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ABSTRACT
Purpose: In local hyperthermia, precise temperature control throughout the entire target region is key for
swift, safe, and effective treatment. In this article, we present a model predictive control (MPC) algorithm
providing voxel-level temperature control in magnetic resonance-guided high intensity focused ultra-
sound (MR-HIFU) and assess the improvement in performance it provides over the current state of the art.
Materials and methods: The influence of model detail on the prediction quality and runtime of the
controller is evaluated and a tissue mimicking phantom is characterized using the resulting model.
Next, potential problems arising from modeling errors are evaluated in silico and in the characterized
phantom. Finally, the controller’s performance is compared to the current state-of-the-art hyperthermia
controller in side-by-side experiments.
Results: Modeling diffusion by heat exchange between four neighboring voxels achieves high predict-
ive performance and results in runtimes suited for real-time control. Erroneous model parameters
deteriorate the MPC’s performance. Using models derived from thermometry data acquired during low
powered test sonications, however, high control performance is achieved. In a direct comparison with
the state-of-the-art hyperthermia controller, the MPC produces smaller tracking errors and tighter tem-
perature distributions, both in a homogeneous target and near a localized heat sink.
Conclusion: Using thermal models deduced from low-powered test sonications, the proposed MPC
algorithm provides good performance in phantoms. In direct comparison to the current state-of-the-
art hyperthermia controller, MPC performs better due to the more finely tuned heating patterns and
therefore constitutes an important step toward stable, uniform hyperthermia.
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Introduction

Mild local heating of tumor tissue to hyperthermic tempera-
ture in the range of 41–43 �C has been shown to have strong
synergistic effects on radio- and chemotherapy, acting on
cellular and tissue level [1–6]. Besides a plethora of preclin-
ical evidence, several clinical trials demonstrated the syner-
gistic effects of hyperthermia on radio-, chemo-, and
chemoradiotherapy leading to improved outcome, such as
local control, disease free-, and long-term survival [7–16]. As
clinical studies also revealed that the outcome is sensitive to
the applied thermal dose throughout the treatment, various
measures have been introduced to describe and characterize
the obtained temperatures over time and across the target
tissue [17]. Induction of uniform hyperthermia across a treat-
ment area is impeded by two major obstacles: first, the
obtained temperatures depend on spatially and temporally
varying tissue properties such as perfusion and heat diffu-
sion. The former often leads to lower than intended heating
close to blood vessels, while hyperthermia devices utilizing
radiofrequency heating intrinsically lack the ability to

compensate for local heat loss on the associated millimeter
scale [18]. Second, temperature monitoring is currently per-
formed using thermocouples inside or near the heated tissue
[19], which only provides sparse spatial sampling of the tem-
perature. Radiofrequency-based hyperthermia devices inte-
grated into a magnetic resonance imaging (MRI) scanner
could address some of above shortcomings and are currently
evaluated for use in clinical settings [20,21].

