compounds by:

aj = Ωa

R2 T 2
c,j

Pc,j
and bj = Ωb

RTc,j

Pc,j
, (D.1)

where Ωa and Ωb are cEoS specific constants (see Table 5.3), yielding:

ln γdisp,∞ = κ
bj
RT

[√
aj

bj
−
√
ak
bk

]2

= κ
bj
RT

Ωa

Ω2
b

[√
Pc,j −

√
Pc,k

]2
(D.2)

The covolume is proportional to the critical volume by cEoS constant y:

bc,j = yVc,j . (D.3)

We can relate the critical volumes of compound j to that of methane by:

Vc,j = mjVc,1, (D.4)

where mj is a proportionality constant, specific for each compound, and which can
be interpreted as the number of spheres that represent the polyatomic molecule.
Substitution of Eq. D.3, and D.4 into Eq. D.2 gives:

κ
bj
RT

[√
aj

bj
−
√
ak
bk

]2

= κ
yΩa

Ω2
b

mj

(
T0

T

)[√
Pc,jVc,1
RT0

−

√
Pc,kVc,1
RT0

]2

= Kmj

(
T0

T

)
[∆j −∆k ]2 , (D.5)
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where we defined:
K = κ

yΩa

Ω2
b

= κ
Ωa

ΩbZc
, (D.6)

which is a constant determined by the cEoS parameters λ1 and λ2 and

∆j =

√
Pc,j Vc,1

RT0
. (D.7)

Values of Ωa , Ωb , κ, y, and K are provided in Table 5.3.
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Appendix E

The cEoS constant K

The following general form of the cubic equation of state:

P =
RT

V − b
− a

(V + λ1b) (V + λ2b)
, (E.1)

can be rearranged into:

V 3 − V 2 [− (λ1 + λ2) b+ b+RT/P ]

+ V
[
λ1λ2b2 − (λ1 + λ2) b2 − RT/P (λ1 + λ2) b + a/P

]
−
(
λ1λ2b3 + RT/Pλ1λ2b2 + ab/P

)
= 0. (E.2)

At the critical point this equation should be continuous and the first and second
derivatives should vanish, which leads to the following solution at the critical point:

(V − Vc)3 = V 3 − 3VcV
2 + 3V 2

c V − V 3
c = 0. (E.3)

Hence we need to solve the following relations:

3Vc = [(1− λ1 − λ2) b+RTc/Pc]

3V 2
c =

[
(λ1λ2 − λ1 − λ2) b2 −RTc/Pc (λ1 + λ2) b+ a/Pc

]
V 3
c =

(
λ1λ2b3 + RTc/Pcλ1λ2b2 + ab/P

)
. (E.4)

By introducing y = b/Vc we obtain, after rearrangement, the following relations:

1

Zc
=
RTc
PcVc

= [3− (λ1 + λ2 + 1 ) y]

a

PcV 2
c

= 3− (λ1 + λ2 + λ1λ2) y
2 − 1

Zc
(λ1 + λ2) y

y =

[
1− λ1λ2y3 − 1

Zc
λ1λ2y2

]
PcV

2
c

a
. (E.5)
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Given values for the parameters λ1 and λ2, we can now solve the parameters y, Zc,
and a/(PcV 2

c ) by iteration, using as starting point y = 1/3 in the first equation. For
the van der Waals, the SRK and the PR cEoS the values for y are known exactly.
These are 1

3 ,
1
3

(√
8 sinh

(
1
3asinh

(√
8
))
− 1
)
and 3
√

2− 1, respectively. The obtained
values for these parameters generate the desired dimensionless energy and volume
parameter:

Ωa = Z2
c
(
a/PcV

2
c
)

Ωb = yZc. (E.6)

Together with the parameter κ, the parameter K can be calculated by the equation:

K = κyΩa/Ω2
b = κΩa/(ΩbZc). (E.7)
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Appendix F

Mixing rules tested to monoatomic
molecules

Kestin [111] obtained the size and energy parameter values for the noble gases by
an extensive study of phase equilibria and transport properties of pure systems and
of binary and multicomponent mixtures between 100 and 1500 K. In his work all
the LJ parameters were scaled to those of Argon using the values reported earlier
by Aziz and Chen [8]. The reported binary diameter and energy parameters can be
compared to the values obtained by applying the WH, Kong and classical mixing
rules. The pure component diameters of For He, Ne, Ar, Kr and Xe are 2.610, 2.755,
3.335, 3.571, and 3.885 Å, respectively, while the Lennard-Jones energies are 10.4,
42.0, 141.5, 197.8, and 274 K. Results of the unlike parameters are shown in table
F.1.

Table F.1 shows that the WHmixing rules give the highest accuracy in calculating
the unlike parameters of noble gases. The mixing rule of Kong is second best, while
the classical mixing (BL) rule gives most deviation.
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Table F.1: Comparison of Lennard-Jones size and energy mixing rules.

Experimenta Size mixing rule Energy mixing rule
Pair(i,j) σij(Å) εij(K) BLb WHc Kong d BL WH Kong

Absolute value Relative deviation
He-Ne 2.755 19.44 0.0 0.1 −0.7 −7.6 −6.2 −3.3
He-Ar 3.335 30.01 2.2 0.2 −1.0 −27.9 0.3 4.7
He-Kr 3.571 31.05 3.1 0.2 −0.8 −46.1 1.0 4.7
He-Xe 3.885 29.77 4.6 0.5 0.3 −79.4 0.4 2.8
Ne-Ar 3.084 64.17 1.4 0.2 1.7 −20.2 −2.8 −6.8
Ne-Kr 3.267 67.32 1.5 −0.7 1.0 −35.4 −2.7 −10.0
Ne-Xe 3.533 67.25 2.1 −1.3 1.3 −59.6 −1.0 −13.2
Ar-Kr 3.464 165.8 0.2 0.0 0.3 −1.0 1.1 0.3
Ar-Xe 3.660 182.6 0.7 −0.1 1.3 −7.9 2.5 −1.6
Kr-Xe 3.753 225.4 0.4 0.2 0.9 −3.3 −0.1 −1.6

AAD(%)e 1.6 0.4 0.5 28.8 1.8 4.9
a Parameter values of Kestin et al . [111].
b Berthelot and Lorentz Eq. 5.4 with kij = lij = 0 .
c Waldman and Hagler Eq. 5.6.
d Kong Eq. 5.5.
e Absolute Average Deviation (AAD) = 100%(1 − calc.value/exp.value).
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Appendix G

Dispersion parameters of alkanes

Table G.1 shows the parameters of investigated alkanes derived from critical data
(exp.) and the results obtained by the groups contribution (GC) method as was
depicted in figs. 5.4 and 5.5. The relative deviation (Dev.) is calculated by
100% (1− (exp.value) / (GC − value)). M denotes Methyl, M2 denotes dimethyl,
M3 denotes trimethyl, E denotes Ethyl and E2 denotes diethyl as branch.
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Table G.1: n-Alkanes parameters.

Dispersion model parameters
Compound NC m m Dev. ∆j ∆j Dev.
Name (exp.) (GC) % (exp.) (GC) %
Methane 1 1 1 0.0 0.427 0 0
Ethane 2 1.47 1.45 1.3 0.44 0.439 0.2
Propane 3 2.02 2.03 −0.4 0.411 0.41 0.1
n-Butane 4 2.58 2.61 −1.2 0.388 0.385 0.7
n-Pentane 5 3.17 3.19 −0.7 0.366 0.362 1
n-Hexane 6 3.76 3.77 −0.4 0.346 0.342 1.1
n-Heptane 7 4.34 4.35 −0.4 0.33 0.326 1
n-Octane 8 4.92 4.93 −0.2 0.314 0.311 0.8
n-Nonane 9 5.51 5.51 −0.1 0.301 0.298 0.9
n-Decane 10 6.08 6.09 −0.3 0.289 0.287 0.5
n-Undecane 11 6.68 6.67 0.0 0.278 0.277 0.4
n-Dodecane 12 7.26 7.25 0.0 0.269 0.268 0.3
n-Tridecane 13 7.86 7.83 0.2 0.258 0.259 −0.4
n-Tetradecane 14 8.41 8.41 −0.1 0.249 0.251 −0.9
n-Pentadecane 15 9.01 8.99 0.1 0.242 0.244 −0.8
n-Hexadecane 16 9.57 9.58 −0.1 0.235 0.238 −1
n-Heptadecane 17 10.14 10.16 −0.2 0.23 0.232 −0.6
n-Octadecane 18 10.75 10.74 0.0 0.224 0.226 −0.7
n-Nonadecane 19 11.35 11.32 0.3 0.219 0.22 −0.6
n-Eicosane 20 11.86 11.9 −0.3 0.214 0.216 −0.7
n-Heneicosane 21 12.47 12.48 −0.1 0.21 0.211 −0.6
n-Docosane 22 13.08 13.06 0.0 0.205 0.206 −0.7
n-tricosane 23 13.69 13.64 0.0 0.201 0.202 −0.4
n-tetracosane 24 14.30 14.22 0.0 0.197 0.197 −0.3
n-Pentacosane 25 14.80 14.8 0.0 0.194 0.194 −0.3
n-Hexacosane 26 15.41 15.38 0.0 0.19 0.191 −0.5
n-Heptacosane 27 16.02 15.96 0.0 0.187 0.187 −0.1
n-Octacosane 28 16.53 16.54 −0.0 0.183 0.184 −0.5
n-Nonacosane 29 17.13 17.12 0.0 0.181 0.181 −0.2

