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Abstract
Motivated by the cost savings that can be obtained by sharing resources in a network
context, we consider a stylized, yet representative, model for the coordination of
maintenance and service logistics for a geographic network of assets. Capital assets,
such as wind turbines in a wind park, require maintenance throughout their long
lifetimes. Two types of preventive maintenance are considered: planned maintenance
at periodic, scheduled opportunities, and opportunistic maintenance at unscheduled
opportunities. The latter type of maintenance arises due to the network context: When
an asset in the network fails, this constitutes an opportunity for preventivemaintenance
for the other assets in the network. So as to increase the realism of the model at hand
and its applicability to various sectors, we consider the option of not-deferring and of
deferring planned maintenance after the occurrence of opportunistic maintenance. We
also assume that preventive maintenance may not always restore the condition of the
system to ‘as good as new.’ By formulating this problem as a semi-Markov decision
process, we characterize the optimal policy as a control limit policy (depending on
the remaining time until the next planned maintenance) that indicates on the one hand
when it is optimal to perform preventive maintenance and on the other hand when
maintenance resources should be shared if an opportunity in the network arises. In
order to facilitate managerial insights on the effect of each parameter on the cost, we
provide a closed-form expression for the long-run rate of cost for any given control
limit policy (depending on the remaining time until the next planned maintenance)
and compare the costs (under the optimal policy) to those of suboptimal policies that
neglect the opportunity for resource sharing.We illustrate our findings using data from
the wind energy industry.
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1 Introduction

High-value capital assets, such as energy systems (for example, wind turbines), med-
ical systems (for example, interventional X-ray machines), lithography machines in
semiconductor fabrication plants, and baggage handling systems at airports require
maintenance throughout their (long) lifetimes. Such capital assets are crucial to the
primary processes of their users/operators and unexpected failures may have very sig-
nificant negative impacts and even life threatening consequences. In order to avoid or
to minimize failures, asset owners perform preventive maintenance activities, with the
objective to retain or to restore a system back to a satisfactory operating condition.
The costs of both these maintenance activities, and of their respective unscheduled
downtimes, represent one of the key drivers of an organization’s total costs. Such
maintenance costs constitute up to 70% of the total value of the end product [4,22],
and this percentage is rapidly increasing [44]. Hence, there is great incentive for asset
owners to optimize the maintenance planning.

The most common maintenance practices are the so-called corrective maintenance
and planned maintenance. The former, as the name suggests, proposes the repair
of the asset upon failure, while the latter proposes a fixed service schedule for the
field service engineers with the objective of ensuring that the asset operates correctly
and of avoiding any unscheduled breakdown and downtime. The cost of planned
maintenance is relatively low in comparison to that of corrective maintenance, due to
its planned, anticipated nature. Planned maintenance is characterized by its scheduled
downtimes (contrary to the unscheduled downtime experienced at a failure, which
leads to a correctivemaintenance)with fixed inter-scheduled instances, say at instances
τ, 2τ, 3τ, . . ., (for example, τ = 6 months). Such instances constitute the scheduled
opportunities of preventive maintenance.

In the context of a network of assets, such as a wind park or a network of hospitals
in close geographic proximity (from the viewpoint of the service provider), there is a
second type (in addition to the above scheduled instances) of opportunity to perform
preventive maintenance. In the event that a failure occurs, its corrective maintenance
instance can be viewed as an unscheduled opportunity for preventive maintenance
for the other assets in the network. In these instances, opportunistic maintenance can
take place, with the respective instances constituting the unscheduled opportunities
of preventive maintenance. This form of network dependency can be viewed on two
levels: (i) the economic dependency between the various systems of a network, and
(ii) the structural degradation and failure dependencies. Similarly to planned mainte-
nance, opportunistic maintenance has a lower cost in comparison to that of corrective
maintenance.

Incorporating opportunistic maintenance may also affect the scheduling of planned
maintenance, as it might be beneficial to defer the planned maintenance opportunity
to take place after a period of length τ after the occurrence of an opportunistic mainte-
nance. This decision of deferring or not the scheduling of planned maintenance after

123



Queueing Systems (2019) 93:269–308 271

the occurrence of opportunistic maintenance may have a positive or negative effect on
the total costs.

In maintenance, it is oftentimes assumed that a maintenance activity is perfect,
i.e., it restores the system to a state of ‘as good as new.’ However, this assumption
may not be true in practice. For instance, a misidentification of the root cause of the
(imminent) failure can lead to an erroneous repair not resolving the actual issue, or
some minor repair activity (such as exchange of parts, changes or adjustment of the
settings, software update, lubrication or cleaning, etc; see [34]) not restoring the system
to a state of ‘as good as new.’ In the above-mentioned cases, it is more reasonable
to assume that the system is restored to a state between ‘as bad as old’ and ‘as good
as new.’ This concept will be referred to as imperfect maintenance. Evidently, this
assumption impacts the resulting cost. Hence, knowledge regarding the degree of how
successful amaintenance activity is should not be ignored in themaintenance planning.

In conclusion, asset owners are oftentimes faced with the following questions:

(i) What is the advantage of incorporating planned maintenance in comparison to
exercising only corrective maintenance?

(ii) What is the benefit of sharing resources in the network (in the form of incorpo-
rating opportunistic maintenance in addition to the planned maintenance)?

(iii) What is the influence of deferring the planned maintenance after the occurrence
of opportunistic maintenance?

(iv) What is the influence of imperfect maintenance on the maintenance planning and
on the costs (long-run rate of cost)?

(v) When should preventive maintenance be performed (so as to minimize the long-
run rate of cost)?

1.1 Main contributions

We consider a stylized, yet representative, model that incorporates the above-
mentioned characteristics, and we prove the existence of the optimal maintenance
policy and we derive its structure. Furthermore, we compute an explicit expression for
the long-run rate of cost,which can be easily used by asset owners and service providers
so as to gain further insights into their practice and so as to compute the cost-benefits
of changing their maintenance practice. More concretely, the main contributions of the
paper are threefold: (1)We consider a semi-Markov decision process that incorporates
planned and opportunistic maintenance, as well as imperfect maintenance. From the
analysis of the semi-Markov decision process stems the characterization of the opti-
mal policy as a control limit policy (threshold) depending on the time until the next
plannedmaintenance opportunity.Moreover, using this approach, we are able to derive
a closed-form expression for this control limit. (2) Considering the class of control
limit policies (depending on the remaining time until the next planned maintenance),
we derive, using the theory of regenerative processes, an explicit expression for the
long-run rate of cost. (3) We consider data from the wind energy industry and provide,
based on these values, concrete answers to Questions (i)–(v) mentioned above. More
specifically, we analyze the benefit of using planned and opportunistic maintenance
compared to only corrective maintenance. We also analyze the influence of deferring
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planned maintenance after the occurrence of opportunistic maintenance. Finally, we
also highlight the cost savings that can be attained by reducing the probability of an
imperfect maintenance.

1.2 Outline of this paper

The remainder of this paper is structured as follows: In Sect. 2, we review the related
literature. In Sect. 3, we describe in detail the model at hand, which captures the con-
dition of the asset and which incorporates imperfect maintenance at scheduled and
unscheduled maintenance opportunities. Subsequently, in Sect. 4, we characterize the
structure of the optimal policy for condition-based maintenance using the average cost
criterion, see Sect. 4.1, andwe compute the long-run rate of cost for any policywith the
same structure as the optimal policy (i.e., the class of control limit policies depending
on the remaining time until the next planned maintenance), see Sect. 4.2. In Sect. 5,
we permit the deferral of planned maintenance after the occurrence of opportunistic
maintenance, and we compute the long-run rate of cost. A numerical illustration is
provided in Sect. 6, where, based on data from the wind energy industry, we compare
the long-run rate of cost for various policies, we show the effect of imperfect main-
tenance, and the effect of deferring planned maintenance. Finally, Sect. 7 contains
concluding remarks and highlights directions for future research.

2 Literature review

Maintenance optimization models have been extensively studied in the literature.
Optimal maintenance policies aim to provide optimal system reliability/availability
and safety performance at lowest possible maintenance costs [27]. Due to the fast
development of sensing techniques in recent years, the state of a capital asset can
be monitored or inspected at a much lower cost and in a continuous fashion, which
facilitates condition-based maintenance. Condition-based maintenance recommends
maintenance actions based on information collected through online monitoring of the
capital asset and it can significantly reduce maintenance costs by decreasing the num-
ber of unnecessary maintenance operations; see, for example, Jardine et al. [10], Peng
et al. [26] and Lam and Banjevic [18]. The condition-based maintenance model that
we propose builds on the delay time model proposed by Christer [6] and Christer and
Waller [5]. We refer the reader to Baker and Christer [2], Christer [7] and Wang [38],
and, more recently, Wang [39] for an overview on delay time models. Not only are
delay time models well-known in the literature, but they also very frequently appear
in practice.

Practice-based research with real diagnostic data, such as data related to the spec-
trometry of oil (for example, [16,21]) and data related to vibrations (for example,
[40]), showed that it is usually sufficient, and even preferable from a modeling and
decision-making perspective, to consider only two operational states. The first state
is the perfect state, in which the system lasts from newly installed to the point that
a hidden defect has been identified. After the occurrence of a hidden defect in the
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system until the occurrence of a failure (which is typically referred to as the delay
time), the system resides in the second state, also referred to as the satisfactory state.
Such a classification of the operational states has the property that maintenance actions
are initiated only when the system is degraded to the state that can actually lead to a
direct failure, i.e., the satisfactory state, but not when the system is functioning per-
fectly, i.e., the perfect state. The vast majority of the literature on delay time models
is restricted to numerical methods or approximations to solve the models at hand, due
to their underlying complexity. A few recent exceptions are Maillart and Pollock [20],
Kim and Makis [17] and Van Oosterom et al. [36], who study two-state systems under
periodic inspection, partial observability, and postponed replacement, respectively,
and provide analytical results regarding the structure of the optimal policy. However,
none of them consider the option of resource sharing in the network (in the form of
opportunistic maintenance), nor do they incorporate the notion of imperfect repair.

Most delay time model analyses assume that the system after a maintenance action
is restored to a state of ‘as good as new.’ Contrary to this assumption, in imperfect
maintenance it is assumed that, upon preventive maintenance, the system lies in a state
somewhere between ‘as good as new’ and ‘as bad as old.’ This is first introduced by
Nakagawa [23,24] and is called the (p, q)-rule. Under the (p, q)-rule, the system is
returned to an ‘as good as new’ state (perfect preventive maintenance) with probability
p and it is returned to the ‘as bad as old’ state (minimal preventive maintenance)
with probability q = 1 − p after preventive maintenance. Clearly, the case p = 0
corresponds to having no preventive maintenance. Also, from a practical point of view,
imperfect maintenance can describe a large set of realistic maintenance actions [27].

When planning condition-based maintenance strategies, see, for example, Jardine
et al. [10], Jardine and Tsang [11] and Prajapati et al. [28], a typical assumption in the
literature is that the system at hand is monitored continuously and one can intervene
and maintain the system at any given moment. However, due to accessibility reasons
(for example, in the case of off-shore wind parks) or for cost reduction purposes, it
is cost optimal and more practical to allow only for discrete time opportunities. The
simplest among the discrete time opportunities are the periodic planned maintenance
instances (also referred to as scheduled downs), with period, say, τ , that serve as
a scheduled opportunity to do maintenance for a network of systems. Furthermore,
unplanned maintenance instances (due to opportunistic maintenance) can be modeled
as discrete instances occurring according to a multi-dimensional counting process.

