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Abstract

Stretchable electronics is an increasingly studied field of research, with mainly biomed-
ical applications, such as skin-adhered patches for monitoring e.g., blood flow, or an
inflatable ultrasound sensor at a catheter tip for minimal invasive surgery. Key in de-
signing reliable electronic interconnects is understanding the mechanical behavior
of the structures upon stretching. Mechanical properties are influenced by the small
size (in the order of several hundreds of nanometers to tens of microns) and micro-
fabrication processing conditions. Hence, it is important to experimentally investigate
the stretchable interconnects as processed, as opposed to for example a standardized
tensile test on the bulk material. In this thesis, various specialized Digital Image Cor-
relation (DIC) based techniques are developed for the analysis of experiments with
stretchable electronic interconnect structures, based on digital images captured with
in-situ microscopy during the experiment.

In the first part of the thesis, a novel global digital image correlation method is de-
veloped using adaptive refinement of isogeometric shape functions. Here, the shape
functions are automatically adjusted to be able to describe the kinematics of the sought
displacement field with an optimized number of degrees of freedom. The method is also
extended to a quasi-3D digital height correlation technique, in which height profiles
are analyzed, yielding three-dimensional surface displacement fields. The method is
applied to experiments on aluminum stretchable electronic interconnects adhered to a
polyimide substrate, which entail localized buckles upon deformation with complex
kinematics and hence analysis of the experiment benefits from the developed adap-
tive iso-GDIC method. The resulting displacement fields are compared to numerical
cohesive zone simulations, in order to characterize the interface between the metal
interconnect and the polymeric substrate. It is found that a mixed-mode cohesive zone
model with different interface behavior in the shear and normal direction is required to
describe realistic in-plane and out-of-plane deformations.

In the second part, a novel freestanding stretchable electronic interconnect design is an-
alyzed using an Integrated DIC (IDIC) based technique, in which full-field experimental
data is correlated with a Finite Element model of the specimen, in order to identify the
parameters in this numerical model. To this end, this method is enhanced to Integrated
Digital Height Correlation (IDHC) to be able to correlate the complex 3D interconnect
behavior to determine the elastoplastic properties, which are largely influenced by the
microscopic dimensions of the structure.
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Furthermore, the novel Mechanical Shape Correlation (MSC) technique, used for pa-
rameter identification, is introduced. In contrast to regular IDIC techniques, where
the images consist of a grayscale speckle pattern applied to the sample, in MSC the
images are projections based on the contour lines of the test specimen only. This makes
the technique suited for the freestanding stretchable electronic interconnects, where
large deformations and rotations cause parts of the sample to rotate in and out-of-view.
The large specimen outline changes significantly upon deformation, which is exploited
in the MSC algorithm. Attention is paid to the influence of algorithmic choices and
experimental issues. To identify the elastoplastic properties of a freestanding stretchable
structure in a real experiment, alignment, pre-processing and boundary conditions in
the simulation are analyzed to obtain a good agreement between the experimental and
simulated images.



Samenvatting

Rekbare elektronica is een in toenemende mate bestudeerd onderzoeksveld, met voor-
namelijk biomedische toepassingen. Voorbeelden daarvan zijn op de huid gekleefde
pleisters om bloedstroom te monitoren en een opblaasbare echosensor voor op het
uiteinde van een katheter die bij kijkoperaties wordt gebruikt. De sleutel om tot be-
trouwbare ontwerpen voor elektrische verbindingen, zogenaamde ’interconnects’, te
komen is het begrijpen van het mechanische gedrag van deze structuren bij uitrekking.
De mechanische eigenschappen worden beïnvloed door de kleine dimensies (in de
ordegrootte van enkele honderden nanometers tot tientallen microns) en door de ver-
werkingscondities tijdens het micro-fabricageproces. Daarom is het belangrijk om
geproduceerde rekbare interconnects experimenteel te onderzoeken, in tegenstelling tot
het uitvoeren van gestandaardiseerde trekproeven op proefstukken van bulkmateriaal.
In dit proefschrift worden verschillende gespecialiseerde ’Digital Image Correlation’
(DIC)-technieken beschreven voor de analyse van rekbare elektronische interconnects,
op basis van digitale beelden die tijdens het experiment gemaakt zijn met in-situ micro-
scopie.

In het eerste deel van het proefschrift wordt een nieuwe ’global digital image corre-
lation’ (GDIC)-methode beschreven die gebruik maakt van adaptieve verfijning van
isogeometrische vormfuncties. De vormfuncties worden automatisch aangepast om de
kinematica van het gezochte verplaatsingsveld te kunnen beschrijven met een geopti-
maliseerd aantal vrijheidsgraden. Deze methode wordt ook uitgebreid naar een quasi-
3D ’digital height correlation’ (DHC)-techniek, waarbij hoogteprofielen worden geanaly-
seerd om drie-dimensionale verplaatsingsvelden van het oppervlak te verkrijgen. De
methode wordt toegepast bij experimenten op rekbare elektronische interconnects
van aluminium die op een polyimide substraat zijn gelijmd. Bij deformatie ontstaan
lokaal kreukels met een complex verplaatsingsveld en dus heeft de analyse voordeel
bij gebruik van de ontwikkelde ’adaptive iso-GDIC’-methode. De resulterende ver-
plaatsingsvelden worden vergeleken met numerieke ’cohesive zone’-simulaties om het
grensvlak tussen de metalen structuur en het polymeren substraat te kunnen karak-
teriseren. Hieruit wordt geconcludeerd dat voor het beschrijven van realistische in- en
uit-het-vlak-vervormingen, het noodzakelijk is om een ’mixed-mode cohesive zone’-
model te gebruiken, waarbij het gedrag verschillend is tussen de afschuifrichting en de
normaalrichting.

In het tweede deel wordt een vernieuwende vrijstaande rekbare interconnect geanaly-
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seerd met behulp van een op ’Integrated DIC’(IDIC) gebaseerde techniek. ’Full-field’
experimentele data wordt gecorreleerd met een eindige-elementen-model van het proef-
stuk, met als doel het identificeren van parameters in dit numerieke model. Daarom
wordt de methode uitgebreid naar ’Integrated Digital Height Correlation’ (IDHC) om het
complexe drie-dimensionale gedrag van de structuren te kunnen analyseren. Dit wordt
gebruikt om elastoplastische eigenschappen te bepalen, die sterk beïnvloed worden
door de microscopische dimensies van de structuur.
Daarnaast wordt de nieuwe ’Mechanical Shape Correlation’ (MSC)-techniek geïntro-
duceerd, die ook wordt gebruikt voor parameter-identificatie. In tegenstelling tot regu-
liere IDIC-technieken, waar de beelden bestaan uit een spikkelpatroon van grijswaarden
op het proefstuk, zijn de beelden in MSC projecties die gebaseerd zijn op alleen de con-
tour van de structuur. Dit maakt deze techniek geschikt voor de vrijstaande rekbare
elektronische interconnects, omdat grote deformaties en rotaties ervoor zorgen dat
delen van de structuur in en uit beeld verschijnen en verdwijnen. De grote omtrek
van de structuur verandert significant tijdens deformatie, hetgeen wordt benut in het
MSC-algoritme. Er wordt aandacht besteed aan de invloed van keuzes die in het algo-
ritme gemaakt moeten worden en aan experimentele uitdagingen. Om de elastoplas-
tische eigenschappen van een vrijstaande rekbare interconnect te identificeren uit een
echt experiment, moet de overeenkomst tussen de experimentele en de gesimuleerde
beelden geoptimaliseerd worden: daartoe worden de uitlijning van het experiment met
de simulatie, voorbewerking van de beelden en de randvoorwaarden in de simulatie
geanalyseerd.
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Chapter 1
Introduction

The development of stretchable electronics enables applications that seemed like
science-fiction not that long ago. The close integration of conductive materials with
a soft matrix material facilitates a wide range of applications, mainly in the biomedi-
cal field, as the gap between traditionally rigid electronics and soft biological tissue is
bridged by the flexible and stretchable characteristics of stretchable electronics. For
example, health monitoring patches that adhere to the skin [73, 81, 160], smart contact
lenses [109], flexible devices for cardiac diagnostics [51, 144] and stretchable surgical
tools, such as a balloon catheter with sensors for blood flow monitoring [72, 80] are
being developed, see Figure 1.1. Also outside the biomedical field stretchable electronics
have found ground: applications include smart textiles [145], flexible displays [118],
solar cells [88], and LED arrays [153]. The reader is referred to Ref. [158] for an overview
of applications.

There are basically two approaches for the design of stretchable electronics [96, 166].
The first is to use conductive materials that are stretchable [162]. Examples include
elastomeric substrates with thin metal films with cracks [84] or buckles [21] to accommo-
date stretching, composites of an elastomer infiltrated with carbon-nanotubes [63, 131],
metal particles [120], or networks of nanowires [62], conductive polymers [54] and
liquid metal inside microchannels in an elastomeric matrix [165]. The second strat-
egy is to design stretchable structures from a conductive material with low intrinsic
stretchability [1], e.g. wavy silicon ribbons or arches [70, 71], serpentine or horseshoe
shaped interconnects [47, 48, 67], fractal designs [92, 146] and origami [135, 136] and
kirigami [33, 151] inspired designs.

This thesis builds upon the second approach, i.e., structural designs for stretchable
interconnects. The first part of the thesis considers an aluminum horseshoe patterned
interconnect adhered to a polyimide substrate [25, 26, 89], see Figure 1.2a. Designs
of meandering interconnect structures are commonly used in the field of stretchable
electronics, as deformations of these structures accommodate relatively large global
strains, while the local strains in the interconnect material remain limited due to the
underlying compliant substrate that distributes the stress over the interconnect mate-
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Prosthetic hand

Arti!cial skin

~ 20%

Strain

(a) Artificial skin [74]

(b) Monitoring patch [160]

(c) Flexible skin display [141]

Figure 1.1: Examples of applications of stretchable electronics. In (a) an artificial skin with
strain, temperature and pressure sensor arrays, covering a prosthetic hand is shown. In (b) a
monitoring patch for vital signs that is soft enough for premature baby’s skin is shown. In (c)
an ultrathin flexible skin display that can withstand ∼45% stretching without loss of electrical
and mechanical function is shown with a moving electrocardiogram waveform measured by a
sensor mounted on the skin.

rial [30, 60, 61]. However, functional reliability is endangered when the interconnect
delaminates from the substrate, see Figure 1.2b, causing localized strains that may lead
to failure of the metal interconnect and finally to loss of function of the device [137]. It
is, therefore, important to understand and predict the interface delamination behavior.
The challenge herein lies in the microscopic scale at which delamination occurs, which
calls for highly accurate techniques for identification of these small-scale localized
deformations.

For horseshoe interconnects and most of the other discussed designs a stretch per-
centage of up to 100% is reached, which is sufficient for many of the mentioned ap-
plications, as shown in Figure 1.2. However, to expand the range of applications it is
desirable to maximize the stretchability even further. To this end, a novel strategy for
ultra-stretchable electronics was recently introduced that overcomes the fundamen-
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1

(a) Horseshoe design [27] (b) Deformed horseshoe interconnect

(c) Freestanding ROPE design

Figure 1.2: The two interconnect designs considered in this thesis. (a) An aluminum horseshoe
patterned interconnect attached to a polyimide substrate; (b) The same interconnect after
stretching, unveiling the main deformation mode, delamination (c) A freestanding stretchable
electronic interconnect design, also denoted ROPE interconnect, in undeformed state (left)
and stretched by approximately 650% (right). Upon stretching the interconnect deforms
three-dimensionally: the beams rotate and bend to align with the stretch direction.

tal limitations on stretchability, by demonstrating a stretchability well beyond 100%,
see Figure 1.2c, even reaching a 2000% elastic stretchability for certain designs [132].
A paradigm shift in the design strategy was proposed, by making the interconnects
freestanding and designing such that the full three-dimensional deformation is ex-
ploited to reach maximum stretchability, see Figure 1.2c. This freestanding intercon-
nect is also called the ROPE (Rotation and Out-of-Plane Elongation) interconnect. An
important part of this design is the integration with standard IC (Integrated Circuit)
micro-fabrication methods, to ensure manufacturability of these miniature freestanding
interconnects and to enable future high density integration of these interconnects in
IC systems to make the intrinsically rigid IC’s (highly) stretchable. A potential future
application is an advanced inflatable ultrasound detector at a catheter tip for minimal
invasive surgery, with variable zoom capability, see Figure 1.3.

The second part of this thesis elaborates on this freestanding interconnect design as
shown in Figure 1.2c, because it is important to identify and predict the mechanical
behavior and failure mechanisms of these interconnects and the complete stretchable
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IC device.

(a) Smart ablation catheter1 (b) Inflation of catheter tip

Figure 1.3: A potential novel application of ultra-stretchable electronics, for which the
SLIC project aims to solve the fundamental challenges. Left: a smart ablation catheter for
treatment of cardiac arrhythmia, developed by Philips Research, with ultrasound ablation
depth monitoring to accurately monitor the depth of ablation. Right: a schematic of the
potential future possibility of inflating the flat tip of the catheter for variable zoom capability,
if ultra-stretchable interconnects are used to connect the CMUT (Capacitive Micromachined
Ultrasonic Transducers) array.

For both designs the material behavior depends on size effects due to miniaturization
and the processing history of the stretchable structures and hence, bulk material prop-
erties cannot be applied [49, 82, 152]. Also different deformation modes, induced by
different loading conditions, can affect the measured material properties [45]. Therefore,
in order to characterize the mechanics and establish realistic models for the prediction
of the deformation and failure behavior, it is important to test original (as-processed)
structures in realistic loading conditions, as opposed to performing for example a uniax-
ial tensile test on a standardized (macroscopic) test specimen produced from the bulk
interconnect material. However, the deformations of the stretchable interconnects are
large, three-dimensional and complex: Buckling occurs, surfaces rotate out-of-view and
other surfaces appear in-view. Therefore, existing methods are difficult to apply, making
it is necessary to develop more advanced characterization methods.

Research objective

The research goal of this work is the development of state-of-the-art image based
algorithms for the mechanical characterization of stretchable electronic interconnect

1Image taken from http://informed−project.eu/index.php/demonstrators
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structures and the identification of material parameters in representative mechanical
models.

Methods

The algorithms that are presented in this thesis can be divided in two groups: Global
Digital Image Correlation (GDIC) based techniques and Integrated Digital Image Corre-
lation (IDIC) based techniques. The former are developed in view of the characterization
of delamination of (horseshoe-patterned) interconnects from a (rubber) substrate, as
shown in Figures 1.2a and b. The latter are developed for material identification of
the freestanding stretchable electronic interconnect design, see Figure 1.2c. The key
difference between GDIC and IDIC is the integration of a mechanical model to guide
the correlation of the images or height profiles.

Part I: Advancement of Global Digital Image Correlation Techniques

Digital Image Correlation (DIC) is a full-field measurement method to compute kine-
matic quantities, i.e., displacement and strain information, from digital images taken of
a specimen during a mechanical deformation process. The method does not require a
special set-up and can be applied to any type of image, e.g., photographs, micrographs
(captured for instance with an optical microscope or a scanning electron microscope),
computer tomographic images, profilometric images, etc. Therefore, DIC is a very
versatile method that is widely used.

DIC originates from the field of fluid mechanics, where it is better known as Particle
Image Velocimetry (PIV) [3]. In the 1980’s the method was adopted to the field of solid
mechanics [31, 105, 108, 149]. The DIC method consists of an algorithm searching for
the displacement field(s) that best matches the difference between two (or more) images
of a specimen during deformation. This displacement field is found by minimizing
the difference between the images and solving the resulting system of equations. The
problem is ill-posed by nature since the number of unknowns equals twice (in 2D) or
three times (in quasi-3D) the number of pixels, because the vector displacement per
pixel is sought, while only one gray value per pixel is known.

To be able to solve the system, the amount of degrees of freedom (DOFs) is reduced by
regularizing the displacement field. Various approaches exist for this purpose, mainly
categorized as local and global approaches [57]. In the local method the image is
subdivided in smaller subsets, each of which is given a certain amount of kinematic
freedom, e.g., rigid body motion, shear and warping, to obtain the best correlation
between the images [31, 85, 156]. The displacement field is then obtained by combining
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the displacement vectors of each subset. The more subsets are used, the more complex
the displacement fields that may be correlated. However, with more degrees of freedom
the sensitivity to image noise increases as well [20, 128]. In contrast, in the global
approach the displacement field of the entire image is regularized and optimized in
a single optimization step [11, 29, 147]. Naturally, the shape functions describing the
displacement field must be more complex than the simple subsets ones in the local
approach and these global shape functions can be tailored to the considered experiment.
Like for local DIC, also in the global method there is a trade-off between the number
of degrees of freedom (i.e., the complexity of the displacement field that might be
described by the shape functions) and noise-robustness.

Adaptive isogeometric Digital Image Correlation

In order to analyze localized displacements in the horseshoe shaped stretchable elec-
tronic interconnects, which buckle upon stretching, an image correlation algorithm
with adaptive refinement is developed. First a DIC algorithm, which calculated the
two-dimensional in-plane displacement field is presented. A set of tailored NURBS
shape functions (used because of their versatility) is autonomously optimized, such that
enough freedom is allowed for the kinematic description of the displacement field. Yet,
the amount of DOFs remains limited in order to promote noise robustness and decrease
the sensitivity of convergence towards local minima. Moreover, the shape functions are
only refined at the locations where this is necessary, i.e., the areas of localized displace-
ments, which means that these locations, which are not known a priori, do not need to
be supplied to the algorithm. Hence, the method is less dependent on user input. In
Chapter 2 the adaptive isogeometric digital image correlation algorithm is presented,
where it is applied to both virtual and real experiments revealing a displacement field
with strong localizations, see Figure 1.4a.

Adaptive isogeometric Digital Height Correlation

The method is extended to quasi-3D, or digital height correlation (DHC), in Chapter 3,
in order to compute not only the in-plane displacement components, but also the
out-of-plane displacement of the considered surface, with the objective to characterize
the buckling deformation of the aluminum-polyimide horseshoe interconnects from
Figure 1.2a. Adaptive refinement is again used because of the localizations in the
displacement field, i.e., the buckles, of which the location is not known a priori. For
DHC the input images are not grayscale images with a speckle pattern as in Figure 1.4a,
but height maps captured with an optical profilometer, containing three-dimensional
data of the sample surface. The speckle pattern, required for DIC methods, is now a
three-dimensional pattern consisting of nano-particles. The method is applied to the
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horseshoe patterned stretchable interconnects, see Figure 1.4b, and in Chapter 4 the
calculated displacements are compared to numerical simulations with a cohesive zone
model in order to assess the main deformation mechanism; i.e., delamination of the
interconnect from the substrate.

Part I: 

Global DIC 

methods

Part II: 

Integrated

methods

2D 3D

(c) Signed Distance Map of ROPE interconnect 
for Mechanical Shape Correlation (MSC)

(d) Height Map of ROPE interconnect for
Integrated Digital Height Correlation (IDHC)

(b) Height map of horseshoe interconnect for
Adaptive isogeometric digital height correlation

(a) Grayscale image for
        Adaptive isogeometric digital image correlation

Figure 1.4: Overview of the image types used for the characterization methods in this thesis.
In Part I, Global Digital Image Correlation (GDIC) based techniques are extended, with
(a) self-adaptive isogeometric GDIC for correlating grayscale images yielding 2D (in-plane)
displacement fields and (b) self-adaptive isogeometric Digital Height Correlation (DHC)
to obtain full three-dimensional displacement fields by correlating height maps. In Part
II, Integrated DIC (IDIC) approaches are introduced for the analysis of the complex 3D
displacement field of the ROPE interconnects and identification of material parameters,
with (c) the newly introduced Mechanical Shape Correlation method for material parameter
identification from the deformation of the outline of a 3D shape by correlating signed distance
maps and (d) Integrated DHC (IDHC) for material parameter identification through direct
correlation of surface topographies.
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Part II: Advancement of Integrated Digital Image Correlation

Another way of regularizing the displacement field is by conjugating the global shape
functions with a (mechanical) model, ensuring that the displacements calculated by the
mechanical model are kinematically admissible; this is referred to as Integrated Digital
Image Correlation [100, 115, 121]. The techniques considered in the second part of this
thesis are part of this category.

Integrated Digital Height Correlation

For identification of material parameters in the numerical model of the freestanding
interconnects an integrated digital height correlation (IDHC) algorithm is developed in
Chapter 5. The method is designed to analyze the height maps taken with an optical
profilometer during an out-of-plane loading experiment of the interconnects, see Fig-
ure 1.4d, in which one of the main deformation modes is triggered, i.e., bending of the
beam in an S-shape. The correlation is coupled to a finite element model of the same
specimen geometry, loaded at the interconnect’s ends by application of an out-of-plane
displacement that is measured a-priori from the experimental height maps using global
DHC, in which the material parameters concerning the plastic behavior are unknown
and the objective for identification using the IDHC algorithm.

Mechanical Shape Correlation

When the freestanding interconnects are loaded in the stretch direction, the beams
of which the structure is composed rotate out-of-view, see Figure 1.2c. This makes
it impossible to apply existing DIC techniques, as current techniques require that
the surfaces of interest remain in-view. Therefore, a new algorithm is proposed that
correlates the shape of the specimen in the image series, see Figure 1.4c, rather than
the surface of the sample: Mechanical Shape Correlation (MSC). The technique is an
integrated approach, where the same finite element model as used for IDHC is coupled
to the correlation. The specimen contour is extracted from both the experimental
images and the numerical simulation and correlated to each other in order to identify
material parameters in the model.

The MSC method is introduced in Chapter 6, where it is tested by means of virtual
experiments, but also a number of experimental issues are identified and tackled. In
Chapter 7 the algorithm is applied to a real experiment with the freestanding stretchable
interconnect geometry, in order to identify the material parameters that describe the
plastic regime.
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Chapter 2
On the use of adaptive refinement in
isogeometric digital image correlation

Abstract

A novel global digital image correlation method was developed using adaptive refine-
ment of isogeometric shape functions. Non-Uniform Rational B-Spline (NURBS) shape
functions are used because of their flexibility and versatility, which enables them to cap-
ture a wide range of kinematics. The goal of this work was to explore the full potential of
isogeometric shape functions for digital image correlation (DIC). This is reached by com-
bining a global DIC method with an adaptive refinement algorithm: adaptive iso-GDIC.
The shape functions are automatically adjusted to be able to describe the kinematics of
the sought displacement field with an optimized number of degrees of freedom. This
results in an accurate method without the need of making problem-specific choices
regarding the structure of the shape functions, which makes the method less user input
dependent than regular global DIC methods, while keeping the number of degrees
of freedom limited to realize optimum regularization of the ill-posed DIC problem.
The method’s accuracy is demonstrated by a virtual experiment with a predefined,
highly localized displacement field. Real experiments with a complex sample geometry
demonstrate the effectiveness in practice.

This work has been published:
Kleinendorst SM, Hoefnagels JPM, Verhoosel CV, Ruybalid AP. (2015) On the use of adaptive refinement
in isogeometric digital image correlation. International Journal for Numerical Methods in Engineering,
104, 944-962. DOI: 10.1002/nme.4952
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2.1 Introduction

Digital Image Correlation (DIC) is a computational technique used for determining
displacement fields. DIC was first developed in the 1980s and introduced in the field
of solid mechanics by Peters [108], Sutton [149] and Chu [31]. See Pan et al. [105] for
an extensive review on the development of the digital image correlation method. DIC
has become a standard technique for material scientists to couple experiments and
numerical simulations by analyzing displacement fields from mechanical tests, from
which strain fields can be determined.

In the digital image correlation algorithm a system of equations needs to be solved in
order to obtain the two-dimensional displacement field. In this system the unknowns
are the vector displacements per pixel. The known variable is the brightness field, which
is a scalar value per pixel. Since the number of unknowns exceeds the number of equa-
tions, the problem is ill-posed by nature. To overcome this problem the displacement
field is regularized with so called shape functions. The coefficients associated with the
basis functions in this discretization are referred to as degrees of freedom (DOFs).

There are several possibilities for this regularization. A distinction is made between
a local and a global approach. In the local method the region of interest (ROI) is
divided in small subsets, zones of interest (ZOIs), which are correlated in both images
in order to find their displacement. The total displacement field then is interpolated
to obtain full-field information. In the global digital image correlation (GDIC) method
the correlation of the two images is executed over the entire domain at once, hence the
term ‘global’ [11, 29, 147]. Typically, continuity of the displacement field is imposed
(except when discontinuities are deliberately introduced [110, 111]), making GDIC less
sensitive to image noise, see e.g. Hild et al. [57].

In contrast to the local method, where displacements are calculated at every subset
center, the global approach provides a displacement at every pixel. Therefore, the
information density is generally higher. However, because of the higher amount of
regularization the global method is more reliant on the choice of certain important
variables the user makes. In particular, the choice of the shape functions is critical,
since these must be able to capture the kinematics of the sought displacement field.
This choice can be difficult, as the displacement field is generally unknown in advance.
Therefore, GDIC is able to provide more accurate results, but only if the user supplies
the algorithm with the correct problem-specific kinematic description.

An interesting type of shape functions is Non-Uniform Rational B-Splines (NURBS).
NURBS originate from computer aided design (CAD) modeling, where they are the
industry standard. NURBS are able to represent many geometric shapes -in particular
conic sections- exactly, whereas standard finite element shape functions approximate
them. Hughes et al. proposed to use the geometrical representation of CAD-models
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directly for finite element analysis: Isogeometric Analysis (IGA) [34, 64].The use of B-
Splines in a digital image correlation setting was pioneered by Cheng [29]. Recently
Beaubier et al. directly utilized the CAD-representation of their subject for the DIC
correlation algorithm [6]. Advantages of NURBS were investigated by Elguedj et al. [41],
who concluded that, compared to high order Lagrange shape functions, NURBS need
fewer functions to adequately describe the displacement field, which improves the con-
ditioning of the problem and thereby the noise robustness of the correlation algorithm.

To explore the full potential of NURBS shape functions for DIC, this paper presents a
global DIC method that adaptively adjusts the shape functions to capture the kinemat-
ics required to compute the displacement field. To this end, GDIC is combined with
an adaptive refinement algorithm for the NURBS shape functions: adaptive iso-GDIC.
As will be shown, the flexibility of the shape functions and its ability to perform au-
tomatic adaptive refinements makes the novel approach suitable for various types of
DIC problems. Most importantly, it provides an accurate method without the need of
supplying the algorithm with specific prior information about the problem. An opti-
mum number of degrees of freedom is pursued, such that enough freedom is allowed to
capture the kinematics of the problem, but not too much freedom, so noise robustness
is assured. This is an advantage over the existing digital image correlation methods,
since it combines high strain field accuracy with user-friendliness and a low level of
expertise.

This paper is organized as follows. In section 2.2 the isogeometric GDIC methodology
is discussed. Here, the two-dimensional global digital image correlation algorithm is
introduced and NURBS shape functions are elaborated, as well as the isogeometric
parametrization of the geometry. In Section 2.3, a virtual experiment is executed to test
the performance of NURBS shape functions for a GDIC problem, in comparison to other,
more commonly used types of shape functions. The adaptive refinement algorithm
and the choices made in its design are detailed in section 2.4. In section 2.5 a virtual
experiment is executed in order to give a proof of concept of the isogeometric GDIC
algorithm with adaptive refinement. Furthermore, the results of this test-case are com-
pared to conventional, non-adaptive DIC algorithms. In section 2.6 real experiments
with a complex specimen geometry are carried out to explore the method’s performance
in practice, after which general conclusions are drawn in section 2.7.

2.2 Methodology for iso-GDIC

In this section the characteristics of isogeometric global digital image correlation, or
iso-GDIC, are discussed. First, the two-dimensional GDIC algorithm is explained. Next,
the isogeometric shape functions, NURBS, are introduced. Besides using NURBS shape
functions for the discretization of the displacement field, they are also used for the
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parametrization of the geometry, which is clarified in the last part of this section.

2.2.1 Two-dimensional global digital image correlation algorithm

The goal of Global Digital Image Correlation (GDIC) is to quantify the displacement field
of a deformed specimen by correlating digital images of the specimen. The starting point
for a GDIC problem is the reference image and the deformed image. The images are
characterized by the intensity of the individual pixels, which is represented by the scalar
field f (x0) for the reference image and g (x) for the image corresponding to the deformed
specimen. Material points are assumed to retain the same intensity upon deformation
and since every material point needs to be preserved, brightness conservation holds:

f (x0)− g (x0 +u(x0)) =Ψ(x0) ≈ 0. (2.1)

HereinΨ(x0) is the residual image, which is zero for all positions for the case that the
displacement field u(x0) is calculated perfectly and no noise is present in the images.
In GDIC the optimal correlation is obtained when minimizing Ψ(x0) using the least
squared approach:

u(x0) = argmin
∫
Ω0

[
f (x0)− g (x0 +u(x0))

]2 dx0. (2.2)

Since this is an ill-posed problem, by virtue of the fact that a vector-valued displacement
field is sought, while only scalar brightness values are known and in general the number
of pixels exceeds the number of unique brightness values, the displacement field is
regularized as follows:

u(x0) ≈ u∗(x0,λ) =
m∑

j=1
λ jφ j (x0), (2.3)

where λ j are the degrees of freedom (DOFs) and φ j (x0) are their associated shape func-
tions. As explained above, many different choices are possible for the shape functions,
which is a challenging decision. The shape functions must be able to capture the (often
highly inhomogeneous) kinematics of the sought displacement field, which is generally
unknown in advance.
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Combining equations 2.2 and 2.3 the discretized problem is obtained:

{
Ψ(x0,λ) = f (x0)− g (x0 +u∗(x0,λ))

λ = argmin
∫
Ω0
Ψ(x0,λ)2 dx0.

(2.4)

This problem is iteratively solved by optimizing the unknowns λ by a Gauss-Newton
scheme, yielding the following system of equations:

Mδλ= b (2.5)

where δλ is the DOFs update and

Mi j =
∫
Ω0

[
(∇0 f ·φi )(∇0 f ·φ j )

]
dx0 (2.6a)

b j =
∫
Ω0

[
(∇0 f ·φ j (x0))

[
f (x0)− g (x(x0,λ))

]]
dx0. (2.6b)

The calculation of the domain integral for Mi j and b j is executed by summation over all
pixels, as Gauss quadrature schemes, traditionally used in finite element calculations,
cannot be used for DIC, due to the highly irregular pattern of the images [11]. Because
the image gradient ∇0 f and the gray level values f and g are naturally already known
at each pixel location, the shape functions φ are also evaluated there. To this end a
nearest neighbour inverse mapping algorithm is employed, which was found to provide
a good combination of sufficient accuracy, robustness and computational speed. This
algorithm locates for each pixel the closest local, parameterized coordinate pair and
assigns the values of the shape functions at this location to the pixel.

2.2.2 NURBS shape functions

In this work, the potential of Non-Uniform Rational B-Splines (NURBS) as shape func-
tions for DIC (see equation 2.3) is explored. B-Splines are piecewise polynomial shape
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functions which are defined recursively by the Cox-de Boor relation [18, 35]:

Ni ,0(ξ) =
{

1 if ξi ≤ ξ< ξi+1

0 otherwise
(2.7a)

Ni ,p (ξ) = ξ−ξi

ξi+p −ξi
Ni ,p−1(ξ)+ ξi+p+1 −ξ

ξi+p+1 −ξi+1
Ni+1,p−1(ξ), (2.7b)

where ξ is the coordinate in the parametric domain. A graphical interpretation is shown
in Figure 2.1a. The basis functions are defined over a knot vector Ξ= {

ξ1,ξ2, ...,ξn+p+1
}

,
where n is the number of shape functions and p denotes the polynomial order of the
shape functions. The knots divide the parametric domain in intervals, or elements. At
the element boundaries the continuity of the shape functions is reduced.

NURBS are rationalized B-splines, which are defined as:

Ri (ξ) = Ni (ξ)Wi

w(ξ)
, (2.8)

where Wi are scalar control point weights and w(ξ) = ∑n
i=1 Ni (ξ)Wi is the weighting

function. NURBS are able to represent many shapes exactly, in particular conic sections.
However, in this work all weights Wi are set to 1, as it was found that B-Splines are
sufficiently versatile to parameterize the sample geometries. However, the method
can easily be extended to applications where non-unity weight factors are required.
Furthermore, in this work so called open B-splines are used, where the first and last
knot are repeated p +1 times. However, we do use non-uniform B-splines, such that the
knots are not restricted to a uniform distribution.

When taking the tensor product of the shape functions in two directions, with local
parametric coordinates ξ and ζ, two-dimensional NURBS shape functions are obtained:

φA(ξ) = Ri (ξ)R j (ζ), (2.9)

with A = A(i , j ) and ξ= (ξ,ζ). An example of a two-dimensional NURBS shape function
is shown in Figure 2.1b.
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(b) A B-spline shape function on the two-
dimensional domain. Only one shape function
is shown in this representation.

Figure 2.1: Second-order B-spline shape functions in 1D-space and extended to 2D-
space. In this case the knots are evenly distributed and the knot vectors are given by
Ξ= {ξ1,ξ1,ξ1,ξ2,ξ3,ξ4,ξ5,ξ5,ξ5} in and Z = {ζ1,ζ1,ζ1,ζ2,ζ3,ζ3,ζ3}

2.2.3 Geometry parametrization

In isogeometric analysis, NURBS are used both for discretization of the sought displace-
ment field and for parametrization of the geometry of the sample [34, 64]. The mapping
of the parametric coordinate ξ to the coordinate x in the physical domain is done by
defining control points pA , such that

x(ξ) =∑
A
φA(ξ)pA = PTφ(ξ). (2.10)

In Figure 2.2a an example is shown of a B-spline curve x(ξ), using the shape functions
of Figure 2.1a and the control points P, as indicated by the red dots in Figure 2.2a. In
Figure 2.2b a B-spline surface mesh is shown, constructed in the same manner, using
shape functions in 2D-space, as represented in Figure 2.1b, and the control net as
indicated by the red dots in Figure 2.2b.

Isogeometric analysis is a powerful tool in representing a large range of displacement
fields. The advantage of isogeometric DIC is twofold. First, complex sample geometries
can be described accurately and the possibility exists to directly use a CAD-model for
the analysis, as Beaubier suggests [6]. This is particularly useful for complex geometries.
Secondly, continuity of the shape functions over element boundaries can be controlled
by means of knot insertion, which allows for a great flexibility. The multiplicity m of
a certain knot determines the continuity of the shape functions at that location, i.e.,
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(b) NURBS surface mesh

Figure 2.2: A NURBS curve (a) and NURBS surface (b) x(ξ), constructed from the control
net P and the shape functions. The control points are indicated by red dots.

the continuity equals C p−m . This is convenient to represent displacement fields that
incorporate lowered continuity, e.g., as resulting from highly localized deformation in a
material. If every knot is repeated p times, the element boundaries are C 0 continuous,
which resembles the situation where traditional finite element shape functions are
used, making the approach equivalent to that of Besnard et al. [11]. Furthermore it can
easily be shown that if only one element is used, B-splines are equivalent to regular
monomials and other globally defined polynomial shape functions up to order p that
are expected to work best for smooth, regular displacement fields. Thus NURBS shape
functions provide a generic manner of describing many different forms of displacement
fields and form a superset of other types of shape functions, including FEM (Lagrange)
shape functions and globally defined polynomials.

2.2.4 Blurring step

In (global) DIC approaches it might occur that the method converges to a local mini-
mum, as opposed to the global minimum (see equation 2.2), leading to an erroneous
solution. In order to prevent this, for each increment the DIC problem is first solved
for a blurred version of the images f and g , using a Gaussian kernel (size 10×10 pixels,
standard deviation 1.5 pixels). The result is used as an initial guess for the non-blurred
images. This method has proven to reduce the bias error of the digital image correlation
method [107]. In literature also other methods to solve this problem are known. Multi-
grid algorithms have been used where the DIC problem is, in n steps, first solved for
’coarse-grained’ versions of the images [11, 110], i.e., the images are decomposed into
super-pixels of 2n ×2n pixels by averaging the gray level values of these pixels.
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2.3 Iso-GDIC results and analysis

The performance of NURBS shape functions for GDIC is first explored by a virtual
experiment, where a comparison with Lagrange (traditional FEM) shape functions [65]
and globally defined Chebyshev polynomials [22] is made. Comparison is based on the
root mean square (RMS) value of the exact error:

εRMS =
√

1
n

n∑
i=1

(ui −ui ,r e f )2, (2.11)

with n the total number of pixels. In this experiment an image f with a random grayscale
speckle pattern is subjected to a predefined displacement field ur e f to obtain the
deformed image g . The displacement field, which mimics a localization of the strain
field, is expressed by:

ur e f (x, y) = a arctan(x −b), (2.12)

where a = umax /arctan( 1
2 (xmax +xmi n)), such that the displacement field range is

[−umax ,umax ], and b = 1
2 (xmax −xmi n), such that the localization occurs in the center

of the domain. The applied displacement field is plotted in Figure 2.3.
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−umax

0

umax

xmin xmax

Figure 2.3: The applied displacement field ur e f .

In order to make an objective comparison between the three types of shape functions,
they should be compared for the same number of degrees of freedom. Therefore, the
RMS value of the error in the displacement field is plotted as a function of the number of
DOFs in x-direction in Figure 2.4a. The number of DOF’s in y-direction is 3 (one element
with three shape functions) for all situations, since the localization in the displacement
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field only occurs in x-direction. As expected, the error is smaller for a larger number of
DOFs. This is due the complexity of the displacement field: a higher number of shape
functions is needed to describe the kinematics, resulting in a lower discretization error.
As can be seen, a distinction is made for Chebyshev shape functions between even and
odd polynomial orders. For polynomials of even order an extremum occurs at the center
of the domain (x = 0), while for polynomials of odd order an inflection point occurs at
this location. Therefore, Chebyshev functions of an odd polynomial order are better
able to capture the steep slope of the arctangent displacement field, which also shows
an inflection point at x = 0. The error for the odd Chebyshev polynomials is therefore
smaller than for the even Chebyshev shape functions, especially for a lower number
of DOFs, while for a higher number of DOFs the influence of the even polynomials
is cancelled out by the odd polynomial contribution to the solution. For Lagrange
shape functions and NURBS a similar distinction is made between element-centered
and vertex-centered meshes. In an element-centered mesh the number of elements
is odd, which causes the center of an element to occur at the center of the domain.
For a vertex-centered mesh the number of elements is even, which leads to a vertex,
i.e., a node for Lagrange shape functions or a knot for NURBS, located at x = 0. A
vertex induces a line of lowered continuity (C 0 for Lagrange and C p−m for NURBS),
which enables the shape functions to better capture the discontinuity in this particular
displacement field. Therefore the RMS-error is lower for the vertex-centered shape
functions, as can be seen in Figure 2.4a.

Also the influence of noise on the performance of the different methods is investigated.
To this end the virtual experiments are repeated for different levels of artificially imposed
noise on the deformed image: a noise level of 100% means that the noise amplitude is
of the same order as the gray level values. Three different sets of a constant number
of DOFs are used for the three types of shape functions. The RMS-value of the error in
the displacement field and its standard deviation (error bars) are shown in Figure 2.4b
as a functions of the noise level. It can be seen that for a higher number of DOFs
the method is more sensitive to noise: at a certain noise percentage the method does
not converge anymore. This is a well known property of GDIC [41, 112]. Furthermore,
Chebyshev shape functions are observed to be more sensitive to noise than the other two
types, as for higher polynomials orders they don’t converge for noise percentages over
20%, while NURBS and Lagrange shape functions go up to 40-50%. The difference in
noise-sensitivity between Lagrange and NURBS shape functions is observed to be small.
The uncertainty in the RMS-error (error bars in the graph) is slightly smaller for the
NURBS and also the increase in error is slightly smaller. However, from this experiment
we conclude that there is no significant difference in performance between the two
types of shape functions which are more locally defined, i.e. NURBS and Lagrange
shape functions. The shape of the mesh is more important than the type of the shape
functions.

In order to illustrate the influence of the continuity of the shape functions rather than
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Figure 2.4: RMS value of the error in the displacement field as a functions of the number
of degrees of freedom (DOFs) (a) and as a function of noise level (b), plotted for different
types of shape functions. The noise level is relative to the amplitude of the gray values of
the deformed image g . The combinations of shape functions with an equal number of DOFs
that are used in the noise analysis are indicated by ellipses in figure (a). Note that for a clear
graphical representation of graph (b) combinations have been chosen, for which the RMS-error
of the three types of shape functions does not overlap (as is the case for e.g., 15 DOFs).
To do so, the combination always consists of even Chebyshev polynomials, element-centered
NURBS and vertex-centered Lagrange shape functions, resulting in the lowest RMS-error
for the Lagrange type. However, for the noise sensitivity the absolute error value is not as
important as the trend and the variance in the error, thereby justifying this choice.

the type, the experiment is repeated, using only NURBS shape functions, however, for
a given number of degrees of freedom the knots along the x-axis are redistributed in
order to increase the multiplicity of the knot in the center of the domain, where the high
gradient in the displacement field occurs, as shown in the inset of Figure 2.5. The virtual
experiment is executed for four sets of constant number of DOFs in x-direction: 7, 9, 13
and 17. In each set the knot vector is rearranged as described above. The four sets are
again compared by means of the RMS value of the error in the displacement field.

The error is plotted against the multiplicity of the knot in the center of the domain in
Figure 2.5. From this graph it is again observed that the error decreases if the amount
of degrees of freedom increases, because the complex kinematics of this type of dis-
placement field are difficult to capture with polynomial shape functions and require
more degrees of freedom. This time, however, it is noted that a significant improvement
is achieved if the multiplicity of the center knot increases. This can be explained by
the fact that the continuity decreases when knots are repeated. The applied displace-
ment field approaches a step function with C −1 continuity in the center of the domain.
If the continuity of the shape functions is decreased as well, they are better able to
approximate the displacement field.
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Figure 2.5: RMS value of the error in the displacement field plotted against the multiplicity
m of the knot in the center of the x-domain. An example of the rearrangement of the knot
vector in order to reach this multiplicities is shown in the inset on the right side of the graph.
In this case we see a knot vector in x-direction with 12 knots, for shape functions of order 2
(the multiplicity of the knots at the edges is p +1 = 3). The knots are redistributed such that
the total number of knots, and hence degrees of freedom, remains the same. In the center of
the domain the multiplicity of the knot is increased.

These virtual experiments illustrate that adding degrees of freedom is particularly useful
if they are added at the right location. Moreover, the actual placement of the knots is
more important than the amount of DOFs and even more important than the type of
shape functions used. An advantageous situation occurs when the number of DOFs
remains limited, since this enhances noise robustness, and still complex kinematics
can be described. Naturally the displacement field is unknown in advance and the
user is generally unable to provide the GDIC algorithm with the most suitable mesh.
Therefore, in order to optimally benefit from the flexibility of the shape functions used in
isogeometric analysis, we propose to combine the isogeometric digital image correlation
algorithm with adaptive mesh refinement. Note that adaptive refinement could also
be combined with a GDIC algorithm using other types of shape functions, however,
NURBS are a more general approach, since they form a superset of the other types and
furthermore have the advantage of being able to describe complex geometries exactly.

2.4 Adaptive refinement

We have seen that on one hand NURBS shape functions provide a flexible tool in
describing both simple and complex kinematics of displacement fields, and on the
other hand optimized placement of DOFs in a digital image correlation problem is
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computationally favorable. Therefore, it is expected that isogeometric digital image
correlation combined with an adaptive refinement algorithm yields a powerful method
for solving a large variety of DIC problems. In this section a two-dimensional adaptive
refinement algorithm of NURBS shape functions is explained, as well as some important
choices on criteria used in the algorithm.

2.4.1 Hierarchical mesh refinement

A hierarchical approach for refining the mesh is employed, see [155] for details. The key
idea to hierarchical refinement is to replace some of the shape functions in the initial
basis by shape functions of the refined basis. The bases are constructed hierarchically,
which implies that multiple levels of basis functions exist, representing subsequent
levels of refinement of the underlying geometry. This is illustrated in one dimension in
Figure 2.6. In figure (a) the initial basis is shown and in figure (b) the refined basis.

Now we could mark elements for refinement, however, in hierarchical mesh refinement
this strategy is not always suitable [83]. It can occur that selecting an element for
refinement does not result in any refinement. For example, if the second element in
Figure 2.6a is selected, there are no shape functions in the initial basis nor the refined
basis that completely lie within this domain. Hence, no shape functions are replaced
and no refinement occurs. Therefore, it is more suitable to mark shape functions for
refinement rather than elements.

Suppose, for example, that shape functions 1 and 7 are selected for refinement, as
indicated by the dashed lines in Figure 2.6a. They are replaced by the shape functions
of the refined basis that completely lie within the same domain, as indicated by the
solid lines in Figure 2.6b. The resulting set of shape functions is shown in Figure 2.6c. It
should be noted that in the one-dimensional case the same effect could be obtained
by knot insertion. In the two-dimensional case the refinement remains local, this in
contrast to tensor product B-splines.