i-Butane 4 2.62 2.5 4.8 0.38 0.384 −1.2
i-Pentane 5 3.10 3.08 0.7 0.366 0.368 −0.7
Neopentane 5 3.11 2.96 4.6 0.356 0.373 −4.7
2-methylpentane 6 3.73 3.66 1.9 0.347 0.345 0.5
2,2-M2-butane 6 3.63 3.54 2.2 0.351 0.354 −1.1
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Continuation of Table G.1
Compound NC m m Dev. ∆j ∆j Dev.
Name (exp.) (GC) % (exp.) (GC) %
2,3-M2-butane 6 3.66 3.54 3.1 0.353 0.351 0.8
3-M-pentane 6 3.73 3.66 1.9 0.352 0.345 1.8
2-M-hexane 7 4.26 4.24 0.6 0.33 0.33 −0.2
2,2,3-M3-butane 7 4.03 4.01 0.5 0.342 0.345 −0.8
2,2-M2-pentane 7 4.21 4.22 −0.1 0.331 0.335 −1.3
2,3-M2-pentane 7 3.98 4.12 −3.6 0.34 0.345 −1.5
2,4-M2-pentane 7 4.23 4.12 2.6 0.33 0.333 −0.9
3,3-M2-pentane 7 4.19 4.22 −0.6 0.342 0.336 1.6
3-E-pentane 7 4.21 4.24 −0.5 3.5 0.332 1.7
3-M-hexane 7 4.09 4.24 3.5 0.334 0.338 −1.3
2-M-heptane 8 4.94 4.82 2.6 0.315 0.311 1.0
2,2,3,3-M4-butane 8 4.67 4.48 4.1 0.337 0.327 3.1
2,2,3-M3-pentane 8 4.42 4.59 −3.9 0.329 0.335 −1.9
2,2,4-M3-pentane 8 4.74 4.59 3.2 0.319 0.322 −0.9
2,2-M2-hexane 8 4.84 4.87 −0.6 0.317 0.317 −0.2
2,3,3-M2-pentane 8 4.61 4.59 0.4 0.334 0.327 2.1
2,3,4-M2-pentane 8 4.66 4.59 1.6 0.329 0.324 1.5
2,3-M2-hexane 8 4.74 4.7 0.8 0.323 0.32 0.9
2,4-M2-hexane 8 4.78 4.7 1.7 0.319 0.318 0.0
2,5-M2-hexane 8 4.88 4.7 3.7 0.314 0.314 −0.1
2-M-3-E-pentane 8 4.48 4.7 −5.0 0.327 0.33 −1.0
3,3-M2-hexane 8 4.49 4.71 −4.8 0.324 0.331 −2.3
3,4-M2-hexane 8 4.72 4.7 0.4 0.327 0.321 1.8
3-E-hexane 8 4.61 4.82 −4.5 0.322 0.324 −0.8
3-M-3-E-pentane 8 4.61 4.71 −2.1 0.334 0.326 2.2
3-M-heptane 8 4.7 4.82 −2.5 0.318 0.321 −0.9
4-M-heptane 8 4.82 4.82 0.1 0.317 0.316 0.4
2-M-octane 9 5.48 5.23 4.5 0.303 0.3 0.8
2,2,5-M3-pentane 9 5.26 5.17 1.7 0.304 0.31 −1.9
2,2,3,3-M4-pentane 9 4.84 5.06 −4.4 0.33 0.326 1.0
2,2,3,4-M4-pentane 9 4.96 5.06 −1.8 0.321 0.321 0.1
2,2,4,4-M3-pentane 9 5.11 5.06 0.9 0.314 0.316 −0.8
2,2-M2-3-E-pentane 9 5.18 5.17 0.1 0.319 0.312 2.1
2,2-M2-heptane 9 5.26 5.38 −2.3 0.305 0.309 −1.3
2,3,3,4-M4-pentane 9 5 5.06 −1.2 0.328 0.319 2.7
2,4,4-M3-pentane 9 5.18 5.27 −1.7 0.312 0.313 −0.1
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Continuation of Table G.1
Compound NC m m Dev. ∆j ∆j Dev.
Name (exp.) (GC) % (exp.) (GC) %
2,4-M2-3-E-pentane 9 5.19 5.17 0.4 0.317 0.311 1.8
2,6-M2-heptane 9 5.27 5.28 −1.8 0.302 0.308 −1.9
3,3-E2-pentane 9 4.79 5.29 −10.3 0.326 0.326 −0.1
3-E-heptane 9 5.35 5.4 −0.9 0.308 0.304 1.1
3-M-octane 9 5.36 5.4 −0.7 0.305 0.304 0.2
4-M-octane 9 5.3 5.4 −1.9 0.305 0.306 −0.5
2-M-nonane 10 5.91 5.98 −1.2 0.29 0.293 −1
2,2,3,3-M4-hexane 10 5.64 5.64 0.1 0.315 0.304 3.6
2,2,5,5-M4-hexane 10 5.92 5.64 4.7 0.295 0.296 −0.4
2,2-M2-octane 10 5.82 5.87 −0.8 0.293 0.297 −1.5
2,3-M2-octane 10 5.83 5.86 −0.6 0.296 0.296 0.1
2,4-M2-octane 10 5.83 5.86 −0.6 0.293 0.296 −0.8
2,5-M2-octane 10 5.83 5.86 −0.6 0.293 0.296 −0.8
2,6-M2-octane 10 5.83 5.86 −0.6 0.293 0.296 −0.8
2,7-M3-octane 10 5.83 5.86 −0.6 0.291 0.296 −1.8
3,3,5-M3-heptane 10 5.85 5.75 1.6 0.303 0.296 2.2
3-M-nonane 10 5.91 5.98 −1.2 0.293 0.293 −0.1
4-M-nonane 10 5.91 5.98 −1.2 0.293 0.293 −0.1
5-M-nonane 10 5.91 5.98 −1.2 0.293 0.293 −0.1
3-M-undecane 12 7.02 7.14 −1.6 0.272 0.273 −0.3
2,2,4,4,6,8,8-M7-nonane 16 8.75 8.78 −0.41 0.249 0.253 −1.3
Squalane 30 16.63 16.73 −0.6 0.185 0.185 0.2

Cyclopropane 3 1.64 1.57 4.0 0.469 0.483 -3.0
Cyclobutane 4 2.12 2.1 1.2 0.445 0.452 -1.8
Cyclopentane 5 2.63 2.62 0.3 0.423 0.424 -0.2
Cyclohexane 6 3.12 3.15 -1.0 0.402 0.401 0.4
Cycloheptane 7 3.58 3.17 12 0.389 0.382 1.8
Cyclooctane 8 4.15 3.68 12 0.376 0.36 4.3
M-cyclopentane 6 3.23 4.2 -30 0.388 0.395 -2.0
1,3,5-M3-cyclohexane 9 4.78 4.78 0.1 0.336 0.342 -2.0
i-Propylcyclohexane 9 4.7 4.74 -0.8 0.336 0.34 -1.2
n-Butylcyclopentane 9 4.89 4.91 -0.3 0.328 0.33 -0.6
n-Propylcyclohexane 9 4.83 4.85 -0.4 0.334 0.334 -0.3
n-Butylcyclohexane 10 5.41 5.43 -0.4 0.319 0.318 0.5

End of Table
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Appendix H

Cismondi and Mollerup cEoS

Here we derive the dispersive activity coefficient from the three-parameter cEoS of
Cismondi and Mollerup.
The Gibbs energy of mixing at infinite pressure for the three-parameter cEoS of
Cismondi and Mollerup is given by:

ntg
mix

RT
=

1

RT

∑
j

njκj
aj
bj
− ntκ̄

∑
j,k njnkajk∑
j,k njnkbjk

 , (H.1)

where κj is the parameter κ of compound j, and κ̄ is the average value given by the
expression:

κ̄ =
1

λ̄1 − λ̄2
ln

[
1 + λ̄1
1 + λ̄2

]
, (H.2)

where

λ̄1 =
∑
j

xjλ1,j (H.3)

and

λ̄2 =
1− λ̄1
1 + λ̄1

. (H.4)

In here λ1,j is the λ1 parameter of compound j. Substitution of Eq. H.1 into Eq. 6.15
yields the following general expression for the activity coefficient of a two-parameter
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cEoS:

ln γdisp, CMj =
1

RT

[
κj
aj
bj
− κ̄

2
∑

k xkajk∑
k,m xkxmbkm

]

