

Model-based system engineering design of functional
modules for configurable topology
Citation for published version (APA):
Gankhuyag, G. (2019). Model-based system engineering design of functional modules for configurable topology.
Technische Universiteit Eindhoven.

Document status and date:
Published: 28/11/2019

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/13cdc075-722f-478f-88bf-0994d54f56ac

/ Department of
Mathematics and
Computer Science
/ PDEng Software
Technology

Where innovation starts

Model-Based System
Engineering Design of
Functional Modules for
Configurable Topology

Ganduulga Gankhuyag

Model-Based System Engineering
Design of Functional Modules for

Configurable Topology

Ganduulga Gankhuyag
Date (October 2019)

Model-Based Systems Engineering Design
of Functional Modules for Configurable Topology

Ganduulga Gankhuyag

Eindhoven University of Technology

Partners

Vanderlande Eindhoven University of Technology

Steering Group Ganduulga Gankhuyag

Lennart Swartjes
Tanir Ozcelebi
Yanja Dajsuren
Bart van Dartel

Date

Document Status

October 2019

Public

SAI report no. 2019/082

The design described in this report has been carried out in accordance with the TU/e Code of Scientific Conduct.

iii

Contact
Address

Eindhoven University of Technology
Department of Mathematics and Computer Science
MF 5.080A
P.O. Box 513
NL-5600 MB
Eindhoven, The Netherlands
+31 402474334

Published by Eindhoven University of Technology

Printed by Eindhoven University of Technology

UniversiteitsDrukkerij

SAI report no. 2019/082
Abstract Vanderlande is a global market leader in logistics automation systems. The company pro-

vides the systems in airport, warehouse, and parcel markets. Recently, the company has
encountered a problem related to efficiency in development due to the diversity of the sys-
tems within the markets. To improve efficiency, the company produced a modular system
architecture.

This project specifies the system architecture further by addressing the most fundamental
software modules that are directly responsible for moving physical items throughout the
systems. As a result of the problem, domain and requirement analysis, a reference archi-
tecture is proposed using Model-Based System Engineering methodology. The proposed
architecture and design models were developed by emphasizing modularity and (re)con-
figurability for the reusability purpose of the modules. The software development effi-
ciency increases thanks to the reusability aspect of the proposed architecture.

Keywords

MBSE, Logistics automation, Modular system, Vanderlande, TU/e.

Preferred
reference

Ganduulga Gankhuyag, Model-Based System Engineering Design of Functional Modules
for Configurable Topology Eindhoven University of Technology, October 2019.
(2019/082)

Partnership This project was supported by Eindhoven University of Technology and Vanderlande.

Disclaimer
Endorsement

Reference herein to any specific commercial products, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorse-
ment, recommendation, or favoring by the Eindhoven University of Technology or Vander-
lande. The views and opinions of authors expressed herein do not necessarily state or reflect
those of the Eindhoven University of Technology or Vanderlande, and shall not be used for
advertising or product endorsement purposes.

Disclaimer
Liability

While every effort will be made to ensure that the information contained within this report
is accurate and up to date, Eindhoven University of Technology makes no warranty, repre-
sentation or undertaking whether expressed or implied, nor does it assume any legal liability,
whether direct or indirect, or responsibility for the accuracy, completeness, or usefulness of
any information.

Trademarks Product and company names mentioned herein may be trademarks and/or service marks of

their respective owners. We use these names without any particular endorsement or with the
intent to infringe the copyright of the respective owners.

Copyright Copyright © 2019. Eindhoven University of Technology. All rights reserved. No part of the

material protected by this copyright notice may be reproduced, modified, or redistributed in
any form or by any means, electronic or mechanical, including photocopying, recording, or
by any information storage or retrieval system, without the prior written permission of the
Eindhoven University of Technology and Vanderlande.

v

This PDEng thesis is approved by the supervisors and the Thesis Evaluation Committee is composed of the fol-
lowing members:

Chair: Yanja Dajsuren

Supervisors: Lennart Swartjes

Tanir Ozcelebi

Members: Bart van Dartel

Joost van Eekelen

Kees Huizing

Foreword
Vanderlande is leading in process automation of warehouse solutions and is a global
market leader for value-added logistic process automation of airport and parcel solu-
tions. To stay ahead in these markets, Vanderlande must remain an innovative com-
pany and must be able to deliver a solution with less time-to-market. As a result, some
of our processes need to be updated to allow for this innovation and decreased time-
to-market. In the past, each product could be designed for a specific customer. Nowa-
days, the need for standardization in the design processes is a must while still being
able to tailor these systems to the customers’ needs. Ganduulga’s project is focused on
the software architecture aspect of these shifts in requirements: what is necessary to
standardize our current software solutions for the control of material handling systems
while remaining configurable, and how would the architecture of this solution look
like?

This project posed several challenges for Ganduulga. Firstly, it is of importance to
know the playing field: what is the current way of working, what is lacking, and what
is needed to improve. This entailed to obtain a lot of domain knowledge from the dif-
ferent markets and bringing that all together in a uniform manner. Secondly, using this
gained knowledge, a software architecture must be devised that is uniform to all appli-
cations areas which entails finding the correct use cases and carefully assigning the
requirements for the proposed design. Finally, it must be shown that the final solution
is indeed a match with the requirements, i.e., show that the proposed solution is what
is desired.

Ganduulga started on these challenges with a lot of enthusiasm. He quickly found out
how broad the application area of Vanderlande is and how many different solutions
there currently are. This introduced quite a challenging job for him to derive the re-
quirements, use cases, and accompanied architecture. Nevertheless, Ganduulga did not
give up, remained enthusiastic, and was able to explain the “why” in his report in a
concise manner. In the end, he was also able to give a proper “how” and “what”.

The final report provides one specific architecture that abides by the vision of Vander-
lande, with accompanied rationale. This result provides insights in our current way of
working and provides feedback on our vision. An even greater contribution lies in the
classification and clarification of the problem: Ganduulga provided insights on how
the functional requirements lead to a particular model-driven design with accompanied
design patterns. These new insights will provide very valuable in the future to (re)clas-
sify our current vision and to derive the next steps and focus areas.

Lennart Swartjes
R&D, Vanderlande
29th of October 2019

Preface
This report was written in the scope of the project titled “Model-Based System
Engineering Design of Functional Modules for Configurable Topology”. The re-
port summarizes project results with corresponding in-depth problem analysis, pro-
cedures and rationales to obtain these results.

The project was carried out by Ganduulga Gankhuyag as his graduation and design
project of the Professional Doctorate in Engineering (PDEng) program in Software
Technology (ST), provided by the Eindhoven University of Technology, Stan
Ackermans Institute. The project continued for 10 months in Research and Devel-
opment (R&D) department at Vanderlande, Veghel.

Since the report is structured in a way that derives the technical solution from cus-
tomer perspective problems, the content is appropriate for both technical and non-
technical audiences. The report is more worthwhile for system and software archi-
tects who want to know more about modularity and (re)configurability aspects in
the context of Vanderlande’s new platform architecture.

It is recommended for readers who want to implement the proposed design to refer
to chapters 4, 5, and 6. Audiences who are interested more in problem investigation
and derivation can read chapters 1-3. Project managers might be interested in read-
ing chapters 8-9. Basic SysML/UML knowledge is required to understand archi-
tectural concepts.

Ganduulga Gankhuyag
October 2019

Acknowledgements
I would like to express my very great appreciation to all the people who supported
me throughout the project in many different ways.

Firstly, I am deeply grateful to the people from Vanderlande. Special thanks to
Lennart Swartjes and Bart van Dartel for giving me the opportunity to conduct my
PDEng design project at Vanderlande. I am particularly grateful for the assistance
given by Lennart Swartjes, my company supervisor. Pieces of Advice given by him
have been of great help in formulating the design and report of the project. Without
his continuous guidance, collaboration and critical feedback, I would not be able to
make it a successful project.

From the Eindhoven University of Technology, I would like to express my deep
gratitude to my university supervisor, Tanir Ozcelebi, for his patient guidance, en-
thusiastic encouragement, and useful critiques. His structured and detailed reviews
of the project report helped me to realize the better flow of the documentation.

I would also like to extend my appreciation to everybody who is involved in the
PDEng program, especially Yanja Dajsuren, Ad Aerts, and Desiree van Oorschot
for giving me the opportunity to be part of the program. Furthermore, I am thankful
to my colleagues from the PDEng program for sharing a great and wonderful ex-
perience, knowledge, culture, and many other everlasting memories. My acknowl-
edgment also goes to Mohamed Abdel-Alim Alosta, a PDEng MSD trainee, who
also carried out his design project at Vanderlande, for his patient and detailed re-
views of my thesis.

Finally, I would like to thank my wife and daughter for their continuous encour-
agement and precious love through my ups and downs.

Ganduulga Gankhuyag
October 2019

Executive Summary
Technological development is shaping the world and the future. The impact can be
realized not only from high-tech sectors but also the automation industry. Due to
the acceleration of internet-driven technology, industrial automation systems are
becoming more complex. The most vivid example is the Industrial Internet of
Things (IIoT) which is the industry’s adjusted form of the Internet of Things (IoT).
IIoT is complex because everything is connected to everything. Another reason for
complexity in industrial systems is continuously changing customers’ demand, in
terms of customization. Therefore, the industrial automation systems are forced to
become more flexible and more efficient to resolve the complexity. The state-of-
the-art solution is to reorganize system architecture as modular and as customizable
as possible. As a result, instead of a sturdy and rigid system, the system will be
composed of flexibly reconfigurable modules with well-defined responsibility.

Vanderlande is a global leader in industrial automation systems. To provide more
flexible products efficiently thereby to add more value to their customers' business,
the company started adapting the trend of modularity and customization in their
product-systems. The company’s recent change in the system architecture focuses
on the client’s business characteristics. Every system with a distinct characteristic
is a Market Leading Concept (MLC). MLC consists of a predefined, fixed set of
Functional Modules (FM). In this project, we aimed to specify the most fundamen-
tal FMs that are directly responsible for moving physical items throughout the sys-
tem.

We proposed a master-slave design pattern to organize the architecture of FMs that
perform essential tasks in the automation system. For the flexibility of (re)config-
uration in terms of topology, a parameterized FM mechanism is specified with sup-
port of the master component of the proposed design. Since modern industrial au-
tomation standards, namely IEC 61131-3 and IEC 61499, are compliant with the
object-oriented concept, architectural specifications and designs are illustrated with
the use of SysML diagrams.

Simulations of sequence diagrams and Anylogic simulation together show the con-
ceptual validity and feasibility of proposed design and architecture. Based on the
result, we conclude that the Model-Based System Engineering approach is efficient
to show the feasibility of FM design.

Table of Contents

Foreword .. i

Preface .. iii

Acknowledgements ... v

Executive Summary .. vii

Table of Contents ... ix

List of Figures .. xi

List of Tables .. xiii

1. Introduction ... 1

1.1 Context ... 1
1.1.1. Automated material handling .. 1
1.1.2. The complexity of software development 2

1.2 Project Goal ... 3

1.3 Preliminaries .. 4
1.3.1. Model-Based Systems Engineering ... 4
1.3.2. Architectural reasoning methodology 5

1.4 Outline .. 6

2. Project problems and conceptual solution 7

2.1 Problem analysis .. 7

2.2 Domain analysis ... 9
2.2.1. New trends in the industrial automation domain 9
2.2.2. Conceptual solution ... 11
2.2.3. Vanderlande’s approach to reusability 16

3. Project Requirements .. 19

3.1 Use-case analysis ... 19

3.2 Requirement analysis ... 20

4. Architectural decisions .. 25

System Architecture ... 25

4.1 Modeling approach selection ... 25

4.2 Pattern selection ... 27

5. System Design .. 33

System design .. 33

5.1 Structural model ... 33

5.2 Behavioral model ... 36

x

6. Verification and Validation .. 41

6.1 Verification ... 41

6.2 Validation ... 41
6.2.1. Simulation Environment .. 41
6.2.2. Validation Process ... 44

7. Conclusions .. 49

7.1 Summary ... 49

7.2 Recommendations .. 50

8. Project Management ... 51

8.1 Stakeholder Analysis and Management 51
8.1.1. Stakeholder analysis .. 51
8.1.2. Stakeholder management ... 53

8.2 Work-Breakdown Structure (WBS) .. 53

8.3 Project Planning and Scheduling ... 54

8.4 Risk analysis ... 55

9. Project Retrospective .. 56

9.1 Reflection .. 56

9.2 Lessons learned .. 56

10. Appendix ... 57

10.1 System requirements ... 57

10.2 Use case analysis .. 58

10.3 System design .. 58

10.4 Conceptual simulation for (re)configurability 59

Glossary ... 61

Bibliography .. 63

List of Figures

Figure 1 – a. Airport system b. Warehouse system c. Parcel and Postal system ... 2
Figure 2 – Typical warehouse system .. 2
Figure 3 – a. Simple sorting system b. Sorting system with two outputs 3
Figure 4 – Classification of architectural reasoning methodologies [6] 5
Figure 5 – CAFCR [7] ... 6
Figure 6 – Chapter 2 overview .. 7
Figure 7 – Transition from classic automation to IIoT 9
Figure 8 – a. Smart module b. Modular factory [9] ... 10
Figure 9 – Modularization and reuse of software modules. 12
Figure 10 – Reuse with configurability .. 13
Figure 11 – Example system infrastructure for configurability 14
Figure 12 – Market Leading Concepts [12] [13] [14] 17
Figure 13 – New architecture of Warehouse system .. 18
Figure 14 – User goals ... 19
Figure 15 – Requirement traces and derivation ... 21
Figure 16 – Tools and explanation of model-related methodologies 25
Figure 17 – SysML diagrams .. 27
Figure 18 – Pattern selection procedure ... 28
Figure 19 – a. Whole-part b. Master-slave design pattern 30
Figure 20 – Structure of the proposed design ... 35
Figure 21 – Internal block diagram of MHD Manager..................................... 36
Figure 22 – a. System layout b. Corresponding sequence diagram of one MHU

being transported on one conveyor .. 37
Figure 23 – a. System layout b. Corresponding sequence diagram of one MHU

being transported on two conveyor belts c. Representation of interactions
reusability ... 39

Figure 24 – Sorting scenario layout and interactions 40
Figure 25 – Example simulation a. System infrastructure b. System logic 43
Figure 26 – 3D illustration of the example simulation shows the expected behavior

of the system. .. 43
Figure 27 – Actual system behavior of the example simulation 44
Figure 28 – Conceptual simulation of reconfigured DivertFM1 45
Figure 29 – Configurable Divert FM behavior .. 46
Figure 30 – Stakeholder map .. 53
Figure 31 – Stakeholder management strategies on the map 53
Figure 32 – Work-Breakdown structure of the project 54
Figure 33 – Project planning ... 54
Figure 34 – Risk management plan ... 55
Figure 35 – Functional requirements ... 57
Figure 36 – Non-functional requirements ... 57
Figure 37 – Traces between user goal and system requirement 58
Figure 38 – Activity diagram of sorting scenario .. 58
Figure 39 – Interactions between SenseFM and MHD Manager 59
Figure 40 – System layout for configurable topology simulation 59
Figure 41 – 3D illustration of configurable topology simulation 60

List of Tables

Table 1 – Transport MHU to desired location scenario 20
Table 2 – Transport MHU to the desired location with identification 20
Table 3 – Project system requirements... 22
Table 4 – Pattern classification schema .. 29
Table 5 – Benefits and liabilities of Master-slave and Whole-part patterns 30
Table 6 – Responsibilities of MHD entities .. 33
Table 7 – Explanation of FM representations in the simulation 42
Table 8 – Project requirement validation.. 46
Table 9 – Stakeholder analysis from company side ... 51
Table 10 – Stakeholder analysis from the university side 52

1. Introduction

This chapter provides introductory information about the project context, project goal,
preliminaries, and outline of the report. Section 1.1 briefly introduces company domain
and project problems with simple examples. Section 1.2 describes the project goal.
Section 1.3 aims at giving the background information of approach, and architectural
framework. Section 1.4 gives an overview of the structure of the report.