2.4.2 Refinement criteria

In order to determine in which area a finer mesh is required, i.e., which shape functions
must be refined, an error estimator is needed. In digital image correlation the accuracy
of the method is based on the residual Ψ(x0) = f (x0)− g (x0 +u(x0)). Therefore, we
propose to let the selection of shape functions be based on the following refinement
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Figure 2.6: The concept of hierarchical refinement. In the top figure an initial basis is shown
and in the middle figure a uniformly refined basis. The dashed basis functions in the initial
basis are replaced by the solid shape functions of the refined basis. In the lower figure the
result of this refinement step is shown. Element boundaries (knot locations) are indicated by
vertical black dashed lines.

indicator:

C j = 1

( fmax − fmi n)

δ f ,g l obal

δ f , j

∫
Ω j

|Ψ(x0)|φ j (x0)dx0∫
Ω j
φ j (x0)dx0

. (2.13)

In this expression j is the index of a shape function φ j and Ω j indicates its area of
support. The refinement indicator is based on the residual Ψ(x) and is scaled with
the shape function itself, in order to prevent shape functions with a larger support
always being favored for refinement and to scale the influence of the residual with
the value of the shape function. Furthermore, the indicator is scaled with the mean
intensity gradient δ f = 1

mn

∑m
i=1

∑n
k=1

√|∇ f (xi ,k )| of the entire image (δ f ,g l obal ) divided
by the mean intensity gradient of the area underneath the shape function (δ f , j ). This
diminishes the influence of contrast differences in different areas in the pattern. The
indicator is also normalized with the range of gray values ( fmax − fmi n). This makes the
indicator independent on the absolute gray values, which allows for a general criterion
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based on, for example, the noise level.

It is important that refinement does not take place if the residual due to correlation
mismatch is lower than the noise amplitude. The noise level heavily depends on the
measurement system used to capture the images, i.e., the camera, lighting conditions,
microscope lenses, etc. Therefore the value of the threshold should be determined for
every experimental data set separately. The noise level can be evaluated by correlating
two or more images with no deformation and determining the average residual with
respect to the gray value amplitude. Moreover, a safety factor should be included in
the threshold. This safety factor cannot be too low, in order to make sure the residual
is above noise level, but must not be too high, since aberrant features must not be
neglected. Based on extensive experimentation, a safety factor of 4 is recommended.
In this work, a noise level of about 1.5% was found for the images taken with the
measurement system used, and thus a normalized residual below 6% is assumed to be
acceptable, i.e. shape functions with C j > 0.06 are marked for refinement.

In order to optimize the selection procedure, a second criterion is taken into account.
Only shape functions with a refinement indicator C j larger than C̄ +1.5σ are refined,
with C̄ the mean of the indicators of all shape functions and σ the standard deviation.
This criterion makes the algorithm suitable for problems where no refinement is re-
quired. Moreover, this is useful in an experimental setting, where typically a sequence
of images is correlated. The first couple of images may embody merely homogeneous
deformation where no refinement is desirable. Refinement only takes place if both
criteria are met.

Finally, it might occur that the level of refinement causes elements to become smaller
than a few pixels. This has a negative influence on the conditioning of the problem
and increases the noise-sensitivity (see Section 2.3). In order to prevent this, the pat-
tern of image f is evaluated to determine the correlation length `c . The correlation
length is an in-plane length scale of the pattern and is defined as the length where the
autocorrelation peak of image f equals a certain threshold, here taken as 1

e , where e is
Euler’s number. Elements should contain at least several pattern features, therefore, a
threshold is placed at 10`c ×10`c pixels. If an element is smaller than this size, all shape
functions associated to this element are marked to have reached the highest level of
refinement and no further refinement is allowed.

2.5 Analysis of adaptive iso-GDIC

A virtual experiment is executed to give a proof of concept of the adaptive isogeometric
GDIC method. Moreover, the virtual experiment allows for comparison of the new
method to an isogeometric GDIC algorithm that does not utilize adaptive refinement,
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and a local DIC implementation. In this test-case an image of a speckle pattern on a
tensile bar from a real experiment is artificially deformed in order to obtain image g .

The displacement field u in x-direction again represents a tensile experiment with
strong localization of the displacement, approaching a step function with C −1 continu-
ity, and is given by equation 2.12. The final displacement is applied in four increments,
which are illustrated in Figure 2.7. The corresponding reference image f , intermediate
image g3 and final image g4 are shown in Figure 2.8.
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Figure 2.7: Evolution of the applied displacement as a function of the x-coordinate. The
displacement is applied in four increments, starting from a linear displacement, towards the
final arc-tangent field.

It is recognized that this type of displacement generally is challenging for global DIC
methods (except when shape functions are used that are able capture discontinu-
ities [110, 111]), while local DIC methods are better equipped for handling disconti-
nuities, since continuity of the solution is not imposed. The displacement is applied
in four increments, ranging from a linear displacement field to the final arc-tangent
displacement. All four reference displacement fields in x-direction, ur e f , are plotted
on the reference image f in Figure 2.9a. The displacement v in y-direction is zero
everywhere in the image domain and disregarded in the analysis.

In order to let the virtual experiment optimally resemble a real experiment, a specific
procedure for generating the synthetic images is followed, see Neggers [98]. Here the
virtual sample space, on which the artificial displacement field is defined, is larger than
the field of view, i.e. the final image size. Starting from an initial image, i.e. virtual
sample space, of 1300×1018 pixels, the size of the final image is chosen 650×509 pixels.

The isogeometric GDIC algorithm with adaptive refinement, as described in the previous
section, is applied to this problem. NURBS shape functions of the second-order are used.
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Figure 2.8: Evolution of the image and the mesh after applying the displacement. The
reference image f is shown along with intermediate image g3 and the final deformed image
g4. The evolved meshes are shown on top of the images.

In Figure 2.8 the evolution of the mesh is depicted. It can be seen that refinement indeed
takes place in the central area, where the large gradient in the applied displacement field
occurs. It is noted that the region of refinement is wide initially. This is due to the fact
that shape functions are refined rather than elements: the entire support of the shape
function, which consist of multiple elements, is refined. The calculated displacement
fields for all four increments are shown in Figure 2.9b.

In order to investigate the influence of adaptive refinement, the virtual experiment is
repeated without adaptive refinement. To be able to perform comparison as fair as
possible, the amount of degrees of freedom should be the same for both cases. For the
non-adaptive iso-GDIC method an uniform mesh of 10 by 9 elements is chosen and
second-order NURBS shape functions are used, which yields approximately the same
amount of DOFs as the adaptive iso-GDIC experiment after refinement (130 DOFs for
the refined problem vs. 132 DOFs for the non-adaptive DIC method). In Figure 2.9c the
resulting displacement field is shown.

The displacement field is also calculated using a local digital image correlation method
(using MathID software [95]), choosing optimized settings: subset size 21 pixels, step
size 7 pixels, SSD correlation coefficient, bicubic spline interpolation and affine shape
functions. The correlated displacement field is depicted in Figure 2.9d. It can be
observed that for the last two increments the displacement is not correlated in the
center region of the domain. This is because in local DIC only the displacement of the
subset centers is calculated and only small deformations of the subsets can be captured.
The variation in displacement is large in the center area of the domain and therefore
local DIC is not able to correlate the subsets located in this area. Note that the loss of
subsets in the central area has already been minimized by using an optimum subset
size and step size. Another problem that occurs in local DIC is loss of information at the
top and bottom edges of the domain, since subsets of which the center falls outside the
domain cannot be correlated.
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It should be stressed that finding optimal setting for local DIC to perform best is labori-
ous and requires experience. In the adaptive isogeometric GDIC algorithm important
choices are already made in the development of the method, which ensures accurate
results, without much expertise of the user needed.
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Figure 2.9: Displacement field applied in four increments, as seen in Figure 2.7, ranging from
a linear displacement field (first row) toward an arc-tangent displacement field (last row). The
reference displacement field is shown in the first column (a). The problem is solved using the
adaptive isogeometric GDIC method (b), a non-adaptive iso-GDIC algorithm (c) and a local
DIC method (d).

From Figure 2.9 it can be observed that in the first two increments all methods yield
approximately the same solution. In order to objectively compare the three methods,
the exact error in the displacement field is determined: ε= u −ur e f . In Figure 2.10 the
error fields are shown. In the first two increments the displacement field is quite homo-
geneous and it is observed that no large difference in the error field exists between the
three methods. In the third increment the local method starts to fail: the concentration



2.5 Analysis of adaptive iso-GDIC 29

of displacement is too large and subsets in the center region are not able to correlate.
This becomes even more apparent in the final increment, where the steep arc-tangent
displacement field is applied.
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Figure 2.10: Error fields for the four increments and different DIC methods. The error
is defined as the difference between the reference displacement field and the calculated
displacement field ε= u −ur e f and expressed in terms of pixels. The four rows correspond to
the four increments in applied displacement, ranging from a linear, homogeneous, displacement
field (top) to the final arc-tangent field (bottom). The first column (a) corresponds to the
adaptive iso-GDIC method, (b) to the non-adaptive isogeometric GDIC implementation and
the last column (c) to the local DIC method.

Furthermore in this increment a difference between the adaptive method and the non-
adaptive method is observed. The refined shape functions are better able to capture
the high gradient in displacement in the center of the domain than the non-adaptive
isogeometric shape functions, resulting in a smaller region where the error is high.
This indicates that the novel, adaptive method offers a more accurate solution than
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the non-adaptive method for this problem, while the number of DOFs and hence the
computational effort is similar for both methods. Moreover, the adaptive iso-GDIC
method performs well for the entire range of displacement fields. However, the real
strength of the novel method is that this solution was obtained without supplying
problem-specific information to the program beforehand: the area where a finer mesh
is required is determined autonomously.

2.6 Application in experimental setting

Real experiments are performed in order to investigate the performance of the adaptive
isogeometric GDIC method to practical problems. Uniaxial tensile tests are performed
in a microscopic setup.

2.6.1 Test setup and sample

The setup for the experiment consists of a tensile stage, a microscope, a camera and a
computer. The microscope used is a Carl Zeiss Discovery.V20 stereo microscope with a
Zeiss PlanApo S 1.5x FWD 30mm lens. The Zeiss AxioCam CCD camera is connected
to a computer. Images are recorded using AxioVision 4.7 software. The tensile stage
(Kammrath & Weiss tensile/compression module with a 500N load cell) is driven by a
controller to make sure a tensile speed of 5µm/s is maintained.

Two different test specimen are used. The first sample is a polycarbonate double
notched 1mm thick tensile specimen. The second sample has the same material and
geometry, however a hole is present. With this material and these geometries, strong
localizations of strain and displacement are expected, which makes them a good test-
case for demonstrating the adaptive refinement process. A random speckle pattern is
applied using spraypaint to make the samples suitable for the DIC analysis.

2.6.2 Results

Double notched tensile sample

The reference image f and the final image g , corresponding to the deformed specimen,
are shown in Figure 2.11. More images are recorded during the experiment and the
correlation procedure is done in several increments, using these intermediate images.
The adaptive isogeometric GDIC algorithm is executed, using second-order B-spline
shape functions. The resulting mesh refinement can also be seen in Figure 2.11.
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Figure 2.11: Images of the sample before and after deformation in a real experiment, as used
in the correlation process. The mesh before and after refinement is also shown.

The displacement u in x-direction and the displacement v in y-direction are shown in
Figure 2.12a on the initial image f . It can be seen that indeed localization takes place
in the center of the domain, as was expected from the geometry of the sample. In the
bottom image of Figure 2.12a it can be seen that the y-displacement is largest in the
cental area, at the bottom and top of the domain, indicating that necking occurs here.
This is also the region where refinement takes place.

The algorithm is also executed with a conventional GDIC implementation, using a mesh
of 14 by 9 evenly spaced elements and second-order B-spline shape functions, resulting
in the same number of DOFs as the final refined mesh as shown in Figure 2.11b. The
resulting displacement field components u and v are depicted in Figure 2.12b. Due to
the homogenous nature of the displacement field, the adaptive algorithm in this case
only provides marginally better results than the non-adaptive method, provided the
number of DOFs is equilibrated. When compared to the results using the initial mesh of
5 by 3 elements, a substantial improvement in accuracy if observed. This can be seen
in Figure 2.13, where the residual image Ψ(x0) is compared for the adaptive method
before and after refinement, using the meshes of figures 2.11a and 2.11b respectively.
The residual is indeed highest in the central area of the sample, where localization takes
place. After refinement this area is smaller than before refinement and also the residual
level is lower, indicating an improvement of the accuracy. In the next section we further
study the accuracy improvement of adaptive iso-GDIC compared to the initial mesh.

Correlation is repeated using a local DIC method (using MatchID software, subset size
35 pixels, step size 10 pixels, SSD correlation coefficient, bicubic spline interpolation
and irregular shape functions). Note, however, that settings for e.g. subset size and
interpolation scheme have again been optimized to yield the lowest loss of subsets
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as possible. The results are shown in Figure 2.12c. It can be seen that in the area
where localization takes place the local DIC method is not able to correlate all subsets.
This is because the variation in displacement within these subsets is too large and the
displacement of the subset center cannot be found.

This indicates that adaptive refinement is a useful tool in solving this type of problems.
But above all the solution was found automatically: the algorithm was not supplied
with specific foreknowledge about the problem, as usually is needed for a global digital
image correlation method to perform well in this type of problem.
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Figure 2.12: Calculated displacement fields u in x-direction (top row) and v in y-direction
(bottom row). The displacement is expressed in terms of pixels. The calculated fields are
shown for the adaptive method (a), the non-adaptive isogeometric GDIC method (b) and the
local DIC algorithm (c). Note that the y-coordinate and its associated v-displacement point
in the downward direction.

Double notched tensile sample with hole

The tensile sample before and after deformation can be seen in Figure 2.14. These
images, along with a number of intermediate images taken during the experiment, are
used in the correlation proces as reference image f and deformed image g . The mesh-
ing procedure is similar to that described in Section 2.2.3, however, some additional
steps are taken in order to make the mesh conforming the hole. Four elements and
their corresponding shape functions that are originally located in or near the hole, are



2.6 Application in experimental setting 33

(b) After refinement(a) Before refinement

0

50

-50

100

150

-100

-150
1000

800

600

400

200

0

0 400 800 1200

1000

800

600

400

200

0

0 400 800 1200

y
 [

p
x
]

x [px] x [px]

r

Figure 2.13: Residual image Ψ(x0) = f (x0)− g (x0 +u(x0)) for the adaptive iso-GDIC method
at the onset of localization before (a) and after refinement (b). The residual is expressed in
terms of gray values.

removed. Next the control points of the elements surrounding the hole are translated
to the edge of the hole, such that the mesh forms a fit around the hole. In order to
describe the hole accurately at least 20 elements around the hole are required, result-
ing in a quite fine initial mesh, see Figure 2.14a. This is a simple meshing procedure,
resulting in a parametrization that is C 1 continuous everywhere. Other, more complex,
parametrization techniques, including coupled NURBS patches, may also be used. As
was investigated in Section 2.3, the accuracy in a localized displacement field, which is
to be expected from this sample geometry, can be improved by using lower continuity
lines at the localization positions, which could be achieved by a multipatch approach
with C 0 coupling. However, in this study we want the algorithm to obtain the optimal
solution autonomously, without assuming localized behaviour in advance.

The correlation procedure is executed using adaptive refinement of second-order
NURBS shape functions. The adaptively refined mesh is shown in Figure 2.14b. It
can be seen that refinement takes place in the area where the largest deformation, i.e.,
localization, is expected; the least wide material regions.

The final calculated displacement fields u in x-direction and v in y-direction can be
seen in Figure 2.15a. From the deformed image it is observed that necking occurs in the
small regions around the hole. Indeed in the bottom image of Figure 2.15a, displacement
field v , this localization is visible: the displacement in y-direction is largest in this area.
Furthermore, a localization in x-displacement in the same area is recognized in the top
figure of 2.15a. Displacement in both directions combined indicates shearing.

The displacement fields u and v are also calculated using a non-adaptive iso-GDIC algo-
rithm. Second-order NURBS shape functions are used along with the initial mesh from
the adaptive refinement method, as shown in Figure 2.14a. The resulting displacement



34 2 On the use of adaptive refinement in isogeometric digital image correlation

400 800 1200

200

400

600

800

1000

x [px]

y
 [

p
x
]

0

0

(a) f

400 800 1200

200

400

600

800

1000

x [px]

y
 [

p
x
]

0

0

(b) g

Figure 2.14: Images of the sample before and after deformation, as used in the correlation
process. The mesh before and after refinement is also shown.

is shown in Figure 2.15b. It is observed that the displacement field is shows the same
global characteristics as the displacement field calculated with the DIC algorithm with
adaptive refinement. However, the refined shape functions are better able to capture
the localization in the necking area; comparing figures 2.15a and 2.15b the sudden
change in displacement is better visible in case adaptive refinement is used. This is
also observed when comparing the residual imagesΨ(x0) for the method before refine-
ment and after refinement, using the meshes of figures 2.14a and 2.14b respectively,
see Figure 2.16. It can be seen that the residual again is highest in the area where the
sample shows localization of the displacement field, i.e., the area above the hole. After
refinement, the residual is significantly lower in this area, indicating that the accuracy
of the calculation has increased.

Correlation of the images taken during the experiment is again repeated using an
optimized local DIC algorithm (MatchID, subset size 53 pixels, step size 10 pixels, SSD
correlation coefficient, bicubic spline interpolation and irregular shape functions). The
resulting displacement fields are shown in Figure 2.15c. It is observed that in the area
where localization takes place correlation fails. The variation in displacement is rather
large in this area and subsets located here fail to correlate.

This again shows the advantages of the adaptive iso-GDIC method: accurate results are
obtained, without the need of supplying problem specific information.
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Figure 2.15: Calculated displacement fields u in x-direction (top row) and v in y-direction
(bottom row). The displacement is expressed in terms of pixels. The calculated fields are
shown for the adaptive method (a), the non-adaptive isogeometric GDIC method (b) and the
local DIC algorithm (c).

2.7 Conclusions

A novel method was developed where isogeometric global digital image correlation was
combined with an adaptive refinement algorithm: adaptive iso-GDIC. The potential
advantage of this method is that it is flexible and can be used for a wide variety of DIC
problems. But perhaps even more important is that solutions are found autonomously,
which means that the user does not have to make problem specific choices for e.g. the
shape functions in global DIC or subset size in local DIC. The NURBS shape functions are
able to capture the kinematics of many displacement fields, depending on the structure
of the knot vector. In combination with adaptive refinement the shape functions are
autonomously adjusted to be able to describe the kinematics of the sought displacement
field with an optimized number of degrees of freedom.

A hierarchical mesh refinement algorithm is used in order to prevent inefficient refine-
ment, providing DOFs only where needed, which is beneficial for the conditioning of the
ill-posed DIC-problem. Iterating towards the optimum number of DOFs is incorporated
in the procedure of marking shape functions for refinement. Shape functions are merely
refined if the residual in its region of support is significantly higher than the average.
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Figure 2.16: Residual image Ψ(x0) = f (x0)− g (x0 +u(x0)) for the adaptive iso-GDIC method
before (a) and after refinement (b). The residual is expressed in terms of gray values. For
illustration an increment is chosen at the onset of localization, where localization still only
occurs in the least wide region of the sample, i.e., above the hole, and not yet in the bottom
region.

A virtual experiment shows that for a test-case with a strong localization of the displace-
ment, where refinement is desired, the new method yields good results compared to
more conventional DIC implementations, in particular a non-adaptive isogeometric
GDIC method and local DIC. Most importantly, this result is obtained autonomously.
The user does not need to supply the program with specific prior information about
the problem, as is required for the more conventional DIC method to obtain accurate
results.

Moreover, real experiments with a complex geometry are executed to demonstrate
that the novel method also performs well in practice. A notched tensile sample and a
specimen with a hole were chosen, which show a localized displacement field under
deformation. Mesh refinement also appears in the regions were localization is expected.

In all, it was shown that the isogeometric GDIC adaptive refinement algorithm has some
major advantages. The most important advantage is that the number of degrees of
freedom is optimized autonomously, which ensures accurate results, without much
problem specific input and thus expertise of the user needed. Furthermore, this type of
shape function is very flexible, which makes the method rather robust and applicable to
a wide range of DIC problems. Last it was shown in specific cases that the method pro-
vides better results than more conventional DIC methods, without adaptive refinement.
This indicates that adaptive iso-GDIC is a promising technique for accurately solving a
wide range of DIC problems.



Chapter 3
Adaptive isogeometric digital height

correlation: Application to stretchable
electronics

Abstract

A novel adaptive isogeometric digital height correlation (DHC) technique has been
developed in which the set of shape functions, needed for discretization of the ill-posed
DHC problem, is autonomously optimized for each specific set of profilometric height
images, without a priori knowledge of the kinematics of the experiment. To this end an
adaptive refinement scheme is implemented, which refines the shape functions in a
hierarchical manner. This technique ensures local refinement, only in the areas where
needed, which is beneficial for the noise robustness of the DHC problem. The main
advantage of the method is that it can be applied in experiments where the deformation
mechanisms are unknown in advance, thereby complicating the choice of suitable shape
functions. The method is applied to a virtual experiment in order to provide a proof of
concept. A second virtual experiment is executed with stretchable electronics intercon-
nects, which entail localized buckles upon deformation with complex kinematics. In
both cases accurate results were obtained, demonstrating the beneficial aspects of the
proposed method. Moreover, the techniques performance on profilometric images of a
real experiment with stretchable interconnects was demonstrated.

This work has been published:
Kleinendorst SM, Hoefnagels JPM, Fleerakkers RC, Maris MPFHL van, Cattarinuzzi E, Verhoosel CV, Geers
MGD. (2016) Adaptive isogeometric digital height correlation: application to stretchable electronics.
Strain, 52(4), 336-354. DOI: 10.1111/str.12189
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3.1 Introduction

Digital Image Correlation (DIC) is nowadays an almost indispensable technique in
experimental mechanics [106, 150]. Subsequent images of a test specimen taken dur-
ing an experiment are correlated to determine displacement fields. Initially, DIC was
developed to analyse in-plane, two-dimensional, displacements. Meanwhile, several
extensions of the method have been developed. The method has been extended to
3D by correlating images from two cameras in stereo to obtain the displacement of a
surface in three dimensions: Stereo-DIC [12, 91, 150]. Furthermore, the method has
been advanced to a fully 3D method: Digital Volume Correlation (DVC), where also the
internal kinematics of the sample is tracked, rather than solely the surface deforma-
tion [4, 140]. This is achieved by using for example X-ray tomography scans instead of
planar photographic images.

Another recent development concerns the correlation of profilometric images in order
to identify both in-plane and out-of-plane deformation fields: Digital Height Correlation
(DHC). In figure 3.1a-c, examples from literature are shown where this technique is
applied. In all three cases accurate results were obtained on the microscale. Han et al.
included mode-I crack displacement fields in the algorithm to describe the kinematics
of a propagating crack in a glass specimen [52]. Bergers et al. included the function
describing the shape of a single-clamped beam in the algorithm, which was required to
calculate the curvature of a bending microbeam with a resolution of ∼ 1.5·10−6µm−1 [9].
Neggers et al. used globally defined, continuously differentiable polynomial functions
to accurately capture the local strain and curvature fields of a bulging membrane under
pressure [99], which enables the measurement of the local plane strain and biaxial elastic
moduli within ∼ 2% accuracy. The results in these cases were convincing, however,
in all cases the discretization of the DHC problem (necessary because of the intrinsic
ill-posed nature of a DHC formulation) was adapted to the specific mechanics of the
considered experiment. However, in most mechanics problems it is not possible to
assess the kinematics of the unknown displacement field a priori, for instance in the
case of figure 3.1d, where a copper stretchable electronic interconnect delaminates
from the rubber substrate and buckles in specific local areas, which is an active field
of research [61, 137]. Therefore, a more generic DHC framework is called for, which
preferably autonomously adjusts to the kinematics, without using prior knowledge.

For the case of in-plane, two-dimensional DIC, a novel adaptive isogeometric global
digital image correlation (iso-GDIC) scheme was recently developed [75]. Isogeometric
shape functions for the discretization, both of the sample domain and the unknown
displacement field, were used, i.e., Non-Uniform Rational B-Splines (NURBS). It was
shown that this type of shape function is versatile and able to capture a wide range of
kinematics. This type of shape functions is used increasingly in a DIC setting, both
in 2D [29, 41, 75] and 3D (stereo-vision) [6, 39, 40]. NURBS have proven to be less
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sensitive to noise than Finite Elements (FE) [114]. Moreover, NURBS originate from
CAD-modelling and are able to describe many shapes exactly. In the case of stretchable
electronics this is of particular interest.

(a) (b)

(c) (d)

Figure 3.1: Examples of DHC on microscopic height profiles. Top left (a): a topographic
image, made with AFM, of a glass sample with a crack, where DHC is used to calculate the
three-dimensional displacement field. One component is shown here, from which the stress
intensity factors are determined. (Reproduced from [52]). Top right (b): the curvature of
a bending cantilever microbeam. (Courtesy of Bergers et al. [9]). Bottom left (c): a bulge
test, where DHC is used to calculate local strain and curvature fields of a bulged membrane.
(Courtesy of Neggers et al. [99]). Bottom right (d): a stretchable electronics interconnect,
which buckles as a results of deformation of the structure. (Reproduced from [89]).

In the three examples shown in figure 3.1a-c a rectangular mesh for the discretization of
the DIC problem sufficed for the purpose of the correlation procedure. Yet, to be able to
describe both the complex shape of the interconnects and the buckle pattern, which
occurs mainly at the edges of the interconnect, to accommodate the sample’s edges a
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more advanced mesh must be used. Furthermore, the continuity of NURBS functions
across the element edge is adjustable by inter alia choosing the polynomial order of
the shape functions. This is beneficial in the case where one, for example, is interested
in the calculation of the curvature field, which requires at least C 1 continuity. In [75],
the DIC algorithm was combined with an adaptive refinement procedure, in order to
autonomously optimize the shape functions. The number of degrees of freedom (DoFs)
thereby remains limited, which is beneficial for the noise robustness. Refinement is
executed locally, such that a finer discretization is only used in areas where this is
necessary for accurately capturing the kinematics of the unknown displacement field,
thereby compromising noise robustness [148], while retaining a coarser mesh in areas
where the kinematics allow for this, preserving noise robustness. Furthermore, problem-
specific choices on the discretization are not required in advance. In this paper, a
generic nearly autonomous DHC framework is developed, which requires adaptation of
the 2D adaptive iso-GDIC formulation toward quasi-3D: DHC. An advanced meshing
framework is thereby required, which is generic for a myriad of shape function types,
polynomial orders and mesh generating interfaces. In comparison to most global DIC
formulations, the proposed method is less user dependent, since the most important
choice, for the set of shape functions, is automated. The potential of the novel method
is demonstrated on both virtual and real experiments with interface delamination of
stretchable interconnects.

In the Methodology section, the methodology used is explained: first NURBS shape
functions are introduced, the discretization of the specimen shape is shown and also
the refinement procedure of the discretization is clarified. Furthermore, the DHC
algorithm is defined. In Section 3.3, the novel adaptive isogeometric global digital
height correlation (iso-DHC) technique is applied to two virtual experiments in order to
provide a proof of concept. Also noise is included in the analysis. The method is applied
to a real experiment with stretchable electronics in Section 3.4. Finally, conclusions are
drawn in Section 3.5.

3.2 Methodology

In this section, the methodology for Digital Height Correlation is detailed. First the
parametrization procedure for the sample geometry is clarified in Section 3.2.1. The
required shape functions are thereby introduced. These are also used for the DHC algo-
rithm, which is addressed in Section 3.2.2. Finally, the adaptive refinement procedure is
described in Section 3.2.3.
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3.2.1 Isogeometric shape functions and parametrizatiom

The shape functions that are used to parametrize and regularize both the sample geom-
etry and the unknown displacement field are NURBS; Non-Uniform Rational B-Splines.
This type of shape function originates from CAD (Computer Aided Design) modeling,
but is used increasingly in the computational analysis of mechanical problems: Isogeo-
metric Analysis (IGA) [64]. Both B-splines and their generalizatiom, NURBS, have been
used in digital image correlation methods [29, 75].

In this work, the CAD representation of the sample is used directly in the DIC analysis.
The procedure to generate the initial discretization is explained by using the commercial
CAD program Autodesk AutoCAD [2]. The geometry parametrization could also have
been retrieved from other CAD programs. An image of the undeformed sample, the
reference image, is loaded in AutoCAD to act as a reference for the creation of the mesh.
Thereafter, a NURBS surface is inserted with the desired order and number of degrees of
freedom in both directions. Associated with this surface are control vertices, or control
points, that can be translated to make the surface fit the sample geometry, utilizing the
inserted background image. The geometry parametrization is described by

x(ξ) =∑
i

Ni (ξ)p
i
, (3.1)

where Ni (ξ) are the two-dimensional NURBS shape functions defined on parametric
coordinates ξ; p

i
are the control points and x(ξ) represents the mapping of the created

surface, or mesh, to the physical domain. Since the DHC algorithm concerns images
that are defined on a regular grid of pixels, it is necessary to evaluate the shape functions
at the pixel locations, instead of the local element grid resulting from equation 3.1. This
can either be done by interpolation, or, faster, by a nearest neighbours search algorithm,
which couples the shape function value of the nearest local coordinate to the pixel
coordinate. A choice for the second option is made because the loss of accuracy was
found to be negligible for a fine local element grid, while still keeping a considerable
gain in speed. This mapping procedure is illustrated in Figure 3.2.

The fundamental building block of a NURBS surface is the univariate B-Spline [64],
which is a piecewise polynomial function of order p that is defined over a knot vector
Ξ= {ξ1,ξ2, ...,ξk }, where each knot determines an element boundary in the domain.
For NURBS these knots are not necessarily uniformly distributed. Also each knot can
occur more than once; the continuity of the shape functions across an element border
(knot location) is controlled by the multiplicity m of the knot: C p−m . The number of
shape functions (and hence number of degrees of freedom, DoFs) is determined by the
number of knots k and the polynomial order.
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Figure 3.2: Illustration of the mapping procedure of the NURBS mesh from parametric
coordinates ξ (left) to the global coordinates x (center), using equation 3.1. The control
points p

i
are indicated by the red dots. After this mapping the shape functions are known at

a local element grid of coordinates xe (ξ), as indicated in black in the zoom of an element in
the right image. For the DHC algorithm it is required that the shape functions are evaluated
at the pixel locations, indicated by the blue grid in the same image. Therefore a nearest
neighbour search algorithm is employed, which for each pixel center inside an element (blue
dots) finds the nearest element grid point (green dots) and assigns the value of the shape
function at this point to the pixel. Note that for illustration purpose the pixel grid and element
grid are depicted coarse. In reality the element grid is significantly finer than the pixel grid,
such that the loss of accuracy of the nearest neighbour mapping method is negligible.

In the isogeometric GDIC approach it is necessary to reconstruct the CAD shape func-
tions and geometry in the DIC code. Here, this information is obtained by extracting
the required data from the AutoCAD file (Drawing Exchange Format): i) the chosen
polynomial order of the NURBS surface; ii) the unique knot values in both directions
and their corresponding multiplicities; iii) the control points and, possibly, their weights.
Using the knot information, the Bézier extraction procedure [19] is applied to compute
the element extraction operators C e . With these operators the spline basis functions

on an element can be constructed as a linear combination of a canonical set of shape
functions, in this case the Bernstein polynomials B :

N e = C e B (3.2a)

N e
i = C e

i j B j . (3.2b)

This proces is illustrated in figure 3.4. The reader is referred to [19] for details on the ex-
traction procedure. The resulting shape function Ni (x) is composed of the contributions
from all elements:

Ni (x) =
m

A
e=1

N e
i (x). (3.3)
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Some of the resulting shape functions for second-order NURBS are plotted in figure 3.3.

x [px]

y
 [
p
x
]

100 300 500 700

100

200

300

400

500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x [px]

y
 [
p
x
]

100 300 500 700

100

200

300

400

500

N

(b)

0

0.1

0.2

0.3

0.4

x [px]

y
 [
p
x
]

100 300 500 700

100

200

300

400

500

N

(c)

Figure 3.3: Discretization of a stretchable electronics interconnect. The mesh is plotted on
top of the profilometric image, where the grayscale intensity levels indicate height values. An
example of a corner (a), edge (b) and central (c) shape function are plotted with the mesh,
for the case of 2nd order NURBS.

It is emphasized that this extraction is not restricted to B-splines or NURBS, but can also
be used to construct e.g., T-Splines [129]. From the perspective of the DIC algorithm,
this extraction process provides a unified interface for the implementation of a variety
of spline technologies from different CAD interfaces.

The shape functions are not only important for the parametrization of the sample
geometry, but are also important for the discretization of the DHC problem, as will be
shown in the next section.
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Figure 3.4: Graphic representation of the Bézier extraction process. Left: the second-order
Bézier functions B of a parent element (with coordinate ξ̂) are shown. After multiplication with
extraction operators C e the shape functions N e on an element e (with parametric coordinate
ξ) are obtained (right). Note that the extraction proces also involves a mapping from parent
coordinate ξ̂ to local, parametric coordinate ξ.



44 3 Adaptive isogeometric digital height correlation: Application to stretchable electronics

3.2.2 Digital height correlation algorithm

The shape functions are not only used for the parametrization of the specimen geometry,
but also for regularizing the displacement field, U (x), in DIC, i.e., in the correlation of
the images of a deforming test specimen. The first image, f , is generally a representation
of the undeformed, reference state of the specimen, while the subsequent images g
represent deformed versions of the test sample.

In regular, two-dimensional DIC the images are characterized by the gray-scale intensi-
ties measured at the pixel locations, and the corresponding brightness at the material
points is assumed to remain constant upon deformation of the underlying material, i.e.
brightness conservation holds:

f (x)− g ◦Φ(x) = r (x) ≈ 0, (3.4)

Φ(x) = x +U x y (x), (3.5)

where r (x) is the residual image, which is zero in the absence of noise and Φ(x) is a
vector function which maps the reference coordinate x to the deformed coordinate.
Note that throughout this article the same notation is followed as in Ref. [103], i.e.
the coordinate x refers to the (Lagrangian) reference coordinates, while the deformed
coordinates are consistently expressed using the mapping functionΦ(x). The residual
is minimized to achieve optimal correlation, thereby obtaining the two-dimensional,
in-plane displacement field U x y (x), see e.g. [11, 75].

For those cases where the out-of-plane deformation field W (x) is also desired, the DIC
algorithm can be extended to Digital Height Correlation (DHC) [99]. In that case, the
images are not defined by the gray-scale intensities, but each pixel contains a quantita-
tive measurement of the height of the surface, obtained with e.g., optical profilometry,
atomic force microscopy, or scanning tunneling microscopy. The conservation relation
therefore transforms to surface height conservation, i.e.:

f (x)− (g ◦Φ(x)+W (x)) = r (x) ≈ 0, (3.6)

Φ(x) = x +U x y (x), (3.7)

where U x y (x) is now the in-plane component of the total, three-dimensional displace-
ment field U (x) =U (x)ex +V (x)e y +W (x)ez , which is a function of the two-dimensional
position vector x = xex + ye y .

Identifying the displacement field that will satisfy equation (3.6) is an ill-posed problem,
which deteriorates through the inevitably present additional noise field. Therefore, DIC
methods approximate the true displacement field with a field represented by a finite
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and limited set of unknowns,

U (x) ≈ u(x,a), (3.8)

and Φ(x) ≈φ(x,a), (3.9)

where a is a column of degrees of freedom (DoFs), i.e. a = [a1, a2, . . . , a3n]T , with n
DoFs for each of the three components of the displacement field U (x). Applying more
pixels per DoF allows for attenuation of acquisition noise (e.g. [57]), provided that the
discretized displacement field can adequately describe the true displacement field.

As is commonly done in DIC, the displacement field is approximated as a linear summa-
tion of DIC basis functions, ϕ

i
(x):

u(x,a) =
3n∑

i=1
aiϕi

(x). (3.10)

Note, however, that these basis functions are three-dimensional vector-valued fields. For
this purpose, the same NURBS shape functions, N j (x), that are used for parametrization
of the sample geometry, see Section 3.2.1, are implemented. Note that the NURBS
functions are two-dimensional, scalar-valued functions and each NURBS function
is used three times to describe the three components of the displacement field with
independent DoFs:

ϕ
i= j

= N j (x) ex +0 e y +0 ez for j = 1, ...,n, (3.11a)

ϕ
i=n+ j

= 0 ex +N j (x) e y +0 ez for j = 1, ...,n, (3.11b)

ϕ
i=2n+ j

= 0 ex +0 e y +N j (x) ez for j = 1, ...,n. (3.11c)

Similar to regular 2D-DIC, a cost function Ψ(a) is defined as the L2(Ω) norm of the
residual

Ψ(a) = 1�2

∫
Ω

r (x,a)2 dΩ= 1�2

∫
Ω

[
f (x)− (g ◦φ(x,a)+w(x,a))

]2
dΩ, (3.12)

and a minimization problem is formulated to solve for the DoFs and thus the optimal
approximate solution to the displacement field:

uopt(x) = u(x,aopt) with aopt = Argmin
a

{Ψ(a)} . (3.13)

The conventional derivation of the DIC solution scheme to determine the DoFs a
in Eq. 3.13 involves, first, linearization of the conservation equation, followed by an
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iterative optimization algorithm (usually Gauss-Newton), resulting in a two-step lin-
earization with a number of implicit assumptions. This two-step linearized system of
equations is then iteratively solved to retrieve the optimal unknowns aopt. In Ref. [103],
however, it was demonstrated that the non-linear conservation equation can be mini-
mized in a consistent mathematical setting, yielding a one-step linearization, thereby
highlighting the implicit assumptions made. Here the same one-step linearization is
followed, resulting in a system of equations that is iteratively solved for the unknowns a:

M ·δa=b (3.14)

where δa is the iterative update of the DoFs. As argued in Ref. [103], the tangent operator
M contains three terms, of which the second term is zero because the adopted basis is
here linearly independent, while the third term is neglected as it contains the second
gradient of the image making it highly sensitive to measurement noise. In that case,
only one tangent operator term remains:

∀(i , j ) ∈ [1,n]2, Mi j =
∫
Ω

[
(ϕ

i
·G) (G ·ϕ

j
)
]

dx, (3.15a)

whereby the right-hand member of Eq. 3.14 is given by

∀i ∈ [1,n], bi =−
∫
Ω

[
(ϕ

i
·G)r (x,a)

]
dx. (3.16)

Here, G is the true image gradient, i.e. the gradient of the image g evaluated at the
deformed coordinates:

G = grad(g )◦φ−ez =
∂g

∂x

∣∣∣
φ(x)

ex +
∂g

∂y

∣∣∣
φ(x)

e y −ez . (3.17)

The term in the z-direction is added for DHC, to correctly deal with the out-of-plane
displacements. As detailed in Ref. [103], using the deformation gradient tensor F , the

true gradient can be related to the gradient of the back-transformed image, g̃ (x) =
g ◦φ(x,a)+w(x,a):

grad(g )◦φ= grad(g̃ ) ·F−T . (3.18)

Therefore, to simplify the true gradient to the one typically found in literature, first,
small deformations are assumed, i.e. F T ≡ I . Second, grad(g̃ ) is replaced with grad( f ),

which has been justified in the literature because g̃ is updated at each iteration and
converges towards f (see e.g. [113]),

G(x,a) ≈ grad( f )−ez =
∂ f

∂x

∣∣∣
x
ex +

∂ f

∂y

∣∣∣
x
e y −ez . (3.19)
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For the present case, this simplification to grad( f ) was found to have a negligible ef-
fect on the accuracy, in agreement with the guide lines given in Ref. [103]. Therefore,
grad( f ) was implemented to reduce computational costs, however, extension to the
true gradient is trivial. In order to determine r (x,a) in Eq. 3.16, the surface height values
in the deformed image g (x) need to be determined at the deformed planar positions
φ(x,a) = x +ux y (x,a), which requires interpolation. Interpolation is a source of error
and to minimize its impact a cubic spline interpolation scheme is here implemented, as
suggested by Schreier et al. [127].

3.2.3 Adaptive refinement

In order to be able to accurately describe the kinematics of the displacement field,
the regularized displacement field u(x,a) should be sufficiently rich, i.e., should have
enough degrees of freedom. However, if too many DoFs are used, the solution becomes
highly sensitive to noise [41, 112]. It is therefore important that the number of degrees
of freedom is balanced. In certain cases, where the kinematics of the problem is known
in advance it is possible to make a good estimation on the number and distribution
of DoFs (i.e., the configuration of the mesh) to obtain accurate results, e.g., in the
examples shown in Figures 3.1a-c. However, in some cases, including the experiments
with stretchable interconnects considered in this work, shown in Figure 3.1d, it is
more difficult to asses the kinematics in advance. Furthermore, displacement fields
might be rather complex and exhibit localized features, which calls for a more detailed
regularization in specific areas.

With an adaptive refinement algorithm the mesh can be optimized autonomously.
This can be achieved by either p-refinement, where the polynomial order of the shape
functions is elevated in designated elements of the mesh [157], or by h-refinement,
where the elements themselves are refined [75], or isogeometric k-refinement [64]. Both
h-refinement and p-refinement can be done in an adaptive fashion, where the algorithm
autonomously determines in which area refinement is required based on the error or
residual r (x) in that area. In that way the solution is not dependent on user experience.
Furthermore, both methods can be implemented efficiently, since only the refined
shape functions have to be added in case of p-refinement, or substituted in case of
h-refinement, in the column ϕ(x) that contains all shape functions. Hence, there is
no need to rebuild the entire set of shape functions. Which type of refinement is used
is a matter of taste. Nonetheless, in the case of the three-dimensional deformation of
structures, including buckles and delamination, the curvature of the material may be of
interest, which requires second-order derivatives of the displacement field. Therefore
at least C 1 continuity across element borders is required. Since for NURBS shape
functions continuity across element borders is C p−m , with p the polynomial order
and m the multiplicity of knots at the element border, C 1 continuity can be achieved
by using second-order B-splines with multiplicity 1. With p-refinement-based finite
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elements only C 0 continuity can be achieved, which is the reason why in this work it
was decided to employ isogeometric analysis. In combination with h-refinement this
allows for the refinement of the computational grid, while preserving the necessary
continuity properties.

The approach adopted in this paper is a hierarchical refinement [83, 155] scheme,
identical to the technique used in [75]. In this method multiple bases of shape functions
are defined, which represent subsequent levels of uniform refinement. If refinement of
a certain shape function is desired, this shape function is replaced by shape functions
from the underlying basis that lie in the same support area. The result of this concept
is that refinement occurs in a local fashion, in contrast to knot insertion, where the
tensor product structure induces refinement of an entire row and an entire column of
elements. The idea of hierarchical refinement is depicted in figure 3.5.
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Figure 3.5: A graphical representation of the hierarchical refinement proces: In the left
figure the initial mesh is depicted, plotted on top of the undeformed image of the stretchable
interconnect. One of the shape functions is shown and the maxima of all shape functions
are indicated by blue dots. For this example, only the depicted shape function is selected
for refinement and the resulting refined mesh is shown in the middle figure. Note that all
elements that form the support of the initial shape function, i.e., the top two by two elements
in the left figure, are refined. Again one shape function is shown and the maxima of all shape
functions are indicated by blue dots. The refinement proces is repeated for the shape function
of the middle figure and the result is shown in the right figure.

Refinement indicator

The selection of shape functions for refinement is based on the residual r (x), since the
residual is also used as an error estimator in the DHC procedure itself. The residual
gives full-field information, which makes is possible to distinguish between areas where
correlation of the deformed image to the reference image is successful and areas where
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it is not possible to approximate the displacement field accurately. For each shape
function an averaged value of the residual in the area of its support is calculated and
weighted:

C j = 1

( fmax − fmi n)

δ f ,g l obal

δ f , j

∫
Ω j

|r (x)|N j (x)dx∫
Ω j

N j (x)dx
. (3.20)

First, the residual is weighted with the shape function N j itself, in order to couple
the residual in a certain area to the shape function with the largest influence in that
area, i.e., a larger value. Furthermore, this scaling assists in preventing larger shape
functions always being favored for refinement at the expense of basis functions with
a smaller support area. Additionally scaling with the mean intensity gradient δ f =

1
mn

∑m
i=1

∑n
k=1

√
|∇ f (xi ,k )|, which is a measure for contrast, is applied. This is because

the residual is not only influenced by non-exact correlation, but also by changes in the
contrast in the pattern of the sample. Imagine two neighbouring pixels with a different
value (either grey scale intensity or height). Now correlation is slightly inaccurate and
the value of one pixel is assigned to the other pixel in the back-transformed image g̃ .
Since the residual is defined as the difference between the original value of this pixel
and the value in the back-transformed image, the residual will be larger if the difference
in value between the two neighbouring pixels is larger, i.e., if the contrast in that area
is larger. To compensate for this the refinement indicator C j is scaled with the relative
mean intensity gradient δ f ,g l obal /δ f , j , where δ f , j represents the contrast in the area of
support of shape function j and δ f ,g l obal in the entire region of interest. Finally, scaling
with the range of pixel values f , here the range of height values, is implemented. This
makes it possible to base the refinement criterium on the level of acquisition noise of
the images.