+
1

RT

κ̄
(

2
∑

k xkbjk −
∑

k,m xkxmbkm

)∑
k,m xkxmakm(∑

k,m xkxmbkm

)2


+

1

RT

[
λ1,j

∂κ̄

∂λ̄1

∑
j,k xjxkajk∑
j,k xjxkbjk

]
, (H.5)

where ajk and bjk are defined by one of the mixing rules given in this main paper,
and

∂κ̄

∂λ̄1
=

2
[
(λ̄1)2 + 2λ̄1 − 1

]
−
[
(λ̄1 + 2)λ̄1 + 3

]
ln(1+λ̄1

1+λ̄2
)

((λ̄1)2 + 2λ̄1 − 1)2

=
2

(λ̄1 − λ̄2)(1 + λ̄1)
−
[
(λ̄1 + 2)λ̄1 + 3

]
(λ̄1 − λ̄2)(1 + λ̄1)2

κ̄ (H.6)

The quantity κ and the derivative ∂κ/∂λ1 are depicted in Fig. H.1. We notice
that this derivative, which starts at zero at λ1 =

√
2 − 1, is nearly constant for

1.4 < λ1 < 2.5, where it has a value of -0.05.
Eq. H.5 is quite complex. However, for the activity coefficients at infinite dilution

of compound 1 dissolved in solvent 2, x1 = 0, x2 = 1, we get the expression:

ln γ∞,CM1 =
1

RT

[
κ1
a1

b1
− 2κ2

√
a1a2

b2
+ κ2

b1
b2

a2

b2
+ λ1,1

∂κ̄

∂λ̄1

∣∣∣∣
λ1,2

a2

b2

]

=
κ2b1
RT

[(√
a1

b1
−
√
a2

b2

)2

+
a1

b21

(
κ1

κ2
− 1

)
− a2

b1b2

λ1,1

κ2

∂κ̄

∂λ̄1

∣∣∣∣
λ1,2

]
. (H.7)

The activity coefficient at infinite dilution of solute 2 in solvent 1 is found by inter-
changing the indices 1 and 2. These equations can also be represented in terms of
the dimensionless solubility parameters. We have:

ln γ∞,CM1 = K2m1
T0

T

[
(∆1 −∆2)

2 + ∆2
1

(
κ1
κ2
− 1

)
−∆2

2
m2

m1

λ1,1
κ2

∂κ̄

∂λ̄1

∣∣∣∣
λ1,2

]
, (H.8)

and

ln γ∞,CM2 = K1m2
T0

T

[
(∆1 −∆2)

2 + ∆2
2

(
κ1
κ2
− 1

)
−∆2

1
m1

m2

λ1,2
κ1

∂κ̄

∂λ̄1

∣∣∣∣
λ1,1

]
. (H.9)
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Figure H.1: The CM EoS quantity κ (Eq. 5.15, dashed green curve) and ∂κ/∂λ1 (Eq. H.6, solid
blue curve).

Eqs. H.7, H.8 and H.9 reduce to the two-parameter dispersion activity coefficient
model when λ1,2 = λ1,1, and thus κ2 = κ1 and K2 = K1.

Lets consider a very asymmetric system in terms of the λ1,j parameters. For
instance, the binary system of n-butane (1) and n-hexadecane (2). The corresponding
CM parameters are, according to the work of Cismondi et al., λ1,1 = 1.40 and λ1,2 =
2.50, respectively. The infinite dilution activity coefficient (IDAC) results for this
case are shown in table H.1.

Table H.1: Combinatorial (FH) and dispersion (CM) IDAC at T = T0.

Comp. mj ∆j λ1,j λ2,j κj Kj
∂κj
∂λ1,j

γ∞,FH
j γ∞,CM

j

Eqs. 5.24 5.26 - 5.2 H.2 D.6 H.6 6.36 H.8,H.9
n-C4 2.58 0.388 1.40 −0.167 0.675 10.6 −0.049 0.58 61

n-C16 9.75 0.235 2.50 −0.429 0.619 12.0 −0.051 0.27 24781

When the λ1 parameters for both molecules are equal, i.e we apply the two-parameter
cEoS, than we get the results of table H.2. We observe that the values for the
logarithmic dispersive activity coefficient of the 3-parameter CM model are of the
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Table H.2: Two-parameter example at T = T0

Comp. mj ∆j λ1,j λ2,j κj K γ∞,FH
j γ∞,CM

j

Eqs. 5.24 5.26 - 5.2 5.15 D.6 6.36 5.25
n-C4 2.58 0.388 1.40 −0.167 0.675 10.6 0.58 14

n-C16 9.75 0.235 1.40 −0.167 0.675 10.6 0.27 18981

n-C4 2.58 0.388 2.50 −0.429 0.619 12.0 0.58 19

n-C16 9.75 0.235 2.50 −0.429 0.619 12.0 0.27 67926

same magnitude as the two-parameter cEoS model. It indicates that the dispersion
activity coefficient model derived from the CM-model has the same magnitude of
error as the two-parameter cEoS. Snyder and Thomas [204] measured the IDAC of
butane in n-hexadecane by gas-liquid chromatography at 40, 60 and 70◦C. The IDAC
values are 0.85, 0.84 and 0.83, respectively. Eq. 5.37 with K = 4.13 for the linear
alkanes gives the values 0.75, 0.73 and 72, respectively. This is 12% lower than was
measured. The values of tables H.1 and H.2 are much higher due to the very high
value for K.

226



Appendix I

Critical parameters:
Experimental, mean field and
crossover cEoS.

There is a difference between the experimental and theoretical critical properties
(Pc,Vc,Tc) due to the fact the experimental quantities are not pure mean field prop-
erties, but also contain effects that are a result of density fluctuations. In other
words, the experimental determined Pc and Tc are not representative values to
define the cEoS mean field model. This explains why a regression of PVT-data
at T ≤ Tc(observed) yields always higher Pc and Tc parameters for the cEoS model
values.

Crossover theory, as elaborated by Kostrowicka Wyczalkowska et al ., Fluid Phase
Eq. 158-160 (1999) 523, is a way to incorporate density fluctuations into the mean-
field models. Fig. 1 from this reference, see below as Fig. I.1, shows schematically
the phase envelope of a pure compound described by the classical (dashed curve) and
the crossover van der Waals equation of state. It shows that the mean field critical
point (MFCP) lies above the experimental observed one (CP). Far below the critical
point the density fluctuations are negligible and the models coincide. Table 2 of the
same paper, see below as table I.1, shows the relative observed Tc and Pc values as
function of density fluctuation parameter ct. When ct = 0 no density fluctuation is
happening; the fluid behaves in a classical way and the experimental and mean field
critical values would coincide. However, this situation never occurs.

For a compound where ct = 1, deemed by the authors as a typical value, we
see that the experimental determined critical temperature is 89.2% of the mean field
value (cEoS parameter), and that the Tc/Pc ratio is 30% below the value of the
Tc/Pcof the cEoS mean field model. More important to notice, is that the classical
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AND CROSSOVER CEOS.

Figure I.1: Coexistence curve and coexistence–curve diameter in the reduced temperature versus
reduced density plane. The solid curves represent of the crossover van der Waals equation and the
dashed curves the classical van der Waals equation. The square indicates the location of the mean-
field critical point (MFCP) and the circle the location of the critical point (CP) of the crossover
van der Waals equation. Taken from: Fluid Phase Eq. (1999), Vol. 158-160, p523 - 535.

critical density (i.e. volume) hardly differs, only 2% at ct = 1. In short, the difference
between Tc/Pc as measured and as cEoS parameter explains largely the difference in
Zc(exp.) and Zc(cEoS).

In reference to the present paper, we have 3 options to calculate the repeating
unit m:

m =
Tc
Pc

Pc(CH4)

Tc(CH4)
with experimental Tc and Pc (labeled exp.)

m =
T
′
c
P ′c

P
′
c(CH4)

T ′c(CH4)
with mean field T

′
c and P

′
c (labeled classical)

m = Vc/Vc(CH4) with experimental Vc

We plotted these options in figure I.2 using the critical values for alkanes C1-C10 ,
mean field and experimental. In here we used the critical volume data of DIPPR
[23], and the critical temperature and pressure data, mean field and experimental,
from table 1 of the work of Vinhal et al . J. Chem. Eng. Data 2018, 63, 981-993, see
table I.2.

As can be seen from this figure, the Vc approach for m (crosses) is more in line
with the classical results (orange dots) and yields a more linear relation than the
experimental Tc/Pc method (blue dots). This supports the option to calculate m by
Eq. 5.24 in the present paper.

In conclusion, the difference in calculation methods for defining m is small com-
pared to the factor 3 which is needed to bring the cEoS dispersion based activity
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AND CROSSOVER CEOS.

