Partial-order reduction for parity games with an application on parameterised Boolean Equation Systems (Technical Report)

Citation for published version (APA):

Neele, T., Willemse, T., \& Wesselink, W. (2019). Partial-order reduction for parity games with an application on parameterised Boolean Equation Systems (Technical Report). (Computer science reports; Vol. 19/02). Technische Universiteit Eindhoven.

Document status and date:

Published: 01/09/2019

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25 fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Technische Universiteit Eindhoven Department of Mathematics and Computer Science

Partial-Order Reduction for Parity Games with An Application on Parameterised Boolean
Equation Systems (Technical Report)

Thomas Neele, Tim A.C. Willemse and Wieger Wesselink

All rights reserved
editor: prof.dr.ir. J.J. van Wijk

Reports are available at:
https://research.tue.nl/en/publications/?search=Computer+science+reports+eindhoven\&originalSear ch=Computer+science+reports+eindhoven\&pageSize=50\&ordering=publicationYearThenTitle\&des cending=true\&showAdvanced=false\&allConcepts=true\&inferConcepts=true\&searchBy=RelatedCo ncepts

Partial-Order Reduction for Parity Games with an Application on Parameterised Boolean Equation Systems (Technical Report)

Thomas Neele, Tim A.C. Willemse, and Wieger Wesselink
Eindhoven University of Technology, The Netherlands

Abstract

Partial-order reduction (POR) is a well-established technique to combat the problem of state-space explosion. Most approaches in literature focus on Kripke structures or labelled transition systems and preserve a form of stutter/weak trace equivalence or weak bisimulation. Therefore, they are at best applicable when checking weak modal mucalculus. We propose to apply POR on parity games, which can encode the combination of a transition system and a temporal property. Our technique allows one to apply POR in the setting of mu-calculus model checking. We show with an example that the reduction achieved on parity games can be significantly larger. Furthermore, we identify and repair an issue where stubborn sets do not preserve stutter equivalence.

1 Introduction

In the field of formal methods, model checking [2] is a popular technique to analyse the behaviour of concurrent processes. However, the arbitrary interleaving of these parallel processes can cause an exponential blowup, which is known as the state-space explosion problem. Several approaches have been identified to alleviate this issue, by reducing the state space on-the-fly, i.e., while generating it. Two established techniques are symmetry reduction 10 and partial-order reduction (POR) [717|19]. Whereas symmetry reduction can only be applied to systems that contain several copies of a component, POR also applies to heterogeneous systems. However, a major drawback of POR is that most variants at best preserve only a fragment of a given logic, such as LTL or CTL* without the next operator ($\mathrm{LTL}_{-X} / \mathrm{CTL}_{-X}^{*}$) [6] or the weak modal mu-calculus [18]. Furthermore, the variants of POR that preserve a branching logic impose significant restrictions on the reduction by only allowing the prioritisation of exactly one action at a time. This decreases the amount of reduction achieved.

In this paper, we address these shortcomings by applying POR on parity games. A parity game is a directed graph with decorations on the nodes that is played between two players, even (\diamond) and odd (\square). An application of parity games is encoding a model checking question: a combination of a model, in the form of a labelled transition system (LTS) or Kripke structure (KS), and a formal property, formulated in the modal mu-calculus [12]. In such games, every node v represents the combination of a state s from the transition system and
a (sub)formula φ. Under a typical encoding, player \diamond wins in v if and only if φ holds in s. In the context of model checking, parity games suffer from the same state-space explosion that models do. Exploring the state space of a parity game under POR can be a very effective way to address this. Our contributions are as follows:

- We propose conditions under which a parity game can be reduced. We prove that the reduction is correct, i.e., it preserves the winning player of the parity game (Theorem 1).
- We show with an example that one of the POR conditions, called D1 in 22, often found in literature contains a subtle mistake. When applied to LTSs or KSs, this means that LTL_{-X} is not necessarily preserved. This omission is addressed by the strengthened version of condition D1 that we propose.
- We identify improvements for the reduction by investigating the typical structure of a parity game that encodes a model checking question.
- We give details of a possible implementation, using parameterised Boolean equation systems (PBESs) 9] as a high-level representation. The implementation is based on the generic framework of [14], but extends it with support for non-determinism.

The proposed approach has two benefits over traditional POR techniques that operate on LTSs or KSs. First, it enables the use of partial-order reduction in the setting of mu-calculus model checking. This improves on previous works, since they only support the weak mu-calculus [18] or $\operatorname{LTL}_{-X}[22] / \mathrm{CTL}_{-X}^{*}$ [6], which are even less expressive logics. Furthermore, the conditions that we propose are strictly weaker than those necessary to preserve the branching structure of an LTS or KS 6|18.

The rest of the paper is structured as follows. Section 2 compares the current work to existing literature. Then, we introduce several basic concepts in Section 3. Our main ideas are presented in Section 4 and further improved in Section5. Section 6 gives an introduction to PBESs and explains how they relate to parity games. Details of a possible implementation with PBESs are given in Section 7 and the results of a first experiment are presented in Section 8 . Finally, Section 9 concludes and provides possible directions for future work.

2 Related Work

There are several related works on partial-order reduction for branching-time logics. First, Groote and Sellink [8] propose several forms of confluence reduction and prove which behavioural equivalences are preserved. In confluence reduction, one tries to identify inert τ-transitions that do not influence the rest of the system. The state space can be reduced by prioritising those transitions.

The work of Ramakrishna and Smolka [18] is also based on inert τ s and prioritisation. What they propose coincides with strong confluence from [8], and thus their algorithm preserves weak bisimulation and the corresponding logic weak modal mu-calculus. Since they only present an algorithm that is tightly
integrated into a local model checking procedure, it is not immediately clear what the essence of their idea is. They do not present the concept of a reduction function or conditions thereon separately.

Similar ideas are presented by Gerth et al. in [6], but their setting of Kripke structures matches ours more closely. Their approach is based on the ample set method 17 and preserves a relation they call visible bisimulation, which is more commonly known as divergence-preserving branching bisimulation. As a result, they preserve CTL $-X$.

POR has also been applied to other models of computation, such as probabilistic processes [1 and real-time models [3].

To obtain more insight into the difference between POR applied on processes or on parity games, we consider the ideas of Gerth et al. [6] in more detail. Their conditions C1-C3 preserve LTL $_{-X}$ and are approximately equal to our conditions. However, to preserve the branching structure, they introduce the following singleton proviso:

C4 Either enabled $_{G}(s) \subseteq r(s)$ or $|r(s)|=1$.
This extra condition can severely impact the amount of reduction achieved, as shown by the following example.

Example 1. Consider the process P, defined as follows.

$$
\begin{aligned}
& A(n: \mathbb{N})=(n \neq 0) \rightarrow\left(a+a^{\prime}\right) \cdot A(n-1) \\
& B(n: \mathbb{N})=(n \neq 0) \rightarrow\left(b+b^{\prime}\right) \cdot B(n-1) \\
& P=\nabla_{\left\{a, a^{\prime}, b, b^{\prime}\right\}}(A(N) \| B(N))
\end{aligned}
$$

Where N is a large natural number. Due to $\mathbf{C 4}$, neither $\left\{a, a^{\prime}\right\}$ nor $\left\{b, b^{\prime}\right\}$ is a valid stubborn set. However, when constructing a PBES for the formula $\left[t r u e^{*}\right]\langle$ true*.$a\rangle$ true, we obtain a parity game with a very similar shape that can be reduced by prioritising transitions that correspond to b or b^{\prime}. Note that this mu-calculus formula cannot be represented in LTL. Therefore, condition C4 is in general required to preserve its validity.

3 Preliminaries

In this section, we give the standard definition of a parity game and its related concepts.

Definition 1. A parity game is a directed graph $G=(V, \rightarrow, \Omega, \mathcal{P})$, where

- V is a finite set of nodes, called the state space;
$-\rightarrow \subseteq V \times V$ is a total transition relation;
$-\Omega: V \rightarrow \mathbb{N}$ is a function that assigns a priority to each node; and
$-\mathcal{P}: V \rightarrow\{\diamond, \square\}$ is a function that assigns a player to each node. The players are called even (\diamond) and odd (\square).

We write $s \rightarrow t$ whenever $(s, t) \in \rightarrow$. The set of successors of a node s is denoted with $\operatorname{succ}(s)=\{t \mid s \rightarrow t\}$. We use \bigcirc to denote an arbitrary player and $\bar{\bigcirc}$ to denote its opponent.

A parity game is played as follows: initially, a token is placed on some node of the graph. The owner of the node can decide where to move the token; the token may be moved along one of the outgoing edges. This process continues ad infinitum, yielding an infinite path of nodes that the token moves through. Such a path is called a play. A play π is won by player \diamond if the minimal priority that occurs infinitely often along π is even. Otherwise, it is won by player \square.

To reason about moves that a player may want to take, we use the concept of strategies. A strategy $\sigma_{\bigcirc}: V^{+} \rightarrow V$ for player \bigcirc is a partial function that determines where \bigcirc moves the token next, after the token has passed through a finite sequence of nodes. More formally, for all sequences $s_{1} \ldots s_{n}$ such that $\mathcal{P}\left(s_{n}\right)=\bigcirc$, it holds that $\sigma_{\bigcirc}\left(s_{1} \ldots s_{n}\right) \in \operatorname{succ}\left(s_{n}\right)$. If s_{n} belongs to $\bar{\bigcirc}, \sigma_{\circ}\left(s_{1} \ldots s_{n}\right)$ is undefined. A play s_{1}, s_{2}, \ldots is consistent with a strategy σ if and only if $\sigma\left(s_{1} \ldots s_{i}\right)=s_{i+1}$ for all i such that $\sigma\left(s_{1} \ldots s_{i}\right)$ is defined. A player \bigcirc wins in a node s if and only if there is a strategy σ_{\bigcirc} such that all plays that start in s and that are consistent with σ_{\bigcirc} are won by player \bigcirc.

Example 2. Consider the parity game below. Here, priorities are inscribed in the nodes and the nodes are shaped according to their owner (\diamond or \square).