For recent works related to opportunistic maintenance, the interested reader is
referred to Zhu et al. [42,43], Arts and Basten [1] and Kalosi et al. [14]. In Zhu et al.
[43] and Zhu et al. [42], the authors consider a single-unit system and account for both
scheduled and unscheduled opportunities. In these analyses, the authors model the age
and the condition, respectively, of the system and derive, based on approximations, the
long-run rate of cost under a given policy. In both papers, the arrivals of unscheduled
opportunities are modeled according to a homogeneous Poisson process. This approx-
imation is justified by the Palm–Khintchine theorem [15], which states that even if the
failure times of some systemsdonot followexponential distributions, the superposition
of a sufficiently large number of independent renewal processes behaves asymptoti-
cally like a Poisson process. Arts and Basten [1] build further on Zhu et al. [42,43],
but they only consider scheduled maintenance opportunities (excluding unscheduled
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opportunities). Furthermore, Arts and Basten [1] assume that at a scheduled opportu-
nity, the system is restored to a perfect condition (i.e., p = 1), while at a failure they
assume that the system is restored to a state which is stochastically identical to the
state just prior to the system’s failure. In a recent conference paper, Kalosi et al. [14]
looked at a model with both planned and unplanned maintenance opportunities, at
which the system is restored to a perfect condition, showing some preliminary results
that a control limit policy (depending on the remaining time until the next planned
maintenance) is optimal.

In contrast toArts andBasten [1] and to Zhu et al. [42,43], inwhich the long-run rate
of cost is computed for a given policy, we first characterize the structure of the optimal
policy explicitly and thereafter, for the optimal policy class, we compute the long-run
rate of cost. Furthermore, we include both scheduled and unscheduled maintenance
opportunities. In contrast to Kalosi et al. [14], we extend the model by incorporating
the (p, q)-rule, making it more generic and realistic. Moreover, we are the first to
analyze the influence of deferring planned maintenance and we illustrate the financial
effects of the maintenance policy in a realistic context using data stemming from the
wind industry.

3 Model description

Weconsider a single-unit system (equivalently, a component or asset) that ismonitored
continuously and whose condition is fully observable. We assume that the condition
of the system degrades over time and that it can be modeled according to a delay
time model. That is, the states are classified as perfect, satisfactory and failed. We
shall refer to the state of perfect condition as state 2, the state of satisfactory condition
as state 1 and the failure state as state 0. Furthermore, we assume that as soon as a
system failure occurs, the system is instantaneously replaced by an ‘as good as new’
system. So, in the mathematical formulation of the model, we may assume, due to the
instantaneous replacement at failure, that the model evolves between only states 1 and
2. The system spends an exponential amount of time with rate μi in state i , i ∈ {1, 2}.
The above model formulation implies that initially the system starts in state 2 (perfect
state), then after an exponential amount of time with rate μ2, the system deteriorates
and the condition of the system goes to state 1 (satisfactory state). The system spends
an exponential amount of time with rate μ1 in state 1, after which a failure occurs. At
a failure, the system is instantaneously replaced by an ‘as good as new’ system and
the condition is restored to 2 (perfect state). A schematic evolution of the condition of
the component and the corresponding times of transitions is depicted in Fig. 1.

We assume that we have two types of opportunities at which we can perform
preventive maintenance (PM) before failure: the scheduled and the unscheduled
opportunities. The scheduled opportunities correspond to pre-arranged opportunities

Fig. 1 Schematic evolution of the condition of the component and the corresponding times of transitions

123



Queueing Systems (2019) 93:269–308 275

Fig. 2 A sample path of the model

occurring according to a fixed schedule. These opportunities can be attributed to either
service/maintenance agreements or to regulation imposition checks. We assume that
the scheduled opportunities occur at epochs τ, 2τ, 3τ, . . ., with τ > 0. This is also
in accordance with what happens in practice as maintenance actions, once planned,
are typically not rescheduled. The unscheduled opportunities correspond to random
opportunities triggered by failures of other systems in close proximity. We assume
that these unscheduled opportunities occur according to a Poisson process at rate λ.

The unscheduled and scheduled opportunities, abbreviated byUSO and SO, respec-
tively, serve as opportunities to perform preventive maintenance. Such preventive
maintenance is assumed to cost less than a corrective maintenance (CM) upon failure,
which costs ccm. Moreover, incorporating a planning perspective, we may assume that
the preventive maintenance cost at an SO, csopm, is less than or equal to the correspond-
ing cost at a USO, say cusopm , that is 0 < csopm ≤ cusopm < ccm (however, we also extend
our analysis to the case csopm > cusopm ). Following the (p, q)-rule of Nakagawa [23,24],
we assume that after preventive maintenance a system is returned to the ‘as good as
new’ state with probability p ∈ (0, 1] and returned to the ‘as bad as old’ state (i.e.,
the amount of time left until the failure has not altered) with probability q = 1 − p.

Our aim is to determine a policy for when to perform preventive maintenance on the
system based on its condition and the opportunity type, i.e., scheduled or unscheduled.
More explicitly, we will need to formally define the state space, which refers to the
condition of the system, the action space and the decision epochs. The state space is
governed by the process depicting the condition of the system, i.e., the Markov chain
evolving between the states {1, 2}. The action space consists of only two actions:
perform preventive maintenance or do nothing. Lastly, the decision epochs are the SO
and USO epochs. In Fig. 2, we depict the SO epochs by (∗) and the USO epochs by
(o).

Table 1 summarizes the abbreviations that we will use throughout the remainder of
this paper.

4 Optimal policy

The goal of this section is twofold: We first characterize the structure of the optimal
average cost condition-based maintenance policy. We then derive an explicit form for
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Table 1 Overview of
abbreviations PM Preventive maintenance

CM Corrective maintenance

USO Unscheduled opportunity

SO Scheduled opportunity

SC State change

the long-run rate of cost per time unit for any given policy that has the same structure
as the optimal policy.

4.1 Average cost criterion

This section is devoted to the derivation of the optimal policy for when to perform
preventive maintenance for the system at hand using the average cost criterion. To
this purpose, we set up our problem as a (controlled) semi-Markov decision process.
Due to the stochastic nature of the problem, it does not suffice to know the type of the
decision epoch (SO or USO), but it is also required to keep track of the remaining time
till the next SO. That timemay impact our decision, i.e., the optimal policymay depend
on the residual time till the next SO. Thus, for the full description of the condition
(state) of the system, we use a triplet descriptor

S = {(i, j, t) : i ∈ {1, 2}, j ∈ {SC,USO}, t ∈ (0, τ )} ∪ {(i,SO, 0) : i ∈ {1, 2}} ,

where i indicates the condition of the system. If j = SC, then this means that the
condition of the system is about to change and there is no decision associated with this
epoch, while if j = SO or j = USO, this means that this is a decisionmoment at either
a scheduled (SO) or unscheduled opportunity (USO), respectively. Finally, the third
element indicates the remaining time until the SO. Note that if j = SO then t = 0.
The introduction of the remaining time until the upcoming SO in the full description
of the condition of the system renders the model inhomogeneous, and for this reason
we use techniques that stem from semi-Markov decision processes. Note here that
the inclusion of the remaining time until the upcoming SO in the state, although it
complicates the analysis, permits us to prove that there is an optimal policy in the
class of deterministic stationary policies, cf. Propositions 1 and 3. At each decision
epoch (depending on the values of (i, j, t) ∈ S), we can choose to perform preventive
maintenance or do nothing, or in case of a failure to do corrective maintenance (CM),
that is A = {perform PM, do nothing, perform CM}, where A represents the overall
action space.

Proposition 1 For the model at hand, the deterministic stationary policy is optimal
for the average cost criterion.

A formal version of the above proposition, cf. Proposition 3, and its proof can be
found in Appendix A, together with a full formal definition of the model in the context
of semi-Markov decision processes. In addition to the theoretical validation that the
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above proposition offers on the existence and nature of the optimalmaintenance policy,
in the following theorem we compute the optimal policy.

Theorem 1 Under the assumption that csopm < cusopm and given the imperfect preventive
maintenance probability 1 − p ∈ (0, 1], the optimal policy under the average cost
criterion is: For state 2, do nothing. For state 1, perform preventive maintenance at

scheduled opportunities ifμ1ccm > (μ1+μ2)
csopm
p , and do nothing otherwise, and per-

form preventive maintenance at unscheduled opportunities for which the residual time

until the next scheduled opportunity is in [t̂, τ ), ifμ1ccm >
(
cusopm
p − cusopm −csopm

e(μ1+μ2)τ −1

)
(μ1+

μ2), and do nothing otherwise, where t̂ = min{τ,max{0, t∗}}, with t∗ satisfying

cusopm

p
= μ1ccm + λcusopm

μ1 + μ2 + λp

+
⎛
⎝−csopm + μ1ccm

μ1+μ2
+
(
cusopm
p − μ1ccm

μ1+μ2

)
e(μ1+μ2)t∗

1 − p
− μ1ccm + λcusopm

μ1 + μ2 + λp

⎞
⎠

× e(μ1+μ2+λp)(τ−t∗). (1)

Proof See Appendices B and C. ��
For USOs, Theorem 1 establishes a control limit policy depending on the remaining

time until the next SO: If the residual time until the next SO is smaller than t̂ , then it
is optimal to not take the opportunity to perform preventive maintenance in state 1.
This is intuitive in the sense that the urgency for preventive maintenance in state 1 at
a USO should decrease as the cheaper opportunity at an SO is approaching.

Note that in the special case when preventive maintenance costs at SOs and USOs
are equal, the optimal policy reduces to a stationary control limit policy, which is
shown in Proposition 2.

Proposition 2 Under the assumption that csopm = cusopm = cpm > 0 and given the imper-
fect preventive maintenance probability 1 − p ∈ (0, 1], the optimal policy under
the average cost criterion is: For state 2, do nothing. For state 1, perform preven-
tive maintenance at both SOs and USOs if μ1ccm > (μ1 + μ2)

cpm
p , and do nothing

otherwise.

Proof The proof of this proposition is identical in structure to the proof of Case (i) in
the proof of Theorem 1, and for this reason it is omitted. ��

One could also argue that the cost for preventive maintenance at a USO is actually
less than the cost at an SO since there is already a cost attached to the opportunity at
hand (for example, service engineers are already at a wind park and they can, at a small
extra cost, repair other systems in close proximity as well). In this case, the optimal
control policy also reduces to a stationary control limit policy, which is described in
Theorem 2.

Theorem 2 Under the assumption that csopm > cusopm and given the imperfect preventive
maintenance probability 1 − p ∈ (0, 1], the optimal policy under the average cost
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criterion is: For state 2, do nothing. For state 1, perform preventive maintenance at

an unscheduled opportunity if μ1ccm > (μ1 +μ2)
cusopm
p , and do nothing otherwise, and

perform preventive maintenance at an SO if μ1ccm > (μ1 + μ2)
csopm
p + λ(csopm − cusopm ),

and do nothing otherwise.

Proof See Appendix D. ��

4.2 Long-run rate of cost per time unit

In the previous section, we characterized the structure of the optimal policy using the
average cost criterion. This policy can be viewed as a control limit policy, with the
control limit depending on the time until the next SO. In this section, we consider such
a policy and we compute the long-run rate of cost per time unit. More concretely, we
consider a policy under which in state 2 we do not perform preventive maintenance
(i.e., we do nothing), and in state 1 we always perform preventive maintenance at SOs
and we perform preventive maintenance at USOs if the remaining time till the next SO
is greater than t̃ , for some given value t̃ ∈ (0, τ ). The results obtained in this section
are directly applicable to the results of Sect. 4.1, by setting t̃ = t∗, cf. Theorem 1.