Table I.1: Coefficients and critical parameters as a function of ct. Taken from: Fluid Phase
Eq. (1999), Vol. 158-160, p523 - 535.

ct
a ū b ξ+

0 /ν
1
3
0

c Tc
[
% of T cl

c
]

ρc
[
% of ρclc

]
Pc
[
% of P cl

c
]

NG
d

0.2 0.02 2.2 97.7 100.4 90.9 7× 10−5

0.5 0.13 1.4 94.3 100.9 78.6 1× 10−3

1.0 0.53 1.0 89.2 101.9 62.4 9× 10−3

1.5 1.19 0.8 85.3 102.8 51.3 3× 10−2

a Crossover parameter.
b Crossover coupling constant.
c Relative mean-field correlation-length amplitude.
d Ginzburg number.

Figure I.2: Repeating unit m according to experimental Tc/Pc (exp.), mean field Tc/Pc (classical),
and Vc (this work).

coefficient values in agreement with experimental results. This large difference is
explained in the present paper by the cEoS assumption that molecules are spherical,
while in reality most molecules are elongated.
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AND CROSSOVER CEOS.

Table I.2: Parameters of the Crossover SRK for Methane to n-Decane and Experimental Critical
Temperatures, Critical Pressures, and Acentric Factor. Taken from: J. Chem. Eng. Data 2018, 63,
p981-993.

Mean Field Cross-over Experimental
substance T

′
c(K) P

′
c(bar) ω

′
(−)a L(Å) b φ(-)c Tc(K) Pc(bar) ω(−)a

C1 197.7 50.39 –0.0578 4.166 2.5 190.6 45.99 0.0115
C2 314.3 52.35 0.0392 5.264 1.2 305.3 48.72 0.0995
C3 382.2 46.74 0.0856 5.913 0.67 369.8 42.48 0.1523
C4 441.7 42.48 0.1204 6.452 0.6 425.2 37.96 0.2002
C5 489.1 38.53 0.1632 6.879 0.6 469.7 33.7 0.2515
C6 526.4 34.98 0.2247 7.207 0.6 507.6 30.22 0.3013
C7 561.4 32.46 0.2647 7.396 0.6 540.2 27.4 0.3485
C8 592.8 30.17 0.3044 7.597 0.6 568.7 24.9 0.3995
C9 620.7 28.09 0.3434 7.809 0.6 594.6 22.9 0.4436
C10 645 26.24 0.3882 8.041 0.6 617.7 21.1 0.4923

a Acentric factor.
b Cut-off length for classical limit.
c Shortest wavelength parameter for density fluctuations.
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Appendix J

The low density limit of I1

Here we show that in the infinite low density limit, an analytic expression can be
obtained for the first perturbation integral for hard-sphere chains. The first perturb-
ation integral is defined by

I1 (η,m) = −
∫ ∞

0
ũ (x) ghc (m;x, ρ)x2dx, (J.1)

where x is the reduced radial center to center distance around a central hard sphere
(x = r/σ), and ghc (m;x, ρ) is the radial distribution function of the reference fluid,
which depends upon x the number of spheres m, and the system number density ρ.
The reduced potential function ˜u(x) = u/ε for spheres interacting via a square-well
potential is defined as:

ũ (x) =


∞, x < 1

−1, 1 ≤ x < λ

0, x ≥ λ,
(J.2)

where λ is the reduced width of the square-well. In the PHSC model of Gross and
Sadowski [77], λ = 1.5. The radial distribution function value for hard-sphere chains
at contact (x=1) in the approximation of averaging the segment concentrations is
given by the expression of Chiew [30]:

g (m,x = 1, η) =
2 + η (3m− 2)

2m (1− η)2 . (J.3)

In the limit of η = 0, this reduces to:

g (m,x = 1, η = 0) =
1

m
. (J.4)
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This result shows that the probability of segment-segment intermolecular contact
is reduced by the length of the chain. The change in the probability of finding
another segment is linear with x at zero packing, as follows from the computed
radial functions for molecules of different length [30]. In order to obtain an analytical
expression for the slope of g(x), we start with a recurrence relation for the radial
distribution function, as given by Tang and Lu [211]. Their relation holds for chains
having no difference between the chain middle en chain end segments. This chain
average approach is known as the PY2 approximation and the expression in the η = 0
limit is given by:

xg (x)− x =
m− 1

m
Q (x− 1) +

m− 1

m

∫ 1

0
(x− t) [g (x− t)− 1] dt, (J.5)

where:
Q (x− 1) =

1

2m

(
x2 − 2x

)
+
m− 1

2m
(x− 2) . (J.6)

Differentiation of J.5 with respect to x, and evaluating the result at x = 1 and
applying the Leibniz integral rule yields:

g (1) + g′ (1)− 1 =
(m− 1)2

2m2
+
m− 1

m

∫ 1

0
g (1− t)− 1 + (1− t) g′ (1− t) dt. (J.7)

Since g (r) = g′ (r) = 0 for r < 1, we obtain:

g (1) + g′ (1)− 1 =
(m− 1)2

2m2
− m− 1

m
. (J.8)

Substitution of Eq. J.4 into J.8 provides the expression

g′ (1) =
(m− 1)2

2m2
. (J.9)

It follows that g′ (1) = 0 for m = 1, which agrees with the fact that the radial
distribution function contains a discontinuity at x = 1 for hard spheres. The density
at positions beyond the hard sphere overlap is assumed to be uniform, i.e. a mean-
field approximation. For longer chains the slope of the radial distribution function
increases slowly with increasing chain length to the asymptotic value of 0.5 for m =
∞.

The radial function for a hard sphere chain in the η = 0 limit at relative distances
1 < x < 1.5 now follows as:

g (m,x, η = 0) = g (1) + (x− 1) g′ (1) =
1

m
+ (x− 1)

(m− 1)2

2m2
, (J.10)
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so that the first perturbation integral can now be written as:

I1 (m, η = 0) =

∫ 1.5

1

[
g (1) + (x− 1) g′ (1)

]
x2dx (J.11a)

=
65

64

(m− 1)2

2m2
+

19

24

(
4m−m2 − 1

)
2m2

(J.11b)

=
19

24
− 565

768

(m− 1)

m
+

43

768

(m− 1) (m− 2)

m2
. (J.11c)

The last equation line (Eq. J.11c) is the form as has been used in the PHSC model,
which demonstrates that the model parameters are correlated. In fact, taking u =
19/24 and w = 65/64, it follows that â0,0 = u, â1,0 = (w − 5u) /4, and â2,0 =
(w − u) /4. The published PHSC model parameters, which Gross et al . [77] obtained
by fitting generated I1 data, and which yields the â0,0, â1,0, and â2,0 in this paper,
are compared to the exact values of Eq. J.11c in Table J.1.

Table J.1: PHSC parameters in the η = 0 limit.

Parameter PHSC model [77] Eq. J.11c parameters
â0,0 0.791982807 19/24 ≈ 0.7916667
â1,0 -0.623115380 -565/768 ≈ -0.7356771
â2,0 -0.067775558 43/768 ≈ 0.0559896

Table J.2 shows the effect on I1 (η = 0) for a monomer, dimer, tetramer and
decamer. The differences in the parameters in Table J.1 and the differences in the

Table J.2: I1 (η = 0) for different molecules.

Molecule Eq.6.9 Eq. J.11c
monomer 0.7920 0.7917
dimer 0.4804 0.4238
tetramer 0.2992 0.2609
decamer 0.1824 0.1699

values of first perturbation integral for each molecule in Table J.2 are caused by the
numerical procedure that was used to solve the perturbation integral constants. In
the PHSC model the parameters of the power series are found by regressing a set of
computed I1 values, while we used a theoretical approach. Therefore, it seems that
for optimization of the PHSC model parameters, besides the generated data as was
used in [77], Eq. J.11c could serve as a boundary condition.
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In the PC-SAFT model the square-well potential is modified to

ũ (x) =


∞, x < 0.88

3, 0.88 ≤ x < 1

−1, 1 ≤ x < 1.5

0, x ≥ 1.5.

(J.12)

This makes the above method not directly applicable for PC-SAFT. The equation
reflects that the PC-SAFT model no longer has a hard wall at x = 1, but has an
indent for molecules that have a relative energy higher than 3. The developers opted
for a hard contact position at x = 0.88. The initial slope of the radial function
between 0.88 and 1 becomes lower, because the molecules with less kinetic energy
than 3ε do not approach the hard wall: they can not approach the central sphere for
x < 1. Hence, the radial distribution starts at x = 0.88 at a lower value and with a
lower slope. The net effect is that I1 is shifted to a higher value. We may write for
the starting point:

g (0.88) =
1

m
P, (J.13)

and

g′ (0.88) =
(m− 1)2

2m2
P, (J.14)

where P is the probability of a molecule to have a kinetic energy larger than 3ε,
which follows from the equation:

P =

∫ ∞
3ε
kBT

exp (−u) du = exp

(
− 3ε

kBT

)
, (J.15)

which can be calculated using the energy values given in Table 6.1. For instance, at
room temperature methane and n-hexane have ε/kBT = 0.503 and 0.794, respect-
ively. This yields P = 0.22 for methane and 0.09 for hexane.