A shape function is selected for refinement if the refinement indicator exceeds a certain
threshold: C j > T , see Figure 3.6. This threshold is set to T = max

(
C̄ +σ,Tnl

)
, where C̄

is the average of the refinement indicator C j of all shape functions and σ is the standard
deviation. This threshold ensures that only shape functions are refined for which this
is necessary, i.e., for which the refinement indicator is significantly large with respect
to the other shape functions. If the differences in refinement indicator between the
shape functions are too small, e.g., when the displacement field is homogeneous and
no refinement is required, this threshold assures that no shape functions are selected
for refinement. The value Tnl is an absolute threshold which corresponds to the noise
level of the images, which has to be determined for each set of experimental images
separately, such that refinement is not triggered by artifacts caused by image noise. This
choice for the threshold is in correspondence to Ref. [75].

Since the correlation becomes highly sensitive to noise if the number of degrees of
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Figure 3.6: The refinement indicator C j plotted for each shape function j (left). The position
(top) of each shape function is shown in the right figure. The red line in the left image
represents the threshold T = max

(
C̄ +σ,Tnl

)
. All shape functions above this threshold are

selected for refinement, as indicated by the red circle. In this case, this concerns only one shape
function, namely shape function nr. 6, which corresponds to the refinement step between
Figure 3.5(a) and 3.5(b).

freedom becomes too large compared to the number of pixels, a minimum is set for
the number of pixels within an element. This threshold is based on the correlation
length, `c , which is a measure for the in-plane length scale of the pattern, i.e., the
average size of the pattern features. At least several pattern features should be present
inside an element, otherwise noise is dominant for correlation. Therefore the minimum
element size is set to 10`c ×10`c , corresponding to Ref. [75]. The correlation length is
determined automatically for each experiment. If an element becomes smaller than
this threshold, the shape functions corresponding to this element are excluded from
further refinement.

The mathematical formulation allows to use a different set of shape functions for each
direction and thus only refine the shape functions for one direction, e.g., only for
displacement in the height direction. Especially in this particular example of buckling
of a stretchable electronics interconnect a different set of shape functions in the out-
of-plane direction and refinement of only this set would make sense, considering the
more complex nature of the out-of-plane deformation with respect to the in-plane
deformation. However, this buckling case is a specific example and implementation
of a scheme that relies on the known kinematics of the particular problem (by either
choosing a different set of shape functions for one direction or refining only in this
direction or applying both) would imply a loss of generality. Furthermore, the residual
field is a result of the correlation of the displacement fields in all directions and hence it
is not possible to distinguish between the accuracy of the correlation in the different
directions. Therefore, the refinement is carried out in the shape functions in all three
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directions and thus the same set of shape functions is used for both x, y and z direction.

3.3 Demonstration: Virtual experiment

The developed adaptive isogeometric digital height correlation algorithm is applied
in a virtual setting in order to demonstrate the method. First, a proof of concept is
given with a virtual displacement field that represents a localized buckle pattern. Here
a rectangular mesh is used. It is demonstrated that the developed adaptive iso-DHC
method is easily used for different orders of the NURBS shape functions. Also the
influence of noise is investigated. In the subsequent example a more complex geometry
is used: a stretchable electronics interconnect, which requires the advanced meshing
framework introduced in Section 3.2.1.

3.3.1 Localized buckles

In this experiment a virtual height profile is analytically deformed. The height profile is
in this case generated analytically and contains both coarse and fine in-plane features,
making it suitable for DHC analysis [100]. The applied out-of-plane displacement field
represents a localized buckling pattern, with two sinusoidal peaks of different size,
of which one is pointing upwards and the other pointing downwards, see figure 3.9a.
The in-plane displacement is zero in both x and y direction in the entire domain and
therefore not discussed in the results. In the next example a virtual experiment will be
shown where also the in-plane displacement is taken into account. The out-of-plane
displacement is applied in four increments in which the amplitude of the sinusoidal
peaks increases from 1 to 4 micrometer. The reference image f , the final image g4 and
intermediate images g1 and g2 are shown in figure 3.7. The developed DHC method is
applied, using second-order (p = 2) NURBS shape functions. The nearly autonomous
refinement algorithm adaptively refines the mesh in de areas where refinement is
required. The resulting meshes are also shown in figure 3.7.

Since refinement is based on the residual field, it is interesting to analyse these fields.
In figure 3.8, the residuals are shown for each refinement step, corresponding to the
meshes shown in figure 3.7. In the first figure it is observed that the residual is high
in the area where the peaks occur, this means that the original set of shape functions,
with the mesh of figure 3.7a, is not able to capture the kinematics of these out-of-plane
displacement peaks. The shape functions which span the region where the residual is
high are refined and the residual decreases, see figure 3.8b. After the last refinement step
the residual has decreased to almost zero (figure 3.8d) in the entire region, indicating
that the new set of shape functions is successful in describing the displacement field.
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Figure 3.7: Evolution of the profilometric image and the mesh upon deformation. The
reference image f (a) is shown with the initial mesh. Intermediate images g1 and g2 are
shown in (b) and (c) and the final deformed image can be seen in figure (d). The evolved
meshes are shown on top of the images. It is observed that the mesh refines in the areas
where the sinusoidal peaks occur.

The resulting calculated displacement field is shown next to the analytical displacement
field in figure 3.9b. In case of a virtual experiment it is possible to determine the exact
error in the calculated displacement field, which is the difference between the exact
and calculated displacement fields: εw = wr e f (x)−w(x). The error field is displayed in
figure 3.11b. In the error field small ’wiggles’ appear, that are characteristic for polyno-
mial shape functions. However, looking at the values of the error field, compared to the
amplitude of the sinusoidal peaks, the error is reasonably small. The method is therefore
able to calculate sufficiently accurate results due to the autonomous refinements.

The adaptive iso-DHC method can readily be used with other polynomials orders of
the NURBS shape functions. In the meshing procedure the polynomial order is an
input setting in AutoCAD, which can be set to the desired order. In the DHC algorithm,
the Bézier functions for different orders need to be implemented in order to use them.
In this example we repeat correlation of the above virtual experiment with first and
third-order shape functions. The same initial mesh (Figure 3.7a) is used. Note that the
number of DoFs is not the same for the three cases, since a set of higher order shape
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Figure 3.8: Residual fields after each refinement step, using the corresponding meshes in
figure 3.7. In this example all refinement steps occur during correlation of image g1 with
image f , where the buckle height equals 1 micrometer. This corresponds to the amplitude of
the peaks in the first residual field. It can be seen that the residual decreases significantly and
reduces to almost zero after the last mesh refinement. Root Mean Square (RMS) values are
also reported beneath the figures.

functions consists of more functions than a lower order basis. The refined meshes for
the first and third-order NURBS are shown in figure 3.10. As can be seen, the refinement
for the first-order shape functions remains more local than the second-order, while the
third-order shape functions refine in a less local fashion. This is because NURBS shape
functions overlap multiple elements, depending on their order. A first-order NURBS
(not at the edge of the domain) covers two by two elements, while a third-order NURBS
occupies four by four elements. As explained in Section 3.2.3 the entire support of the
selected shape functions is refined, resulting in less local refinement for higher order
shape functions. The resulting decrease in residual corresponding to the refined meshes
of figure 3.10 is similar to that of the second-order shape functions, shown in figure 3.8,
and therefore not shown.

The error fields resulting from the calculation of the displacement field with the adaptive
iso-DHC method with first and third-order NURBS are plotted in Figure 3.11a and 3.11c.
Especially for the third-order shape functions the characteristic ’wiggles’ are again
recovered, however, they now spread out over a larger region, originating from the larger
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Figure 3.9: Reference (a) and calculated (b) out-of-plane displacement field w(x) after the
final iteration.
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Figure 3.10: Refined meshes for first (left) and third (right) order NURBS, plotted on top of
the undeformed image f .

support of the higher order functions. The level of the error is similar to the error of
the second-order shape functions. The error field for the first-order shape functions
exhibits more local features due to the more local nature of the lower order shape
functions, however its features have a significantly higher amplitude, indicating that
despite refinement these shape functions are not able to describe the displacement
field as accurately as the higher order shape functions.

In this work we demonstrate the method on stretchable interconnects, which have
a slender geometry, thereby limiting the number of elements in the width direction.
Therefore, the refinement proces should be local. First-order shape functions were
found to refine locally, but are not optimally suited for capturing the kinematics of
localized buckling, while also providing only C 0 continuity on the element bound-
aries. Third-order shape functions were found to be less local. Therefore, second-order
shape functions form an adequate compromise, with the preferred element boundary
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Figure 3.11: Error fields for the correlation of the virtual experiment, using first (a), second
(b) and third (c) order NURBS shape functions. Notice that the RMS value of the error for
the 1st order NURBS (0.04496 µm) is much larger than for the 2nd (0.01670 µm) and 3r d

order (0.01653 µm) NURBS.

continuity of C 1. They will be used for the remainder of the paper.

Noise analysis

The virtual experiment is repeated with shape functions of the second order for a case
where noise is present. From real experimental data the noise level is determined by
subtracting multiple images taken subsequently, with no deformation, and calculating
the RMS value of the residual. The noise level is assessed at about 1.5%. A safety factor of
2 is administered and random noise of 3% of the height level range is artificially applied
to the images f and g . The same algorithm is applied, starting from the initial mesh
that is shown in Figure 3.7a, and the resulting mesh refinement and residual field after
refinement are shown in Figure 3.12. From this image and the corresponding Root Mean
Square (RMS) value it is observed that the residual decreases to about the level of the
noise (which has an RMS value of 0.0964 µm), indicating that an optimal correlation
has been obtained. The refined mesh is essentially the same as the case where no noise
is present. The calculated displacement field and corresponding error field, including
the RMS value, are similar to Figures 3.9b and 3.11b respectively, and hence are not
displayed here. The results illustrate the noise robustness of the proposed method.
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Figure 3.12: The refined mesh (a) and corresponding residual field (b) of the virtual experiment,
for the case where a worst-case 3% noise level is present. Note that the color scale of the
residual field is much smaller than in Figure 3.8.

3.3.2 Stretchable interconnect

Although the first virtual experiment provides a proof of concept for the adaptive iso-
DHC algorithm, a more complex sample geometry and mesh are considered next. The
method is applied to a virtual experiment on a stretchable interconnect (SI). To this end,
a real height profile (Figure 3.13a) from a stretchable electronics structure, measured
using a Sensofar PLµ2300 confocal optical profilometer, is analytically deformed. The
applied displacement field again represents localized buckles, as depicted in figure 3.1d.
The buckles are represented by two sinusoidal peaks that are cut off at the edge of the SI
geometry. In this experiment also in-plane deformation is considered, namely uniaxial
stretching in x-direction and rigid body translation in y-direction. Like for the previous
case, the final displacement field is applied in four increments, for which the resulting
images in step 2 and 4 are shown in Figure 3.13b and 3.13c.

The initial mesh is built with AutoDesk AutoCAD, as described in Section 3.2.1. In this
case 6×2 elements is the minimum to accurately describe the sample’s contour, see
Figure 3.13a. The DHC algorithm is solved and the mesh refines in the regions around
the peaks, see Figures 3.13b and 3.13c.

From the residual images, shown in Figure 3.14, it is observed that with the initial mesh
it is not possible to accurately capture the kinematics of the buckles, therefore, the
residual is high in the area surrounding the buckles. After refining the mesh, the residual
decreases. Note that the residual does not decrease to the low level achieved in the
virtual experiment of the previous section. This is due to the limited amount of pixels,
only 768×558 used here compared to the image with a more common size of 1200×1000
pixels of the previous experiment. To more accurately describe the displacement field
with localized buckles the mesh should presumably be refined one more step. However,
this is not allowed, since the number of pixels in an element would become too small
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Figure 3.13: The reference image f (left) is shown along with deformed images g2 (middle)
and g4 (right). The initial mesh and refined meshes are plotted on top.

and the problem becomes more sensitive to noise. Therefore, this result is the best that
can be obtained with this image.
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Figure 3.14: The residual images are shown after correlation using the corresponding meshes
from figure 3.13. It can be seen that the buckles cannot be described accurately with the
initial mesh, resulting in a high residual in this area. After refinement in this region the residual
decreases significantly. The RMS values are reported below the figures.

A quantitative measure for the accuracy of the method is shown in figure 3.15. The
applied displacement fields u(x), v(x) and w(x), or reference fields, are shown in fig-
ure 3.15a and the same fields calculated with the DHC algorithm are depicted in fig-
ure 3.15b. Since this is a virtual experiment we are able to calculate the exact error field,
which is the difference between the reference and calculated field. This error field is
shown for all three directions in figure 3.15c. It is observed that the displacement fields
for both the in-plane directions x and y and the out-of-plane direction z are captured
well. They are calculated rather accurately, although the error is larger than in the
previous test case. However, this is partly due to the lower amount of pixels in the image,
which can be optimized by using a profilometer with a high-resolution camera. The
novel method, with a complex mesh that was constructed using the proposed mesh-
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ing procedure, is adequately able to autonomously determine the degrees of freedom
that optimally describe the localized displacement field with a representative buckling
profile.

100 200 300 400 500 600 700

100

200

300

400

500

x [px]

y
 [
p
x
]

100 200 300 400 500 600 700

100

200

300

400

500

100 200 300 400 500 600 700

100

200

300

400

500

100 200 300 400 500 600 700

100

200

300

400

500

100 200 300 400 500 600 700

100

200

300

400

500

100 200 300 400 500 600 700

100

200

300

400

500

(a) reference                                            (b) calculated                                         (c) error field

100 200 300 400 500 600 700

100

200

300

400

500

100 200 300 400 500 600 700

100

200

300

400

500

−10

−8

−6

−4

−2

0

2

4

6

8

10

100 200 300 400 500 600 700

100

200

300

400

500

u
(x

) 
[p

x
]

v
(x

) 
[p

x
]

w
(x

) 
[µ

m
]

−10

−8

−6

−4

−2

0

2

4

6

8

10

−4

−3

−2

−1

0

1

2

3

4

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x [px]

y
 [
p
x
]

x [px]

y
 [
p
x
]

x [px]

y
 [
p
x
]

x [px]

y
 [
p
x
]

x [px]

y
 [
p
x
]

x [px]

y
 [
p
x
]

x [px]

y
 [
p
x
]

x [px]

y
 [
p
x
]

Figure 3.15: Reference (a) and calculated (b) in-plane displacement fields u(x) (top) and
v(x) (middle) and out-of-plane displacement field w(x) (bottom) after the final iteration. In
figure (c) the error, i.e., the difference between the reference and the calculated displacement
field, is depicted. The RMS values of the error in u(x) and v(x) are 0.070 pixels (0.0077 µm)
and 0.105 pixels (0.0116 µm) respectively and 0.060 µm for the error in the out-of-plane
displacement.

3.4 Experiment: Application to stretchable electronics

A real experiment concerning a stretchable electronics interconnect is executed in
order to demonstrate the adaptive isogeometric DHC method’s performance in a real
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situation. If the interconnect is stretched, it buckles in certain regions. The objective of
this experiment is to calculate the displacement field describing these buckles as well as
the in-plane displacements, with an autonomously optimized set of shape functions.

3.4.1 Specimen and test setup

The specimen used for this experiment is a stretchable electronics interconnect con-
sisting of a 10µm thick polyimide substrate with a 1µm thick aluminum meander. This
S-shaped aluminum interconnect structure has width 20µm, inner radius 20µm and a
40µm rectilinear segment between the curvilinear sections, see Figure 3.16. For DHC a
certain contrast in height values on the sample, or pattern, is required. For this purpose
an Indium-Tin (In-Sn) layer is deposited using a planar magnetron sputtering system.
In-situ heating of the sample to 80◦C, close to the melting temperature of In-Sn, in com-
bination with a high deposition rate is used to prevent deposition of a homogeneous
In-Sn layer, but instead achieve distinct height features. Since the temperature during
this pattern deposition procedure is significantly lower than the processing temperature
of the sample, it is not degraded using this technique.

The experimental setup consists of a Kammarath&Weiss uniaxial tensile/compression
module placed underneath a Sensofar Plµ2300 confocal surface profilometer equiped
with a 150X objective. After deposition of the Indium-Tin layer, the Aluminum/Poly-
imide interconnect is glued onto disposable grippers, that are clamped in the tensile
stage, and stretched. After each elongation increment, a topographic image is acquired.

3.4.2 Results

The dimensions of the specimen are very small and therefore application of a pat-
tern with sufficiently distinct features and accurate, reproducible measurement of this
height profile with a profilometer is a known challenge, as discussed for instance in [9].
For instance, when comparing the profilometric images of different increments it is
observed that the pattern features change between the images, see Figure 3.17. This
might be due to a relatively high noise-to-signal ratio caused by steep edges of the tiny
pattern features, thereby working at the limits of the profilometer. Measurement of
the features from a slightly different position and angle, due to in-plane deformation
and especially out-of-plane rotation of the underlying sample, further decreases the
measurement reproducibility. These discrepancies between the incremental images
make correlation difficult, because the residual will not reduce to (almost) zero for the
correct displacement field. The detrimental effects are somewhat reduced by applying
some Gaussian blurring (kernel size 10, σ= 2) to the images before correlation, which
is a known technique to reduce bias error [107]. Still it was found that shape functions
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Figure 3.16: Scanning Electron Microscopic image of the aluminum stretchable interconnect
on a polyamide substrate, taken after deformation. The interconnect has delaminated from
the substrate, which exposes regions of the substrate that are not covered with an Indium-Tin
layer. The In-Sn layer is characterized by the granular texture on top of the entire sample. In
the rectilinear parts the lighter regions indicate the location of buckles.

with a small support are sensitive to these measurement artifacts, especially the shape
functions in the corners of the domain. To complicate the test further, it was observed
that the correlation length of the pattern is small. This, in combination with the change
in pattern features, makes any DIC algorithm sensitive to a good initial guess. It is a
known feature of DIC algorithms that there is a possibility of correlation to a local mini-
mum instead of the global minimum [106]. Starting from a coarse mesh with limited
degrees of freedom reduces this risk, while using the correlation result of the coarse
mesh as initial guess for correlation for a refined mesh. In the virtual cases this was
sufficient and an initial guess of zero displacement everywhere was acceptable, but in
this experiment a good initial guess is inevitable. This good initial guess for all images
was obtained by a correction for rigid body motion of the specimen center and running
the algorithm first over all images with the refinement option turned off, i.e. with the
large-area NURBS shape functions shown in Figure 3.18a.

For the correlation we zoom in on one of the rectilinear parts, as this gives the most
interesting displacement field, since it buckles upon stretching. The images before
and after deformation are shown in Figure 3.18, with the initial and refined mesh (after
two refinement steps) plotted on top. The buckles that occur are about 3.5µm high
and the mesh refines in the area of the buckles. However, the sensitivity of the corner
shape functions to the measurement artifacts is clear in the refined mesh. The mesh is
refined in the corner elements, while there is no kinematic reason for it. Refinement
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Figure 3.17: Images f and g zoomed in at the same area (blue boxes in insets). It is observed
that the pattern features look distinctly different in the two images. For example, the feature
in the circles are (almost) unrecognizable. This complicates correlation of the two images.

leads to more freedom in this area, causing a even higher sensitivity to experimental
uncertainties and further refinement in the same area. Also note that in the second
image it might appear that the refined mesh does not correctly conform the sample
anymore, i.e. the mesh appears smaller than the interconnect width, however, this
illusion is caused by the delamination and out-of-plane rotation of the interconnect,
causing the steep sides of the interconnect to rotate into view, thereby exposing new
area that in the first image was not visible. This also becomes clear from the zoomed
images in Figure 3.17, where the yellow encircled feature moves away from the ’edge’
and another feature appears below it.
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Figure 3.18: The reference image f (left) is shown along with the deformed image g (right).
Both images are blurred. The initial mesh and final refined mesh are plotted on top.
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Since this is a real experiment, it is not possible to determine the accuracy of the
correlation by means of error fields, in contrast to the virtual experiments. The accuracy
therefore has to be determined using the residual fields. These fields before and after
mesh refinement are shown in Figure 3.19. The buckles clearly show up in the first
residual field, as regions with an averaged value that is systematically above (red) or
below (blue) zero, which indicates that a finer mesh is desired in these areas to calculate
the displacement field accurately. When the mesh refines, in two steps, the final residual
field does not have regions with an averaged value systematically different from zero
anymore. Note that refinement in the corners does not improve the residual in this
area significantly and occasionally even causes the residual to increase, as for example
in the right top corner. This is because the increased number of degrees of freedom
also increases the sensitivity to the measurement artifacts, which can lead to poorer
correlation.
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Figure 3.19: The residual images are shown after correlation using the corresponding meshes
from figure 3.18. It can be seen that the buckles cannot be described accurately with the
initial mesh, resulting in a high residual in this area (RMS value 0.133 µm). After refinement
in this region the residual decreases significantly (RMS value 0.062 µm).

The out-of-plane displacement field (Figure 3.20c) clearly shows the buckles observed
in Figures 3.16 and 3.18b. The in-plane deformation represents mainly the rigid body
rotation of the rectilinear part of the interconnect that occurs upon stretching, as is also
observed in these figures. In all, the three-dimensional displacement field in Figure 3.20
seems to have been measured accurately.

To conclude, since the height profiles resulting from this experiment are difficult to
process for any digital height correlation algorithm, a good initial guess was necessary
to analyze the data with the adaptive isogeometric DHC method. However, then the
method was able to provide accurate results, corresponding to the observed in-plane
and out-of-plane displacements in the measured height profiles, and correlated to
a relatively low residual field. The mesh was optimized autonomously to be able to
describe the complex displacement field accurately, but refines in unnecessary areas
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due to sensitivity of the small corner shape functions to measurement artifacts. Still,
autonomy of the algorithm was partly lost due to the necessity of the precondition-
ing. As the DHC algorithm seems to work correctly, further improvement should be
obtained by application of a height pattern with larger correlation length and more
robust measurement of surface height profiles.
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Figure 3.20: The calculated displacement fields u(x) in x-direction (a), v(x) in y-direction
(b) and w(x) in z-direction (out-of-plane) (c) are shown on top of undeformed image f .
Combining the two in-plane displacement fields yields a rigid body rotation, which can also
be seen from the difference between Figures 3.18(a) and (b), as well as a slight elongation
of the structure. In the out-of-plane displacement field the observed buckles appear clearly,
indicating an accurate calculation of the displacement field.

3.5 Conclusion

A method has been developed which uses an adaptive refinement algorithm to nearly
autonomously refine shape functions in a global digital height correlation technique.
This method is useful in experiments where the kinematics of the deforming sample are
not known in advance. The mesh autonomously adjusts to the displacement field, i.e.,
optimizing the set of shape functions for capturing the displacement field. An optimized
number of shape functions, i.e. number of degrees of freedom, is beneficial in DHC
problems. Sufficient DoFs are needed to capture the kinematics of the displacement
field, but too many of them make the problem too sensitive to noise. Another advantage
of this method is that only little user experience is required to construct a reliable
discretization of the problem.

NURBS shape functions are used both for the discretization of the DHC problem and
the parametrization of the sample geometry. NURBS were originally developed for CAD
modeling and in this work the CAD representation of the sample is directly used for
DHC. NURBS shape functions are geometrically rich and can describe many geometrical
shapes and displacement fields. With the use of a CAD program for constructing the
mesh, nearly any specimen geometry can be meshed. Moreover, one is not restricted to
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a particular polynomial order of the shape functions, as the order can simply be selected
in the CAD program. In this work, it was chosen to use second-order NURBS, since for
buckled samples the curvature of the buckles is of particular interest and to this end
second-order derivatives of the calculated displacement field are desired. A hierarchical
approach has been implemented for the adaptive refinement of the shape functions.
This way refinement is executed in an efficient way and stays local, in contrast to knot
insertion where an entire column and row of shape functions are refined due to the
tensor product structure. The adaptive refinement is based on the residual field.

A proof of concept of the novel method is given with a virtual experiment with an out-
of-plane displacement field with two sinusoidal peaks, representing a localized buckle
pattern. The algorithm works adequately and refines in the expected area, yielding
an accurate result. The method is also applied to a virtual experiment where a more
complex sample shape is used: a stretchable electronics interconnect. It was shown
that the method succeeds in capturing both in-plane and out-of-plane deformation
fields accurately and refines the mesh in the expected areas.

Finally the adaptive iso-DHC method is tested in an experimental setting, where an
in-situ tensile experiment is performed on a stretchable interconnect in a profilometer.
This experiment formed a challenge, since the structure is of such small dimensions
that reproducible measurement of the miscroscopic height pattern forms a significant
challenge. Successfull correlation of the resulting images would be difficult for any DIC
algorithm. The problems were overcome by applying blurring of the images and sup-
plying a good initial guess. This is a compromise, since the autonomy of the algorithm
is decreased, however, the mesh is still autonomously refined in the necessary regions
yielding accurate three-dimensional deformation fields. Further improvement should
be sought in more robust measurement of surface height profiles.

Concluding, the novel adaptive isogeometric DHC algorithm is a versatile technique
for correlating displacement fields using the height profiles of many different types
of experiment, including samples of which the deformation mechanism is unknown
in advance (e.g. stretchable electronics interconnects). The shape functions used for
discretizing the displacement field adjust autonomously to enrich the kinematics in
regions where this is needed, obviating the need for detailed mechanical knowledge in
advance. Accurate results have been obtained with the method, making this a promising
technique for experimental mechanics of solids.
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Chapter 4
Experimental-numerical characterization of

metal-polymer interface delamination in
stretchable electronics interconnects

Abstract

Understanding the mechanical behavior and failure mechanisms of stretchable elec-
tronics is key in developing reliable and long-lasting devices. In this work a stretchable
system consisting of an aluminum serpentine patterned interconnect adhered to a
polyimide substrate is studied. In-situ experiments are performed where the stretch-
able sample is elongated, while the surface topography is measured using a confocal
microscope. From the resulting height profiles the three-dimensional deformations
are extracted using an adaptive isogeometric digital height correlation algorithm. The
displacement information is compared to realistic numerical simulations, in which the
interface behavior is described by cohesive zone elements. It is concluded that despite
fitting the traction separation law parameters, the model fails to correctly capture the
distinct out-of-plane buckling of the interconnect. The model is updated with residual
stresses resulting from processing and crystal plasticity induced behavior (decreased
yield strength) in the aluminum layer, but both measures are not resulting in the experi-
mentally observed deformations. Finally, mixed-mode cohesive zones are implemented,
in which the properties are different in the shear and normal direction. After fitting the
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corresponding parameters to the experimental data, the model shows realistic in-plane
and out-of-plane deformations. Also a predictive simulation for a different geome-
try results in the correct experimentally measured behavior. It is concluded that the
aluminum-polyimide interface mode-angle dependency explains the observed failure
mode of local delamination and buckle formation.

4.1 Introduction

A relatively new and evolving direction for electronic applications is the development
of highly deformable systems, i.e., stretchable electronics. Flexible and stretchable
electronic devices are mainly used in biomedical applications, in order to bridge the gap
between traditionally rigid, flat electronics and soft, curved biological tissue (such as
skin and organs). Examples include patches that are adhered to human skin for health
monitoring [73, 81], flexible devices for cardiac diagnostics [51, 144], smart contact
lenses [109] and stretchable surgical tools, such as a balloon catheter with sensors
for blood flow monitoring [72, 80]. Other examples outside the biomedical field are
smart textiles [145], flexible displays [118] and solar cells [88], multi-functional flexible
patches [161] and LED arrays [153].

Often a stretchable electronics design consists of functional IC (integrated circuit) is-
lands, e.g., sensors, actuators or microprocessors, that are connected by stretchable
interconnects (electrical conductive wires), which encompass a thin metal film that
is patterned in a meander shape on or encapsulated in a compliant, polymeric, sub-
strate [47, 48]. Elongation of these structures results in bending, twisting and stretching
of the initially planar interconnect, inducing large deformations of the substrate, while
only small strains are introduced in the metal film [86]. To ensure reliability and suffi-
cient lifetime, it is important to investigate the mechanics of the stretchable devices [55].
One of the main failure mechanisms is delamination between the interconnect and the
substrate [61], which is intrinsically coupled to buckling of the metal layer, followed
by ductile failure of the interconnect, which in turn leads to complete failure of the
electronic device [139].

Most experimental studies of stretchable electronics look at failure from a global per-
spective, i.e., at which global stretch percentage the interconnects fail, e.g., [48, 61, 86].
However, to understand the failure mechanisms, micron-scale in-situ testing is required,
to study failure at the small scale of the damage. In literature multiple studies can be
found towards experimental investigation of delamination in metal-polymeric inter-
faces, i.a., for copper-PDMS systems, where peel tests reveal fibrillation of the PDMS
(Poly(dimethylsiloxane)), which induces remarkably high (macroscopically observed)
interface toughness[58, 101, 102, 138]. Also buckling-based failure of stretchable elec-
tronics has been investigated experimentally, where the influence of meander geometry
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on the failure modes is studied [25, 26, 89]. Furthermore, numerical simulations have
been performed to model the mechanical behavior of stretchable electronics. Some
simulations are dedicated to a realistically modeled full system, but without taking
delamination into account [60, 61, 87, 89], others focus purely on the delamination itself
using cohesive zone models, where a comparison is made with peel test results [58, 139],
however, no realistic stretchable interconnect geometries under real loading conditions
are considered. Therefore, there is a gap in the literature with respect to comparison of
experimental data to numerical modeling of full stretchable electronics systems, while
taking all the main deformation modes, including delamination and buckling, into
account. In general, comparison of three-dimensional full-field displacement data with
numerical simulations is only done for single materials [9, 10] and not for multi-material
samples to the best of our knowledge.

This work aims at the experimental-numerical characterization of interface delami-
nation in stretchable electronics, where the numerical model is a true representation
of the real experiment. To this end, in-situ stretching experiments are performed on
aluminum-polyimide stretchable electronic interconnects underneath a confocal op-
tical microscope to measure surface topographies at different time increments, see
Section 4.2. A recently developed adaptive isogeometric digital height correlation algo-
rithm (DHC) [76] is used to analyze the three-dimensional surface displacement fields
from these height profiles. In Section 4.3 the deformation behavior is compared to
a numerical simulation, which includes the correct sample geometry and boundary
conditions from the experiments and cohesive zones for the interface behavior. The
model is improved in several steps until the simulation results reflect the experimentally
observed deformation modes. Finally, conclusions are drawn in Section 4.4.

4.2 Experimental characterization: DHC on profilometry
data

In this section the tools required for the experimental characterization of the stretchable
interconnects are introduced and the results are presented.

4.2.1 Samples

The samples consist of a polyimide (PI) substrate, 10µm thick, with an aluminum
(Al) serpentine-shaped, 1µm thin electrical interconnect deposited on top. This PI-Al
material configuration can be manufactured through photo-lithography based micro-
fabrication, allowing for smaller sizes and thus a higher density of interconnect features
compared to, e.g., the copper-PDMS stretchable interconnects studied in [23]. The
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samples were micro-fabricated in the same way as presented in [89]. A scanning electron
microscopy (SEM) image of the sample, with a height pattern needed for DHC deposited
on top, in stretched state is shown in Figure 4.1a. Delamination of the interconnect from
the substrate is clearly observed. The grain structure of the aluminum layer is analyzed
using Electron Backscatter Diffraction (EBSD), see Figure 4.1b.

Two different S-shaped interconnect geometries are analyzed, namely the w20r20a120
and the w20r40a180 samples. Figure 4.1c displays the geometrical parameters of the
samples, i.e., the width (w), radius (r ), amplitude (a), and rectilinear arm length(Ai n)
of the stretchable interconnect, clarifying the names of the different samples. Herein,
rectilinear arm refers to the rectangular part of the interconnect and the bend, or corner,
of the S-shaped interconnect is referred as the curvilinear segment. Both samples have
an identical rectilinear arm to bend ratio of Ai n

w+r = 1. Based on previous research [89],
a significant difference regarding initiation of the failure mechanisms is expected for
the two sample types as a result of the difference in width compared to the other
dimensions.

4.2.2 Experimental setup: in-situ profilometry

Tensile experiments on the stretchable electronics samples were performed in situ, i.e.,
the samples were stretched using a micro-tensile device placed underneath an optical
profilometer, see Figure 4.2. The samples were glued (using Loctite® 401) on disposable
PMMA grippers as shown in the inset of Figure 4.2. The grippers and sample were then
installed in a Kammrath&Weiss micro-tensile stage equipped with a 50N load cell to
impose a uniaxial tensile deformation. A displacement rate of 1µm/s was employed.
Surface topographies, to be analyzed later with a digital height correlation (DHC) al-
gorithm in order to obtain the full-field 3D deformation behavior of the stretchable
interconnects, were acquired by a confocal optical profilometer (Sensofar Plµ 2300)
in intervals of approximately 2% elongation. Tensile deformation was prolonged until
40% applied global strain. For optimal DHC results, the highest spatial resolution is
beneficial, therefore a 150X objective with 0.95 aperture was used to collect the surface
height profiles, ensuring the largest magnification and numerical aperture. This resulted
in a field of view of 85µm in x-direction by 64µm in y-direction (768x576 pixels), which
is sufficient to capture the buckling and delamination phenomena of the interconnect
in the rectilinear arm area.

For each interconnect geometry three repetitions of the experiment were performed to
study the reproducibility of the experimental method and results. As discussed in [8],
obtaining stable and reproducible measurements using optical profilometry remains
a challenge. To increase stability and reproducibility of the topographic images, the
following measures were applied. First, vibrations and drift of the positioning stage of
the confocal optical profilometer, onto which the micro-tensile stage is placed, were



4.2 Experimental characterization: DHC on profilometry data 71
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Figure 4.1: (a) SEM image of the deformed specimen (with applied height pattern for DHC
on top), in which delamination of the interconnect from the substrate is clearly observed. (b)
OIM micrograph of the top surface of the aluminum interconnects, in which grain coloring is
conform the inverse pole figure of the specimen’s normal. (c) S-shaped interconnect geometry
with indicated geometrical parameters: width (w), internal radius (r ), amplitude (a), and
rectilinear arm length (Ai n) for the w20r20a120 and w20r40a180 sample.

eliminated by fixating tilt of the positioning stage (using support at the four corner
points) to the rigid vibration isolated base of the profilometer, while still allowing
translational movements of the micro-tensile stage. Second, a home-developed auto-
FOV algorithm was employed to automatically establish the same field of view (FOV)
between increments. Thirds, stress relaxation is expected from PI material; preliminary
measures showed that equilibrium is achieved within three minutes. On this basis, in
order to have reproducible topographic images, acquisitions with confocal laser scanner
were taken with a three minutes delay. Fourth, the "confocal smoothing" option in
the (proprietary) Sensofar software is used as this was found to slightly increase the
reproducibility of the measurements as it seems sensitive to small-scale noise generated
by steep features of the pattern. And fifth, before correlation, topographic images were
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Figure 4.2: In-situ configuration of the tensile stage with sample under the 150X objective of
the profilometer. The inset shows a sample glued on disposable PMMA grippers.

blurred using a Gauss filter (kernel size 10 pixels and σ=2), which was shown to improve
robustness of the correlation.

4.2.3 Digital Height Correlation

Pattern application

For digital image correlation (or height correlation in this case) a distinct speckle pattern
is required to distinguish between material points. The stretchable electronics samples
considered here exhibit a smooth surface and hence (almost) no natural texture due to
surface roughness could be used as a speckle pattern. Therefore, an artificial pattern
was applied on the PI-Al samples. In literature a variety of techniques for applying a
three-dimensional speckle pattern can be found, such as the application of several
types of particles in a solvent, e.g., ink particles, copper or silver nanoparticles [58].
Based on preliminary attempts, neither of these techniques appeared suitable for PI-Al
samples, due to agglomeration of the particles at edges of the aluminum interconnect
and to the difficulties with obtaining a homogeneous distribution of particles on the
interconnect, as well as on the substrate surface. Furthermore, the large difference in
reflective properties between the polyimide substrate and the aluminum interconnect
are expected to yield complications for the confocal microscopy technique, hence, a
pattern that covers the entire surface is desirable. Therefore, we employ a recently
developed method, based on DC magnetron sputter deposition of an InSn pattern,



4.2 Experimental characterization: DHC on profilometry data 73

which enables the deposition of a scalable height pattern that can easily be tuned to
the particular microscopic technique and to the field of view with pixel size that is
employed [59]. For this particular application, a pattern with a relatively large feature
size is needed for optimal correlation of surface height profiles measured with optical
profilometry. This pattern is achieved with a low chamber pressure of 8 mTorr and
substrate temperature of 80◦C (note that this is well below the processing temperature
of the stretchable interconnect samples to prevent alteration of the interface properties),
while the deposition rate was regulated by first using a 20 mA target current for 2
minutes, followed by 60 mA for 7 minutes. Details on this specific pattern and the
employed patterning technique in general are provided in [59]. The obtained height
pattern shows distinct InSn particles of 0.9 µm, see Figure 4.3. It was also inspected that
this pattern does not significantly influence the mechanical behaviour of the stretchable
interconnects.
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Figure 4.3: The resulting height contrast of the Indium-Tin (InSn) sputter deposition layer:
(a) Image taken with scanning electron microscopy (SEM), (b) Surface height profile measured
with a confocal optical profilometer (150X objective).

DHC method

To analyze the three-dimensional displacement field of the sample surface during
the tensile experiments, digital height correlation is employed. DHC is an extended
digital image correlation technique, in which height profiles, taken for example using an
optical profilometer or an atomic force microscope, are correlated in order to track both
the in-plane and out-of-plane displacements of the considered surface [7, 9, 76, 99].
Correlation is based on the minimization of the residual height profile(s) r , which is
defined as:
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r (x) = f (x)− (g (x)◦Φ(x)+Uz (x)) ≈ 0 (4.1)

Φ(x) = x +U x y (x), (4.2)

with x the image coordinates, f (x) and g (x) the height profiles in undeformed and
deformed configuration respectively, U x y (x) and Uz (x) the in-plane and out-of-plane
displacement components, respectively, and Φ the so-called mapping function that
maps the deformed height profile back to the undeformed configuration in order to
compare it to the undeformed height profile. The residual approaches zero when the
displacements are calculated correctly. However, this is an intrinsically ill-posed prob-
lem, since the number of unknowns (i.e., three-dimensional displacements per pixel)
exceeds the number of equations (i.e., one scalar residual height value per pixel). Com-
monly, this is solved by limiting the number of unknowns by means of an approximation
of the displacement field with a linear combination of basis functions. It is, however,
very important that these basis functions allow for a description which is rich enough
to capture the kinematics in the considered problem.

In this case the deformation of the stretchable interconnect entails localized buckling,
which calls for a specialized discretization of the displacement field. In this work
the DHC approach from [76] is adopted, which makes use of an adaptive refinement
scheme to autonomously refine the basis functions locally, thereby attaining an optimal
discretization of the displacement field. This is convenient, since the exact location
of the buckles is difficult to predict and may differ from experiment to experiment,
whereas manual construction of a suitable set of basis functions is challenging and
largely requires user expertise on the problem.

4.2.4 Results

The tensile experiment was executed and the topography was measured at several
load increments. The resulting height profiles for the load increment of 35% applied
global elongation on the edges of the sample are shown in Figure 4.4. Here the localized
buckles, i.e., the typical failure mechanism for these geometries, can clearly be seen. In
the same Figure also the displacement fields as calculated with the DHC method, both
in-plane (u and v) and out-of-plane (w), are depicted. The 3D displacement field is
calculated both for the aluminum interconnect and the adjacent polyimide substrate,
to account for all deformation modes occurring in the sample, including delamination
between the interconnect and substrate.
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Figure 4.4: Acquired surface height profiles (top) for the w20r20a120 and w20r40a180
geometries, at 35% elongation of the total sample, applied in the y-direction. Furthermore,
plotted on top of a grayscale representation of the undeformed topography, the displacements
u (in x-direction), v (y-direction) and w (out-of-plane, z-direction), as calculated with the
adaptive DHC method, are shown for both geometries. The displacements are calculated for
a region of interest both on the aluminum interconnect and on the polyimide substrate.
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From the horizontal displacements, i.e., u, it can be derived that both the substrate and
the interconnect contract in this direction, due to the Poisson effect upon elongation in
the perpendicular y-direction. This Poisson effect is especially strongly present in the
substrate, but because the interconnect is adhered to it, contraction is also conveyed, to
lesser extent, to the stiffer interconnect.

From the v-displacement mainly rotation of the interconnect towards the direction of
elongation can be observed, along with delamination of the interconnect and substrate.
The discontinuity in the displacement field between the substrate and the interconnect
reveals this delamination. Delamination can also be recognized in the topographic
images on top in Figure 4.4, as unpatterned substrate area has been revealed at the edges
of the aluminum interconnect, while this area was located underneath the interconnect
before deformation (hence, no pattern was deposited here).

The out-of-plane displacement, i.e., w in the bottom of the Figure, clearly shows the
buckles in the Al interconnects: the yellow area denotes upward displacement which
is discontinuous with respect to the adjacent PI surface. Multiple measurements and
displacement field calculations for different samples of the same geometries revealed a
significant variation in the exact locations and height of the buckles, caused by stochas-
tic variations in the heterogeneous interface properties [26]. Because the precise inter-
face heterogeneity is unknown for each sample, it is not very meaningful to perform a
one-on-one quantitative, absolute comparison between the measured displacement
fields and the ones resulting from a numerical simulation. It is more meaningful to
analyse several representative scalar indicators for the mechanical behavior of the sam-
ples that are extracted from the full-field displacement information. In Figure 4.5 these
descriptive parameters are introduced. For the in-plane behavior the contraction δU

and the rotationφ of the rectilinear arm part (line AB in Figure 4.5) are monitored during
loading. For the out-of-plane behavior the normal opening δn of the interface between
the aluminum interconnects and the polyimide substrate is measured.

For both geometries the experiment is performed three times and the results in terms
of the scalar parameters are shown in Figures 4.6 and 4.7 for the in-plane (δU , φ) and
out-of-plane (δn) behavior respectively. A good repeatability between the individual
experiments is observed for the w20r20a120 geometry, while the w20r40a180 sample
exhibited a larger scatter in terms of in-plane rotation and normal opening. Especially,
the location of the buckles differs significantly from specimen to specimen, as follows
from Figures 4.7(d) and (f).

Figures 4.6 and 4.7 show that the delamination between the aluminum interconnects
and the polymide substrate is the most important mechanism occurring during stretch-
ing. Delamination occurs when the interface stresses exceed the interface bonding
strength. In these particular samples the polyimide substrate is relatively stiff in com-
parison to other common used substrate materials, e.g., PDMS and TPU. Therefore, the
polyimide reacts to the deformation of the stiff metal interconnect with higher stresses
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Figure 4.5: Explanatory figure for the descriptive parameters of the mechanical behavior of
the electronic interconnect during stretch, that are extracted from the full-field displacement
information. The in-plane behavior is characterized by the contraction δU and rotation φ

of the rectilinear arm part AB (orange line). The out-of-plane behavior is described by the
normal opening δn of the interface, i.e., the buckle height along the path 0− Ai n (where Ai n
is the rectilinear arm length) at the edge of the aluminum interconnect (red dashed lines),
corrected with the substrate curvature, i.e., the height profile of the PI substrate along the
same path (black dashed lines).

compared to other, more compliant substrate materials. This induces high stresses on
the interface, making this interface more susceptible to delamination.

Comparing Figures 4.6(a) and (b), it is observed that contraction in the rectilinear arm is
larger in the w20r40a180 sample, which is to be expected since the rectilinear arm part
is longer in this geometry (60 µm vs. 40 µm). According to [89] the rectilinear arm length
(Ai n) has a large influence on the delamination mechanism of the aluminum/polyimide
interface. For longer Ai n (> 40µm) the lateral contraction of the arm outweighs the
axial stretching of the underlying polyimide substrate and the delamination is buckling-
based, while for shorter interconnects the axial stretch is relatively large with respect to
the lateral compression and the delamination is more shear-based, resulting in a more
homogeneous delamination front. Because of this more homogeneous delamination,
the interconnect has more freedom to rotate with respect to the substrate, which is
indeed observed when comparing Figures 4.6(c) and (d). Also the observation that
the buckle locations are less predictable for the longer rectilinear arm lengths (see
Figures 4.7(d) and (f)) follows from the fact that the buckling-driven delamination for
this geometry is more susceptible to small variations in the heterogeneous interface
behavior.
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Figure 4.6: The in-plane behavior as characterized by the descriptive parameters δU and φ

(defined in Figure 4.5) for both the w20r20a120 (left) and w20r40a180 (right) geometries.
The parameters are plotted for all captured load increments, ranging from 0% to 40% global
stretch of the specimen. The data from all three experiments with each sample are shown.