In this game, the strategy σ_{\diamond}, partially defined as $\sigma_{\diamond}\left(s_{1}\right)=s_{2}$ and $\sigma_{\diamond}\left(s_{2}\right)=s_{1}$, is winning for \diamond in s_{1} and s_{2}. After all, the minimal priority that occurs infinitely often along $\left(s_{1} s_{2}\right)^{\omega}$ is 0 , which is even. Player \square can win node s_{3} with the strategy $\sigma_{\square}\left(s_{3}\right)=s_{4}$. Note that player \diamond is always forced to move the token from node s_{4} to s_{3}.

4 Partial-Order Reduction

A popular application of parity games is the encoding of model checking problems. Given a labelled transition system (LTS) and a formula in the modal mucalculus, one can construct a parity game that expresses whether the formula holds for the LTS. In a typical translation, a (sub)formula holds for a given state if and only if the corresponding node in the parity game is won by player even.

However, in model checking, arbitrary interleaving of concurrent processes can lead to an exponential blowup in the size of the state space. Hence, most parity games that are constructed from those state spaces also grow rapidly in size. A popular technique to deal with this state-space explosion is partial-order
reduction (POR). Several variants of POR exist, such as ample sets [17], persistent sets [7] and stubborn sets [19|20]. The current work is based on the stubborn set theory, since it does not depend on any knowledge about the underlying concurrent processes of a semantic model and it can deal with nondeterminism 21.

Since POR not only relies on node labels but also on edge labels, we assume the existence of some fixed set of edge labels \mathcal{S}, which we will call events. Events are typically denoted with the letter j. In Section 6, we will see where events originate, and how they relate to parity game transitions. We extend the standard definition of parity games to incorporate the edge labels:

Definition 2. A labelled parity game is a directed graph $G=(V, \rightarrow, \Omega, \mathcal{P})$, where V, Ω and \mathcal{P} are as before and $\rightarrow \subseteq V \times \mathcal{S} \times V$ is a total transition relation.

We write $s \xrightarrow{j} t$ whenever $(s, j, t) \in \rightarrow$ and $s \rightarrow t$ when $s \xrightarrow{j} t$ for some j. The same notation is used to indicate the existence of longer paths $s \xrightarrow{j_{1} \ldots j_{n}} t$. We say an event j is enabled in a node s, notation $s \xrightarrow{j}$, if and only if there is a transition $s \xrightarrow{j} t$ for some t. For a given parity game G, the set of all enabled events in a node s is denoted with enabled $_{G}(s)$. An event j is invisible if and only if for all transitions $s \xrightarrow{j} t$ labelled with j, it holds that $\mathcal{P}(s)=\mathcal{P}(t)$ and $\Omega(s)=\Omega(t)$. Otherwise, j is visible. From here on, we assume every parity game is labelled.

A central concept in POR is that of a reduction function, which indicates which edges to explore in each node. Given some initial node \hat{s}, a reduction function induces a unique reduced parity game as follows.

Definition 3. Let $G=(V, \rightarrow, \Omega, \mathcal{P})$ be a parity game, $\hat{s} \in V$ a node and r : $V \rightarrow 2^{\mathcal{S}}$ a reduction function. Then the reduced parity game induced by r and starting from \hat{s} is defined as $G_{r}=\left(V_{r}, \rightarrow_{r}, \Omega, \mathcal{P}\right)$, where:
$-\rightarrow_{r}$ is the transition relation under $r: \rightarrow_{r}=\rightarrow \cap\{(s, j, t) \mid j \in r(s)\} ;$
$-V_{r}$ is the set of reachable nodes with $\rightarrow_{r}: V_{r}=\left\{s \mid \hat{s} \rightarrow_{r}^{*} s\right\}$, where \rightarrow_{r}^{*} is the transitive closure of \rightarrow_{r}.

Note that a reduced parity game induced by some reduction function r only has a total transition relation if $r(s) \cap \operatorname{enabled}(s) \neq \emptyset$ for every reachable node s (this is enforced by the conditions we define below).

To really solve the issue of state-space explosion, one should not have to generate the full parity game. Instead, the reduction function should be computed either a priori [13] or on-the-fly, i.e., during the exploration procedure. We take the latter approach.

In the general case, a reduction function is not guaranteed to preserve the winning player of a game. We identified the following properties from stubborn set theory which are required to preserve the winning player.

Definition 4. Let $G=(V, \rightarrow, \Omega, \mathcal{P})$ be a parity game. A reduction function $r: V \rightarrow 2^{\mathcal{S}}$ is a weak stubborn set iff for all nodes $s \in V$, the following conditions hold:

D1 For all $j \in r(s)$ and $j_{1}, \ldots, j_{n} \notin r(s)$, if $s \xrightarrow{j_{1}} s_{1} \xrightarrow{j_{2}} \cdots \xrightarrow{j_{n}} s_{n} \xrightarrow{j} s_{n}^{\prime}$, then there are nodes $s^{\prime}, s_{1}, \ldots, s_{n-1}^{\prime}$ such that $s \xrightarrow{\jmath^{\prime}} s^{\prime} \xrightarrow{\jmath_{1}} s_{1}^{\prime} \xrightarrow{j_{2}} \cdots \xrightarrow{j_{n}} s_{n}^{\prime}$ and $s_{i} \xrightarrow{j} s_{i}^{\prime}$ for every $1 \leq i<n$.
D2w There is an event $j \in r(s)$ such that for all $j_{1}, \ldots, j_{n} \notin r(s)$, if $s \xrightarrow{j_{1} \ldots j_{n}} s^{\prime}$, then $s^{\prime} \xrightarrow{j}$. Such an event is called a key event.
\mathbf{V} If $r(s)$ contains an enabled visible event, then it contains all visible events. I If an invisible event is enabled, then $r(s)$ contains an invisible key event.
$\mathbf{L} \quad$ For every visible event j, every cycle in the reduced game contains a node s such that $j \in r(s)$.
Below, we also use (weak) stubborn set to refer to the set of events $r(s)$ is some node s. First, note that every key event in a node s is enabled in s, by taking $n=0$ in D2w. Condition D1 ensures that whenever an enabled event is selected for the stubborn set, it should not disable other behaviour that is not in $r(s)$. Figure 1 shows a graphical representation of condition D1. A stubborn set can never be empty, due to D2w. In a traditional setting where POR is applied on an LTS, the combination of D1 and D2w is sufficient to preserve deadlocks. Condition V enforces that either all visible events are selected for the stubborn set, or none are. Condition \mathbf{L} prevents the so called action-ignoring problem, where a certain event is never selected for the stubborn set and ignored indefinitely. Since we assume that the state space is finite, it suffices to reason about the cycles of the reduced game. Finally, the combination of \mathbf{I} and \mathbf{L} helps to preserve divergences.

Fig. 1. Visual representation of condition D1.

Example 3. To further illustrate the purpose of conditions V, I and L, we give examples that show that the winning player in the original game and the reduced game might be different if one of these conditions is not satisfied. See Figure 2, From left to right, these games show a reduced game under a reduction function that does not satisfy \mathbf{V}, \mathbf{I} or \mathbf{L}, respectively. In each case, we start exploration from the node called \hat{s} and the winning strategy for player \diamond in the original game is lost.

Note that the games in Figure 2 are from a subclass of parity games called weak solitaire. A game is considered weak when the priorities along all its paths are non-decreasing, i.e., if $s \rightarrow t$ then $\Omega(s) \leq \Omega(t)$. A game is a \bigcirc-solitaire game if all nodes belonging to player $\bar{\bigcirc}$ have exactly one successor. We call a game solitaire if it is \bigcirc-solitaire for some $\bigcirc \in\{\diamond, \square\}$. Weak solitaire games can encode the model checking of safety properties.

$\sigma_{\diamond}: k l^{\omega}$
D1, D2w, I, L

$\sigma_{\diamond}: j^{\omega}$
D1, D2w, V, L

$\sigma_{\diamond}: k j^{\omega}$
$\mathbf{D 1}, \mathbf{D} 2 \mathbf{w}, \mathbf{V}, \mathbf{I}$

Fig. 2. Three games that show the winner is not necessarily preserved if we drop one of the conditions \mathbf{V}, \mathbf{I} or \mathbf{L}, respectively. The dashed nodes and edges are present in the original game, but not in the reduced game. The edges taken from \hat{s} by the winning strategy for player \diamond in the original game are indicated below each game.

4.1 Strengthened condition D1

The condition D1 that we propose is slightly stronger than the version that can be found in literature (1419|22, which is as follows.
D1' For all $j \in r(s)$ and $j_{1}, \ldots, j_{n} \notin r(s)$, if $s \xrightarrow{j_{1}} \cdots \xrightarrow{j_{n}} s_{n} \xrightarrow{j} s_{n}^{\prime}$, then there are nodes $s^{\prime}, s_{1}, \ldots, s_{n-1}^{\prime}$ such that $s \xrightarrow{j} s^{\prime} \xrightarrow{j_{1}} s_{1}^{\prime} \xrightarrow{j_{2}} \cdots \xrightarrow{j_{n}} s_{n}^{\prime}$.
However, this weaker condition may lead to the reduced game having a different winner than the original game, as shown by the following example. Consider the parity game below.

First, note that this game is deterministic. The events j_{1} and j_{2} are visible and j, j_{k} and j_{3} are invisible. By setting $r(\hat{s})=\left\{j, j_{k}\right\}$, which is valid under conditions $\mathbf{D} \mathbf{1}^{\prime}, \mathbf{D} 2 \mathbf{w}, \mathbf{V}, \mathbf{I}$ and \mathbf{L}, the reduced game that starts from \hat{s} does not contain the dashed nodes. The winning strategy for player \diamond that moves through the node with priority 0 , via the edges labelled $j_{1} j_{2} j j_{3}$, is thus lost in the reduced game. A similar example can be constructed in the setting of POR for (deterministic) Kripke structures to show that LTL $_{-X}$ is not necessarily preserved, contrary to what is suggested in 19/22].

We remark that this problem does not occur when applying strong stubborn sets [22] on a deterministic system, a more widely studied setting. In strong stubborn sets, D2w is replaced by condition D2 below.