For the computation of the long-run rate of cost per time unit, we employ the
theory of regenerative-like processes, also called stationary-cycle processes, described
in Section 2.19 of Serfozo [33]. For this purpose, we consider the inter-regeneration
times created by the SOs {τ, 2τ, 3τ, . . .}. For the cost computation, we assume that,
at the SOs, the system is in state 1 or 2 according to a stationary probability p1(0)
and p2(0), respectively. The long-run rate of cost per time unit is calculated as the
expected total cost incurred between consecutive SOs divided by τ .

Let pi (t) be the probability that the system is in state i ∈ {1, 2} given that the
time until the next SO is t ∈ [0, τ ). Then the long-run rate of cost per time unit
for this control limit policy (depending on the remaining time until the next planned
maintenance) for any given time threshold is given in the next theorem.

Theorem 3 Consider a given policy under which in state 2 we opt to do nothing,
and in state 1 we repair at scheduled opportunities and at unscheduled opportunities
for which the remaining time until the next scheduled opportunity is greater than
t̃ ∈ (0, τ ), and we do nothing otherwise. Under this policy, the long-run rate of cost
per time unit equals

csopm p1(0) + cusopm λ
∫ τ

t̃ p1(t) dt + ccmμ1
∫ τ

0 p1(t) dt

τ
, (2)

with

p1(t) =

⎧⎪⎨
⎪⎩

μ2

μ1 + μ2
+ C1 e

(μ1+μ2)t , t ∈ [0, t̃), (3)

μ2

μ1 + μ2 + λp
+ C2 e

(μ1+μ2+λp)t , t ∈ [t̃, τ ), (4)
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where the constants C1 and C2 are obtained as follows:

C1 = C2 e
λpt̃ − μ2

μ1 + μ2

λp

μ1 + μ2 + λp
e−(μ1+μ2)t̃ ,

C2 =
μ2

μ1+μ2

(
1 − e−(μ1+μ2)t̃

)
+ μ2

μ1+μ2+λp

(
1

1−p − e−(μ1+μ2)t̃
)

1
1−p e

(μ1+μ2+λp)τ − eλpt̃
.

Proof The expected total cost incurred in one cycle consists of three parts (cf. Eq. (2)),
which are related to the expected cost associated with preventive maintenance at SOs,
with preventive maintenance at USOs and with corrective maintenance, respectively.
It is now sufficient to derive pi (t) for t ∈ [0, τ ), i ∈ {1, 2}.

For t ∈ [t̃, τ ), the time-dependent behavior of p1(t) is governed by

p1(t) = p1(t + dt)(1 − (μ1 + λp) dt) + p2(t + dt)μ2 dt . (5)

Equation (5) is easily obtained by considering a small time interval of length dt ,
and noticing that at time t we are in state 1 either due to a transition from state 2
with infinitesimal probability μ2 dt or we have remained in state 1 with infinitesimal
probability 1− (μ1 +λp) dt . Subtracting p1(t + dt) from both sides of Eq. (5), some
straightforward computations yield

p1(t + dt) − p1(t) = p1(t + dt)(μ1 + λp) dt − p2(t + dt)μ2 dt .

Dividing this expression by dt and letting dt → 0 results in

p
′
1(t) = p1(t)(μ1 + λp) − p2(t)μ2.

Following a similar analysis for p2(t) yields the following system of differential
equations, for t ∈ [t̃, τ ):

[
p′
1(t)

p′
2(t)

]
=
[

μ1 + λp −μ2
−(μ1 + λp) μ2

]
×
[
p1(t)
p2(t)

]
, t ∈ [t̃, τ ). (6)

Similarly, for t ∈ [0, t̃) we have
[
p′
1(t)

p′
2(t)

]
=
[

μ1 −μ2
−μ1 μ2

]
×
[
p1(t)
p2(t)

]
, t ∈ [0, t̃). (7)

Solving the system of differential equations (6) and (7) leads to the desired solutions
(3) and (4), respectively. In this process, we would need to compute four unknown
constants. This is achieved by using: (i) the normalizing condition, i.e., p1(t)+ p2(t) =
1 for all t ∈ [0, τ ), (ii) the continuity condition at t̃ , i.e., lim

t→t̃−
pi (t) = pi (t̃) for

i ∈ {1, 2}, and (iii) the boundary condition at the SOs imposed by the policy and the
imperfect maintenance probability, i.e., (1 − p)p1(0) = lim

t→τ− p1(t). ��
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4.2.1 Special cases

In case of only scheduled opportunities, which corresponds to the case t̃ → τ or,
equivalently, to the case λ → 0, the probabilities pi (t) for i ∈ {1, 2} are derived
from the system of linear equations in (7) plus the normalizing condition, i.e., p1(t)+
p2(t) = 1 for all t ∈ [0, τ ). This yields

p1(t) = μ2

μ1 + μ2

(
1 − pe(μ1+μ2)t

e(μ1+μ2)τ − 1 + p

)
, t ∈ [0, τ ).

Plugging the above result into Eq. (2), after appropriately considering in Eq. (2) only
the costs related to preventive maintenance at SOs and corrective maintenance,

csopm p1(0) + ccmμ1
∫ τ

0 p1(t) dt

τ
,

leads to the long-run rate of cost per time unit in the case of only SOs.
In case of perfect maintenance, i.e., in the case p = 1, the boundary condition at the

SOs imposed by the policy and the imperfect maintenance in the proof of Theorem 3
reduces to lim

t→τ− p1(t) = 0, as immediately after an SO the system is restored to state

2 with probability 1. This enables us to explicitly solve the system of linear Eqs. (6)
and (7), yielding

p1(t) = μ2

μ1 + μ2

+
(

μ2

λ + μ1 + μ2
− μ2

μ1 + μ2
− μ2

λ + μ1 + μ2
e
(λ+μ1+μ2)

(
t̃−τ+ �(t)

λ
(t−t̃)

))

× e
λ−�(t)

λ
(μ1+μ2)(t−t̃),

where

�(t) =
{
0, if 0 ≤ t < t̃,

λ, if t̃ ≤ t < τ.

Combining this expression with Eq. (2) results in the long-run rate of cost per time
unit in the case of perfect maintenance.

In the case of only unscheduled opportunities, which is equivalent to considering
τ → ∞, the condition of the system can be fully described using a double descriptor
S = {(i, j) : i ∈ {1, 2}, j ∈ {SC,USO}} which is independent of time, and thus the
newmodel formulation falls into the framework of regularMarkov decision processes.
It can be easily shown that: For state 2, the optimal policy is to do nothing, and, for state

1, the optimal policy is to repair if
(μ1+μ2)cusopm

p < μ1ccm and to do nothing otherwise.
Furthermore, under the optimal policy the average long-run rate of cost is equal to
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cusopmλμ2 + ccmμ1μ2

λp + μ1 + μ2
.

In the case of only corrective replacements, the long-run rate of cost is equal to

ccm
μ1μ2

μ2 + μ1
.

5 Deferring plannedmaintenance

In this section, we consider that upon a successful maintenance activity (preventive, at
an SO or at a USO, or corrective), the upcoming planned maintenance is deferred for a
period of length τ , i.e., at the instances of successful maintenance the remaining time
till the next SO is set equal to τ . We are interested in computing the long-run rate of
cost under deferred maintenance and, in Sect. 6.3, using the results of this section and
of the previous sections in investigating the economic benefits of deferring planned
maintenance.

Analogously to the analysis of Sect. 4.2, we derive the long-run rate of cost using
renewal theory; see, for example, [31, Proposition 7.3, page 433]. In this case, we
consider the renewal points to be the instances at which there was a successful mainte-
nance activity, i.e., the SOs or USOs at which the preventive maintenance was perfect,
or the epochs at which corrective maintenance is performed. Note that the underly-
ing stochastic process that governs the condition of the system regenerates after each
successful maintenance activity. That is, after each successful maintenance activity
the underlying stochastic process is in state 2 with probability 1. The long-run rate
of cost per time unit for a policy in the class of optimal policies is given in the next
theorem. As the expressions appearing in the theorem do not simplify upon further
computations, we choose to present them in the form of probabilities and expectations
associated with the exponential distribution, as these expressions are straightforward
(though cumbersome to compute) and shed insight on each of the individual events
participating in the final expression, cf. Eq. (8).

Theorem 4 Consider a given policy under which in state 2 we do nothing, and in state
1 we repair at scheduled opportunities and at unscheduled opportunities for which the
remaining time until the next scheduled opportunity is greater than t̃ ∈ (0, τ ), and we
do nothing otherwise. Furthermore, consider that planned maintenance is deferred
after a successful maintenance. Under this setting, the long-run rate of cost per time
unit equals

E
[
Total cycle cost

]

E
[
Total cycle length

]= E [CC]
1
μ2

+ E [CL]
= E

[
CC 1{CL ≤Y }

]+ E
[
CC 1{CL >Y }

]
1
μ2

+ E
[
CL 1{CL ≤Y }

]+ E
[
CL 1{CL >Y }

] ,

(8)
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with

E
[
CL 1{CL ≤Y }

] = E
[
CL 1{USO[τ−Y ,τ−t̃]}

]+ E
[
CL 1{SO[τ−Y ,τ ]}

]

+ E
[
CL 1{CM[τ−Y ,τ ]}

]
, (9)

E
[
CL 1{CL >Y }

] = (1 − p)P [SO[τ − Y , τ ]]
(
E[Y ] + τ(1 − p)P [SO[0, τ ] ]

1 − (1 − p)P [SO[0, τ ] ]
+ E

[
CL ′ 1{CL ′≤Y } | Y = τ

] )
, (10)

E
[
CC 1{CL ≤Y }

] = E
[
CC 1{USO[τ−Y ,τ−t̃]}

]+ E
[
CC 1{SO[τ−Y ,τ ]}

]

+ E
[
CC 1{CM[τ−Y ,τ ]}

]
, (11)

E
[
CC 1{CL >Y }

] = (1 − p)P [SO[τ − Y , τ ]]
(
E
[
CC 1{SO[τ−Y ,τ ]}

]

+ (λ(1 − p)(τ − t̃)cusopm + csopm)(1 − p)P [SO[0, τ ] ]
1 − (1 − p)P [SO[0, τ ] ]

+ E
[
CC 1{CL ′ ≤Y } | Y = τ

] )
, (12)

where the density of the truncated exponential random variable Y is given by

fY (y) = μ2
e−μ2(τ−y)

1 − e−μ2τ
, y ∈ [0, τ ), (13)

and for 0 ≤ y ≤ τ ,

1{SO[τ−y,τ ]}
d= 1{y<min{Tλp,Tμ1 }} + 1{Tλp<y<min{Tμ1 ,t̃}}1{y<t̃}
+ 1{y−t̃≤Tλp<y,y≤Tμ1 }1{y≥t̃}, (14)

1{USO[τ−y,τ−t̃]}
d= 1{Tλp<min{Tμ1 ,y−t̃}}1{y≥t̃}, (15)

1{CM[τ−y,τ ]}
d= 1{Tμ1<min{y,Tλp}} + 1{Tλp<Tμ1<y}1{y<t̃}
+ 1{Tλp<Tμ1<y, Tλp≥y−t̃}1{y≥t̃}, (16)

E
[
CL 1{USO[τ−y,τ−t̃]}

] = E
[
Tλp1{USO[τ−y,τ−t̃]}

]
, (17)

E
[
CL 1{SO[τ−y,τ ]}

] = ypP [SO[τ − y, τ ]] , (18)

E
[
CL 1{CM[τ−y,τ ]}

] = E[Tμ11{CM[τ−y,τ ]}], (19)

E
[
CC 1{USO[τ−y,τ−t̃]}

] = cusopm P
[
USO[τ − y, τ − t̃] ]+ λ(1 − p)cusopm

× E
[
Tλp1{USO[τ−y,τ−t̃]}

]
, (20)

E
[
CC 1{SO[τ−y,τ ]}

] =
(
csopm + λ(1 − p)cusopm max

{
y − t̃, 0

} )
P [SO[τ − y, τ ] ] ,

(21)
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E
[
CC 1{CM[τ−y,τ ]}

] = ccmP [CM[τ − y, τ ]]
+ λ(1− p)cusopmE

[
min

{
Tμ1,max

{
y− t̃, 0

}}
1{CM[τ−y,τ ]}

]
,

(22)

where 1{x} is an indicator function taking value 1 if event x occurs, and it is zero other-
wise, Tμ1 ∼ Exp(μ1), Tλp ∼ Exp(λp),P [ · ] = E[1{·}] for all events inEqs. (14)–(16),
and CL

d= CL ′.