1.1 Context

1.1.1. Automated material handling
Automated Material Handling domain is one of the most popular industrial fields in
the modern world. Before explaining the domain and its systems, the historical origin
of the field is discussed.

In its simplest definition, material handling is a field of item processing that involves
loading, moving, controlling, and unloading substances in any form [1]. In order to
make the process efficient and safe, people started to automate the process by using
various kinds of equipment and gadgets. Starting from such a simple idea, it became a
whole industrial sector in the modern world.

Due to their high throughput, efficiency, and excellent quality of the process, Auto-
mated Material Handling Systems (AMHS) are extensively utilized in various indus-
trial sectors. A clear example can be observed in e-commerce. In the ever-increasing
demand of consumers, AMHS helps e-commerce to achieve productivity and thereby
increases profitability [2]. Apart from this special sector, AMHS plays a big role in
many other sectors such as manufacturing, mining, construction, the ship as well as
aircraft building industries.

Another major reason, which makes this domain the largest and fastest-growing sector
in the industry, is that an AMHS (i.e., a logistic system) is the only industrial system
that touches every material as it moves through the whole supply chain. The world’s
most successful brands are aware of the strategic value of AMHS and use it in their
supply chains, where they employ state-of-art technology and gadgets to meet their
customers’ needs.

One of the leading competitors in supplying AMHS is Vanderlande. The ultimate goal
of the company is to help the customers to improve their competency within their mar-
kets. The company provides three different extremely advanced AMHS products to the
customers. These systems are Airport, Warehouse, and Parcel and Postal systems as
shown in Figure 1. These systems have common functionalities such as transporting,
storing, identifying and tracking items. However, there are market-specific system
challenges that make the systems different.

The Airport system is an end-to-end AMHS that facilitates smooth transit of both lug-
gage and travelers from check-in and security check to baggage retrieval. Due to the
rise of passenger volume, the system is required to be scalable and flexible.

The Warehouse system is an AMHS that delivers a wide range of products from sup-
pliers to end-users. The customers’ challenges are the accuracy of deliveries, dealing

2

with a wide range of products and with seasonal increase and decrease of the merchan-
dise.

Parcel and Postal systems handle parcels, mails, and posts efficiently. The customers’
challenges are achieving shorter order lead times, later cut-off times, as well as dealing
with smaller orders and greater product diversity.

a b

c

Figure 1 – a. Airport system b. Warehouse system c. Parcel and Postal system

1.1.2. The complexity of software development
Vanderlande systems handle a wide variety of items such as baggage in Airport, prod-
ucts in Warehouse, and packages in Parcel and Postal systems. A typical Warehouse
system is shown in Figure 2. From the figure, it can be clearly seen that the system can
be enormous, needing to control a huge number of devices. Moreover, nowadays com-
pany customers demand their market-specific systems. In this case, a large amount of
various equipment has to be arranged in different forms of setup. These characteristics
make the system extremely complex. Such a complex system has complex software
and hardware. In the context of this project, a complex system is a system that has
multiple functionalities that are carried out by various equipment included.

Figure 2 – Typical warehouse system

Even a relatively small sorting system, as illustrated in Figure 3a, has complex software
to control all the hardware components in a synchronized and scheduled manner. In
the well-scheduled and synchronized system, software controls integrated actions of
multiple hardware components in a timely aligned routine. To be specific, the software
of this sorting system has functionalities of transporting items by conveyors, diverting
item flow by mobile sorting components, and distinguishing various kinds of items by
different kinds of sensors within the system. While delivering these functionalities in
the desired behavior and in a synchronized manner, the software also processes all the
data related to each item. These characteristics make the system more complex. Thus,
Vanderlande seeks appropriate systems and software architectures to cope with such
complexity.

In the fast-growing technological world, industrial control systems are forced to be
developed quickly even though they are deployed on complex systems similar to the
ones previously mentioned. The typical solution for coping with complexity has al-
ways been modularity. In general, modularity enables the system or software to be
composed of small building blocks that can be reused and customized in product-fam-
ily systems. Hence, achieving a proper degree of modularity brings not only a solution
to the complex system problem but also an additional benefit of generalizing product-
family systems.

In the Vanderlande’s product-family systems, namely Parcel and Postal, Warehouse,
and Airport systems, numerous pieces of equipment operate roughly the same way.
The company wants to achieve a proper degree of modularity by enabling one software
module to control functionally equivalent components or equipment. With added soft-
ware modularity, Vanderlande can generalize existing product-family systems into a
universal platform.

Apart from the software complexity, the current way of developing software whose
behaviors are variations of the existing ones is not efficient within the company. For
instance, suppose that a customer has a system with one sorting output as seen in Figure
3a. When the customer wants to add more hardware, such as one more sorting output
as depicted in Figure 3b, the current solution for making sure the resulting system has
the correct behavior is that a team of Vanderlande engineers develop new software for
the new infrastructure from scratch.

a b

Figure 3 – a. Simple sorting system b. Sorting system with two outputs

Vanderlande’s current system software is not (re)configurable, which means it cannot
easily accommodate changes made to the hardware infrastructure of a system. Vander-
lande engineers spend a significant amount of development time by duplicating a ma-
jority of the steps in building a variation of the previous software version, which is
very costly.

1.2 Project Goal
The company wants to design and develop a new modular and (re)configurable soft-
ware architecture that can be used as a reference for AMHS software development

4

within Vanderlande. The developed software architecture shall not only save develop-
ment time and cost for its material handling domain, but also allow an AMHS to change
from its current configuration to another configuration without being taken offline.
This makes it possible to maintain system effectiveness when (sudden) changes in cus-
tomer demands or unpredictable events such as failures and disruptions occur [3].

1.3 Preliminaries
This section gives general information on methodologies that helps to achieve project
goals systematically and efficiently. Since the project intends to answer system-level
questions, the Model-Based System Engineering (MBSE) approach was used for the
purpose of efficiency. An introduction to the MBSE approach and its advantages over
the conventional development approach, the document-based approach, are explained
in Section 1.3.1. The systematical reasoning roadmap to reach the project goals given
in Section 1.2 is defined in Section 1.3.2.

1.3.1. Model-Based Systems Engineering
Any system can be viewed as a set of system components. The system concerns inter-
actions not only internally between the components but also externally to its environ-
ment as a whole. The process of designing and developing these components and in-
teractions is defined in the scope of Systems Engineering. Systems Engineering is a
multidisciplinary approach to present system solutions to satisfy the diverse require-
ments of the customers and stakeholders.

A system engineering conventional approach to design and develop systems is based
entirely on documents. These documents are intended to capture the results of every
single development phase of the project life-cycle from customer requirement analysis
to the final product. In those life-cycle activities, system engineers produce all kinds
of disjoint documents and artifacts manually. Examples of such artifacts are the re-
quirement specification document, the architectural description document, the system
design description document, and the interface specification.

These artifacts are key communication utensils of agreement between users, custom-
ers, developers, and testers. Besides, the artifacts are characterized by different forms
of documents, such as textual documents, spreadsheets, presentation files, and dia-
grams. Unfortunately, there are several fundamental limitations in the document-based
approach. The most important issue is that this approach is expensive to maintain.
Quite often we can see the requirements in a project change after the project has already
started. Thus, the relevant artifacts are to change accordingly. However, the infor-
mation is spread over multiple documents. The changes then have to be reflected in
every single one of the “relevant” documents, but typically the workflow is tedious and
document traceability is poor. Therefore, it is an inefficient way to work for engineers.

As a result of advancements in computer processing, storage, and network technology,
MBSE has received attention in a wide range of industrial domains. The MBSE ap-
proach not only mitigates the drawbacks of the traditional document-based systems
engineering approach but also brings additional advantages to the systems engineering
field [4]. Examples of those advantages are traceability and integration of the system
development processes. One of the most important features that MBSE brought to the
field is simulation capability.

Systems engineers adapted the Model-Based approach from other engineering disci-
plines, such as electrical and mechanical engineering. Mechanical engineers started
using two-dimensional and three-dimensional computer-aided design tools instead of
boards. Meanwhile, it was efficient for electrical engineers to utilize computer software
to capture and analyze circuit schematics instead of manually building electrical cir-
cuits. In a similar way, the Model-Based approach is becoming standard practice for
systems engineers because it improves productivity and quality of the work. In the
MBSE approach, the project development team has a common repository of all kinds
of joint analysis and models in one generic standard. It makes project progress more

efficient because models are highly synchronized to each other, consistent because of
standards, and traceable not only to the high-level requirement analysis but also to the
low-level hardware and software designs.

Moreover, other features that MBSE brings to the field are enhanced knowledge trans-
fer or communication between stakeholders, reduced development risk, verification,
and validation. MBSE approach is becoming more popular also because it increases
the level of abstraction and the level of automation. Depending on tools that system
engineers utilize, automation features such as code and documentation generation and
visual simulation are possible nowadays.

There are three pillars in MBSE [5]: Method, Language, and Tool. In the next section
of the chapter, the method is discussed in detail. Language and Tool are analyzed in
Chapter 4.

1.3.2. Architectural reasoning methodology
According to a recent study, an average person thinks between 60000 to 80000
thoughts in a day. It would be great to achieve one’s goal if these thoughts are inter-
connected systematically or focused on one point. Unfortunately, the majority of these
thoughts are absolutely irrelevant or the same repetitive worries. A systematically
structured way of thinking helps enormously to plan steadily and proceed accordingly.

In the rapidly changing, advanced technology-driven industrial era, an architectural
reasoning methodology supports architects, designers, and engineers to realize their
ideas into a product in a highly structured manner. There are numerous such well-
thought methodologies for different purposes and perspectives. A classification of ar-
chitectural reasoning methodologies is depicted in Figure 4 [6].

In this project, CAFCR was chosen because the framework is commonly facilitated for
multidisciplinary system-level projects. The other multi-view reasoning approaches,
especially Kruchten’s 4+1 software architecting method, were considered. However,
because the nature of the project context is multidisciplinary and relevant to system-
level architecting including hardware and software, CAFCR is preferred over Kruch-
ten’s 4+1 method.

CACFR is a reasoning methodology to find a problem and solve it with concrete ra-
tionales and a straightforward procedure [7]. An original idea of the methodology aims
to decrease a conceptual gap between the industrial and academic worlds. Rationales
are solid because an architect has to put herself into different project stakeholders’
shoes, enabling designers to view problems from different perspectives.

Figure 4 – Classification of architectural reasoning methodologies [6]

6

The CAFCR methodology is composed of five different views as depicted in Figure 5:
Customer objective, Application, Functional, Conceptual, and Realization. The Cus-
tomer objective view explains what problem customer wants to be solved. The Appli-
cation view describes the context or environment of the problem. The Functional view
defines functional and non-functional requirements from stakeholders. The Conceptual
and Realization views define the design of the solution at high and low levels respec-
tively. CAF views are considered separately from CR views because CAF views are
intended for analyzing the problem from different levels and different perspectives and
CR views are meant for design.

By putting the views in this order, a solution to the problem becomes clear to stake-
holders even if the stakeholders do not have any technical knowledge. The reasoning
transition and flow are clear as the views are iterated. Besides, a view drives the adja-
cent next view and in the opposite direction, the view enables or supports the previous
view.

Figure 5 – CAFCR [7]

1.4 Outline
The entire project report is structured based on the CAFCR architectural reasoning
methodology. CAFCR views are mapped into Problem analysis, Domain analysis sec-
tions, Requirement analysis, System Architecture, and System Design chapters respec-
tively.
Chapter 2 explores project problem insights with reasons why this project was initiated
in the first place from a customer’s perspective. Furthermore, the context of the prob-
lem and the environment where this problem is allocated in the system are also defined
in Chapter 2. Detailed functional and non-functional requirements are listed as the sys-
tem requirements in Chapter 3. Based on the previous chapters, the design of the ar-
chitecture solution is introduced in chapters 4 and 5. Chapter 6 describes our evaluation
of the design. The conclusions are given in Chapter 7. Finally, Chapters 8 and 9 of the
report, provide the details of project management related activities.■

2. Project problems and con-
ceptual solution

This chapter consists of two main sections. Section 2.1 highlights the problems in the
scope of the project. These problems are analyzed from the main stakeholders’ point
of view, which depicts the Customer objectives view of the CAFCR.
Section 2.2 provides the conceptual guideline of the solution to the highlighted prob-
lems. This guideline was formulated by analyzing a similar problem solution in the
industrial automation domain. Moreover, we learn that the company has started apply-
ing this conceptual guideline by producing a new system architecture. Furthermore,
the scope of the project is defined within the new system architecture. This section is
the Application view of the CAFCR, which defines the project scope within its envi-
ronment or context. Chapter overview is depicted in Figure 6.

Solution to the
similar problems in

the industrial domain

Conceptual guideline
of the solution

Vanderlande
customers

Expectation and
concern

Internal difficulties in
development teamHave Leads

Refer to

Inspire

Domain analysis

Problem analysis

New system
architecture Applied to

Figure 6 – Chapter 2 overview

2.1 Problem analysis
This section is the Customer objective view in the CAFCR framework, which is illus-
trated in Figure 5. This view captures the stakeholders’ concerns without mentioning
any technical details. In the project, company customers and company development
teams are considered as the main stakeholders.

Vanderlande customers are companies, organizations, or people who need Airport,
Warehouse or Parcel systems. These systems are typically complex. There are two
main reasons as to why Vanderlande systems are complex.

The first reason is the diversity of the customer’s market. Even though Vanderlande
provides logistic process automation systems in airports, warehouses, and postal sec-
tors, customers demand different types of systems depending on their business needs
within these three sectors. Such diversity can be explained with an example of Albert
Heijn and Zalando's solution in the warehouse sector. In spite of the fact that these

8

companies use Vanderlande’s the same Warehouse system, their requirements are dif-
ferent depending on what business segment they operate in. On one hand, Albert Heijn
must cope with the growing volumes of diversified food stock and multiple store for-
mats. On the other hand, as an e-commerce company, Zalando must cope with seasonal
and fast-changing trends efficiently and handle product returns flexibly. In a few
words, there has been an increasing demand for a generic logistic solution that can be
extended with customer-specific requirements.