Focused ultrasound was already explored in the 1930s
and was employed early on for local noninvasive heating of
deep-seated tissue to induce brain lesions [22,23]. Clinical
application of high intensity focused ultrasound (HIFU), how-
ever, was only achieved after image guidance was added for
spatial targeting and therapy control using diagnostic ultra-
sound or MRI [24–27]. The integration of an extracorporeal
HIFU transducer into the patient bed of an MRI scanner (MR-
HIFU) in particular enables both the in situ localization of the
target tissue and the optimization of the transducer position
before the treatment. Furthermore, the MRI provides near
real-time temperature maps while the HIFU heating is
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ongoing. This is exploited for closed-loop feedback to the
HIFU transducer, allowing to deliver a well-defined thermal
dose and to maintain stable temperatures [28]. HIFU was rec-
ognized and tested as a hyperthermia device early on
[24,29–31], but only MR-feedback enabled a stable hyperther-
mia over an extended period of time [32–34]. With a focus
point of 2–3mm in diameter and 5–7mm in height, HIFU ena-
bles the local heating of tissue on the millimeter scale. For
heating of larger volumes, electronic beam steering by coordi-
nated ultrasound phase shifts was implemented to move the
focus point over predefined circular perimeters [35]. In com-
bination with MR thermometry and a simple binary feedback
loop, electronic beam steering has been used to achieve MR-
HIFU mediated, regional hyperthermia. The feasibility of this
technique has been demonstrated in several preclinical studies
[36–42] and recently in a first clinical trial using the MR-HIFU
system SonalleveVR (Profound Medical Inc., Toronto, Canada)
[43]. By adding mechanical transducer movement facilitated
by a robotic positioning system, a first large volume hyper-
thermia application based on MR-HIFU has been demon-
strated in vivo [44] and applied clinically [45]. The feedback
algorithm used in the referenced demonstration periodically
repositions the transducer to heat different parts of the target
region of interest (treatment cell) based on the lowest average
temperature inside seven predefined sub-cells. Within the sub-
cells, heating is regulated by adjusting the power delivered to
the sub-cell as a whole and skipping points inside the sub-cell
which are already above the target temperature. It is non-
parametric in nature, i.e., it is designed to perform reliably
without any prior knowledge of the particular tissue proper-
ties if they fall inside the anticipated range. Algorithms which
do utilize tissue models for thermal therapies, however, can
be more effective in achieving their respective control object-
ive. Salomir et al. [32] as well as Quesson et al. [33], for
instance, used physical models to calculate optimal HIFU
intensities and thereby induced predefined temperature evo-
lutions in the HIFU’s natural focus spot with high accuracy.
Model predictive control (MPC) [46,47], a well-established con-
trol scheme using mathematical models of the to-be-con-
trolled system in constrained optimization problems to
calculate optimal control strategies, has been applied success-
fully as well: in ablation treatments, MPC has been shown to
enable increased speed and patient safety in the delivery of a
target thermal dose [48–50]. An MPC scheme for mild regional
hyperthermia, which aims to directly control the temperature
in a target ROI, has been introduced as well but was only
demonstrated in silico thus far [51].

Here, we explore a novel control algorithm for MR-HIFU
mediated mild hyperthermia applications, following the MPC
paradigm. It aims to improve upon the existing binary control
option by Tillander et al. [44], which we consider to be the
state of the art, by optimizing the heat delivered to each indi-
vidual voxel inside the target ROI based on a mathematical
model of the tissue. As the appropriate model parameters for
any individual case are generally unknown beforehand, the
extent to which errors in the controller’s model can lead to
problematic controller behavior was investigated in silico, fol-
lowed by the quantification of the performance attainable

with pretreatment model identification in phantom
experiments. Since the controller was implemented on a clin-
ical MR-HIFU system, a direct performance comparison
between the MPC and the existing binary control algorithm of
Tillander et al. [44] was also performed and is presented last.

Materials and methods

Model predictive control

MPC is a form of control that exploits a mathematical model
of the system to be controlled (the state-space model) to
predict its future state depending on the applied control
actions. At each sampling instant, the state variables of the
system, e.g., the temperatures in a set of voxels, are meas-
ured. This measurement is then used as a starting point to
calculate the next control actions, e.g., a sequence of heating
patterns, that minimize the objective function over a certain
control horizon. The objective function’s minimum reflects
the goals of the controller and depends on the predicted
future state of the system. This calculation is usually done
via constrained optimization, where the objective function is
optimized by varying the control inputs while constraining
the variables describing the system’s state (the state varia-
bles) to behave according to the model [46,47,52].

Controller architecture

State-space model
The state-space model that will be used in the MPC scheme
is based on the Pennes bioheat transfer equation (PBE) [53]

qC
oT
ot

¼ r � KrTð Þ�WbCb T�Tað Þ þ Q (1)

where q is the density of the tissue (kg/m3); K is the diffusion
coefficient (m2/s); C and Cb are the specific heat capacities of
tissue and blood (J/(kg �C)), respectively; Wb is the perfusion
rate (kg/(m3 s)); T is the tissue’s temperature (�C); Ta is the
arterial temperature (�C); and Q is the heating power density
delivered to the tissue (W/m3).