Proof See Appendix E. ��

6 Numerical results

Using the results and the analyses of the previous sections, in this section we illustrate
through a fewwell chosen examples the effect of the various parameters in the long-run
rate of cost. In these examples, we investigate the financial advantage of the optimal
policy, when compared to other (suboptimal) policies. Furthermore, we highlight the
financial benefit of perfect maintenance by comparing the long-run rate of cost for
the perfect maintenance model (p = 1) to that of the imperfect maintenance model
(p ∈ (0, 1)). Here, we also show the influence of imperfect maintenance on the
maintenance planning. In addition, we illustrate the change introduced by the action
of deferring planned maintenance after the occurrence of a successful maintenance.
To illustrate the financial effects in a realistic context and to connect our analysis with
practice, we use values and data stemming from the wind industry.

6.1 Comparison of the optimal policy to suboptimal policies

In this section we compute, in the context of the wind industry example, the long-run
rate of cost under the optimal policy and we examine how it is affected by varying
one by one the parameters τ , λ and cusopm , while keeping all other parameters fixed. For
the determination of the values used in the numerical computations of this section,
we consider the gearbox of a wind turbine. Statistics from a recent field study by
Ribrant and Bertling [29] on Swedish wind parks in the period 1997–2005 showed
that the gearbox is the most critical unit of a wind turbine. The notion of criticality
is determined by the fact that a failure of the gearbox leads to the highest downtime
when compared to all other wind turbine components, but also by the fact that this
component has the highest failure rate among all wind turbine components [29,34,35].
Due to its extended downtime after a failure (which is captured in the corresponding
maintenance cost), the corrective cost of a gearbox is relatively high compared to
preventive maintenance costs; see, for example, Nilsson and Bertling [25]. Based on
the values reported in the aforementioned studies, we set ccm = 300,000, csopm = 1000,
μ2 = 0.31, μ1 = 0.31 and p = 0.6. In this case, the long-run rate of cost (in euros
per year) in the case of only corrective replacements is equal to 46,500. Furthermore,
motivated by the wind industry practice, we choose three different values for τ , that
is τ ∈ {0.25, 0.5, 1} (years). Next, we consider three different values for cusopm , i.e.,
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cusopm ∈ {2000, 3000, 4000}. Finally, with regard to λ, we consider four different values,
i.e., λ ∈ {0.5, 1, 2, 4}.

In Table 2, we depict the long-run rate of cost for the above-mentioned values
under four different policies: The first policy corresponds to replacements only at
USOs (πuso). The second policy corresponds to replacements only at SOs (πso). The
third policy is the optimal policy (πopt), which is derived in Theorem 1. Note that
it is numerically easier to obtain the optimal t̃ by minimizing the long-run rate of
cost in Theorem 3, instead of from the closed-form expression in Theorem 1, as the
latter requires the derivation of a root solution. The fourth policy concerns the optimal
policy, but for p = 1. This assumption is motivated from practice, as it is oftentimes
difficult to exactly determine the value of p and it is typically assumed that after a
maintenance the component is restored to a perfect state. This policy is denoted by
π ′
opt.
In Table 2, we observe, across all instances, that incorporating plannedmaintenance

can significantly reduce costs compared to only corrective maintenance, which can
be reduced even further by adding opportunistic maintenance. Intuitively, due to the
cost structure, only planned maintenance at SOs can considerably improve the long-
term rate of cost when compared to performing only opportunistic maintenance at
USOs. Finally, if we compare πopt with π ′

opt we do not, despite the low value for
p, observe significant differences. From an operational management perspective, this
clearly implies that, if decision makers do not have any knowledge about the value
of p, and given a similar cost structure as in the gearbox case, assuming perfect
maintenance will result in a long-run rate of cost that is close to optimal regardless
of the true value of p. This will be valid as long as the preventive maintenance cost
(at both opportunities) is very small in comparison to the corrective maintenance cost,
as is the case of the gearbox costs. As a rule of thumb, one can easily compute the
expected number of maintenances (planned or opportunistic) required for a successful
preventive maintenance and based on this compute the long-run rate of preventive
maintenance cost (approximately of the order max{csopm, cusopm }/p) and compare it with
the corrective cost. If the corrective cost is significantly higher, then one may assume
that there is no significant difference betweenπopt andπ ′

opt, and as a consequence there
is no significant difference in the values of the optimal policies under the imperfect
and perfect maintenance. In the next section, we investigate the savings that can be
obtained by improving the performance of a repair when a decision maker has some
knowledge regarding the value of p.

6.2 Influence of imperfect maintenance

Let π(p)
opt represent the optimal policy as a function of the successful preventive main-

tenance probability p and let C(π
(p)
opt ) denote the long-run rate of cost when the policy

is π
(p)
opt . To demonstrate the effect of p in the rate of cost, we compute the relative

difference in the cost of not having a perfect preventive maintenance as a function of
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Fig. 3 δ(p)1 and δ(p)2 for
p ∈ [0.5, 1] with
csopm = 1000, cusopm = 2000 and

ccm = 300,000 for δ(p)1, and
csopm = 26,500, cusopm = 28, 800

and ccm = 75,500 for δ(p)2

Fig. 4 t1 and t2 for p ∈ [0.5, 1]
with csopm = 1000, cusopm = 2000

and ccm = 300,000 for t1, and
csopm = 26,500, cusopm = 28,800

and ccm = 75,500 for t2

p. This relative difference is denoted by δ(p) and is equal to

δ(p) = C(π
p
opt) − C(π1

opt)

C(π1
opt)

· 100%.

δ(p) indicates howmuch extra cost is incurred due to imperfect maintenance, and thus
shows the benefit of improving the probability of executing a perfect maintenance.

In this numerical example, similarly to beforewe chooseμ2 = 0.31, andμ1 = 0.31.
Furthermore, we set λ = 4 and τ = 1. Figure 3 shows δ(p) for p ∈ [0.5, 1] under
two different cost structures (denoted by δ(p)1 and δ(p)2, respectively). Figure 4
depicts the corresponding optimal values for t̃ for both cost structures, denoted by t1

and t2, respectively. We use the same cost structure as in the previous section, i.e.,
for δ(p)1, we consider csopm = 1000, cusopm = 2000 and ccm = 300,000, whereas, for

δ(p)2, we consider csopm = 26,500, cusopm = 28,800 and ccm = 75,500. The choice
for the preventive maintenance cost at SOs and USOs in the second cost structure is
common in the lithography industry (see [42]). Based on Fig. 3, we can conclude that,
under both cost structures, significant costs can be saved by improving the probability
of executing a perfect preventive maintenance (for example, by training).

The optimal policy (t̃), denoted by t1 and t2 under the first and second cost struc-
ture respectively, is equal to t1 ≈ 0.08 and t2 ≈ 0.39 in the case of perfect repairs. In
Fig. 4, where we plot t1 and t2 as a function of p, we observe the following regarding
the influence of p on the maintenance planning: If the preventive maintenance cost (at
both opportunities) is very small compared to the cost of corrective maintenance, the
order of the total preventive maintenance cost incurred until a successful preventive
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maintenance compared to the corrective maintenance cost is still maintained. There-
fore, the maintenance planning does not alter that much regardless of the value of p,
where the optimal policy is to almost always perform preventive maintenance at USOs
for all values of p ∈ [0.5, 1]. This also explains the small discrepancy between πopt
and π ′

opt in Table 2. This is different in the case of the second cost structure, where the
maintenance planning changes substantially as a function of p. Whereas in the perfect
case, the optimal policy is to perform preventive maintenance at a USO if the residual
time until the next SO is larger than 0.39, for p � 0.83, it is optimal to never perform
preventive maintenance at a USO. Here, the order of the total preventive maintenance
cost incurred until a successful preventive maintenance compared to the corrective
maintenance cost is not maintained.

Also, in the opposite cost structure, i.e., cusopm < csopm (similar examples can be found
for cusopm = csopm), the maintenance planning can be influenced significantly by the
imperfect repair probability. For instance, consider the setting with μ1 = 1.1, μ2 =
0.9, csopm = 4500, cusopm = 4000, ccm = 10,000, and λ = 0.5. In case of perfect
repairs (i.e., p = 1), the optimal policy is to perform preventive maintenance in state
1 at both SOs and USOs, and to do nothing otherwise (cf. Theorem 2). However,
if 0.72 � p � 0.83, the optimal policy is to only perform preventive maintenance
at USOs, and if p � 0.72, then the optimal policy is to never perform PM. This
example illustrates the influence of the imperfect repair probability on themaintenance
planning.

6.3 Deferring of plannedmaintenance

In this section, we illustrate the change introduced by the action of deferring planned
maintenance after the occurrence of a successfulmaintenance in three numerical exam-
ples that relate to the wind industry, the lithography industry, and to an artificially
created example.

Figure 5 shows the long-run rate of cost for both the deferral and no deferral case
for the example with data stemming from the wind industry. Again, with regard to the
cost parameters, we used csopm = 1000, cusopm = 2000 and ccm = 300,000. With regard
to the other parameters, we set λ = 4, τ = 1, μ1 = 0.31, μ2 = 0.31 and p = 0.6. We
can observe that deferring the planned maintenance both significantly increases the
long-run rate of cost under the optimal policy (an increase of 28.14% from 8468.87 to
10852.15) and changes the value connected to the optimal policy, t̃ from 0.112 to 0.

Figure 6a, b depicts the long-run rate of cost for the deferral and the no deferral
case, respectively, based on the values of the lithography industry example. We use
the same cost parameters as in Sect. 6.2, that is csopm = 26,500, cusopm = 28,800 and
ccm = 75,500. The other parameters remain unchanged, i.e.,λ = 4, τ = 1,μ1 = 0.31,
μ2 = 0.31 and p = 0.6.Again,we observe the same influence of deferring the planned
maintenance on both the long-run rate of cost under the optimal policy (an increase
of 6533.3 % from 12,840.12 to 851,727.53) and on the value of t̃ associated with the
optimal policy (from 1 to 0.175), similarly to the numerical example for the wind
industry. The drastic increase is due to the cost structure, and more explicitly, it is
due to the preventive maintenance costs values (both at scheduled and unscheduled
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Fig. 5 Cost rate in the case of
deferral and of no deferral for
the wind industry example.
Optimal t̃ is equal to 0.112 and 0
for deferral and no deferral,
respectively

(a) Cost rate in the case of deferral for the lithography
industry example. Optimal t̃ is equal to 0.175.