Secondly, typical systems that company supplies are relatively large in terms of size.
The larger the system is, the more equipment the system should manage as well as the
interactions between them. Moreover, there is a wide variety of equipment that is used
as building blocks of the company systems. As an example of Vanderlande systems, a
typical Warehouse system is depicted in Figure 2. This system consists of a wide range
of equipment, such as conveyors, robots and sensors. Even single equipment varies
depending on their purpose. For instance, varieties of sensors are barcode sensors,
weight and dimension sensors. In addition, these diverse equipment is utilized in hun-
dreds and thousands of places within this Warehouse system.

In addition to the systems being complex, the company customers have numerous ex-
pectations and concerns from Vanderlande. One of the most important concerns is that
they demand these complex systems to be delivered with excellent quality and out-
standing performance in a short time. Satisfying the company customers’ concerns
leads to internal difficulties within the development team of the company. The devel-
opment team eventually satisfies the quality and performance of the customers’ re-
quirements for their systems. However, it has always been a challenge to deliver com-
plex systems in a limited amount of time because the current process of system devel-
opment is time-consuming and inefficient to cope with the complexity of the systems.
Within the scope of the project, we analyzed the problem of the inefficiency and iden-
tified problem causes.

We identified the major causes of the inefficient and time-consuming software devel-
opment process. The reasons are the low level of software reusability and the conven-
tional way of developing software within the company.

The current software development process is inefficient and time-consuming because
a major part of the existing system software is not reusable. To develop a complex
system quickly, the company should have a reusable template software. Since this tem-
plate is non-existent, the developers frequently encounter the problem of duplicating
previous work over and over again. A piece of evidence that the company does not
have the template software is that Airport, Warehouse and Parcel systems are not en-
tirely generalized. In terms of hardware, these systems share common equipment but
in terms of software, these systems have distinct software, even though the majority of
the software is meant for delivering fundamental logistic automation functions.

Another reason for the inefficiency is that developers within the company follow the
conventional way of software development, also known as manual coding, which is
error-prone. It is common to encounter various bugs in the software when developers
utilized manual coding. When the bugs are present, debugging usually requires a lot of
time and effort. Furthermore, code is not understandable to other people unless the
developer wrote detailed documentation about his developed part of the software. Un-
derstanding other developers’ software logic and concept takes time. Therefore, the
conventional way of developing software, the paper-based software development ap-
proach, is inefficient.

In order to solve these problems, we looked into the trend of the Industrial Internet of
Things (IIoT) within the industrial automation systems. We learn that IIoT facilitates
software development by making use of reusable modules to cope with the complexity
of the systems. Furthermore, we also explain how the company is transitioning from
the conventional way of developing software to software modeling approach in the
next section.

2.2 Domain analysis
This section aims to define the conceptual guideline of the solution to the above-men-
tioned problems by referencing to the trend of the Industrial Internet of Things (IIoT).
Section 2.2.1 explains a trend of IIoT and Cyber-Physical System (CPS) that elaborates
on how reusable modules can be used as a solution to inefficiency in the development
of a complex system. Considering the complexity, the company has already started
facilitating such reusable modules in the system architecture, which will be discussed
in Section 2.2.3.

2.2.1. New trends in the industrial automation domain
Nowadays, most industrial automation companies, including Vanderlande, follow the
classic automation pyramid. The pyramid is an integrated technological hierarchy of
different levels of automation in the industry. It is composed of five levels, namely
Field level, Control level, Supervisory level, Planning level, and Management level.
The automation pyramid hierarchy is captured in Figure 7a [8].

ERP

MES

Management Level

Planning Level

Supervisory Level

Control Level

Field Level

Figure 7 – Transition from classic automation to IIoT

Industrial physical components that detect and move varieties of materials in factories
or industrial applications belong to the Field level automation. Sensors and actuators,
which are responsible for detecting and moving items receptively, play a major role in
the Field level. The Control level manages or runs the Field level. At the control level,
the Programmable Logic Controller (PLC) is the main actor. It takes sensor data from
the Field level and instructs corresponding actuators to react to it. The supervisory level
utilizes Supervisory Control And Data Acquisition (SCADA), which accesses data and
control multiple systems from a single location using a graphical user interface or Hu-
man Machine Interface (HMI). On top of the Supervisory level, there is the Planning
level that utilizes a computer management system. At this level, the complete manu-
facturing process from raw material to the final product is monitored by the Manufac-
turing Execution System (MES). The topmost level of the pyramid is the Management
level. This level is dedicated to monitoring and controlling the company’s manage-
ment, which includes manufacturing, sales, finance, and others. Enterprise Resource
Planning (ERP) is well known for this level.

Due to the internet-driven, rapidly emerging new technologies, the industrial automa-
tion domain is forced to change the classic automation pyramid by adopting these new
technologies in order to enhance the manufacturing and industrial process. One exam-
ple of the new trends is the Internet of Things (IoT) in which all system components
are interconnected. Industry customized the concept for its own context, creating the
concept of IIoT. The future of the industry is greatly influenced by the IoT, which
results in IIoT to turn the classic automation pyramid hierarchy into a more flexible
network. Figure 7b shows how the IIoT network is formed in the future. In this net-
work, all system components are interconnected. Thus, typical IIoT systems are com-
plex just like Vanderlande’s systems. However, IIoT embraces modularity to effi-
ciently build such complex systems.

10

Cyber-Physical System (CPS) is a technology that is used in IIoT. A smart module, as
shown in Figure 8a, is an example of a CPS. In the smart module, all small field devices
are equipped with electronic, and mechanical solutions as it was in the past. On top of
that, it has its own micro web server, which enables the module to be connected to a
network. Improvement to the old system of the module is the software in the smart
module. In the past, the system achieved modularity in electronic and mechanical com-
ponents but not in software. Therefore, instead of a monolithic complete software for
the whole system, engineers started to develop modules with small firmware. The rest
of the software is filled with Internet applications that can be easily acquired. In the
same manner that a USB printer can be connected to any personal computer, this type
of smart module can be attached to any CPS. Fundamental principles that make the
“plug-and-play” concept factual are the smart module’s features, namely Self Identifi-
cation, Service Exploration, and Autonomous Networking [9].

Furthermore, the smart module concept can be expanded in terms of size to bigger
industrial line equipment or production modules. The production modules resemble
Lego bricks. As children play around with the Lego bricks, the production modules
also can be rearranged without any complication because both Lego bricks and pro-
duction modules have standardized connections or standardized (network) interfaces
between them. Therefore, it is easy to construct the production line composed of these
modules. The concept is visualized in Figure 8b. As a consequence, the industry has
been transforming rapidly from a facility with a fixed location to changing location;
from monolithic to modular; from rigid hierarchical to distributed; and from wired to
wireless.

a

b

Figure 8 – a. Smart module b. Modular factory [9]

From these examples, it can be concluded that the system would be more flexible and
can be efficiently developed when it is designed in a modular way. Furthermore, these
examples inspired to identify a conceptual guideline of the solution to the problem of
inefficiency in complex systems’ software development.

2.2.2. Conceptual solution
This section explains two main aspects, namely reusability and modeling, of a concep-
tual solution to the problem of inefficiency in systems’ software development. These
aspects allow the company to develop complex systems efficiently. In Section I, a con-
ceptual guideline of realizing the full potential of reusability is defined. The guideline
helps to formulate the architectural solution of the complex systems’ software. In Sec-
tion II, how modeling helps to increase development efficiency is explained.

I. Reusability
Reusability is one of the most discussed topics in software engineering. It promises a
reduction of both cost and development time for software systems, as well as better
software quality [10]. In order to solve the problem of inefficiency in software devel-
opment, the company should adopt reusability in the systems’ software architecture.
We created a guideline that encourages to apply two levels of reusability to the system
software architecture in order to realize the full potential of reusability. In the first
level, complex and monolithic systems should be modularized thereby system soft-
ware’s small building blocks, also known as modules, can be reused in the different
system software applications. In the second level, these applications should be built
configurable. Configurable software applications can be reused in similar applications
with different configurations of modules. The guideline of realizing the full potential
of reusability is explained with examples of Vanderlande’s systems below.

i. Modularity
The first level of reusability is modularity, which is inspired by examples of IIoT and
CPS. These examples encourage to adopt modularity to cope with system complexity
efficiently. To develop a complex system efficiently, the company should have a tem-
plate system that is composed of small building blocks, also known as modules. In the
case of customization, these building blocks can be arranged in a different setup de-
pending on the customer’s demand. Vanderlande achieved a proper degree of modu-
larity in hardware but modular software has always been an issue because the software
has to be changed relatively faster and more frequent than hardware. Thus, achieving
a proper degree of modularity in software would be a solution to the complexity.

How to modularize the system software would be the next question to be addressed.
The company has been supplying their solutions to customers with the most funda-
mental logistic functionalities. These functionalities are the main reference for how to
modularize system software. By modularizing the system software, the company will
gain extensively in product development time because once small building blocks of
the software are defined, Vanderlande will gain universal system software, which can
be customized to Airport, Warehouse or Parcel systems.

Currently, all Vanderlande systems have their own distinct software even though most
of the functionalities are the same. Common functionalities are the most fundamental
operations of the software to process items such as transporting, identifying, and sort-
ing items. These functionalities are a key point to split system software into modules.
In the future, the company aims to achieve that the desired system consists of Func-
tional Modules, which are building blocks with their own distinct responsibility. As a
result, Vanderlande systems can be generalized into one logistic automation system
that consists of predefined, developed and tested modules. It can be explained with the
reusability concept. The company lacks software reusability, which leads to a waste of
resources such as system production lead time, and manpower.

Vanderlande will gain significantly by transforming its current distinct systems to the
modular systems. The advantage of the modularity and reusability in the Vanderlande
systems is depicted in Figure 9 using simple puzzle blocks. In the figure, Vander-
lande’s current situation of distinct systems is illustrated at the top. Airport, Warehouse
and Parcel systems share common hardware components but the software is different
for each system. This is why the company needs to modularize the systems software.

12

When the company achieves a proper degree of modularity in system software, all the
systems are generalized into one universal modular platform that has shared function-
alities. This universal system is considered as a template system. It will be straightfor-
ward for the developers to build Vanderlande systems from the template because all
the functionalities are predefined, developed, and tested.

Furthermore, customer market-specific solution becomes easy to develop from the
modular systems. Figure 9 further shows how the reuse of modules helps to cope with
customer market-specific solutions with examples of Albert Heijn and Zalando sys-
tems. These solutions require different functionalities due to market-specific charac-
teristics. However, there will always be shared software modules among the solutions
because fundamental functionalities are meant for the Warehouse system.

Figure 9 – Modularization and reuse of software modules.

Airport or
Warehouse or

Parcel and Postal
system

Monolithic system

Modular platform

Airport system Warehouse system
Parcel and Postal

system

Zalando solution Albert Heijn solution

Modularization

Reuse of modules

Reuse of modules

ii. Configurability
The second level of reusability is configurability. Configurable software is another
form of reusability. This is where developers reuse the entire software application. As
opposed to the modularity, the scope of the configurability is bigger. On one hand,
modularity allows developers to reuse software entities again in different applications.
On the other hand, configurability enables developers to reuse the entire software ap-
plication for similar projects. Suppose the application of Alber Heijn’s software in Fig-
ure 9 was built configurable. In the case of hardware change in the system, there is no
need to develop new software. Instead, the software can be reconfigured for the new
setup of hardware. As an example, two different configurations of the same Albert
Heijn system are depicted in Figure 10. As shown in the figure, the structure of the
software is not modified but the size is configured. Configurability is further clarified
with a practical example.

Figure 10 – Reuse with configurability

Conceptual configurability, Figure 10, is clarified with a more concrete example of a
small system in Figure 11. Existing customers tend to extend their automation system
with a few more hardware components. In this case, engineers must discard previous
software and deliver another software regarding the system infrastructure change.

The current software architecture of the systems is not adaptable to this hardware in-
frastructure change. A software configurability is one of the main interests in the pro-
ject for making the system software reusable with regard to hardware update. A simple
example is given in Figure 11 to show an advantage of the configurability concept in
the project. The figure is a more detailed illustration of Figure 3 including all equip-
ment that is involved in the task of sorting items by conveyor belt.

Suppose a customer had a system with only one sorting path in it. Figure 11a shows
the infrastructure of the system. Because the customer's business was successful, he
decided to enlarge his system with another sorting path in the system, which is shown
in Figure 11b.

From Figure 3, it seemed like adding one more conveyor is the only change to the
initial system layout. However, from the detailed figure below, it can be seen that add-
ing one more sorting path needs other associate devices such as barcode scanner to
distinguish items, Photo Electric Cell (PEC) to check item presence and extra diverting
shoes to direct items to the desired path. Functionalities and interactions of additional
hardware should be captured by the new software version.

Albert Heijn solution

Reuse with configuration

14

The current situation is that Vanderlande engineers have to discard initial software
entirely and develop new software dedicated to the new hardware layout. This is not a
flexible and efficient way to deal with this customer’s need. Through this project, the
company wants to investigate a method that existing software in the original system
layout still works in the customized layout in Figure 11b.

Transport 1

PEC Barcode
Scanner

PECBarcode
Scanner

a. Original system layout

Transport 1 Transport 2 Transport 3

PEC Barcode
Scanner

Barcode
Scanner

PEC PECBarcode
Scanner

b. Reconfigured system
layout

Figure 11 – Example system infrastructure for configurability

For instance, in terms of modularity, software for Figure 11a is composed of several
entities each of which has distinct responsibility. These entities can be reused in a to-
tally different system layout. Let’s suppose there is a software entity that controls only
a barcode scanner. Since a barcode scanner can be used everywhere in any system, the
corresponding entity can be reused wherever the device is needed.

In terms of configurability, the same software controls both layouts in Figure 11a and
Figure 11b with a different configuration of entities. In other words, the entire software
application of the original layout is reused with a slight configuration change in the
new layout. However, this system change works as long as the change is within a pre-
defined range. The predefined range is the scope of original system software function-
ality. Put differently, if the company customer requests a totally different functionality
that was not in the original system, configurable software is not applicable in this case.

To conclude the conceptual guideline, systems’ software should be modular and fur-
ther configurable to realize the full potential of reusability. The reusability helps to
address the problem of inefficiency in software development within the company.

II. Modeling
Apart from the above-mentioned system software relevant guidelines, the company
desires to increase development efficiency with modeling techniques. Nowadays, the
modeling is considered more productive than conventional software development ac-
tivities such as manual coding because code is error-prone when the system software
becomes larger. Besides, code is difficult to understand for other people unless the
software developer wrote clean code with clearly explained documentation. Therefore,
Vanderlande is adapting modeling techniques because models are easier to understand

and error can be detected in the early stage of development thanks to Model-Based
simulation and verification with stakeholders.