The radial distribution function for the PC-SAFT hard-sphere chain at zero pack-
ing in the range of 0.88 < x < 1.5, can now be defined as:

g (m,x, η = 0) =


0 x < 0.88[

1
m + (x− 0.88) (m−1)2

2m2

]
exp

(
− 3ε
kBT

)
0.88 ≤ x < 1

1
m + (x− 1) (m−1)2

2m2 1 ≤ x < 1.5.

(J.16)

Interestingly, there appears to be a temperature dependency in the radial distribu-
tion function, which has been neglected in the parameterization of the perturbation
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integral of the PC-SAFT model. As an example, we work out the case of m = 1
(methane) and m = 4 (nonane):

g (1, x, η = 0) =


0 x < 0.88

0.22 0.88 ≤ x < 1

1 1 ≤ x < 1.5.

g (4, x, η = 0) =


0 x < 0.88

0.09
(

1
4 + (x− 0.88) 9

32

)
0.88 ≤ x < 1

1
4 + (x− 1) 9

32 1 ≤ x < 1.5.

(J.17)

Hence, for methane we obtain:

I1 (1, η = 0) = 22%× 0.106 +
19

24
= 0.815, (J.18)

which is 3% above the PHSC model. For n-hexane the result is:

I1 (1, η = 0) = 9%× 0.028 + 0.261 = 0.263, (J.19)

which is only 1% above the PHSC model. When we set P = 1 the maximum
difference is obtained; 13% for methane, and 11% for nonane. The results given
in Fig. 6.1 show a larger difference than 13% for methane at η = 0, which can
only be explained as a result of the applied parameter optimization, in which this
overshoot of I1 of the PC-SAFT EoS, is compensated by the I2 of the EoS. As a result,
the I1 integral parameters of PC-SAFT cannot be used to quantify the dispersion
contribution in an activity coefficient model, and is one of the two reasons to develop
the IPC model. The other reason is the quantification of effects arising from chain
ends and cross-links. PC-SAFT does this by tweaking the segment size and the
number of segments, because the model uses a Percus-Yevick type 2 approximation
[30].
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From PC-SAFT based to other
dispersion activity coefficient
models

We start with the PC-SAFT based activity coefficient equation for a solute at infinite
dilution in a solvent (Eq. 6.18):

ln γdisp,∞k = mk
Zk
2

(
T0

T

)(
σ3
k

d3
k

ε̃k − 2
σ3
jk

d3
j

ε̃jk +
d3
k

d3
j

σ3
j

d3
j

ε̃j

)

+mk
Z∞
2

(
T0

T

)[
ã2

ã1mj
+

2ã3

ã1m2
j

](
1− mj

mk

)(
σj
dj

)3

ε̃j . (K.1)

For long chains, m >> 1, the second part vanishes and Eq. K.1 reduces to:

ln γdisp,∞k = mk
Zk
2

(
T0

T

)(
σ3
k

d3
k

ε̃k − 2
σ3
jk

d3
j

ε̃jk +
d3
k

d3
j

σ3
j

d3
j

ε̃j

)
. (K.2)

When also the segments are temperature independent, dj = σj we obtain:

ln γdisp,∞k = mk
Zk
2

(
T0

T

)(
ε̃k − 2

σ3
jk

σ3
j

ε̃jk +
σ3
k

σ3
j

ε̃j

)
. (K.3)

In case all chains have the same segments size, σj = σk, and when either the Lorentz
with ljk = 0 or the Waldman and Hagler size combining rule is applied, so that
σjk = σj , than Eq. K.3, reduces to:

ln γdisp,∞k = mk
Zk
2

(
T0

T

)
(ε̃k − 2ε̃jk + ε̃j) , (K.4)
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which leads to a van Laar type of equation, when either the Berthelot with kjk = 0
or the Waldman and Hagler energy combining rule, so that ε̃jk =

√
ε̃k ε̃k, is applied:

ln γdisp,∞k = mk
Zk
2

(
T0

T

)(√
ε̃k −

√
ε̃j

)2
. (K.5)

However, for chains with different diameter Eq. K.3 yields under classical mixing
rules a nearly van Laar type of equation:

ln γdisp,∞k = mk
Zk
2

(
T0

T

)(√
ε̃k −

√
ε̃j

)(√
ε̃k −

σ3
k

σ3
j

√
ε̃j

)
. (K.6)

The differences between the PC-SAFT based dispersion activity coefficent contribu-
tion and the other equations reflect the assumptions made in the cEoS:
1) Mean field approximation (long chains average the field m >> 1)
2) Temperature independent segment volume, size (dj = σj)
3) Molecules have equal sized segments (σj = σ)
4) Classical combing rules can be applied (2σij = σi + σj , ε̃ij =

√
ε̃iε̃j)

5) All molecules have same coordination number, Zk = Z0

The last assumption means that all the molecules are spheres, which is the way
van der Waals defined molecules [219]. One could also take the product mkZk as
the liquid volume parameter and

√
ε̃kT0 as the solubility parameter. In that way Eq.

K.5 becomes identical to the Hildebrand regular solution model [86, 88].
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Appendix L

IPC activity model results

Here we show besides the IPC activity model with IC combining rules (Fig. 6.7) also
the results of this model with WH and Kong combining rules.

238
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Figure L.1: Results of the IPC model with IC (top), WH (middle) and Kong (bottom) combining
rules. Same notation and references as fig. 6.7.
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Appendix M

Second perturbation at infinite
pressure

Here we show that at infinite pressure the first perturbation term of both the PHSC
and the PC-SAFT model becomes dominant over the second term. This can be
proven by a theoretical explanation and a practical one based on the equations used
in the perturbed chain models.

The theoretical explanation is that at infinite pressure the compressibility factor
has become infinite. Since C1 is inversely proportional to the compressibility factor
it has to be zero. This brings I2 to zero and thus only I1 is important.

The explanation using model equations is as follows. The ratio of the two terms
in the Helmholtz energy for a pure component is given by:

∣∣∣∣A2

A1

∣∣∣∣ =

∣∣∣∣∣∣∣
πρmC1I2m

2
(

ε
kBT

)2
σ3

2πρI1m2 ε
kBT

σ3

∣∣∣∣∣∣∣ =

∣∣∣∣I2

I1

∣∣∣∣ mC1

2

(
ε

kBT

)
. (M.1)

At infinite pressure we assume that the packing fraction of the liquid ηLCP ' 0.637.
With the expression for C1, Eq. 6.4, we can write for Eq. M.1:∣∣∣∣A2

A1

∣∣∣∣ =

∣∣∣∣I2

I1

∣∣∣∣ [ m

39 + 454m

](
ε

kBT

)
. (M.2)

Fig. M.1 shows the ratio of the two perturbation integrals PHSC and the PC-
SAFT model as function of the segment number m at η = ηLCP = 0.64. We see
that PHSC model gives a ratio, which is always less than 0.2. The curve starts at
0.19 and runs to the asymptotic value of 0.083. As mentioned in the main text,
the PC-SAFT model gives erroneous results beyond the singular point located at
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Figure M.1: Ratio in second and first perturbation integral at η = ηLCP as function of the number
of segments, m, according to PHSC (dashed curve) and the PC-SAFT(solid) curve.

η = 0.46. Therefore, the depicted solid curve in Fig. M.1, which starts at -2.55 and
runs to the asymptotic value of 0.94, is of no value. The second term of M.2 is always
less than 0.0022. The largest dispersion interaction energy, which has been reported
by Gross and Sadowski [78] is about 350 K. The minimum temperature for which
the perturbation hard-sphere chain models can be applied is where the de Broglie
wavelength is much smaller than the average intermolecular distance. Taking σ = 3
Å and η = 0.64 we get for this distance 3 × 0.361/3 = 2 Å. When we permit 10%
of this distance as acceptable for being a classical fluid, i.e. Maxwell-Boltzmann
statistics, than the de Broglie wavelength should not be larger than 0.2 Å. At 298 K
the de Broglie wavelength of methane is 0.1 Å. To get a value that not exceeds 0.2 Å,
the temperature has to be above 90 K. For larger molecular masses the temperature
can be lower. So for alkanes we can take 90 K as the lowest possible temperature at
which PHSC and PC-SAFT models are still valid. The largest dispersion interaction
energy, which has been reported by Gross and Sadowski [78] is about 350 K. Hence
we conclude that at infinite pressure and a temperature above 90 K, according to

241



APPENDIX M. SECOND PERTURBATION AT INFINITE PRESSURE

the parameters of the PHSC model,∣∣∣∣A2

A1

∣∣∣∣ < 0.2× 0.0022× 360/90 < 0.002. (M.3)

For the PC-SAFT model we have:∣∣∣∣A2

A1

∣∣∣∣ < 2.55× 0.0022× 360/90 < 0.025. (M.4)