(b) Cost rate in the case of no deferral for the litho-
graphy industry example. Optimal t̃ is equal to 1.

Fig. 6 Cost rate for lithography industry example

Fig. 7 Cost rate in the case of
deferral and no deferral for the
artificial example. Optimal t̃ is
equal to 1 for both deferral and
no deferral

opportunities), which are relatively much closer to the corrective maintenance cost in
comparison to the wind industry example.

To illustrate that the opposite effect (albeit to a much lesser degree than in the
previous two examples) can also hold, we create an artificial example where we set
csopm = 5000, cusopm = 10,000 and ccm = 19,000, and λ = 4,τ = 4, μ1 = 1, μ2 = 0.4
and p = 0.5. Figure 7 depicts the long-run rate of cost for both the deferral and the no
deferral case for this example. Here, we observe that, for all values of t̃ , cost savings
can be obtained by deferring planned maintenance after the occurrence of a successful
opportunistic maintenance. More specifically, whereas the optimal value of t̃ is equal
to 1 for both cases, the long-run rate of cost under the optimal policy decreases with
0.88% from 6458.97 to 6402.44, when deferring planned maintenance.
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7 Conclusion

In this paper, we considered the maintenance policy for a three-state component
degrading over time with corrective replacements at failures and preventive replace-
ments at both scheduled and unscheduled opportunities under imperfect repair. By
formulating this problem as a semi-Markov decision process, we were able to charac-
terize the structure of the optimal maintenance policy as a control limit policy, where
the control limit depends on the time until the next planned maintenance opportu-
nity. Using this approach, a closed-form expression for the optimal control limit was
derived. Within this class of control limit policies, we derived, using the theory of
regenerative processes, an explicit expression for the long-run rate of cost. Using a
similar approach based on renewal theory, we derived an expression for the long-run
rate of cost in the case when planned maintenance is deferred after the occurrence of
a successful opportunistic maintenance.

A cost comparison with other suboptimal policies has been examined, which illus-
trated the benefits of optimizing the maintenance policy. Specifically, it was found that
incorporating planned maintenance can significantly reduce costs compared to only
corrective maintenance, which can be reduced even further by adding opportunistic
maintenance. Moreover, numerical results indicate that the extent of the impact of the
perfect repair probability on the optimal policy depends on the underlying cost struc-
ture. It was also shown that substantial cost savings can be obtained by improving the
perfect repair probability. Finally, our numerical examples indicate that the deferral of
planned maintenance after the occurrence of a successful opportunistic maintenance
may impact the total cost in both a negative and positive way.

There are a number of extensions and topics for future research. Themost important
direction is to consider the network dependency on the level of the structural degra-
dation and failure dependencies, i.e., to consider a multi-dimensional process that
captures the degradation of the various assets in the network. Such a future direction
would be particularly interesting in the case of a small number of assets for which
the Poisson approximation for the opportunistic maintenance may not be accurate. In
addition, another very interesting research direction would be to consider a more gen-
eral model in which the condition of the system degrades through N > 2 states. Next,
in this analysis we have assumed that the condition of the system is fully observable.
However, in many real applications, condition monitoring data such as spectrometric
oil data or vibration data give only partial information about the underlying state of
the system. From this perspective, it would be interesting to extend the model at hand
to a partially observable model in which the condition monitoring data are stochas-
tically related to the true system state. Finally, the results in this paper are valid for
systemswith hypo-exponentially distributed lifetimes. Future research could relax this
assumption by considering a phase-type lifetime distribution.
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A Optimality equations for semi-Markov decision process

We consider the so-called ratio-average cost for a controlled semi-Markov decision
process, which corresponds to the limit superior of the expected total cost over a finite
number of jumps divided by the expected cumulative time of these jumps; see Ross
[30], Feinberg [8] and Schäl [32], for instance.

We shall use here the definition of a controlled semi-Markov decision process
from Lippman [19], Yushkevich [41] and Jaśkiewicz [13]. A controlled semi-Markov
decision process is specified by five objects: a Borel state space S, a Borel action space
A, a law of motion—a measurable projection determining the state as a function of
an action, a transition function (transition law) P—a probability measure depending
measurably on the state and the action, and a reward (or cost) function c.

The process is observed at time t = 0 to be in some state x0 ∈ S. At that time, an
action a0 ∈ Ax0 is chosen, whereAx0 is a compact set of actions available in state x0.
The set of all actions is A and is also assumed to be a Borel state space.

For the problem at hand, the state space is

S = {(i, j, t) : i ∈ {1, 2}, j ∈ {SC,USO}, t ∈ (0, τ )} ∪ {(i,SO, 0) : i ∈ {1, 2}}}

and the action space is A = {perform PM, do nothing, perform CM}, cf. Sect. 4.1.
If the current state is x0 and action a0 is selected, then the immediate cost c(x0; a0)

is incurred, and the system remains in state x0 for a random time t1, with the cumulative
distribution depending only on x0 and a0. Afterward, the system jumps to the state x1
according to the probability measure (transition law) P(· | x0, a0, t1). This procedure
yields a trajectory (x0, a0, t1, x1, a1, t2, . . .) of some stochastic process, where xn is
the state, an is the control variable and tn is the time of the n-th transition, n = 0, 1, . . ..
In the sequel, we shall refer to the corresponding random variables by means of their
capital letters: Tn—the random time of the n-th transition, for n = 1, 2, . . . , with
T0 := 0, Xn—the state at time Tn , and An—the action at time Tn .

Let Hn be the space of admissible histories up to the n-th transition, Hn := (S ×
A×[0,∞))n ×S and H0 := S. An element hn of Hn is called a partial history of the
process and is of the form hn = (x0, a0, t1, . . . , xn−1, an−1, tn, xn). A control policy
(or policy) is a sequence {πn}, where each πn is a conditional probability πn(· | hn) on
the control set Axn , given the entire history hn , such that πn(Axn | hn) = 1 for all hn ,
n = 1, 2, . . .. The class of all policies is denoted by �, and let �DS denote the class
of all deterministic stationary policies.
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For each initial state x0 ∈ S and for each policy π ∈ �, there exists a unique
probability measure Pπ

x0 such that

P
π
x0 [An ∈ A | hn] = πn[A | hn], for a Borel set A ⊂ A,

P
π
x0 [Tn+1 − Tn ∈ S, Xn+1 ∈ X | hn, an] = Pan

xn [S, X ], for Borel sets X ⊂ S and S ⊂ R,

P
π
x0 [Xn+1 ∈ X | hn, an, Tn+1 − Tn = s] = Pan

xn [X | s], for a Borel set X ⊂ S,

P
π
x0 [Tn+1 − Tn ≤ s | hn, an] = Fan

xn (s), s ∈ R.

Further, let τ(x, a) denote the conditional mean sojourn (holding) time spent in state
x under action a, i.e.,

τ(x; a) :=
∫ ∞

0
sdFa

x (s),

and let F̃a
x (α) denote the Laplace–Stieltjes transform of the sojourn time spent in state

x under action a, i.e.,

F̃a
x (α) :=

∫ ∞

0
e−αsdFa

x (s).

For the problem at hand, the cost function is defined as follows:

c(x; a) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, if x ∈ S, a = {do nothing},
ccm, if x = (1,SC, t), t ∈ (0, τ ), a = {perform CM},
cusopm , if x = (i,USO, t), i = 1, 2, t ∈ (0, τ ), a = {perform PM},
csopm, if x = (i,SO, 0), i = 1, 2, a = {perform PM}.

LetPan
xn (s, xn+1) denote the joint density/mass of the transition time Tn+1−Tn and

the allowed next state Xn+1, given the current state Xn = xn and the allowed action
an . For xn = (1,SC, t), t ∈ (0, τ ), and an = {perform CM},

Pan
xn (s, (2,SC, t − s)) = μ2

λ + μ2
(λ + μ2)e

−(λ+μ2)s = μ2 e
−(λ+μ2)s, s ∈ [0, t),

Pan
xn (s, (2,USO, t − s)) = λ e−(λ+μ2)s, s ∈ [0, t),

Pan
xn (t, (2,SO, 0)) = e−(λ+μ2)t .

For the derivation of the above probabilities, it suffices to note that there are three
possible evolutions in terms of the state of the system: either an SO or an SC or a
USO, where the time till the SO is equal to t , while the times till the next SC and the
USO are exponentially distributed with rates μ2 and λ, respectively. The probabilities
for xn = (2,USO, t) and an = {do nothing} or an = {perform PM} are identical. The
remaining probabilities are obtained using very similar arguments.
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From the joint distributions, themarginal cumulative of the transition time Tn+1−Tn
can be immediately derived as follows, for xn = (1,SC, t) and an = {perform CM}:

Fan
xn (s) = 1 − e−(λ+μ2)s, s ∈ (0, t),

Fan
xn (s) = 1, s ≥ t .

The distribution of the transition time from state xn = (2,USO, t) under actions
an = {do nothing} or an = {perform PM} are identical. The rest of the marginal
distributions for the other states and actions follow analogously.

Having fully defined the probabilities for the problem at hand, we proceed in pro-
viding, following the proofs in Bhattacharya andMajumdar [3], the proposition below
that guarantees that (1) a dynamic programming equation holds for the optimal reward
(this equation is typically referred to as the average optimality equality or as the Bell-
man equation), and (2) a deterministic stationary policy (optimal for long-run average
reward) is provided by this equation.

Proposition 3 For the model at hand, there exist a bounded function V (·) and a con-
stant g such that

V (x) = min
a∈Ax

{
c(x; a) +

∫

y
V (y)Pa

x (dy) − g τ(x; a)
}
, ∀x ∈ S. (23)

Moreover, the deterministic stationary policy π∗(∞) ∈ �DS is optimal for the ratio-
average cost criterion with

g = inf
π∈�DS

J (x, π) := J ∗(x),

where

J (x, π) := lim sup
n→∞

E
π
x

[∑n−1
k=0 c(Xk, Ak)

]

Eπ
x [Tn]

≡ lim sup
n→∞

E
π
x

[∑n−1
k=0 c(Xk, Ak)

]

Eπ
x

[∑n−1
k=0 τ(Xk, Ak)

] , π ∈ �DS . (24)

Proof The proof of the proposition relies on the fact that the costs c(x; a) are nonneg-
ative and upper bounded by ccm. We follow here the ideas presented in Bhattacharya
and Majumdar [3] and in Theorems 10.3.1 & 10.3.6 in [9, Sections 10.4 and 10.5].
Following the ideas therein, we consider the corresponding α-discounted cost criterion

Vα(x, π) = E
π
x

[ ∞∑
k=0

e−αTk c(Xk, Ak)

]
,

and Vα(x) = infπ∈� Vα(x, π). The main steps in the proof of the proposition are
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Step 1: Show that the optimal reward Vα(x) under discounting is continuous and
bounded. The latter follows easily by noting that Vα(x) is bounded by
Vα(πDN, x), where πDN denotes the policy of doing nothing at all oppor-
tunities, unless the component fails, in which case it is mandatory to do
corrective maintenance. This yields

Vα(x) ≤ ccm

μ1
μ1+α

1 − μ1
μ1+α

μ2
μ2+α

, ∀x ∈ S.