Modeling is a requirement from the company to conduct the project for the following
reasons. There are different documentation about systems and software in the company
dedicated only to specific professionals while people from other departments cannot
understand the documentation. To communicate with the same language, the modeling
is proposed because diagrams and models are more likely to be understood by people
from different backgrounds.

Modeling also has advantages of analyzing and verifying the concept with stakeholders
in the early stage of development. With this advantage, a developer can immediately
prove his concept of the system with stakeholders’ imagination of the system. In other
words, it complies “fail fast” principle.

Another significant benefit that engineers profit from the model is a code-generation
feature from models. Nowadays, it is becoming more practical to generate code from
the models if the models are defined in great detail. However, the code-generation fea-
ture has several limitations. It is almost impossible to generate whole system code from
the models. Moreover, the generated code is difficult to understand for developers for
the purpose of modification. In this project, we did not go towards this feature because
the aim of the project was not implementation.

Although implementation was not a primary purpose in the project, we analyzed sev-
eral standards of approved implementation technology in the industrial automation
control domain. These standards are crucial because this project’s main deliverable,
reference architecture, should allow engineers to implement systems complying with
these standards. Additionally, our project design models should also comply with the
standards for the ease of implementation.

In this field, most sectors utilize PLCs. A PLC is an industrial digital computer that
can be programmed for controlling manufacturing processes such as assembly lines,
robotic device and heavy machinery in the system. Industrial engineers’ first choice
for the automation controller has always been PLC because it is robust in the harsh
industrial environment and thereby it is also highly reliable. Another advantage is that
it supports the modularity concept. In the industrial equipment, engineers achieved
building physically modular PLC or modular hardware. Modular hardware required
modular software. A (re)configuration mechanism was missing in the software of the
system to form it more flexible. To solve this problem, standards for the PLC program-
ming language have been developed over the last few years.

The International Electrotechnical Commission (IEC) has been publishing the stand-
ards for modularity and (re)configurability. The first influential one was IEC 1131,
especially part 3 (IEC 1131-3), which deals with the software model and programming
languages for Industrial Process Measurement and Control Systems (IPMCS) [11]. In
the standard, five programming languages were defined, emphasizing software reuse.

Due to the numbering system in the IEC, the standard was renamed as IEC 61131 in
the later version of the standard. In a similar way that object-oriented programming
(OOP) languages use class, the standard IEC 61131-3 defined Functional Block (FB)
as an entity that has encapsulated data structure and algorithm working with this data.
In application, these FBs can be connected to each other in a data-driven approach [3].

The IEC 61131-3 standard is extended in IEC 61499. IEC 61499 promoted event-
driven FBs, which are also modular and reusable. The main advantage of IEC 61499
over 61131-3 was the dynamic reconfiguration mechanism. The reconfiguration mech-
anism was enabled thanks to getting rid of global data, indirect data access, and the
event-driven approach.

16

These standards are enablers of modularity because the standards support the OOP
paradigm with their FBs. The FBs in these standards can be considered as analogous
to a class in the OOP paradigm. Modularity is a feature in the OOP paradigm because
OOP allows developers to construct software by manipulating objects that are in-
stances of software building block: a class. For this reason, the standards are enablers
of the modularity and configurability.

2.2.3. Vanderlande’s approach to reusability
Vanderlande has been innovative and visionary about new technologies to remain as a
leader in the domain. Therefore, the company started applying the guideline to the re-
usability. The first step is the systems’ modularization. The company already com-
menced modularizing the systems with new high-level architecture. As a second step
of the reusability, the company initiated Next Level Automation (NLA) that aims to
configurability of the systems’ software. Our project is auxiliary to the NLA project
and new system architecture. Thus, the scope of the project is defined in this section.

Recently, Vanderlande identified customer-specific market diversity within the same
Vanderlande system. The market diversity within the same Warehouse system was
explained with examples of Albert Heijn and Zalando in Section 2.2.2. Subsequently,
the company has created a new system architecture to figure out the needs of diversity
and issues that are mentioned in Section 2.1. Key new concepts in the new architecture
are are i) Market Leading Concept and ii) Functional Modules.

Market Leading Concept (MLC) is a standardized distinct solution for every business
segment, namely food, fashion, parcel, general merchandise as it is specified by the
company. To capture the opportunities in the growing markets for warehousing, par-
cels, and airports, Vanderlande has chosen to focus on specific market segments and
to tune product offerings accordingly. For each business segment, these offerings cen-
ter around market-leading concepts: system concepts that answer to specific require-
ments for a business segment. The requirements are determined by the commonalities
in the value drivers of customers in that business segment.

As examples of MLC in a Warehouse system, AIRPICK and FASTPICK for fashion
and general merchandise, and STOREPICK for the food market segment are shown in
Figure 12. Each of these MLCs has distinct traits to offer for customers but they have
some common functionalities.

AIRPICK [12] combines efficient picking with flawless automated sortation to indi-
vidual orders in the pocket sorter, AIRTRAX Pocket. AIRPICK can sort an extremely
wide range of products at a low investment level. FASTPICK [13] is a goods-to-person
order fulfillment system that uses the advanced ADAPTO shuttles for product storage
and retrieval for day-to-day operations. To handle short-term peaks in a cost-efficient
way, highly efficient trolley picking is used to complement the goods-to-person sys-
tem. STOREPICK [14] is a robotized, end-to-end automated case picking (ACP) ware-
house solution that allows customers to optimize the processes of the entire value
chain. It effectively handles both incoming and outgoing goods and guarantees store-
friendly deliveries across multiple store formats.

A MLC consists of a fixed set of Functional Modules (FMs). As it is defined in [15],
The FMs are the building blocks that can be used in one or more MLCs or custom
system solutions. Each FM provides a piece of integrated functionality that directly
adds value to the customer. In addition, FMs have clear responsibilities with maximum
decoupling between them, so that they can be easily reused in different system solu-
tions.

In the scope of this project, a FM is a small building block of the system software that
controls functionally equivalent physical components in the system. It can be config-
ured by removing some unnecessary FMs or modifying parameters of the FM based
on a customer's need. Besides, FMs can be found in the form of hardware-and-software
or only software.

b. FASTPICK

a. AIRPICK

c. STOREPICK

Figure 12 – Market Leading Concepts [12] [13] [14]

Figure 13 outlines the new architecture of the Warehouse system. The same architec-
ture holds for the other systems. The system consists of three layers. The Enterprise
domain determines what the Warehouse needs to do in terms of customer order fulfill-
ment and inbound goods receipts. The Process domain fulfills the inbound and out-
bound orders from the Enterprise domain by controlling the process flow of stock and
packages through the warehouse. The Material Handling Domain (MHD) is then re-
sponsible for the actual physical movements of the items or a Material Handling Unit
(MHU)in the warehouse. A MHU is an item such as baggage in Airport, products in
Warehouse, and packages in Parcel and Postal systems.

Each layer has multiple FMs, each with a distinct responsibility. The FMs are the build-
ing blocks that can be used in one or more Market Leading Concepts or custom system
solutions. Each FM provides a piece of integrated functionality that directly adds value
to the customer. In addition, FMs have clear responsibilities with maximum decoupling
between them, so that they can be easily reused in different system solutions.

18

Supporting and generic subdomains

Warehouse system core domain

Entreprise
domain

Process
domain

Material
Handling
domain

FM FM

FM FM FMFM

FMFM FM FM

MLC B

MLC A

Figure 13 – New architecture of Warehouse system

System architects of the company identified several FMs. The defined FMs in MHD
are MHU Tracker, Clearing, Upstream Executing MHD FM, Downstream Executing
MHU FM, Empty Carrier Broker, and Sort & Transport FM.

The scope of the project was determined to specify the Sort & Transport FM within
the MHD. The reason why this FM is chosen is that it is the most fundamental and core
FM in the whole system. Put it differently, all MLCs have this FM to transport and sort
MHU within the system. Once this FM is specified more in detail, architecture and
design can be developed further. As seen in Figure 13, the FMs of the MHD are in the
form of hardware and software but the other two domains have FMs in the form of
only software. Therefore, the project is multidisciplinary despite the fact that the pro-
ject aims to provide more about the logic of the software part in the system architecture.
In the future, the project can be extended with other multidisciplinary FMs. ■

3. Project Requirements

In this chapter, the requirements of the project are identified and analyzed under the
categories of Functional and non-Functional requirements. The Functional view of the
CAFCR framework describes what the system is expected to achieve. It includes use-
case and requirements analysis.

3.1 Use-case analysis
In this section, use case analysis is performed by examining the example of the most
basic logistics automation system setup, illustrated in Figure 11. User goals are defined
as a result of inspecting the capability and functionality of the example system. The
overall user goal is depicted in Figure 14. In addition to the inspection of the running
example, we looked into the company’s system functions. A system user has several
goals that can be achieved through system functions that are essential for all systems
to handle materials. These functions are Transport, Accumulate, Output, Induct,
Merge, Divert, and Identify. The system user can be a customer of the company or an
operator who controls the system. Another user goal is the reconfiguration of the sys-
tem by a company engineer. The reconfiguration takes place when customers of the
system want to modify their system by either adding and/or removing existing system
components.

Figure 14 – User goals

The most fundamental user goal is Transport MHU to the desired location using the
system. This user goal can be extended with identification to show additional function-
ality; thereby the user can benefit more efficiency and accuracy to reach the goal. By
identifying the MHU, the user can physically allocate where this MHU is in the system.

20

This is the user goal Detect MHU. Track MHU is a user goal to allocate the MHU
virtually within the system. When the identity of the MHU is not found in the system,
the MHU has to be registered afterward. This user goal is Register MHU.

The other user goals, namely Merge MHU, Sort MHU, and Accumulate MHU, are not
possible without the transport use case. Therefore, the relationship between the user
goals to the goal of “Transport MHU to the desired location” is <<include>> [16].

In Table 1, the Transport MHU use case scenario is broken into the scenario steps. The
assumption that the conveyor system was turned on is easily satisfied in the real world.

Table 1 – Transport MHU to desired location scenario
Precondition Conveyor is on.
Actor Action
User User loads a MHU to the system.
System Conveyor transports the MHU to the designated location.
User The user unloads the MHU.

This plane transportation scenario can be extended with identification to save energy.
In this case, when a MHU is detected by the system conveyor, which then starts trans-
porting the MHU to the desired location. The scenario is explained in Table 2.

Table 2 – Transport MHU to the desired location with identification
Precondition Conveyor is off.
Actor Action
User User loads a MHU to the system.
System Sensor identifies the MHU.
System Conveyor transports MHU to the designated location.
System Sensor at the desired location identifies MHU to check.
User The user unloads the MHU.

From the use case analysis, the majority of the functional system requirements are de-
rived. These requirements are discussed in the following section.

3.2 Requirement analysis
The Functional view of the CAFCR framework, which is illustrated in Figure 5 defines
project requirements. The Functional view explains what the system is expected to
accomplish in the scope of the project. In this view, it is often suggested to consider
the system as a black box. What features the black box offers are stated in the view.
Even though the name of the view is Functional, non-Functional requirements are also
part of it. In other words, requirement analysis states not only functional features of
the system but also how well this system delivers these functional features to the stake-
holders in terms of performance, efficiency, and many other qualities. Thus, project
requirements are concrete features, conditions, and tasks that have to be completed to
give assurance of a successful project.

The main aim of the project was to help Vanderlande with designing a part of their
new architecture of the systems using models. The requirement gathering process was
conducted based on analyzing the problems and realizing the feasibilities. All these
activities were performed by extensively reviewing the new architectural documenta-
tion of the systems, meeting domain experts and stakeholders. These processes helped
to produce more concrete requirements. Throughout the project, system requirements
have been modified iteratively to make the requirements more concrete.

All of the requirements are derived from the use case analysis, reusability guideline,
and modeling aspects of the conceptual solution. The guideline and the modeling were
explained in Section 3.1, 2.2.2- I and II respectively. Overall derivation of the require-
ments and dependency can be seen from Figure 15. Traces between user goals and
requirements are shown in the Appendix chapter.

Figure 15 – Requirement traces and derivation

The gathered requirements are listed in Table 3. In the table, functional requirements
are abbreviated as FR and non-functional requirements as NFR. These categories are
integrated with requirement numbers to generate unique identification of the require-
ments. We defined the list of requirements with prioritization indicator keys: Must,
Should, and Optional.
Must: This key indicates a requirement with the highest priority. The requirements
that fall in this category have to be satisfied to deliver the core concept of the project.
All requirements that are derived from the system functions and the most fundamental
user goals fall in this priority category.
Should: The requirements that fall in this category must partially be satisfied or ex-
plained because the main concept of the project partially depends on these require-
ments. If the requirement is not satisfied fully, the remainder can be left for future
work.
Optional: This key indicates a requirement with the lowest priority. The requirements
that belong to this category add minor value to the project. Thus, these requirements
are considered but may not be satisfied because of time constraints.

Table 3 – Project system requirements
ID Description Priority
NFR-1 The systems shall be generalized. Should
FR-2 The Functional Modules shall be configurable. Must

NFR-3 The design of Functional Modules shall be imple-
mented to show that the recommended architecture is
correct.

Optional

NFR-4 The model of the Functional Modules shall be applica-
ble to different embedded platforms.

Should

FR-5 The general system shall consist of Functional Mod-
ules.

Must

FR-6 The Functional Module shall enable to control func-
tionally equivalent components.

Must

NFR-7 The desired system shall be represented using a model-
ing language.

Should

NFR-8 The system architecture shall be documented. Must
FR-9 The Functional Modules should cover basic system

functions.
Must

FR-10 The model of the Functional Module shall generate
code.

Optional

FR-11 The Transport FM shall be used to move MHU. Must
FR-12 The Sense FM shall be used to detect, identify and de-

fine product MHU.
Must

FR-13 The Divert FM shall be used to divide one transport
flow into several.

Must

FR-14 The Merge FM shall be used to join two or more
transport flows into one.

Must

FR-15 The suggested SW architecture should cover the fol-
lowing system functional concepts: Energy-save, die-
back, gap control, handover.

Should

As a result of modularizing the system, Vanderlande would benefit from the generali-
zation of the systems. This requirement is stated in NFR-1 and is derived from FR-5.
How the systems should be modularized is linked to the requirement FR-9.
As it was described in the MLC and FM based architecture of the company, all other
requirements except FR-9 and its derived requirements were explained briefly in Sec-
tion 2.2.3.

During the requirement elicitation activity, we identified FR-9 that is derived from the
use case analysis in which user goals are achieved through the system functions. An-
other requirement we had to integrate FR-9 with was FR-6. The modules that we design
should control functionally equivalent components. These functions, namely

Transport, Accumulate, Output, and Induct, are appeared to be controlled by the same
components delivering the functionality of transport with different time configurations.
Hence, we derived FR-11 for these similar system functions. All other derived require-
ments were originated from the other system functions. Regarding FR-2, the configu-
rability was explained in Section 2.2.2-I-ii.