Our implementation aims to control the temperature inside
the target region using a single thermometry slice, which is
acquired repeatedly alongside other slices that are required
for monitoring purposes. A linear discrete-time state-space
model of the temperature evolution in two spatial dimensions
is therefore required. The discrete timestep size equals the
acquisition time of one feedback cycle (i.e., the acquisition of
a full set of thermometry slices) and the discrete space step
size equals the voxel size in the acquired two-dimensional
temperature maps. Summarizing diffusion and perfusion
effects into dimensionless parameters, one obtains a simplified
model for the predicted temperature elevation T̂

0
tþ1 with

T̂
0
tþ1 m, nð Þ ¼ A0T 0t m, nð Þ

þA1 T 0t mþ 1, nð Þ þ T 0t m�1, nð Þ þ T 0t m, nþ 1ð Þ þ T 0t m, n�1ð Þ� �
þ
XNp

i¼1

q � pt, i � fiðm, nÞ

(2)
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where T 0tðm, nÞ ¼ Ttðm, nÞ � Ta is the temperature elevation
above the arterial blood temperature Ta at time t and dis-
crete location ðm, nÞ (�C), A0 is the per-cycle heat loss coeffi-
cient, which incorporates the loss due to perfusion and the
diffusion out of the voxel; and A1 is the per-dynamic inter-
voxel heat transfer coefficient. q is the per-cycle, single-voxel
temperature increase per Watt of acoustic power; pt, i is the
acoustic power applied targeting the sonication point with
index i at timepoint t; fiðm, nÞ is the distribution of heating
power among voxel coordinates m, nð Þ when targeting sonic-
ation point with index i; and Np is the number of available
sonication points. The discretization was performed under
the assumptions that heat diffusion is homogenous in all
observed voxels, the heat delivered in one feedback cycle is
affected by diffusion and perfusion only from the next cycle
on, and that heat is exchanged between nearest neigh-
bors only.

The state variables are the temperature elevation T 0tðm, nÞ
of the voxels at the locations m, nð Þ, ðm, nÞ 2 O at timepoint
t, where O is the set of voxel coordinates inside the ROI
which is passed to the controller (observed ROI). The input
variables pt, i, i ¼ 1, . . . ,Np, are constrained to be greater
than or equal to zero and to total no more than a certain
maximum power pmax at each timestep t within the control
horizon H :

0 � pt, i for t ¼ 1, . . . ,H and i ¼ 1, . . . ,Np (3)

XNp

i¼1

pt, i � pmax , for t ¼ 1, . . . ,H (4)

Each allowed sonication point is chosen to coincide with
the middle of an MRI voxel and is assumed to heat that par-
ticular voxel exclusively, i.e., fiðm, nÞ is assumed to be one at
the targeted voxel’s coordinates and zero everywhere else.

Focal spot calibration and model identification
The transducer’s alignment with the MRI’s coordinate system
was verified using multiple low-powered test sonications
before each experiment. During the test sonication, the HIFU
focus is moved by electronic beam steering on a trajectory
consisting of the transducer’s natural focus point and eight
points equally distributed on an 8mm circle around the nat-
ural focus. Using these nine heated points as reference,
errors in the transducer’s alignment are identified via spatial
shifts from the expected heating pattern and are corrected
by adjusting the transducer’s position inside the table
accordingly.

The use of this multipoint test sonication pattern also cre-
ates a large number of warm voxels throughout the target
area. The MRI thermometry maps gathered during the test
sonications can therefore be used to calibrate the state-space
model’s parameters to the target material. The estimation of
the A0 and A1 parameters is performed via linear regression,
for which all voxels within a radius of 2 cm around the target
area are included. The voxels’ temperatures at each timestep
k þ 1 after transducer shutoff were used as the dependent
variable. The respective voxel’s temperature at time k (par-
ameter A0) as well as the sum of the nearest neighbors’

temperatures at time k (parameter A1) were used as the
regressors. The model used therefore has the following form:

T 0kþ1 m, nð Þ ¼ A0 T 0k m, nð Þ� �
þA1 T 0k mþ 1, nð Þ þ T 0k m�1, nð Þ þ T 0k m, nþ 1ð Þ þ T 0k m, n�1ð Þ� �

(5)

The linear regression was performed using the open
source Python package scikit-learn, version 0.18.1 [54].