4.3 Numerical simulations

Numerical simulations are a powerful tool to assess the behavior of the stretchable
electronics structures for a wide range of interconnect geometries in addition to time-
consuming experiments. From numerical results, delamination and buckling phenom-
ena can be studied to predict failure and eventually optimize the design. However, a
suitable model for the mechanical response of the materials is required that has to be
validated with respect to experimental data of the interconnects.
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Figure 4.7: The out-of-plane behavior as characterized by the normal opening of the interface
(defined in Figure 4.5) for both the w20r20a120 (left) and w20r40a180 (right) geometries.
The normal opening δn is plotted as profile along the rectilinear arm length for load increments
of 7%, 20% and 35% global stretch respectively. In Figures (a), (b), (c) and (e) the profile
is shown as an average of the six measurements (two sides for each of the three specimen)
with a 95% confidence interval, to illustrate the good agreement between the experiments.
For Figures (d) and (f) the profiles from all measurements are shown separately, because the
location of the buckles differs too much to make the average value representative.
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The three-dimensional finite element model shown in Figure 4.8, developed by [90],
is used as a starting point for calibration with the experimental data presented in the
previous Section. All finite element models have been developed by using the commer-
cial code ABAQUS1 model. A submodeling approach is used to increase computational
efficiency while maintaining accurate prescription of boundary conditions. In the global
part of the model two periods of the interconnect geometry and the underlying sub-
strate, which are assumed to be rigidly bonded, are modeled. Symmetry and periodic
boundary conditions are used, see Figure 4.8, and the displacements are prescribed
using a reference point.

The material properties are not necessarily the same as for the bulk material because
of size effects in the miniaturized microsystem. The yield strength of the aluminum
interconnect may be affected, since the relative size of the grains with respect to the
specimen dimension increases and, therefore, the number of grain boundaries over
the cross-section decreases [68]. Since the grain boundaries act as pinning points for
dislocations, a high density of them delays the onset of plasticity, following the well-
known Hall-Petch effect. Consequently, the large amount of free surface (and thus the
low number of grain boundaries) in these micron-sized structures results in a lower yield
strength of the material, with a possible reduction of the yield strength of aluminum to as
low as 5 MPa [68]. The material properties of the aluminum interconnect and polyimide
substrate were determined previously by means of nano-indentation tests [90], and a
good agreement was found with an elasto-plastic material model for both materials,
with Young’s modulus E = 72 GPa, Poisson ratio ν = 0.34 and initial yield strength
σy0 = 50 MPa for the aluminum and E = 3.2 GPa, ν = 0.3 and σy0 = 20 MPa for the
polyimide. The grain size distribution was measured using EBSD, see Figure 4.1b, from
which it is concluded that the grain size is in the order of 200-600 nm. This implies that
a considerable amount of grain boundaries is available, also over the thickness, (i.e.,
the grains are not columnar), to impede dislocation movement. Hence, the determined
initial yield strength of σy0=50 MPa, which is slightly lower than the 70 MPa value for
bulk material, is not surprising. Moreover, it has been tested (not shown here) that the
exact value of aluminum yield strength has only a minor effect on the delamination
behavior, i.e., the interface behavior.

The displacement resulting from the FE simulation with this preliminary global model
are prescribed at the lateral boundaries of the local model, which is a representation
of only half a period of the interconnect featuring a finer mesh. In the local model
the behavior of the interface between the substrate and the interconnect is described
by a cohesive zone model with a bilinear traction separation law (TSL), in which all
dissipative mechanisms of the interface are lumped. The parameters in this model
are the maximum traction τmax , the work of separation Gc (also known as fracture
energy, interfacial toughness or critical energy release rate) and the critical opening
displacement δc . The work of separation was determined by [27] using 90◦ peeltests

1Dassault Systèmes Simulia©, Providence, RI, US
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Figure 4.8: Submodeling approach of the finite element model. On the left side a microscopic
photograph of an entire specimen is displayed, with a zoom-in on two periods of the aluminum
interconnect. On the right side the global model of the same two periods is shown, with the
interconnect rigidly bonded to the substrate, which is constructed by using symmetry of the
sample (orange dotted line) and periodic boundary conditions on the top and bottom edges
∂ΩI and ∂ΩI I . The resulting displacements (in x, y and z direction) are prescribed at the
lateral boundaries of the local model, which entails half a period of the interconnect, with the
interconnect bonded to the substrate with a cohesive zone description.

and was estimated at Gc = 37 J/m2. This value is used in all simulations in this paper.

As previously mentioned, the kinematics of PI is not markedly influenced by the pres-
ence of the Al interconnect, owed to the stiffness ratio between Al and PI and the
thickness of the metal film compared to the substrate. For this reason, the local bound-
ary conditions applied on the PI boundaries are likely to be reliable even when estimated
from a global model with the assumption of perfect bonding between Al and PI.

The optimal values for the other two parameters are studied by performing simulations
on the w20r20a120 geometry while varying τmax and δc and comparing the results
to the corresponding experimental results from the previous Section, see Figure 4.9.
It can be seen that the in-plane rotation of the rectilinear arm φ can be fitted quite
well with a suitable choice of the maximum traction and critical opening displacement
(τmax = 20 MPa, δc = 1 µm). In contrast, the buckle height is severely underestimated
for all investigated combinations. The maximum traction appears to have a larger
effect on the behavior, whereas the value for the critical opening displacement is less
important. Although the critical opening displacement of 1 µm gives a slightly better fit
for the in-plane behavior and the buckle height is not captured well for all combinations,
the location of the buckle crest seems marginally more accurate for δc = 0.1 µm.
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The same observations are made for the w20r40a180 geometry (the results are not
shown here). Therefore, a key ingredient seems to be missing in the model. In the
following Sections potential causes for the underestimation of the normal opening
displacement are investigated, i.e., residual stresses in the Al/PI system, crystal plasticity
of the aluminum interconnects and mixed-mode interface behavior.
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Figure 4.9: Comparison of the (a) in-plane rectilinear arm rotation and (b) the out-of-
plane buckling height at 35% globally applied elongation between experiments (data from
Figures 4.6c and 4.7e) and numerical simulations using a bilinear TSL. The legend shows the
interface properties used for the different simulations, with τmax in MPa and δc in µm.

4.3.1 Residual stress

The first effect that is not taken into account in the initial simulations is residual stress.
Since the FE model underestimates the opening due to the absence of Al buckling,
introducing a compressive residual stress in the Al layer may increase the chance to
observe Al buckling in FE analysis, which may testify that residual stresses were the
missing ingredient in the numerical analysis. Residual stress in miniaturized systems
contributes to the reliability and has been reported as a possible primary source of
failure for microelectronic systems [50]. Residual stress in the Al/PI stretchable elec-
tronic system can occur due to the curing process of polyimide and the deposition
of the aluminum interconnect layer. During the curing cycle of polyimide intrinsic
residual stresses are introduced in the substrate. Residual stresses ranging between 4 to
40 MPa were reported for a 10 µm thick PI layer depending on the temperature cycle
of the curing process [32]. In addition, thin film deposition of the metal layer causes
compressive residual stresses in the aluminum film due to mismatch in the coefficient
of thermal expansion (CTE) [143]. When the Al/PI interconnect system is lifted off the
silicon wafer in the final processing stage, the residual stress in the PI substrate and Al
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film result in a curvature due to the equilibration of the stress state.

The residual stress is added to the local numerical model by lumping the intrinsic and
thermal residual stress into a single thermal residual stress introduced in the Al/PI
system prior to elongation. This thermal stress is induced in the model by a thermal
step while the boundaries of the local model are confined, mimicking that the stretch-
able interconnect system is still bonded on the silicon wafer. The magnitude of that
theoretical thermal step is determined by the measurement of the curvature of a 10 µm
thick PI substrate, fully coated with a 1 µm thick deposited Al layer.

The reason for performing this curvature measurement on the fully coated sample is
as follows. When fabricated together, fully coated and patterned Al/PI samples will
exhibit a difference residual curvature for the same driver of misfit, i.e. the thermal
load. Yet, the analytical curvature analysis [42] only holds for flat films on substrates.
Therefore, instead of measuring the residual curvature directly from the Al/PI pattern,
the residual curvature is measured for a fully coated Al/PI sample and used to estimate
an equivalent thermal load as a driver of misfit. Subsequently the same thermal load
has been introduced in the Al/PI local model to test its influence on the kinematics of
the interconnect.

To estimate the eligible thermal load for simulating residual stresses in the patterned
interconnect, the topography of a fully coated Al/PI sample has been measured right
after lift off from the carrier Si wafer, yielding a curvature of κ=−5.2 ·10−4µm−1. The
thermal load required to achieve the measured curvature has been estimated follow-
ing [42], obtaining ∆T =−450 K. The consistency of the analytical estimate has been
verified by means of a 2D plane strain FE analysis of a Al/PI bilayer upon thermal load,
yielding the same curvature within the uncertainty bound. The same thermal load was
used to induce a residual stress field in the local model of the Al/PI interconnect right
before stretching.

More precisely, the numerical simulation of the stretchable interconnect is executed
as described earlier, with the traction separation law parameters that gave the best fit
for the in-plane behavior, i.e., Gc = 37 J/m2, τmax = 20 MPa, δc = 1 µm, and with the
thermal step of -450 K prior to elongation. Figure 4.10 shows a comparison of FE analysis
results with and without residual stresses, using the interface parameters best matching
the in-plane experimental descriptors. The stress is concentrated at the transitions
between the rectilinear arm and inner radius of the curvilinear segments (see inset in
Figure 4.10b) and exceeds the yield strength of the aluminum interconnect, resulting
in local plastic deformation in this area. However, upon stretching of the interconnect
system the induced plasticity seems to have a negligible effect on the delamination and
buckling behavior, and as a result the normal opening remains severely underestimated.
Therefore, it is concluded that thermal stress (although its magnitude could not be
explicitly estimated for the specific structure) may not play a relevant role in determining
the mode I opening of the buckled film owed to the resilience of the aluminum, i.e. its
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capability to accommodate the misfit through plastic strain.
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Figure 4.10: FEM results (equivalent plastic strain) for the local model of the w20r20a120
geometry with the reference model (a) and the model where a thermal pre-step of -450 K is
included to account residual stress (b). In the inset in (b) the Von Mises stresses resulting
from the thermal pre-step are shown.

4.3.2 Mixed mode interface behavior

Finally, the effect of a mixed-mode cohesive zone model on the interconnect deforma-
tions is studied. When studying the tractions on the interface just before the onset of
delamination in more detail, it becomes apparent that the normal tractions are a factor
4 lower than the tractions in shear mode. This results in pure shear delamination, which
induces rotation of the rectilinear arm, accompanied by slight out-of-plane twisting of
the curvilinear part, however, no extensive out-of-plane deformation of the rectilinear
arm. Therefore, to capture the experimentally observed large buckling behavior of the
interconnects, it appears to be necessary to promote mode I delamination over mode II
delamination, by imposing different properties of the traction separation law in shear
mode and normal mode.

In this mixed-mode interface model the traction separation laws are defined by means
of the work of separation Gc , maximum traction τmax and critical opening displacement
δc , which are defined separately for both modes. Shear behavior is modeled isotropically,
the damage criterion is based on maximum stress and damage evolution is based on the
energy that is dissipated during the damage process (the fracture energy). The effective
critical energy scales linearly between the pure normal and pure shear thresholds, as
a function of mode mixity. The latter is measured as the relative contribution of the
current pure shear mode (G s ) to the current total energy (GT =G s +Gn). More details
can be found in [36]. In this work, δc is assumed to be mode-angle independent and
taken 0.05 µm, because some preparatory research with the mixed-mode framework
revealed that δc = 0.05 µm gives slightly better results in terms of the out-of-plane
deformation than δc = 1 µm and δc = 0.1 µm, which were studied earlier, although it
was found again that the value of δc only has a minor influence on the delamination
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and buckling behavior. As mentioned above, the work of separation in mode I, Gn
c , was

determined by 90◦ peeltests by [27] and established 37 J/m2, equal to the value used in
the previous simulations. For the remaining parameters, G s

c , τn
max and τs

max , no data is
available and their effect is studied.

First, the mode I maximum traction of the cohesive zones is lowered with respect to the
mode II maximum traction and different ratios and values for τn

max and τs
max are tested,

see Figures 4.11a and 4.11b. The buckling amplitude is strongly affected positively by a
higher ratio of τs

max /τn
max and the location of the crest shifts more towards the transition

from the rectilinear arm to the inner radius of the curvilinear segment, leading to a
better agreement with the experimental data. The reason for the shift in crest location
is that, with increasing maximum shear traction, delamination is delayed, causing
the curvilinear parts of the interconnects to straighten to accommodate stretching of
the sample (whereas rotation of the rectilinear arm towards the stretching direction
is hindered by interface which is not sufficiently debonded), resulting in compressive
stresses in the rectilinear part near the transition region to the inner radius, triggering
delamination at this location. For decreasing normal maximum traction, the possibility
to delaminate in mode I increases in this region, resulting in the observed behavior of
Figure 4.11b.

Not only the ratio, but also the absolute value of the maximum traction is important.
For lower absolute values of τs

max mode II delamination at the outer radius of the curvi-
linear segments is still energetically more favorable and a lower buckling amplitude is
observed, see the difference between τs

max /τn
max = 20/4 and τs

max /τn
max = 30/6, which

have the same ratio, but different absolute values. More and earlier mode I delam-
ination in the rectilinear arm also reflected in the decrease of rotation of this part,
see Figure 4.11a, which is especially noticeable for an extremely high shear maximum
traction versus low normal maximum traction (τs

max /τn
max = 40/5).

Next, the work of separation in shear mode, G s
c , is studied. The best fit from the

previous experiment, i.e., τs
max = 30 MPa, τn

max = 6 MPa, is selected for these new
simulations. The resulting rectilinear arm rotation and buckle profiles are shown in
Figures 4.11c and 4.11d. An increase in G s

c (for a fixed τs
max ) means a retardation of

final failure in shear mode. Consequently, failure in normal mode is promoted, which
results again in higher buckling amplitudes and less rotation of the rectilinear arm. For
the tested values of G s

c , G s
c = 111 J/m2 seems to yield the best quantitative agreement

between the simulation and the experiments in terms of both the in-plane and out-
of-plane displacements. A value of G s

c that is three times higher than Gn
c seems well

possible, as such a ratio has been observed frequently in the literature, e.g., [66, 124].
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Figure 4.11: Comparison of the (a&c) in-plane rectilinear arm rotation and (b&d) the out-of-
plane buckling height at 35% globally applied elongation between experiments (data from
Figures 4.6c and 4.7e) and numerical simulations with different ratios of the traction separation
law properties. In the first set of simulations (a-b) the work of separations is kept equal for
both modes and the maximum traction are varied. In the second set (c-d) the best fit for the
tractions (τs

max /τn
max = 30/6) is used, while the mode II work of separation G s

c is varied.

In summary, a good match with the experiments is found for simulation with a mixed-
mode cohesive zone model, with the parameters as listed in Table 4.1. The resulting
geometry from the FEM simulation is shown in Figure 4.12a, where is it compared to
the experimentally measured height profile. Also, a predictive simulation is performed
with the same interface parameters, but for the w20r40a180 geometry, see Figure 4.12b.
In both cases a good qualitative agreement between the simulation and experiment is
achieved, i.e., the buckle amplitude, location and number of crests are highly compara-
ble.
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Table 4.1: List of the mixed-mode traction separation law parameters used in the cohesive
zone model that best fits the experimental data.

Normal direction Shear direction

Parameter (mode I) (mode II)

Work of separation Gc 37 J/m2 111 J/m2

Maximum traction τmax 6 MPa 30 MPa

Critical opening displacement δc 0.05 µm 0.05 µm

It should be noted that the selected values for the interface properties provide a good,
but not perfect fit. Qualitatively, the main cause for the observed deformation behavior
was found to be a difference in interface properties between normal and shear direction,
i.e., the presence of mixed-mode behavior. Quantitatively, however, the simulations
do not exactly equate the observed deformation. Yet, it does not appear to be useful
to improve the model further, since the variability in experimental results is relatively
high. A perfect fit for one particular experiment would yield a poor prediction for
another experiment with the same parameters. Moreover, the goal of this work was not
to find a perfect numerical model, but to reveal the underlying cause for the observed
buckling behavior in order to gain insight in the failure mechanism of these stretchable
interconnects.
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Figure 4.12: FEM results (deformed geometry and equivalent plastic strain) with the mixed-
mode cohesive zone model for both geometries. For comparison, the insets show the to-
pographic height profile measurements from the experiments at the same global stretch
increment.

The mode sensitivity found in this study may be explained by the absence of fibrillation
during interface delamination. In [102] it was found that mode sensitivity is negligible
in the considered PDMS-copper interface, because of the complex geometry of the
rough copper surface and consequently the alignment of the fibrils with the traction
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direction. In case of the here examined polyimide-aluminum system, the aluminum
has a relatively smooth surface, as observed by a homogeneous peelfront in mode I
peeltests [25]. This may explain the observed much higher mode angle dependency,
caused by significant energy dissipation by friction under shear loading, resulting in the
experimentally measured deformation profiles.

4.4 Conclusions

Delamination and buckling phenomena, which are known to affect the reliability of
stretchable electrical interconnect structures, have been studied by the use of in-plane
and out-of-plane descriptors of the deformed geometry of two interconnect geometries
upon tensile stretching. This data was obtained by the acquisition of surface height
profiles upon stretch using confocal optical profilometry for an in-situ experimental
setup. These height profiles were then correlated using adaptive isogeometric digital
height correlation to obtain three-dimensional displacement fields of the surface of the
aluminum-polyimide interconnect structure.

From the derived three-dimensional displacement fields it was shown that delamina-
tion initiates at approximately 7% global elongation for both sample types. A suffi-
ciently large delaminated area under the rectilinear arm is accompanied by a significant
rotation of the rectilinear arm which was observed at 18% global elongation for the
w20r20a120 geometry and at global strain levels beyond 35% for the w20r40a180 inter-
connect geometry. In addition, approximately semicircular buckles nucleate along the
rectilinear arm at roughly 15%-18% global elongation as a result of lateral compression
of the delaminated Al film at the rectilinear arm. This can be attributed to the Poisson
compression of the substrate and by a localized region of compression at the transition
between rectilinear arm and inner bend of the curvilinear segment. Moreover, the
buckling amplitude and pattern were shown to differ between the sample types, which
is assigned to the difference of the rectilinear arm length Ai n .

A numerical model was developed to capture the in-plane and out-of-plane behavior
of the stretchable interconnect upon elongation. It was demonstrated that a simple
bilinear traction-separation law without mode dependency is insufficient to capture the
characteristic buckling behavior of the Al-PI interconnects. Moreover, implementation
of residual stress and the effect of a free surface size effect, by lowering the yield strength
of aluminum were all shown to be insufficient to capture the experimentally observed
behavior of the stretchable interconnects. However, a fair qualitative agreement of the
in-plane and out-of-plane behavior of the interconnect has been reached by adopting a
mixed-mode cohesive zone model. Characteristic buckling behavior is captured by the
numerical model only when the ratio between shear and normal maximum traction is
substantially increased. A τs

max /τn
max ratio of 30 MPa to 6 MPa and work of separation
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of Gn
c =37 J/m2 and G s

c =111 J/m2 seems to yield the best fit of in-plane and out-of-plane
deformations of the interconnect of the w20r20a120 geometry to the experiments. Also
a predictive simulation with the same parameters for the w20r40a180 geometry yields a
good qualitative agreement with the experimental data.

The mode angle dependency may be caused by the low surface roughness of the metal
film and the consequential absence of fibrillation. The results of this study could, e.g.,
be used to improve the processing of the interconnect system, such that the interface
toughness in normal direction increases and the mode sensitivity is lowered, which
could be realized by manufacturing a fibrillating interface. This would lead to a promo-
tion of shear delamination, causing more rotation of the rectilinear arms with respect to
the substrate. Consequently, the high stress concentrations and plastic strains found
at the inner bend of the curvilinear parts could be lowered, which improves the dura-
bility of the interconnects. That makes this an interesting region for further analysis
for a possible optimization of the interconnect design for delayed failure and higher
stretchability.
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Chapter 5
Parameter identification of freestanding

stretchable electronic interconnects using
Integrated Digital Height Correlation

Abstract

For the development of reliable stretchable electronic systems, it is essential to com-
prehend and predict their mechanical behavior. As stretchable interconnect structures
usually have micron- or even nanoscale dimensions, the mechanical behavior is af-
fected by size effects and processing history. It is therefore important to test and analyze
original as-processed samples, as opposed to standard tests on bulk material. Dedicated
analysis methods are necessary for obtaining the material properties from the tests,
as complex three-dimensional deformations complicate the use of existing methods.
This paper presents an Integrated Digital Height Correlation (IDHC) method for the
mechanical characterization of a recently developed ultra-stretchable freestanding
interconnect. Height maps from an out-of-plane loading experiment are correlated
to a numerical model, with the aim to identify the material parameters in the plastic
regime. The boundary conditions for this model are obtained by applying a global Digi-
tal Height Correlation algorithm on the images in order to obtain the three-dimensional
displacements of the specimen’s clamping pads. The IDHC method is tested on a virtual
test case, where it is shown that the algorithm converges to an accurate (error in the
order 10−3) solution for the considered set of three plasticity parameters. For the real
experiment, simultaneous correlation of all three parameters is not possible due to

This work is in preparation for publication:
Kleinendorst SM*, Shafqat S, Hoefnagels JPM, Geers MGD. (2020) Parameter identification of freestanding
stretchable electronic interconnects using Integrated Digital Height Correlation. In preparation
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an inherently flat residual landscape with many local minima. However, the initial
yield strength and hardening exponent were still identified and estimated at 225-300
MPa and 0.15-0.2 respectively. Despite the moderate accuracy of the identification,
the potency of the IDHC method for this extremely challenging case of micron-sized
delicate freestanding stretchable electronic interconnects is demonstrated.

5.1 Introduction

Stretchable electronics is an emerging field of research, with applications mainly in the
biomedical field, used to integrate traditionally rigid electronics with soft biological
tissue [80, 142, 159]. In order to develop reliable systems that are safe to use in this
biological environment, it is important to characterize the mechanical behavior of the
stretchable electronics. Miniaturization of the stretchable electronics leads to size ef-
fects, which restricts assessing the material behavior a priori [49, 82, 152]. Moreover, the
processing history might affect the material properties, as well as the loading conditions
triggering different deformation modes [45]. Therefore, it is essential to perform tests
on original as-processed samples of the interconnects in order to characterize their
mechanical behavior with all these effects incorporated.

Recently, a freestanding ultra-stretchable interconnect, also called the ROPE (Rotation
Out-of-Plane Elongation) interconnect, was developed, see Figure 5.1, which exploits
full three-dimensional freedom up to a reversible stretchability of about 2000% [132]. A
strong strengthening effect was observed; i.e., by roughly comparing experimental re-
sults to numerical simulations, using a standard elasto-plasticity model, a yield strength
of roughly ten times higher than the value for bulk aluminum (from which the inter-
connect is fabricated) was estimated. This observation is important for the stretching
behavior of these interconnects and also interesting from a scientific point of view. The
objective of this paper is therefore to quantitatively determine the plastic behavior of
these interconnects.

The interconnects are designed to be highly compliant, which makes it difficult to
employ a (uniaxial) tensile experiment to determine the material properties, as the
forces are too low to be measured in a sufficiently accurate manner. Alternatively, a
full-field method such as Digital Image Correlation (DIC) may be used to characterize
the kinematics of the structure. If an integrated approach is used, i.e., the correla-
tion is complemented by a numerical model, the parameters in this model may be
obtained directly [56, 100, 115]. However, these techniques generally require in-plane
displacements only, while the considered interconnects deform out-of-plane as well,
see Figure 5.1b. In the literature also quasi-3D DIC, or Digital Height Correlation (DHC)
methods are described, which require height maps as input images. They are therefore
able to track both the in-plane and out-of-plane surface displacements of the considered
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Figure 5.1: ((a) The freestanding ultra-stretchable ROPE interconnect design, consisting of a
number of rectangular beams. (b) The interconnect in stretched state; beam members rotate
out-of-plane and bend to align with and elongate along the stretch direction.

specimen [9, 10, 52, 76, 99, 133]. In this paper, an Integrated Digital Height Correlation
(IDHC) method is proposed to directly identify the plastic material parameters from an
experiment on freestanding ultra-stretchable interconnects.

The IDHC method requires that the surface of interest stays in view during the exper-
iment. Hence, it is not possible to load the structure by in-plane stretching as done
in [132], because the beam members of the interconnect rotate out-of-view to align
with the stretch direction, see Figure 5.1b. Although the outer beam members twist
to accommodate rotation of the other beams, the majority of the beams deform in
pure bending mode after rotation. This mode can also be triggered by loading the
interconnect in the out-of-plane direction, while the beam surfaces stay in view [134].

For integrated methods it is essential that the numerical model mirrors the experiment
as close as possible. Especially the boundary conditions are influential [119, 123].
Moreover, in the particular case of miniature freestanding stretchable interconnects,
also the initial geometry, which is curved due to residual stresses from manufacturing,
requires special attention. The initial geometry will be extracted from the measured
height map in the reference configuration. Furthermore, a global DHC method will be
used to extract the displacements of the clamping pad areas, see Figure 5.1a, which will
then be translated to the model as boundary conditions.

The paper is organized as follows: First the methodology is explained in Section 5.2,
which consists of the experimental details, discussion of the integrated digital height
correlation algorithm and some aspects of the finite element (FE) model. In Section 5.3,
the analysis of the experiment is presented. First a DHC algorithm is employed for
preliminary analysis of the boundary conditions for the FE model, after which the IDHC
algorithm is tested by means of a virtual experiment. Subsequently, the IDHC algorithm
is applied to the experimental data. Finally, conclusions are drawn in Section 5.4.
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5.2 Methodology

In this Section the methodology for the analysis of the freestanding stretchable inter-
connects is explained.

5.2.1 Experiment

In order to identify the mechanical properties of the freestanding stretchable electronic
interconnects an experiment is performed in which one of the main deformation modes
of these structures is triggered: bending of the interconnect beams. The specimen
has a planar design of slender, rectangular beams; the interconnect in this experiment
consists of ten beams. The interconnect is embedded in a specially designed chip that
allows for meticulous handling of the sensitive samples [132]. To be able to perform a
DIC analysis on the samples, a distinct pattern needs to be present. In this case pattern
application is complicated, as it is not possible to apply many techniques known from
literature [37, 59, 130]. Indeed, pattern application using a fluid or plasma is prohibited,
because even small forces resulting from contact with a fluid or charging due to plasma
lead to plastic deformation of the highly delicate samples or stiction of the interconnect
beams to each other or the substrate. The only possibility for pattern application is
a flow of dry particles that individually attach to the interconnect. This was realized
by applying silica nano-particles (300 nm) on the interconnect by means of a dried
micro-mist application technique. Yet, only a sparse pattern could be accomplished
due to the highly delicate nature of the freestanding interconnects [134].

A lab-built dedicated tensile stage for the micron-sized samples is used to load the
interconnect structure. The specimen is loaded in the out-of-plane direction, by moving
the clamping pads on either side of the interconnect by a prescribed displacement.
After loading, the specimen is unloaded again, i.e., the clamping pads are returned to
their original position. This proces is repeated, while the displacement-controlled load
increases incrementally.

Topographical images are captured during the experiment by means of a confocal
optical microscope (Sensofar S Neox, 100× magnification lens with a numerical aperture
of 0.9 and working distance 1 mm). In the loaded situation the beams are bend to a
steep angle with respect to the microscope, which makes it impossible to capture the
height map with the profilometer, see the image marked "topographies extended state"
in Figure 5.3. Therefore, the experiment is designed such that images are taken in
the unloaded configuration after each loading step, see Figure 5.2. This is a justified
approach, since the objective of the experiment is to identify the material properties
that represent the plastic regime, and plastic deformation will also be reflected in the
unloaded state, as clearly observed in Figures 5.2c and 5.2d. The complete experimental
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procedure is described in more detail in [134].

20 40

-20

0

20

40

60

0-20

x [µm]

y
 [
µ
m

]

(a) f

20 40

-20

0

20

40

60

0-20

x [µm]

(b) g increment 5

20 400-20

x [µm]

(c) g increment 12

20 40

-4

-2

0

2

4

6

0-20

H
ei

gh
t 

[µ
m

]

x [µm]

(d) g increment 13

Figure 5.2: Height maps captured during the experiment for a selection of loading increments.
The reference image, f , of the undeformed configuration is shown, along with three deformed
images g , each obtained after a number of incremental loading-unloading cycles (named here
increments).

5.2.2 Integrated Digital Height Correlation

An Integrated Digital Height Correlation (IDHC) algorithm is used to analyse the material
properties of the stretchable electronic interconnects. This is an extension of Integrated
Digital Image Correlation (IDIC), where the correlation of the images is combined
with Finite Element (FE) simulations [56, 100, 115], see Figure 5.3. The calculated
displacements following the FE simulation are used to back-deform the images of the
deformed sample, in order to get an optimal match with the reference image of the
specimen in undeformed configuration. The difference between the images, i.e., the
residual, is minimized iteratively. The parameters in the FE model are the degrees of
freedom (DoFs) in the correlation, therefore usually this approach is employed if the
objective of the experiment is to identify material properties. In the height correlation
method the images are not grayscale images of the specimen, but topographic height
profiles of the sample’s surface [10, 76]. Hence, not only the in-plane displacement
is tracked, but simultaneously also the out-of-plane deformation is included in the
correlation.

In DIC algorithms usually a region of interest (ROI) is selected in the reference image,
such that the pattern features in the selected region do not move out of view in the
deformed images and to make sure nodal displacements from the FE simulation are
available in the entire region of interest. In this case the region of interest is not a
rectangular area, but it is based on the shape of the interconnect, as defined in the finite
element model. Furthermore, the measured height data contains many not-a-number
(NaN) values, especially around the edges of the structure, since the profilometer does
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Figure 5.3: Schematic illustration of the Integrated Digital Height Correlation method:
The core of the algorithm is the minimization of the residual (c), which is a measure for
the optimality of the parameters of the FE model. The topographies captured during the
experiment ((a), (d) and (e)) are not only used for the correlation itself, but also to determine
boundary conditions required for the FE model. The dynamic range of topographies (a),
(b) and (e) is ∼-5 to 7 µm. The dynamic range for the first and last topography in (d) is
respectively ∼[-30 40] and [-100 120]µm.

not measure the heights at steep gradients or edges. These values proliferate during
the interpolation step, which is required to determine the back-deformed images [103],
and destructively influence the correlation. Therefore, a mask is defined to discard the
pixels containing NaN values, both in the reference topography and the back-deformed
topographies. This mask is reset and updated adaptively during the iterations to prevent
an unnecessary high number of discarded pixels.

5.2.3 Finite Element Model

For IDHC a numerical model is required that represents the experiment. It is therefore
important that the model resembles the physical reality as close as possible [123]. To this
end, the stretchable interconnect structure with ten beams is modeled conforming the
geometry of the design supplied to the manufacturer of the samples. Slight deviations
from the design in the real samples, e.g., slightly round finishes of the corners, are
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disregarded, but this is justified as they fall outside the region of interest for correlation,
since the height measurements at the edges of the sample are not reliable.

One of the main challenges in the model is to obtain the exact reference configuration of
the experiment, in which the beams are curved due to residual stresses from processing.
To this end, the straight modeled mesh is overlayed on the topographic image of the
reference situation and for each node the measured height at its location is translated to
this node. However, because of measurement noise (and pattern features), this would
result in a non-smooth surface that would unrealistically influence the kinematics in the
simulation. To smoothen the curved surface, a regression is made through the measured
data, see Figure 5.4, where a second-order polynomial is used along the length of the
beams and a first-order polynomial in the width direction. The hinges and clamping
areas are smoothed separately, using constraints to connect them appropriately to the
beams, ensuring C 1 continuity across the connecting lines.
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Figure 5.4: Three-dimensional locations of the nodes of the FE model, based on the measured
height data (black dots) and a regression through this data (red dots) to smoothen the surface
from measurement artifacts. (Note that the axes are not equal for visualization purposes.)

Also the in-plane alignment of the reference configuration, and particularly the lateral
bending of the four most right beams, needs to be accounted for in the FE model. This
lateral bending is also attributed to the residual stress. As no images of the unwarped
interconnect (before chemical etching of the sacrificial layer to release the intercon-
nects) are available, which could be correlated by a DHC method to the topography of
the warped interconnect in order to determine the exact in- and out-of-plane deforma-
tions due to the residual stresses, the in-plane displacement (from a perfectly straight
configuration to the measured situation) can now only be determined manually. This is
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done at the corners of the hinges and prescribed in the simulation. The resulting initial
configuration, see Figure 5.5, is assumed to be stress-free, because the curved shape
is precisely the result of the fact that the freestanding structure can almost completely
relax the residual stresses that were acting on it.

X
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Z

Figure 5.5: FE model of the stretchable interconnect geometry with 10 beams, in the curved
initial configuration.

The material model used in the simulation is elasto-plastic, where Hooke’s law for
elasticity is used and the Von Mises yield criterion [44], with a rate power law model for
(isotropic) hardening:

σy =σy0 + Aε̄m
p , (5.1)

where σy is the evolving yield stress, ε̄p is the equivalent plastic strain, σy0 the initial
yield strength, A a hardening coefficient and m the hardening exponent. The latter three
are unknown parameters and hence the objective for the identification using the IDHC
method. Especially the initial yield strength is interesting to investigate, as it was found
by [132] to be influenced drastically by size effects due to the small dimensions and
processing conditions (up to ten times its value for the corresponding bulk material).

The boundary conditions in the model are also an important input that need to be in
close agreement with the experimental conditions. During the experiment, topogra-
phies are measured in both the extended and returned state for all increments. The
topographies in the extended state are not useful for correlation, because of the large
inaccuracies in the measured height values in the presence of high gradients, see Fig-
ure 5.3. The pads, however, are an almost flat area on which the height values are reliable
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and therefore used to define the boundary conditions in the extended state. For the
boundary conditions in the returned state, the global DHC algorithm from [76] is used
to recover the displacement fields from the measured height profiles. The resulting
three-dimensional displacements of the pad areas, see Section 5.3.1, are translated to
boundary conditions on the nodes of the pads in the model.

X

Y

Z

Figure 5.6: FE simulation of increment 8 in the experiment, where the boundary conditions
in extended (left) and returned (right) state are derived from the measured topographies.

5.3 Results

In this Section, the results of the analysis of the stretchable interconnect experiment are
presented. First the displacements of the beams were determined using an isogeometric
global Digital Height Correlation method [76]. Furthermore, the Integrated DHC method
is tested by means of a virtual experiment. Finally, the real experiment is analyzed with
the IDHC method.

5.3.1 Displacement field analysis with isogeometric Digital Height Cor-
relation

In order to obtain insight in the displacements of the beams, an isogeometric global DHC
algorithm is employed. The results can be used to validate the displacements calculated
with the FE simulation after the parameter identification with IDHC. Moreover, the
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displacements of the clamping pads are essential to define boundary conditions in the
FE model for the integrated height correlation. The technique used for this purpose
is the isogeometric DHC algorithm introduced in [76], where NURBS shape functions
are used for both the parametrization of the geometry and the discretization of the
displacement field [75].
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Figure 5.7: Shape functions for the isogeometric DHC analysis of the three-dimensional
displacement field of the stretchable interconnect. The shape functions are second-order along
the length of the interconnect and zeroth order in the width direction. In total 42 shape
functions are defined, of which three are shown here.

The shape function mesh is created using the commercial CAD software Autodesk
AutoCAD 1. Second-order shape functions are used in the length direction of the in-
terconnect, while zeroth order shape functions are used in the width direction, their
product resulting in 42 two-dimensional functions for this geometry, see Figure 5.7. For
this experiment it is important to limit the number of degrees of freedom (and hence,
shape functions), because the correlation sensitivity to local minima is high due to
the limited quality of the height pattern (silica particles) and high acquisition noise,
especially at the large boundary of the slender structure. Therefore, the number of
elements along the length of the interconnect is taken as small as possible while still
describing the geometry accurate enough. This choice disregards the outside corners of
the hinges, which is acceptable as these corners do not deform anyway. Also the choice
for zeroth order shape functions in the width direction of the beams limits the number
of degrees of freedom, which is justified because the strain in width direction remains
negligible due the long free side edges of the beams. Therefore, the proposed limited set
of shape functions is able to fully capture the kinematics of the interconnect structure.

Another measure taken to prevent correlation to a local minimum is to supply an
adequate initial guess. Therefore, the rigid body displacements of the clamping pads are

1Autodesk. AutoCAD software. http://www.autodesk.com/products/autocad/overview.
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Figure 5.8: Calculated in-plane displacement fields u (in x-direction), v (in y-direction)
and out-of-plane displacement field w for two loading increments in the experiment. The
displacements are given in micrometers.

estimated manually at pixel level from the topography images and interpolated linearly
over the beams.

The resulting displacement fields are shown in Figure 5.8 for one of the first and last
increments in the experiment, which provide a good impression of the evolving plastic
deformation after unloading at the end of each loading-unloading cycle. The figure
shows that the major part of the three-dimensional displacement field for each incre-
ment is governed by the actual location of the clamps after unloading, which varies
for each increment. Therefore, imposing this measured 3D clamp displacement as a
boundary condition on the FE simulation in the IDHC routine is critical for obtaining
convergence. Since the error in the displacement fields cannot be determined, as this is
a real experiment and the true displacements are unknown, the only available measure
for accuracy of the calculated displacements is the residual images, i.e., the difference
between the reference image and the incremental (deformed) images back-deformed
to the initial configuration using the calculated displacement fields. It can be seen in
Figure 5.9 that the residual is close to zero for the entire region of interest. Hence, it is
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Figure 5.9: Residual images for the corresponsing increments shown in Figure 5.8.

concluded that the obtained displacements with DHC are reliable.

5.3.2 IDHC parameter identification on virtual experiments

In order to assess the Integrated Digital Height Correlation framework for an experiment
with the complexity of the interconnect structure, a virtual experiment is executed first.
In this experiment, the images are created artificially from a finite element simulation
and a synthetic reference image. In this virtual test case, a freestanding stretchable
interconnect structure of two beams is modeled, which captures the main deformation
modes occurring in the considered experiment on a 10-beam structure. Similar to the
real experiment, one end of the interconnect is displaced in the out-of-plane direction
by a prescribed distance, increasing over a number of cycles, and consecutively returned
to its initial height position, see Figure 5.10.

The simulation results, i.e., three-dimensional nodal displacements, are used to deform
the synthetic reference topography that contains a computer generated height pattern,
see Figure 5.11a, to create the deformed topographies, of which two are shown in
Figures 5.11b and c.

In the FE model the same elasto-plastic material model with a rate power law hardening
relation (Equation 5.1) is used. The objective of the IDHC correlation of the virtual
experiment is to recover the parameters in this model that are used to create the virtual
experiment, i.e., σy0 = 200 ·10−6 N/µm2 (= 200 MPa), A = 6.43 ·10−4 N/µm2 and m = 0.2.
Therefore, this virtual experiment allows to assess the error sources affecting the IDHC
parameter identification.

It is first noted that preliminary virtual experiments immediately demonstrated the im-
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Image increment 3 Image increment 5Reference increment

Figure 5.10: FE simulation for the virtual experiment. The interconnect structure consists of
two beams, of which one is lifted to a prescribed height and displaced back to the reference
position a number of times, with increasing lifting height. The image increments are based on
the returned configurations, as indicated in the figure for three increments (the dots indicate
loading cycles not shown in this figure).

portance of selecting a proper set of topographies: (i) a sufficient number of increments
is required to find a unique solution for the three parameters in the numerical model; (ii)
increments should be far enough in the plastic regime to ensure sufficient sensitivity to
the parameters. Based on this analysis, it was chosen to include five loading-unloading
cycles (or increments) that all fall in the plastic regime, in the IDHC correlation, i.e., five
deformed topographies and the reference topography.

To test the performance of the IDHC correlation for identification of the three plasticity
parameters on these six topogragies, an initial guess relatively far from the solution is
employed, of approximately three times higher values for all three parameters. The con-
vergence behavior is plotted in Figure 5.12. The IDHC algorithm adequately converges
towards the expected solution. The initial guess values and the resulting values, with
their associated errors, are presented in Table 5.1. This indicates that the algorithm is
able to converge even relatively far from the solution, leading to accurate results with
errors in the order of 10−3.

Table 5.1: Results for the parameter identification with IDHC for the virtual experiment with
a two-beam stretchable interconnect. The initial guess on the parameters is listed, as well as
the value resulting from the correlation and the error in the determined parameters.

Parameter Initial guess Identified value Relative error2

Initial yield strength σy0 [N/µm2] 632·10−6 199·10−6 3.5·10−3

Hardening coefficient A [N/µm2] 2.04·10−3 6.43·10−4 3.1·10−4

Hardening exponent m [-] 0.63 0.199 3.1·10−3
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Figure 5.11: Topographies for the virtual experiment to be analyzed with IDHC: Left, the
topography of the reference configuration, f ; The deformed topographies g of two of the five
increments in the middle and on the right.

However, note that the convergence behavior is still oscillatory, even for this virtual
experiment where there are no error sources from experimental artifacts and discrepan-
cies between the numerical model and the real world. This indicates that the problem
is complex and difficult to correlate, which is also confirmed by the sensitivity analysis
of the correlation matrix, see Figure 5.13. In this sensitivity analysis a spectral decom-
position is made from the correlation matrix M : M =QDQ−1, with the columns of Q
being the eigenvectors of M and D a diagonal matrix containing the eigenvalues. From
the correlation matrix M itself it becomes clear that the sensitivity towards parameters
A and m is much smaller than the sensitivity to σy0. Furthermore, the eigenvector
matrix Q reveals cross-sensitivity between the parameters, especially between A and
the other parameters. Although the algorithm works well for this virtual experiment,
complications can be expected when additional experimental error sources come into
play.

5.3.3 Parameter identification from a real 3D test on a freestanding
stretchable interconnect

Finally, the IDHC algorithm is applied to the topographies of the real out-of-plane load-
ing experiment. A set of increments is used, mainly towards the end of the experiment,
to incorporate enough topographies where plasticity has a quantifiable effect. The
correlation is first executed for all three parameters of the hardening model simulta-
neously. Despite starting the correlation from various initial guesses and sequential
correlation of the parameters no convergence is reached in that case. When looking
at the non-convex residual landscape, see Figure 5.14, it is observed that many local
minima exist. Furthermore, the landscape is moderately flat in a large area, which is

2Relative error = |Calculated value - True value|/True value.
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Figure 5.12: IDHC convergence for the virtual experiment. The evolution of the mean value
of the residual (averaged both spatially and over time) and of the three resolved parameters,
σy0, A and m is depicted.
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especially clear from the fitted surface (a third-order polynomial regression through
the data) in Figure 5.14b, with an apparent valley around the values [σy0 = 300 MPa,
m = 0.2, A = 644 MPa] and local fluctuations in the data, see Figure 5.14c. This explains
the lack of convergence, which is likely due to experimental error sources, e.g., the
limited pattern quality and measurement uncertainties in the topographies, defects in
the sample that play an important role in the deformation mechanics, and also model
errors, such as discrepancy in the exact geometry, especially the thickness that is not
quantified precisely, and the material model itself. An isotropic plasticity model is
used, while the small size of the specimen suspects columnar crystals with few grain
boundaries inducing size effects that are better modelled with, e.g., a crystal plasticity
framework with strain gradient dislocation density effects [43].
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Figure 5.14: (a) Residual landscape as a function of the three parameters A, m and σy0. For
visualisation purposes, the colors indicate the order of the mean value of the residual from low
to high, instead of their exact value. In (b) the residual landscape for the two-parameter cross
section indicated in (a) by a red dotted rectangle is shown. A 3r d order polynomial surface is
fit through the data (black markers) for visualization purposes. A zoom of this landscape is
depicted in (c).

Next, the correlation is performed only for the initial yield strength σy0, while the values
for A and m are fixed at the values in the apparent minimum, i.e., m = 0.2 and A = 644
MPa. The correlation is initiated from two different initial guesses: 70 MPa, which is
the bulk material property for aluminum, and 600 MPa, which is in the range of what
was estimated in [132] for the considered interconnects. The convergence plot is shown
in Figure 5.15, where the decrease in the residual becomes apparent, as well as the
convergence of the parameter σy0 towards the same value from both initial guesses.
The resulting initial yield strength is approximately 300 MPa. This is much smaller
than the in [132] estimated 600 MPa, where only a qualitative manual comparison
between experiment and an unrefined numerical model was made. However, it is
significantly higher than the value for bulk aluminum, and hence, still indicates a strong
strengthening effect due to the sub-micron dimension (thickness) of the interconnect.
Also, if the result of the numerical simulation is compared to the experimental image
for the correlated initial yield strength of 300 MPa and for both the initial guesses, see
Figure 5.15, it is observed that the deformed shape is indeed adequately approximated
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after IDHC. Yet, in the finite element model a choice was here made for the other
two material parameters that describe the plastic regime, hardening coefficient A and
exponent m. The choice of these values might induce a model error and affect the
resulting value for the initial yield strength.
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Figure 5.15: Convergence for the correlation of the initial yield strength parameter σy0. The
evolution of the mean value of the residual (averaged both spatially and over time) and of σy0
is depicted. Furthermore, the deformed geometry from the numerical simulations is shown at
the final increment, for the two different initial guesses (600 and 70 MPa), and the correlated
value (304 MPa). For comparison the experimental geometry from the same increment is
depicted as well.