All other requirements that are relevant to high-level requirement or aspect of model-
ing are derived from Section 2.2.2-II. For the reason of traceability, the self-documen-
tation and code generation, the aspect is preferred over a document-based approach.
Traceability means that all the decisions and derivations of system design should be
clear and documented. Every design, model, and diagrams express its idea without
extensive explanation in the documentation. Besides, code generation for the design is
an advantage for validation.■

4. Architectural decisions

In this chapter, system requirements are realized by system architectural decisions. In
the CAFCR framework, the Conceptual view describes how the product is depicted at
a high-level design. In addition, modeling approach selection and design decisions are
explained in this chapter.

System Architecture
In the previous chapter, we defined the list of system requirements considering the
system as a black box in the Functional view. In the Conceptual and Realization views,
we open the black box to specify the system more in detail. Thus, the Conceptual and
Realization views are often considered as white box and these views show how func-
tionality requirements are realized with what components in the system. To be more
specific, the Conceptual view captures the concepts behind the design and this view is
relatively more stable than the Realization view. In this view, reusable and modular
building blocks of the desired architecture are defined. The requirements that were
derived from reusability guidelines are the main input to the architecture. The archi-
tecture provides direction to the design and to its implementation.

4.1 Modeling approach selection
It was a requirement from the company to conduct the project by using a modeling
technique in order to improve the efficiency of the development. This requirement is
captured in NFR-7. We analyzed modeling methodologies that are the most suitable
for the nature of the project. There are several model-related methodologies that we
considered in this project. These methodologies are Model-Based Design (MBD),
Model-Driven Engineering (MDE), and Model-Based System Engineering (MBSE).
Engineers from different fields apply these methodologies for different purposes but
there is common ground in which these approaches converge. This common ground is
bounded in the scope of the MBSE approach. The explanation of the model-related
approaches is summarized in Figure 16, where a methodology explanation is written
in blue and popular tools are highlighted in orange.

MDE MBD

MBT

MBSE

Model-driven engineering
Using (domain) models for software

development for governing a
specific application domain

Model-based design
Using models for problems
associated with designing complex
control, signal processing, and
communication systems

Model-based systems engineering
Using models to capture system

knowledge including requirements,
architecture, design, and

dependencies

MATLAB/SimulinkEnterprise Architect
Dezyne

Enterprise Architect
MagicDraw
Papyrus

Figure 16 – Tools and explanation of model-related methodologies

26

In general, MDE methodology is utilized to provide domain models for a particular
software application. For this methodology, software engineers commonly use Unified
Modeling Language (UML) to define the design and architecture of the software ap-
plications. In the company, these software applications are discussed mostly in higher
levels of the Control pyramid in the industrial automation domain.

On the other hand, MBD is utilized more commonly for the purpose of designing con-
trol systems. The control systems refer to the lower levels of the Control pyramid,
which were explained in Section 2.2.1. In the company, engineers model a plant as
well as a controller for the plant using Matlab Simulink in most cases. Simulink simu-
lation helps to verify and validate plant controller behavior before it is deployed on the
hardware.

MBD and MDE converge in the MBSE scope. MBSE defines conceptual architecture,
design, and specification with rational requirements for the system rather than only
software. It also emphasizes specification rather than implementation. The output of
the MBSE life cycle can be used as the implementation guideline for MBD and MDE.

As a result of comparing methodologies’ benefits for this project trait, MBSE is se-
lected. The most important reason was that architecture, which is based on Market
Leading Concept and FM is relatively new in the company and it was not concrete
enough to proceed either with MBD or MDE. Because the project scope, which was
defined in Section 2.2.3, can be mapped to the lower level of the Control pyramid,
MBD was seriously considered as a modeling methodology to conduct the project.
However, MBSE is preferred over MBD because MBD lacks the capability to define
architecture. In addition, MBD is mostly facilitated for application-specific solutions,
meaning that one MBD solution may not be reused in other solutions. This was con-
tradicting the project’s one of the main goals to generalize family-products and com-
ponents that control functionally equivalent equipment.

Furthermore, we considered modeling language for the project. The most common
modeling language in MBSE is SysML. SysML fits the project for several reasons.

Firstly, we defined that the scope of the project is Material Handling Domain, which
is a set of multidisciplinary FMs that are responsible for moving physical items in the
system. Since the FMs of MHD are multidisciplinary, the FMs are a combination of
software components, electro-mechanical components, and mechanical components.
SysML is suitable for the project because the language is expressive to show the mul-
tidisciplinary design. Even though our aim was modeling mostly software logics for
FMs, we considered the future work extension of the project.

Secondly, the architecture, which is based on Market Leading Concept and FM, is rel-
atively new in the company. Hence, we analyzed that Vanderlande is deficient in the
architecture specification. SysML has the potential to provide clear architecture spec-
ifications in a multidisciplinary setup.

SysML is a general-purpose, graphical modeling language for system engineering ap-
plications [17]. It is extended on the basis of UML. On the one hand, UML was de-
signed to be standard for the software engineering domain. On the other hand, SysML
is designed to support the analysis, specification, design, verification, and validation
of complex systems that may include hardware, software, data components. Figure 17
shows an overview of what diagrams SysML offers and what diagrams are common in
both UML and SysML to provide a detailed specification of the system architecture.

From the SysML diagrams, requirement analysis and use case analysis are performed
using requirement and use case diagrams respectively. In the design and validation,
block definition diagram (bdd), internal block diagram (ibd), activity diagram, and se-
quence diagrams are utilized to give a more detailed specification of the suggested
architecture.

Figure 17 – SysML diagrams

Thirdly, another important trait that the SysML fits the project is the fact that industrial
standards support the object-oriented concept. These standards and how they support
the object-oriented programming (OOP) concept were explained in Section 2.2.2-II.
SysML is an essential modeling language for the OOP paradigm where modularity is
a feature.

4.2 Pattern selection
The aim of the system architecture is to give a conceptual guideline for system design.
As it is mentioned in the CAFCR framework, the Conceptual view of the system drives
the Realization view. In the opposite direction, the Realization view supports the Con-
ceptual view.

Building a modular system was the most important requirement in the project. To be
specific, software that controls the same system components in terms of system func-
tion had to be modularized as one building block in the system. Furthermore, large
system tasks had to be divided into small subtasks so the corresponding components
take the subtasks and execute their responsible system function. In this sense, we de-
cided to build an architecture of a distributed computing software system.

Another factor why we suggest the distributed computing system architecture was an
analogy of the human body. Every part of the body has a corresponding responsibility
to perform subtasks. When a human is given to carry out a task, the brain subcon-
sciously divides the task into small subtasks that should be performed by the corre-
sponding part of the body. For instance, a person is given a task to take an item from a
table and put it on another table. The brain decomposes the task into small subtasks.
Firstly, eyes are dedicated to locating the item where it is on the table. When the person
locates the item, he approaches the item by walking. The foot is dedicated to approach-
ing to the item. A hand is utilized to carry the item and to place it on another table. In
this example, all the body parts have their own responsibility to execute these distrib-
uted subtasks. In a similar way, a system can carry out the large task by decomposing
it into a sequence of subtasks and distributing the subtasks to the software modules. In
our case, these modules are Functional Modules.

A software expert’s conventional way of solving problems is to apply or reuse already
proven solutions to similar problems. This is practical and useful because the experts

28

know the solution worked in similar problems from experience. In software engineer-
ing, this solution is known as a pattern. The solution can be a pattern or collection of
patterns. Therefore, we also considered software architectural and design patterns in
the project. The selection of the appropriate pattern procedure includes the following
six steps and the procedure [10] and the procedure is also shown in Figure 18.

Step 1. Specify the problem:
Before finding the appropriate patterns for our particular problem, we needed to spec-
ify the problem precisely. This step refers to Section 2.1: Problem Analysis. As soft-
ware complexity increases, we need more modular software architecture. This archi-
tecture is used as a reference template to build different software applications or cus-
tomer-specific complex software with less effort. Therefore, we seek a solution with
modularity and (re)configurability in terms of functionality and topology, respectively.

Figure 18 – Pattern selection procedure

Step 2. Select pattern category:
As it is stated in [10], there are three pattern categories: architectural patterns, design
patterns, and idioms. An architectural pattern provides a high level, fundamental or-
ganization schema for software design. It specifies a set of subsystems, responsibilities
of the subsystems, and the relationship between them. A design pattern expresses a
scheme for specifying further insight of the subsystems, components of the subsys-
tems, and the relationship between the components. An idiom defines how to imple-
ment a specific aspect of components or relationships between them using a particular
feature of a programming language.

In the scope of the project, we aimed to contribute more on design rather than archi-
tecture and implementation because the system architecture was already defined by the
system architect team of Vanderlande. The architecture, which is based on MLC and
FMs, is explained in Section 2.2.3. Therefore, design pattern is the pattern category
that we are looking for.

Step 3. Select the problem category:
The problem category outlines types of problems in general, not considering minor
details. Each problem category has a pattern that addresses the corresponding problem
differently. Well-known problem categories are listed in the first column of Table 4.

For the modularity aspect, which was specified in FR-5, FR-6, and FR-9, we consid-
ered the problem category of Distributed system, Structural decomposition and Organ-
ization of work. We did not consider the other problem categories because they em-

phasize to solve problems for different aspects than modularity and thereby, reusabil-
ity. For instance, the interactive systems category highlights solving problems, which
occur in the interaction between users and systems.

Besides, the Adaptable system problem category was also considered for the (re)con-
figurability aspect. However, our main concern was the design pattern of modular sys-
tems rather than the architectural pattern as we mentioned in step 2. The high-level
system architecture is outlined in Figure 13. This project’s purpose is to specify this
architecture in more detail with the design proposal of MHD Functional Modules. We
focused more on how to modularize the Vanderlande system software with regards to
system functions. Therefore, we decided to examine ‘structural decomposition’ and
‘organization of work’ problem categories further. These categories give design pat-
terns that we are looking for.

Table 4 – Pattern classification schema
Problem category Architectural

patterns
Design patterns Idioms

From Mud to Structure Layers
Pipes and Filters
Blackboard

Distributed systems Broker
Pipes and Filters
Microkernel

Interactive systems MVC
PAC

Adaptable systems Microkernel
Reflection

Structural decomposi-
tion

 Whole-Part

Organization of work Master-Slave
Access control Proxy
Management Command Processor

View Handler

Communication Publisher-Subscriber
Forwarder-Receiver
Client-Dispatcher-
Server

Resource Handling Counted
Pointer

Step 4. Compare the problem description:
In the selected problem category, each pattern addresses a specific part of our problem.
In this step, we try to find the appropriate pattern that addresses the modularity aspect
of our problem. Our main goal is to split a task into subtasks so FMs execute corre-
sponding subtasks. The design patterns of ‘structural decomposition’ and ‘organization
of work’ problem categories are Whole-Part and Master-Slave patterns, respectively.

The Whole-Part design pattern, Figure 19a, helps to execute a task by dividing a com-
ponent of the system into multiple dividend components that perform the task uni-
formly. In other words, the aggregate component, the Whole, allows a user to interact
with smaller components, Parts, and composition of components uniformly. Direct in-
teraction between a user and a smaller component is not possible. For instance, when
a user calls service1 from the Whole, corresponding services, namely serviceA1 and
serviceN1, will be called and executed by dividend components PartA and PartN re-
spectively. ServiceA1 and serviceN1 are versions of service1 of PartA and PartN re-
spectively.

On the other hand, the Master-slave design pattern, Figure 19b, divides work into iden-
tical subtasks that are further processed by individual slaves. The master splits a task

30

into subtasks and delegates them to the corresponding slaves. The whole service is
calculated using the results from each slave.

Figure 19 – a. Whole-part b. Master-slave design pattern

From the design pattern descriptions above, we can conclude that Master-slave is more
satisfactory than the Whole-part design pattern for our problem description. The main
reason why Master-slave is preferred over Whole-part pattern is that Whole-part em-
phasizes component decomposition rather than service decomposition. However, in
the Master-slave pattern, service can be decomposed into sub-services and Master co-
ordinates slaves to execute their own distinct sub-services. These sub-services are per-
formed by different FMs, which are explained with FR-9 and its derived requirements
FR-11, FR-12, FR-13, and FM-14.

Step 5 Compare the benefits and liabilities:
In this step, selected patterns are compared with their advantages. Patterns that have
more advantages to solve the problem and whose liabilities are of least concern are
selected in this step. The benefits and liabilities of considered two patterns are outlined
in Table 5.

Table 5 – Benefits and liabilities of Master-slave and Whole-part patterns
Design patterns Benefit Liability
Master-slave Extensibility and exchangeability

If we introduce abstract Slave, it
will be easy to extend the software
with new slaves without changing
Master.

Machine dependency
The master-slave pattern
strongly depends on the
architecture of the ma-
chine on which the soft-
ware is deployed.

Separation of concern
Master splits big tasks into subtask
so slaves perform distinct subtask
individually.

Hard to implement
It is often hard to imple-
ment the Master-slave pat-
tern because of parallel
computing.

Efficiency
The master-slave pattern supports
parallel computation which makes
the software more efficient.

Portability
Because of machine de-
pendency, it is difficult to
transfer software that was
running in one machine to
another machine.

Reusability
This pattern allows the reusability
of slaves in different applications
of software.

Distinct subtasks by slaves
Master treats slaves differently de-
pending on distinct subtasks. Also
master chooses which slave should
be executed in what order.

Whole-part

Changeability of parts
Parts are modifiable without influ-
encing other Parts and a client in
the implementation because
Whole encapsulates Parts thereby
it conceals Parts from the client.

The complexity of decom-
position of parts
The appropriate composi-
tion of Whole from Parts
is difficult especially
when the bottom-up ap-
proach is chosen.

Separation of concern
It is easy to implement complex
tasks with this pattern because the
complex task can be divided into
simple task thereby Parts imple-
ment these subtasks. Each part has
its own concern of subtask.

Lower efficiency through
indirection
Since the client cannot ac-
cess Parts directly, it intro-
duces inefficiency. This
may cause additional run-
time compared to mono-
lithic software.

Reusability
The pattern supports two kinds of
reusability aspects. The first is that
Parts can be reused in other aggre-
gate objects. The second is that
since Whole encapsulates Parts, it
restricts the client to create Parts
all over the software. Thus, the re-
usability of Whole is considered in
this case.

Uniform execution by Parts
When a client calls a service,
Whole calls corresponding sub-
services from Parts uniformly
which is efficient when Whole is
complex.

Step 6 Select the variant that best implements the solution to your design problem.
The most important aspect we considered in this project is modularity. Modularity al-
ways comes along with aspects of separation of concern and reusability. Both of the
considered patterns have these benefits. Both of the patterns are also appropriate for
(re)configuration of the software. It would be efficient if the (re)configuration is per-
formed from the central component of the software. In some researches, [18] and [19],
it is also recommended to use Master-Slave Pattern or centralized control pattern for
the (re)configuration.