Analogously,

g ≡ J ∗(x) ≤ ccm
μ1μ2

μ2 + μ1
.

See Appendix A.1 for further details.
Step 2: Show that the discounted Bellman equation

Vα(x) = min
a∈Ax

{
c(x; a) +

∫

s

∫

y
e−αsV (y)Pa

x (dy | s) dFa
x (s)

}
, x ∈ S, (25)

holds. Also, there exists a Borel measurable function that minimizes the
right-hand side of the discounted Bellman equation for every x ∈ S. The
deterministic stationary policy is optimal under discounting. The proof fol-
lows verbatim the steps in [3, Theorem 3.1 on page 227].

Step 3: Choose z ∈ S. Then, for all x ∈ S, show that |Vα(x) − Vα(z)| is bounded
for all α > 0. This follows oftentimes by the geometric ergodicity of the
underlying Markov controlled model. In the case under consideration, this
is proven by noting that from all states x = (i, j, t) ∈ S, after time t the
system is in an SO state with probability 1. This yields

|Vα(x) − Vα(z)| ≤ ccm

(
2 +

(
λ + μ1 + μ2 + 1 + μ1μ2

μ1 + μ2

)
(τx,1 + τz,1)

)
,

with τx,1 < ∞ denoting the expectation of the first passage time from state
x ∈ S to state (1,SO, 0). See Appendix A.2 for further details. A conse-
quence of the above finding is that, for all deterministic stationary policies
π ∈ �DS , the expected average cost in (24) is independent of x .

Step 4: Show that there exists a solution, say g, to the average optimality equality
(23). There exists a Borel measurable function π∗ on S into A such that the
maximum on the right-hand side of (23) is attained at π∗(x), x ∈ S. The
proof follows verbatim the steps in [3, Theorem 3.2 (a) & (b) on page 228].

Step 5: Show that the stationary policy π∗(∞) is optimal for the long-run average
reward and g is the optimal reward, with g = lim supα→0+ αVα(x). See
Appendix A.3 for further details. ��
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Equivalent propositions (based on different methods, but more importantly based
on different assumptions regarding the geometric ergodicity) can be found for example
in Jaśkiewicz [12], Vega-Amava and Luque-Vásquez [37] and Jaśkiewicz [13].

A.1 Proof of step 1

Under the policy of doing nothing at all opportunities, unless the component fails in
which case it is mandatory to do corrective maintenance, say πDN, Vα(πDN, x) can be
computed using first step analysis. Note that under this policy, it is not required to keep
track of the remaining time to the next SO opportunity. Say x = (i, j, ·). If i = 1, then
after an exponentially distributed time with rate μ1, say Tμ1 , the component will fail
and a cost ccm will be incurred. If i = 2, then after a Hypo-exponentially distributed
time with rates (μ2, μ1), say Tμ1 + Tμ2 (the two random times are independent), the
component will fail and a cost ccm will be incurred. All in all,

Vα(x, πDN) = E[e−α(Tμ1+Tμ21{i=2})] (ccm + E[Vα((1,SC, ·), πDN)]) . (26)

Similarly,

Vα((1,SC, ·), πDN) = E[e−α(Tμ1+Tμ2 )] (ccm + E[Vα((1,SC, ·), πDN)]) ,

which yields, upon solving for Vα((1,SC, ·), πDN) and substituting that E[e−αTμi ] =
μi

μi+α
, i = 1, 2,

Vα((1,SC, ·), πDN) = ccm

μ1
μ1+α

μ2
μ2+α

1 − μ1
μ1+α

μ2
μ2+α

.

Combining the last equation with (26) yields

Vα(x, πDN) = ccm

μ1
μ1+α

(
μ2

μ2+α
1{i=2} + 1{i �=2}

)

1 − μ1
μ1+α

μ2
μ2+α

≤ ccm

μ1
μ1+α

1 − μ1
μ1+α

μ2
μ2+α

.

The proof for the long-run average cost follows by employing a simple renewal argu-
ment.

A.2 Proof of step 3

Choose x = (i, j, t) ∈ S. Let Tx,1 denote the first passage time from state x to state
(1,SO, 0), and F̃x,1(α) = E[e−αTx,1 ] and τx,1 = E[Tx,1].

Starting from state x , after time t ∈ [0, τ ), the system is in an SO state with
probability 1. More concretely, under the optimal policy (which is deterministic sta-
tionary), say π

(∞)
α , starting in state x = (i, j, t), it will end up in state (1,SO, 0)

after time t with probability px , and in state (2,SO, 0) with probability 1 − px . In
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case state x coincides with an SO state then px = 0 or px = 1. Once in an SO
state, the system state observed at only the SO epochs behaves like a discrete time
(irreducible and aperiodic) Markov chain with only states (1,SO, 0) and (2,SO, 0).

Thus, τx,1 = E[Tx,1] = limα→0+ 1−F̃x,1(α)

α
< ∞.

From the above,

Vα(x) = E
π

(∞)
α

x [α-cost from x to state (1,SO, 0) in Tx,1]
+ E

π
(∞)
α

x [e−αTx,1 ]Vα(1,SO, 0).

Note that Eπ
(∞)
α

x [α-cost from x to state (1,SO, 0) in Tx,1] is equal to: (1) the expected
discounted cost incurred directly in state x , which is upper bounded by ccm, (2) the
total expected discounted cost of all the SOs that occur in time Tx,1, which is upper
bounded by ccmτx,1, (3) the total expected discounted cost of all the USOs that occur in
time Tx,1, which is upper bounded by ccmλτx,1, and (4) the total expected discounted
cost of all the corrective maintenance opportunities that occur in time Tx,1, which is
upper bounded by ccm(μ1 + μ2)τx,1. All in all,

E
π

(∞)
α

x [α-cost from x to state (1,SO, 0) in Tx,1]
≤ ccm(1 + τx,1 + (λ + μ1 + μ2)τx,1).

Then, straightforward computations yield

|Vα(x) − Vα(1,SO, 0)| =
∣∣∣Eπ

(∞)
α

x [α-cost from x to state (1,SO, 0) in Tx,1]
+ E

π
(∞)
α

x [e−αTx,1 ]Vα(1,SO, 0) − Vα(1,SO, 0)
∣∣∣

≤ E
π

(∞)
α

x [α-cost from x to state (1,SO, 0) in Tx,1]
+
∣∣∣1 − E

π
(∞)
α

x [e−αTx,1 ]
∣∣∣ Vα(1,SO, 0)

≤ ccm(1 + τx,1 + (λ + μ1 + μ2)τx,1)

+
(
1 − E

π
(∞)
α

x [e−αTx,1 ]
)
Vα(1,SO, 0).

Similarly, for z = (i ′, j ′, t ′) ∈ S,

|Vα(z) − Vα(1,SO, 0)]| ≤ ccm(1 + τx,1 + (λ + μ1 + μ2)τz,1)

+
(
1 − E

π
(∞)
α

z [e−αTz,1 ]
)
Vα(1,SO, 0).
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Then,

|Vα(x) − Vα(z)| ≤ |Vα(x) − Vα(1,SO, 0)| + |Vα(z) − Vα(1,SO, 0)|
≤ ccm(2 + τx,1 + τz,1 + (λ + μ1 + μ2)(τx,1 + τz,1))

+
(
1 − E

π
(∞)
α

x [e−αTx,1 ] + 1 − E
π

(∞)
α

z [e−αTz,1 ]
)
Vα(1,SO, 0).

Combining the above with Step 1 yields

|Vα(x) − Vα(z)| ≤ ccm(2 + τx,1 + τz,1 + (λ + μ1 + μ2)(τx,1 + τz,1))

+
(
1 − E

π
(∞)
α

x [e−αTx,1 ] + 1 − E
π

(∞)
α

z [e−αTz,1 ]
) μ1

μ1+α

1 − μ1
μ1+α

μ2
μ2+α

.

Lastly, note that (1 − E
π

(∞)
α

x [e−αTx,1 ] + 1 − E
π

(∞)
α

z [e−αTz,1 ])
μ1

μ1+α

1− μ1
μ1+α

μ2
μ2+α

≤ (τx,1 +
τz,1)

μ1μ2
μ1+μ2

, which yields

|Vα(x) − Vα(z)| ≤ ccm

(
2 +

(
λ + μ1 + μ2 + 1 + μ1μ2

μ1 + μ2

)
(τx,1 + τz,1)

)
.

A.3 Proof of step 5

To prove this step, we follow to a large extent the approach in [3, Theorem 3.2 (c)–(d)].
Consider the average optimality equality (23). This yields, for an arbitrary policy π ,

V (Xk) ≤ c(Xk; ak) + E
π
x [V (Xk+1) | Xk, ak] − g τ(Xk; ak), k = 0, 1, . . . ,

which can be equivalently written as

c(Xk; ak) ≥ g τ(Xk; ak) + V (Xk) − E
π
x [V (Xk+1) | Xk, ak], k = 0, 1, . . . .

Taking expectations on both sides, one gets

E
π
x [c(Xk; ak)] ≥ g Eπ

x [τ(Xk; ak)] + E
π
x [V (Xk)] − E

π
x [V (Xk+1)], k = 0, 1, . . . .

Summing both sides of the above equation over k = 0, 1, . . . , N − 1, and dividing by

E
π
x

[∑N−1
k=0 τ(Xk; ak)

]
one has

E
π
x

[∑N−1
k=0 c(Xk; ak)

]

Eπ
x

[∑N−1
k=0 τ(Xk; ak)

] ≥ g + V (x) − E
π
x [V (XN )]

Eπ
x

[∑N−1
k=0 τ(Xk; ak)

] . (27)
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Note that as N → ∞, for x = (i, j, t):

t + (N − 1)τ

1 + λτ + μ1μ2
μ1+μ2

τ
≤ E

π
x

[
N−1∑
k=0

τ(Xk; ak)
]

.

As such, Eπ
x

[∑N−1
k=0 τ(Xk; ak)

]
is bounded from below for large values of N . Taking

lim sup
N→∞

on both sides of Eq. (27) yields J (x, π) ≥ g.

Since, for π∗(∞), the above analysis holds with an equality, it is evident that
J (x, π∗(∞)) = g. Note that g is an arbitrary limit point of αVα(x) as α → 0+.
Furthermore, since α|Vα(x) − Vα(z)| → 0 as α → 0+ for all x and for all z, it is now
evident that g = lim supα→0+ αVα(x) for all x ∈ S.