D2 For all events $j \in r(s)$ and $j_{1}, \ldots, j_{n} \notin r(s)$, if $s \xrightarrow{j_{1} \ldots j_{n}} s^{\prime}$, then $s^{\prime} \xrightarrow{j}$.
In the deterministic case, conditions D1' and D2 together imply D1.

4.2 Correctness

To show that the approach presented above is correct, we show in Theorem 1 that the winner is preserved in every node of the reduced game. We do this by constructing a strategy in the reduced game that mimics the strategy in the original game. The paths that are consistent with the two strategies must be stutter equivalent to preserve the winner.

Definition 5. Let G be a parity game and $\pi=s_{0} s_{1} s_{2} \ldots$ and $\pi^{\prime}=t_{0} t_{1} t_{2} \ldots$ be two paths in G. We say π and π^{\prime} are stutter equivalent, notation $\pi \triangleq \pi^{\prime}$, if and only if one of the following conditions holds:
$-\pi$ and π^{\prime} are both finite and there exists a non-decreasing partial function $f: \omega \rightarrow \omega$, with $f(0)=0$ and $f(|\pi|-1)=\left|\pi^{\prime}\right|-1$, such that for all $0 \leq i<|\pi|$ and $i^{\prime} \in[f(i), f(i+1))$, it holds that $\mathcal{P}\left(s_{i}\right)=\mathcal{P}\left(t_{i^{\prime}}\right)$ and $\Omega\left(s_{i}\right)=\Omega\left(t_{i^{\prime}}\right)$.
$-\pi$ and π^{\prime} are both infinite and there exists an unbounded, non-decreasing total function $f: \omega \rightarrow \omega$, with $f(0)=0$, such that for all i and $i^{\prime} \in[f(i), f(i+1))$, it holds that $\mathcal{P}\left(s_{i}\right)=\mathcal{P}\left(t_{i^{\prime}}\right)$ and $\Omega\left(s_{i}\right)=\Omega\left(t_{i^{\prime}}\right)$.

Lemma 1. All infinite stutter equivalent paths have the same winner.
Proof. Since both paths have the same set of priorities that occur infinitely often, they also have the same winner.

In the lemmata and proofs below, we often use \rightarrow_{r} to indicate which transitions must occur in the reduced state space.
Lemma 2. Let r be a weak stubborn set and $\pi=s_{0} \xrightarrow{j_{1}} \cdots \xrightarrow{j_{n}} s_{n} \xrightarrow{j} s_{n}^{\prime}$ be a path such that $j_{1}, \ldots, j_{n} \notin r(s)$ and $j \in r(s)$. Then, there is a path $\pi^{\prime}=s_{0} \xrightarrow{j}_{r}$ $s^{\prime} \xrightarrow{j_{1}} \cdots \xrightarrow{j_{n}} s_{n}^{\prime}$ such that π and π^{\prime} are stutter equivalent.

Proof. The existence of π^{\prime} follows directly from condition D1. Due to condition \mathbf{V} and our assumption that $j_{1}, \ldots, j_{n} \notin r\left(s_{0}\right)$, it cannot be the case that j is visible and at least one of j_{1}, \ldots, j_{n} is visible. If j is invisible, then $s_{0} \xrightarrow{j_{1}} \cdots \xrightarrow{j_{n}}$ s_{n} and $s_{0}^{\prime} \xrightarrow{j_{1}} \cdots \xrightarrow{j_{n}} s_{n}^{\prime}$ have the same sequence of node labels, since $\mathbf{D} 1$ implies that $s_{i} \xrightarrow{J} s_{i}^{\prime}$ for every $0 \leq i \leq n$. Otherwise, if all of j_{1}, \ldots, j_{n} are invisible, then the sequence of labels observed along π and π^{\prime} has the shape $p^{n} q$ and $p q^{n}$, respectively, where p represents the labels of s_{0} and q represents the labels of s_{0}^{\prime}. We conclude that π and π^{\prime} are stutter equivalent.

Lemma 3. Let r be a weak stubborn set and $\pi=s \xrightarrow{j_{1}} s_{1} \xrightarrow{j_{2}} \ldots$ be a path such that $j_{i} \notin r(s)$ for any j_{i} that occurs in π. Then, the following holds:

- If π is of finite length n, there exists a node s_{n}^{\prime} such that $s_{n} \xrightarrow{j_{k}} s_{n}^{\prime}$ and a path $\pi^{\prime}=s \xrightarrow{j_{k}} s^{\prime} \xrightarrow{j_{1}} \cdots \xrightarrow{j_{n}} s_{n}^{\prime}$.
- If π is infinite, there exists a path $\pi^{\prime}=s \xrightarrow{j_{k}} s^{\prime} \xrightarrow{j_{1}} s_{1}^{\prime} \xrightarrow{j_{2}} \ldots$.

In either case, $\pi \triangleq \pi^{\prime}$.
Proof. Let K be the set of key events in s. If j_{1} is invisible, K contains at least one invisible event, due to \mathbf{I}. Otherwise, if j_{1} is visible, we reason that K is not empty (condition D2w) and all events in $r(s)$, and thus also all events in K, are invisible, due to \mathbf{V}. In the remainder, let j_{k} be an invisible key event.

In case π has finite length n, the existence of $s_{n} \xrightarrow{j_{k}} s_{n}^{\prime}$ and $s \xrightarrow{j_{k}}{ }_{r} s^{\prime} \xrightarrow{j_{1}}$ $\ldots \xrightarrow{j_{n}} s_{n}^{\prime}$ follows from D2w and D1, respectively.

If π is infinite, we can apply $\mathbf{D} 2 \mathbf{w}$ and $\mathbf{D} 1$ successively to obtain a path $\pi_{i}=s \xrightarrow{j_{k}} s^{\prime} \xrightarrow{j_{1}} \cdots \xrightarrow{j_{i}} s_{i}^{\prime}$ for every $i \geq 0$. Since the state space is finite, at least one j_{k}-successor of s, which we refer to as t, must occur on infinitely many π_{i}. Thus, for every i, we have $t \xrightarrow{j_{1} \ldots j_{i}}$, since t also occurs on some $\pi_{i^{\prime}}$ with $i^{\prime}>i$. We conclude the existence of $\pi^{\prime}=s \xrightarrow{j_{k}} r \xrightarrow{j_{1}} s_{1}^{\prime} \xrightarrow{j_{2}} \ldots$.

Since j_{k} is invisible, we use the same reasoning as in the proof of Lemma 2 to conclude $\pi \triangleq \pi^{\prime}$.

We remark that Lemma 3 also holds for parity games that have an infinite state space, but where all the invisible events are finitely branching. Lemma 3 thus shows that conditions Ä1 and $\ddot{\mathbf{A} 2}$ together imply Ä3 (all from [21) in LTSs that have finite branching of invisible actions.

The proof of the main theorem, Theorem 1 , relies heavily on the constructions described by Lemma 2 and 3. The following example provides insight into the application of the lemmata.

Example 4. Consider the path $j_{1} j_{2} j_{3}$ in Figure 3. This path is mimicked by the path $j_{k} j_{2} j_{1} j_{k}^{\prime} j_{3}$, drawn with dashes. The new path reorders the events j_{1}, j_{2} and j_{3} according to the construction of Lemma 2 and introduces the key events j_{k} and j_{k}^{\prime} according to the construction of Lemma 3 .

Fig. 3. Example of how the trace j_{1}, j_{2}, j_{3} can be mimicked (dashed trace) by introducing additional events and moving j_{2} to the front. Transitions that are drawn in parallel have the same label.

We need one additional lemma to show that the initial event of a path will be selected for the stubborn set if Lemma 2 cannot be applied to that path.

Lemma 4. Let r be a weak stubborn set and $s \xrightarrow{j_{1}} \xrightarrow{j_{2}} \cdots \xrightarrow{j_{n}} s_{n}$ be a path such that j_{2}, \ldots, j_{n} are disabled in s and $j_{n} \in r(s)$. Then, it must be the case that $j_{1} \in r(s)$.

Proof. By induction. The base case, where $n=1$, trivially satisfies the condition, since j_{n} coincides with j_{1}. For the inductive case, we assume as induction hypothesis that for all paths $s \xrightarrow{j_{1}} \cdots \xrightarrow{j_{l}} s_{l}$ with $l \leq i$, it holds that if j_{2}, \ldots, j_{l} are disabled in s and $j_{l} \in r(s)$, then it holds that $j_{1} \in r(s)$. Let $s \xrightarrow{j_{1}} \cdots \xrightarrow{j_{i}} s_{i} \xrightarrow{j_{i+1}} s_{i+1}$ be some path of length $i+1$ that fulfils these same conditions, i.e., $j_{2}, \ldots, j_{i}, j_{i+1}$ are disabled in s and $j_{i+1} \in r(s)$. Since the path $s \xrightarrow{j_{i+1} j_{1} \ldots j_{i}}$ is not enabled, condition D1 can only be fulfilled by setting $j_{l} \in r(s)$ for some $l \leq i$. Consequently, we obtain a path $s \xrightarrow{j_{1}} \cdots \xrightarrow{j_{l}}$, where j_{2}, \ldots, j_{l} are disabled in s and $j_{l} \in r(s)$. Applying the induction hypothesis to this path yields $j_{1} \in r(s)$.

The following theorem shows that partial-order reduction preserves the winning player in all nodes of the reduced game. Its proof is inspired by [19] and [2, Lemma 8.21].

Theorem 1. Let G be a parity game, r a weak stubborn set and G_{r} the reduced game according to r starting from some node \hat{s}. If G_{r} is finite, then it holds that for every node s in G_{r}, the winner of s in G_{r} is equal to the winner of s in G.

Proof. Let G be a parity game and G_{r} a finite reduced game induced by some reduction function r that satisfies conditions $\mathbf{D} 1, \mathbf{D} 2 \mathbf{w}, \mathbf{V}, \mathbf{I}$ and \mathbf{L}. Let player \bigcirc be the winner of some node s.