Although both of the patterns have common traits that fit the reusability of modules
and reusability with configuration, Master-Slave pattern fits more to the design be-
cause there is a special characteristic that the system should deliver. The characteristic
is that systems functions are different. Thus, the components that are performing these
functions should be treated differently in the system. In the whole-part pattern, these
functionalities are supposed to be executed uniformly meaning that these functionali-
ties are different versions of one service. On the other hand, the Master-slave pattern
can make this distinction of functionality with different slaves. Master treats slaves
differently. Considering these characteristics, Master-slave is preferred over Whole-
part. ■

5. System Design

In this chapter, the selected design pattern, Master-slave, is realized using SysML dia-
grams to show the behavior and the structure of the proposed design.

System design
The (low-level) system design is depicted in the Realization view of the CAFCR
framework. The architectural concepts that are described in the Conceptual view (con-
sidered the high-level design) give abstract guidelines to the design process and change
very slowly across generations of products. For each generation these concepts are
detailed and realized, possibly in different ways and using more recent technology, in
the Realization view (considered the low-level design), addressing the particular prob-
lem of the project. Hence, as opposed to the Conceptual view, the Realization view can
evolve very fast via frequent changes made to the design, for example, in order to catch
up with new requirements of customers and with new technologies.

5.1 Structural model
The block definition diagram and the internal block diagram of SysML are utilized to
show the hierarchy of the proposed design. We identified Transport, Sense, Merge and
Divert FMs that control functionally equivalent corresponding equipment of the sys-
tem. These FMs are entities that execute a system function and are derived from the
most fundamental operations in the system. From the Master-slave design pattern per-
spective, the FMs are slaves. The way the FMs interact with each other should be or-
chestrated by another entity that has the master role in the pattern. Therefore, we iden-
tified another entity, Material Handling Domain Manager, as the master. The overall
responsibilities of the FMs and other MHD entities are outlined in Table 6.

Table 6 – Responsibilities of MHD entities
Entity Responsibility explanation
MHD Manager MHD Manager has the following responsibilities as a

Master.
• To orchestrate FMs. This is the most im-

portant responsibility of the MHD Manager.
• To obtain MHU information from Sense FM

through Report interface. Based on this infor-
mation, the MHD Manager decides which
FM to execute next.

• To command executing FMs, namely
Transport FM, Divert FM, and Merge FM, to
perform their tasks through the Command in-
terface.

• To retrieve MHU destination or routing in-
formation from the Process domain and to in-
corporate it with the MHU database.

• To create, read, update, and delete the MHU
database.

• To map layout information to FMs. When
hardware infrastructure reconfiguration takes

34

place, new hardware infrastructure infor-
mation is retrieved through the Configuration
interface. This information is a map of sys-
tem layout including each equipment’s start
position, stop position, upstream and down-
stream device.

Transport FM The Transport FM controls all kinds of transporting
equipment in the system. The equipment includes car-
rier transport and various conveyors, namely roller
conveyor, belt conveyor, and wheel conveyor. The
AGV transport is out of scope in this project but in the
future, architectural and design solutions should be
suggested as an extension of Transport FM. From the
system perspective, the above-mentioned various
equipment performs the same in terms of functional-
ity.

Sense FM The Sense FM controls all kinds of sensor equipment.
These various pieces of equipment include barcode
scanners, photoelectric cells (PEC), weighing scales,
and dimensional measurement sensors. From the sys-
tem perspective, these devices have the same function-
ality to determine MHU in many different ways by de-
fining the location, weight, dimension, and orientation
of MHU.

Divert FM The Divert FM controls all the kinds of equipment that
divide one transport flow into several.

Merge FM The Merge FM controls all kinds of equipment that
join two or more transport flows into one.

MHU This is a database that keeps track of all attributes of
every physical MHU in the system.

The main idea of the design that conforms to the Master-slave pattern is that a big task
of transporting a physical MHU throughout the whole system infrastructure can be
achieved by splitting the task into small subtasks. The small subtasks are executed by
corresponding FMs. The overall hierarchical system design that combines the above-
mentioned responsibilities of FMs with the Master-slave design pattern is depicted in
Figure 20.

Figure 20 – Structure of the proposed design

To specify more details of the MHD Manager responsibility, an internal block diagram
is given in Figure 21 where the property blocks and interfaces are shown. Here, a prop-
erty block is a part of the MHD Manager that executes corresponding calculations and
operations. Each property block executes a task, which refers to the different respon-
sibilities of the MHD Manager.

One of the high priority project requirements is to specify the reconfiguration mecha-
nism of the system. The Mapper property block of the MHU Manager plays an im-
portant role for reconfiguration. Layout information of the reconfiguration process is
retrieved by Mapper through the Configuration interface. This information includes a
number of each FM as a parameter, their starting positions, end positions, and IDs of
upstream and downstream devices. In short, this information is a map of system layout.
Mapper allocates these parameters to each instance of FMs. All FMs have set_FM_ID
operation, which is used to configure unique identifiers to all FMs. When the recon-
figuration is performed, the MHU Manager knows all FMs with their unique identifi-
cation. This identification defines the execution order of coinciding physical compo-
nents of FMs.

Another responsibility of the MHD Manager is to provide a routing destination to cor-
responding FMs. This responsibility is crucial for sorting MHUs. The routing path or
destination of a MHU is determined by the Process domain. This information is re-
quested and retrieved by the MHD Manager through the Interdomain interface. Prop-
erty block Router processes directional information and passes the result to the FM
Selector. The Mapper property block maps whole system components to their corre-
sponding FMs. By cooperating with Mapper, FM Selector then assigns which FM
should be executed in order to guide the MHU to its destination.

Figure 21 – Internal block diagram of MHD Manager

5.2 Behavioral model
The sequence diagrams and activity diagrams are utilized to show the behavior of the
proposed design of the system. We chose a typical system layout to show interactions
between MHD FMs and the other MHD entities.

Scenario 1 - Transporting one MHU on one conveyor belt:
This scenario is depicted in Figure 22. Scanner1 is an instance of a Sense FM and it
controls the Barcode Scanner component in the layout shown in Figure 22a. Similarly,
a Transport FM called ’TFM1’, a MHD Manager called ‘Manager’, and a MHU data-
base entity called ‘MHU1’ are also instantiated in the sequence diagram given in Fig-
ure 22b, showing the interactions between these entities. TFM1 controls the ‘Transport

1’ conveyor. MHU1 stores data of the physical MHUs. Note that in this case there is
only one MHU. The MHD Manager instance ‘Manager’ orchestrates the two FMs.
Step by step explanations of the interactions, Figure 22b, are listed below.

• The task of conveying the physical MHU from the beginning of the conveyor
to the end is triggered by an interrupt of physical MHU. This interrupt is
firstly received and handled by Scanner1.

• Scanner1 acquires the unique identification (UUID) and the location of the
physical MHU and passes it to the MHD Manager.

• The MHD Manager retrieves the MHU destination from the MHU1 database
block. It is assumed that MHU1 was already created by the MHD Manager
when the physical MHU enters the system the first time. In other words, the
MHD Manager already registered the MHU by creating MHU1 and set its
destination afterward.

• Another assumption is that MHU updates its current location virtually with
the assistance of Track FM. The Track FM is responsible to virtually estimate
the location of physical MHU within the system. Track FM is not specified in
the report because it is out of scope in this project. However, this current lo-
cation estimation is corrected by the updateInfo() operation.

Barcode

Scanner 1

Transport 1

a.

b.

Figure 22 – a. System layout b. Corresponding sequence diagram of one MHU being
transported on one conveyor

• findNextFMtoExecute() operation is dedicated to finding which FM instance

to execute next. The decision is based on the current location and destination
of MHU. Thus, the operation takes these parameters as inputs.

38

• When the MHD manager knows which FM to execute, it activates the corre-
sponding FM instance. In our scenario, this is TFM1.

• TFM1 calculates how many meters of distance it should run. Afterward, it
transports MHU for the calculated distance. In the end, TFM1 deactivates it-
self.

Scenario 2 - Transporting one MHU on two conveyor belts:
Figure 23a shows an additional layout where one more conveyor belt ‘Transport 2’ and
one Photo Electric Cell (PEC) called PEC1 (an instance of the Sense FM) are added to
the layout of Figure 22a. A PEC is a light reflective sensor that is used for detecting
MHUs on the conveyor belt.

In the corresponding sequence diagram, Figure 23b, the same interactions between
MHD FMs and other MHD entities, as it was illustrated in Figure 22b, take place for
the first conveyor belt part. In order to avoid repetition, these interactions are shown
as a yellow reference diagram block in the diagram, Figure 23b, while the additional
interactions of the MHD Manager are shown explicitly.

In terms of modularity and reusability of FMs, interactions between instances of FMs
and the MHD Manager are identical in Figure 22b and Figure 23b, meaning that the
same FMs are reusable in both layouts. In other words, the same reference interaction
diagram can be reused twice as depicted in Figure 23c.

Barcode
Scanner 1

Transport 1 Transport 2

PEC1

a.

b.

c.

Figure 23 – a. System layout b. Corresponding sequence diagram of one MHU being
transported on two conveyor belts c. Representation of interactions reusability

Scenario 3 - Sorting:
The sorting scenario is given with system layout and interactions between FMs and
other MHD entities in Figure 24. Figure 24a shows additional system components
where four diverting devices ‘Shoe 1-4’ and one barcode scanner called ‘Barcode
Scanner 2’ are added to the layout of Figure 23aFigure 22.

The corresponding sequence diagram is based on the interactions of Scenario 2. There-
fore, we also reused the sequence diagram of Scenario 2 as a reference diagram block
in Figure 24b. Since components, namely Barcode Scanner 2 and Shoe 1-4, are added
to the system layout, the corresponding FMs and interactions between FMs and other
MHD entities are shown in Figure 24the diagram. The scanner is controlled by Scan-
ner2 (instance of Sense FM) and shoes are controlled by Shoe1-4 (instances of Divert
FM). However, only the interaction of Shoe2 is depicted in the diagram because the
scenario shows the sorting of only one physical MHU. This is realized by the operation
of findNextFMtoExecute in which the Manager delegates the diverting task to the
Shoe2. This operation takes location and destination of MHU as inputs. At the end of
the scenario, the Manager activates Shoe2 to divert the physical MHU.

Transport 1

PEC1 Barcode
Scanner 2

Barcode
Scanner 1

Shoe2 Shoe4Shoe3Shoe1

a.

40

b.

Figure 24 – Sorting scenario layout and interactions

In this chapter, we showed how the Master-slave pattern can be utilized in the modular
system software. The design concept is explained with the structural and behavioral
models. On one hand, the structural model captures FMs and other MHD entities with
their relations. On the other hand, behavioral models showed the interaction between
them by taking three fundamental scenarios of the system. Because the scenarios pre-
sent typical system functionalities of transporting, sensing, and sorting, any modular
system with these functionalities can reference to the proposed Master-slave design in
order to implement it.

6. Verification and Validation

This chapter presents how verification and validation processes were carried out for
the design. Several approaches, namely model reviewing, sequence diagram simula-
tion, and conceptual simulation, were applied for this stage of the project. As a valida-
tion, we facilitated a conceptual simulation that shows how the system should behave
with regards to the modularity and configurability, and analyzed its behavior.

6.1 Verification
Verification ensures the proposed design models are correctly built. The correctness of
the design was verified by inspecting and reviewing structural and behavioral models
of the proposed design with the support of domain experts, supervisors, and Enterprise
Architect simulation execution.

Both the requirements and system design were verified together with project stake-
holders on a weekly basis. In doing this, behavioral diagrams namely, sequence and
activity diagrams, were reviewed and inspected. During the inspection, the correctness
of the behavioral logic was examined. Besides, the consistency of operations and cor-
responding parameters in MHD entities and FMs is kept both in the behavioral dia-
grams and structural diagrams.

Throughout the project, we used Enterprise Architect (EA) to design the modular sys-
tem software for its advantage of availability to the trainee and traceability from re-
quirements to the design. In addition to the availability and traceability, EA provides
sequence and activity diagram simulation functionality. The simulation helps to exam-
ine use-case scenarios by going through a series of message exchanges between in-
stances of MHD entities and FMs. This examination is executed step by step in both
sequence and activity diagrams.

6.2 Validation
Validation ensures the built models satisfy the project requirement. Our validation of
the design was carried out through the implementation of animated conceptual simu-
lation, analyzing its behavior and checking the correctness of the behavioral design
models by comparing them with the functional requirements of the customer.

6.2.1. Simulation Environment
As a simulation tool, Anylogic was utilized for its advantage of the short learning curve
and built-in libraries, especially the Material Handling library. The tool helped to vis-
ualize the running systems that are modeled using proposed design concepts. We con-
structed the simulation setup, seen in Figure 25, using the built-in blocks of Anylogic
[20]. For validation, it is necessary to construct the simulation with the conceptual FMs
of the proposed design. Therefore, we facilitated Anylogic blocks as conceptual FMs
of the proposed design. In the simulation, there are two system constructional panes:

• One is a representation of the system topology in which we built whole hard-
ware infrastructure using Anylogic’s space markup elements including Con-
veyor, Turntable, and Position on conveyor.

42

• The other constructional section of the simulation is system logic. System
logic is built using Anylogic’s Material Handling library blocks such as Con-
vey, Select Output, Source, and Sink.

In the simulation, every Material Handling library block controls the corresponding
equipment in the system infrastructure. In the system logic pane, the purple-colored
blocks are the Convey blocks that control the corresponding conveyor in the system
infrastructure pane. These Convey blocks are conceptual representations of the
Transport FM, named TFMx. With the Transport FM, we can control various trans-
porting devices. As an example of these various transporting devices, roller conveyors
and belt conveyors are shown in the simulation. For instance, the TFM5 block controls
the purple-colored conveyor path in the system infrastructure. Similarly, the diamond-
shaped blocks are the Select Output blocks that control the corresponding Turntable to
sort physical MHUs. These blocks are conceptual representations of Divert FM of our
proposed design. As a conceptual representation of the Sense FM, a space markup el-
ement ‘Position on conveyor’ is shown in the system infrastructure pane, which is in-
tegrated as a piece of code in the Select Output block.

In the simulation, it is assumed that the MHD manager puts all these FMs in order and
gives commands to the FMs. Thus, MHD manager behavior is integrated with other
FMs behavior in the simulation. Table 7 shows the overall set of logic blocks and the
corresponding infrastructure elements as representations of Functional Modules in the
simulation environment.

Table 7 – Explanation of FM representations in the simulation
Functional
Modules

Logic representation in the
simulation

Infrastructure representation in the
simulation

Transport
Functional
Module

Convey block:

Convey block is a logical rep-
resentation of the TFM and it
controls different kinds of
transporting devices such as
belt conveyor and roller con-
veyor in the system infrastruc-
ture of the simulation.

Belt conveyor:

Roller conveyor:

These conveyors are simulation
representations of physical convey-
ors.

Divert
Functional
Module

Select Output block:

Select Output block is a logical
representation of the Divert
FM and it controls various sort-
ing devices. In the simulation it
controls turntable.

Turntable:

Turntable is a simulation represen-
tation of physical sorting devices in
the system.