We therefore conclude from theoretical and practical arguments that the second
perturbation term can be ignored when the system is set to infinite pressure.
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Appendix N

Boiling point estimation

To demonstrate the benefit of the parameter Zj , we show how well it is capable of
predicting the boiling temperature at atmospheric pressure, commonly known as the
normal boiling point, Tb, of alkanes. Initially we had an overestimation of Tb for the
cyclo-alkanes and a few branched alkanes, because we used the Zagreb index without
realizing that rigid rings and the proximity of three or more alkyl groups can prevent
intramolecular interaction. After introducing corrections for this, which lead to the
definition of D, we obtained the following relation for Tb:

Tb = −90.3 + 132.2

√
mjZj

2
− 64.4 ln

mjZj
2
− 3.38

mjZj
2

. (N.1)

Results for the correlation curve and the experimental normal boiling points are
plotted in Fig. N.1 for the range from methane to squalane. An excellent description
running from methane to squalane is depicted as can also be concluded from the
statistical information: coefficient of determination R2 = 0.9985, F-test value F =
24580 , standard deviation s = 3.3 K, degrees of freedom NF = 109 and the reduced
χ2
red = 2.6.
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Figure N.1: Normal boiling point, Tb, as function of the compound specific product mjZj/2 for
linear, branched and cyclo-alkanes [23], with 1 ≤ NC ≤ 30.
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Appendix O

Long n-Alkanes in short alkanes

Here we take a closer look at the experimental solubility data of long alkanes in
short n-alkanes, which were studied by Madsen and Boistelle [156, 157], and apply
the solubility theory to obtain the activity coefficients of solutes.

The activity of a solute at temperature T is given by the solid-liquid equilibrium

ln (a2) =
∆Hm

RTm

(
1− Tm

T

)
+

∆Htr

RTtr

(
1− Ttr

T

)
+

∆Cp
R

[
1− Tm

T
+ ln

(
Tm
T

)]
(O.1)

where ∆Hm is the enthalpy of fusion, ∆Htr is the enthalpy of transition between
two solid states, ∆Cp is the average heat capacity difference between pure liquid
and solid state. Briard et al. studied accurately the solid-liquid state transition of
n-alkanes. Table O.1 shows for octacosane, dotriacontane and hexatriacontane the
transition point, the melting point, the enthalpy of solid order-disorder transition,
the enthalpy of fusion, as reported by Briard, and also the heat capacity of solid and
liquid at 300 K retrieved from DIPPR [23]. The last column is the difference in heat
capacity between pure solid and liquid state at 300 K, which we take as an estimate
for the average change in heat capacity over the range of integration between system
temperature and melting point.

Property Ttr Tm ∆Htr ∆Hm Cp,solid Cp,liq. ∆Cp
Compound K K kJ/mol kJ/mol J/mol.K J/mol.K J/mol.K
nC28 330.5 334.2 35.1 65.1 840 882 42
nC32 338.0 341.9 44.2 75.8 886 964 77
nC36 346.1 348.9 31.1 87.7 831 1143 311

Table O.1: Thermodynamic constants for pure n-alkanes [20] and Cp from DIPPR [23] taken at
300K
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APPENDIX O. LONG N-ALKANES IN SHORT ALKANES

Fig. O.1 shows the experimental solubility data of octacosane, dotriacontane and
hexatriacontane in small alkanes measured by Madsen and Boistelle [156, 157]. The
infinite dilution activity coefficient (IDAC) of the long alkanes was calculated by Eq.
O.1 using the parameters of table O.1. We see that the solubility data run nearly

Figure O.1: Logarithmic solubility data of [156, 157] and logarithmic activity curves (Eq. O.1)
as function of the reciprocal temperature. Enthalpy and entropy of solvation of the experintal data
are summarized in table O.2.

parallel to the calculated activity coefficient. The solubility data can be expressed
in terms of the enthalpy, ∆Hsol and entropy, ∆Ssol, of solvation:

ln (x2) = −∆Hsol

RT
+

∆Ssol
R

. (O.2)

By fitting the solubility data series of Madsen and Boistelle, we get the enthalpy and
entropy of solvation. These are summarized in Table O.2.

Fig. O.1 shows a gap between the experimental solubility data and the corres-
ponding activity curve. The larger the gap, the lower the activity coefficient as can
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∆Hsol ∆Ssol R2 γ∞2 (300) γ∞2 (300) γ∞2 (Texp)

Lit. System [kJ/mol] [J/mol.K] [-] Eq. O.3, IPC Kniaz [120]
[156] 28/5 99.4± 0.8 301± 3 0.9995 0.72 0.79 0.82
[156] 28/7 97.3± 1.0 294± 4 0.9986 0.72 0.69 0.80
[157] 28/10 97.4± 0.7 293± 2 0.9991 0.84 0.75 0.88
[157] 28/12 99.0± 0.9 298± 3 0.9986 0.90 0.81 1.04
[156] 32/5 111.1± 1.7 329± 6 0.9976 0.48 0.73 0.33
[156] 32/7 109.4± 2.1 323± 7 0.9968 0.47 0.61 0.35
[156] 36/5 125.7± 6.3 364± 21 0.9777 0.61 0.66 **
[157] 36/5 114.1± 2.6 324± 9 0.9979 0.78 0.66 0.50
[157] 36/6 120.2± 11.1 344± 39 0.9668 0.68 0.55 0.51
[156] 36/7 120.3± 1.6 346± 5 0.9980 0.63 0.53 **
[157] 36/7 122.7± 5.3 354± 18 0.9927 0.63 0.53 0.49
[157] 36/8 118.4± 0.9 340± 3 0.9980 0.60 0.54 0.40
[157] 36/10 126.3± 1.9 367± 6 0.9963 0.59 0.59 0.45
[157] 36/12 122.2± 0.5 351± 2 0.9980 0.70 0.66 0.53

Table O.2: Thermodynamic constants for solvation of long n-alkanes in solvents by analysis of
experimental data of [156, 157]. IDAC of the paraffin in solvent calculated by Eq. O.3 and the IPC
model (Eq. 6.38) at 300 K, and as reported by Kniaz [120]. (** = not reported).

be understood by the difference of Eq. O.1 and Eq. O.2:

ln (γ2) = ln (a2)− ln (x2) (O.3)

In the fore last and last column of table O.2 we give the values found by Eq. O.3 at
300 K and those reported by Kniaz [120], who used Eq. O.1 without heat capacity
correction and varying temperature. We take T = 300 K, 1000/T = 3.33 , because
it lies far enough below the transition temperature and within the experimental data
range. In Fig. O.2 the activity coefficients at 300 K and the results of the IPC
model (Eq. 6.38) are shown. We observe that the IPC model gives good description
for activity coefficient at 300 K of octacosane and hexatriacontane in small normal
alkanes. The trend of an upswing near hexane, as predicted by the IPC model is
noticeable in the experimental data. The IDAC of dotriacontane lie outside the
range of octacosane and hexatriacontane. This could imply that in the analytic
procedure the point of dissolution of dotriacontane crystals in pentane and heptane
was not accurately observed. The solubility data points of dotriacontane in Fig. O.1
fall on a curve more to the right than the gap between activity and solubility of
hexatriacontane. This could be an indication that the used dotriacontane contained
an impurity with a lower melting point, or that the sample contained an amount of
residue solvent, which was not completely removed from the final purified sample.
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Figure O.2: Limiting activity coefficients of long n-alkanes as function of the carbon number of
the n-alkane solvent. Data points are the values at 300 K of table O.2. Curves are the results of
the IPC activity coefficient model (Eq. 6.38).

Madsen and Boistelle pointed out in their first article [156] that they initially used
another analysis method. In here a paraffin saturated solution was weighted and
after drying the amount of paraffin was measured. However, in this procedure either
the paraffin co-evaporated with the solvent, or the dried sample still contained rest
solvent. The last could have happened when they purified the >95% dotriacontane.
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Appendix P

Topology number increments

Table P.1 gives overview of the increments needed to calculate the topology number
Dj . We mention that the number of interacting spheres is given by Zj = 14.4−Dj >
0.

Table P.1: D of alkyl groups.