We first consider the case where $\mathcal{P}(s)=\bar{\bigcirc}$. Since none of the outgoing edges of s in \rightarrow is a winning strategy of $\bar{\bigcirc}$ and $\operatorname{succ}_{G_{r}}(s) \subseteq \operatorname{succ}_{G}(s), \bar{\bigcirc}$ also does not have a winning strategy in s under \rightarrow_{r}. Hence, the winner in s is preserved.

Otherwise, if $\mathcal{P}(s)=\bigcirc$, let σ be some winning strategy for \bigcirc in s under \rightarrow. To prove that \bigcirc also wins node s in G_{r}, we construct a matching strategy σ^{\prime} that \bigcirc should follow in G_{r}. By showing that for every path π in G_{r} that is consistent with σ^{\prime}, a stutter equivalent path π^{\prime} can occur in G when following the original strategy σ, we prove that σ^{\prime} is indeed a winning strategy for \bigcirc starting from s in G_{r}.

Consider the path $\pi_{0}=s \xrightarrow{k_{1}} s_{1} \xrightarrow{k_{2}} \ldots$ that is generated by player \bigcirc moving the token according to σ. The path π_{0} is finite if and only if player \bigcirc at some point moves the token to a node owned by player \bar{O}. We will construct a corresponding path $\hat{\pi}_{0}$ in the reduced state space. Then, we define σ^{\prime} such that player \bigcirc moves the token along $\hat{\pi}_{0}$. Note that although this only defines σ^{\prime} on a part of the game, the same reasoning can be applied to all other nodes belonging to player \bigcirc.

From π_{0}, we will step-by-step construct new paths π_{i} that are stutter equivalent to π_{0}, by shifting events forward (construction of Lemma 2) and introducing
key events (construction of Lemma 3). Since the first step of σ can be trivially imitated if $k_{1} \in r(s)$, we henceforth assume that $k_{1} \notin r(s)$. Each path π_{i} is thus of the shape

$$
\pi_{i}=s{\xrightarrow{j_{1}}}_{r} t_{1} \xrightarrow{j_{2}} \cdots \xrightarrow{j_{i}} t_{i} \xrightarrow{k_{1}} u_{0}^{i} \xrightarrow{l_{1}^{i}} u_{1}^{i} \xrightarrow{l_{2}^{i}} \ldots
$$

where j_{1}, \ldots, j_{i} are key events in the stubborn set. These can either originate from k_{2}, k_{3}, \ldots, i.e., events that are shifted forward with the construction from Lemma2 2, or they can be events that are newly introduced using the construction from Lemma 3. The events $l_{1}^{i}, l_{2}^{i} \ldots$ represent the remaining subsequence of $k_{2}, k_{3} \ldots$, i.e., those events that have not been shifted forward (yet). Note that j_{1}, \ldots, j_{i} can only contain a visible event if the rest of π_{i} is invisible (cf. the proofs of Lemma 2 and Lemma 3).

We distinguish two cases related to whether eventually $k_{1} \in r\left(t_{i}\right)$ for some i :

- None of the events $k_{1}, l_{1}^{i}, l_{2}^{i}, \ldots$ is visible. In that case, player \bigcirc never moves the token to a node belonging to player $\bar{\bigcirc}$ and the path π_{0} is infinite. If k_{1} is never taken, we can mimic the divergent behaviour of π_{i} by applying Lemma 3 ad infinitum on state t_{i}, t_{i+1}, \ldots.
- There is a visible event $m \in\left\{k_{1}, l_{1}^{i}, l_{2}^{i}, \ldots\right\}$. We consider a π_{i} such that all events that fulfil the requirements of Lemma 2 have already been shifted forward, i.e., none of $l_{0}^{i}, l_{1}^{i}, \ldots$ is enabled in t_{i}. This path exists due to finiteness of \rightarrow_{r}. Since the reduced game is finite and the event m is selected at least once on every cycle in the reduced game (condition \mathbf{L}), there is a $\pi_{i^{\prime}}$ with $i^{\prime} \geq i$ such that $m \in r\left(t_{i^{\prime}}\right)$. None of the events $l_{0}^{i}, l_{1}^{i}, \ldots$ is enabled in $t_{i^{\prime}}$ (they did not satisfy Lemma 2, after all), therefore - by Lemma 4- it must be the case that $k_{1} \in r\left(t_{i^{\prime}}\right)$.

In either case, as i goes to ω, we obtain a path $\hat{\pi}_{0}$. This path is stutter equivalent to π_{0}, since each π_{i} is stutter equivalent to its predecessor.

We continue by showing that for every path that is consistent with σ^{\prime}, a corresponding stutter equivalent path that is consistent with σ exists in G. In case $\hat{\pi}_{0}$ does not contain a node of player $\bar{\bigcirc}$, then $\hat{\pi}_{0}$ is the only path consistent with σ^{\prime}, by construction of σ^{\prime}, and $\hat{\pi}_{0}$ is infinite. Its corresponding path in G is π_{0}.

In case $\hat{\pi}_{0}$ ends in a node owned by $\bar{\bigcirc}, \pi_{0}$ is also finite and we reason as follows. From its definition, we know that the last node of π_{0}, denoted s_{n}, is owned by player $\bar{\bigcirc}$. There is a path in the original state space from s_{n} to the last node of $\hat{\pi}_{0}$, denoted \hat{s}, namely along those events of $\hat{\pi}_{0}$ that were introduced by Lemma 3. We call this path $\pi_{k e y}$. We obtain a path $\pi_{0} \pi_{k e y}$, which is π_{0} extended with invisible key events introduced by Lemma 3 in $\hat{\pi}_{0}$. Since $\pi_{\text {key }}$ contains only invisible events, all nodes on $\pi_{k e y}$ are owned by $\bar{\bigcirc}$ and $\pi_{0} \pi_{k e y}$ is consistent with σ. Extending a path with finitely many invisible events is permitted under stutter equivalence, hence we conclude that $\hat{\pi}_{0}$ and $\pi_{0} \pi_{k e y}$ are stutter equivalent.

5 Weakening the Conditions

The theory we have introduced above depends heavily on rectangular structures in the parity game. This is especially apparent in condition D1. However, parity games obtained from model checking problems also often contain triangular structures, as the following example demonstrates.

Example 5. Consider the process $(a \| b) \cdot c$ with the mu-calculus property

$$
\mu X \cdot\left(\bigwedge_{\alpha \in\{a, b\}}[\alpha] X \wedge \bigvee_{\alpha \in\{a, b, c\}}\langle\alpha\rangle \text { true }\right)
$$

which expresses that the action c must unavoidably be done within a finite number of steps. Below, the LTS is depicted on the left and a possible parity game encoding of our liveness property on this state space is depicted on the right. The edges in the parity game that originate from the subformula \langle true \rangle true are labelled with d.

Whereas the state space can be reduced by prioritising a or b, the parity game cannot be reduced due to the presence of a d-transition in every node. For example, if s is the top-left node in the parity game, then $r(s)=\{a, d\}$ violates condition D1, since the trace $s \xrightarrow{b d}$ exists, but $s \xrightarrow{d b}$ does not.

In order to deal with games that contain triangular structures, we need to weaken condition D2w.

D2t There is an event $j \in r(s)$ such that for all $j_{1}, \ldots, j_{n} \notin r(s)$, if $s \xrightarrow{j_{1}} s_{1} \xrightarrow{j_{2}}$ $\cdots \xrightarrow{j_{n}} s_{n}^{\prime}$, then either $s_{n}^{\prime} \xrightarrow{j}$ or there are nodes such that $s \xrightarrow{j} s^{\prime} \xrightarrow{j_{1}} s_{1}^{\prime} \xrightarrow{j_{2}}$ $\cdots \xrightarrow{j_{n}} s_{n}^{\prime}$ and $s_{i}=s_{i}^{\prime}$ or $s_{i} \xrightarrow{j} s_{i}^{\prime}$.

Most of the correctness proofs from Section 4.2 still apply, we only have to alter Lemma 3 to deal with the updated condition D2t.

Lemma 5. Let r be a weak stubborn set and $\pi=s \xrightarrow{j_{1}} s_{1} \xrightarrow{j_{2}} \ldots$ be a path such that $j_{i} \notin r(s)$ for any j_{i} that occurs in π. Then, the following holds:

- If π is of finite length n, there exists a node s_{n}^{\prime} and a path π^{\prime} such that:
- $s_{n} \xrightarrow{j_{k}} s_{n}^{\prime}$ or $s_{n}=s_{n}^{\prime}$; and
- $\pi^{\prime}=s \xrightarrow{\jmath_{k}} s^{\prime} \xrightarrow{j_{1}} \cdots \xrightarrow{j_{n}} s_{n}^{\prime}$
- If π is infinite, there exists a path $\pi^{\prime}=s \xrightarrow{j_{k}} s^{\prime} \xrightarrow{j_{1}} s_{1}^{\prime} \xrightarrow{j_{2}} \ldots$.

In either case, $\pi \triangleq \pi^{\prime}$.
Proof. We follow the same reasoning as in the proof of Lemma 3 to conclude the existence of an invisible key event j_{k}.

In case π has finite length n, we derive the existence of $s \xrightarrow{j_{k}} s^{\prime} \xrightarrow{j_{1}} \cdots \xrightarrow{j_{n}} s_{n}^{\prime}$ either directly from $\mathbf{D} 2 \mathbf{t}$ (if $s_{n}=s_{n}^{\prime}$) or from D1 (if $s_{n}^{\prime} \xrightarrow{j_{k}}$).

If π is infinite, we distinguish the following cases:

- If $s \xrightarrow{j_{k} j_{1} \ldots j_{i}} s_{i}$ for some i, we can trivially extend this path to obtain $\pi^{\prime}=$ $s \xrightarrow{j_{k} j_{1} \ldots j_{i}} s_{i} \xrightarrow{j_{i+1}} \ldots$.
- Otherwise, if there is no i such that $s \xrightarrow{j_{k} j_{1} \ldots j_{i}} s_{i}$, we can apply the same reasoning as in the proof of Lemma 3 .

With the fact that j_{k} is invisible and $s_{i} \xrightarrow{j_{k}} s_{i}^{\prime}$ or $s_{i}=s_{i}^{\prime}$, we conclude that $\pi \triangleq \pi^{\prime}$.