After the calculation of A0 and A1 is complete, the per-
dynamic single-voxel heating rate q is calculated by linear
regression. Here, the total temperature increase across all
voxels in a radius of 20mm around the natural focus at each
cycle l serves as the dependent variable and the retained
fraction of the power added to the target slice is used as the
regressor. This results in a linear model of the form:

X
m, nð Þ2M

T 0l ðm, nÞ ¼ q � P �
Xl

i¼0

ðA0 þ 4AiÞi (6)

where P is the acoustic output power selected for the sonic-
ation, M is the set of voxel coordinates within a radius of
20mm around the transducer’s natural focus and ðA0 þ 4A1Þ
is the fraction of power retained in the focus slice from one
cycle to the next.

Cost function
In MPC, the optimal control actions are determined via con-
strained optimization of the cost function, which is chosen
to reflect the control objectives. For this controller, it has
been given the form:

Jt ¼
XH
j¼1

X
m, nð Þ2R

1
H � NR

T 0obj�T̂
0
tþj m, nð Þ
5K

 !2

(7)

where H is the control horizon, R is the set of coordinates
belonging to the voxels inside the target ROI, NR is the num-
ber of voxels inside R, and T 0obj is the target tempera-
ture elevation.

Implementation

All phantom experiments were performed on a clinical MR-
HIFU system (3T AchievaVR , Philips Healthcare, Best, The
Netherlands, and SonalleveVR V2 HIFU, Profound Medical,
Toronto, Canada). We developed a custom MR-HIFU software
providing treatment planning- and monitoring capabilities
tailored to the MPC algorithm. The program was written in
Python, version 2.7.13 [55]. PyQt 5.6.0 [56] was used to create
the GUI and pyqtgraph 0.10.0 [57] provided efficient real-
time visualization of the captured data. The communication
with the MRI scanner and the HIFU system was achieved
using the pyMRI and pyHIFU toolboxes [58]. The calculation
of the optimal control actions was done using the python
interface of Gurobi 7.5 [59]. The experiments employing the
existing binary controller were performed using the
Hyperthermia Release 3.5.955.1215 of the SonalleveVR soft-
ware (Profound Medical, Toronto, Canada).
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MR thermometry

The imaging sequence used to monitor the treatment pro-
gress was an RF-spoiled gradient echo sequence with TR ¼
30ms, TE ¼ 19.5ms, FA ¼ 19.5�, FOV ¼ 296mm, five slices,
and voxel dimensions ¼ 1.8� 1.8� 7mm3, resulting in a
dynamic scan time of 3.5 s (‘one cycle’) and a resolution of
160� 160 voxels per slice. The temperature maps were
acquired exploiting the proton resonance frequency shift
(PRFS) [60]. The coils used for image acquisition were the
HIFU table’s window coil and the HIFU Pelvis Coil (Model
905051-F, Philips Healthcare, Best, The Netherlands). In par-
ticular, the calculation included masking of low SNR voxels,
masking of expected heating areas, baseline subtraction, and
a second-order baseline drift correction. The MRI slices were
positioned in four stacks, namely the focus, sagittal, near
field-, and far field stacks. The focus stack was positioned at
the HIFU focus point and contained three slices to provide a
complete view of the volumetric temperature distribution in
the target ROI, with the center slice of the focus stack func-
tioning as feedback for the controller. The sagittal slice was
positioned to intersect the focus spot and provides informa-
tion on the vertical alignment of the focus. The nearfield
slice was positioned at the phantom’s acoustic window to
monitor excess heat generation on the phantom’s surface or,
in a hypothetical clinical setting, a patient’s skin. The far field
slice was positioned near the ultrasound absorber at the far
side of the phantom and is intended as a monitoring modal-
ity for organs and bone surfaces behind the focus.