In order to evaluate the accuracy of the determined initial yield strength, the correlation
is repeated for different values of m, while A is kept constant at 644 MPa, which appears
to be the cross-section with the lowest residual values in Figure 5.14. It is observed
in Figure 5.16a that the yield strength converges towards different values for different
choices for m and that the residual for all these cases is approximately the same. This
is consistent with the valley that appears in the residual landscape of Figure 5.14 and
indicates cross-sensitivity between the parameters. Only the case of almost pure plastic
behavior, with low hardening (m = 0.02) seems to converge worse than the other cases,
so it is expected that these values of the yield strength and hardening exponent form a
lower bound.

Next, correlation for both the initial yield strength and the hardening exponent is per-
formed simultaneously, see Figure 5.16b, where A is again fixed at 644 MPa. The residual
decreases to roughly the same value as for the other correlations, while significant fluctu-
ations are noticed. The lowest residual value indicates that the best fit for the parameters
is an initial yield strength of approximately 225-300 MPa, with a hardening exponent
of around 0.15-0.2. Although the accuracy of the identification is modest, the adopted
procedure still indicates that parameter identification is possible with the IDHC method
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and more accurate results are expected upon improvement of the experiment and
model.

10
0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

0.51

0

1

2

3

4

5

6

86420

(a) Convergence for correlation of σy0, m fixed

10 12 14
0.41

0.42

0.43

0.44

0.45

0.46

1.5

2

2.5

3

3.5

4

4.5

5

5.5

86420
0.1

0.15

0.2

0.25

0.3

0.35

(b) Convergence for correlation of σy0 and m si-
multaneously

Figure 5.16: (a) Convergence for the correlation of the initial yield strength parameter σy0,
from an initial guess of 600 MPa and different values for the hardening exponent m, ranging
from 0.02 (almost pure plasticity) to 0.9 (extreme hardening). (b) Convergence for the
simultaneous correlation of σy0 and m. The evolution of the mean value of the residual and
the correlation parameters are depicted.

5.4 Conclusions

The mechanical properties of a freestanding aluminum stretchable electrical intercon-
nect have been analyzed by applying an integrated digital height correlation method to
topographies measured in-situ during a 3D experiment. The design of the interconnect
allows for full three-dimensional deformations, e.g., large rotations and displacements,
thereby enabling ultra-stretchability. This complicates the application of commonly
used DIC methods for characterization, as the surfaces are required to stay in view
during the deformation process and displace in-plane only. Therefore, a digital height
correlation method was employed, in which the three-dimensional surface displace-
ments can be tracked. An integrated approach was followed, where the correlation of
the images is complemented by a finite element model, in which the parameters are
unknowns. Moreover, the experiment was designed such that the surfaces remain in
view: The specimen is loaded in the out-of-plane direction, thereby triggering the main
deformation mode of the stretchable interconnect, i.e., bending of its beam members.

It is of utmost importance that the boundary conditions applied in the finite element
model comply with those in the experiment. Therefore, the experimental data was
first analyzed using a global DHC method. The displacements of the clamping pads
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were identified and used in the numerical model. Also, the initial geometry of the
interconnect was established from the reference image and translated to the model,
as the as-processed interconnect already has a warped configuration due to relaxed
residual stresses from manufacturing, influencing the deformations and inducing model
errors when not taken into account.

A virtual experiment was first executed to verify the IDHC algorithm. The stretchable
interconnect geometry was implemented, along with a power law hardening model with
three parameters, which were the objective for identification. It was shown that even
for large mismatches in the initial values, the method converged towards the correct
solution with an error in the resulting parameters in the order of 10−3. However, it was
also shown that even in this case without experimental uncertainties and model errors,
the convergence path was irregular, indicating the complexity of this parameter identi-
fication problem. This was also confirmed by a sensitivity analysis of the correlation
matrix, which showed large differences in sensitivity towards the individual parameters
and also cross-sensitivity between the parameters.

Finally, the real experiment was analyzed. As anticipated, simultaneous correlation
of all three plasticity model parameters was not at reach. The non-convex residual
landscape is flat in a large area with many local minima. Therefore, the initial yield
strength was correlated with the two other parameters fixed. From two different initial
guesses the value converged to approximately 300 MPa, which is significantly higher
than the value for bulk aluminum and indicates a strong strengthening effect due to
miniaturization of the interconnects. The choice made for the other two parameters
in the hardening model still influenced the actual value of the correlated parameter.
Repeating the correlation for different values of the hardening exponent indeed revealed
convergence of the initial yield strength to different values. Subsequently the initial yield
strength and hardening exponent were correlated simultaneously. Despite the moderate
accuracy of the identification, the initial yield strength was estimated at 225-300 MPa
and the hardening exponent at 0.15-0.2. The hardening coefficient was assumed 644
MPa, which appeared to yield the lowest residual in the three-dimensional landscape.

The results show that the IDHC technique is suitable for parameter identification in the
challenging case of real three-dimensional experiments on micron-scale freestanding
stretchable interconnects. To increase the accuracy of the identification it is recom-
mended to improve the experimental settings and to advance the numerical model
in order to diminish as many error sources as possible. E.g., the applied height pat-
tern is object for improvement, the geometry of the interconnect could be modeled
more precisely and a material model including dislocation density strain gradient crys-
tal plasticity could be used. This is, however, beyond the scope of the present work,
where potency of the IDHC technique was shown and a first estimate of the material
parameters for an isotropic hardening plasticity model was determined.
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Chapter 6
Mechanical Shape Correlation: a novel

integrated digital image correlation
approach

Abstract

Mechanical Shape Correlation (MSC) is a novel Integrated Digital Image Correlation
(IDIC) based technique used for parameter identification. Digital images taken during
an experiment are correlated and coupled to a Finite Element model of the specimen, in
order to find the correct parameters in this numerical model. In contrast to regular IDIC
techniques, where the images consist of a grayscale speckle pattern applied to the sam-
ple, in MSC the images are projections based on the contour lines of the test specimen
only. This makes the technique suitable in cases where IDIC cannot be used, e.g., when
large deformations and rotations cause parts of the sample to rotate in or out-of-view,
or when the speckle pattern degrades due to large or complex deformations, or when
application of the pattern is difficult because of small or large specimen dimensions.
The method targets problems for which the outline of the specimen is large with respect
to the volume of the structure and changes significantly upon deformation. The tech-
nique is here applied to virtual experiments with stretchable electronic interconnects,
for identification of both elastic and plastic properties. Furthermore, attention is paid
to the influence of algorithmic choices. The method reveals fast convergence with high
accuracy (with errors down to 10−8) and adequate initial guess robustness. The results

This work has been published:
Kleinendorst SM*, Hoefnagels JPM, Geers MGD. (2019) Mechanical Shape Correlation: a novel integrated
digital image correlation approach. Computer Methods in Applied Mechanics and Engineering , 345,
983-1006. DOI: 10.1016/j.cma.2018.10.014
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are promising and indicate that the method can be used in cases of either large, complex
or three-dimensional displacements and rotations on any scale.

6.1 Introduction

Identification and characterization of the mechanical behavior of structures, compo-
nents and devices is important for design and reliability engineering, e.g., to determine
accurate numerical models, to design novel structures or to monitor structural integrity.
A widely used tool for mechanical characterization is digital image correlation (DIC),
where deformation of the structure is tracked, usually based on a speckle pattern ap-
plied to the object of interest. However, in some cases it is not possible to exploit this
technique, for example because pattern application is not feasible. In Figure 6.1 several
examples are shown for which in situ mechanical characterization is desired, but for
which it is difficult to use digital image correlation. All these cases exhibit a distinct
contour, which might be used to track the deformations, rather than a speckle pattern
applied to the sample. For example, mechanical characterization of the load-bearing
structures of cars is important, which can be done with, e.g., crash tests [53], see Fig-
ure 6.1a. The material properties depend on the processing history and hence, testing
the parts as processed is important to obtain accurate models. Another example, at
much smaller scale, is the ballistic impact on a single wire [5, 38, 117] or plate [104] in
order to detect its high-rate dynamic mechanical properties, see Figure 6.1b. Due to the
slender nature of this wire it is difficult to apply a speckle pattern for DIC.

A third example is the stretchable electronic interconnect shown in Figure 6.1c. Stretch-
able electronics is a topic of increasing interest, with mainly biomedical applications
where the flexibility and stretchability provides compatibility between rigid electrical
components and soft biological tissue, enabling, e.g., health monitoring [73], flexible
devices for cardiac diagnostics [51] and stretchable surgical tools [80]. Recently, a novel
design was proposed that consists of freestanding interconnects, which are free to de-
form three-dimensionally, thus enabling an elastic stretchability beyond 2000% [132].
The stretchable interconnects are integrated in for example miniature sensors used
for minimally invasive surgery [97] and hence have microscale dimensions. Because
of their small dimensions and complex deformation, DIC based on speckle pattern
tracking is difficult to employ. Nonetheless, because of the wire-like form of the stretch-
able interconnects the outline of the structure is large and changes significantly upon
stretching. Therefore, a DIC technique is proposed that is based on the evolving contour
of the structure.

DIC approaches can be split in roughly three groups [56]. In local DIC approaches, the

1Still from video taken from https://www.capetesting.com/resources/videos/. IMMI and
testing division CAPE provided permission to use the image, but were not involved in this research.
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(a) Car safety frame crash test1and
simulation (Reproduced from [53])

(b) Projectile wire test (Re-
procuced from [38]).

(c) Deforming stretchable
electronic interconnects;
horseshoe-shaped and rectan-
gular design

Figure 6.1: Examples of deforming structures, ranging from the scale of meters to micrometers,
for which it is difficult to apply digital image correlation for mechanical characterization. In
Figure (a) an image taken during a crash test with a car frame is depicted. In Figure (b) an
image sequence is shown from a ballistic impact test on a single silk fiber. In Figure (c) two
examples of stretchable electronic interconnects between rigid (integrated circuit) islands can
be seen; a horseshoe-shaped connect from [126] and a rectangular design introduced in [132].

image is divided in local subsets, each limited in admissible kinematics (e.g., rigid body
motion, shear, uniaxial compression and tension). In the global approach the entire
image is correlated at once [29, 105]. However, the parametrization of the kinematics
should be rich enough to capture the kinematics of the considered experiment, which
can be achieved by, e.g., using finite elements (FE) [11] or NURBS shape functions [41,
114]. Furthermore, adaptive refinement algorithms were introduced to achieve an
optimal set of shape functions for a wide range of problems [75, 157].

A third approach is the integrated digital image correlation (IDIC) method, where a
mechanical, analytical or finite element model, is used for regularization [56, 100, 115].
The degrees of freedom are the model parameters. The goal of such an approach is
usually to extract material parameters or other model parameters from the experimental
images. The method in this paper also follows an integrated approach, where a FE model
is coupled to the correlation process.

The largest difference, however, between IDIC and the proposed Mechanical Shape
Correlation (MSC) method is that for MSC contrast in the images is obtained by mapping
a signed distance function on the projected contour of the entire specimen, rather than
using a grayscale speckle pattern applied to the sample. This projection is based on
the outline of the specimen, which changes depending upon the deformation of the
sample. This projection can be made for both experimental images and FE simulation
results, enabling their correlation. This approach has several advantages. First, the
structure is allowed to deform three-dimensionally, since the contour of the sample
can still be tracked in projection, while in case of a speckle pattern it is only possible to
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track in-plane deformation, except when multiple cameras [91, 150] or an (optical or
atomic force) profilometer [52, 76] is used. However, also in these cases the out-of-plane
rotation of the sample is still limited, since parts of the structure that rotate out of view
(or parts that were not visible in the reference image but rotate into view) cannot be
tracked. When correlating images based on the contour of the sample this problem
is eliminated. Second, because a speckle pattern is not required, the MSC method
can also be applied in cases where pattern application is difficult, such as when the
sample dimensions are very small or very large, or when pattern degradation occurs
due to large deformations. Therefore, the proposed Mechanical Shape Correlation
method provides a solution strategy for integrated DIC problems characterized by large
and/or complex, possibly out-of-plane, deformations and cases for which a speckle
pattern is not appropriate, as long as the evolving boundary area is significant. The
contour is a naturally, always present feature that contains valuable information on the
deformations and hence a useful source to base correlation on, especially if other DIC
methods or reference point tracking is not easy or possible to employ.

The proposed method shows similarities with Virtual Image Correlation (VIC) [17, 46,
116], where also the contour of a specimen is tracked exploiting digital images of the
sample. It differs, however, in its goal to identify model parameters versus determining
the position of the contour itself, and in the way the real experimental images are
compared to virtual ones. In the MSC method, the created signed distance maps
for both the experiment and the simulation, enable full-field correlation for which the
difference between the images approaches zero, while in VIC the difference is minimized
as well, although only in the vicinity of the contour itself, but can never go to zero, since
the virtual image is defined in a different manner than the real experimental image.

The paper is organized as follows. In Section 6.2 the type of images required for MSC
is introduced as well as the procedure to obtain them. The images are compared to
those used in (Integrated) DIC approaches. In Section 6.3 the algorithm for solving MSC
problems is explained and the differences with a regular IDIC algorithm are highlighted.
In Section 6.4 virtual experiments are performed to demonstrate the Mechanical Shape
Correlation method. The stretchable interconnect structure is split to investigate the
two main deformation modes separately, both for elastic and elastoplastic material
behavior. The influence of some algorithmic choices for MSC is examined. In Section 6.5
some issues that are to be expected in real experiments are addressed. The paper closes
in Section 6.6 with conclusions.

6.2 Images

In Digital Image Correlation (DIC), Finite Element Model Updating (FEMU) or Inte-
grated DIC (IDIC), grayscale images (or brightness fields) with a distinct pattern distin-
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guishing individual material points are correlated, see e.g., Figure 6.2a. In contrast, in
MSC correlation of the projections of the shape contour of the sample is used instead.
This novel technique is based on the assumption that the boundary area is large and
the sample shape changes significantly during deformation. In this paper a stretchable
electronic interconnect will be investigated, see Figure 6.2b, as a typical example.
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(d) Signed distance map

Figure 6.2: Examples of images used for different image correlation techniques. In (a) a
dog-bone shaped sample with a grayscale pattern is shown, where the red box indicates
the region of interest used for correlation. In Figure (b) a real experimental image of a
stretchable electronic interconnect (from [132]) is shown. Figure (c) shows a binary image of
the projection of the specimen from (b). In (d) a signed distance map of the same projection
is depicted. In orange, the mask used for correlation is shown.

The structure of the interconnects consists of several beams connected to each other
and hence the boundary length is relatively large. Because of the small dimensions
and the proximity of the boundaries, it is difficult to apply a high quality pattern as
used in Figure 6.2a. More importantly, because the structures are freestanding and
deform out-of-plane upon stretching the patterned area rotates out of view, prohibiting
correlation further. In Mechanical Shape Correlation a planar projection of the structure
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is used as the image. In contrast to regular images, where a region of interest is chosen
restricting the correlation to where the pattern is present (red box in Figure 6.2a), for
MSC the region of interest is generally larger than the sample, since the edges are critical
for correlation and need to be in view.

The projection can be rendered in different ways. The simplest method is to convert the
physical image to a binary image where the background has a different color (e.g., black)
than the structure (e.g., white), see Figure 6.2c. However, since large monochromatic
areas occur in the binary images, even relatively large deviations from the solution will
not result in a high averaged residual and the method will converge before an accurate
solution is obtained. Therefore, instead of using binary images, signed distance maps
are extracted, see Figure 6.2d. The location of (the projection of) the sample edge
is determined and for each pixel the closest distance to this edge is calculated, see
Figure 6.3. Pixels located inside the structure obtain a negative value, while outside the
structure a positive value is assigned. This value is designated to the pixel of the resulting
MSC image, further called signed distance map. With this approach a displacement of
the sample edge is reflected in a significantly large region in the image.

Figure 6.3: Extraction of signed distance maps from FE simulation. The element contours
and nodal positions are shown in blue and the pixel grid is depicted. For each pixel in the
image the shortest distance to this edge is determined and the value is assigned to the pixels,
as represented for the one pixel in green.

Likewise, MSC projections need to be made from simulated results using a FE model.
Here, care should be taken that the projections created from the FE simulations ade-
quately resemble the reality. For example, when using shell elements in a simulation, the
physical thickness of the sample should be properly incorporated. Shell elements are
infinitely thin, henceforth, the thickness of the sample is not visible in the FE deformed
geometry. The thickness has to be added to the projection, by defining top and bottom
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surfaces of the element based on the translation and rotation data of the element nodes,
as illustrated in Figure 6.4.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

XY

Z

(a) Quadratic shell element

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

X

Z

(b) X Z -projection of shell ele-
ment

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

X

Z

(c) X Z -projection corrected for
thickness

Figure 6.4: An example of a quadratic shell element (with eight nodes) is shown in blue in
the left figure. A shell element is infinitely thin and hence the projection (middle figure) will
not reveal the thickness of the sample. The thickness is added, see the red element in the left
figure, and incorporated in the projection (right figure).

The images shown in Figure 6.2 are all top views from the specimen, i.e., projections on
the X Y -plane. Evidently, it is possible to make projections from an arbitrary viewpoint,
see Figure 6.5. If different viewpoints are accessible, one can choose the view that best
reflects the deformation of the sample contour, which is beneficial for the correlation.
The same viewpoints are to be used in the experiment and simulation. The view di-
rection is represented by the normal vector N , which is determined by the azimuth
and elevation angle. Special cases include the top projection (on the X Y -plane) with
[azimuth,elevation]= [0◦,90◦], the front projection (on the X Z -plane): [0◦,0◦], and the
side projection (on the Y Z -plane): [90◦,0◦]. The orientation of the resulting image is
determined by the vectors ex and e y , forming an orthonormal system together with N .
In order to define a unique coordinate system, in this paper we take ex in the X Y -plane,
and normal to N . The projection of the three-dimensional structure on the ex e y -plane,
i.e., the 2D coordinates of all points in the structure along the ex and e y axes, are then
determined by taking the inner product of the 3D point coordinates with the vectors
ex and e y . In DIC literature the image coordinates are usually denoted by x, or x and y .
Note that the image coordinates x and y do not necessarily coincide with the X - and
Y -coordinate from the 3D situation in the FE simulation.

Figure 6.5 displays simple orthographic projection, where perspective is not taken into
account. For most examples in this paper this orthographic projection is used, but it is
also possible to substitute projection methods including (weak or full) perspective [24].
In that case additional parameters for the construction of the projected image arise,
mainly the 3D position of the camera with respect to the imaged object. The influence
of misalignments of the camera angles and position, represented by the distance to the
sample along the normal vector N , is investigated in Section 6.5.2.
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Figure 6.5: Projection from an arbitrary viewpoint: The normal vector N determining the
view is determined by two angles; the azimuth and the elevation. The azimuth is the angle
with the negative Y-axis in counterclockwise direction (hence the particular angle shown
here is negative) and the elevation is the angle with the X Y -plane in positive Z -direction.
The projection plane is then determined by vectors ex and e y , of which ex is defined such
that it lies in the X Y -plane. The resulting signed distance map of a stretchable electronic
interconnect, including the mask, is shown in the inset for the considered view.

Finally, the structure itself is masked in the signed distance maps, in the sense that the
masked pixels are not incorporated in the correlation process, see the orange region
in Figure 6.2d. The mask is created by determining which pixels fall inside the closed
polygons formed by the projected sample contours. These pixels are designated as
the mask. For the experimental images the contour has to be determined using an
image segmentation algorithm (see Section 6.5). Note that when the mask is applied,
no negative values exist in the signed distance maps anymore, as only the pixels inside
the structure, which are now masked, had a negative sign.

The reason for masking is that it is challenging to determine the closest distance for
an inner pixel automatically in a robust manner. The inner pixels are close to multiple
segments of the contour (e.g., a side and a top edge) and for slight differences in the FE
simulation (due to the iterative process and perturbations on the degrees of freedom,
see next Section) the closest boundary segment may easily switch, thereby causing
jumps in the derivatives of the signed distance maps, which may induce instabilities,
affecting correlation. Masking the structure itself is an elegant solution, since correlation
is based only on the pixels located outside the structure, for which the closest distance
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is always to the outer contour of the structure. The effect of masking was investigated
in [78]2, where it was shown that better convergence of the method is achieved when
masking the structure.

6.3 The Mechanical Shape Correlation algorithm

The mechanical shape correlation algorithm is based on integrated digital image cor-
relation (IDIC) [100]. Since a different type of images is used, the algorithm needs
adaptation. In this section the algorithm is derived in detail, whereby the differences
with the conventional IDIC algorithm are clearly indicated.

Conservation equations

In digital image correlation, multiple images of a sample taken during an experiment
are correlated in order to identify displacement fields, strain fields or, in integrated
DIC, model parameters. In conventional DIC algorithms, the undeformed image is
usually labeled f and a sequence of deformed images defined as g . The algorithm is
based on brightness conservation, which implies that each material point preserves
the same brightness upon deformation, resulting in the same gray value in the image.
Mathematically this is denoted

f (x)− g ◦Φ(x, t ) = rDIC(x, t ) ≈ 0, (6.1)

Φ(x, t ) = x +u(x, t ), (6.2)

where rDIC(x, t ) are the residual images at each time step t and u(x, t ) the corresponding
displacement field. The notation g ◦Φ(x, t) signifies that g applies to the mechanical
mapping functionΦ, which in turn depends on the displacement field u. This means
that the image g is back-transformed to the original coordinates x using the functionΦ,
such that the brightness values are in the same position as in image f (if u is calculated
correctly), making the images comparable.

In mechanical shape correlation, however, this is not possible, since three-dimensional
displacements and rotations of a three-dimensional sample are considered. Therefore,
in the deformed images, the visible specimen faces may differ from those in view in
the reference image. Hence, it is impossible to recreate the reference image from the

2Reference [78] is a conference proceeding from the same authors with additional algorithmic details on the
masking procedure and its effect on the MSC correlation results.
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deformed images by back-deforming them. Therefore, instead of comparing a single
undeformed reference image to back-transformed deformed images, images of all incre-
ments of the experiment (indicated by g ) are correlated to the corresponding images of
the FEM simulation (denoted h). The MSC method is schematically shown in Figure 6.6.
Since the images are created in an equivalent manner from the experimental images
and the numerical simulation data, ’brightness’, or rather ’distance value’ conservation
still holds, contrary to Virtual Image Correlation algorithms, where the virtual image is
not constructed to exactly match the experimental one [46]. The residual, which thus in
theory still approaches zero, can be defined:

r (x, t ) = g (x, t )−h(x, t ) ≈ 0, (6.3)

This is now a forward transformation, in contrast to the back-deformation of images
towards the reference situation in DIC. Accordingly, the residual is not defined in the
reference configuration, but in the deformed configurations of each increment. Note
that both g and h are time (or increment) dependent and not described by brightness
values, but by signed distance values to the edge of the sample. Furthermore, note
that in regular (I)DIC this forward transformation could also be done. Image h is then
described by h(x, t ) = f (x)◦Φ−1(x, t ), where now the inverse mapping functionΦ−1(x, t )
is used, indicating that the images h are created from the reference configuration f
using the calculated displacement field u(x, t ) (from the FEM simulation).

Regularization

The DIC problem is intrinsically ill-posed, since the number of unknowns (multidi-
mensional full-field displacements) exceeds the number of equations (equal to the
number of pixels in the image). To reduce the number of degrees of freedom (DoFs),
the displacement field is regularized. This regularization is usually done by describing
the displacement field as a linear combination of shape functions with correspond-
ing coefficients. These shape functions may span local subsets of the total image, as
used in local DIC, or the entire region of interest, i.e., global DIC. In integrated DIC,
the regularization is achieved by coupling a finite element model of the sample to the
correlation, such that the displacement is confined to what is kinematically admissible
by the constitutive model. The unknowns are the model parameters that need to be
identified. The real mapping functionΦ(x, t ) is approximated by a mapping function
that depends on the constitutive parameters a used in the FE model:

Φ(x, t ) ≈φ(x, t ,a). (6.4)
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Figure 6.6: Schematic representation of the mechanical shape correlation (MSC) method to
identify model parameters a from an experiment. Simulations supply the images h to which
the experiment is compared.

This makes images h also dependent on the model parameters: h(x, t ,a).

Minimization

In order to find the optimal set of constitutive parameters, similar to other global DIC
approaches, the residual is minimized using a least squares approach:

a
opt = Argmin

a

Ψ, (6.5)
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withΨ the objective function, defined as

Ψ= 1

2

∫
τ

∫
Ω

r 2(x, t ,a)dxdt = 1

2

∫
τ

∫
Ω

[
g (x, t )−h(x, t ,a)

]2 dxdt . (6.6)

The solution of 6.5 implies:

∀ j ∈ [1,m], Γ j (aopt) = ∂Ψ

∂a j
(aopt) = 0, (6.7)

with m the number of degrees of freedom

Linearization and iterative solving

This problem is non-linear and hence a Gauss-Newton scheme is used to linearize and
solve the problem:

Γit+1
j ≈ Γit

j +
m∑

i=1

∂Γit
j

∂ai
δai = 0, (6.8)

with Γit
j = Γ j (ait). Rewriting this equation gives:

m∑
i=1

∂Γit
j

∂ai
δai = −Γit

j (6.9)

Mδa = b, (6.10)

with Mi j =
∂Γit

j

∂ai
the components ofM.
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Right hand side

The right hand side b j is given by

b j =−Γit
j =− ∂Ψ

∂a j
(ait). (6.11)

WithΨ given by equation 6.6, this becomes

b j =−1

2

∂

∂a j

∫
τ

∫
Ω

r 2(x, t ,ait)dxdt =−
∫
τ

∫
Ω

r (x, t ,ait)
∂r

∂a j
(x, t ,ait)dxdt . (6.12)

Usually, in IDIC, the derivative of the residual is written as

∂rDIC

∂a j
(x, t ,ait) =−

∂φ

∂a j
(x, t ,ait) ·gradg ◦φ(x, t ,ait). (6.13)

The first part,
∂φ

∂a j
, is referred to as sensitivity maps H j (x, t , ait

j ). The second part, gradg ◦
φ(x, t ,ait), is the true image gradient G(x, t ,ait) [103]. In IDIC, the sensitivity maps are
typically calculated using a finite difference scheme:

H j (x, t , ait
j ) =

U it(x, t , ait
j +∆ait

j )−U it(x, t , ait
j )

∆ait
j

, (6.14)

where U it is the displacement field calculated in the FEM simulation and ∆a j is a
perturbation of the j th degree of freedom. The displacements are nodal quantities in
FEM calculations and the displacement values need to be interpolated at pixel locations,
such that the sensitivity map can be multiplied by the image gradient. For IDIC, the
region of interest is smaller than the sample itself (see Figure 6.7a), i.e., everywhere in
the ROI nodes are present for which the displacements calculated in the FEM step are
known. Hence, it is possible to interpolate the displacement field at all pixel locations
in the ROI. For MSC, however, the region of interest is larger than the sample, see
Figure 6.7b, and there is a large area where the displacement field is not calculated.
Hence, it is meaningless to extrapolate the displacement field at the pixels outside the
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sample, whereas the gradient is only known outside the mask, i.e., outside the sample.
Therefore, ∂r

∂a j
(x, t ,ait) cannot be calculated by means of the usual splitting into G and

H made in IDIC.

(a) IDIC (b) MSC

Figure 6.7: Difference in region where the displacement field is known with respect to the
region of interest (ROI) for an IDIC procedure (left) and the MSC method (right). The mesh
of the FEM simulation is plotted on top of the image. For IDIC, this is the dogbone sample
with a grayscale speckle pattern from Figure 6.2a and for MSC this is the binary projection of
the stretchable interconnect from Figure 6.2c in the initial configuration. In both images the
ROI is displayed by a red outline.

Contrary to the displacement field, the residual field r (x, t ,ait) is known at all pixel
locations naturally, since it is defined as the difference between two images, i.e., the
difference between two signed distance maps. Therefore, instead of splitting the residual
derivative in the image gradient and the sensitivity map, the derivative of the residual is
calculated directly in MSC:

∂r

∂a j
(x, t ,ait) =

r it(x, t , ait
j +∆ait

j )− r it(x, t , ait
j )

∆ait
j

, (6.15)

with

r it(x, t , ait
j +∆ait

j ) = g (x, t )−h(x, t , a j +∆a j ) (6.16a)

r it(x, t , ait
j ) = g (x, t )−h(x, t , a j ). (6.16b)
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The step size ∆a j is an important parameter, which could influence the convergence
behavior of the method. This perturbation of the degrees of freedom is determined
relative to the DoF itself using a perturbation factor P :

∆ait
j = P ·ait

j . (6.17)

For the calculation of the derivative of a continuous function using this finite difference
scheme, parameter P would ideally be as small as possible, just above numerical ac-
curacy, to ensure an accurate approximation of the derivative. However, in this case
the residual is not a continuous function and depends on (non-linear) FE calculations,
for which the accuracy is determined by i.a., a set tolerance. If the step size is smaller
than appropriate for the given tolerance, the approximated derivative is prone to nu-
merical errors. Therefore, it is important to select a proper value for P , which may be
problem specific and it is unfeasible to give a general value for all possible situations.
The influence of the step size is investigated in Section 6.4.

Correlation matrix

The correlation matrix is

Mi j =
∂Γit

j

∂ai
= ∂

∂ai

∫
τ

∫
Ω

r (x, t ,ait)
∂r

∂a j
(ait)dxdt . (6.18)

With the product rule this can be split in two parts: Mi j = M a
i j +M b

i j , with

M a
i j =

∫
τ

∫
Ω

∂r

∂ai
(ait)

∂r

∂a j
(ait)dxdt , (6.19a)

M b
i j =

∫
τ

∫
Ω

r (x, t ,ait)
∂2r

∂ai∂a j
(ait)dxdt . (6.19b)

In the first term, the derivative of the residual appears a second time, which is already
determined in Equation 6.15. In the second term the second derivative of the residual
occurs. In literature second order derivatives in the correlation matrix of a DIC algorithm
are usually omitted, since it makes correlation highly sensitive to image acquisition
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noise [103]. Analogously, in this case a high sensitivity to the accuracy of the sample
edge detection from the experimental images is expected. Furthermore, the second part
contains the residual itself, which, according to [103], is high in the beginning of the
correlation and may lead to correlation to a local minimum. Therefore, M b

i j is neglected,

effectively using a modified Gauss-Newton scheme as in IDIC. This can be justified,
since the residual itself decreases during correlation, and hence, term M b

i j approaches

zero upon iteration towards the optimal solution.

Note that the problem is not solved incrementally, but all images (or increments) are
lumped into a single minimization process including all data, following [13, 100].

Additional residuals

Similar to IDIC, in the MSC framework it is also possible to take into account other
experimental data besides the optical part, such as the force history, e.g., [100, 113].
This is achieved by defining a second residual, which is the difference between the
experimentally measured values and the values resulting from the FEM simulation,
which also depend on the degrees of freedom. This residual is independent from the
optical residual and hence the total linearized system of equations can be written as
a weighted linear combination of the two separate problems. For the examples in this
work, however, correlation is based on the optical residual only and no additional data
is used.

Boundary conditions in the FE simulation

It is worth noting that it is not straightforward to apply the exact same boundary con-
ditions of the experiment to the FE simulations. It is very important to prescribe the
boundary conditions in the FE simulation as accurately as possible, since deviations
in them can significantly decrease the accuracy of the correlation. When a part of the
sample remains stationary or a known displacement is applied, then these boundary
conditions should of course be used for the FE simulation as well. When the boundary
conditions are not known for the experiment, it may be possible to implement a pre-
step in the correlation algorithm that uses DIC on subregions of the sample relevant for
determining the boundary conditions [119, 123]. It applies regular DIC (global or local)
on these subregions to acquire the displacements, which can be translated to kinematic
boundary conditions on nodes in the corresponding subregions in the FE simulation. In
case of the stretchable electronics samples considered in this paper, the subregions can
be the clamping pads, which do not rotate out of view and are hence suitable for DIC.
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6.4 Virtual experiments

In order to assess the Mechanical Shape Correlation algorithmic performance, several
virtual experiments are performed. For the virtual experiments, the experimental
images g (x, t ) do not originate from real experiments, but from a separate finite element
(FE) simulation for which the signed distance projections are stored as images g . In
this manner, the undesired side effects of a model error or experimental errors (e.g.,
residual stresses in the sample and image acquisition noise) are eliminated and an exact
investigation of the method itself is achieved.

Figure 6.8: The deformation of a stretchable electronic interconnect can be split in two main
deformation modes: torsion of the outer beams and bending of the middle beams.

The experiments focus on stretchable electronic interconnects and in particular the
structure introduced in [132]. Because of the small dimensions, some mechanical
properties are difficult to predict, as they are influenced by size effects. Therefore,
it is desired to execute mechanical characterization on the structures as processed.
Since these slender wire-like structures exhibit a large evolving boundary area, they
form a suitable test case for the MSC method. The deformation of the structures
can be described by two main deformation modes: torsion and bending of beams,
see Figure 6.8. These two deformation modes are investigated separately. The FE
simulations for these simplified experiments are less complex and time-consuming
than for the full structure and hence more suitable for an analysis of the influence of
different parameters in the MSC algorithm, such as the perturbation factor and the
initial guess for the unknown model parameters.

First, finite element simulations based on an elastic material model are executed, using
quadratic shell elements. The dimensions of the beams are as follows: the length is
50µm, the width 2µm and the thickness 100nm. Later, an elastoplastic material model
is used, with two unknown parameters.
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6.4.1 Bending of beams

The deformation of the middle section of the interconnects is characterized by bending
of the beams. The virtual experiment is executed by modeling a simplified version
of the stretchable interconnects: two connected beams are modeled, of which one is
constrained at the end, while the other is lifted by a prescribed load. The deflection of
the beams is therefore sensitive to the Young’s modulus E .
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Figure 6.9: Signed distance maps for a selection of increments of the virtual experiment for
bending of the middle beams. Side projections, on the Y Z -plane are made, with projection
angles [azimuth,elevation] = [90◦,0◦]. Note that the notation for x and y coordinates in
the signed distance maps does not correspond to the coordinate system (X Y Z ) of the FE
simulation. In orange the mask used in the correlation is shown on top of the signed distance
maps, however, visibility is limited since this is a side projection of the extremely thin beams
(100 nm).

The objective of this virtual experiment is to recover the correct value for this elastic
material parameter E . The Young’s modulus that was used in creating all the virtual
experiments is 69GPa (or 6.9 ·10−2N/µm2, since the structure was modeled in microns).
The deformation is most pronounced in a side projection of the specimen and hence,
Y Z -projections are made for the signed distance map images, see Figure 6.9. The
mechanical shape correlation algorithm is executed for this experiment for different
values of the perturbation factor P and different initial guess values. For each execution
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and each iteration the error in the identified Young’s modulus is determined:

εE = |E −Ep |
Ep

, (6.20)

with E the value calculated by the algorithm and Ep the solution, i.e., the value used to
create the virtual experiment.

The resulting convergence plot is shown in Figure 6.10. For a relatively wide range of
initial guesses very accurate results are obtained with errors going down to values of
10−8. For even smaller initial guesses, the Young’s modulus is so small, that the extreme
compliance of the double bending beam structure leads to nonlinear situations that
cannot be captured with the considered FE model. Hence, the MSC method cannot
be executed, which is indicated by the black circles in Figure 6.10a. For initial guesses
above roughly four times the actual value of E the method loses convergence, illus-
trated by red circles. Note, however, that the MSC algorithm is based on an unbounded
Gauss-Newton minimization scheme, which is relatively simple to implement, but
might not yield the best results in terms of initial guess robustness. Other minimiza-
tion approaches, such as Nelder-Mead or modified Gauss-Newton schemes with an
update limit and constraints are expected to increase the initial guess robustness even
further [79].
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Figure 6.10: Convergence behavior of the MSC algorithm for the bending beam experiment,
for different values of the perturbation factor P and different initial guess values. In figure
(a) the initial guess on parameter E (relative to the value used for the virtual experiment Ep)
and the perturbation factor P is shown, with for each combination the number of iterations
to convergence. For three initial guesses, marked by dotted lines in figure (a), the complete
convergence path is shown in figure (b), for all perturbation factors.

The perturbation factor P has a significant effect on the convergence speed, which is
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most apparent in Figure 6.10b. Too small values (P = 10−7) lead to slow convergence.
Indeed, the displacement information is only reflected in the location of the sample
edge, which is used for creating the images. A very small perturbation induces only a
small difference in location of the sample contour and if this difference is smaller than
the pixel size it is not manifested in the residual derivative. Consequently, the search
direction is not optimal and correlation is slow. Also for a large value of P (P = 10−1)
correlation is slow, since the derivative of the residual is not calculated accurate enough.
For intermediate values of P there is not a large difference in convergence behavior. As
mentioned in Section 6.3, the signed distance maps are smooth and the ’pattern’ on the
image does not influence the residual and its derivative as much as the small featured
speckle patterns used in IDIC. For this experiment, a proper perturbation factor is in the
range of 10−5 to 10−3. Note, however, that these values might be problem specific and
dependent on the pixel size with respect to the sample dimensions, i.e., the resolution
of the images.

6.4.2 Torsion of beams

In the second virtual experiment, torsion of the side beams of the stretchable intercon-
nect is investigated. In Figure 6.11 the simulation results are shown. The left side of
the beam is clamped and the right side is rotated using a prescribed torque around the
X -axis. Therefore, the amount of rotation is dependent on the Young’s modulus E . A
projection from the side (X Z -projection) is made and the signed distance maps are
determined, shown as well in Figure 6.11. The FE model used for creating the virtual
images is also imported in the MSC procedure, while the Young’s modulus E is the
unknown parameter.

The convergence plots for the virtual experiments are shown in Figure 6.12. The con-
vergence behavior is similar to the first virtual experiment in terms of accuracy and
dependence on the perturbation factor. A too small or too large value for P leads to
slower, but still adequate, convergence. An intermediate value leads to fast convergence
and accurate results. Especially the high accuracy is remarkable, since the difference in
specimen contour and hence signed distance maps is small for this experiment, even
for large steps in the variable E . Given the definition of the signed distance maps, the
information on the edge position is spread through the entire image, which results in a
strong sensitivity and hence, a high accuracy.

Again, if the initial guess on the Young’s modulus is far too low, stability problems in
the FE simulation occur, disabling the MSC algorithm, shown with black circles in
Figure 6.12a. The range of initial guesses for which convergence takes place, is smaller
to some extent than for the previous experiment. This is due to the smaller differences
in sample contour upon changes in E and hence, a lower sensitivity to the material
parameter.
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Figure 6.11: Signed distance maps for selected increments of the virtual torsion experiment
for the side beams. The projection is an X Z -projection, in which the projection angles are
[azimuth,elevation] = [0◦,0◦]. Note that the notation for x and y coordinates in the signed
distance maps does not correspond to the coordinate system (X Y Z ) of the FE simulation.
The mask used in the correlation is shown as well, in orange.

6.4.3 Elastoplastic bending of beams

In the previous experiments only one parameter, namely the Young’s modulus, was the
unknown parameter. To determine this elastic parameter it was necessary to incorporate
the load, which was prescribed as a boundary condition in the FE simulation. In a real
experiment, measurement of the load may be complex, especially for very large or small
structures. For instance, for the small stretchable electronic interconnects, which are
designed to be as compliant as possible, it is challenging to measure the force, since
it is difficult to design a load cell that is sensitive enough. Furthermore, the Young’s
modulus is in general not very sensitive to size effects and therefore in case of these
stretchable electronic interconnects not a variable of interest in the Mechanical Shape
Correlation procedure. The plastic parameters, such as the yield strength, however, are
more important. As was shown in [132], the initial yield strength for these interconnects
appears to be much higher in experiments than expected from literature. Hence, the
next virtual experiment is focused on identification of plastic parameters. Elastoplastic
FEM simulations are performed, where J2-plasticity is used along with a power law
hardening model:

σy = A
(
ε0 + ε̄p

)m , (6.21)
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Figure 6.12: Convergence plot of the MSC algorithm for the torsion beam experiment, for
different values of the perturbation factor P and different initial guess values. In figure (a) the
set of parameters P and initial guesses on E is shown, with for each combination an indication
on the convergence. For three initial guesses the complete convergence path is shown in figure
(b), for all perturbations factors.

with σy the yield stress, ε0 the strain at initial yield and ε̄p the equivalent plastic strain.
Parameter A is a coefficient related to the initial yield strength (σy0) and m is the
hardening exponent.

For the virtual experiment an exponential hardening parameter of 0.2 is used and
parameter A is chosen such that it corresponds to an initial yield strength of 200 MPa.
Coefficient A can be calculated from the initial yield strength using equation 6.21,
taking ε̄p = 0, since there is no plastic strain yet at initial yield, hence: A = σy0/εm

0 .
Furthermore, the strain at initial yield can be described by the end of the elastic region:
ε0 =σy0/E .

Now the displacements of the beam’s ends are prescribed, rather than the force. The
signed distance maps look similar to those in Figure 6.9, although the specimen outline
changes slightly when plasticity becomes active, i.e., the beams become slightly more
straight and less S-shaped due to the evolving plastic hinge. Based on the previous
virtual experiments, a perturbation factor P of 1 · 10−3 is applied. A range of initial
guesses for parameters A and m is used, as shown in Figure 6.13a. In this figure it is also
depicted which of the parameter combinations converge to the expected solution and
which diverge.

Four regimes emerge in the parameter field (Figure 6.13a). Regime 1 is located around
the diagonal and the algorithm adequately converges for these initial guess values. For
these combinations of A and m the initial yield point σy0, which can be calculated with
Equation 6.21 for ε̄p = 0, is typically within a factor of 2 from the initial yield strength
of the virtual experiment, see the green curves in Figure 6.13b. Therefore, although
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Figure 6.13: Plastic parameters, m and A, used as an initial guess for the MSC procedure
(left) and corresponding stress-strain curves (right). The parameters are scaled with the values
used for the virtual experiment, mp = 0.2 and Ap corresponding to a yield strength of 200 MPa
(or 2 ·10−4N/µm). The blue circle indicates the expected solution. The arrows indicate the
direction in which the algorithm is converging or diverging. The stress-strain curves according
to Equation 6.21 for the parameter combinations are shown on the right. The curves are
colored accordingly. The crosses indicate the stress state at the last increment of the FEM
simulations. The blue curve corresponds to the virtual experiment with the exact parameter
values. Four regimes are indicated by numbers, labeled accordingly in the two figures.

parameters A and m differ significantly from the expected values, the initial guess for
the yield strength is not very far from the solution and the method converges. For all
these converged solutions the error in A and m is reduced to below 10−4.

In the region located underneath the diagonal, i.e., regime 2 in Figure 6.13, the initial
yield strength is strongly underestimated and hence many of the increments are in the
plastic regime, while in the virtual experiment they are in the elastic regime, see the
blue curve in Figure 6.13b. Note from the convergence path arrows in Figure 6.13a that
in this regime both A and m increase. Separately this makes sense, since a higher A
corresponds to a higher yield strength (for a fixed m) and a higher value for m brings
the material behavior in the plastic (hardening) regime closer to the elastic regime.
However, since both parameters influence the initial yield strength,σy0 does not change
significantly upon increasing both parameters. Because of this dependence both A and
m keep increasing and diverge from the solution.

For the parameter combinations above the diagonal the initial yield strength is overesti-
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mated, see the red curves of regime 3 in Figure 6.13. This implies that a large section of
the increments, and hence images, is in the elastic regime, thereby strongly reducing
the sensitivity to the plastic parameters. This leads to divergence from the solution.

In the fourth regime the initial guess for m is larger than 1, which is not physical
and leads to pure elastic behavior. The same complications as in regime 3 hold and
divergence results.

This example illustrates that the problem should be well-defined for the MSC algorithm,
which is of course also the case for any IDIC approach. For any method it is difficult to
obtain parameters describing the plastic material behavior if there are elastic increments
influencing the sensitivity. Therefore, one usually first determines when initial yield
occurs and exploits this in the correlation of the material parameters by only using the
plastic branch in the correlation. Furthermore, in this case, A and m are interdependent
via the initial yield strength σy0, which can lead to a higher initial guess dependence
in the correlation. Also the physical implication of variations in the unknown model
parameters should be taken into account. Nevertheless, in a relatively large area in the
parameter initial guess field fast convergence towards the correct solution is obtained.

6.5 Towards real experiments

In this final Section the influence of some important aspects that play a role in real
experiments is investigated. First, in real experiments the contour of the sample needs
to be determined from the images taken during the experiment, while up until now
the exact contour was directly extracted from the FE simulation. The method used
for extracting the contour from grayscale images may influence the accuracy of the
localization of the contour and hence the accuracy of the correlation. Second, in
a real experiment it can be difficult to exactly determine the camera viewpoint and
a misalignment between the experimental images and the projections from the FE
simulations may occur. The influence of this misalignment is investigated.