We remark that these ideas are similar to the more general concept of weak confluence from [8]. However, weak confluence is very hard to compute, so we decided to work with a more restricted condition.

6 Parameterised Boolean Equation Systems

The previous sections explained how parity games can be reduced under POR. In a practical setting, this reduction should be applied while generating the parity game. In the following sections, we explain how this can be achieved using parameterised Boolean equation systems, which can compactly represent parity games.

In this section, we rely on abstract data types and their non-empty data sorts, which are denoted with the letters D and E. The corresponding semantic domains are \mathbb{D} and \mathbb{E}. Furthermore, B and N represent the Booleans and the natural numbers respectively, and have \mathbb{B} and \mathbb{N} as semantic counterpart. The set of data variables is \mathcal{V}, and its elements are usually denoted with d and e. To interpret expression with variables, we use a data environment δ, which maps every variable in \mathcal{V} to an element of the corresponding sort. The semantics of an expression f in the context of an environment δ is denoted $\llbracket f \rrbracket \delta$. To update an environment, we use the notation $\delta[v / d]$, which is defined as $\delta[v / d](d)=v$ and $\delta[v / d]\left(d^{\prime}\right)=\delta\left(d^{\prime}\right)$ for all variables $d \neq d^{\prime}$.

Here, we restrict ourselves to giving a short introduction to PBESs; the interested reader is referred to [9].

Definition 6. A predicate formula is defined by the following grammar:

$$
\phi::=b|\phi \vee \phi| \phi \wedge \phi|\phi \Rightarrow \phi| \exists e: E . \phi|\forall e: E . \phi| X(f)
$$

where b is a data term of sort B, e is a variable of sort E, X is a predicate variable of sort $D \rightarrow B$, which is taken from some set \mathcal{X} of sorted predicate variables and argument f is an expression of sort D. The interpretation of a
predicate formula ϕ in the context of a predicate environment $\eta: \mathcal{X} \rightarrow 2^{\mathbb{D}}$, providing an interpretation for predicate variables from \mathcal{X}, and a data environment δ is denoted by $\llbracket \phi \rrbracket \eta \delta$ and inductively defined as follows:

$$
\begin{array}{rlrl}
\llbracket b \rrbracket \eta \delta & \Leftrightarrow \llbracket b \rrbracket \delta & & \llbracket X(f) \rrbracket \eta \delta \Leftrightarrow \llbracket f \rrbracket \delta \in \eta(X) \\
\llbracket \varphi \wedge \psi \rrbracket \eta \delta & \Leftrightarrow \llbracket \varphi \rrbracket \eta \delta \text { and } \llbracket \psi \rrbracket \eta \delta \text { hold } & \llbracket \varphi \vee \psi \rrbracket \eta \delta \Leftrightarrow \llbracket \varphi \rrbracket \eta \delta \text { or } \llbracket \psi \rrbracket \eta \delta \text { hold } \\
\llbracket \varphi \Rightarrow \psi \rrbracket \eta \delta & \Leftrightarrow \llbracket \varphi \rrbracket \eta \delta \text { holds implies that } \llbracket \psi \rrbracket \eta \delta \text { holds } \\
\llbracket \forall d: E . \varphi \rrbracket \eta \delta & \Leftrightarrow \text { for all } v \in \mathbb{E}, \llbracket \varphi \rrbracket \eta \delta[v / d] \text { holds } \\
\llbracket \exists d: E . \varphi \rrbracket \eta \delta & \Leftrightarrow \text { for some } v \in \mathbb{E}, \llbracket \varphi \rrbracket \eta \delta[v / d] \text { holds }
\end{array}
$$

A predicate formula is syntactically monotone iff no predicate variable occurs on the left-hand side of an implication. Without loss of generality, in this paper we only consider PBESs where all the predicate variables have exactly one parameter of the same data sort D. In the examples, we may use predicate variables with multiple parameters.

Definition 7. A parameterised Boolean equation system (PBES) is a sequence of equations that follow the grammar

$$
\mathcal{E}::=\emptyset|(\nu X(d: D)=\varphi) \mathcal{E}|(\mu X(d: D)=\varphi) \mathcal{E}
$$

where \emptyset is the empty PBES, μ is the least and ν the greatest fixpoint operator, and $X \in \mathcal{X}$ is a predicate variable of sort $D \rightarrow B$. The right-hand side φ is a syntactically monotone predicate formula. Lastly, $d \in \mathcal{V}$ is a parameter of sort D.

In the remainder, we often omit the trailing \emptyset. The right-hand side of an equation for X is called φ_{X}. The set of predicate variables that are bound in \mathcal{E}, i.e., those that occur on the left-hand side of an equation, is denoted with $\operatorname{bnd}(\mathcal{E})$. Furthermore, the signature of a $\operatorname{PBES} \mathcal{E}$ is defined as $\operatorname{sig}(\mathcal{E})=\operatorname{bnd}(\mathcal{E}) \times \mathbb{D}$. Every predicate variable bound in $\mathcal{E}=\left(\sigma_{1} X_{1}(d: D)=\varphi_{1}\right) \ldots\left(\sigma_{n} X_{n}(d: D)=\varphi_{n}\right)$ is assigned a rank, where $\operatorname{rank}_{\mathcal{E}}\left(X_{i}\right)$ is the number of alternations in the sequence of fixpoint symbols $\nu \sigma_{1} \sigma_{2} \ldots \sigma_{i}$. Observe that $\operatorname{rank}_{\mathcal{E}}\left(X_{i}\right)$ is even iff $\sigma_{i}=\nu$. A PBES is closed if and only if all data variables occurring in a right-hand side φ_{X} are either bound in a quantifier or as a parameter of X and all predicate variables in φ_{X} are in $\operatorname{bnd}(\mathcal{E})$. We say a PBES is well-formed iff there is exactly one equation for every predicate variable $X \in \operatorname{bnd}(\mathcal{E})$. Henceforth, we assume all PBESs are closed and well-formed.

Definition 8. The solution $\llbracket \mathcal{E} \rrbracket \eta \delta$ of a PBES \mathcal{E} in the context of a predicate environment η and a data environment δ, is a predicate environment that is defined inductively:

$$
\begin{aligned}
\llbracket \emptyset \rrbracket \eta \delta & =\eta \\
\llbracket\left(\mu X(d: D)=\varphi_{X}\right) \mathcal{E} \rrbracket \eta \delta & =\llbracket \mathcal{E} \rrbracket \eta\left[\mu T_{X} / X\right] \delta \\
\llbracket\left(\nu X(d: D)=\varphi_{X}\right) \mathcal{E} \rrbracket \eta \delta & =\llbracket \mathcal{E} \rrbracket \eta\left[\nu T_{X} / X\right] \delta
\end{aligned}
$$

with $T_{X}(R)=\left\{v \in \mathbb{D} \mid \llbracket \varphi_{X} \rrbracket(\llbracket \mathcal{E} \rrbracket \eta[R / X] \delta) \delta[v / d]\right\}$.

The intuition behind the solution of a PBES is that priority is given to the fixed points of equations that occur early in the PBES, while the equalities specified by the equations are always satisfied. The existence of the least fixpoint μT_{X} and the greatest fixpoint νT_{X} in the complete lattice $\left(2^{\mathbb{D}}, \subseteq\right)$ is ensured by the monotonicity of the transformer $T_{X}: 2^{\mathbb{D}} \rightarrow 2^{\mathbb{D}}$, which follows from the syntactic monotonicity of φ_{X}. Since the solution of the bound variables of a closed PBES does not depend on the environments η and δ, we often write $\llbracket \mathcal{E} \rrbracket$ instead of $\llbracket \mathcal{E} \rrbracket \eta \delta$.

We use a normal form called standard recursive form (SRF) [16 to facilitate reasoning symbolically about the dependencies between predicate variables.

Definition 9. Let \mathcal{E} be a PBES. Then \mathcal{E} is in standard recursive form (SRF) iff for all $\left(\sigma_{i} X_{i}(d: D)=\phi\right) \in \mathcal{E}$, ϕ is either disjunctive or conjunctive, i.e., the equation for X_{i} has the shape

$$
\sigma_{i} X_{i}(d: D)=\bigvee_{j \in J_{i}} \exists e_{j}: E_{j} . f_{j}\left(d, e_{j}\right) \wedge X_{j}\left(g_{j}\left(d, e_{j}\right)\right)
$$

or

$$
\sigma_{i} X_{i}(d: D)=\bigwedge_{j \in J_{i}} \forall e_{j}: E_{j} \cdot f_{j}\left(d, e_{j}\right) \Rightarrow X_{j}\left(g_{j}\left(d, e_{j}\right)\right)
$$

Furthermore, we add the semantic restriction that for every $(X, v) \in \operatorname{sig}(\mathcal{E})$, at least one condition f_{j} should evaluate to true, i.e., there is a $j \in J$, a data environment δ and a $v_{j} \in \mathbb{E}_{j}$ such that $\llbracket f_{j}\left(d, e_{j}\right) \rrbracket \delta\left[v_{j} / e_{j}, v / d\right]$ holds.

Every clause in the right-hand side of the equation for X_{i} corresponds to a unique event (cf. Section 3). Henceforth, we assume that the index sets for events are disjunct for different equations, i.e., given predicate variables X_{1}, X_{2}, then $J_{1} \cap J_{2}=\emptyset$. This allows us to uniquely identify each event by its index $j \in J_{i}$. The set of all events in a $\operatorname{PBES} \mathcal{E}$ is denoted with $\operatorname{evt}(\mathcal{E})$, defined as $\operatorname{evt}(\mathcal{E})=\bigcup_{X_{i} \in \operatorname{bnd}(\mathcal{E})} J_{i}$. We use the function $\operatorname{op}_{\mathcal{E}}: \operatorname{bnd}(\mathcal{E}) \rightarrow\{\vee, \wedge\}$ to indicate for each predicate variable in a PBES in SRF whether the associated equation is disjunctive or conjunctive. We say an event $j \in J_{i}$ is invisible if the rank and operand are not affected by j, in other words, if $\operatorname{rank}_{\mathcal{E}}\left(X_{i}\right)=\operatorname{rank}_{\mathcal{E}}\left(X_{j}\right)$ and $\mathrm{op}_{\mathcal{E}}\left(X_{i}\right)=\mathrm{op}_{\mathcal{E}}\left(X_{j}\right)$. Otherwise, it is visible.