Preparatory work

Phantom manufacturing process
All phantom experiments were performed with polyacryl-
amide hydrogels sealed in polypropylene containers. The
containers can be opened on one side to provide an acoustic
window and are lined with an ultrasound absorber on the
opposite side to prevent reflections. The phantoms also con-
tained a hollow channel of 5mm diameter, which can be
perfused with water to mimic a medium-sized blood vessel.
The phantoms were manufactured in-house using a variation
of the tissue-mimicking formulation by Negussie et al. [61].
The used chemicals were purchased from Sigma-Aldrich
(Sigma-Aldrich Corporation, St. Louis, MO) and are detailed
with their respective ratios in Table 1.

Model selection and identification
Ten test sonications with 60 W of acoustical power and 16 s
duration were performed in the phantom to be used in the

experiments, far away from the water channel. These test
sonications employed the nine-point heating pattern
described above. While the transducer was active and for 10
cycles after transducer shutoff, thermometry slices were
acquired to provide training data for the thermal model.

As the detail of the inter-voxel heat exchange in the
state-space model has a strong impact on the runtime of the
controller, the chosen model must be simple enough to pro-
vide real-time control. The predictive quality of models with
increasing numbers of nearest neighbors included in the pre-
diction was therefore assessed and the peak runtimes
required for solving the constrained optimization problem of
the MPC at these different levels of detail was measured in
simulations with 50 timesteps each. The simulations were
run on the HIFU console (HP Z800 Workstation, IntelVR XeonVR

CPU X5650 @ 2.67GHz) using the otherwise unchanged con-
troller. The level of detail resulting in the shortest peak run-
time while still providing markedly better predictive
performance on the test set than all simpler models was
selected for use in the remaining in silico and in vitro experi-
ments. Half of all recorded voxel temperature measurements
inside the observed 20mm radius around the natural focus
were assigned to the test set. Using the selected level of
detail, the model parameters to be used in the following
robustness experiments were determined.

Performance metrics
Controller performance was assessed in the steady state,
which was established after 400 s at the latest in all experi-
ments. The used metrics were the average steady-state per-
formance J, the average steady-state tracking error TOff , and
the average steady-state temperature distribution width
TRange and are defined as

J ¼ 1
NS � NR

X
t2S

X
m, nð Þ2R

Tt m, nð Þ�Tobj
� �2

(8)

TOff ¼ 1
NS � NR

X
t2S

X
m, nð Þ2R

Tt m, nð Þ � Tobj (9)

TRange ¼ 1
NS

X
t2S

T90ðtÞ � T10ðtÞ (10)

where S is the set of timepoints measured in the steady state
(400 s < t < 600 s) and NS is the number of timepoints in S:
T90ðtÞ and T10ðtÞ denote the 90th and 10th percentile of
voxel temperatures measured inside the target ROI at time-
point t.

Table 1. Chemical composition of the phantoms used in this study.

Component Product code Fraction of volume

De-ionized water – 82.24% (v/v)
Acrylamide/bis-acrylamide (ratio: 19:1), 40% (w/v) solution A9926-5L 17.54% (v/v)
TEMED T7024-100ML 0.21% (v/v)
APS 248614-500G 0.21% (w/v)
SiO2 S5631-1KG 2.00% (w/v)

TEMED: N,N,N0,N0-tetra-metyl-ethylenediamine; APS: ammonium peroxydisulfate; SiO2: silicon dioxide particles, sizes
0.5–10 mm.

INTERNATIONAL JOURNAL OF HYPERTHERMIA 1043



Simulations

Influence of model errors in silico
In silico experiments allow the isolation of controller-specific
errors from other sources of complications, such as align-
ment errors of HIFU- and MRI coordinate systems. The effect
of plant-model mismatch, i.e., discrepancies between the
model and the controlled system’s behavior, was therefore
investigated in silico.