B Average cost equalities—Bellman equations

We proceed writing down the average cost equalities for the model at hand, cf. Propo-
sition 3. More concretely, for t ∈ [0, τ ), let V (i, j, t) be the value function when the
state of the system is (i, j, t) ∈ S. The average optimality equations read as follows:

V (2,SC, t)

= 0 − g
∫ t

0
e−(μ1+λ)x dx + V (1,SO, 0)

∫ ∞

t
(μ1 + λ)e−(μ1+λ)x dx

+
∫ t

0

(
μ1

μ1 + λ
V (1,SC, t − x) + λ

μ1 + λ
V (1,USO, t − x)

)

× (μ1 + λ)e−(μ1+λ)x dx

= e−(μ1+λ)t
(∫ t

0
(μ1V (1,SC, y) + λV (1,USO, y) − g) e(μ1+λ)y dy + V (1,SO, 0)

)
, (28)

V (1,SC, t)

= cc + e−(μ2+λ)t
(∫ t

0
(μ2V (2,SC, y) + λV (2,USO, y) − g) e(μ2+λ)y dy + V (2,SO, 0)

)
,

(29)

V (2,USO, t)

= min
{
cusop + e−(μ2+λ)t

×
(∫ t

0
(μ2V (2,SC, y) + λV (2,USO, y) − g) e(μ2+λ)y dy + V (2,SO, 0)

)
;

× e−(μ2+λ)t
(∫ t

0
(μ2V (2,SC, y) + λV (2,USO, y) − g) e(μ2+λ)y dy + V (2,SO, 0)

)}
, (30)

V (2,SO, 0)

= min
{
csop + e−(μ2+λ)τ

×
(∫ τ

0
(μ2V (2,SC, y) + λV (2,USO, y) − g) e(μ2+λ)y dy + V (2,SO, 0)

)
;
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× e−(μ2+λ)τ

(∫ τ

0
(μ2V (2,SC, y) + λV (2,USO, y) − g) e(μ2+λ)y dy + V (2,SO, 0)

)}
,

(31)

V (1,USO, t)

= min
{
cusop + pe−(μ2+λ)t

×
(∫ t

0
(μ2V (2,SC, y) + λV (2,USO, y) − g) e(μ2+λ)y dy + V (2,SO, 0)

)

+ qe−(μ1+λ)t
(∫ t

0
(μ1V (1,SC, y) + λV (1,USO, y) − g) e(μ1+λ)y dy + V (1,SO, 0)

)
;

× e−(μ1+λ)t
(∫ t

0
(μ1V (1,SC, y) + λV (1,USO, y) − g) e(μ1+λ)y dy + V (1,SO, 0)

)}
,

(32)

V (1,SO, 0)

= min
{
csop + pe−(μ2+λ)τ

×
(∫ τ

0
(μ2V (2,SC, y) + λV (2,USO, y) − g) e(μ2+λ)y dy + V (2,SO, 0)

)

+ qe−(μ1+λ)τ

(∫ τ

0
(μ1V (1,SC, y) + λV (1,USO, y) − g) e(μ1+λ)y dy + V (1,SO, 0)

)
;

× e−(μ1+λ)τ

(∫ τ

0
(μ1V (1,SC, y) + λV (1,USO, y) − g) e(μ1+λ)y dy + V (1,SO, 0)

)}
.

(33)

In this paragraph, we explain in detail how Eq. (28) is obtained. State (2,SC, t)
is associated with only the decision ‘do nothing.’ Therefore, there is no minimum
operator appearing on the right hand side of Eq. (28) and the corresponding cost is
equal to zero. For the other terms appearing on the right hand side of Eq. (28), it suffices
to note that there are three possible evolutions in terms of the state of the system: either
an SO or an SC or a USO, where the time till the next SO is equal to t , while the times
till the SC and USO are exponentially distributed with rates μ1 and λ, respectively.
In particular, the expected sojourn time of the semi-Markov decision process in state
(2,SC, t) can be calculated as the expectation of the minimum of a deterministic
time t and two exponentially distributed times, which can be easily verified to be
equal to

∫ t
0 e

−(μ1+λ)x dx . The set of optimality equations for the remaining states
can be obtained using very similar arguments. Note that in Eqs. (30)–(33), inside the
minimum, the left term corresponds to the action ‘perform preventive maintenance,’
while the right terms correspond to the action ‘do nothing.’

We observe that, since csopm, cusopm > 0 and p+q = 1, Eqs. (30) and (31) yield that it
is never optimal to perform preventive maintenance in state 2 in both USOs and SOs,
respectively.
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We define the following auxiliary functions, for t ∈ [0, τ ):

Fi (t) = e−(μi+λ)t
(∫ t

0
(μi V (i,SC, y) + λV (i,USO, y) − g) e(μi+λ)y d y

+ V (i,SO, 0)) , i ∈ {1, 2}, (34)

so that Eqs. (28)–(33) reduce to

V (1,SC, t) = ccm + F2(t), V (2,SC, t) = F1(t), t ∈ [0, τ ), (35)

V (i,USO, t) =min
{
cusopm + pF2(t) + qFi (t), Fi (t)

}
, i ∈ {1, 2}, t ∈ [0, τ ),

(36)

V (i,SO, 0) =min
{
csopm + pF2(τ ) + qFi (τ ), Fi (τ )

}
, i ∈ {1, 2}, t ∈ [0, τ ).

(37)

C Proof of Theorem 1

Proof We distinguish four cases, each corresponding to a different set of actions.

Case (i): F1(τ ) − F2(τ ) ≤ csopm
p ; Case (ii):

csopm
p < F1(τ ) − F2(τ ) <

cusopm
p ; Case (iii):

cusopm
p < F1(τ ) − F2(τ ); Case (iv): F1(τ ) − F2(τ ) = cusopm

p .

Case (i): In state (2,SO, 0), it is optimal to not perform preventive maintenance.
Furthermore, from the assumption

F1(τ ) − F2(τ ) ≤ csopm
p

(38)

and Eq. (37) for i = 1, it becomes evident that it is also optimal to not
perform preventive maintenance in state (1,SO, 0). Since the function
F1(t)− F2(t) is, by definition, a continuous function in t ∈ [0, τ ], csopm <

cusopm , and taking into account Eq. (38), it is evident that there exists an
ε > 0 such that

F1(t) − F2(t) ≤ cusopm

p
, for all t ∈ (τ − ε, τ ]. (39)

Equation (39), in light of Eq. (36), implies that if the elapsed time
from the SO is less than ε, then, under the assumption it is optimal to
not perform preventive maintenance on the system in state (i,SO, 0),
it is also not optimal to perform preventive maintenance at a USO. In
this case, for t ∈ (τ − ε, τ ], we have that V (1,USO, t) = F1(t) and
V (2,USO, t) = F2(t), cf. Eq. (36). Taking the derivative with respect to
t in Eq. (34) and substituting the above-obtained values for V (1,USO, t)
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and V (2,USO, t) yields

F ′
1(t) − F ′

2(t) = − (μ1 + λ)F1(t) + μ1V (1,SC, t) + λV (1,USO, t)

+ (μ2 + λ)F2(t) − μ2V (2,SC, t) − λV (2,USO, t)

= − (μ1 + μ2)F1(t) + (μ1 + μ2)F2(t) + μ1ccm, t ∈ (τ − ε, τ ].

The solution to the above differential equation reads

F1(t) − F2(t) = μ1ccm
μ1 + μ2

+
(
F1(τ ) − F2(τ ) − μ1ccm

μ1 + μ2

)
e(μ1+μ2)(τ−t),

t ∈ (τ − ε, τ ]. (40)

If F1(τ ) − F2(τ ) − μ1ccm
μ1+μ2

�= 0, it follows that, for t ∈ (τ − ε, τ ], the
function F1(t)− F2(t) is strictly monotone. In this case, by extending the
previous analysis to the entire domain, which would maintain the strict
monotonicity of the function F1(t) − F2(t), we would reach a contra-

diction: For t = 0, Eq. (34) yields F1(0) = V (1,SO, 0)
(37)= F1(τ )

and F2(0) = V (2,SO, 0)
(37)= F2(τ ), where

(·)= denotes that the equality
follows from Eq. (·). We thus have

F1(0) − F2(0) = F1(τ ) − F2(τ ). (41)

Due to (41), it is evident that F1(τ ) − F2(τ ) − μ1ccm
μ1+μ2

= 0, thus the
function F1(t) − F2(t) satisfying Eq. (40) is a constant function, i.e.,

F1(t) − F2(t) = μ1ccm
μ1 + μ2

, t ∈ (0, τ ]. (42)

Combining Eq. (38) with Eq. (42) leads to the optimality condition for
Case (i). That is, if

μ1ccm ≤ (μ1 + μ2)
csopm
p

,

we do not perform preventive maintenance at any opportunity.
Case (ii): In state (2,SO, 0), similarly to the previous case, it is optimal to not

perform preventive maintenance. However, from the assumption

csopm
p

< F1(τ ) − F2(τ ) <
cusopm

p
(43)

and Eq. (37) for i = 1, it becomes evident that it is optimal to perform
preventive maintenance on the system in state (1,SO, 0). Similarly to

Case (i), as F1(τ ) − F2(τ ) <
cusopm
p , there exists an ε > 0 for which (39)
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holds.
Repeating the same analysis as inCase (i), we can show that, for t ∈ [0, τ ],
the function F1(t)−F2(t) satisfies Eq. (40) and that it is a non-decreasing
function if

F1(τ ) − F2(τ ) − μ1ccm
μ1 + μ2

< 0. (44)

However, for t = 0, we now have that

F1(0) − F2(0)
(34)= V (1, SO, 0) − V (2, SO, 0)

= csopm + pF2(τ ) + (1 − p)F1(τ ) − F2(τ )

= csopm + (1 − p)(F1(τ ) − F2(τ )). (45)

Combining (45) with (40) (on the domain t ∈ [0, τ ]) yields

F1(τ ) − F2(τ ) =
(
1 − e(μ1+μ2)τ

)
μ1ccm
μ1+μ2

− csopm
1 − p − e(μ1+μ2)τ

. (46)

Combining Eqs. (43), (44), and (46) leads to the optimality condition for
Case (ii). That is, if

(μ1 + μ2)
csopm
p

< μ1ccm <

(
cusopm

p
− cusopm − csopm

e(μ1+μ2)τ − 1

)
(μ1 + μ2),

we perform preventive maintenance on the system if it is in state 1 at an
SO but not at a USO.

Case (iii): In state (2,SO, 0), similarly to the previous case, it is optimal to not
perform preventive maintenance. However, from the assumption

F1(τ ) − F2(τ ) >
cusopm

p
>

csopm
p

(47)

and Eq. (37) for i = 1, it becomes evident that it is optimal to perform
preventive maintenance on the system in state (1,SO, 0). Along the lines

of the previous cases, as F1(τ ) − F2(τ ) >
cusopm
p , there exists an ε > 0 for

which

F1(t) − F2(t) ≥ cusopm

p
, for all t ∈ (τ − ε, τ ]. (48)

In this case, for t ∈ (τ − ε, τ ], we have that V (1,USO, t) = cusopm +
pF2(t) + (1 − p)F1(t) and V (2,USO, t) = F2(t) (cf. Eq. (36)). Taking
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a derivative with respect to t in (34) and substituting the above-obtained
values for V (1,USO, t) and V (2,USO, t) yields

F ′
1(t) − F ′

2(t) = −(μ1 + λ)F1(t) + μ1V (1,SC, t) + λV (1,USO, t)

+ (μ2 + λ)F2(t) − μ2V (2,SC, t) − λV (2,USO, t)

= −(μ1 + λ)F1(t) + μ1(ccm + F2(t))

+ λ(cusopm + pF2(t) + (1 − p)F1(t))

+ (μ2 + λ)F2(t) − μ2F1(t) − λF2(t)

= −(μ1 + μ2 + λp)(F1(t) − F2(t)) + μ1ccm
+ λcusopm , t ∈ (τ − ε, τ ]. (49)

The solution to the above differential equation reads

F1(t) − F2(t) = μ1ccm + λcusopm

μ1 + μ2 + λp

+
(
F1(τ ) − F2(τ ) − μ1ccm + λcusopm

μ1 + μ2 + λp

)
e(μ1+μ2+λp)(τ−t), t ∈ (τ − ε, τ ].