Definition 10. Let \mathcal{E} be a PBES in SRF, where each equation has the same structure as in Definition 9. Then, the parity game of \mathcal{E} is defined as $G=$ $(\operatorname{sig}(\mathcal{E}), \rightarrow, \Omega, \mathcal{P})$, where
$-\rightarrow$ is the transition relation, which satisfies $\left(X_{i}, v\right) \xrightarrow{j}\left(X_{j}, w\right)$ for given $X_{i}, j \in J_{i}, v$ and w if and only if for some δ, both $\llbracket f_{j}\left(d, e_{j}\right) \rrbracket \delta[v / d]$ and $w=\llbracket g_{j}\left(d, e_{j}\right) \rrbracket \delta[v / d]$ hold;
$-\Omega((X, v))=\operatorname{rank}_{\mathcal{E}}(X)$; and
$-\mathcal{P}((X, v))=\diamond$ iff $\mathrm{op}_{\mathcal{E}}(X)=\vee$.
We remark that parity games constructed according to the above definition often have an infinite state space, e.g., when the PBES has a parameter that is
a natural number. In practice, we only consider the part of the parity game that is reachable from some initial node (X, v).

The following theorem is adapted from [5] and [16], in which parity games and winning strategies are called dependency space [16] and proof graph [5, respectively.

Theorem 2 ([5]). Let \mathcal{E} be a PBES with $X \in \operatorname{bnd}(\mathcal{E})$. Then $v \in \llbracket \mathcal{E} \rrbracket(X)$ iff there is a winning strategy for player \diamond from (X, v). Dually, $v \notin \llbracket \mathcal{E} \rrbracket(X)$ iff there is a winning strategy for player \square from (X, v).

Example 6. Consider the PBES

$$
\begin{aligned}
\nu X(b: B) & =(b \wedge X(\text { false })) \vee \exists n: N . n \leq 2 \wedge Y(b, i f(b, n, 0)) \\
\mu Y(b: B, n: N) & =Y(\text { false }, 0)
\end{aligned}
$$

The six nodes in the parity game which are reachable from (X, true) are depicted in Figure 4. The horizontally drawn edges all stem from the clause $\exists n: N . n \leq$ $2 \wedge Y(b, i f(b, n, 0))$, and are thus labelled with the same event (not shown in the figure). Vertical edges are labelled with $b \wedge X($ false $)$ (on the left) or with $Y($ false, 0$)$ (on the right). The selfloop is also labelled with $Y($ false, 0$)$. All nodes in this game are won by player \square, and thus true $\notin \llbracket \mathcal{E} \rrbracket(X)$ according to Theorem 2

Fig. 4. Reachable part of the parity game underlying the PBES of Example 6, when starting from node (X, true).

7 Implementation

In this section, we give details of a possible implementation of POR on PBESs. This implementation partially implements the framework of 14 and extends it with non-determinism.

Conditions D1, D2w and \mathbf{L} are properties of the (reduced) state space as a whole and they are hard to check locally. Therefore, we need alternative stronger conditions that can help to construct a stubborn set on-the-fly. The most common local condition for \mathbf{L} is the so called stack proviso \mathbf{L}^{S} [17]. This proviso
assumes that the state space is explored with depth-first search (DFS), and it uses the Stack that stores unexplored nodes to determine whether a cycle is being closed. If so, the node will be fully expanded, i.e., $r(s)=$ enabled $_{G}(s)$.
\mathbf{L}^{S} For all nodes $s \in V_{r}$, either $\operatorname{succ}_{G_{r}}(s) \cap \operatorname{Stack}=\emptyset$ or $r(s)=\operatorname{enabled}_{G}(s)$.
To decide locally whether D1 and D2w are satisfied, we need to perform several static analyses on the PBES. To reason about which events are in some sense independent, we rely on the idea of accordance. We define four flavours of accordance, which are all binary relations on events: $D N L, D N S, D N T$ and $D N A$.

Definition 11. Let \mathcal{E} be a PBES in $S R F$ and $G=(V, \rightarrow, \Omega, \mathcal{P})$ its parity game. Then, we define the following accordance relations:

- An, event j left-accords with an event j^{\prime} if it holds that for all nodes s, if $s \xrightarrow{j^{\prime}} s_{1} \xrightarrow{j} s^{\prime}$, then $s \xrightarrow{j} s_{2} \xrightarrow{j^{\prime}} s^{\prime}$ for some node s_{2}. If j does not left-accord with j^{\prime}, we write $\left(j, j^{\prime}\right) \in D N L$.
- Two events j and j^{\prime} square-accord if it holds that for all nodes s, if $s \xrightarrow{j} s_{1}$ and $s \xrightarrow{j^{\prime}} s_{2}$, then $s_{1} \xrightarrow{j^{\prime}} s^{\prime}$ and $s_{2} \xrightarrow{j} s^{\prime}$ for some node s^{\prime}. If two events j and j^{\prime} do not accord, we write $\left(j, j^{\prime}\right) \in D N S$.
- An event j triangle-accords with j^{\prime} if it holds for all nodes s, if $s \xrightarrow{j^{\prime}} s_{1}$ and $s \xrightarrow{j} s_{2}$, then $s_{2} \xrightarrow{j^{\prime}} s_{1}$. If j does not triangle-accord with j^{\prime}, then we write $\left(j, j^{\prime}\right) \in D N T$.
- An event j accords with j^{\prime} if j and j^{\prime} square-accord or if j triangle-accords with j^{\prime}. If j does not accord with j^{\prime}, we write $\left(j, j^{\prime}\right) \in D N A$.

Given a relation R on events, we use $R(j)$ to denote its left projection: $R(j)=$ $\left\{j^{\prime} \mid\left(j, j^{\prime}\right) \in R\right\}$. The definition of left-according, square-according and triangleaccording respectively can be graphically represented as follows.

Note that the relations $D N L$ and $D N T$ are not necessarily symmetric.
Apart from computing an accordance relation between events, which may be over-approximated, we also need to compute in which way events might become enabled. For this, we use necessary enabling sets [7.

Definition 12. Let j be an event that is disabled in some node s. A necessaryenabling set (NES) for j in s is a set of events $N E S_{s}(j)$ such that for all paths $s \xrightarrow{j_{1} \ldots j_{n} j}$, there is at least one i such that $j_{i} \in N E S_{s}(j)$.

For every node and event there might be more than one NES. In particular, every superset of a NES is also a NES. A simple approach to calculate a NES, in a PBES with multiple parameters per predicate variable, is investigating
which parameters influence the validity of conditions f_{j} and which parameters are changed in the update functions g_{j}. More accurate results can be achieved with advanced techniques to extract the control flow from a PBES [11. Overapproximating a NES does not influence the correctness of this approach.

The following three lemmata show how the accordance relations and necessaryenabling set can be used to implement conditions D1, D2w and D2t, respectively. A combination of Lemma 6 and 7 in a deterministic setting appeared as Lemma 1 in [14. Non-determinism does not affect the proof of Lemma 7, so the exact same reasoning can also be found in [14].

Lemma 6. A reduction function r satisfies condition $\boldsymbol{D} \mathbf{1}$ in a node s if for all $j \in r(s)$:

- if j is disabled in s, then $N E S_{s}(j) \subseteq r(s)$ for some $N E S_{s}$; and
- if j is enabled in s, then $D N L(j) \subseteq r(s)$.

Proof. Let s be an arbitrary node and let r be a reduction function that satisfies the conditions above. Furthermore, let $s \xrightarrow{j_{1} \ldots j_{n} j} s_{n}^{\prime}$ be a path such that $j_{1}, \ldots, j_{n} \notin r(s)$ and $j \in r(s)$. We distinguish the following cases:

- If j is disabled in s, it must be the case that $N E S_{s}(j) \subseteq r(s)$ for some $N E S_{s}$. However, according to the definition of a necessary-enabling set, at least one of j_{1}, \ldots, j_{n} is contained in $N E S_{s}(j)$ and thus in $r(s)$. Since this contradicts our assumption that $j_{1}, \ldots, j_{n} \notin r(s)$, we conclude that the path $s \xrightarrow{j_{1} \ldots j_{n} j} s_{n}^{\prime}$ does not exist, and so D1 is satisfied.
- If j is enabled in s, it must be that $D N L(j) \subseteq r(s)$. Since that implies $j_{1}, \ldots, j_{n} \notin D N L(j)$, it follows that for every j_{i} and all nodes t, t_{1} and t^{\prime}, the following holds:

By inductively applying this implication from right to left on the path $s \xrightarrow{j_{1} \ldots j_{n}} s_{n} \xrightarrow{j} s_{n}^{\prime}$, we derive the existence of the dashed transitions in the figure below.

We conclude that the conditions of D1 are satisfied.

Lemma 7. A reduction function r satisfies condition \boldsymbol{D} 2w \boldsymbol{w} in a node s if there is an enabled event $j \in r(s)$ such that $D N S(j) \subseteq r(s)$.
Proof. Let $s \xrightarrow{j_{1} \ldots j_{n}} s_{n}$ be a path such that $j_{1}, \ldots, j_{n} \notin r(s)$ and let $j \in r(s) \cap$ $\operatorname{enabled}(s)$ be an event such that $D N S(j) \subseteq r(s)$. We deduce that $j_{1}, \ldots, j_{n} \notin$ $D N S(j)$, and thus the following implication holds for all j_{i} and nodes t, t_{1} and t_{2} :

Applying this inductively from left to right on the transition $s \xrightarrow{j} s^{\prime}$ and the path $s \xrightarrow{j_{1} \ldots j_{n}} s_{n}$, we derive the existence of the dashed transitions in the following figure.