6.5.1 Influence of image segmentation approach

In this virtual experiment the influence of an important factor affecting real experiments
is examined, i.e., the extraction of signed distance maps from pixelized experimental
images. This is tested virtually, since in a real experiment the reference solution is un-
known and performance assessment is not feasible. Until now the signed distance maps
were created directly from the sample contour taken from a finite element simulation.
However, in a real experiment grayscale images are taken from the sample, in which the
exact edge of the sample is undetermined due to the pixel grid of the image. In other
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words; a sharp black (for background) and white (for sample) transition is not observed,
but around the location of the contour gray pixels occur, since the sample edge crosses
these pixels somewhere, see Figure 6.14.

Figure 6.14: Impression of an experimental image, where the black-white transition representing
the sample edge is smoothed out to gray levels due to the discrete pixel nature of the image.
The actual position of the sample edge is represented by the blue line.

To determine the location of the sample edge in a real image, various image segmenta-
tion methods with various degree of complexity have been introduced in the literature,
e.g. methods based on a level set framework [28, 154] or even Virtual Image Correla-
tion algorithms [116]. In contrast, as an ultimate test for the MSC framework, here the
most rudimentary method is explored, i.e. imposing a threshold on the gray level to
determine which pixel centers belong to the sample and which to the background. This
way a binary image is created, from which the now sharp black-white transitions can
be used to determine the (approximated) location of the sample edge. The shortest
distance to this edge can be calculated for each pixel in the image to create the signed
distance map. To mimic this proces, in this virtual experiment the signed distance maps
are determined as required for an experimental image: create a pixelized binary image
first, using the sample contour following from the simulation, and from this image
the signed distance map, see Figure 6.15. We call this approach the pixelized method,
whereas for comparison the original method for creating the signed distance maps
from the continuous edge (following from the FE simulation in the virtual experiments
and from an advanced image segmentation method in real experiments) is named the
continuous approach. Note that it is not straightforward to choose a proper threshold
for real experimental images, especially if illumination (and hence gray level intensity)
is not uniform over the image or changes between the images. One should consider if a
single threshold value for all images is sufficient, or if a more sophisticated thresholding
strategy, e.g., [16], is required. In contrast, creating a binary image from the numerical
contour is fairly simple, as it merely includes checking which pixel centers lie inside the
contour and which outside, and there is no need to select a proper threshold.

The influence of using the pixelized method, is investigated here, on the virtual exper-
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Figure 6.15: Creating signed distance maps via the two stage pixelized approach. The pixel
grid of the image is shown and the blue lines represent the element contour as obtained
from the simulation. A pixelized binary image is created by determining which pixels are
located within this contour, to mimic the effect of the most rudimentary image segmentation
method, i.e. imposing a gray level threshold, on a real experimental image; the resulting edge
is indicated with red dots. In a second step that is specific for the MSC method, the signed
distance map is created based on the pre-allocated edge, as is shown for one pixel.

iment from Figure 6.9, with an elastic material model with the Young’s modulus E as
material parameter, as in Section 6.4.1. In Figure 6.16a the residual field is shown for
one of the increments of the double bending beam experiment, where images g and h
are calculated with the pixelized approach. In this residual field lines perpendicular to
the structure are observed. Figure 6.17a reveals the origin of these lines. Creating the
binary image first induces a shift of the edge in the order of a couple of pixels. Therefore,
the difference in signed distance value for pixels positioned in a line perpendicular to
the edge around the location of this shift, for a small dislocation of the element contour,
is relatively high for the pixelized approach compared to the continuous method (Fig-
ure 6.17b). This difference becomes visible when the images are subtracted, i.e., the
residual is calculated.

In the derivative of the residual these lines become even more apparent, see Fig-
ures 6.16b and 6.16c. Especially for a small perturbation factor the lines dominate
the derivative field, which may lead to poor or slow convergence. This is indeed ob-
served in the convergence plots in Figure 6.18, where the MSC algorithm is executed for
initial guesses within the converging domain of Section 6.4.1 and the three best pertur-
bation factors. The decrease in convergence performance is larger if the perturbation
factor is smaller. The initial guess is not as important. The pixelized approach also
impairs the final accuracy of the method, i.e., the error after the final iteration is larger.
It is important to note, however, that even when using the most rudimentary image
segmentation method, the MSC method still converges within a reasonable amount of
iterations (for acceptable values of the perturbation factor) with an accuracy of 10−4,
which is a promising result for correlations incorporating this experimental issue. In real
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(b) Residual derivative, P = 1e −3, pixelized
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(d) Residual derivative, P = 1e −3, continuous

Figure 6.16: Residual field and derivative of the residual, as calculated with Equation 6.15,
for one of the increments of the virtual bending beams experiment. The images are created
using the pixelized approach for the signed distance maps for Figures (a)-(c). The derivative
is calculated for ∆ai with a perturbation factor of 1e −3 and 1e −5. The large difference in
scale for Figures (b) and (c) occurs due to the difference in order of magnitude in ∆ai , while
the derivative is calculated by dividing by this number. In Figure (d) the residual derivative is
shown for which the images are created with the continuous approach.

experiments, however, other experimental issues play a role as well and a basic image
segmentation method such as binarization may not be adequate to obtain (accurate)
correlation and another, more advanced, algorithm might be necessary.

As mentioned before, a possibility for segmenting the image, i.e., differentiating the
sample from the background, is a Chan-Vese algorithm [28, 154]. The contour and
signed distance map (level sets) following from this algorithm are shown on the left
side of Figure 6.19 for a SEM image of a real experiment with the stretchable electronic
interconnects from [132]. The Chan-Vese algorithm has two penalty parameters, µ and
ν to penalize the length of the curve and the area inside the curve respectively. They can
be fine-tuned to make the curve smoother. In Figures 6.19a and b the obtained curve
and signed distance map with (µ= 0.05,ν= 0.1) and without (µ= ν= 0) penalties on the
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(a) Pixelized approach (b) Continuous approach

Figure 6.17: Construction of signed distance map for a slightly displaced, due to the update
and perturbation of the DoFs, element contour. For the pixelized method (left) the pixels that
were located within the edge in the original configuration of Figure 6.3, but not inside the
displaced edge are marked red. For comparison, for continuous approach (right) the original
element contour (blue) and the displaced edge (orange) are also depicted. In both figures
the arrows indicate the closest distance to the binary edge in the original situation and the
displaced configuration.

curve length and area are shown. Indeed, the curve where the penalty factors are non-
zero is smoother, while the other curve appears wavering because it follows the small
"fur-like" features on the surface of the interconnect [69] that are located at the edges.
In fact, while these "fur-like" features do not affect the interconnect mechanics, they do
significantly alter the signed distance map. Therefore, the micro-fabrication processing
should be improved first before a MSC parameter identification on these interconnects
can be performed. Nevertheless, a comparison is made with the signed distance maps
obtained from numerical simulations. To this end, on the right side of Figure 6.19 the
contours and signed distance maps from simulation results are shown. In Figure 6.19c
the signed distance map is directly made from the top, bottom and side contours
following the FE simulation, consistent with the continuous approach of Figure 6.3 (the
binary image behind the contour of Figure c is only shown for visualization purpose, but
not used to construct the signed distance map). Note that the resulting signed distance
map looks non-smooth at the edges, which is a result of the construction of the signed
distance map with a double (top and bottom) contour and a reason to mask out these
pixels in the correlation process, as discussed in Section 6.2. The contour (and hence
signed distance map) looks significantly different from the ones in Figures 6.19a and b.
Besides the simplistic pixelized approach introduced above, another, better, method
to make the numerical image correspond to the real one better is to first create a high
resolution binary image (e.g., a ten times higher resolution than the experimental image)
and then decrease the resolution to the level of the experimental image, whereby the
sharp black-white transition is smoothed, thereby mimicking the image capture process
of a CCD camera. Then the same Chan-Vese algorithm can be applied to this gray-level
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Figure 6.18: Convergence plots of the MSC algorithm for the bending beam experiment. A
comparison is made between the continuous approach and the pixelized method for creating
signed distance maps. The perturbation factor P is varied, as well as the initial guess.

image to obtain a similar contour and signed distance map as from the real experimental
image. The result of this is shown in Figure 6.19d. As the correct plasticity parameters
are unknown, the overall shape of the interconnect is different between experiment
and simulation, which makes a quantitative comparison impossible. Moreover, the
signed distance maps of Figures 6.19b and d are clearly different at the locations of
the "fur-like" features. However, from qualitative analysis of a region of a clean edge
without these features it is concluded that, for the same Chan-Vese settings, a good
resemblance is obtained for the detected edge, in terms of a similar slightly wavy edge
and a similar slight short-cut of the edge in the inner corner. Therefore, it is believed
that, in absence of "fur-like" features and with further research to select the optimal
values of the Chan-Vese penalty parameters, it should be possible to obtain highly
similar signed distance maps that are suitable for correlation.

6.5.2 Influence of camera misalignment

Another problem that might arise during real experiments includes inexact agreement
between the view of the camera in the experimental setup and the projection angle for
the FE simulation. Here the influence of an error in the projection angles and camera
position is investigated and a solution is posed. Also, the role of perspective is addressed.

Again, the virtual experiment with the double bending beams with one elastic unknown
parameter from Section 6.4.1 is repeated, but now the images are made under an angle
instead of the exact Y Z -projection. The correlation is performed with an initial guess
within the converging regime (Figure 6.10): E = 10−0.2 ·Ep , where Ep is the solution,
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Figure 6.19: Comparison of contours and corresponding signed distance maps obtained from
a real experimental (SEM) image and from an FE simulation. For the real experimental image
a Chan-Vese algorithm is used to segment the image (figures (a) and (b)), where µ and ν are
penalty parameters on the curve length and the area inside the curve respectively, which can
be adjusted to obtain a smoother curve. For the numerical images a signed distance map
is made directly from the (top and bottom) contours following the simulation (figure (c))
and with the same Chan-Vese algorithm, after mimicking a real experimental image from the
simulated contours (figure (d)).

and a perturbation factor of P = 1e − 3. In the virtual experiment the azimuth and
elevation angles are chosen −81.2◦ and 40.2◦ respectively. The correlation is performed
for a misalignment in these angles up to 4◦, which is a generous upper bound of the
inaccuracy with which the viewing angle in a real experiment can be determined. The
resulting errors in the objective parameter E are listed in Table 6.1. It can be seen that
even for large misalignment the algorithm still converges towards the solution. The
error in the Young’s modulus is naturally not as small as with a perfectly aligned system,
however, it is still reasonable.

Table 6.1: Error in parameter E (according to equation 6.20) after correlation with misaligned
projection angles. The true angles, [azimuth,elevation]= [−81.2◦,40.2◦], are highlighted in the
table. Note that the middle dark blue highlighted value is the error without misalignment.

azimuth \elevation 36.2◦ 39.2◦ 40.2◦ 41.2◦ 44.2◦

−85.2◦ 1.1 ·10−4 4.7 ·10−2 6.2 ·10−2 8.0 ·10−2 1.3 ·10−1

10
-5

10
-4

10
-3

10
-2

10
-1

−82.2◦ 4.5 ·10−2 4.4 ·10−5 1.6 ·10−2 3.3 ·10−2 8.5 ·10−2

−81.2◦ 5.8 ·10−2 1.6 ·10−2 3.8 ·10−6 1.7 ·10−2 6.9 ·10−2

−80.2◦ 7.7 ·10−2 3.2 ·10−2 1.8 ·10−2 3.8 ·10−5 5.2 ·10−2

−77.2◦ 1.3 ·10−1 8.3 ·10−2 6.8 ·10−2 5.1 ·10−2 6.1 ·10−4

Besides accepting the error occurring due to misalignment, it is also possible to in-
corporate the projection angles as additional unknown parameters in the correlation
procedure. To test this, the same virtual experiment is executed, and moreover, per-
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spective is included in the projection as well. The difference between the before used
orthographic projection and a projection where perspective is used is shown in Fig-
ure 6.20a. This introduces another degree of freedom, namely the position of the camera,
which is here defined as the distance of the camera to the object along the normal to
the projection plane (which is specified by the projection angles). Hence, this virtual
experiment has four unknown parameters, i.e., Young’s modulus E , azimuth angle θaz ,
elevation angle θel and camera distance dc . In the case of the viewpoint parameters the
sensitivity maps, i.e., residual derivatives, are not determined by performing an extra
FE simulation with perturbed parameters, but by directly creating new signed distance
maps (and from these the residuals and their derivatives) with perturbed projection
angles and camera distance. In the virtual experiment four different initial guesses on
the azimuth and elevation angles, ranging from a misalignment of 0.2◦ up to 10◦ and on
the camera distance, ranging from 5 µm to 50 µm (in comparison, the sample itself is
50 µm in length) are assessed. The initial guess on the Young’s modulus is the same for
each experiment (10−0.2 times solution Ep ) and the perturbation factor is again 1e −3.
The resulting convergence behavior is presented in Figure 6.20b. It can be seen that
even for a large initial misalignment, i.e., 10◦ error in the projection angles and 50 µm
error in the camera position, the correct solution is found within a small amount of
iterations and with high accuracy (order 10−4). This leads to the expectation that in
application to real experiments, where the camera view can in general be estimated
within ∼ 1◦, the material parameters can still be determined accurately, especially if the
camera viewpoint specification is included as additional unknowns in the correlation
procedure.

6.5.3 Other experimental imaging issues

Imaging can induce many other error sources for image correlation algorithms, for
instance changes in illumination, lens aberrations and scanning artifacts (when using a
scanning electron microscope). Their influence may be smaller or larger, depending
on the problem and the specific experimental conditions, and is worth investigating
case-specifically. Some issues can be assessed beforehand and corrected for manually.
Others can be addressed by adding representative parameters as degrees of freedom in
the correlation, similar to the projection angles above, or the digital image correlation
framework could be extended with model functions for the distortions to correct for
them, such as has been done for electron microscopy artifacts like spatial distortion,
drift distortion and scan line shifts [93, 94].
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Figure 6.20: Difference between an orthogonal and perspective projection and convergence
plot for the virtual experiment with projection angles as additional unknown parameters. The
virtual experiment is repeated for four different initial guesses on the projection angles and
camera distance, as listed in the inset table in the right figure. The decrease in error is plotted
for all four parameters in the correlation proces, i.e., E , θaz , θel and dc . For E the error is
calculated by equation 6.20. For the projection angles and camera distance the error is given
as the difference in degrees and micrometer respectively between the calculated values and
the actual values (θaz =−81.2◦, θel = 40.2◦, dc = 100µm).

6.6 Conclusions

A novel mechanical identification method, Mechanical Shape Correlation (MSC), has
been proposed in this paper. The algorithm is based on Integrated Digital Image Cor-
relation methods, where images taken during an experiment are coupled to a Finite
Element model in order to determine correct model parameters. In regular (I)DIC meth-
ods a speckle pattern is applied to the sample and correlation of the images is based on
the brightness conservation of the pattern. Accordingly, correlation is only possible if
the patterned area remains in view and hence large rotations are not permitted. Also,
complex and large deformations may lead to severe degradation of the speckle pattern,
which inhibits correlation. Furthermore, speckle pattern application can be challenging
when dealing with, for instance, specimens of very small or large dimensions. In the
MSC method, the images do not consist of a grayscale speckle pattern, but they are
projections of the sample, based only on the contour of the structure. The advantage is
that complex, three-dimensional deformations form no obstacle for correlation, since
the outline of the specimen can be tracked nonetheless. This is beneficial in cases where
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such complicated displacement fields occur, but also in cases when it is not possible to
apply a speckle pattern. Condition is, however, that the specimen of structure outline
changes sufficiently during deformation of the sample.

In this work, the method is applied to virtual experiments on stretchable electronic
interconnects, consisting of multiple beams connected to each other. The deformation
of the stretchable interconnects is described by two main modes: double bending of
the middle beams and torsion of the outer beams. These two deformation modes
were analyzed separately and the effect of several algorithmic variables, such as the
perturbation factor and the initial guess, was investigated. This was done for an elastic
material model with a single unknown parameter, as well as for an elastoplastic power
law hardening model with two unknown model parameters, the hardening coefficient
A and the hardening exponent m.

In all virtual experiments fast and accurate convergence was obtained within a cer-
tain range of initial guesses, which is due to the nature of the signed distance maps,
which span the entire image, despite that in the projections the deformations are only
reflected in the sample contour instead of the entire sample surface. The perturbation
factor, which influences the update in the finite difference approach for calculating the
sensitivity of the residual towards the degree(s) of freedom, i.e., the unknown model
parameter(s), affects the convergence behavior. A proper perturbation factor for the
considered experiments was found to be in the order of 10−5 to 10−3. The initial guess
regime for which the method converged ranged from two to three times smaller values
than the expected solution to two up to four times larger values, depending on how
well the deformations can be captured in the signed distance map projections. In the
elastoplastic experiment also the dependence of the two parameters A and m via the
initial yield strength σy0 played a role. As for any correlation algorithm, physical impli-
cations of parameter variations should be taken into account and interdependence of
model parameters may lead to poor convergence. Furthermore, improvement of the
initial guess robustness is expected if the Gauss-Newton scheme in the algorithm will
be replaced by e.g., a modified, constrained minimization approach.

Finally, a step towards real experiments was made. As an ultimate test for the MSC
framework, the most rudimentary image segmentation method was explored, i.e. im-
posing a threshold on the gray level to locate the sample edge, resulting in a pixelized
binary image from which the signed distance maps are created. With this image segmen-
tation method, the exact location of the edge is discretely approximated, which reduces
convergence. However, convergence was still adequate with a reasonable amount of
iterations and with an accuracy of 10−4. Also the influence of misalignment between
the camera view in the real experiment and the projection angles used in creating the
images from the FE simulation was investigated. It was shown that for angle mismatches
up to at least 4◦ the MSC algorithm still converges towards the solution, however, the
accuracy is naturally reduced. Nonetheless, if the projection angles and camera position
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(in case a perspective projection is made) are incorporated as additional unknown
parameters in the correlation, the algorithm robustly converges towards an accurate
(∼ 10−4) solution, even for very large misalignments up to at least 10◦ in viewing angle
and 50 µm in camera distance. These are promising results for future applications
to real experimental images, especially when one of the advanced, (highly) accurate
image segmentation methods reported in literature is employed with the MSC method
and experimental unknowns, such as projection angles, are added as unknowns in
correlation.
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Chapter 7
Mechanical Shape Correlation: analysis of a

real experiment

Abstract

The recently developed Mechanical Shape Correlation method, so far only tested on
virtual experiments, has been applied to a real experiment to identify the material pa-
rameters of a meso-scale freestanding stretchable electronic interconnect structure. To
this end, a stretching experiment was executed on a sample with four beams, trigger-
ing the main deformation modes of the structure, while images were captured during
the deformation process. The Chan-Vese segmentation algorithm was employed to
extract the specimen contour from the experimental images. Caution was taken to
adequately match the real experiment with the corresponding model thereof. Special
attention was paid to extract the boundary conditions from the experimental images
using a global digital image correlation method. First, the MSC method was used to
establish the initial configuration of the specimen, which was found to deviate from the
ideal perfectly straight configuration, as the clamping pads were displaced and rotated
slightly during sample clamping. The parameters describing these deviations, along
with those describing the alignment and positioning of the structure within the image
frame, were identified successfully. Identification of the plasticity parameters, however,
was not feasible for the analyzed experimental test case, which is mainly attributed to
the limited amount of plasticity induced in the experiment. The limited sensitivity to
these parameters is masked by the larger sensitivity to other dissimilarities between the
experimental and numerical images. However, the fruitful analysis of the initial configu-
ration provides confidence that the MSC method is able to work in practice, provided
that the experiment is designed such that the sensitivity to the objective parameters is
satisfactory, which should be studied thoroughly.
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7.1 Introduction

Recently, a novel image-based mechanical characterization method was developed:
Mechanical Shape Correlation (MSC) [77]. This method is based on Integrated Dig-
ital Image Correlation (IDIC) techniques, where correlation of digital images taken
of different loading increments during an experiment is coupled to a Finite Element
(FE) simulation, with the goal to identify the parameters of the material model. In
contrast to IDIC, where a speckle pattern on the sample is tracked to determine the
displacement fields, the correlation in MSC is based on the contour of the specimen.
This is an attractive alternative in cases where a speckle pattern cannot be tracked due
to, for example, out-of-view rotation of specimen surfaces or if the pattern degrades
significantly upon large deformations. It is important, however, that the outline changes
sufficiently between increments to be able to track the deformations.

The main application in [77] is a recently developed freestanding stretchable electronic
interconnect [132], see Figure 7.1. For designing reliable stretchable electronics it is
key to understand the mechanical behavior of the interconnects. Since the micron-size
dimensions induce size effects and conditions during manufacturing influence the
mechanical properties as well, it is important to evaluate the structures as processed. A
key feature of the freestanding interconnect design is that the beams of the structure
are free to rotate and align in the stretching direction, thereby enhancing the maximum
stretchability tremendously. However, this out-of-view rotation of the beam faces makes
it also difficult to analyse the displacements and mechanical properties with (I)DIC
methods. The Mechanical Shape Correlation method should be able, however, to track
the large contour changes of the interconnects. This has been demonstrated in [77]
by means of virtual experiments with these interconnect structures. Several issues
expected in real experiments have thereby been addressed, such as the alignment of
the images resulting from the numerical simulation and those from the experiment in
terms of camera angle and perspective. The aim of the current paper is to assess the
MSC method on a real experiment.

Although potential experimental complications have been identified and scrutinized
using virtual experiments, there are still some rather specific issues affecting real experi-
ments on the freestanding stretchable electronic interconnects from [132]. The most
important one is the presence of "fur-like" features in the available samples that result
from the micro-fabrication processing [69], see in Figure 7.1. These features hamper the
determination of the true contour of the specimen, thereby complicating the correlation
with the numerical contour, in which these features are not present. Furthermore, the
micron-sized dimensions of the interconnects imply that images of the experiment
need to be captured using a scanning electron microscope (SEM). SEM images reveal a
number of artifacts, such as scan line shifts, drift and spatial distortions, that induce
error sources affecting image correlation algorithms. Although it is possible to cor-
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Figure 7.1: Freestanding stretchable electronic interconnect.

rect for them [93, 94], this is not straightforward and would increase the complexity of
performing Mechanical Shape Correlation on a real experiment.

Therefore, to assess the MSC method in practice, in this paper a real experiment is
performed on the freestanding stretchable electronic interconnect geometry from [132],
whereby the original micron-scale structure is scaled up to a 250× larger meso-scale
structure (with 12.5 mm long beam members instead of 50 µm long beams). The relative
geometry and loading conditions are equivalent and hence, the deformation modes
observed at the micron-scale are expected to be the same at the meso-scale. Moreover,
for this larger scale the bulk (mechanical) properties of the material are valid, due to
the absence of size effects, which makes it easier to validate the material parameters
identified with MSC. Therefore, this test case is believed to be relevant for demonstrating
the potential of the MSC method.

The paper is organized as follows. First the methodology is explained in Section 7.2: the
specimen design and experimental setup are introduced and the MSC algorithm with
its main ingredients is briefly described. In Section 7.3 the results of the MSC correlation
of the real experiment with the stretchable interconnect geometry are presented. In
Section 7.4 conclusions are drawn.

7.2 Methodology

In this Section the methodology adopted for the parameter identification of the stretch-
able electronic interconnect is presented. First, the sample design is clarified, after
which the experimental setup is described. Finally, the Mechanical Shape Correlation
algorithm is reviewed, along with the main required input.
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7.2.1 Specimen geometry

The up-scaled meso-scale freestanding stretchable interconnect geometry, shown in
Figure 7.2, complies to the design introduced in [132], which matches the geometry
shown in Figure 7.1, but with four instead of ten beam members. The initially flat
structure consists of a rectangular design of multiple freestanding beams that are able to
rotate and align with the loading direction upon stretching. The geometry adopted here
incorporates four beams, which is the simplest geometry that exhibits all deformation
modes upon stretching: torsion of the outer beams and bending of the inner beams.

The size of the up-scaled samples is indicated in Figure 7.2: The beam length and width
are 12.5 mm and 0.5 mm. The used material is a 0.075 mm thick Hasberg stainless
(spring) steel1, for which the listed Young’s Modulus is 200 GPa and the tensile strength
1400-1600 MPa. Spring steel has been chosen as it is a heavily-used relevant material for
beam-like structures and elastic hinges at the macro-scale (in contrast to micron-scale
structures which are often made of silicon or aluminum due to available microfabrica-
tion processing schemes). However, determination of the plastic parameters of spring
steel will be challenging due to its low elongation to failure.

12.5 mm

0.5 mm
2
.5

 m
m

0.25 mm

r = 0.75 mm

0.75 mm

thickness = 0.075 mm 

5mm

Figure 7.2: Up-scaled freestanding stretchable interconnect sample with dimensions.

7.2.2 Experimental setup

An image of the used setup is shown in Figure 7.3. With the above mentioned dimensions
the interconnect samples are well visible to the naked eye, but to capture detailed images
during the experiment an optical microscope is used, i.e., the Carl Zeiss Discovery.V20

1Material number 1.4310:
https://www.hasberg−schneider.de/en/precision−thickness−gauge−strip−
technical−info.html
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stereo microscope with a Zeiss PlanApoS 0.63× FWD 81 mm lens. The camera used to
capture the images is a Zeiss Axxiocam 506 mono, which is mounted on the microscope
on a special camera mount, such that the images are captured straight from above. With
this set-up, the alignment between the experimental images and those following from
the numerical simulations is more straightforward.

Optical microscopeCamera

Tensile stage

controller

Image acquisition

software

Tensile stage

LED lighting ring

Double sandblasted

PMMA plate

xy-positioning stage

Figure 7.3: Setup used for the experiments. The sample is placed in a micro-tensile stage
underneath an optical microscope that is equipped with a camera to capture the images.
Underneath the tensile stage a light source is placed with two spaced sandblasted PMMA
plates to maximize the contrast between the specimen and the background in the images.

For differentiating the specimen from its background, i.e., to determine the sample
contour, a good contrast between test specimen and background is preferred. More
importantly, there should be no unexpected reflections of light on the metal surface
of the interconnect emitted towards the camera, which would complicate the identi-
fication of the sample outline. Therefore, a homogeneous light source (an LED-ring)
is placed underneath the sample and a double sandblasted PMMA plate is placed in
between to diffuse the light, such that the sample appears black on a homogeneous
white background, see Figure 7.4.

For stretching the sample, a micro-tensile stage (Kammrath & Weiss tensile/compres-
sion module with a 20N load cell) is used, connected to a controller module that ensures
a constant tensile speed of 20 µm/s. In Figure 7.4b an image is shown where the inter-
connect is stretched by approximately 10 mm. This amount of stretch optimally utilizes
the field of view of the used microscopic setup, while still deforming the specimen
plastically, as was verified by the lasting deformed shape of the structure when removing
is from the tensile stage after the experiment. This is important for identification of the
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plastic material properties, which is the objective of the MSC analysis of this experiment.

5mm

(a) Undeformed (b) Stretched

Figure 7.4: Experimental images of the stretchable interconnect sample. (a) The undeformed
reference configuration. (b) Stretched by ≈10 mm.

7.2.3 Mechanical Shape Correlation algorithm

The Mechanical Shape Correlation algorithm is an Integrated Digital Image Correlation
based method, in which images taken during and experiment are correlated and coupled
to a numerical model in order to identify (material) parameters [77]. In contrast to IDIC,
the images are not grayscale representations of the speckle pattern on the sample, but
they are signed distance maps (SDM) indicating the position of the specimen contour.
Each pixel in the image has a value that indicates the shortest distance to this contour.
This way, the contour location is reflected in the entire image. Moreover, the images of all
time increments are not correlated to the (undeformed) reference image, like in regular
(I)DIC, but the experimental signed distance map for each increment is correlated to
the signed distance map for the same time step resulting from the numerical simulation.
The basic idea behind the algorithm is to minimize the difference, i.e., the residual,
between each experimental and numerically generated image by iteratively updating
the model parameters until an optimal fit between the experiment and simulation is
obtained. For more details on the algorithm, the reader is referred to [77].

Signed distance maps

One of the main inputs for the MSC algorithm are the processed images, i.e., the signed
distance maps. They need to be determined from the sample contours both from the
experimental images and the numerical simulations. Following [77], the Chan-Vese
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algorithm is used for segmentation of the experimental images [28, 154], in which the
following functional F is minimized:

F (C ) =
∫
Ωi (C )

(
u0(x)− c1(C )

)2 d x+
∫
Ωo (C )

(
u0(x)− c2(C )

)2 d x+µ·L(C )+ν·Ai (C ). (7.1)

Here C denotes the evolving curve describing the contour, u0 represents the intensity
values of the (grayscale) image that needs segmentation, with image coordinates x =
(x, y), andΩi (C ) andΩo(C ) are the areas of the image parts inside and outside the curve,
respectively. Furthermore, c1 and c2 (which depend on C ) are the average intensities
inside and outside the contour respectively. Finally, the curve length L(C ) and area
inside the curve Ai (C ) can be penalized by parameters µ and ν (both ≥ 0), in order to
control the smoothness and shape of the segmented contour C .

Following [77], the area inside the contour, i.e. the specimen, is considered white,
while the area outside the contour, i.e. the background, is considered black. Therefore,
the images taken from the experiment, as shown in Figure 7.4, are inverted. Besides
inverting the images, several additional preprocessing steps are taken to improve the
correlation with the numerical images. First, the clamps of the tensile stage, i.e. the
large black areas on the left and right sides of both images in Figure 7.4 are cropped out,
since the clamps themselves are not modelled in the FE simulation.

Furthermore, a Gaussian blurring filter is applied to the images to reduce the impact of
image acquisition noise and to obtain a smoother contour. If no blurring filter is applied,
the contour follows all small imperfections at the edge of the sample, see Figure 7.5,
which are present either because of acquisition noise, or because the processing method
resulted in a non-perfectly smooth edge. Either way, it is undesirable that these features
are identified as the determined contour, since they are not present in the numerical
model. Even if these fine-scale features are part of the real sample (as opposed to noise)
it is unfeasible to include all of them in the model geometry.

The contour corresponding to the FE model can be determined directly from the nodal
positions and displacements resulting from the simulation, as done for the virtual ex-
periments in [77]. However, to resemble the experimental images as closely as possible,
the process of capturing them is mimicked for the numerical images by first creating
a binary image at a 10× higher resolution from the simulated contour, which is then
down-scaled to the size of the experimental image, thereby smoothing the sharp black-
white transitions between background and sample. For this numerically generated
image the same process to determine the contour, and signed distance map, is applied
as for the experimental images, i.e., the image is blurred with the same Gaussian filter
and the Chan-Vese algorithm with the same parameters is employed. These last steps
were already introduced in [77] as the first steps towards real experiments.
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(a) Original experimental im-
age

(b) Blurred image (c) Determined contours

Figure 7.5: The effect of blurring on the contour determined with the Chan-Vese algorithm:
(a) zoom of the inverted experimental image; (b) blurred image with a Gaussian blurring
filter (σ= 1.5); (c) contours calculated with the Chan-Vese algorithm (with µ= ν= 0) for the
blurred and original image on top of the original image.

Numerical model

The Finite Element (FE) model is the second important input for the MSC algorithm.
The simulation results are compared to the experimental results by directly creating
signed distance maps from the simulated contours. Hence, the model should resemble
the reality as close as possible. The exact geometry of the experimental samples is
implemented, using the geometry and dimensions as used for discharge machining of
the specimens, taking into account deviations from this geometry due to processing,
such as a slight rounding off of the sharp 90◦ corners throughout the specimen.

The objective of the MSC analysis is to determine the yielding behavior of the material,
and to this end the sample is stretched above the yield point, resulting in plastic defor-
mation. To capture this behavior, an elasto-plastic material model needs to be chosen.
The choice for this material model is an important one: it should allow for significant
kinematic freedom to be able to simulate the experimentally observed plastic behavior,
while it should contain a minimal set of material parameters to provide sufficient sensi-
tivity to all parameters in the MSC algorithm. Here the choice is made for a rate power
law model for hardening:

σy =σy0 + Aε̄m
p , (7.2)

with σy the yield stress, ε̄p the equivalent plastic strain, σy0 the initial yield strength, A
the hardening coefficient and m the hardening exponent.
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A first MSC step to determine boundary conditions

Applying the exact same boundary conditions in the model as in the experiment is
challenging, as demonstrated [119, 123] for the IDIC method. Following suggestions
in these papers, here a global DIC step is applied on a region of interest around the
clamping pads, where the contrast between the sample and the background is used
as a pattern, as opposed to a speckle pattern, which is not present on the examined
samples. This is sufficient, since the clamping pads experience rigid body motion
only and a negligible strain. Note that although the structure is free to deform three-
dimensionally, the clamping pads only displace in-plane and hence DIC is a suitable
method to obtain the in-plane rigid body motions. The main displacement is in the
x-direction, i.e., the stretching direction, but also the y-displacement and in-plane
rotation are calculated for each increment with respect to the reference image. These
displacements are translated to displacement boundary conditions on all nodes at the
edges of the clamping pads in the FE model.

Furthermore, it is observed in the reference image, Figure 7.4a, that the initial config-
uration is not perfectly aligned. The beams are slightly rotated with respect to each
other due to clamping of the sample in the tensile module. This reference configuration
should also be transferred to the simulation. It is not possible to manually determine the
rotation and displacement of the pads with respect to a perfect straight alignment with
sufficient accuracy. Therefore, a Mechanical Shape Correlation analysis is performed
on the reference image only, with the displacements and rotations of the clamping
pads as degrees of freedom, see Figure 7.6. The results of this MSC step will be used to
’initialize’ the FE model of the clamping pads of the stretching experiment, by adding a
prior increment to the simulation in order to position the structure in correspondence
with the reference configuration in the real experiment, thereby also incorporating the
current stress state due to clamping.

In the distorted clamped reference configuration, the images that are created from the
numerical simulation must align with the experimental images in terms of positioning
and sizing of the structure within the picture frame. This is determined by the image
coordinate vectors in terms of real dimensions. The variables defining these vectors
are also added as degrees of freedom in the MSC analysis of the reference image. The
three degrees of freedom are the x- and y-component of the (subpixel) location of the
origin that is used in the simulation, which is the left bottom corner of the structure
(see Figure 7.6), and the pixel size in terms of the real dimensions. Since the boundary
conditions for each increment are determined relative to the reference situation, the
alignment of the structure on the pixel grid needs to be done only for the first, reference,
image, while the same image vectors can be used for the MSC step in later increments.
Hence, a two-step approach arises, in which the initial state is correlated in the first step
and the actual (plastic) material parameter identification is correlated in the second
step.
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θL θR

x yU      , U0,0

Figure 7.6: Degrees of freedom in the initial MSC analysis to determine the displacements of
clamping pads in the initial configuration due to clamping of the sample. The bottom left
corner of the left pad is assumed fixed (as the position and size of the structure within the
image frame is described with separate degrees of freedom), while the rotation of the left
edge around this point θL is a DoF. The x- and y-displacement of the right bottom corner of
the right pad, Ux and Uy , are DoF’s as well, along with the rotation of the right pad edge
around this point, θR .

7.3 Results

The results of the correlation of the real experiment with the meso-scale freestanding
stretchable interconnect structure are presented in this Section. First, the initialization
correlation for alignment of the clamped reference configuration is considered, after
which the parameter identification of the interconnect material is discussed.

7.3.1 Correlation of the initial configuration

As described in Section 7.2.3, the first correlation concerns the alignment of the initial
configuration of the FE simulation with respect to the reference image of the clamped
sample. Seven degrees of freedom are thereby determined. Four parameters relate to
the actual deformation of the interconnect due to clamping, i.e., the rigid body rotations
θL and θR of the left and right pad respectively and the rigid body displacement of
the right pad in both the x- and y-direction, Ux and Uy . The other three parameters
are associated with the alignment of the structure on the pixel grid, i.e., the subpixel
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location of the FE model’s origin, Ox and Oy , and the pixel size pxs in millimeters.

Table 7.1: Degrees of freedom in the correlation of the initial configuration. The initial guess
of the parameters is listed, as well as the value resulting from the correlation.

Parameter Initial guess Calculated value

Rotation of left pad θL -0.25◦ -0.11◦

Rotation of right pad θR 0.25◦ 0.25◦

x-displacement of right pad Ux 0.0 mm 0.053 mm

y-displacement of right pad Uy 0.0 mm 0.020 mm

Subpixel x-location of origin Ox 1081 1072.7

Subpixel y-location of origin Oy 520 518.9

Pixel size pxs 9.25·10−3 mm 9.297·10−3 mm

The correlation is executed and the resulting parameters are listed in Table 7.1, along
with the initial guess of these parameters, which is based on an approximate manual
alignment. Since the correlation applies to a real experiment, the actual parameters
are unknown and it is not possible to validate the results in terms of the error in the
determined parameters. However, a measure for the accuracy of the correlation is
the residual, i.e., the difference between the signed distance maps resulting from the
experiment and from the numerical simulation. The residual is the minimization
objective in the correlation algorithm and hence should decrease upon convergence.
The residual images before and after correlation are shown in Figure 7.7, along with the
evolution of the mean of the absolute value of the residual during the iterations of the
correlation. The residual indeed shows a significant decrease, indicating that the FE
simulation is correlating well to the experiment. Furthermore, the calculated value for
the pixel size is close to the value specified by the software of the microscope/camera
system. Therefore, it is concluded that the results are reliable. Moreover, this is a first
successful demonstration of the MSC method to identify experimental parameters,
though not yet material parameters.

7.3.2 Parameter identification

The results from the previous correlation are used to implement a pre-step in the
FE simulation to adjust the perfectly straight modelled interconnect geometry to the
clamped initial state, in which the pads and beams are slightly displaced and rotated
with respect to each other. The complete FE simulation, in which the interconnect is
stretched by prescribing the previously determined displacements of the clamping pads
(using global DIC as described in Section 7.2.3), is then correlated to the experimental
images of the stretching experiment in order to identify the parameters in the plasticity
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Figure 7.7: Decrease of the residual after the correlation. Left: the residual image before
correlation, i.e., where the initial guess on the parameters is used; Center: the residual image
after correlation, with the calculated parameters; Right: the decrease of the residual as the
mean value of the residual as a function of the iterations during the correlation.

model. During the experiment a total of 50 images were captured, from which only a
selection is used, as explained below.

To provide a reasonable initial guess for the material parameters, a uniaxial tensile ex-
periment is executed on a single beam member of the interconnect in order to estimate
the parameters in the hardening model of Equation 7.2. The strain is calculated from
the elongation of the test specimen, which is determined from the displacements of the
beam ends with a simple local DIC method. The stresses are calculated from the forces
that are measured directly via the tensile stage, while the evolving cross-sectional area
is estimated from the elongation of the sample assuming volume conservation. The
parameters of the hardening model, as well as the Young’s modulus, have been fitted
to the data, see the table in Figure 7.8. Note that even for this simple one-dimensional
case it was not possible to obtain an unambiguous solution for (the initial guess of) the
model parameters, which is also noticed through the absence of a clear yield point due
to the significant amount of hardening. Moreover, the calculated initial yield strength
equals the visually estimated set lower bound, which was used because the fitted value
unrealistically approached 0 without a lower bound. This dependence between the
yield strength and hardening parameters may indicate cross-sensitivity between the
plastic parameters, which further challenges the MSC parameter identification. As the
fitted values seem to constitute an adequate guess, they are used as an initial guess
for the MSC routine. A numerical simulation with the fitted parameters shows that
plasticity sets in already early on in the experiment, which suggests that correlation of
the plasticity parameters might still be possible with this experiment. To ascertain that
the selected images are far enough in the plastic regime, two increments at the end of
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the experiment are selected for correlation, namely the images of increment 45 and 50.
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Parameter Value

Young’s modulus E 200 [GPa]

Initial yield strength σy0 1100 [MPa]

Hardening coefficient A 5300 [MPa]

Hardening exponent m 0.36 [-]

Figure 7.8: Stress-strain curve for a uniaxial tensile experiment on a tensile sample made
from one of the (12.5 mm-long) interconnect beams. The measured ultimate tensile strength
is slightly higher than the specified value (1400-1600 MPa) for the considered material. The
three parameters of the hardening model for plasticity, Equation 7.2, have been fitted on the
data in order to provide an initial guess for the MSC correlation. The found Young’s modulus
corresponds to the specified value for the used material. Note, however, that the identified
yield strength equals the set lower bound of 1100 MPa.

The MSC material parameter identification is performed for all three parameters (σy0,
A and m) simultaneously with the determined initial guess. As the minimization seems
to consistently converge to local minima (not shown), the sensitivity of the correlation
towards the three degrees of freedom is investigated by inspecting the correlation matrix,
see figure 7.9. The correlation matrix represents the Hessian of the Gauss-Newton
scheme that is used in the MSC algorithm and it provides insight in the sensitivity of the
objective function to the degrees of freedom, as is suggested in the literature [57, 100,
124]. The sensitivity towards the hardening coefficient, A, is significantly lower than for
the other two parameters. Moreover, large cross-sensitivity between the parameters is
observed, e.g., the off-diagonal values of M21 and M31 are higher than the on-diagonal
values of M22 and M33. Another indication of the limited sensitivity of the objective
function in the correlation with respect to the parameters is shown in the sensitivity
maps, i.e., the derivatives of the residual, see Figure 7.10. The sensitivity maps are
qualitatively equivalent for all three parameters, despite a large perturbation of all
parameters (a perturbation factor of 10−1 is used to determine the sensitivity maps).
This indicates that the residual is affected more by other factors, such as remaining
differences between the experiment and simulation, than by a change in the material
parameters, which makes correlation of the parameters very difficult.
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Figure 7.9: Graphical representation of the correlation matrix M for correlation of the three
parameters of the hardening model, σy0, A and m.

The correlation between the experimental and numerical images is strongly affected
by the boundary conditions. Despite careful determination of the boundary condition
(i.e., the applied displacement) on the clamping pads with a global DIC algorithm, it
is possible that discrepancies remain. Therefore, another MSC correlation is executed
solely for the initial yield strength, as this is the parameter with the highest sensitivity,
while the applied x-displacement of both the left and right pad is also incorporated
in the correlation as degrees of freedom, constituting four additional degrees of free-
dom for the two images. The perturbation on these DoFs is taken 10−6 mm, which is
approximately 10−4 pixel and much smaller than the expected accuracy of the global
DIC correlation previously used to determine the boundary conditions a priori. This
results in a new correlation matrix, see Figure 7.11, which reveals that the sensitivity
towards the boundary conditions is much larger than that of the material parameter
(σy0). The negligible sensitivity of the images with respect to the material parameters
makes it impossible to identify the material parameters from this particular experiment.

Improvement of the identification requires increasing the sensitivity of the signed
distance residuals towards the material parameters, i.e., to properly trigger a material
response in the plastic regime. For this experiment this implies that the specimen
should be stretched further, to increase the effect of plasticity in the hinges on the beam
shape. Also the number and the selection of increments deserves attention, as the
sensitivity may vary for different increments. The small amount of images used was
justified here because both increments are relatively far in the plastic regime (judging
by the numerical simulation with estimated plasticity parameters and the permanent
deformation of the specimen after removing it from the tensile stage posterior to the
experiment). Different parts of the structure are in different stress-states (elastic or
partially plastic), whereby distinct regions of the signed distance maps cover various
parts of the stress-strain-curve. Note that correlation was also attempted for a set
of four incremental images, spread further apart across the experiment, for which
the same conclusions as above resulted. Also other experiments with the stretchable
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Figure 7.10: Sensitivity maps, i.e., residual derivatives with respect to the degrees of freedom,
for the three parameters and two increments. The masked region is outlined by the red shape.
It is observed that the sensitivity maps are qualitatively equivalent for all three parameters,
only the values differ.

interconnect should be considered, as different loading conditions affect the sensitivity
of the correlation as well [125].

It was also observed that the geometry in the numerical model is not exactly the same as
that of the real specimen. Although rounding of the corners was taken into account, the
exact radius was approximate and should be determined more accurately. Furthermore,
the beam width appears slightly larger in the real sample than the specified geometry,
causing the distance between the beams and the inner radius of the hinges (and hence
the signed distance map in these areas) to be inexact in the numerical images. However,
the geometry was already inexact in the MSC correlation of the initial configuration,
which did converge, indicating that these deviations in geometry are probably not
the main issue. Previous research has shown that the exact agreement of boundary
conditions is very important [119, 123]. Despite the caution already taken (i.e., the
pre-step of using global DIC to extract boundary conditions on the clamping pads,
correlation of the initial configuration and incorporating the x-displacement of the
pads as degrees of freedom in the correlation), further improvements can be made
by incorporating more unknowns on the boundary conditions in the correlation. For
instance, the y-displacement and rotations of the pads could be included, as these
influence the positioning and displacement of the beams of the structure, thereby
affecting the entire signed distance map. However, additional degrees of freedom may
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Figure 7.11: Graphical representation of the correlation matrix M for correlation of the initial
yield strength σy0 along with boundary conditions on the clamping pads, i.e., the displacement
in x-direction Ux , where the subscripts L and R refer to the left and right pad respectively
and the superscripts 1 and 2 to the two selected increments. It is observed that the sensitivity
towards the boundary conditions is much higher than to the initial yield strength. Moreover,
a strong cross-sensitivity exists between the initial yield strength and the boundary conditions.

increase the ill-posedness of the problem and should be carefully considered.