Sense
Functional
Module

Integrated with the Select Out-
put block as a code

Position on conveyor:

The simulation complies with the proposed design. We can see the possibility of sim-
ulating modularized template building blocks can be utilized for controlling corre-
sponding equipment in this example simulation. Anylogic also provides 3D illustration
of the simulation, which is depicted in Figure 26.

Figure 25 – Example simulation a. System infrastructure b. System logic

Figure 26 – 3D illustration of the example simulation shows the expected behavior
of the system.

The above example simulation of the system is built from modular building blocks.
With the simulation, we were able to illustrate the behaviors of Transport FM, Sense
FM and Divert FM on the corresponding simulation blocks of Convey, Select Output,
and Position on conveyor, respectively. In the example simulation, the expected be-
havior of the Convey block is to transport a MHU to its desired destination. This be-
havior is noted as A in the corresponding sequence diagram. The behavior of the Po-
sition on conveyor is to identify MHU – behavior B. With the use of the Position on
conveyor, the Select Output block directs a MHU to the next conveyor on the desired
source-to-destination route. For instance, DivertFM1, in Figure 25b, is expected to di-
rect a MHU to a secondary transporting route when it is activated – behavior C. Here,

44

the main route and the secondary route of the conveyor network are represented by the
roller conveyor and the belt conveyor, respectively. Additionally, TFM2 controls the
main route and TFM4 controls the secondary route.

6.2.2. Validation Process
From the simulation, we could visualize expected system behavior. The expected be-
havior is validated with actual behavior models of the proposed design, which is pre-
sented with a sequence diagram in Figure 27. In the diagram, the above-mentioned
behaviors are highlighted in the red (A), orange (B), and green(C) boxes. The behav-
iors A, B, C are mapped to the FR-11, 12, 13, respectively. The reasoning of the MHU
flow division depends on the destination of the MHUs. If the destination of the MHU
is station1, DivertFM1 is activated. Afterward, TFM2 controls the secondary route to
take the MHU to station 1. On the other hand, if the destination of the MHU is station
2, the system continues transporting the MHU to station 2 via TFM4.

Figure 27 – Actual system behavior of the example simulation

From the simulation, we see the expected behavior of the system. From the sequence
diagram, we see the actual behavior of the system. The resemblance of the two behav-
iors shows the validity of the project design.

For the configurability requirement, FR-2, we also used Anylogic simulation. The sim-
ulation for configurable topology is depicted in Figure 28. In order to validate the con-
figurability concept, we need to show that the same logical component of the modular

B

A

A

C

system works for different system layouts. The previous simulation layout, Figure 25a,
is extended with an additional sorting path to the first turntable. This turntable is con-
trolled by DivertFM1 in both simulations but in Figure 28, it is reconfigured for the
additional sorting path. In short, the same DivertFM1 is used both in Figure 25 and
Figure 28. 3D view of the reconfigured simulation is captured in Figure 28b. The more
advanced simulation for configurability is shown in Section 10.4.

a.

b.

Figure 28 – Conceptual simulation of reconfigured DivertFM1

The corresponding behavior diagram of the reconfigured DivertFM1 simulation is il-
lustrated in Figure 29. The sequence diagram complies with the proposed design’s be-
havior models. From the figure, we can see that divert functionality operations are
identical in two cases of sorting a MHU to station 1 and station 4. This validates the
idea that the Divert FM can be reconfigurable with parameters of how many sorting
paths its hardware is connected to. In short, Divert FM can be reused based on its
configuration.

46

Figure 29 – Configurable Divert FM behavior

Considering the simulation, the result of validation in accordance with the requirement
is shown in Table 8.

Table 8 – Project requirement validation
Requirement ID Priority Status Explanation
FR-11,
FR-12,
FR-13

Must Designed and FRs
are validated with
conceptual simula-
tion.

These FRs are derived from
the FR-9.

C

B

A

A

A

C

FR-2 Must Designed and vali-
dated the concept
with simulation.

FR-5,
FR-6, NFR-8,
FR-9

Must Accomplished FR-9 is partially accom-
plished because one of the
derived requirement, FR-
14, is not accomplished due
to the time constraint of the
project.

NFR-1, NFR-4,
NFR-7

Should Designed

FR-14, FR-15 Should Not accomplished These FRs can be achieved
by specifying the proposed
design further in the future.

NFR-3, FR-10 Optional Not accomplished Optional requirements can
be accomplished extending
on the project design in the
future work.

7. Conclusions

This chapter summarizes the output of the project by overviewing what has been done
in order to approach the main goals. The recommendation for the company is followed
at the end of the chapter.

7.1 Summary
The project was conducted to investigate modular and configurable system software
architecture to address inefficiency in the development of complex system software
within the company. The main output of the project is to propose modular and config-
urable reference architecture that complies with the company’s new system architec-
ture. To obtain the desired architecture rationally, we facilitated the CAFCR frame-
work, which gives systematic architectural decision guidelines to the project. The
CAFCR views are mapped to the problem analysis, domain analysis, project require-
ments, architectural decisions, and system design, respectively.

In the problem analysis, we observed frequently emerging above mentioned problems
from a customer’s point of view. Troubles that the company’s customers and software
developers encounter regularly is discussed in great detail in the context of the project.
In the industrial automation domain, the example of how modularity helps to address
above mentioned problems was reviewed with the modern technology of IIoT and
CPS. These trend examples inspired conceptual guidelines to realize the full potential
of reusable software. In addition to the reusability of the software, modeling increases
efficiency. Hence, modeling related domain standards are explained afterward. Fur-
thermore, Chapter 2 explains that the company started realizing the reusability guide-
line by producing the new system architecture. The scope of the project is defined
within this new architecture. In short, crucial questions of the project, namely why,
how, what, are analyzed and answered which then enable us to realize the project re-
quirements.

All the analysis and scope of the project provides a direction of requirement elicitation.
The elicitation started with analyzing the most fundamental user goals and system
functions within the project scope. Moreover, non-functional and functional require-
ments are defined in Chapter 3. We assigned the higher priority to the requirements
which are derived from the system functions because the most fundamental user goals
of the system are achieved with these functions. Furthermore, these requirements be-
came references for how to model the systems modularly.

Considering all the requirements, we investigated patterns that satisfy modular and
configurable software architecture. All the rationales why we chose the Master-slave
pattern is stated in Chapter 4. The pattern clarifies the work organization of the mod-
ules. In addition, one of the most important and difficult decisions we made was the
modeling approach selection in which we chose MBSE over MBD. We realized that
the MBSE approach benefits the company in the long term because it helps to gener-
alize the company systems in the multidisciplinary view. Moreover, we extended the
explanation of modeling approach decisions with modeling language that complies
with the industrial standards, which were described in the domain analysis.

In Chapter 5, the selected pattern is facilitated in the design process of the MHD, which
is the scope of the project. The project’s most crucial contribution to the company,

50

MHD design, is given in forms of structural and behavioral models. The structural
models give an overview of the software entities and interfaces between them. The
behavioral models give detailed interaction between the entities through the interfaces.
Due to the time limitations and the lack of domain knowledge, some requirements were
not captured in the design. However, the proposed design is definitely extensible be-
cause of its genericity.

Furthermore, we explained the verification and conceptual validation process. The val-
idation is performed by comparing the proposed design sequence diagrams with cor-
responding Anylogic simulations. The validation led to draw the conclusion of how
many requirements are met with the proposed design. As has been noted, we proposed
a modular reference architecture that we produced based on whole lifecycle processes
of analysis, requirements elicitation, architectural decisions, design and validation ac-
tivities. All activities contributed to the project with fruitful insights.

7.2 Recommendations
• I recommend the company to apply Model-Based System Engineering methodol-

ogy before implementing a concept with either manual coding or other modeling
approaches. MBSE enables system and software developers to capture the concept
with high-level architecture. Thanks to its expressive and multidisciplinary mod-
eling language, SysML, it will be easier for developers to implement the architec-
ture and design. This approach also helps to link architects’ works to the develop-
ers’ work.

• I also recommend the company to continue this project because of its value of
connection between architect’s and developers’ work. Future work can include
followings:

o Investigate MBD realization of the proposed design.
o Continue the proposed design to satisfy unaccomplished requirements.■

8. Project Management

To carry out the project successfully, project management was considered another
main factor besides the lifecycle of the model development process in the project. This
chapter defines project management relevant activities. The activities include manage-
rial tasks including stakeholder management, project planning for time management,
and risk management for mitigation planning of project uncertainty.

8.1 Stakeholder Analysis and Management
This section identifies project stakeholders with their detailed concerns and involve-
ments in the project. Since the project was initiated based on the cooperation of
Vanderlande and the Eindhoven University of Technology, the stakeholders belong to
the two parties with their distinct concerns.
At the end of the section, the communication plan of the project is explained as a result
of the stakeholder matrix.

8.1.1. Stakeholder analysis
In the analysis section, all stakeholders are examined within the criteria of their role,
interest, acceptance criteria and involvement to give more insight into their concerns
in the project.

To draw an overview of the involvement of the company side, stakeholders influenced
the project in terms of requirements, knowledge, and expectation.
This project is a realization of the development process in the system architecting de-
partment to adapt to Industry 4.0. Regarding this development process, Vanderlande
commenced several projects such as Next Level Automation (NLA). This PDEng de-
sign project is a sub-project of the development process. Therefore, stakeholders from
the NLA project played an important role in the project to give domain experts’
knowledge.

Table 9 – Stakeholder analysis from company side
Stakeholder Supervisor from Vanderlande
Responsibility 1. Monitoring the project progress

2. Giving feedback on the design
3. Referring the trainee to the domain experts
4. Evaluating the trainee
5. Reviewing the report

Representative Lennart Swartjes
Interests 1. Model-Based design in systems architecting

2. Promoting Model-Based approach
Acceptance criteria 1. Well thought design

2. Well written report with detailed rationales
Involvement 1. Continuous participation throughout the project

2. Weekly meeting
3. Ad-hoc meeting
4. PSG meeting

52

Stakeholders Domain experts in the company
Responsibility 1. Transferring domain knowledge to the trainee

2. Giving updates of subproject progress
Representatives Marc van Kerkhof, Bart Vorstemans
Interest Reflection of NLA in Model-Based approach
Acceptance criteria Well thought design
Involvement 1. Weekly meeting with van Kerkhof while the company

supervisor was on his holiday
2. Ad-hoc meeting
3. Skype consulting

From the university’s point of view, stakeholders’ concerns are related to the project
processes that must meet certain academic standards. The processes include project
management, design, implementation, verification, and validation.

Table 10 – Stakeholder analysis from the university side
Stakeholder A supervisor from TU/e
Responsibility 1. Monitoring the project progress

2. Giving feedback on project management and de-
sign

3. Guiding the trainee for successful project comple-
tion

4. Evaluating the trainee
5. Reviewing the report

Representative Tanir Ozcelebi
Interests 1. The technical report

2. The smooth progress of the project
Acceptance criteria 1. Report monthly project progress

2. Well-written report that meets the program stand-
ards

Involvement 1. PSG meeting
2. Monthly meeting

Stakeholder The program director from TU/e
Responsibility 1. Provide information and guidance about carrying out the

project
2. Evaluate the trainee

Representative Yanja Dajsuren
Interests 1. Good cooperation between the company and the univer-

sity
2. Successful completion of the project, thereby successful

graduation of the trainee
Acceptance criteria 1. Well-written report that meets the program standards

2. Personal and professional development of the trainee
based on evaluation

Involvement Occasional PSG meetings

Stakeholder PDEng trainee
Responsibility 1. Managing the project

2. Designing a solution that satisfies requirements
3. Verifying and validating the design
4. Writing the report

Representative Ganduulga Gankhuyag
Interests 1. Successful completion of the project

2. Learning MBSE
3. Learning the domain
4. Graduation

Acceptance criteria 1. A timely report of the deliverables
2. Sufficient quality of the deliverables

Involvement Continuous participation throughout the project

8.1.2. Stakeholder management
In order to manage the stakeholders of the project, it is crucial to carry out a stakeholder
analysis. In the previous section, the analysis of every stakeholder is shown separately
but in detail. In this section, the stakeholders are allocated in the stakeholder analysis
map based on their interests and power. The map is depicted in Figure 4.

Figure 30 – Stakeholder map

The map helps the trainee to prioritize the stakeholders further to figure out what strat-
egy the trainee should use for communication with every stakeholder and how much
attention every stakeholder needs. Besides, the map is also beneficial for identifying
potential risks and misunderstanding. The trainee can adjust his or her influence on the
stakeholders based on the map. There are four communication strategies that are over-
viewed in Figure 5 [21].

Figure 31 – Stakeholder management strategies on the map

8.2 Work-Breakdown Structure (WBS)
This section describes how the whole project work was structured. The project work
was divided into four categories of tasks: Project management, Analysis, Design and
Verification, and Documentation. Detailed activities of the work-breakdown are illus-
trated in Figure 32.

Ganduulga

Lennart

Bart van Dartel

Marc van Kerkhof

Bart Vorstemans

Yanja
Tanir

Colleague
0

2

4

6

8

10

0 2 4 6 8 10

Po
w

er

Interest

Stakeholer map

54

MBSE design of Functional Modules for Configurable topology

Project management Analysis Design and
Verification Documentation

Project planning

Risk
management

Communication
planning

Stakeholder
analysis

Problem analysis

Domain analysis

Behavioral
design of FMs

Structural
design of FMs

Verification

Report

Final
presentation

Figure 32 – Work-Breakdown structure of the project

8.3 Project Planning and Scheduling
The project planning was performed in accordance with the work-breakdown and its
detailed activities. We used a Gantt chart to show project planning in Figure 33. The
initial plan was adapted flexibly during the different periods of time in the project. The
planning modification was conducted with regard to risk management analysis and risk
mitigation activities.

A few tasks are inactivated as a modification to the initial planning in the figure below.
These tasks refer to system requirements with a priority of Optional label. Optional
requirements provide extra value to the project but these requirements are not manda-
tory to carry out the project successfully.

Figure 33 – Project planning

8.4 Risk analysis
This section indicates project uncertainties that may decelerate or accelerate the project
progress. Overall risk analysis is depicted in Figure 34. The analysis was conducted in
three steps: Risk identification, Risk assessment, and Risk response.

Figure 34 – Risk management plan

In the first step, we identified the risks and defined each risk with detailed descriptions.
This step required the ability to realize and discover probable uncertainty during the
project. In addition, every risk was defined with several activities that can be influ-
enced significantly by the corresponding risk.

In the second step, risks are assessed with two criteria: probability and consequence.
Probability indicates how certain the risk occurs. On the other hand, consequence de-
scribes the impact of the risk. Each criterion has rank points from1 to 5 in order to
assess the risk. Multiplication of the two criteria is severity, which is the overall risk
priority that the trainee considered. Besides, there are two types of risks:

• Threat which slows down the project progress. The rank point ranges from 1
to 5.

• Opportunity which accelerates the project progress. The rank point ranges
from -1 to -5.