The controller’s model was initialized with a set of models
containing varying A1 and q parameters while the properties
of the simulated target tissue remained unchanged. The con-
troller’s parameters were qMPC ¼ qsim=3, qsim, 3 � qsim

� �
and

A1,MPC ¼ ð0:0,A1, sim, 0:2Þ with respect to the simulated tis-
sue’s parameters qsim and A1, sim: The simulations were per-
formed by solving the finite difference Equation (2) on a
two-dimensional grid of 1.8mm spatial resolution and a 3.5 s
temporal resolution. The used model was selected before-
hand using thermometry data acquired during test-sonica-
tions on the polyacrylamide phantom described above. For
these simulations, the controller was operated on a circular
target ROI with a diameter of 18mm. Tobj was set to 5 �C
above the baseline. To simulate noise, normally distributed
random numbers with a standard deviation of 0.4 K were
added to the temperature maps passed to the controller
as feedback.

Phantom experiments

Influence of model errors in vitro
Nine hyperthermia experiments were performed on the pre-
viously characterized polyacrylamide phantom using MPCs
initialized with all possible combinations of the average
value found for A1, the case of negligible perfusion
(A1 ¼ 0:0Þ, and immediate leveling of temperature gradients
between nearest neighbors (A1 ¼ 0:2Þ with the average value
found for q and q-mismatches by the factors 1=3 and 3. Heat
loss other than in-plane diffusion was excluded from the
starting model by setting A0 ¼ 1� 4A1: Each hyperthermia
experiment was run for 10min with Tobj ¼ 5 K, Pmax ¼ 60 W
and H ¼ 5: For these experiments, the target area was
placed far from the water channel and the channel’s perfu-
sion was disabled.

Performance comparison: MPC and binary controller
The MPC’s performance was assessed by comparison with
the current state-of-the-art controller introduced by Tillander
et al. [44], which will be referred to as the binary controller.
For the comparison in a homogeneous target area, the water
supply of the phantom was disabled and a round target ROI
with 18mm diameter was placed several centimeters away
from the water channel. For the comparison in an inhomo-
geneous target area, the phantom was perfused with de-ion-
ized water at 2.4ml/s and the target ROI was positioned
1mm away from the water channel. Both target ROIs were
sonicated with the MPC as well as the binary control algo-
rithm. For both experiments, the MPC was initialized with
parameters identified from test sonication data acquired

before the experiment in the respective configuration. Each
hyperthermia experiment was run for 10min with Tobj ¼ 5 K,
Pmax ¼ 60 W and H ¼ 5:

Results

Preparatory work

Model selection and identification
First, the coefficient of determination as well as the control-
ler runtimes was measured using increasing numbers of
nearest neighbors in the prediction of voxel temperatures
(Figure 1). The model incorporating four nearest neighbors
(N¼ 4) shows a significantly higher coefficient of determin-
ation than the model neglecting diffusion (N¼ 0) and led to
a peak runtime of 390ms. The model with eight nearest
neighbors required a 55.6% longer peak runtime of 608ms
and improved the predictive quality only slightly (R2¼0.946
vs. 0.947 on average). Models with more nearest neighbors
did not further improve the coefficient of determination sig-
nificantly but only increased peak run time. The chosen
model therefore incorporated four nearest neighbors only.
The A1 and q parameters derived from the test sonications
using this model were 0.126 ± 0.008 and 0.882 ± 0.094,
respectively.

Simulations

Influence of model errors in silico
The simulated temperature evolutions in the target ROI
for plant-model mismatches in A1 and q are displayed in
Figure 2. Regardless of the used A1,MPC , the controller per-
forms best in the cases with qMPC ¼ qsim: In the case of
severely underestimated heating (qMPC ¼ qsim=3), the tem-
perature distributions are much broader than in the matched
heating case for all A1 parameters and show heat spikes
throughout the duration of the sonication. Additionally, posi-
tive tracking errors between 304 and 542 mK are observed.

Figure 1. Coefficient of determination on the test set vs. the number of nearest
neighbors used in the model and corresponding peak runtimes required for
optimization.
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In the overestimated heating case (qMPC ¼ 3 � qsim), the
widths of the temperature distributions are larger than for
the matched heating case as well for all A1 parameters and
negative tracking errors between 285 and 353 mK are
observed. The best performance J was achieved using the
correct model parameters.