Main Sub mv,j mv,j mv,j mv,j D example/note
CH4 1 - - - - 0 Methane
CH3 2 -CH3 - - - 1 Ethane

3 -CH2- - - - 2 n-alkanes
4 -CH< - - - 3 2-methyl-pentane
5 >C< - - - 4 2,2-diethyl-hexane

CH2 6 -CH3 -CH3 - - 2 Propane
7 -CH3 -CH2- - - 3 n-alkanes
8 -CH2- -CH2- - - 4 n-alkane
9 -CH< -CH2- - - 5 3-methyl-pentane
10 -CH< -CH< - - 6 3,5-dimethyl-hexane
11 >C< -CH2- - - 6 n-Hexane
12 >C< -CH< - - 7 2,2,4-trimethylpentane
13 >C< >C< - - 8 2,2,4,4-tetramethylpentane

CH 14 -CH3 -CH3 -CH3 - 3 i-C4
15 -CH3 -CH3 -CH2- - 4
16 -CH3 -CH3 -CH< - 5
17 -CH3 -CH3 >C< - 6
18 -CH3 -CH2- -CH2- - 5
19 -CH3 -CH2- -CH< - 6
20 -CH3 -CH2- >C< - 7
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Continuation of Table G.1
Main Sub mv,j mv,j mv,j mv,j D example

21 -CH3 -CH< -CH< - 7
22 -CH3 -CH< >C< - 8
23 -CH3 >C< >C< - 9
24 -CH2- -CH2- -CH2 - 6
25 -CH2- -CH2- -CH< - 7
26 -CH2- -CH2- >C< - 8
27 -CH2- -CH< -CH< - 8
28 -CH2- -CH< >C< - 9
29 -CH2- >C< >C< - 10
30 -CH< -CH< -CH< - 9
31 -CH< -CH< >C< - 10
32 -CH< >C< >C< - 11
33 >C< >C< >C< - 12

C 34 -CH3 -CH3 -CH3 -CH3 4 neopentane
35 -CH3 -CH3 -CH3 -CH2- 5
36 -CH3 -CH3 -CH3 -CH< 6
37 -CH3 -CH3 -CH3 >C< 7
38 -CH3 -CH3 -CH2- -CH2- 6
39 -CH3 -CH3 -CH2- -CH< 7
40 -CH3 -CH3 -CH2- >C< 8
41 -CH3 -CH3 -CH< -CH< 8
42 -CH3 -CH3 -CH< >C< 9
43 -CH3 -CH3 >C< >C< 10
44 -CH3 -CH2- -CH2- -CH2 6
45 -CH3 -CH2- -CH2- -CH< 7
46 -CH3 -CH2- -CH2- >C< 8
47 -CH3 -CH2- -CH< -CH< 9
48 -CH3 -CH2- -CH< >C< 10
49 -CH3 -CH2- >C< >C< 11
50 -CH3 -CH< -CH< -CH< 10
51 -CH3 -CH< -CH< >C< 11
52 -CH3 -CH< >C< >C< 12
53 -CH3 >CH< >CH< -CH< 13
54 -CH2 -CH2- -CH2- -CH2 8
55 -CH2 -CH2- -CH2- -CH< 9
56 -CH2 -CH2- -CH2- >C< 10
57 -CH2 -CH2- -CH< -CH< 10
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Continuation of Table G.1
Main Sub mv,j mv,j mv,j mv,j D example

58 -CH2 -CH2- -CH< >C< 11
59 -CH2 -CH2- >C< >C< 12
60 -CH2 -CH< -CH< -CH< 11
61 -CH2 -CH< -CH< >C< 12
62 -CH2 -CH< >C< >C< 13
63 -CH2 >CH< >CH< >CH< 14
64 -CH< -CH< -CH< -CH< 12
65 -CH< -CH< -CH< >C< 13
66 -CH< -CH< >C< >C< 14
67 -CH< >C< >C< >CH< 15 D > 14.7 Z=0!
68 >C< >C< >C< >C< 16 D > 14.7 Z=0!

End of Table
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Induced dipole interaction model

The relative energy difference between two different atoms in reference to two equal
atoms can be defined by:

∆εij = εij − (εii + εjj) /2 (Q.1)

where εij is the dispersion energy between atom i and j. Consider a CH3 end group
interacting by dispersion with a CH2 chain group. When we assume that each atom
can form an induced dipole, than the two atom groups can make 12 induced dipole
pairs, as indicated in Table Q.1.

Table Q.1: Example of CH3-CH2 induced dipole interaction energies.

C H H
C εCC εCH εCH
H εCH εHH εHH
H εCH εHH εHH
H εCH εHH εHH

The interaction between a CHm and a CHn group involves one C..C induced dipole
pair, m + n C..H induced dipole pairs and m.n H..H induced dipole pairs. The
corresponding dipole energies are εCC, εCH, and εHH, respectively. The relative
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energy difference is given by:

∆εCHm,CHn = εCHm,CHn − 1
2 (εCHm,CHm + εCHn,CHn)

= [εCC + (m+ n) εCH +mnεHH]

− 1
2

[(
εCC + 2mεCH +m2εHH

)
+
(
εCC + 2nεCH + n2εHH

)]
= −1

2 (m− n)2 εHH, (Q.2)

where εHH, εCC is the dispersion energy between two hydrogen and two carbon atoms,
respectively and εCH is the dispersion energy between a hydrogen and a carbon atom.
Eq. Q.2 shows that only the hydrogen-hydrogen induced dipole matters. Table Q.2
illustrates this.

Table Q.2: Relative interaction energies between two methyl groups.

−2∆εij/εHH j=CH3 j=CH2 j=CH j=C
i=CH3 0 1 4 9
i=CH2 1 0 1 4
i=CH 4 1 0 1
i=C 9 4 1 0

We observe that Table Q.2 is symmetric around both matrix diagonals, and that the
relative interaction energies increases quadratic with increasing difference in hydro-
gen number.
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Gibbs-Duhem consistency tests

Activity models are thermodynamic consistent, when they obey the Gibbs-Duhem
equation. This equation relates the chemical potential of one of the components
in a mixture to that of another. In term of the activity coefficients, and for an
isothermal-isobaric binary system, we have:

x1d ln γ1 + x2d ln γ2 = 0, (R.1)

where xj and γj are the mole fraction and activity coefficient of component j. To
check whether a model obeys this rule, an Integral and Differential test [103] is
carried out, as explained below.

R.1 Integration Test

By integration of Eq. R.1 we obtain:∫ 1

0
ln

[
γ1

γ2

]
dx1 = 0 (R.2)

Note that in COSMO-SAC and COSMO-3D the excess volume, V E, is neglected.
The effect of this assumption is not significant, because the term:∣∣ 1

RT

∫
V EdP

∣∣<< ∫ 1

0
ln

[
γ1

γ2

]
dx1, (R.3)

holds for most mixtures. If we plot the function ln
[
γ1

γ2

]
as function of x1, the

horizontal axis splits the integral into two areas. The ratio of these areas has to
be close to 1 (see fig. 2.1. Assuming some light deviation coming from numerical
integration, we take a threshold of 0.5%.
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R.2 Differential Test

Eq. R.1 differentiated towards x1 yield:

x1

(
∂ ln γ1

dx1

)
T,P

+ x2

(
∂ ln γ2

dx1

)
T,P

= 0 (R.4)

Let A and B be the first and second term of R.4, respectively, then the quantity:

(A−B)2

AB
(R.5)

is an indicator. A value of zero represent perfect thermodynamic consistency. A
negative or large positive value indicates an incorrect model. A small positive value
is usually caused by a numerical error in the differentiation. We calculated this
quantity for all the systems using a finite difference to obtain the derivative of R.4.
All the predictions obtained with COSMO-3D and COSMO-SAC pass the differential
test.
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Statistical Information
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Table S.1: Results of the training set for the COSMOSAC [94] (SAC), the refined COSMOSAC
(REF), and the COSMO-3D (3D) models.