Hence, j satisfies the conditions of D2w.
Lemma 8. A reduction function r satisfies condition $\boldsymbol{D} 2 \boldsymbol{t}$ in a node s if there is an enabled event $j \in r(s)$ such that $D N A(j) \subseteq r(s)$.
Proof. Let $s \xrightarrow{j_{1} \ldots j_{n}} s_{n}$ be a path such that $j_{1}, \ldots, j_{n} \notin r(s)$ and let $j \in r(s) \cap$ $\operatorname{enabled}(s)$ be an event such that $D N A(j) \subseteq r(s)$. We distinguish two cases:

- It holds that $j_{1}, \ldots, j_{n} \in D N T(j)$. Since $j_{1}, \ldots, j_{n} \notin r(s)$ and $r(s) \supseteq$ $D N A(j)=D N S(j) \cap D N T(j)$, we can deduce that $j_{1}, \ldots, j_{n} \notin D N S(j)$. By following the same reasoning as in the proof of Lemma 7, we derive the validity of $\mathbf{D} 2 \mathbf{t}$.
- There is an $0<i \leq n$ such that $j_{i} \notin D N T(j)$. We consider the smallest such i, i.e., $j_{1}, \ldots, j_{i-1} \in D N T(j)$. With $j_{1}, \ldots, j_{n} \notin r(s)$ and $r(s) \supseteq D N A(j)=$ $D N S(j) \cap D N T(j)$, we deduce that $j_{1}, \ldots, j_{i-1} \notin D N S(j)$ and $j_{i} \notin D N T(j)$. By first applying the square-according relation from left to right on j and j_{1}, \ldots, j_{i-1} and then applying the triangle-according relation on j and j_{i}, we derive the existence of the dashed transitions in the following figure.

Thus j satisfies the conditions of D2t.

7.1 Identifying Similar Events

In PBESs, the same transitions may be encoded in multiple equations. To identify the events that encode a similar transition, we rely on the notion of event equivalence.

Definition 13. Let \mathcal{E} be a PBES in $S R F$ and $X_{1}, X_{2} \in \operatorname{bnd}(\mathcal{E})$. Then the relation $\sim \subseteq \operatorname{evt}(\mathcal{E}) \times \operatorname{evt}(\mathcal{E})$ is such that given two events $j \in J_{1}$ and $j^{\prime} \in J_{2}$, it holds that $j \sim j^{\prime}$ if and only if for all $v \in \mathbb{D}$:

$$
\begin{aligned}
& \left\{v^{\prime} \mid \exists \delta . \llbracket f_{j}\left(d, e_{j}\right) \rrbracket \delta[v / d] \wedge v^{\prime}=\llbracket g_{j}\left(d, e_{j}\right) \rrbracket \delta[v / d]\right\}= \\
& \left\{v^{\prime} \mid \exists \delta . \llbracket f_{j^{\prime}}\left(d, e_{j^{\prime}}\right) \rrbracket \delta[v / d] \wedge v^{\prime}=\llbracket g_{j^{\prime}}\left(d, e_{j^{\prime}}\right) \rrbracket \delta[v / d]\right\}
\end{aligned}
$$

and j and j^{\prime} are both visible or both invisible.
The equivalence relation \sim partitions $\operatorname{evt}(\mathcal{E})$ into equivalence classes. By labelling the parity game of \mathcal{E} with these equivalence classes, more reduction can be achieved in some cases.

7.2 Deterministic Events

So far, we have assumed that the PBESs we consider are non-deterministic. This forces us to use the left-accordance relation to satisfy D1 (cf. the proof of Lemma 6). More reduction can be achieved if a PBES is partly or completely deterministic and some of the conditions can be relaxed. To this end, we identify the concept of a deterministic event: an event j is deterministic if for all nodes t, t^{\prime} and $t^{\prime \prime}$, if $t \xrightarrow{j} t^{\prime}$ and $t \xrightarrow{j} t^{\prime \prime}$, then it must be that $t^{\prime}=t^{\prime \prime}$. We can statically compute which events are deterministic (not considering reachability) with the following function:

$$
\operatorname{det}(j)=\llbracket \forall d, e_{j}, e_{j}^{\prime} .\left(f_{j}\left(d, e_{j}\right) \wedge f_{j}\left(d, e_{j}^{\prime}\right)\right) \Rightarrow g_{j}\left(d, e_{j}\right)=g_{j}\left(d, e_{j}^{\prime}\right) \rrbracket \delta
$$

where δ is an arbitrary data environment.
The following lemma expands on Lemma 6 and shows how knowledge of deterministic summands can be applied to potentially improve the reduction.

Lemma 9. A reduction function r satisfies condition $\boldsymbol{D} \mathbf{1}$ in a node s if for all $j \in r(s)$:

- if j is disabled in s, then $N E S_{s}(j) \subseteq r(s)$ for some $N E S_{s}$; and
- if j is deterministic and enabled in s, then $D N S(j) \subseteq r(s)$ or $D N L(j) \subseteq r(s)$.
- if j is non-deterministic and enabled in s, then $\operatorname{DNL}(j) \subseteq r(s)$.

Proof. Let s be an arbitrary node and let r be a reduction function that satisfies the conditions above. For the cases where j is disabled or j is enabled and $D N L(j) \subseteq r(s)$, see the proof of Lemma 6. Here, we only consider the new case where j is deterministic and enabled in s and $D N S(j) \subseteq r(s)$.

Let $s \xrightarrow{j_{1} \ldots j_{n}} s_{n} \xrightarrow{j} s_{n}^{\prime}$ be a path such that $j_{1}, \ldots, j_{n} \notin r(s)$ and $j \in r(s)$ and let $s \xrightarrow{j} s^{\prime}$. The following implication holds for all j_{i} and nodes t, t_{1} and t_{2} :

Applying this inductively from left to right on the transition $s \xrightarrow{j} s^{\prime}$ and the path $s \xrightarrow{j_{1} \ldots j_{n}} s_{n}$, we deduce the existence of the dashed transitions for some node $s_{n}^{\prime \prime}$.

Since j is deterministic it follows that $s_{n}^{\prime}=s_{n}^{\prime \prime}$, and thus D1 is satisfied.
The sets $D N S$ and $D N L$ are incomparable, so we cannot decide a priori which should be used for deterministic transitions. However, Lemma 9 permits choosing one of the accordance sets on-the-fly. This choice can be made based on a heuristic function, similar to the function for NESs proposed in [14.

8 Experiments

We implemented the ideas from the previous section in a prototype tool built on the mCRL2 toolset 4]. We performed a first experiment with a modified version of Milner's Scheduler [15], that includes, for each of the components, the possibility to break down with the action disaster. Whereas the LTS of the standard version of Milner's Scheduler can be greatly reduced by applying τ confluence, this is not possible on our adapted example. Hence, the state space grows quickly with the number of components. In this experiment, we check the property "as long as no disaster occurs, there is no deadlock". We construct a PBES for several instances of the model, each with a different number of components. From this PBES, we generate both the original parity game and the reduced parity game. The results are listed in Table 1

Table 1. Results of applying POR to Milner's Scheduler with breakdowns. The size of the original and the reduced state space are denoted by $|V|$ and $\left|V_{r}\right|$, respectively.

Number of components	2	3	4	5	6	8	10	12
$\|V\|$	13	37	97	241	577	3073	15361	73729
$\left\|V_{r}\right\|$	10	14	18	22	26	34	42	50

As can be seen on the first row of the table, the size of the original state space grows quickly. However, the reduced state space only grows with four nodes per added component. It is thus feasible to check much larger instances of this model when applying POR on parity games.

9 Conclusion

We have presented an approach for applying partial-order reduction on parity games. This has two main advantages over POR applied on LTSs or Kripke structures: our approach supports the full modal mu-calculus, not just a fragment thereof, and the potential for reduction is greater, because we do not require a singleton proviso. Furthermore, we have shown how the ideas can be implemented with PBESs as a high-level representation. In future work, we aim to improve the prototype implementation and perform a complete experimental evaluation to validate its effectiveness. We also want to investigate the possibility of solving a reduced parity game while is it being constructed. In certain cases, one may be able to decide the winner of the original game from this partial solution.

Acknowledgements The authors would like to thank Antti Valmari for his discussions on the correctness of D1' and for providing the counter-example of Section 4.1 .