The controller’s responsiveness to measured temperature
deficits is shown in Figure 3 for varying model parameters.
Over- and underestimation of the q parameter leads to
under- and overcompensation of measured temperature defi-
cits, respectively. For the case of neglected diffusion
(A1,MPC ¼ 0:0), the controller aggressively counteracts meas-
ured temperature deficits while in the case of immediate lev-
eling of temperature gradients (A1,MPC ¼ 0:2), the controller
is much less responsive.

Phantom experiments

Influence of model errors in vitro
The evolution of the temperature distributions during nine in
vitro experiments with varying model parameters is shown in
Figure 4. Across all experiments, the average absolute
steady-state tracking error TOff was 138 mK and the average

steady-state width of the temperature distribution TRange was
740 mK. In all tested cases, an underestimation of the heat-
ing power led to TOff and TRange values above 144 mK and
754 mK while an overestimation led to TOff and TRange values
below –185 mK and above 785 mK. Experiments using the
experimentally identified q parameter performed better in
both aspects with TOff and TRange values smaller than 62 mK
and 676 mK. The use of the experimentally identified A1 par-
ameter led to the best performance J for two out of three
different q parameters and the second-best result in one
case. The best performance J was achieved using the experi-
mentally identified parameters.

Performance comparison: MPC and binary controller
The MPC’s performance was rated in a direct comparison to
the current state-of-the-art controller for MR-HIFU mediated
mild hyperthermia. The comparison was made both for a
homogenous target ROI (Figure 5) and a target ROI adjacent
to the water channel inside the phantom material (Figure 6).
The steady-state (400 s<t< 600 s) performance metrics TOff
and TRange for the homogeneous case were 67 mK and 698
mK for the MPC and 605 mK and 1734 mK for the binary

Figure 2. Simulated temperature curves in the target ROI vs. time, not including the noise added to the feedback signal. In each simulation, the controller was
given a different model while the simulated tissue remained unchanged. The eight panels around the center represent the mismatched cases with the used param-
eter displayed at the respective row and column. TRange: average steady-state temperature distribution width; TOff: average steady-state tracking error; J: average
steady-state performance.

INTERNATIONAL JOURNAL OF HYPERTHERMIA 1045



controller, respectively. The steady-state performance metrics
TOff and TRange for the inhomogeneous case were 49 mK and
862 mK for the MPC and 646 mK and 1629 mK for the binary
controller, respectively. The average spatial temperature pro-
files through the centers of the target ROI in steady state
(Figures 5(B) and 6(B)) showed bell shapes for the binary
controller and plateaus for the MPC controller. The MPC allo-
cated heating power mainly to the edges of the target ROI
and increased heating at the edge of the ROI bordering the
water channel in the inhomogeneous case. Information on
the power distribution used by the binary controller could
not be obtained from the clinical software and is therefore
not shown here.

Discussion

The impact of errors in the estimation of tissue properties
was explored in silico and in vitro. Both investigations
showed that mismatches of the A1 parameter have a weaker
influence on steady-state controller performance compared
to the influence of the heating parameter q: This observation
can be explained by the diminished influence of diffusion
inside the target ROI once a highly homogeneous tempera-
ture distribution has been reached. Neglect of diffusion in
the model (A1 ¼ 0Þ together with a severe under- or over-
estimation of q, however, led to increased tracking errors of

up to 542 mK in silico and 230 mK in vitro, caused by an
aggressive overcompensation of measured temperature defi-
cits. While these errors are smaller than the tracking errors
that were encountered using the binary controller, this still
shows the necessity of modeling diffusion for precise tem-
perature control. At the same time, modeling diffusion
between a large number of voxels offers only small benefits
beyond the already very good predictive performance
achievable with four nearest neighbors.

Besides the expected tracking errors, the underestimation
of q caused heat spikes which were observed prominently in
silico, where the feedback noise could be masked. This influ-
ence of the mismatch in q arises from the resulting control-
lers’ overcompensation of measured temperature deficits
induced by noise. Higher heating estimates, on the other
hand, will lead to insufficient heating in response to any
measured temperature deficit. This led to a smoother tem-
perature evolution in the corresponding simulations, but not
to an improvement in control performance over the matched
case. One avenue that could be pursued in the future to
reduce tracking errors and the controller’s responsiveness to
noise in a controlled manner is the extension of the MPC
algorithm to a full offset-free implementation, which is used
in other control problems where the system’s state cannot
be measured directly or the controller input is noisy [52,62].