T (◦C) P dev (%) ydev (%) γdev (RMS)
Mixture SAC REF 3D SAC REF 3D SAC REF 3D
1-hexene/ethyl acetate 60.00 4.11 2.76 2.42 1.69 1.19 1.00 0.17 0.11 0.10
2-butanone/heptane 45.00 6.72 2.62 0.49 2.78 0.68 0.58 0.45 0.18 0.05
MTBE/methyl acetate 80.00 2.17 1.08 1.16 0.47 0.18 0.19 0.04 0.02 0.02
MTBE/methyl acetate 90.00 2.02 0.94 1.03 0.49 0.21 0.21 0.04 0.01 0.02
MTBE/methyl acetate 100.00 1.95 0.85 0.95 0.32 0.13 0.12 0.04 0.01 0.02
2-methylpropanal/heptane 45.00 5.11 1.92 1.20 1.95 0.93 0.78 0.33 0.20 0.10
acetone/diisopropyl ether 70.11 7.99 6.41 2.62 2.76 2.08 0.62 0.24 0.19 0.07
acetone/diisopropyl ether 80.12 8.04 6.44 2.76 2.73 2.05 0.77 0.23 0.18 0.07
acetone/diisopropyl ether 90.14 9.25 7.67 4.15 3.21 2.53 1.26 0.28 0.23 0.12
acetone/heptane 40.00 9.02 2.99 3.35 1.92 0.47 1.16 0.53 0.22 0.17
benzene/cyclohexane 39.90 1.21 1.78 0.64 0.44 0.54 0.33 0.02 0.03 0.01
benzene/cyclohexane 40.00 1.13 1.46 0.42 0.32 0.62 0.24 0.03 0.05 0.02
benzene/heptane 25.00 3.86 0.99 1.26 1.25 0.36 0.45 0.11 0.03 0.04
benzene/heptane 40.00 3.41 0.89 0.80 0.96 0.21 0.19 0.11 0.04 0.03
benzene/hexane 30.00 3.80 1.20 1.46 1.76 0.62 0.72 0.13 0.05 0.06
benzene/hexane 40.00 3.82 1.32 1.46 2.25 1.13 1.16 0.15 0.07 0.07
benzene/hexane 50.00 3.69 1.37 1.33 1.61 0.62 0.57 0.12 0.05 0.04
benzene/hexane 60.00 3.35 1.23 1.10 1.25 0.56 0.51 0.10 0.04 0.04
cyclohexane/heptane 25.00 2.12 2.11 1.88 0.67 0.66 0.59 0.05 0.05 0.04
cyclohexane/heptane 40.00 1.90 1.89 1.66 0.59 0.58 0.50 0.04 0.04 0.04
ethyl acetate/methylcyclohexane 56.85 1.29 3.24 1.07 0.39 1.61 0.49 0.06 0.15 0.05
ethyl acetate/methylcyclohexane 76.85 0.85 2.72 1.01 0.28 1.24 0.50 0.06 0.13 0.05
ethylbenzene/benzaldehyde 75.00 2.34 0.89 1.30 1.07 0.75 0.38 0.08 0.05 0.02
ethylbenzene/benzaldehyde 95.00 2.43 1.16 1.36 0.66 0.30 0.45 0.06 0.03 0.04
heptane/3-pentanone 65.00 5.78 3.43 2.10 2.43 1.33 0.88 0.27 0.15 0.08
heptane/3-pentanone 80.00 5.88 3.60 2.23 2.53 1.51 1.03 0.28 0.17 0.11
heptane/3-pentanone 95.00 4.95 2.90 1.59 2.66 1.69 1.18 0.29 0.18 0.12
heptane/pentanal 75.00 5.41 2.58 0.97 2.48 1.49 1.21 0.26 0.15 0.11
hexane/1,4-dioxane 35.00 5.64 2.93 1.80 2.30 2.06 1.36 0.38 0.25 0.14
oxolane/benzene 60.00 0.74 2.08 0.79 0.48 0.75 0.48 0.02 0.05 0.02
oxolane/cyclohexane 40.00 2.51 1.51 1.39 0.82 0.44 0.33 0.12 0.08 0.07
oxolane/cyclohexane 60.00 2.09 1.05 0.87 0.78 0.36 0.28 0.21 0.18 0.18
oxolane/ethyl acetate 60.00 0.94 0.88 0.79 0.37 0.35 0.32 0.04 0.04 0.03
oxolane/hexane 60.00 3.76 2.88 1.89 1.37 1.01 0.57 0.17 0.13 0.08
oxolane/hexane 25.55 4.15 4.15 4.07 0.80 0.79 0.79 0.07 0.07 0.07
oxolane/hexane 30.55 3.34 3.34 3.27 0.86 0.86 0.86 0.07 0.07 0.07
oxolane/hexane 35.55 4.55 4.55 4.46 1.18 1.18 1.17 0.09 0.09 0.09
pentane/propanal 40.00 8.80 4.82 1.38 3.07 1.58 0.77 0.42 0.24 0.09
propanal/cyclohexane 45.00 5.88 1.86 0.95 2.60 0.66 0.63 0.55 0.20 0.09
Overall 3.89 2.36 1.56 1.41 0.89 0.63 0.24 0.14 0.08

Average relative deviations of pressures and gas mole fractions, and the root mean
square of activity coefficients calculated according to Eq. 8.15, 8.16, and 8.17, re-
spectively.
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Table S.2: Results of the test set for the COSMOSAC [94] (SAC), the refined COSMOSAC (REF),
and the COSMO-3D (3D) models.

T (◦C) P dev (%) ydev (%) γdev (RMS)
Mixture SAC REF 3D SAC REF 3D SAC REF 3D
1-hexene /ethyl acetate 40 4.68 3.49 3.19 2.09 1.64 1.41 0.25 0.19 0.17
2-methylpropanal/heptane 61.85 5.63 2.51 0.68 1.88 0.69 0.37 0.35 0.21 0.13
acetone/heptane 0 9.29 4.87 3.62 1.89 1.27 1.27 1.42 1.00 0.56
acetone/heptane 50 8.42 1.57 4.63 2.56 0.95 1.96 0.95 0.57 0.28
acetone/heptane 50 1.56 5.47 7.24 1.30 3.11 3.74 1.07 1.01 0.70
benzene/cyclohexane 10 1.32 1.82 0.17 0.58 0.72 0.19 0.05 0.06 0.01
benzene/cyclohexane 24.91 1.45 1.78 0.37 0.37 0.63 0.26 0.03 0.04 0.01
benzene/cyclohexane 25 0.35 2.49 1.24 0.17 1.08 0.63 0.01 0.09 0.05
benzene/cyclohexane 38.5 1.32 1.57 0.58 0.14 1.06 0.70 0.02 0.05 0.03
benzene/cyclohexane 50 2.67 1.01 1.11 0.31 0.69 0.50 0.05 0.04 0.03
benzene/cyclohexane 55 0.76 2.07 1.46 0.35 0.67 0.45 0.02 0.04 0.03
benzene/cyclohexane 55.05 1.13 1.65 1.04 0.26 0.48 0.33 0.02 0.04 0.02
benzene/cyclohexane 60 1.13 1.13 0.66 0.28 0.65 0.47 0.03 0.04 0.03
benzene/cyclohexane 70 1.02 1.24 0.90 0.38 0.55 0.47 0.03 0.03 0.03
benzene/cyclohexane 70 0.46 2.17 2.04 0.94 0.39 0.50 0.04 0.03 0.02
benzene/heptane 35.04 4.26 1.35 1.08 1.30 0.48 0.39 0.14 0.07 0.07
benzene/heptane 55 3.95 1.88 1.29 1.62 0.93 0.80 0.20 0.13 0.12
benzene/heptane 55 3.29 0.50 0.60 1.33 0.51 0.46 0.15 0.08 0.06
benzene/heptane 60 3.06 0.61 0.55 0.86 0.52 0.60 0.09 0.04 0.03
benzene/heptane 80 2.72 0.57 0.60 0.48 0.74 1.06 0.07 0.05 0.06
benzene/heptane 80 3.21 0.90 0.72 0.90 0.59 0.59 0.08 0.05 0.04
ethylbenzene/benzaldehyde 85 2.15 0.99 1.53 0.71 0.30 0.40 0.06 0.03 0.05
heptane/3-pentanone 26 9.34 6.80 5.69 2.13 1.28 0.64 0.41 0.26 0.20
hexane/benzene 25 3.67 1.38 1.70 1.52 0.67 0.76 0.17 0.07 0.08
hexane/benzene 25 4.35 1.59 1.95 1.57 0.69 0.77 0.11 0.04 0.05
oxolane/benzene 30 0.34 1.60 0.37 0.31 0.66 0.30 0.02 0.05 0.02
oxolane/benzene 40 0.55 1.94 0.56 0.29 0.71 0.30 0.03 0.06 0.03
oxolane/benzene 50 0.55 1.95 0.65 0.46 0.77 0.48 0.02 0.05 0.03
oxolane/cyclohexane 30 2.36 1.70 1.44 0.81 0.94 0.72 0.08 0.08 0.07
oxolane/cyclohexane 50 2.14 0.95 0.77 0.83 0.38 0.33 0.07 0.04 0.03
oxolane/ethyl acetate 40 1.39 1.36 1.25 0.38 0.37 0.34 0.06 0.06 0.06
oxolane/hexane 30 5.53 4.37 3.07 1.61 1.34 0.84 0.14 0.12 0.07
oxolane/hexane 40 4.26 3.38 2.42 1.70 1.31 0.83 0.21 0.16 0.11
oxolane/hexane 40 5.81 5.46 3.34 1.70 1.33 0.86 0.17 0.14 0.10
oxolane/hexane 50 4.75 3.61 2.30 1.47 1.07 0.61 0.13 0.10 0.07
Overall 3.14 2.16 1.66 1.08 0.84 0.69 0.31 0.23 0.16

a Average relative deviations of pressures and gas mole fractions, and the root mean
square of activity coefficients calculated according to Eq. 8.15, 8.16, and 8.17,
respectively.
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Supplementary Information

Supplementary information of chapter 8 is available via the journal web-page:
https://pubs.acs.org/doi/suppl/10.1021/ie504285x
Figure T.1 depicts system S32 in chapter 8 of this thesis.
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Figure T.1: Vapor-liquid equilibrium of the system oxolane-cyclohexane at 60◦ and corresponding
activity coefficient plot. Data taken from [24]. Outlier is indicated by red circle. The red curve is
the original COSMO-SAC 2010 model with AES = 6525.69 (kcal/mol)(Å4/e2), green curve is the
refined COSMO-SAC where AES = 7850 (kcal/mol)(Å4/e2), and the blue curve is the COSMO-3D
model.
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