7.4 Conclusions

The previously developed Mechanical Shape Correlation algorithm was applied to a
real experiment in order to assess its feasibility in practice. The method was applied to
a stretching experiment of a meso-scale stretchable electronic interconnect structure.
The procedure to extract signed distance maps from the experimental images and from
the numerical simulations was optimized by blurring the images, in order to improve
the agreement between them by eliminating edge artifacts. Considerable attention was
given to the boundary conditions in the numerical model, as this is known to largely
impact correlation for integrated DIC approaches. To this end, a global DIC algorithm
was applied to the clamping pad regions to access the in-plane displacements and
rotations.

Moreover, the initial configuration of the experiment appeared to be not in agreement
with a perfectly straight modeled structure, as clamping the sample in the tensile stage
caused small displacement and rotation of the pads. An initialization correlation was
executed in order to identify these displacements and rotations, to be used in the
subsequent numerical simulation as a pre-step. Also the alignment of the images from
the experiment and from the simulation in terms of pixel size and positioning of the
structure within the image frame was included in this correlation, leading to a total of
seven degrees of freedom. This correlation was successful: the residual decreased and
reliable values for all parameters was found. This is the first time the MSC method has
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been successfully applied to real experimental data.

It appeared unfeasible, however, to identify material parameters in the hardening plas-
ticity model for the stretching experiment considered here. The sensitivity of the cor-
relation towards the material parameters was found to be too low with respect to the
sensitivity towards other discrepancies between the numerical and experimental im-
ages. Recommendations for future research on applying MSC to a real experiment
encompass increasing the sensitivity towards the material parameters, by ensuring
enough plasticity occurs in the sample during the experiment. The used material, i.e.,
spring steel, was a too challenging case and if another, softer, material is used, this
may induce an increased plastic response. Furthermore, it can help to examine the
selection of images and analyze other loading modes of the specimen. Additionally, the
sensitivity to other artifacts should be diminished as well as possible by, e.g., including
more boundary conditions in the correlation and improving the model geometry.

Despite the inability of material parameter identification for this experiment, an ade-
quate correlation was obtained for the parameters describing the initial configuration in
this real test case, indicating that it actually is feasible to use the MSC method, provided
that a sufficient sensitivity to the objective parameters is reached.
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Chapter 8
Conclusions and recommendations for future

research

For the development of reliable applications of stretchable electronics, it is key to
study and predict the mechanical behavior of stretchable interconnects. Numerical
modeling is an important tool to this end, but it is essential to incorporate realistic
material behavior. For these miniature interconnects the properties are affected by size
effects, processing history and loading conditions. Therefore, the necessity arises to
directly test and analyse the as-processed interconnects, in contrast to testing standard
samples made from the corresponding bulk material. The identification of material
properties from these tests calls for advanced analysis methods, as the complex three-
dimensional deformations of the interconnect structures complicate the use of existing
techniques. Henceforth, the goal of this dissertation was "the development of state-
of-the-art image based algorithms for the mechanical characterization of stretchable
electronic interconnect structures and the identification of material parameters in
representative mechanical models".

In this thesis two classes of techniques were presented: Global Digital Image Correlation
(GDIC) methods and Integrated Digital Image Correlation (IDIC) based methods. The
first categorie was used for the analysis of horseshoe patterned aluminum interconnects
on a polyimide substrate, of which the deformation is characterized by out-of-plane
buckling upon interface delamination. The latter set of techniques was applied to
the characterization of recently developed nanoscale highly stretchable freestanding
aluminum interconnects, also denoted ROPE interconnects, referring to the Rotation
and Out-of-Plane Elongation deformation of this design.

In Chapter 2 a DIC method equipped with an adaptive refinement algorithm was intro-
duced. NURBS shape functions were used because of their versatility and their ability
to describe many shapes, which is convenient for parametrization of the meandering
interconnect geometry. The shape functions discretizing the displacement field are
autonomously refined in the regions where needed, based on the image residual, such
that an optimized set of shape functions is obtained, which is sufficiently rich to de-
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scribe the kinematics. At the same time, the amount of degrees of freedom remains
limited in order to promote robustness against correlation to local minima and noise. It
was proven by means of virtual and real test cases with strong localizations in the dis-
placement field that the shape function mesh indeed refines autonomously in the areas
of localization, without supplying their location to the algorithm a priori. Moreover,
the displacement fields were calculated more accurately with this refined mesh than a
uniform mesh with the same amount of degrees of freedom.

The deformations of the horseshoe shaped aluminum/polyimide interconnect system
are mainly characterized by buckling of the metal interconnect after delamination
of the interconnect/substrate interface. The locations of these buckles depend inter
alia on the interconnect geometry and are not known a priori. In order to measure
these localized deformations, the adaptive isogeometric DIC algorithm was extended to
adaptive isogeometric Digital Height Correlation (DHC) in Chapter 3. Height maps of
the interconnects, containing three-dimensional information on the surface, captured
during a stretching experiment, were successfully correlated in order to obtain the
three-dimensional surface displacements. It was shown that the shape function mesh
refines autonomously at the buckle locations and remains coarse in other areas, which
is beneficial for robustness. This is especially important since it was challenging to
obtain reproducable height measurements from the nanoparticle speckle pattern on
the specimen.

In Chapter 4 the measured displacement fields of the horseshoe interconnects were
used to identify the interface delamination between the aluminum interconnect and
the polyimide substrate. It was found that the onset of delamination occurs at approxi-
mately 7% global stretch of the specimen. For different specimen geometries different
locations and geometries of the buckles were observed and also the global stretch per-
centage, at which delamination has proceeded enough for buckles to emerge, differs
per interconnect geometry. The obtained displacements were qualitatively compared
to numerical simulations with a cohesive zone model, in order to identify proper values
for the parameters in this model. It was found that it is important to incorporate mode
angle dependence of the cohesive zone parameters in the model. This mode angle
dependency was attributed to the low surface roughness of the aluminum interconnect,
which leads to the absence of fibrils that can align with the load direction. The ratio of
the ultimate tractions in shear and normal direction, for which the best correspondence
with the experimental data was observed, was found to be τs

max /τn
max = 30/6 MPa, and

the critical energy release rate values, Gn
c = 37 J/m2 and G s

c = 111 J/m2. A predictive
simulation with these obtained parameters for a different geometry yielded an adequate
agreement with the experimental observations.

For the characterization of the deformations of the freestanding ROPE interconnects an
Integrated Digital Height Correlation (IDHC) algorithm was developed in Chapter 5. An
experiment was analyzed in which the specimen was loaded out-of-plane, in order to
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trigger one of the main deformation modes of the interconnect, i.e., bending of the beam
members in an S-shape, while still keeping the surfaces in view to be able to measure
height maps of the sample. First, a global isogeometric DIC method was applied to the
topographies in order to determine boundary conditions, which are influential for the
numerical model that is used in the integrated approach to regularize the displacement
field. The IDHC algorithm was used to identify model parameters describing the plastic
regime, i.e., the initial yield strength σy0, the hardening exponent m and hardening
coefficient A. In a virtual experiment a successful correlation of all three parameters
was achieved, however, the convergence behavior already revealed the underlying
complexity of the problem. In the challenging experimental test case, where the micron-
sized dimensions and large three-dimensional deformations complicated an accurate
topography acquisition and where model errors emerged, a satisfactory simultaneous
correlation of all three parameters could not be obtained. However, in uncoupled
correlations for the initial yield strength and hardening exponent, convergence, though
moderately accurate, was reached and the parameters were established at 225-300
MPa and 0.15-0.2 respectively, which indicates a significant strengthening effect due to
miniaturization, compared to the bulk value for aluminum of roughly 70 MPa.

The ROPE interconnect was designed such that upon stretching the beams rotate to align
with the stretch direction, providing the high stretchability. However, when perform-
ing a stretching experiment on the interconnects, the above mentioned DIC methods
cannot be applied, as the surfaces rotate out-of-view. In Chapter 6 a novel method
was introduced, Mechanical Shape Correlation (MSC), that correlates two-dimensional
projections of the three-dimensional specimen, i.e., signed distance maps in which
each pixel is assigned a value representing the distance to the sample contour, whereby
the displacement information of the specimen outline is reflected in the entire image.
This method is an integrated method as well, where these signed distance maps are
generated from an FE model, enabling tracking of three-dimensional displacements via
the two-dimensional projection images based on the specimen outline. The method
was successfully applied to virtual experiments, where fast convergence and accurate
results were demonstrated. Also the influence of inaccuracies in camera alignment in
the experimental setting versus the projection angle and the perspective view when gen-
erating signed distance maps from the simulation was investigated and it was concluded
that for relatively large misalignments adequate converge still is achieved. Moreover,
the complications mentioned above can be resolved by including these parameters as
unknown degrees of freedom in the correlation.

The MSC method was also applied to a real experiment on a meso-scale freestand-
ing interconnect structure in Chapter 7. First the initial configuration was correlated
separately, because the perfectly straight modeled structure did not correspond to the
initial configuration of the interconnect in the experiment, since the clamping pads had
been slightly displaced and rotated during clamping in the tensile stage. The in-plane
displacements and rotations of the pads, as well as the parameters describing the posi-
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tioning and sizing of the structure within the image frame, were correlated successfully.
This is the first time MSC was successfully applied to real experimental images. The
results were used as a pre-step in the correlation of material parameters of the plasticity
model in the stretching experiment. However, the sensitivity of the correlation to these
parameters was too low to obtain convergence towards a solution.

Recommendations for future research

The presented DIC methods in this thesis constitute in essence an optimization al-
gorithm. Usually for DIC algorithms a Gauss-Newton scheme is used, in which the
expensive calculation of second-order derivatives is omitted. This is a significant advan-
tage, especially in integrated DIC calculations, where the FE simulations usually induce
the highest computational cost. However, in this method convergence is not guaranteed
and it may be slow, especially for initial guesses far from the solution. Hence, if no
convergence is achieved, it could be interesting to look at other optimization methods.
In Appendix B the gradient-free Nelder-Mead optimization scheme is investigated, for
which it is concluded that the robustness is attractive, however, many iterations are
required to reach convergence. It is advisable to study the possibility of starting the
correlation with a more robust, but slow, optimization scheme and switch to a faster
method when approaching the solution.

The experiments that were executed for the analysis of the ROPE interconnects faced
many challenges, which affected the correlation of the resulting images. Manufacturing
of the test specimens was achieved through a pioneering lithography processing scheme
in order to make the very thin interconnects freestanding. This caused warping of
the interconnects, which was incorporated in the finite element models under the
assumption of a stress-free relaxed state. However, if residual stresses were still present
in the samples, this would definitely influence the accuracy of the correlation results.
Furthermore, fur-like features on the interconnects were a processing artifact, which
influenced mainly the extraction of the sample contour for the MSC methods. Also the
frailness of the specimen imposed challenges in sample handling and impacted the
amount of usable test specimens, which entailed low reproducibility of the experiments
and prevented the possibility of thoroughly exploring different experimental settings,
e.g., concerning pattern application. In the cause of the SLIC-project (Stretching the
Limits of Integrated Circuit Stretchability), of which this work is part, the processing
method has already advanced and it would be interesting to perform novel tests on
improved specimens and more rigourously study the effects of different experimental
settings on the captured images or topographies and the correlation on them.

Besides the test samples, also the microscopy techniques for imaging the small inter-
connect dimensions, posed difficulties. Reproducibility of the height maps measured
with an optical profilometer was hampered by the present high gradients at the sample
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edges and the nanoparticles applied as height pattern. The height maps of the ROPE
interconnects are even more troublesome for the DIC algorithms. Due to the small size
the resolution in the region of interest is relatively low. The lateral resolution could be
increased by using another profilometry system that combines low-noise measurement
with multiple surface scans with subpixel shift (e.g., using a piezo stage) and a smart al-
gorithm for combining the scans. For the MSC method, which accepts two-dimensional
images, Scanning Electron Microscopy (SEM) can be used to capture high-resolution im-
ages of the interconnects. However, it is necessary to correct for artifacts that arise with
this method, e.g., scan line shifts and drift distortions. It is possible to combine the MSC
algorithm with the in [93, 94] developed correlation framework, which incorporates
model functions for these distortions. This will be challenging however.

For the integrated correlation methods, more complex virtual test cases revealed the im-
portance of the proper understanding of the problem one wants to correlate. Although
the MSC method converged for an initial guess regime ranging from two to three times
smaller values than the true solution to two up to four times higher values, the method is
more likely to converge towards an accurate solution if the user is able to supply an edu-
cated initial guess, which is a known advice for IDIC methods. Also interdependence, or
cross-sensitivity, of model parameters complicates convergence, especially if the initial
guess is relatively far from the solution. Therefore, it is recommended to analyze the
sensitivity of the correlation towards the parameters of interest and if necessary adjust
the experiment (e.g., the loading mode) to achieve better sensitivity, and to provide
a proper initial guess by e.g., performing a simple tensile experiment, if possible, to
obtain a good estimate on several material parameters.

For Mechanical Shape Correlation, in real test cases the most important factor that
negatively affects the correlation was expected to be the inexact agreement between the
signed distance maps from the experiment versus those from the numerical simulation.
Foremost, the method of extracting the contour information from the experimental
images could pose difficulties. Virtual experiments investigating this effect indeed
showed reduced convergence and accuracy. Nevertheless, convergence towards the true
solution was still obtained. In real experiments, however, were also other inaccuracies
play a role, it is important to use more sophisticated methods for contour extraction,
such as the in Chapters 6 and 7 used Chan-Vese algorithm. The downside is that
computation time increases significantly. It would be interesting to study different
methods as well, balancing accuracy with computational costs.

When applying MSC to a real experiment, the importance of sufficient sensitivity to-
wards the objective parameters was revealed. It is recommended that the experiment is
designed such that the sensitivity towards these parameters is dominant and the sensi-
tivity to other disagreements between the experiment and simulation is diminished. In
order to provide a proof of concept, where the exact material is of lesser importance, it
is wise to select a material that experiences significant plastic deformation in order to
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ensure sufficient sensitivity to plastic material parameters. However, if a specific mate-
rial is the objective for identification, other tactics for increasing the sensitivity need to
be employed. For instance, different loading modes should be considered to optimize
the response to a change in the parameters, boundary conditions can be included as
degrees of freedom in the correlation and it should be studied which increments of
the experiment are most valuable to correlate on. The conclusions on MSC on the
meso-scale experiment stretch the assumption that various experimental issues with
the real stretchable electronic interconnects on micron-scale have a detrimental affect
on the correlation and that it is not straightforward to circumvent these difficulties.
Further study is required to obtain a good identification of material parameters using
this method, as is also true for other applications on different scales.

For the identification of material parameters of the ROPE interconnects using IDHC,
also the inexact agreement between model and reality appeared highly detrimental.
The geometry of the real specimen is rather complex due to deviations from the design
through processing, i.e., curving of the beams due to residual stresses and possible
defects due to the delicate nature of the micron-sized freestanding structure. Also
the measurement technique, which faces complications at the edges of the sample,
inhibits accurate measurement of the exact geometry to be transferred to the numerical
model. An improved initial geometry could be obtained if a topography measurement
is executed on the sample before the etching step where the interconnect is released
from the sacrificial layer and hence is still straight. If this topography is correlated to
one of the sample after it has been made freestanding, the full-field in-plane and out-
of-plane deformations could be determined by the isogeometric global DIC method,
which is more accurate than the manual manner at pixel-level in which the in-plane
displacements had to be determined in this case.

Furthermore, the adopted simple isotropic material model for plasticity might not
be able to describe the true material behavior of the ROPE interconnects sufficiently
accurate. At this small scale, the microstructure, which is expected to consist of only
few columnar grains, influences the behavior. Therefore, a crystal plasticity material
model taking this into account would be a more suitable choice. If this also appears
insufficient, variations of this model with increasing complexity can be evaluated, e.g.,
adding strain gradient or even dislocation density effects [43].



Bibliography

[1] Ahn JH, Je JH. (2012) Stretchable electronics: materials, architectures and integra-
tions. Journal of Physics D: Applied Physics; 45(10): 103001. DOI: 10.1088/0022-
3727/45/10/103001.

[2] Autodesk. AutoCAD software; http://www.autodesk.com/products/autocad/overview.

[3] Barker DB, Fourney ME. (1977) Measuring fluid velocities with speckle patterns.
Optics Letters; 1(4): 135-137. DOI: 10.1364/OL.1.000135.

[4] Bay BK, Smith TS, Fyhrie DP, Saad M. (1999) Digital volume correlation: Three-
dimensional strain mapping using X-ray tomography. Experimental Mechanics;
39(3), 217-226. DOI: 10.1007/BF02323555.

[5] Bazhenov SL, Dukhovskii IA, Kovalev PI, Rozhkov AN. (2000) The fracture of SVM
aramide fibers upon a high-velocity transverse impact. Polymer Science; 43(1):
61-71.

[6] Beaubier B, Dufour J-E, Hild F, Roux S, Lavernhe S, Lavernhe-Taillard K. (2014)
CAD-based calibration and shape measurement with stereoDIC. Experimental
Mechanics; 54(3): 329-341. DOI: 10.1007/s11340-013-9794-6.

[7] Beeck J van, Neggers J, Schreurs PGJ, Hoefnagels JPM, Geers MGD. (2014) Quan-
tification of three-dimensional surface deformation using global digital image
correlation. Experimental Mechanics; 54(4): 557-570. DOI: 10.1007/s11340-013-
9799-1.

[8] Bergers LIJC, Hoefnagels JPM, Delhey NKR, Geers MGD. (2011) Measuring time-
dependent deformations in metallic MEMS. Microelectronics Reliability; 51(6):
1054-1059. DOI: DOI: 10.1016/j.microrel.2011.03.008.

[9] Bergers LIJC, Hoefnagels JPM, Geers MGD. (2014) Characterization of time-
dependent anelastic microbeam bending mechanics. Journal of Physics D: Applied
Physics; 47, 1 - 14. DOI: 10.1088/0022-3727/47/35/355306.

[10] Bertin M, Du C, Hoefnagels JPM, Hild F. (2016) Crystal plasticity parameter iden-
tification with 3D measurements and Integrated Digital Image Correlation. Acta
Materialia; 116: 321-331. DOI: 10.1016/j.actamat.2016.06.039.



172 Bibliography

[11] Besnard G, Hild F, Roux S. (2006) "Finite-Element" Displacement Fields Analysis
from Digital Images: Application to Portevin-Le Châtelier Bands. Experimental
Mechanics; 46(6): 789-803. DOI: 10.1007/s11340-006-9824-8.

[12] Besnard G, Lagrange J-M, Hild F, Roux S, Voltz C. (2010) Characterization of necking
phenomena in high-speed experiments by using a single camera. EURASIP Journal
on Image and Video Processing; 2010(1), 215956.

[13] Besnard G, Guérard S, Roux S, Hild F. (2011) A spacetime approach in digital
image correlation: Movie-DIC. Optics and Lasers in Engineering; 49(1): 71-81. DOI:
10.1016/j.optlaseng.2010.08.012.

[14] Björck A. (1996) Numerical Methods for Least Squares Problems;
Society for Industrial and Applied Mathematics. Retrieved from
http://epubs.siam.org/doi/book/10.1137/1.9781611971484. DOI:
10.1137/1.9781611971484.

[15] Blaysat B, Hoefnagels JPM, Alfano M, Lubineau G, Geers MGD. (2015) Interface
debonding characterization by image correlation integrated with double cantilever
beam kinematics. International Journal of Solids and Structures; 55: 79–91. DOI:
10.1016/j.ijsolstr.2014.06.012.

[16] Blayvas I, Bruckstein A, Kimmel R. (2006) Efficient computation of adaptive thresh-
old surfaces for image binarization. Pattern Recognition; 39(1): 89-101. DOI:
10.1016/j.patcog.2005.08.011.

[17] Bloch A, François M, Thomas J-C, Flamand O. (2014) Monitoring of Inflatable Struc-
tures by Using Virtual Image Correlation. 7th European Workshop on Structural
Health Monitoring; July 8-11: 686-693.

[18] Boor C de. (1972) On calculating with B-Splines. Journal of Approximation Theory;
6(1): 50-62. DOI: 10.1016/0021-9045(72)90080-9.

[19] Borden MJ, Scott MA, Evans JA, Hughes TJR. (2010) Isogeometric finite element
data structures based on Bézier extraction of NURBS. ICES Report; 10(8): 1-38.

[20] Bornert M, Brémand F, Doumalin P, Duprè J-C, Fazzini M, Grédiac M, Hild F, Mistou
S, Molimard J, Orteu J-J, Robert L, Surrel Y, Vacher P, Watrisse B. (2009) Assessment
of digital image correlation measurement errors: Methodology and results. Experi-
mental Mechanics; 49(3): 353-370. DOI: 10.1007/s11340-008-9204-7.

[21] Bowden N, Brittain S, Evans AG, Hutchinson JW, Whitesides GM. (1998) Sponta-
neous formation of ordered structures in thin films of metals supported on an
elastomeric polymer. Nature; 393: 146-149. DOI: 10.1038/30193.

[22] Boyd JP. Chebyshev and Fourier Spectral Methods; DOVER Publications, Inc., 2000;
323. ISBN: 0-07-005521-1.



173

[23] Brosteaux D, Axisa F, Gonzalez M, Vanfleteren J. (2007) Design and Fabrication of
Elastic Interconnections for Stretchable Electronic Circuits. IEEE Electron Device
Letters; 28(7): 552-554. DOI: 10.1109/LED.2007.897887.

[24] Carlbom I, Paciorek J. (1978) Planar Geometric Projections and Viewing Transfor-
mations. Computing Surveys; 10(4): 465-502. DOI:10.1145/356744.356750.

[25] Cattarinuzzi E, Lucchini R, Gastaldi D, Vena P, Lorenzelli L, Hoefnagels JPM. (2015)
In-situ Experimental Characterization of Interfacial Toughness of Aluminum Thin
Films on Polyimide Substrates. 20th International Conference on Composite Mate-
rials: 19-24th July 2015, Copenhagen.

[26] Cattarinuzzi E, Lucchini R, Gastaldi D, Vena P. (2015) Design of Aluminum/Poly-
imide Stretchable Interconnects Investigated Through In-Situ Testing. XVIII AISEM
Annual Conference; DOI: 10.1109/AISEM.2015.7066784.

[27] Cattarinuzzi E. (2016) In-situ mechanical characterization of deformable met-
al/polymer electrical interconnects. PhD Thesis; Politecnico di Milano.

[28] Chan TF, Vese LA. (2001) Active contours without edges. IEEE Transactions on
Image Processing; 10(2): 266-277. DOI: 10.1109/83.902291.

[29] Cheng P, Sutton MA, Schreier HW, McNeill SR. (2002) Full-field speckle pattern
image correlation with B-Spline deformation function. Experimental Mechanics;
42(3): 344-352. DOI: 10.1007/BF02410992.

[30] Chiu SL, Leu J, Ho PS. (1994) Fracture of metal-polymer line structures. I. Semiflex-
ible polyimide. Journal of Applied Physics; 76(9): 5136. DOI: 10.1063/1.357227.

[31] Chu TC, Ranson WF, Sutton MA. (1985) Applications of digital-image-correlation
techniques in experimental mechanics. Experimental Mechanics; 25(3): 232-244.
DOI: 10.1007/BF02325092.

[32] Chung H, Joe Y, Han H. (1999) The effect of curing history on the residual stress
behavior of PI thin films. Journal of Applied Polymer Science; 74(14): 3287-3298.

[33] Collins GP. (2016) Science and Culture: Kirigami and technology cut a fine figure,
together. PNAS; 113(2): 240-241. DOI: 10.1073/pnas.1523311113.

[34] Cottrell JA, Hughes TJR, Bazilevs Y. Isogeometric Analysis: Toward Integration of
CAD and FEA; Wiley, Chichester. 2009

[35] Cox MG. (1972) The numerical evaluation of B-Splines.IMA Journal of Applied
Mathematics; 10(2): 134-149. DOI: 10.1093/imamat/10.2.134.

[36] Dassault Systèmes Simulia©. Abaqus 6.13 software. User manual;
http://dsk.ippt.pan.pl/docs/abaqus/v6.13/books/usb/default.htm. (Inter-
actions; Contact Property Models; Mechanical Contact Properties; Surface Based
Cohesive Behavior; Damage Evolution; Mixed Mode Definition).



174 Bibliography

[37] Dong YL, Pan B. (2017) A review of speckle pattern fabrication and assessment
for digital image correlation. Experimental Mechanics; 57(8): 1161-1181. DOI:
10.1007/s11340-017-0283-1.

[38] Drodge DR, Mortimer B, Holland C, Siviour CR. (2012) Ballistic impact to access the
high-rate behaviour of individual silk fibres. Journal of the Mechanics and Physics
of Solids; 60(10): 1710-1721. DOI: 10.1016/j.jmps.2012.06.007.

[39] Dufour J-E, Beaubier B, Hild F, Roux S. (2015) CAD-based displacement mea-
surements with Stereo-DIC. Experimental Mechanics; 55(9): 1657-1668. DOI:
10.1007/s11340-015-0065-6.

[40] Dufour J-E, Hild F, Roux S. (2015) Shape, displacement and mechanical properties
from isogeometric multiview stereocorrelation. Journal of Strain Analysis; 50(7):
470-487. DOI: 10.1177/0309324715592530.

[41] Elguedj T, Réthoré J, Buteri A. (2011) Isogeometric analysis for strain field measure-
ments. Computer Methods in Applied Mechanics and Engineering; 200(1-4): 40-56.
DOI: 10.1016/j.cma.2010.07.012.

[42] Evans AG, Hutchinson JW. (1995) The thermomechanical integrity of thin films and
multilayers. Acta Metallurgica Materialia; 43(7): 2507-2530. DOI: 10.1016/0956-
7151(94)00444-M.

[43] Evers LP, Brekelmans WAM, Geers MGD. (2004) Scale dependent crystal plas-
ticity framework with dislocation density and grain boundary effects. In-
ternational Journal of Solids and Structures; 41(18–19): 5209-5230. DOI:
10.1016/j.ijsolstr.2004.04.021.

[44] Fenner RT. Mechanics of solids. CRC Press LLC, Florida, U.S.A., 1999. ISBN: 0-632-
01018-0.

[45] Fleck NA, Muller GM, Ashby F, Hutchinson JW. (1994) Strain gradient plasticity:
Theory and experiment. Acta Metallurgica et Materialia; 42(2): 475-487. DOI:
10.1016/0956-7151(94)90502-9.

[46] François MLM, Semin B, Auradou H. (2010) Identification of the shape of curvi-
linear beams and fibers. Applied Mechanics and Materials; 24-25: 359-364. DOI:
10.4028/www.scientific.net/AMM.24-25.359.

[47] Gonzalez M, Axisa F, Vanden Bulcke M, Brosteaux D, Vandevelde B, Vanfleteren J.
(2008) Design of metal interconnects for stretchable electronic circuits. Microelec-
tronics Reliability; 48: 825-832. DOI: 10.1016/j.microel.2008.03.025.

[48] Gray DS, Tien J, Chen CS. (2004) High-conductivity elastomeric electronics. Ad-
vanced Materials; 16(5): 393-397. DOI: 10.1002/adma.200306107.



175

[49] Greer JR, De Hosson JThM. (2011) Plasticity in small-sized metallic systems: Intrin-
sic versus extrinsic size effect. Progress in Materials Science; 56(6): 654-724. DOI:
10.1016/j.pmatsci.2011.01.005.

[50] Guo Q, Keer LM, Chung YW. (1993) Thermal Stress and Strain in Microelectronics
Packaging; Publisher: Van Nostrand Reinhold, New-York. Ch. 10: Thermal Stress-
Induced Open-Circuit Failure in Microelectronics Thin-Film Metallizations, pp
329-359.

[51] Gutbrod SR, Sulkin MS, Rogers JA, Efimov IR. (2014) Patient-Specific Flexible and
Stretchable Devices for Cardiac Diagnostics and Therapy. Progress in Biophysics
and Molecular Biology; 115: 244-251. DOI: 10.1016/j.pbiomolbio.2014.07.011.

[52] Han K, Ciccotti M, Roux S. (2010) Measuring nanoscale stress intensity factors
with an atomic force microscope. EPL (Europhysics Letters); 89(6), 66003. DOI:
10.1209/0295-5075/89/66003.

[53] Hankins G, Krajnik K, Galedrige B, Sakha S, Hylton P and Otoupal W. (2014) Im-
proving safety structures on sprint and midget race cars. SAE technical paper;
2014-01-0561; DOI: 10.4271/2014-01-0561.

[54] Hansen TS, West K, Hassanger O, Larsen NB. (2007) Highly stretchable and
conductive polymer material made from poly(3,4-ethylenedioxythiophene) and
polyurethane elastomers. Advanced Functional Materials; 17(16): 3069-3073. DOI:
10.1002/adfm.200601243.

[55] Harris KD, Elias AL, Chung H-J. (2016) Flexible electronics under strain: a review
of mechanical characterization and durability enhancement strategies. Journal of
Materials Science; 51(6): 2771-2805. DOI: 10.1007/s10853-015-9643-3.

[56] Hild F, Roux S. (2006) Digital image correlation: from displacement measurement to
identification of elastic properties - a review. Strain; 42: 69-80. DOI: 10.1111/j.1475-
1305.2006.00258.x.

[57] Hild F, Roux S. (2012) Comparison of Local and Global Approaches to Digital Image
Correlation. Experimental Mechanics; 52(9): 1503-1519. DOI: 10.1007/s11340-012-
9603-7.

[58] Hoefnagels JPM, Neggers J, Timmermans PHM, Sluis O van der, Geers MGD. (2010)
Copper-Rubber interface delamination in stretchable electronics. Scripta Materi-
alia; 63(8): 875-878. DOI: 10.1016/j.scriptamat.2010.06.041.

[59] Hoefnagels JPM, Maris MPFHL van, Vermeij T. (2019) One-step deposition of nano-
to-micron-scalable, high-quality digital image correlation patterns for high-strain
in-situ multi-microscopy testing. Strain; e12330; DOI: 10.1111/str.12330.



176 Bibliography

[60] Hsu Y-Y, Gonzalez M, Bossuyt F, Axisa F, Vanfleteren J, de Wolf I. (2009) In situ
observations on deformation behavior and stretching-induced failure of fine pitch
stretchable interconnect. Journal of Materials Research; 24(12): 3573-3582. DOI:
10.1557/jmr.2009.0447.

[61] Hsu Y-Y, Gonzalez M, Bossuyt F, Axisa F, Vanfleteren J, de Wolf I. (2010) The effect
of pitch on deformation behavior and the stretching-induced failure of a polymer-
encapsulated stretchable circuit. Journal of Micromechanics and Microengineering;
20(7): 075036.

[62] Hu W, Niu X, Li L, Yun S, Yu Z, Pei Q. (2012) Intrinsically stretchable transparent
electrodes based on silver-nanowire–crosslinked-polyacrylate composites. Nan-
otechnology; 23(34): 244002. DOI: 10.1088/0957-4484/23/34/344002.

[63] Huang YY, Terentjev EM. (2010) Tailoring the electrical properties of carbon-
nanotube-polymer composites. Advanced Functional Materials; 20(23): 4062-4068.
DOI: 10.1002/adfm.201000861.

[64] Hughes TJR, Cottrell JA, Bazilevs Y. (2005) Isogeometric analysis: CAD, finite ele-
ments, NURBS, exact geometry and mesh refinement. Computer Methods in Ap-
plied Mechanics and Engineering; 200: 4135-4195. DOI: 10.1016/j.cma.2004.10.008.

[65] Hughes TJR. The Finite Element Method; DOVER Publications, Inc., 2000; 20. ISBN:
0-486-41181-8.

[66] Hutchinson JW, Suo Z. (1991) Mixed mode cracking in layered materials. Advances
in Applied Mechanics; 29: 63-191. DOI: 10.1016/S0065-2156(08)70164-9.

[67] Jackman RJ, Brittain ST, Adams A, Prentiss MG, Whitesides GM. (1998) Design and
fabrication of topologically complex, three-dimensional microstructures. Science;
280(5372): 2089-2091. DOI: 10.1126/science.280.5372.2089.

[68] Janssen PJM, Hoefnagels JPM, Keijser TH de, Geers MGD. (2008) Processing in-
duced size effects in plastic yielding upon miniaturisation. Journal of the Mechanics
and Physics of Solids; 56(8): 2687-2706. DOI: 10.1016/j.jmps.2008.03.008.

[69] Joshi S, Savov A, Shafqat S, Dekker R. (2018) Investigation of "fur-like" residues
post dry etching of polyimide using aluminum hard etch mask. Materials Science
in Semiconductor Processing; 75: 130-135. DOI: 10.1016/j.mssp.2017.11.025.

[70] Khang D-Y, Jiang H, Huang Y, Rogers JA. (2006) A stretchable form of single-crystal
silicon for high-performance electronics on rubber substrates. Science; 311(5758):
208-212. DOI: 10.1126/science.1121401.

[71] Kim D-H, Song J, Choi WM, Kim H-S, Kim R-H, Liu Z, Huang YY, Hwang K-C, Zhang
Y-W, Rogers JA. (2008) Materials and noncoplanar mesh designs for integrated
circuits with linear elastic responses to extreme mechanical deformations. PNAS;
105(48): 18675-18680. DOI: 10.1073/pnas.0807476105.



177

[72] Kim DH, Lu N, Ghaffari R, Kim YS, Lee SP, Xu L, Wu J, Kim RH, Song J, Liu Z, Viventi
J, Graff B, Elolampi B, Mansour M, Slepian MJ, Hwang S, Moss JD, Won SM, Huang
Y, Litt B, Rogers JA. (2011) Materials for multifunctional balloon catheters with
capabilities in cardiac electrophysiological mapping and ablation therapy. Nature
Materials; 10(4): 316-232. DOI: 10.1038/nmat2971.

[73] Kim D-H, Lu N, Ma R, Kim Y-S, Kim R-H, Wang S, Wu J, Won SM, Tao H, Islam A, Yu
KJ, Kim T-I, Chowdhury R, Ying M, Xu L, Li M, Chung H-J, Keum H, McCormick M,
Liu P, Zhang Y-W, Omenetto FG, Huang Y, Coleman T, Rogers JA. (2011) Epidermal
Electronics. Science; 333: 838-843. DOI: 10.1126/science.1206157.

[74] Kim J, Lee M, Shim HJ, Ghaffari R, Cho HR, Son D, Jung YH, Soh M, Choi C, Jung
S, Chu K, Jeon D, Lee S-T, Kim JH, Choi SH, Hyeon T, Kim D-H. (2014) Stretchable
silicon nanoribbon electronics for skin prosthesis. Nature Communications; 5:
5747. DOI: 10.1038/ncomms6747.

[75] Kleinendorst SM, Hoefnagels JPM, Verhoosel CV, Ruybalid AP. (2015) On the use of
adaptive refinement in isogeometric digital image correlation. International Jour-
nal for Numerical Methods in Engineering; 104: 944-962. DOI: 10.1002/nme.4952.

[76] Kleinendorst SM, Hoefnagels JPM, Fleerakkers RC, Maris MPFHL van, Cattarin-
uzzi E, Verhoosel CV, Geers MGD. (2016) Adaptive isogeometric digital height
correlation: application to stretchable electronics. Strain; 52(4): 336-354. DOI:
10.1111/str.12189.

[77] Kleinendorst SM, Hoefnagels JPM, Geers MGD. (2019) Mechanical shape
correlation: a novel integrated digital image correlation approach. Com-
puter Methods in Applied Mechanics and Engineering; 345: 983-1006. DOI:
10.1016/j.cma.2018.10.014.

[78] Kleinendorst SM, Hoefnagels JPM, Geers MGD. (2018) Mechanical Shape Corre-
lation: a novel integrated digital image correlation approach. Advancement of
Optical Methods in Experimental Mechanics, Conference Proceedings of the Society
for Experimental Mechanics Series; 3: 47-54. DOI: 10.1007/978-3-319-63028-1_8.

[79] Kleinendorst SM, Verhaegh BJ, Hoefnagels JPM, Ruybalid AP, Sluis O van der, Geers
MGD. (2018) On the boundary conditions and optimization methods in Integrated
Digital Image Correlation. Advancement of Optical Methods in Experimental Me-
chanics, Conference Proceedings of the Society for Experimental Mechanics Series; 3:
55-61. DOI: 10.1007/978-3-319-63028-1_9.

[80] Klinker L, Lee S, Work J, Wright J, Ma Y, Ptaszek L, Webb RC, Liu C, Sheth N, Mansour
M, Rogers JA, Huang Y, Chen H, Ghaffari R. (2015) Balloon Catheters with Inte-
grated Stretchable Electronics for Electrical Stimulation, Ablation and Blood Flow
Monitoring. Extreme Mechanics Letters; 3: 45-54. DOI: 10.1016/j.eml.2015.02.005.



178 Bibliography

[81] Koh A, Kang D, Xue Y, Lee S, Pielak RM, Kim J, Hwang T, Min S, Banks A, Bastien P,
Manco MC, Wang L, Ammann KR, Jang K-I, Won P, Han S, Ghaffari R, Paik U, Slepian
MJ, Balooch G, Huang Y, Rogers JA. (2016) A Soft, Wearable Microfluidic Device
for the Capture, Storage, and Colorimetric Sensing of Sweat. Science Translational
Medicine; 8: 366ra165.

[82] Kraft O, Gruber PA, Mönig R, Weygand D. (2010) Plasticity in confined dimensions.
Annual Review of Materials Research; 40: 293-317. DOI: 10.1146/annurev-matsci-
082908-145409.

[83] Kuru G, Verhoosel CV, Zee KG van der, Brummelen EH van. (2014) Goal-adaptive
Isogeometric Analysis with hierarchical splines. Computer Methods in Applied
Mechanics and Engineering; 270(0): 270-292. DOI: 10.1016/j.cma.2013.11.026.

[84] Lacour SP, Chan D, Wagner S, Li T, Suo Z. (2006) Mechanisms of reversible stretch-
ability of thin metal films on elastomeric substrates. Applied Physics Letters; 88:
204103. DOI: 10.1063/1.2201874.

[85] Lava P, Cooreman S, Coppieters S, De Strycker M, Debruyne D. (2009) Assessment of
measuring errors in DIC using deformation fields generated by plastic FEA. Optics
and Lasers in Engineering; 47(7): 747-753. DOI: 10.1016/j.optlaseng.2009.03.007.

[86] Li T, Suo Z, Lacour SP, Wagner S. (2005) Compliant thin film patterns of stiff materi-
als as platforms for stretchable electronics. Journal of Materials Research; 20(12):
3274-3277. DOI: 10.1557/jmr.2005.0422.

[87] Li T, Suo Z. (2006) Deformability of thin metal films on elastomer sub-
strates. International Journal of Solids and Structures; 43(7-8): 2351-2363. DOI:
10.1016/j.ijsolstr.2005.04.034.

[88] Lipomi DJ, Chong H, Vosgueritchian M, Mei J, Bao Z. (2012) Toward mechanically
robust and intrinsically stretchable organic solar cells: Evolution of photovoltaic
properties with tensile strain. Solar Energy Materials & Solar Cells; 107: 355-365.
DOI: 10.1016/j.solmat.2012.07.013.

[89] Lucchini R, Cattarinuzzi E, Maraghechi S, Gastaldi D, Adami A, Lorenzelli L, Vena
P. (2016) Delamination phenomena in aluminum/polyimide deformable inter-
connects: In-situ micro-tensile testing. Materials and Design; 89: 121-128. DOI:
10.1016/j.matdes.2015.09.086.

[90] Lucchini R. (2014) Mechanics of Stretchable Interconnects for Stretchable Elec-
tronics Devices. Ph.D. thesis, Politecnico di Milano.

[91] Luo PF, Chao YJ, Sutton MA, Peters WH. (1993) Accurate measurement of three-
dimensional deformations in deformable and rigid bodies using computer vision.
Experimental Mechanics; 33(2), 123-132. DOI: 10.1007/BF02322488.



179

[92] Ma Q, Zhang Y. (2016) Mechanics of fractal-inspired horseshoe microstructures
for applications in stretchable electronics. Journal of Applied Mechanics; 83(11):
111008. DOI: 10.1115/1.4034458.

[93] Maraghechi S, Hoefnagels JPM, Peerling RHJ, Geers MGD. (2018) Correction
of scan line shift artifacts in scanning electron microscopy: An extended
digital image correlation framework. Ultramicroscopy; 187: 144-163. DOI:
10.1016/j.ultramic.2018.01.002.

[94] Maraghechi S, Hoefnagels JPM, Peerling RHJ, Rokoš O, Geers MGD. (2019) Correc-
tion of scanning electron microscope imaging artifacts in a novel digital image cor-
relation framework. Experimental Mechanics; 59(4): 489-516. DOI: 10.1007/s11340-
018-00469-w

[95] KULEUVEN. MatchID software; http://www.matchid.org.

[96] McCoul D, Hu W, Gao M, Mehta V, Pei Q. (2016) Recent advances in stretchable
and transparent electronic materials. Advanced Electronic Materials; 2(5): 1500407.
DOI: 10.1002/aelm.201500407.

[97] Mimoun B, Henneken V, Horst A van der, Dekker R. (2013) Flex-to-Rigid (F2R): A
generic platform for the fabrication and assembly of flexible sensors for min-
imally invasive intstruments. IEEE Sensors Journal; 13(10): 3873-3882. DOI:
10.1109/JSEN.2013.2252613.

[98] Neggers J. (2013). Ductile Interfaces in Stretchable Electronics: Multi-Scale Mechan-
ics and Inverse Methods; Ph.D. thesis. Eindhoven University of Technology: the
Netherlands. Page 147.

[99] Neggers J, Hoefnagels JPM, Hild F, Roux S, Geers MGD. (2014) Direct stress-strain
measurements from bulged membranes using topography image correlation. Ex-
perimental Mechanics; 54(5): 717-727. DOI: 10.1007/s11340-013-9832-4.

[100] Neggers J, Hoefnagels JPM, Geers MGD, Hild F, Roux S. (2015) Time-resolved
integrated digital image correlation. International Journal for Numerical Methods
in Engineering; 103(3): 157-182. DOI: 10.1002/nme.4882.

[101] Neggers J, Hoefnagels JPM, Sluis O van der, Geers MGD. (2015) Multi-scale experi-
mental analysis of rate dependent metal-elastomer interface mechanics. Journal
of the Mechanics and Physics of Solids; 80: 26-26. DOI: 10.1016/j.jmps.2015.04.005.

[102] Neggers J, Hoefnagels JPM, Sluis O van der, Sedaghat O, Geers MGD. (2015) Anal-
ysis of dissipative mechanisms in metal-elastomer interfaces. Scripta Materiala;
149: 412-424. DOI: 10.1016/j.engfracmech.2015.06.056.

[103] Neggers J, Blaysat B, Hoefnagels JPM, Geers MGD. (2015) On image gradients in
digital image correlation. International Journal for Numerical Methods in Engineer-
ing; 105(4): 243-260. DOI: 10.1002/nme.4971



180 Bibliography

[104] O’Masta MR, Deshpande VS, Wadley HNG. (2014) Mechanisms of projectile pene-
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Appendix A
Novel Image Correlation Based Techniques

for Mechanical Analysis of MEMS

Abstract

Three techniques have been developed to analyze the mechanical behavior of microme-
chanical systems, in particular stretchable electronic interconnects. The techniques
are all digital image correlation (DIC) based and vary in the type of images used for
correlation and the way of regularizing the displacement field, needed because of the
ill-posed nature of DIC problems. The first two techniques use Non-Uniform Rational
B-Splines (NURBS) which are adaptively refined to autonomously obtain an optimized
set of shape functions for the considered problem. The first method applies this to
regular grayscale speckle images, while the second technique requires profilometric
height images to calculate not only the in-plane deformation, but also the out-of-plane
component of the displacement field. The third method is an integrated DIC approach
and is coupled to a finite element (FE) model of the sample for regularization of the
displacement field. It correlates projections of the sample contour rather than a speckle
pattern, which makes the method suitable for large, complex and three-dimensional dis-
placements and cases where speckle pattern application is difficult, such as microscale
samples. Application of the techniques to i.a. stretchable electronic interconnects yields
good results.

This work has been published:
Kleinendorst SM, Borger RRM, Hoefnagels JPM, Geers MGD. (2018) Novel Image Correlation Based
Techniques for Mechanical Analysis of MEMS. Micro and Nanomechanics, Conference Proceedings of the
Society for Experimental Mechanics Series, 5, 19-28. DOI: 10.1007/978-3-319-63405-0_4
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Introduction

Stretchable electronics is an active field of research, which enables new applications by
integrating flexible and rigid structures, for example biomedical devices which conform
to biological tissues such as skin, the heart and the brain [51, 73, 80, 81]. Stretchable
electronics contain microscale interconnects that transmit electrical signals and deform
mechanically in order to accommodate stretching of the total structure and hence con-
stitute an interesting type of Micro-Electronical Mechanical System (MEMS). Therefore,
it is important to characterize the mechanics of the structures. Three techniques based
on digital image correlation (DIC) have been developed that can be used to identify the
mechanical behavior.