(50)

Note that, if we assume that F1(τ ) − F2(τ ) − μ1ccm+λcusopm
μ1+μ2+λp ≥ 0, then

we can extend (50) on the entire domain t ∈ [0, τ ], and the function
F1(t)−F2(t) is non-increasing. However, this is unfeasible. Note that, for

t = 0, Eq. (34) yields F1(0) = V (1,SO, 0)
(37)= csopm + pF2(τ )+ qF1(τ )

and F2(0) = V (2,SO, 0)
(37)= F2(τ ), thus

F1(0) − F2(0) = csopm + q(F1(τ ) − F2(τ )) ≥ F1(τ ) − F2(τ )

⇔ F1(τ ) − F2(τ ) ≤ csopm
p

, (51)

which contradicts Assumption (47). Due to this contradiction, it is neces-

sary to assume that F1(τ ) − F2(τ ) − μ1ccm+λcusopm
μ1+μ2+λp < 0. This implies that

the function F1(t) − F2(t) is non-decreasing and we can extend (50) on

the domain t ∈ [t∗, τ ], where t∗ is such that F1(t∗) − F2(t∗) = cusopm
p , i.e.,

F1(t) − F2(t) = μ1ccm + λcusopm

μ1 + μ2 + λp

+
(
F1(τ ) − F2(τ ) − μ1ccm + λcusopm

μ1 + μ2 + λp

)
e(μ1+μ2+λp)(τ−t), t ∈ [t∗, τ ]. (52)

See Fig. 8 for a visualization of F1(t) − F2(t).
From the definition of t∗, and the continuity of F1(t) − F2(t), it follows
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that there exists an ε > 0 such that

F1(t) − F2(t) ≤ cusopm

p
, for all t ∈ (t∗ − ε, t∗]. (53)

Note that if one were to assume that F1(t) − F2(t) ≥ cusopm
p for all t ∈

(t∗ − ε, t∗], then due to Eq. (51), this would again contradict Assumption
(47).
Now repeating the analysis performed in Case (i), albeit in a different
domain, we can show that, for t ∈ [0, t∗],

F1(t) − F2(t) = μ1ccm
μ1 + μ2

+
(
F1(t

∗) − F2(t
∗) − μ1ccm

μ1 + μ2

)

× e(μ1+μ2)(t∗−t), t ∈ [0, t∗]. (54)

From the continuity of F1(t) − F2(t) at t = t∗, we obtain

cusopm

p
= μ1ccm + λcusopm

μ1 + μ2 + λp
+
(
F1(τ ) − F2(τ ) − μ1ccm + λcusopm

μ1 + μ2 + λp

)

× e(μ1+μ2+λp)(τ−t∗). (55)

Furthermore, setting t = 0 in Eq. (54) and using (51) yields

csopm + (1 − p)(F1(τ ) − F2(τ )) = μ1ccm
μ1 + μ2

+
(
cusopm

p
− μ1ccm

μ1 + μ2

)
e(μ1+μ2)t∗ . (56)

Note that Eqs. (55) and (56) form a system of two equations with two
unknowns, which produce a unique solution for t∗, cf. Eq. (1). Since
F1(t) − F2(t) is a continuous function throughout [0, τ ), we can directly
use the optimality condition for Case (ii) to state the optimality condition
for this case. That is, if

μ1ccm >

(
cusopm

p
− cusopm − csopm

e(μ1+μ2)τ − 1

)
(μ1 + μ2),

we perform preventive maintenance on the system if it is in state 1 at an
SO and at a USO for which the residual time until the next SO is in the
interval [t̂, τ ), with t̂ = min{τ,max{0, t∗}}.

Case (iv): This case follows evidently by performing again the steps of Case (iii) for
t∗ = τ . ��
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Fig. 8 The case of maintaining a system at scheduled and unscheduled opportunities in t ∈ [t∗, τ )

D Proof of Theorem 2

Proof Similarly to the proof of Theorem 1, we need to make certain assumptions
here regarding the actions at the given opportunities. In particular, we distinguish four

cases, each corresponding to a different set of actions: Case (i): F1(τ )− F2(τ ) ≤ cusopm
p ;

Case (ii):
cusopm
p < F1(τ ) − F2(τ ) <

csopm
p ; Case (iii):

csopm
p < F1(τ ) − F2(τ ); Case (iv):

F1(τ ) − F2(τ ) = csopm
p . The proof of this theorem is similar in structure to the proof of

Theorem 1, and for this reason it is omitted. ��

E Proof of Theorem 4

Proof Wefirst focus on the derivation of the cycle length appearing in the denominator
of Eq. (8). Observe that the length of a renewal cycle consists of the time the system
spends in state 2 plus the time from the state change 2 → 1 until the first successful
maintenance. To this purpose, let CL denote the length of the part of the renewal cycle
that the underlying stochastic process spends in state 1. Furthermore, let Y denote the
random amount of time from a state change 2 → 1 to the first SO. We then have, for
the probability density function of Y , that

fY (y) = fTμ2
(τ − y|Tμ2 < τ),

which leads to Eq. (13). Conditioning on Y , a renewal cycle can either end before the
first SO, or at the first SO, or after the first SO. Hence, we have that the expected cycle
length is equal to

1

μ2
+ E

[
CL 1{CL ≤Y }

]+ E
[
CL 1{CL >Y }

]
. (57)

We first focus on deriving expressions for the individual expectations in Eq. (57).
Note that the first successful maintenance can be of type j ∈ {SC,SO,USO} and may
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occur in the interval [t, t ′], this is in short denoted by j [t, t ′]. Thus, rewriting the first
part in Eq. (57) results in (cf. Eq. (9))

E
[
CL 1{CL ≤Y }

] = E
[
CL1{USO[τ−Y ,τ−t̃]}

]+ E
[
CL1{SO[τ−Y ,τ ]}

]

+ E
[
CL1{CM[τ−Y ,τ ]}

]
. (58)

For the second expectation in Eq. (57), observe that the length of this part can be
further decomposed: First the system goes through a geometric number of intervals
of length τ in which no successful maintenance activity takes place, after which the
system enters the last interval in which the successful maintenance activity takes place.
To this end, let pu be the probability that there is no successful maintenance activity
in an arbitrary interval between two SOs (including the SO with which this interval
ends) after the state change 2 → 1, i.e.,

pu := (1 − p)P[Tμ1 > τ, Tλp > τ − t̃] = (1 − p)e−μ1τ−λp(τ−t̃)

= (1 − p)P [SO[0, τ ]] .

We then have, from the memoryless property of Tμ1 and Tλp,

E
[
CL 1{CL >Y }

] = (1 − p)P[SO[τ−Y ,τ ]]

×
(
E [Y ] +

∞∑
k=0

pku(1 − pu)
(
E
[
CL 1{Y+kτ≤CL ≤Y+(k+1)τ }

]))

= (1 − p)P[SO[τ−Y ,τ ]]
(
E [Y ] +

∞∑
k=0

pku(1 − pu)
(
kτ + E

[
CL ′ 1{CL ′≤Y } | Y = τ

])
)

= (1 − p)P[SO[τ−Y ,τ ]]
(
E [Y ] + τ pu

1 − pu
+ E

[
CL ′ 1{CL ′≤Y } | Y = τ

])
, (59)

where E
[
CL ′ 1{CL ′≤Y } | Y = τ

]
is the expected length of the last part of the renewal

cycle, i.e., the interval in which the successful maintenance activity takes place.
Analogously to Eq. (58), we can further decompose E

[
CL ′ 1{CL ′≤Y } | Y = τ

]
by con-

ditioning on the type of the successful maintenance activity with which it ends.
We are now left with defining the events that lead to j [t, t ′], such that we can

calculate the expectations in Eqs. (17)–(19). With respect to SO[τ − y, τ ], observe
that if y ∈ [0, t̃), 1{SO[τ−y,τ ]} is equal to 1 if Tμ1 > y, since we do not take any
USOs. If y ∈ [t̃, τ ], no successful USOs in [τ − y, τ − t̃] can occur and Tμ1 > y
for 1{SO[τ−y,τ ]} to be equal to 1. Combining this leads to Eq. (14). Equations (15)
and (16) are obtained along similar lines. Note that all expectations and probabilities
only involve exponentially distributed random variables. Consequently, closed-form
expressions can be obtained using straightforward calculus. However, for the sake
of brevity, we have chosen to provide one closed-form expression and omit the rest
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(which can be obtained analogously). For Eq. (17), we have for y > t̃ :

E
[
CL1{USO[τ−y,τ−t̃]}

]

= E
[
Tλp1{USO[τ−y,τ−t̃]}

]

= E

[
Tλp1{Tλp≤min

{
y−t̃,Tμ1

}}
]

=
∫ y−t̃

0
E
[
Tλp1{Tλp≤x}

]
μ1e

−μ1x dx +
∫ ∞

y−t̃
E

[
Tλp1{Tλp≤y−t̃}

]
μ1e

−μ1x dx

=
∫ y−t̃

0

∫ x

0
zλpe−λpz dzμ1e

−μ1x dx +
∫ ∞

y−t̃

∫ y−t̃

0
zλpe−λpz dzμ1e

−μ1x dx

= λp

λp + μ1

(
1 − e−(λp+μ1)(y−t̃)(1 + (λp + μ1)(y − t̃))

λp + μ1

)
.

We now focus on the numerator of Eq. (8), i.e., the expected cycle cost. To that
end, let CC be the cost incurred in a renewal cycle. The analysis for the expected
cycle cost, E [CC], is similar to the analysis of the expected cycle length. Again, we
decompose the length of a renewal cycle into three parts (i.e., the interval after the
state change until the first SO, the geometric number of intervals of length τ in which
no successful maintenance activity takes place, and the last interval in which the suc-
cessful maintenance activity takes place), and compute the conditional expected cycle
costs in these parts (mainly consisting of costs incurred at unsuccessful maintenance
activities). Thus,

E [CC] = E
[
CC1{CL ≤Y }

]+ E
[
CC1{CL >Y }

]
. (60)

We first focus on the first part in Eq. (60) and condition further on the type of activity,
which yields

E
[
CC 1{CL ≤Y }

] = E
[
CC 1{USO[τ−Y ,τ−t̃]}

]+ E
[
CC 1{SO[τ−Y ,τ ]}

]

+ E
[
CC 1{CM[τ−Y ,τ ]}

]
.

Analogously to the expected cycle length, the expected cost incurred during the geo-
metric number of intervals of length τ , in which no successful maintenance activity
takes place, is equal to

∞∑
k=0

pku(1 − pu)k
(
λ(1 − p)(τ − t̃)cusopm + csopm

)
= (λ(1 − p)(τ − t̃)cusopm + csopm)pu

1 − pu
.

Observe that the expected cost in the interval in which the successful maintenance
activity takes place is composed of two parts regardless of the type of activity, i.e.,
the cost of the successful maintenance activity itself and the cost related to the unsuc-
cessful USOs up to the successful maintenance activity (see Eqs. (20)–(22)). Again,
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all expectations and probabilities related to the costs only involve exponentially dis-
tributed random variables, and again, for the sake of brevity, we have chosen to provide
one closed-form expression and omit the rest (which can be obtained analogously).
For Eq. (21), we have,

E
[
CC 1{SO[τ−y,τ ]}

] =
(
csopm + λ(1 − p)cusopm max

{
y − t̃, 0

} )
P [SO[τ − y, τ ] ] ,

with

P [SO[τ − y, τ ]] = P
[
Tμ1 > y

]
1{y<t̃} + P

[
Tλp > y − t̃, Tμ1 > y

]
1{y≥t̃}

= e−μ1y 1{y<t̃} + e−(μ1y+λp(y−t̃)) 1{y≥t̃},

which completes the proof. ��
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