References

1. Baier, C., D'Argenio, P., Groesser, M.: Partial Order Reduction for Probabilistic Branching Time. Electronic Notes in Theoretical Computer Science 153(2 SPEC. ISS.), 97-116 (2006). https://doi.org/10.1016/j.entcs.2005.10.034
2. Baier, C., Katoen, J.P.: Principles of model checking. MIT Press (2008)
3. Bengtsson, J., Jonsson, B., Lilius, J., Yi, W.: Partial order reductions for timed systems. In: CONCUR 1998. LNCS, vol. 1466, pp. 485-500 (1998). https://doi.org/10.1007/bfb0055643
4. Bunte, O., Groote, J.F., Keiren, J.J.A., Laveaux, M., Neele, T., de Vink, E.P., Wesselink, J.W., Wijs, A.W., Willemse, T.A.C.: The mCRL2 Toolset for Analysing Concurrent Systems: Improvements in Expressivity and Usability. In: TACAS 2019. LNCS, vol. 11428, pp. 21-39 (2019). https://doi.org/10.1007/978-3-030-17465-1_2
5. Cranen, S., Luttik, B., Willemse, T.A.C.: Proof graphs for parameterised Boolean equation systems. In: CONCUR 2013. LNCS, vol. 8052, pp. 470-484 (2013). https://doi.org/10.1007/978-3-642-40184-8_33
6. Gerth, R., Kuiper, R., Peled, D., Penczek, W.: A Partial Order Approach to Branching Time Logic Model Checking. Information and Computation 150(2), 132-152 (1999). https://doi.org/10.1006/inco.1998.2778
7. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems, LNCS, vol. 1032. Springer (1996). https://doi.org/10.1007/3-540-60761-7
8. Groote, J.F., Sellink, M.P.A.: Confluence for process verification. Theoretical Computer Science 170(1-2), 47-81 (1996). https://doi.org/10.1016/s0304-3975(96)00175-2
9. Groote, J.F., Willemse, T.A.C.: Parameterised boolean equation systems. Theoretical Computer Science $\mathbf{3 4 3}(3)$, 332-369 (2005). https://doi.org/10.1016/j.tcs.2005.06.016
10. Ip, C.N., Dill, D.L.: Better verification through symmetry. Formal Methods in System Design 9(1-2), 41-75 (1996). https://doi.org/10.1007/BF00625968
11. Keiren, J.J.A., Wesselink, J.W., Willemse, T.A.C.: Liveness Analysis for Parameterised Boolean Equation Systems. In: ATVA 2014. LNCS, vol. 8837, pp. 219-234 (2014). https://doi.org/10.1007/978-3-319-11936-6_16
12. Kozen, D.: Results on the propositional μ-calculus. Theoretical Computer Science 27(3), 333-354 (1982). https://doi.org/10.1007/BFb0012782
13. Kurshan, R., Levin, V., Minea, M., Peled, D., Yenigün, H.: Static partial order reduction. In: TACAS 1998. LNCS, vol. 1384, pp. 345-357 (1998). https://doi.org/10.1007/BFb0054182
14. Laarman, A., Pater, E., van de Pol, J., Hansen, H.: Guard-based partial-order reduction. STTT 18(4), 427-448 (2016). https://doi.org/10.1007/s10009-014-03639
15. Milner, R.: A Calculus of Communicating Systems, LNCS, vol. 92. Springer (1980)
16. Neele, T., Willemse, T.A.C., Groote, J.F.: Solving Parameterised Boolean Equation Systems with Infinite Data Through Quotienting. In: FACS 2018. LNCS, vol. 11222, pp. 216-236 (2018). https://doi.org/10.1007/978-3-030-02146-7_11
17. Peled, D.: All from One, One for All: on Model Checking Using Representatives. In: CAV 1993. LNCS, vol. 697, pp. 409-423 (1993). https://doi.org/10.1007/3-540-56922-7_34
18. Ramakrishna, Y.S., Smolka, S.A.: Partial-Order Reduction in the Weak Modal Mu-Calculus. In: CONCUR 1997. LNCS, vol. 1243, pp. 5-24 (1997). https://doi.org/10.1007/3-540-63141-0_2
19. Valmari, A.: A Stubborn Attack on State Explosion. Formal Methods in System Design 1(4), 297-322 (1992). https://doi.org/10.1007/BF00709154
20. Valmari, A.: The state explosion problem. In: ACPN 1996. LNCS, vol. 1491, pp. 429-528 (1996). https://doi.org/10.1007/3-540-65306-6_21
21. Valmari, A.: Stubborn Set Methods for Process Algebras. In: POMIV 1996. DIMACS, vol. 29, pp. 213-231 (1997). https://doi.org/10.1090/dimacs/029/12
22. Valmari, A., Hansen, H.: Stubborn Set Intuition Explained. ToPNoC 10470(12), 140-165 (2017). https://doi.org/10.1007/978-3-662-55862-1

Science Reports

Department of Mathematics and Computer Science Technische Universiteit Eindhoven

If you want to receive reports, send an email to: wsinsan@tue.nl (we cannot guarantee the availability of the requested reports).

In this series appeared (from 2012):

12/01	S. Cranen	Model checking the FlexRay startup phase
12/02	U. Khadim and P.J.L. Cuijpers	Appendix C/G of the paper: Repairing Time-Determinism in the Process Algebra for Hybrid Systems ACP
12/03	M.M.H.P. van den Heuvel, P.J.L. Cuijpers, J.J. Lukkien and N.W. Fisher	Revised budget allocations for fixed-priority-scheduled periodic resources
12/04	Ammar Osaiweran, Tom Fransen, Jan Friso Groote and Bart van Rijnsoever	Experience Report on Designing and Developing Control Components using Formal Methods
12/05	Sjoerd Cranen, Jeroen J.A. Keiren and Tim A.C. Willemse	A cure for stuttering parity games
12/06	A.P. van der Meer	CIF MSOS type system
12/07	Dirk Fahland and Robert Prüfer	Data and Abstraction for Scenario-Based Modeling with Petri Nets
12/08	Luc Engelen and Anton Wijs	Checking Property Preservation of Refining Transformations for Model-Driven Development
12/09	M.M.H.P. van den Heuvel, M. Behnam, R.J. Bril, J.J. Lukkien and T. Nolte	Opaque analysis for resource-sharing components in hierarchical real-time systems - extended version -
12/10	Milosh Stolikj, Pieter J. L. Cuijpers and Johan J. Lukkien	Efficient reprogramming of sensor networks using incremental updates and data compression
12/11	John Businge, Alexander Serebrenik and Mark van den Brand	Survival of Eclipse Third-party Plug-ins
12/12	Jeroen J.A. Keiren and Martijn D. Klabbers	Modelling and verifying IEEE Std 11073-20601 session setup using mCRL2
12/13	Ammar Osaiweran, Jan Friso Groote, Mathijs Schuts, Jozef Hooman and Bart van Rijnsoever	Evaluating the Effect of Formal Techniques in Industry
12/14	Ammar Osaiweran, Mathijs Schuts, and Jozef Hooman	Incorporating Formal Techniques into Industrial Practice
13/01	S. Cranen, M.W. Gazda, J.W. Wesselink and T.A.C. Willemse	Abstraction in Parameterised Boolean Equation Systems
13/02	Neda Noroozi, Mohammad Reza Mousavi and Tim A.C. Willemse	Decomposability in Formal Conformance Testing
13/03	D. Bera, K.M. van Hee and N. Sidorova	Discrete Timed Petri nets
13/04	A. Kota Gopalakrishna, T. Ozcelebi, A. Liotta and J.J. Lukkien	Relevance as a Metric for Evaluating Machine Learning Algorithms
13/05	T. Ozcelebi, A. Weffers-Albu and J.J. Lukkien	Proceedings of the 2012 Workshop on Ambient Intelligence Infrastructures (WAmIi)
13/06	Lotfi ben Othmane, Pelin Angin, Harold Weffers and Bharat Bhargava	Extending the Agile Development Process to Develop Acceptably Secure Software
13/07	R.H. Mak	Resource-aware Life Cycle Models for Service-oriented Applications managed by a Component Framework
13/08	Mark van den Brand and Jan Friso Groote	Software Engineering: Redundancy is Key
13/09	P.J.L. Cuijpers	Prefix Orders as a General Model of Dynamics

14/01	Jan Friso Groote, Remco van der Hofstad and Matthias Raffelsieper	On the Random Structure of Behavioural Transition Systems
14/02	Maurice H. ter Beek and Erik P. de Vink	Using mCRL2 for the analysis of software product lines
14/03	Frank Peeters, Ion Barosan, Tao Yue and Alexander Serebrenik	A Modeling Environment Supporting the Co-evolution of User Requirements and Design
14/04	Jan Friso Groote and Hans Zantema	A probabilistic analysis of the Game of the Goose
14/05	Hrishikesh Salunkhe, Orlando Moreira and Kees van Berkel	Buffer Allocation for Real-Time Streaming on a Multi-Processor without Back-Pressure
14/06	D. Bera, K.M. van Hee and H. Nijmeijer	Relationship between Simulink and Petri nets
14/07	Reinder J. Bril and Jinkyu Lee	CRTS 2014 - Proceedings of the 7th International Workshop on Compositional Theory and Technology for Real-Time Embedded Systems
14/08	Fatih Turkmen, Jerry den Hartog, Silvio Ranise and Nicola Zannone	Analysis of XACML Policies with SMT
14/09	Ana-Maria Şutiii, Tom Verhoeff and M.G.J. van den Brand	Ontologies in domain specific languages - A systematic literature review
14/10	M. Stolikj, T.M.M. Meyfroyt, P.J.L. Cuijpers and J.J. Lukkien	Improving the Performance of Trickle-Based Data Dissemination in Low-Power Networks
15/01	Önder Babur, Tom Verhoeff and Mark van den Brand	Multiphysics and Multiscale Software Frameworks: An Annotated Bibliography
15/02	Various	Proceedings of the First International Workshop on Investigating Dataflow In Embedded computing Architectures (IDEA 2015)
15/03	Hrishikesh Salunkhe, Alok Lele, Orlando Moreira and Kees van Berkel	Buffer Allocation for Realtime Streaming Applications Running on a Multi-processor without Back-pressure
15/04	J.G.M. Mengerink, R.R.H. Schiffelers, A. Serebrenik, M.G.J. van den Brand	Evolution Specification Evaluation in Industrial MDSE Ecosystems
15/05	Sarmen Keshishzadeh and Jan Friso Groote	Exact Real Arithmetic with Pertubation Analysis and Proof of Correctness
15/06	Jan Friso Groote and Anton Wijs	An $O(m \log n)$ Algorithm for Stuttering Equivalence and Branching Bisimulation
17/01	Ammar Osaiweran, Jelena Marincic Jan Friso Groote	Assessing the quality of tabular state machines through metrics
17/02	J.F. Groote and e.P. de Vink	Problem solving using process algebra considered insightful
18/01	L. Sanchez, W. Wesselink and T.A.C. Willemse	BDD-Based Parity Game Solving: A comparison of Zielonka's Recursive Algorithm, Priority Promotion and Fixpoint Iteration
18/02	Mahmoud Talebi	First-order Closure Approximations for Middle-Sized Systems with Non-linear Rates
18/03	Thomas Neele, Tim A.C. Willemse and Jan Friso Groote	Solving Parameterised Boolean Equation Systems with Infinite Data Through Quotienting (Technical Report)
18/04	Daan Leermakers, Behrooz Razeghi, Shideh Rezaeifar, Boris Škorić, Olga Taran Slava Voloshynovskiy	Optical PUF statistics
19/01	Maurice Laveaux, Jan Friso Groote and Tim A.C. Willemse	Correct and Efficient Antichain Algorithms for Refinement Checking
19/02	Thomas Neel, Tim A.C. Willemse and Wieger Wesselink	Partial-Order Reduction for Parity Games with an Application on Parameterised Boolean Equation Systems (Technical Report)