In the direct comparison between the MPC and the binary
control algorithm, the MPC implementation outperformed

Figure 3. Temperature change of voxels inside the target ROI vs. measured temperature deficit at the previous timestep in silico. The eight panels around the cen-
ter represent the mismatched cases with the used parameter displayed at the respective row and column. The used q parameter determines the magnitude of the
response while the used A1 parameter influences the stringency with which measured temperature deficits are compensated.
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the binary controller both in terms of the tracking error and
width of the temperature distribution after establishment of
the steady state. In the homogeneous case, the MPC’s TOff
and TRange were only 11.1% and 40.3% of the binary control-
ler’s TOff and TRange: The reason for this becomes evident in
the spatial temperature profiles produced by the two con-
trollers (Figure 5(B)). The MPC’s profile shows a flat plateau

inside the target area, while the binary controller gives rise
to a bell shape, indicative of excess heating in the center of
the target ROI. The MPC avoids this problem by optimizing
the applied heating pattern at each time step, thereby shift-
ing all applied power to the edge of the controlled area
automatically after the ROI center is sufficiently heated. In
the inhomogeneous case, where the heated region is placed

Figure 4. Temperature curves in the target ROI vs. time for varying controller models in nine otherwise identical phantom experiments. The used values for the A1
and Q parameters are given for each row and column. TRange: average steady-state temperature distribution width; TOff: average steady-state tracking error;
J: average steady-state performance.

Figure 5. (A) Temperature distribution vs. time achieved with the binary controller and the MPC algorithm in a homogeneous region of the phantom. (B) Spatial
temperature profiles and the MPC’s power distribution profile through the center of the target region, average for 400 s<t< 600 s. Target area is shaded.
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adjacent to a perfused water channel, both controllers pro-
duce a skewed distribution (Figure 6(B)). The MPC’s advan-
tage is considerable in this case as well with TOff and TRange
at 7.6% and 52.9% of the binary controller’s TOff and TRange,
respectively. Analogous to the homogeneous case, this is a
consequence of the flexible heating patterns used by the
MPC, allowing to allocate additional heating power to the
edge of the target ROI bordering the water channel. This
capability might prove particularly useful in a clinical setting
where regions of enhanced perfusion or variations in ultra-
sound absorption might not be detectable in advance or
might arise during the treatment, e.g., by the heat-induced
stimulation of blood flow.

The controlled environment that was used to show the
MPC’s advantages over the current state-of-the-art in the
absence of such unpredictable effects and to assess
the problems particular to this new MPC algorithm is at the
same time a limitation of this study. It cannot demonstrate
adequately how the MPC would perform when encountering
problems that are particular to the in vivo setting. Most of
these problems, first and foremost those related to patient
safety, e.g., protection of the skin, the detection of thermom-
etry artifacts and detection of patient motion, must be
addressed by appropriate patient preparation, patient moni-
toring and dedicated safety software modules separate from
the controller, however. Nonetheless, validation of the con-
troller’s performance in an in vivo setting, where perfusion
might change over time or tissue properties may vary spa-
tially in unpredictable ways, is required and will be per-
formed in a dedicated study.

In conclusion, we presented the structure, implementation
and in vitro evaluation of an MPC algorithm for improved
uniform hyperthermia using MR-HIFU, which employs per-
sonalized thermal models derived from low-powered test
sonications for each treatment. The MPC outperforms the
current state-of-the-art controller in vitro both in terms of tar-
get tracking performance as well as spatial homogeneity of
the resulting temperature distribution. This is made possible
via the automatic and flexible redistribution of heating
power by repeated model-based optimization. This also

holds in the presence of a localized heat sink, which was
counteracted by the MPC via automatic allocation of add-
itional heating power. We therefore believe that the pro-
posed MPC solution will further advance MR-HIFU based
hyperthermia and may be key for applications where tight
control of the temperature is essential, such as device-tar-
geted drug delivery.
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