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ABSTRACT 

 

Introduction 

 

Evaporation is an important phenomena that occurs in a wide range of natural and industrial processes. 

Although this phenomena has been a subject of research for many years, it is still not fully understood. 

Experimental results of the last few decades seem to contradict with each other, and with the theory which 

describes this process, e.g. the kinetic theory of gasses (KTG) and non-equilibrium thermodynamics (NET) 

[1, 2, 3, 4]. Temperature jumps of about 3.2-8.1
o
C at the interface of a steady state evaporating water droplet 

at a pressure of about 245 P a were measured [1, 2]. In order to determine whether this temperature jump 

exists and what influences this temperature jump, an experimental setup has been developed.  

 

 

Experimental setup 

 

The experimental setup (Figure 1) consists of an evaporating spherical droplet (diameter of 8 mm) placed on 

temperature controlled, stainless steel tube in a  cylindrical stainless steel vacuum chamber (diameter of 150mm 

and length of 275mm). One end of the cylinder is closed by a stainless steel plate, while the other end is 

closed by glass window for optical access. Purified, degassed, temperature controlled water of 4
o
C 

(controlled by a build-in heat exchanger) was supplied to an evaporating geometry by a mass flow 

controlled syringe (VWR gas tight syringe 549-0536). The evaporating mass flow is prescribed by the 

syringe and controlled by a CCD camera (Teledyne Dalsa Genie), which measures the height of the droplet 

with a precision of 35µm per pixel. The appropriate mass flow was determined by adjusting the flow rate until 

the droplet height remains steady state. The pressure in the chamber was controlled by a rotary vane pump 

(vacuumbrand PC8 / RC6) which can reach a vacuum of 0.4 Pa .  The pressure is measured by a pressure 

transducer at the side of the cylinder (Keller PAA 33x) with an accuracy of 10 Pa. The temperature profile 

at the interface of this droplet was measured by a K-type thermocouple made of two 25.4µm wires with an 
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accuracy of about 0.4
o
C. The thermocouple is moved towards the interface by a micrometer spindle 

(Freinmeyer) mounted on top of the vacuum cylinder this spindle can move the thermocouple toward the 

interface with an accuracy of 2µm. 

 

    
 
Figure 1. (Left) Schematic overview of the experimental set-up and (right) front view of the experimental setup with the 

glass window through which the camera can measure the height of the droplet. 

 

 

Results and Discussion 

 

Before and after the start of the experiments, the thermocouple was calibrated in a bath of boiling and ice 

water and the offset and a proportionality constant have been determined. The measured uncertainty was 

about 0.4
o
C and did not change over time. 

 

Before the start of the experiment, water was placed in the degasification channel and degassed for about one 

hour. Also the vacuum chamber was degassed  for one hour at a pressure <10 Pa. Meanwhile the cooling 

device and pump were turned on to cool the evaporating liquid.  After this hour, the thermocouple above the 

interface (at a fixed position) and the pressure was set at 780 Pa. Due to the occurrence of bubbles inside the 

syringe and the channel between the syringe and the droplet geometry, it was not possible to do an experiment 

lower than 780 Pa. The measurements started when both measured temperature and measured pressure in 

the vacuum chamber were at steady state. 

 

The vapor and liquid temperatures were measured between 4mm above the interface and 1.5mm underneath 

it. The measured temperature profile is shown in Figure 2. Due to evaporation  the liquid temperature near 

the interface is lower than the bulk liquid temperature Tbl. 
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Figure 2. Theoretical (solid line) and measured (circles) temperature profile at the liquid-vapor interface of an 

evaporating droplet. The vapor pressure is set at 780 Pa. The position of the liquid-vapor interface is indicated by the 

vertical dashed line. 

 

The measured temperature profile has been analyzed by the same model that has been used for the 

experiment conducted by Fang et al. [2].  The liquid temperature Tl is described by: 

                       
    
       

  (1) 

With      
  

     
             

  

     
   

  

For the vapor temperature Tv holds: 

                       
    
         

  (2) 

With      
  

      
    

   

  
          

  

      
    

. 

Where ri is the interface location, Qi is the mass flux at the interface, ji the mass flux at the interface, h the 

enthalpy, cp the specific heat, κ the thermal conductivity and Tbv and Tbl the bulk temperature of the vapor 

and liquid. The subscripts v and l indicate the liquid and vapor phase respectively. 

The calculated temperature profile seems to approximate the measurement profile well (Figure 2). However, 

the calculated evaporative mass flux of                      seems to be lower than would be 

expected from the experiments by Fang et al. [ 2 ] , who measured a mass flux of                        

for an evaporating spherical conditions. The difference between this value and the mass flow calculated 

model can partly be explained by the lower pressure of the experiment by Fang et al. (493 Pa) compared to 

our experiment that was performed at 780 Pa, and the fact that the  liquid temperature entering the 

evaporation chamber was 15 °C in the experiments by Fang et al, while we controlled it to be 4◦C. 
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Conclusions and Future Research 

 

An experimental setup has been developed to measure the temperature profile at the liquid-vapor interface 

of an evaporating droplet. At 780 Pa the measured temperature profile shows good agreement with other 

experiments and models from literature . However the evaporative mass flow is lower than expected from 

the experiments by Fang et al. [2]. 

In order to investigate the evaporation phenomena further and to determine the relation between 

temperature jump and external pressure, the setup will be further modified in order to go to lower pressures 

(order 200-600 Pa) without bubble formation.  
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