In the last step, we described response activities of the risk when the defined risk oc-
curs. ■

Risk Name Detailed Description Work Package or Activity
Related to Risk

Pr
ob

ab
ili

ty
 (1

 -
5)

C
on

se
qu

en
ce

 (1
-5

)

Se
ve

rit
y

(P
rio

rit
y)

M
os

t L
ik

el
y

(n
o.

 o
f

w
ee

ks
)

R
es

po
ns

e
C

at
eg

or
y

Response

R
is

k
O

w
ne

r

Contingency Plan

Company supervisor's
vacation/absence

There is small possibility that
makes the project progress slow
when the company supervisor
takes holiday or days off.

- Weekly meetings
- PSG meeting
 - Urgent issue feedback
discussion

5 3 15 4 weeks

M
iti

ga
te

- Arrange and define all
the task that should be
done during the absence
of the supervisor
- Transfer his duty to
someone who is highly
relevant to the project

- Duulga
- Lennart

Project manager takes
his holiday

University supervisor's
vacation/absence

This may decreace the project
progress slow. (barely noticible)

- Monthly meeting
- PSG meeting 1 3 3 2 weeks

Tr
an

sf
er - The supervisor may

transfer his duty to other
people, such as Yanja

-Tanir
-Duulga

PM communicate with
the supervisor via email.

Trainee's absence - PM takes his vacation
- PM takes his father's day all activities 5 3 15

 vacation :
20 days
father's

day: 4 or 5
days

Ac
ce

pt

Plan all milestones concrete Duulga work from home

Premature termination of
project

The project can be terminated
because of following causes:
- Unexpected loss of valueble
resource
- Technical snag

all activities 1 5 5 NA

A
vo

id

Communicate with the cust - Duulga
- Lennart

Vanderlande training
New employee's training will help
the PM to understand basic
system concepts.

design and analysis -5 2 -10 1 week

E
xp

lo
it - Ask questions during the

training
- Take a note
- Talk to new people

Duulga

Requirement change
In the middle of the project, change
in requirements may affect the
result of the project

design 2 -3 -6 NA

En
ha

nc
e

Adapt the changes faster Duulga

Modeling tool change

SysML is the modeling tool that we
agreed upon but there is possibility
to change the tool when it comes
to implementation.

design, implementation 2 4 8 NA

M
iti

ga
te

Show how SysML is
useful for modeling.

Duulga,
Lennart

Outsourcing students

As PDEng program offered there is
possibility to include some
bachelor students in the project
during the implementation phase if
project main stakeholders
negotiate on it.

implementation 2 2 4 10 weeks

Ac
ce

pt -Supervise students
- Discuss about the
design

Duulga
Since the impact is low,
no need of contingency

plan

No implementation time Because of architecture design, no
implementation time is left.

activities related to the
implementation 3 5 15 NA

Tr
an

sf
er Give the implementation to

bachelor students as a
task

Duulga

Negotiate with customer
to deliver more on to the
architecture and design

of the solution.

Implementation does not
work

There is possibility that the
implementation does not work as
we wanted it to work.

design, implementation 3 4 12 NA

M
iti

ga
te - Plan the implentation

- Manage time for both the
design and
implementation

Duulga

Scope definition

- Scope down the project
- Misunderstanding scope
- Unable to define scope
concretely

all activities 3 -4 -12 NA

E
xp

lo
it

Communicate with the
customers Duulga

Unable to stick to the
plan

Because of multitasking and
idealistic project planning, there is
possibility of being late from
original plan.

planning, implementation,
report 2 3 6 NA

M
iti

ga
te - Focus on one task

- Replan a task more
realistically

Duulga

Step 1: Risk Identification

Rank
Schedule

Impact
(Weeks)

Step 3: Risk ResponseStep 2: Risk Assessment

56

9. Project Retrospective

This chapter finalizes the report by providing reflection including challenges from the
author’s point of view. Furthermore, lessons learned are explained in two categories of
technical and organizational insights.

9.1 Reflection
The project conducted during the last ten months at Vanderlande brought me quite a
challenging and yet interesting experience. Through the project, I improved my per-
sonal and professional skills by facing both technical and managerial challenges.

As the project goal was quite vague and general at the beginning, a significant amount
of time has been devoted to analyzing the project problems in detail. For this purpose,
numerous interviews were conducted with stakeholders in the first quarter of the pro-
ject. Meanwhile, I had to define project scope clearly considering the limited time to
satisfy the company’s requirements as well as university standards.

Moreover, understanding the automated material handling domain was necessary to be
able to create a project solution. Thus, I enrolled in the company’s internal trainings to
gain domain knowledge. Additionally, a considerable period of time was dedicated to
learning internal documents about systems and systems’ architecture for the purpose
of domain knowledge.

Since the company desired to carry out the project using a model-based approach, sev-
eral approaches are compared by analyzing their traits. Choosing the appropriate mod-
eling approach of either MBD or MBSE was such a dilemma. Thanks to the company’s
new system architecture and nature of the project, MBSE was selected.

In addition to the technical challenges, I have encountered managerial challenges be-
cause I was in charge of the entire process during the project. This gave me the possi-
bility to experience different roles at the same time.

Moreover, I could grow further as a Software/System Architect and Designer by means
of the lessons that this process taught me. The lessons are listed below.

9.2 Lessons learned
• Technical insights

o Modeling approaches. During the project, I learned to distinguish which
modeling approach fits for what problem.

o SysML. Even though I had SysML training during the first year of the
PDEng program, I could not apply the knowledge I gained to the broader
context than the training. Through the project, I improved my SysML
understanding by applying it to the domain.

o Patterns. For the purpose of pattern selection, I learned multiple design
patterns and their traits.

• Organizational insights
o I realized that I should be more proactive and initiative to make

things clear.
o I understood the feedback culture in general. A lesson I learned is

“Receive feedbacks on the project work as early as possible”. This
also leads to a communication plan in which I should consider that
stakeholders are also busy doing their work.

o Start immediately and fail fast. This concept helps to decrease the
project risk and verify requirements in the early stage of the pro-
ject.

10. Appendix
This chapter gives additional information on the corresponding processes of the pro-
ject.

10.1 System requirements

Figure 35 – Functional requirements

Figure 36 – Non-functional requirements

58

10.2 Use case analysis

Figure 37 – Traces between user goal and system requirement

10.3 System design
Activities in the general scenario of sorting are illustrated in Figure 38. Suppose the
system is dedicated to sorting out fragile MHU in the system. This scenario activities
belong to Sense FM, Transport FM, and Divert FM.
When a MHU enters the system, Sense FM retrieves MHU information by controlling
sensors. If the detected unique ID (UUID) of the MHU does not exist in the system,
the system registers MHU by creating MHU data with corresponding attribute values.
If the ID exists, the system simply updates corresponding attributes. These activities
are specified in the sequence diagram by illustrating interactions between MHD Man-
ager and Sense FM instances in Figure 39.

Figure 38 – Activity diagram of sorting scenario

Figure 39 – Interactions between SenseFM and MHD Manager

10.4 Conceptual simulation for (re)configurability
For the configurability requirement, we also used the simulation to visualize the con-
cept. The simulation for configurable topology is depicted in Figure 40, showing two
system layouts. In this simulation, the system is built in the same way as we developed
in the previous simulations. In order to validate the design from the configurability
perspective, we need to show that the same logical components of the modular system
work for different system layouts.

Figure 40 – System layout for configurable topology simulation

60

The first system layout has six sorting outputs and the second system layout has ten
sorting outputs. Even though the layouts are different, the same logic runs on the two
systems. To do so, we added four more sorting paths on the layout and assigned the
same behaviors to these paths.

Figure 41 – 3D illustration of configurable topology simulation

Glossary
Terminologies of the project are defined in the glossary. Some common technical ter-
minologies are referenced from Wikipedia.

Functional Module

Functional Module is a small building block of the system
software that controls functionally equivalent physical com-
ponents in the system.

Market Leading
Concept

Market Leading Concept (MLC) is a standardized template
solution for every business segment, namely food, fashion,
parcel, general merchandise as it is specified by the com-
pany. It has a predefined set of Functional Modules from
which some FMs can be discarded on the customer’s re-
quirement but cannot be added to the set.

Material Handling
Unit

A MHU is any physical object in a system that can be con-
veyed by any transport equipment or component in the sys-
tem. For example, baggage in Airport, parcel in Postal,
product in Warehouse systems.

Material Handling
Domain

The Material Handling domain specifies how the items
should be moved to fulfill the process flow. It handles the
actual physical movements of the items but is not aware of
the reasons why these items need to be handled.

Model-based design

Model-Based Design is a mathematical and visual method
of addressing problems associated with designing complex
control, signal processing, and communication systems.

Model-Based Sys-
tems Engineering

Model-Based Systems Engineering is a systems engineering
methodology that focuses on creating and exploiting do-
main models as the primary means of information exchange
between engineers, rather than on document-based infor-
mation exchange.

Programmable
Logic Control

A programmable logic controller is an industrial digital
computer that has been ruggedized and adapted for the con-
trol of manufacturing processes, such as assembly lines,
or robotic devices, or any activity that requires high-relia-
bility control and ease of programming and process fault di-
agnosis.

Unified Modeling
Language

The Unified Modeling Language is a general-purpose, de-
velopmental, modeling language in the field of software en-
gineering that is intended to provide a standard way to vis-
ualize the design of a system.

Systems Modeling
Language

The Systems Modeling Language is a general-purpose mod-
eling language for systems engineering applications.

Topology

Hardware infrastructure of the system.

Bibliography

[1] S. Ray, Introduction to Materials Handling, New Age International (P)

Limited, 2007.
[2] M. Spindler, T. Aicher, D. Sch_tz, B. Vogel-Heuser and W. A. G_nthner,

"Efficient Control Software Design for Automated Material Handling
Systems Based on a Two-Layer Architecture," in 5th IEEE International
Conference on Advanced Logistics and Transport (ICALT), 2016.

[3] W. Lepuschitz, A. Zoitl, M. Vall_e and M. Merdan, "Toward Self-
Reconfiguration of Manufacturing Systems Using Automation Agents,"
IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), vol. 41, pp. 52-69, 1 2011.

[4] S. Friedenthal, A. Moore and R. Steiner, A Practical Guide to SysML: The
Systems Modeling Language, Elsevier Science, 2011.

[5] L. Delligatti, SysML Distilled: A Brief Guide to the Systems Modeling
Language, Addison-Wesley, 2014.

[6] G. Muller, "Positioning the CAFCR Method in the World," 2018.
[7] G. Muller, "CAFCR: A multi-view method for embedded systems

architecting".
[8] [Online]. Available: https://realpars.com/automation-pyramid/.
[9] D. Gorecky, S. Weyer, A. Hennecke and D. Zühlke, "Design and

instantiation of a modular system architecture for smart factories," IFAC-
PapersOnLine, vol. 49, pp. 79-84, 2016.

[10] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
Michael Stal, "A System of Patterns," in Pattern-Oriented Software
Architecture, Wiley, August 1996.

[11] E. Estevez, M. Marcos, N. Iriondo and D. Orive, "Graphical modeling of
plc-based industrial control applications," in 2007 American Control
Conference, 2007.

[12] [Online]. Available:
https://www.vanderlande.com/warehousing/evolutions/airpick/.

[13] [Online]. Available:
https://www.vanderlande.com/warehousing/evolutions/fastpick/.

[14] [Online]. Available:
https://www.vanderlande.com/warehousing/evolutions/storepick/.

[15] Vanderlande System Architecture Team, "SYSTEM/SUBSYSTEM
DESIGN DESCRIPTION W-PLATFORM SSDD," Veghel, 2019.

[16] [Online]. Available: https://www.uml-diagrams.org/use-case-
include.html.

[17] "OMG Systems Modeling Language," Object Management Group,
[Online]. Available: https://www.omg.org/intro/SysML.pdf.

[18] M. H. Hassan Gomaa, "Software Reconfiguration Patterns for Dynamic
Evolution of Software," in Proceedings of the Fourth Working IEEE/IFIP
Conference on Software Architecture, 2004.

[19] H. C. Robert Szepesi, "An Overview on Software Reconfiguration,"
Theory and Applications of Mathematics & Computer Science, vol. 1, pp.
74-79, 2011.

[20] A. Zhiliaeva, "Anylogic blog," [Online]. Available:
https://www.anylogic.com/blog/conveyors-using-the-material-handling-
library-part-1/.

[21] [Online]. Available: https://en.wikipedia.org/wiki/Stakeholder_analysis.

64

About the Author

Ganduulga Gankhuyag received both his BSc and MSc de-
gree in Electronics Engineering from the Department of
Electronics and Information Engineering of Chonbuk Na-
tional University, Jeonju city, South Korea in 2012 and
2015, respectively.

His master thesis concerned the idea that heading and po-
sition accuracy of the navigation system can be enhanced
using various Kalman filters integrating Global Positioning
System and Inertial Navigation System.

After his graduation, he did his internship at Daewoo Elec-
tronic Components Co., Ltd and worked as a Hardware and
Software R&D engineer at Ametros Solutions LLC.

From November 2017 until October 2019, he worked at the
Eindhoven University of Technology, as a PDEng trainee
in the Software Technology program from the 4TU.Stan
Ackermans Institute. He is interested in topics related to
Embedded systems, the Internet of things, Artificial Intel-
ligence and Software architecture.

Where innovation starts

	front
	thesis final version
	Foreword
	Preface
	Acknowledgements
	Executive Summary
	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1 Context
	1.1.1. Automated material handling
	1.1.2. The complexity of software development

	1.2 Project Goal
	1.3 Preliminaries
	1.3.1. Model-Based Systems Engineering
	1.3.2. Architectural reasoning methodology

	1.4 Outline

	2. Project problems and conceptual solution
	2.1 Problem analysis
	2.2 Domain analysis
	2.2.1. New trends in the industrial automation domain
	2.2.2. Conceptual solution
	I. Reusability
	i. Modularity
	ii. Configurability

	II. Modeling

	2.2.3. Vanderlande’s approach to reusability

	3. Project Requirements
	3.1 Use-case analysis
	3.2 Requirement analysis

	4. Architectural decisions
	System Architecture
	4.1 Modeling approach selection
	4.2 Pattern selection

	5. System Design
	System design
	5.1 Structural model
	5.2 Behavioral model

	6. Verification and Validation
	6.1 Verification
	6.2 Validation
	6.2.1. Simulation Environment
	6.2.2. Validation Process

	7. Conclusions
	7.1 Summary
	7.2 Recommendations

	8. Project Management
	8.1 Stakeholder Analysis and Management
	8.1.1. Stakeholder analysis
	8.1.2. Stakeholder management

	8.2 Work-Breakdown Structure (WBS)
	8.3 Project Planning and Scheduling
	8.4 Risk analysis

	9. Project Retrospective
	9.1 Reflection
	9.2 Lessons learned

	10. Appendix
	10.1 System requirements
	10.2 Use case analysis
	10.3 System design
	10.4 Conceptual simulation for (re)configurability

	Glossary
	Bibliography

	back