The first technique uses adaptive refinement of a Non-Uniform Rational B-Spline basis
for DIC to accurately capture localized phenomena in the displacement field [75]. More
important, an optimized set of basis functions is found autonomously, which is useful if
it is difficult to select an appropriate set when the kinematics of the specific experiment
are unknown beforehand. The algorithm is introduced in Section A and an improvement
to the original algorithm is proposed. Furthermore, the method is applied to two
samples from the DIC challenge that is formulated by the Society for Experimental
Mechanics1.

The second technique correlates profilometric height images to determine localized
features (e.g., buckles) in both the in-plane and out-of-plane displacement fields [76].
This technique has been applied to stretchable electronic interconnects, which buckle
locally upon stretching. In Section A this technique is exposed.

The third technique correlates projections of the specimen shape in order to identify
model parameters of a coupled finite element model [77]. This method is explained in
Section A.

After the three techniques are elaborated, some general conclusions are drawn in Sec-
tion A.

Adaptive isogeometric digital image correlation

The first method to identify the mechanical behavior of a specimen from a set of images
is the adaptive isogeometric digital image correlation method. First the algorithm is
explained, after which the method is demonstrated on two samples from the SEM DIC
challenge. Both of them show localized behavior, which is a challenge for the adaptive

1https://sem.org/dic-challenge/,accessed on 2-28-2017.
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technique.

Adaptive algorithm

The adaptive isogeometric DIC algorithm is, like any digital image correlation method,
based on the optical flow relation, i.e., the brightness conservation relation. This means
that it is assumed that the gray value, or brightness, remains the same upon deforma-
tion. This implies that if the calculated displacement field is used to back-transform
the deformed image g to the reference configuration, the difference between this back-
transformed image (g̃ ) and the reference images ( f ), also denoted as the residual r ,
approaches zero for a correctly calculated displacement field. Therefore, the DIC algo-
rithm focusses on minimizing the residual.

This problem is ill-posed, since the number of equations equals the number of pixels,
namely the scalar residual value per pixel. However, the number of unknowns equals
twice the number of pixels, since the displacement in both x-direction and y-direction
is sought. Therefore, it is necessary to regularize the displacement field. This regulariza-
tion is usually done by approximating the displacement field by a linear combination of
shape functions ϕ

i
and their corresponding coefficients ai :

U (x) ≈ u(x,a) =∑
i
ϕ

i
(x)ai . (A.1)

In this work the shape functions used for this discretization are NURBS, or Non-Uniform
Rational B-Splines [41, 64]. The advantage of this type of shape functions is that they are
very versatile and can describe many shape exactly, which is convenient since they are
not only used for regularization of the displacement field, but also for parametrization
of the specimen geometry, hence the term isogeometric DIC. Furthermore, it was shown
by [41] that compared to finite element shape functions less NURBS shape functions,
and hence less degrees of freedom, are required to describe the kinematics of the
displacement field with the same accuracy, and this enhances the conditioning and the
noise robustness of the DIC problem.

The exact choice of the shape functions is very important since it determines whether
or not the displacement field can be captured accurately. Therefore, the user of a DIC
algorithm needs to have specific knowledge of the experiment he is analyzing, i.e.,
a good estimate on the kinematics. This information is not always straightforward,
and it can be difficult to select an appropriate set of shape functions. Therefore, it
was proposed to include adaptive refinement of the basis functions in the algorithm,
such that the set of shape functions is autonomously optimized for the considered
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problem [75]. A schematic overview of the resulting adaptive isogeometric global digital
image correlation algorithm is shown below:

Algorithm 1 Adaptive isogeometric GDIC algorithm calculating the displacement field
from a sequence of images taken during an experiment. Note that if the refinement
loop is disregarded, a conventional GDIC algorithm remains.

Load all images ( f , g1, g2, ..., gnpi c )

Make initial mesh

for 1:npi c (increment loop over all images g )
while vconverged (refinement loop)
Generate (refined) mesh and shape functions ϕ(x)

Iterative solvingMδa=b

→ u(x,a) Used as initial guess for next step

→ g̃ (x) = g (x −u) Back-deformed image

→ r (x) = f (x)− g̃ (x)

Test for convergence using residual r (x)
if vconverged
Mark shape functions for refinement
end
end
end

The selection of shape functions for refinement is based on a criterion depending on
the local residual, i.e., the residual in the area where the considered shape functions
has support. The refinement is executed hierarchically, which means that the selected
shape functions are replaced by shape functions from a refined basis. This method
ensures that refinement is carried out locally, instead of refining entire columns and
rows of shape functions at once due the tensor product structure of the shape functions.
See [75] for more details on the refinement procedure and algorithm.

It should be specified when the solution has reached a sufficient level of accuracy, i.e., a
convergence criterion needs to be set. The convergence criterion is, like the refinement
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criterion, based on the residual r . Whether or not convergence is reached depended in
the originally proposed algorithm on if either of the following four criteria is met:

1. The residual is small enough: ‖r i‖L2 < p1, where i indicates the refinement step
and p1 is a threshold value.

2. The residual does not decrease significantly anymore:
‖r i−1‖L2 −‖r i‖L2 < p2

(‖r 1‖L2 −‖r i‖L2

)
, where p2 is a prespecified percentage.

3. No shape functions are marked for refinement. This is the case when there are
no shape functions with a significantly high residual in their region of support or
when refinement has reached its highest level.

4. The maximum number of iterations or refinement steps is reached.
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Figure A.1: Typical convergence plot of the adaptive isogeometric DIC method. The norm of
the residual is high in the beginning, with the initial, coarse, mesh. In the following iterations
the residual decreases. A significant decrease, however, is obtained if the shape functions are
refined. The plateaus at each refinement step appear because the result from the previous step
is used as an initial guess. Since this is a good initial guess, in contrast to the first initial guess,
the residual only decreases slightly in subsequent iterations. In the end the mesh is refined
to such extend that correlation becomes slightly more sensitive to instabilities, which can be
recognized in the convergence behavior. The algorithm stops if a preset amount of iterations
has diverged and the displacement field corresponding to the lowest residual is selected.

However, these criteria can as well induce the method to stop too early, before the
most accurate solution possible is obtained. Therefore, a more elegant formulation of
convergence is suggested here. All of the above criteria are omitted and the algorithm
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continues iterating until the method diverges a preset amount, e.g., 5, of steps. Then the
result for the lowest obtained residual is stored as the final displacement field. A typical
convergence plot demonstrating this method is shown in Figure A.1. This approach
also prevents errors that occur due to sensitivity to noise and local minima in case of a
too fine mesh, since if the residual increases because of a redundant refinement step,
simply the best result is selected.

DIC challenge sample 3b

Sample 3b of the DIC challenge is a virtual experiment in which a reference image is
artificially deformed. The bottom half of the image does not experience any deforma-
tion, while for the top half a rigid body shift in positive y-direction is prescribed, in six
steps ranging from a shift of 0.05 pixel to 0.5 pixel. The reference image and the final
deformed image are shown in Figure A.2. In this figure also the initial mesh and the final
refined mesh, after four refinement steps, are shown.
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(a) Reference image, initial mesh
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(b) Deformed image, final mesh

Figure A.2: The initial and refined mesh, after the final refinement step, plotted on top of the
reference image and the deformed image of the last increment. In the center of the deformed
image a black horizontal line can be observed, which results from the top half of the image
moving upwards half a pixel, while the bottom half stays in place.

The applied displacement field basically represents a step functions, i.e., a discontin-
uous function, which is an extreme case of strain localization. In general, for global
digital image correlation the displacement field is assumed to be continuous, unless
discontinuities are deliberately introduced in the shape functions [52]. However, in case
of the proposed NURBS shape functions no discontinuity is present and it is difficult for
these shape functions to accurately describe a step function. Henceforth, it is seen in
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Figure A.2 that the shape functions refine in the area around the step.
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Figure A.3: Residual fields before and after refinement.

The effect of refinement is shown in Figure A.3, where the residual maps are shown
before and after refinement. The residual is already low in the area away from the step
in the center. This is because the rigid body motion in this area is well described by
the coarse initial mesh. However, the step is not well captured and the residual is large
in this region. After refinement the area in which the residual is high is significantly
smaller, indicating that refinement has improved by refining the mesh.
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(a) Calculated displacement field
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(b) Error field

Figure A.4: Calculated displacement field and error in this displacement field, plotted on top
of the reference image.

The resulting displacement field in y-direction calculated by the adaptive DIC algorithm
is shown in Figure A.4a. The displacement in x-direction is zero everywhere in the do-
main and therefore not discussed here. Since this is a virtual experiment and hence the
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real displacement field is known, it is possible to calculate the error, i.e., the difference
between the calculated and the reference displacement fields. This error field is shown
in Figure A.4b. It is observed that the displacement field away from the discontinuity
is calculated accurately and the error is low. However, in the region near the step the
error is significant. The ’wiggle’ pattern is typical for polynomial shape functions and it
spreads over the domain of support of the shape functions that are active in the area
of the discontinuity. Naturally, a more accurate result would have been obtained if a
specific set of shape functions describing the kinematics of this particular problem had
been selected. However, the goal of the adaptive DIC algorithm is to obtain an adequate
solution autonomously, without the user having to act on the specific kinematics of the
problem.
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(a) Reference image, initial mesh
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(b) Deformed image g1, final mesh
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(c) Deformed image g3, final mesh
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(d) Deformed image g6, final mesh

Figure A.5: The reference image and a selection of deformed images, for increments 1, 3 and
6. The initial mesh is plotted in figure (a), while the final refined meshes for each increment
are depicted on top of their corresponding deformed image.
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DIC challenge sample 15

The next sample from the DIC challenge that is analyzed is sample 15. This too is a
virtual experiment in which the displacement is virtually prescribed on the reference
image. The displacement field in the eight increments represents strain localizations
that travel through the specimen alike a wave. The reference image and a selection of
the deformed images are shown in Figure A.5. Though difficult to see from the images,
the displacement field in the first increment, Figure A.5b, is a strain localization band in
y-direction approximately in the center of the domain. In the third and sixth increment,
Figures A.5c and A.5d, two strain localization bands are present at different locations. In
increment 3 they are closer together, while in increment 6 they are further apart. The
displacement field in x-direction is again zero everywhere. To reduce computational
cost the region of interest is chosen fairly narrow.
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(a) increment 1, before refinement (b) increment 3, before refinement (c) increment 6, before refinement
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Figure A.6: Residual fields before and after refinement.

Since the strain localizations do not evolve at the same location each increment, it it
not useful to reuse the refined mesh from the previous increment. Therefore, each
increment is started with the initial mesh from Figure A.5a. It can be seen from Fig-
ures A.5b-A.5d that the mesh indeed refines in the areas around the strain localizations,
indicating that the coarse initial mesh was not suitable to accurately describe the local-
ization.

Again the improvement of the residual is demonstrated in Figure A.6. Before refinement
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(b) Displacement field, increment
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(c) Displacement field, increment
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(e) Error field, increment 3
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(f) Error field, increment 6

Figure A.7: Displacement fields and corresponding error fields plotted on top of the reference
image for the considered increments.

the residual field is high in the areas where the strain localization bands are located for
all three increments. Using the refined meshes the residual has decreased significantly.

The calculated displacement fields for the considered increments are shown in Fig-
ure A.7. Since the reference displacement field is known, also the error fields can be
calculated and these are also displayed in Figure A.7. Again the characteristic ripples
resulting from the polynomial shape functions are observed in the error fields. The
accuracy of the calculated displacement field is approximately 0.5 pixel. Again, if a set of
shape functions had been used that is more suitable for such strong strain localizations,
the error could have been decreased. However, in many experiments it is not possible
to determine an appropriate set beforehand and in such cases an adaptive algorithm
that converges to a proper series of basis functions autonomously is advisable.

Adaptive isogeometric digital height correlation

The adaptive isogeometric digital image correlation algorithm has also been extended
to be used for height images, i.e., to a digital height correlation (DHC) method. This
method was applied to meander shaped stretchable electronic interconnects. These
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copper wires are glued to a stretchable, e.g., rubber, substrate. Typically after a certain
amount of deformation the interconnects start to delaminate from the substrate and
they buckle in a certain localized area, see Figure A.8. These buckles often form the onset
of failure of the interconnect and hence the device that they are used in. Therefore, it is
important to characterize this behavior. Adaptive isogeometric digital height correlation
is a useful tool for this purpose.

onset of 

failure

Figure A.8: An interconnect is shown that is partly delaminated from the substrate and
buckles locally (reproduced from [76]). Using a confocal optical microscope height images are
measured in situ during an experiment with a micro tensile stage. On the right a rendering
of a resulting height image is depicted. The rugged surface is a result of a height contrast
pattern, needed for DHC, applied to the specimen, similar to a grayscale speckle pattern in
2D DIC.

The algorithm for adaptive isogeometric height correlation is similar to the algorithm
described in the previous section. The difference, however, is that not only the in-plane
displacements are tracked, but also the out-of-plane deformation can be calculated.
This is achieved by correlating profilometric height images of the sample instead of
grayscale images. Furthermore, the set of shape functions is used three times: once
for each component of the displacement field. An example of a virtual experiment
representing the localized buckling behavior is depicted in Figure A.9. The meshes
before and after refinement, along with an intermediate stage, are also shown, from
which it can be seen that the mesh refinement indeed occurs in the areas where a
localization of the displacement field, in this case in the out-of-plane direction, is
present. For more details on this method, see [76].

Mechanical Shape Correlation

The third technique is also a digital image correlation technique. It is based on the
integrated DIC approach, where the regularization of the displacement field is not con-
structed by a linear combination of shape functions and corresponding coefficients, but
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Figure A.9: A virtual experiment concerning the localized buckling of stretchable electronic
interconnect. The reference image f (left) is shown along with deformed images g2 (middle)
and g4 (right), in which the evolution of the buckles is observed. The initial mesh and refined
meshes are plotted on top. Reproduced from [76].

a constitutive model is used. This model can be analytical, but more often a numerical
finite element (FE) model is defined. The model parameters are the unknowns in the
correlation procedure.

However, in Mechanical Shape Correlation instead of grayscale images of the sample
containing a speckle pattern, images containing a projection of the sample outline
are used. This is useful is situations where the specimen deforms in a complex and
three-dimensional manner. In such cases parts of the sample may rotate out of view,
other parts that where not visible before may come into view later or the speckle pattern
may degrade. Additionally, in case of a sample of microscopical dimensions it can
be difficult to apply a speckle pattern. The use of a projection of the sample contour
overcomes these problems. Nevertheless, the assumption is that the outline is large
with respect to the volume of the structure and that this contour changes significantly
upon deformation. Stretchable electronic interconnects are structures that are highly
suited to be analyzed with this method. Because of their wirelike structure their contour
is large and it changes substantially if the interconnect is stretched.

A schematic illustration of the MSC method is given in Figure A.10. More detail can be
found in [77].

Conclusions

Three methods have been developed to analyze mechanical behavior from images
taken of a specimen during an experiment. The first method is an adaptive isogeometric
digital image correlation algorithm, which uses NURBS shape functions to discretize the
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Figure A.10: Schematic representation of the mechanical shape correlation (MSC) method to
identify model parameters ai from an experiment. Simulations supply the images f to which
the experiment is compared.

displacement field. The set of shape functions is autonomously optimized by perform-
ing adaptive refinement based on the residual image. The technique is demonstrated
on two image sets from the SEM DIC challenge, from which it is shown that the re-
sults indeed improve upon mesh refinement. More important, this mesh refinement
is executed automatically, yielding a more suitable mesh for the considered problem
without the need for the user to input specific information about the kinematics of the
considered experiment.

The second technique is an extension of the first method, which adds the ability of
analyzing the out-of-plane deformation on top of the in-plane displacements. This
is enabled by using profilometric height images instead of grayscale images. This
method has been demonstrated on stretchable electronic interconnects glued to a
rubber substrate. After a certain amount of stretching the interconnects delaminate
from the substrate and buckle locally. This three-dimensional deformation can be
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measured using the adaptive isogeometric digital height correlation technique, where
again autonomously a suitable mesh for the localized behavior is obtained by adaptive
refinement of the shape functions.

The last algorithm correlates the contour, or shape, of the sample, and is therefore called
Mechanical Shape Correlation. It is a suitable technique for cases where deformation
is either or both large, complex and out-of-plane, which makes it difficult to track a
speckle pattern. Especially for stretchable electronic interconnects, a special class of
MEMS, this technique is applicable, since the deformations are large and parts of the
sample rotate out of view.

The techniques have been demonstrated to provide accurate microscale deformation
fields in case of stretchable electronics, and are valuable techniques for micromechani-
cal testing in general.



Appendix B
On the boundary conditions and

optimization methods in integrated digital
image correlation

Abstract

In integrated digital image correlation (IDIC) methods attention must be paid to the
influence of using a correct geometric and material model, but also to make the bound-
ary conditions in the FE simulation match the real experiment. Another issue is the
robustness and convergence of the IDIC algorithm itself, especially in cases when (FEM)
simulations are slow. These two issues have been explored in this proceeding. The
basis of the algorithm is the minimization of the residual. Different approaches for this
minimization exist, of which a Gauss-Newton method is used most often. In this paper
several other methods are presented as well and their performance is compared in terms
of number of FE simulations needed, since this is the most time-consuming step in the
iterative procedure. Beside method-specific recommendations, the main finding of this
work is that, in practical use of IDIC, it is recommended to start using a very robust,
but slow, derivative-free optimization method (e.g. Nelder-Mead) to determine the
search direction and increasing the initial guess accuracy, while after some iterations,
it is recommended to switch to a faster gradient-based method, e.g. (update-limited)
Gauss-Newton.

This work has been published:
Kleinendorst SM, Verhaegh BJ, Hoefnagels JPM, Ruybalid AP, Sluis O van der, Geers MGD. (2018) On the
boundary conditions and optimization methods in integrated digital image correlation. Advancement of
Optical Methods in Experimental Mechanics, Proceedings of the 2017 Annual Conference on Experimental
and Applied Mechanics, 3, 55-61. DOI: 10.1007/978-3-319-63028-1_9



204 B On the boundary conditions and optimization methods in integrated digital image correlation

Introduction

Interfacial delamination is a key reliability challenge in composites and micro-electronic
systems due to (high-density) integration of dissimilar materials. Predictive finite el-
ement models are used to minimize delamination failures during design, but require
accurate interface models to capture (irreversible) crack initiation and propagation
behavior observed in experiments. A generic inverse parameter identification method-
ology is needed to identify the interface behavior in their as-received state in the micro-
electronics component, while it is subjected to realistic loading conditions, such as
thermal loading.

Recently, Integrated Global Digital Image Correlation (IDIC) was introduced, which
correlates the image patterns by deforming the images using as few as kinematically-
admissible ’eigenmodes’ as there are material parameters [100] in the interface model [15],
thereby greatly enhancing noise insensitivity and robustness [122]. The main challenge
lies in that the interface mechanics only generates very subtle changes in the defor-
mation field of the adjacent material layers, therefore, especially high accuracy and
robustness in the simulated deformation field is needed, as well as fast convergence
because (FEM) simulations including interface mechanics are notoriously slow.

To obtain high displacement accuracy, besides an accurate geometric and material
model, precise boundary conditions have often been overlooked. A study into precise
boundary conditions for the case of interface mechanics simulations has recently been
conducted, see Ref. [123]. Therefore, boundary conditions is not the topic of this
proceeding. High robustness and fast convergence can be equally important, hence,
these topics are explored here.

The robustness and convergence is determined by the IDIC algorithm. This algorithm is
based on the brightness conservation relation, or optical flow relation, which means that
material points retain the same brightness upon deformation of the underlying sample.
It is with this principle that the displacement field calculated by using the material model
is used to back-transform the deformed image to the reference configuration. If the
displacement field is calculated correctly, the reference image and the back-transformed
image should overlap perfectly (in the absence of noise and algorithm-induced errors
such as interpolation) and hence the difference between these two images, denoted by
the residual, will decrease to zero. Therefore, the heart of the IDIC algorithm, as well
as for other DIC algorithms, is the minimization of this residual. After all, the residual
converges to zero if the FE simulation matches the true, experimental, behavior of the
specimen and the back-deformed image calculated with this correct displacement field
correlates to the undeformed image.

Different approaches exist to solve this minimization problem. Most commonly used
in DIC algorithms is a (modified) Gauss-Newton method. This method is relatively
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fast in the proximity of the solution, but gives robustness issues if the initial guess is
farther from the solution. Other methods exist which have their own advantages and
disadvantages. A key issue in integrated DIC is the computational cost consumed by
the number of FE simulations performed. Every iteration in the optimization method
requires at least one FE evaluation. Some methods, however, require the derivative of
the objective function, i.e., the residual, towards the degrees of freedom, i.e., the model
parameters. This derivative is not analytically available and therefore, often a finite
difference scheme is used to approximate the derivative. This calculation requires the
number of degrees of freedom amount of FE evaluations, thereby increasing calculation
cost and CPU time immensely. Therefore, the different optimization methods are
compared based on the number of FE simulations needed to converge.

The lay-out of this paper is as follows. First the virtual experiment used to evaluate the
performance of the different optimization methods is introduced in Section B. Then, in
Section B three different optimization methods are presented and their performance is
compared. Finally, conclusions are drawn in Section B.

Virtual test case

The performance of the different optimization methods is analyzed based on a virtual
experiment. This virtual experiment concerns a tensile experiment with a dogbone
tensile specimen, see Figure B.1, on which a load is prescribed on both edges. In a virtual
experiment no real experimental images are used, but a finite element (FE) simulation is
executed and the resulting displacement fields are used to artificially deform a reference
image, see Figure B.2. These images form the input for the integrated DIC method. The
objective is to correlate these images in order to find the model parameters, in this case
the Young’s modulus E and Poisson ratio ν, that were used in the elastic isotropic FE
model used to create the images. The parameters used to create the virtual experiment
are Ep = 1.3 ·105Pa and νp = 0.28.

Optimization methods

Three different iterative optimization methods are tested. The first is a Gauss-Newton
method that is often implemented in (integrated) digital image correlation approaches.
This is a custom coded method. The other two methods are used from the MATLAB op-
timization toolbox. The first of these methods is a Trust-Region method with a Newton
approach. The last optimization method is the Nelder-Mead algorithm. The perfor-
mance of the IDIC algorithm with the different optimization approaches is evaluated
by comparing the number iterations needed to converge within a set accuracy. The
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Figure B.1: Finite element simulation for the virtual experiment concerning a dogbone tensile
sample. A load is prescribed on the left and right edge. A quarter of the structure is modeled,
the red lines indicate symmetry lines. The region of interest is indicated by the green rectangle.

computational cost is mainly determined by the number of FE evaluations executed
and. This number per iterations differs for each method and therefore the total number
of FE evaluations for convergence is also compared for the considered methods.

The method are tested for different initial guesses on both parameters E and ν. The
initial guesses are given relative to the true material property values used to create the
virtual experiment, Ep and |nup , and are chosen on a logarithmic scale. The set of
initial guess values for E ranges from a 10 times lower value to a 10 times higher value.
For ν the range also start with values 10 times lower than the reference value, but it
can not increase to a 10 times higher value, since the Poisson’s ratio can not exceed 0.5
physically.

Since the iterations are computationally costly, especially for the methods that require
derivative information, a maximum of 20 iterations is set. If a initial guess combination
for a certain method crosses this limit, but is in the process of converging to the correct
solution, this is indicated by a blue color in the graphs. If the method is diverging, an
’x’-symbol is depicted in addition to the blue color.

Gauss-Newton

The Gauss-Newton method is a modification of Newton’s method for finding the ob-
jective’s minimum. Given the set of m image residuals r = (r1, ..,rm) and the set of n
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(a) Reference image f (b) Deformed image g

Figure B.2: Reference image f and artificially deformed image g . The reference image is
a generated speckle pattern with both coarse and fine features, which is suitable for digital
image correlation analysis.

variables λ=λ1, ...,λn) and the initial guess λ(0), the method proceeds by the iterations
s described in Equation B.1 using Jacobian Jr [14].

λ(s+1) =λ(s) − (J T
r Jr )−1 J T

r r (λ(s)). (B.1)

This algorithm is often used in digital images correlation methods. Usually J T
r Jr is

denoted as M , the optical correlation matrix, and J T
r r (λ(s)) as b, the right-hand side

vector.

To prevent the method from iterating towards non-physical negative values for the
model parameters λ, an update limit it introduced. This limit states that the iterative
update in λ can not exceed a factor α< 1 times the current value of the variable, λ(s).
Here a factor α= 0.9 is used.

The results for a set of initial guesses is shown in Figure B.3. Since this method requires
the derivative, each iteration requires (NDOF +1) number of FE evaluations. The method
converges for all initial guesses tried, however, for low values of the Young’s modulus
converges becomes slow. The method is concluded to be relatively robust, but slow if
far from the solution.

Trust-Region

For the Trust-Region method the MATLAB optimization toolbox is used. The used
Optimization Toolbox algorithm is trust−region−reflective in the fmincon
solver. Trust-Region algorithms makes use of trust regions; a defined subdomain N in
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Figure B.3: Number of iterations needed before convergence within a set accuracy limit is
reached for the Gauss-Newton method for a range of initial guesses. On the x-axis the initial
guess in Poisson ratio ν, relative to the reference value νp , is plotted. On the y-axis the initial
guess in Young’s modulus E , with respect to the reference value Ep .

which the objective function f is approximated with a simpler function q which reflects
the behavior of the true objective function. A trial step s is computed by minimizing over
this trust region. When the sum of squares is lower for the trial x + s, the current point is
updated. Otherwise, the current point remains and the trust region N is shrunk. The
approximated function q is often the Taylor approximation of f (x). Similar to Gauss-
Newton, the Trust-Region algorithm requires an objective gradient and the Hessian
Matrix of the posed function, which tends to be slower but more robust to local minima.
Using a Trust Region further increases robustness.

Figure B.4 shows the amount of iterations required to reach the convergence criterium,
with 3 (i.e. NDOF +1) FE simulations per iteration due to the calculation of the gradient
and Hessian. The Trust-Region method shows less robustness for low initial guesses,
but convergence performance is higher than the custom Gauss-Newton method.

Nelder-Mead

The Nelder-Mead algorithm is a derivative-free method, i.e. no Hessian matrix or
gradient is required. The Nelder-Mead method is simplex-based. A simplex S in Rn is
defined as the convex hull of n +1 vertices x0, ..., xn ∈Rn . One iteration of the Nelder-
Mead method consists of the following three steps:
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Figure B.4: Number of iterations needed before convergence within a set accuracy limit is
reached for the Trust-Region method for a range of initial guesses. On the x-axis the initial
guess in Poisson ratio ν, relative to the reference value νp , is plotted. On the y-axis the initial
guess in Young’s modulus E , with respect to the reference value Ep .

1. Ordering: Determine the indices h, s, l of the worst, second worst and the best
vertex, respectively, in the current working simplex S.

2. Centroid: Calculate the centroid c of the best side; this is the one opposite the
worst vertex xh .

3. Transformation: Compute the new working simplex from the current one.

The transformation of the simplex is controlled by four parameters; α for reflection, β
for contraction, γ for expansion and δ for shrinkage. Figure B.5 shows resp. (1) reflection,
expansion, contraction and (2) shrinking operations. Based on the function values of
vertices x0, ..., xn , an appropriate transformation step is chosen. It depends on this
choice how many FE evaluations are required per iteration.

The following results are for the MATLAB Optimization Toolbox using the Nelder-Mead
algorithm. The Nelder-Mead algorithm shows significant convergence towards a mini-
mum for all given initial guesses, which proves robustness, but takes many FE simula-
tions to accurately converge. This is also visible in Figure 4.7. For all cases in Figure 4.4,
the algorithm was converging.
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Figure B.5: Operations in the Nelder-Mead algorithm.

Comparison of the methods

To compare the methods more visually, a convergence plot for each method is shown for
one specific initial guess combination: log(ν/νp ) =−0.1 and log(E/Ep ) =−0.3. Nelder-
Mead takes significantly more simulations to converge and cannot rely on a derivative
for the search direction, but takes multiple iterations to determine the direction. Gauss-
Newton is the fastest method, followed by Trust-Region.

Conclusions

In integrated digital image correlation methods attention must be paid to the influence
of using a correct geometric and material model, but also to make the boundary condi-
tions in the FE simulation match the real experiment. Another issue is the robustness
and convergence of the IDIC algorithm itself, which has been explored in this proceed-
ing. The basis of the algorithm is the minimization of the residual. Different approaches
for this minimization exist, of which a Gauss-Newton method is used most often. In this
paper several other methods are presented as well and their performance is compared
in terms of number of FE simulations needed, since this is the most time-consuming
step in the iterative procedure.

The results presented show varying performance and robustness for different methods.
Derivative free methods, like Nelder-Mead, tend to require a great amount of iterations,
but it should be noted that this may not be bad for performance, because perturbation
of input parameters λ is not required and hence less FE evaluations, the most compu-
tationally expensive step, are executed per iteration. The custom Gauss-Newton with
update limit is a robust and performance-wise a decent solution, though using the
MATLAB Optimization Toolbox should be considered because of code reliability and
future-proofing, since toolboxes are commercially maintained by Mathworks. Further-
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Figure B.6: Number of iterations needed before convergence within a set accuracy limit is
reached for the Nelder-Mead method for a range of initial guesses. On the x-axis the initial
guess in Poisson ratio ν, relative to the reference value νp , is plotted. On the y-axis the initial
guess in Young’s modulus E , with respect to the reference value Ep .

more, implementation of the Toolbox functions enables for using other optimization
methods in the future, as new methods are introduced by Mathworks.

Another recommendation is extend the use of an update limit in the custom Gauss-
Newton implementation, such that constraints based on physical boundaries are en-
forced, reducing the solution domain, thereby enhancing the robustness.

In practical use of the IDIC program, when choosing the initial guess is difficult, it can
be useful to use a very robust, but slow, derivative-free method (e.g. Nelder-Mead) to
determine the search direction and increasing the initial guess accuracy. After some iter-
ations, getting nearer the solution, one can switch to a faster gradient-based method, e.g.
Gauss-Newton. Using the implementation of MATLAB Optimization Toolbox, switching
optimization methods runtime is possible. The analysis is done using a varying Young’s
Modulus and Poisson ratio, but IDIC can be used to determine many other constitu-
tive parameters. The different optimization methods may differ in performance and
robustness when other mechanical properties are to be identified.
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Figure B.7: Convergence plot for all three tested methods.



Appendix C
Mechanical Shape Correlation: a novel

integrated digital image correlation
approach

Abstract

Mechanical Shape Correlation (MSC) is a novel integrated digital image correlation
technique, used to determine the optimal set of constitutive parameters to describe
the experimentally observed mechanical behavior of a test specimen, based on digital
images taken during the experiment. In contrast to regular digital image correlation
techniques, where grayscale speckle patterns are correlated, the images used in MSC are
projections of the sample contour. This enables the analysis of experiments for which
this was previously not possible, because of restrictions due to the speckle pattern. For
example, analysis becomes impossible if parts of the specimen move or rotate out of view
as a result of complex and three-dimensional deformations and if the speckle pattern
degrades due to large deformations. When correlating on the sample outline, these
problems are overcome. However, it is necessary that the outline is large with respect
to the structure volume and that its shape changes significantly upon deformation, to
ensure sufficient sensitivity of the images to the model parameters. Virtual experiments
concerning stretchable electronic interconnects, which because of their slender wire-
like structure satisfy the conditions for MSC, are executed and yield accurate results
in the objective model parameters. This is a promising result for the use of the MSC

This work has been published:
Kleinendorst SM, Hoefnagels JPM, Geers MGD. (2018) Mechanical Shape Correlation: a novel integrated
digital image correlation approach. Advancement of Optical Methods in Experimental Mechanics, Proceed-
ings of the 2017 Annual Conference on Experimental and Applied Mechanics, 3, 47-54. DOI: 10.1007/978-
3-319-63028-1_8
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method for tests with stretchable electronics and other (micromechanical) experiments
in general.

Introduction

Mechanical Shape Correlation (MSC) is a novel technique, based on integrated digital
image correlation (I-DIC) [100, 122], where a finite element (FE) model is coupled to
the image correlation procedure. In such a method the constitutive parameters of the
FE model are the unknowns in the correlation procedure, with the objective to obtain
a good set of model parameters that describe the experimentally observed behavior
of the test specimen correctly. In contrast to images of a speckle pattern applied to
the test specimen, as usually used in DIC, in MSC the images used for correlation are
projections of the deforming sample shape. This is beneficial in cases where complex
three-dimensional deformations occur, such that parts of the specimen rotate out-
of-view and other parts rotate into view, or if pattern application is difficult, such as
on microscale samples. Usually in DIC approaches correlation is limited to in-plane
deformations, or in case of Quasi-3D DIC (also referred to as Digital Height Correlation,
DHC) [9, 52, 76, 99] or stereo-DIC [91, 150] it is also possible to track the out-of-plane
deformation of the surface. However, this surface is required to stay in view and not to
move or rotate out of view. By correlating the outline of the specimen this restriction is
relaxed and full three-dimensional movement of the sample is allowed. However, for
the MSC method the assumption is that the boundary area is large with respect to the
volume of the structure and that it changes shape significantly upon deformation, such
that deformations are reflected in the specimen edge.

A schematic depiction of the method can be seen in Figure C.1. During an experiment
pictures are taken of the specimen. These images are processed in order to obtain a
projection. Also a numerical simulation is executed and similar projections are made.
The projections from the experiment and the simulation are compared. If they do not
correlate, the model parameters, which are the unknown in the correlation procedure,
are updated and a new simulation is performed. This iterative operation is repeated
until convergence is reached and the correct set of model parameters to portray the
experimental behavior of the structure is achieved.

The method is demonstrated by means of virtual experiments, dedicated to stretchable
electronic interconnects. These interconnects are wire-like structures and hence their
outline is large with respect to the volume of the structure. In this case the interconnects
are not glued to a stretchable substrate, but they are free-standing and hence free to
deform three-dimensionally, making it difficult to analyze their mechanical behavior
with existing techniques. Therefore, these structures make an interesting test case for
the MSC technique. The deformation of the interconnects can globally be split in two
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Figure C.1: Schematic representation of the mechanical shape correlation (MSC) method to
identify model parameters ai from an experiment. Simulations supply the images f to which
the experiment is compared.

main modes: torsion of beams and double (S-shaped) bending of beams. These two
modes are treated separately in the virtual experiments in this work.

The outline of the paper is as follows. In SectionC the MSC algorithm is introduced and
compared to the integrated digital image correlation algorithm, highlighting the differ-
ences. Next the image type used for Mechanical Shape Correlation, i.e., the specimen
projections, are explained and the important steps in the formation of these images are
stepped through. In Section C two virtual experiment concerning the main deformation
modes in the stretchable electronic interconnect structures are presented. In the last
section conclusions are drawn.
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Algorithm

The algorithm for Mechanical Shape Correlation is based on Integrated Digital Image
Correlation (I-DIC) methods, see e.g. [100]. In I-DIC grayscale images of the sample,
containing a speckle pattern, before and after deformation are compared, based on
the optical flow relation, which means that material points are assumed to have the
same gray value before and after deformation. A Finite Element (FE) simulation is
performed which represents the experiment, in which some model parameters of
interest are the unknowns in the correlation procedure. The resulting displacement
field from this simulation is used to back-deform the deformed images, such that if
the displacement field is calculated correctly the back-deformed image matches the
undeformed, reference, image. The difference between these images is denoted as the
residual, which naturally approaches zero if a good correlation is obtained. If this is not
the case, the unknown model parameters are updated and the procedure is repeated.

The difference in MSC is that the the displacement field resulting from the FE simulation
is not used to create back-deformed images, but projections, i.e., images, are generated
from the model itself at different time increments. This image type is introduced in the
next section. These FE images are correlated to similar projections that are made from
the experimental images at the same time steps. Again, the residual is defined as the
difference between these images. Similar to I-DIC the model parameters are updated
iteratively to obtain a good correlation between the experiment and the simulation, as
shown in Figure C.1.

Images

In conventional digital image correlation methods contrast in the images is usually
provided by some sort of speckle pattern, either naturally present due to the specimen
texture or artificially applied with, e.g., spray paint. In the Mechanical Shape Correlation
technique the images consist of a projection of the specimen outline. The most elemen-
tary projection one could think of is the binary projection, where the background is
assigned a contrasting color with respect to the structure itself, e.g., black and white, see
Figure C.2a. However, since large parts of the image are monochromatic, the residual
will only be non-zero in a relatively small area even if correlation is not achieved. This
results in a low overall residual and the method will converge too soon. Therefore, the
projection chosen for MSC is the signed distance map, i.e., the value for each pixel
represents the closest distance to the sample contour, see Figure C.2b. With these im-
ages the whole field is affected if the unknown parameters in the FE simulation do not
characterize the experimentally observed kinematics correctly. Therefore, the residual
field is more likely to direct the algorithm to the correct solution.
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(a) Binary image
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(b) Signed distance map

Figure C.2: Projection images used for the Mechanical Shape Correlation method. Two
options are shown: on the left a binary projection in which the background is black and the
structure itself is white. On the right a signed distance map is shown, where the colors indicate
for each pixel the closest distance to the edge of the structure.

Projection of Finite Element simulation

A common type of elements used in FE simulation is shell elements. It deserves some
attention as to how to create the projection images from these simulations. Since shell
elements are infinitely thin, a projection perpendicular to the structure will not incor-
porate the real thickness of the sample. Therefore, this thickness should be artificially
included in creating the signed distance maps. The first step is to determine the perime-
ter of the model, see Figure C.3. This is done by starting at an arbitrary point on the
contour, however, it is easiest is to start at a corner. A node in the corner appears in only
one elements, hence it is easy to search for such a node. Next all other nodes in this one
element are scanned. The characteristic of the nodes located on the model perimeter is
that they are shared by only two or three elements (or only one for the corners), while
nodes in the center of the structure are shared by four elements. The node in the current
element that satisfies this characteristic is the next in line on the contour. Furthermore,
it is part of the next element in line, which is then scanned for the next node on the
perimeter. This process is repeated until the starting node is attained again. Note that
the assumptions made for this method only hold for rectangular elements, for other
types the procedure should be adjusted accordingly. Also note that only the corner
nodes of the elements are taken into consideration; the nodes at the edge centers, which
are present for quadratic elements, are ignored. The next step is to construct the sam-
ple edge location more accurately, by defining more points (denser than the number
of pixels on this distance). Interpolation using the FE shape functions (e.g., linear or
quadratic, depending on the element type) is used to determine the positioning of these
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points.
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Figure C.3: Determination of the sample contour from an FE simulation. In the case of shell
elements, all element corner nodes located on the perimeter of the structure have in common
that they are only shared by two or three elements, while nodes located in the center share
four elements. Based on this characteristic it is possible to follow the contour of the structure,
by starting at some point at the perimeter and repeatedly searching for the next node that
satisfies this feature. After the perimeter is determined, the thickness of the specimen is
artificially incorporated.

Now that the sample contour is accurately defined, the thickness can be incorporated.
The rotation information of all nodes, resulting from the FE simulation, is taken into
account to determine the locations of the virtual bottom and top contour, see the right
part of Figure C.3. Now when a projection is made using these edges, and also the
side edges connecting the top and bottom contours, the thickness of the sample is
incorporated.

Masking

As can be seen from the extended structure in Figure C.3 many lines are crossing
inside the structure, while we are only interested in the total outline since that is the
only information that can be obtained from real experimental images. Because the
determined edges consist of many points, which can be very close together for sharp
edges, it is difficult to determine the convex hull of the shape to locate the outer contour
and eliminate the internal curves. Therefore the signed distance map for the pixels
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located inside the sample geometry can not be accurately determined. Furthermore,
even if the signed distance map could be determined accurately, a small deviation in
the calculation of the displacement field results in a relatively large effect in the signed
distance map and hence the residual inside the structure, since the distances inside the
structure are very small. This can lead to numerical instability and poor convergence.
An elegant solution is to mask the structure itself and correlate only on the area outside
the structure. The impact of masking on the method’s performance is tested by means
of a virtual experiment in the next section.

Virtual experiments

Two virtual experiments are executed to test the performance of the MSC method.
The first experiment concerns one of the main deformation modes of the considered
stretchable electronic interconnects: double bending of beams. In this experiment
the effect of masking versus no masking is examined. The second virtual experiment
concerns the other main deformation mode: torsion of beams.

Double bending of beams

The effect of masking is tested by means of a virtual experiment concerning a double
bending beam, see Figure C.4. In this virtual experiment no real experiment is executed
with this structure, but an FE simulation is performed and the projections made from
this are used as the ’experimental’ images. The model is an elastic model, with only
one unknown model parameter: the Young’s modulus E . The value used for the virtual
experiment is 69GPa, or 6.9 ·10−2N/µm2, since the structure is modeled in micron. This
value is the solution which is attempted to be determined using the Mechanical Shape
Correlation method. The same model used to create the virtual experiment is also
plugged in the MSC algorithm, however a variety of initial guesses for E are given. Also
the perturbation factor P is varied. This factor is a parameter in the MSC algorithm,
which originates from the derivative of the objective function being needed to minimize
the residual. Since it is not possible to do so analytically, the derivative is approximated
using a finite difference scheme. The step size for this calculation is taken relative to
the value of the considered parameter, i.e., the perturbation factor P is introduced. The
quantity of this factor affects the convergence behavior of the method and therefore
different values for P are investigated in this research.

Since the real value for the Young’s modulus is known, it is possible to determine the
error in this parameter. This error is plot against the number of iterations for the
situation when masking is applied versus no masking, and for different values of the
initial guess and perturbation factor P . The resulting convergence graphs are shown in
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Figure C.4: Virtual experiment with a simple double bending beam. One end of the beam
structure is constrained, while the other end is lifted with a prescribed force. The FE model is
elastic with a Young’s modulus of 69GPa. Not that the x y-coordinates in the signed distance
maps correspond to the y z-coordinates in the FE simulation.

Figure C.5. It can be seen that for all settings the convergence behavior is improved in
case the structure itself is masked. Especially for a small perturbation factor the effect is
large. This is because a small perturbation increases the effect of numerical instability
due to very small deviations.
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Figure C.5: Comparison of the convergence behavior of the MSC method for images where
the structure itself is masked and images for which the structure is not masked, i.e., where
the entire image is used. The comparison is executed for different values of the perturbation
factor P and for different initial guesses.

Torsion of beams

The second virtual experiment is executed for a beam in torsion, which is beside the
bending of beams also a deformation mode in stretchable electronic interconnect. A
beam of 50µm × 10µm is modeled and a prescribed moment is applied on one end,
while the other end is clamped. The model is again elastic with one parameter, the
Young’s modulus E , which determines how much the beam rotates upon the prescribed
moment. Signed distance projections are made at various increments and these are
used as the ’experimental’ input images, see Figure C.6.
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Figure C.6: Signed distance maps for a selection of increments of the virtual experiment
concerning a torsion beam. Note that the y-coordinate in the signed distance maps coincides
with the z-coordinate in the FE simulation.

The algorithm is run again for different initial guesses and various values of the pertur-
bation factor P . The convergence behavior based on the error is plot in Figure C.7. It
can be seen that convergence with a good accuracy is reached in a reasonable amount
of iterations for all tried variations in initial guess and P . This gives a good perspective
to use the method with other test cases.
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Figure C.7: Convergence plot of the MSC algorithm for the torsion beam experiment, for
different values of the perturbation factor P and different initial guess values.
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Conclusions

A novel method called Mechanical Shape Correlation has been developed. It is an
integrated digital image correlation based method, which uses a finite element model
for regularization of the displacement field. The goal of such a method is to obtain an
adequate set of constitutive model parameters, such that the FE model describes the
real, experimentally observed, behavior of the sample correctly. The novelty lies in the
use of projections of the sample contour as input images for the algorithm, rather than
grayscale speckle patterns. This approach makes it possible to apply the technique
to experiments for which existing techniques are difficult to use, because of complex
three-dimensional deformations that makes parts of the specimen move out of view or
because of complications with pattern application.

The MSC algorithm was explained along with some important changes with respect to
the IDIC algorithm. The most important change is the type of images used and attention
was paid as to how to create these projections from FE simulations and the important
steps taken herein. Also masking of the structure itself in the created projections plays
an important role. Two virtual experiments were executed to examine the method’s
performance. The first virtual test case includes analysis of the difference in results
in case the structure is masked in the images or not masked. It was concluded that
the convergence behavior improves if masking is applied for all considered parameter
variations, including the initial guess and perturbation factor P , but that the effect is
strongest for small perturbation factors. In both virtual experiments a good accuracy in
the objective model parameter, the Young’s modulus E , was obtained in a reasonably
low amount of iterations. These results are promising for the method’s performance in
other test cases.
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