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 CURRENT
OPINION The ins and outs of engineering functional tissues

and organs: evaluating the in-vitro and in-situ
processes

Nicholas A. Kurniawana,b

Purpose of review

For many disorders that result in loss of organ function, the only curative treatment is organ transplantation.
However, this approach is severely limited by the shortage of donor organs. Tissue engineering has emerged
as an alternative solution to this issue. This review discusses the concept of tissue engineering from a technical
viewpoint and summarizes the state of the art as well as the current shortcomings, with the aim of identifying
the key lessons that we can learn to further advance the engineering of functional tissues and organs.

Recent findings

A plethora of tissue-engineering strategies have been recently developed. Notably, these strategies put
different emphases on the in-vitro and in-situ processes (i.e. preimplantation and postimplantation) that take
place during tissue formation. Biophysical and biomechanical interactions between the cells and the scaffold/
biomaterial play a crucial role in all steps and have started to be exploited to steer tissue regeneration.

Summary

Recent works have demonstrated the need to better understand the in-vitro and in-situ processes during
tissue formation, in order to regenerate complex, functional organs with desired cellular organization and
tissue architecture. A concerted effort from both fundamental and tissue-specific research has the potential
to accelerate progress in the field.

Keywords

bioreactor, cell–matrix interactions, in-situ tissue engineering, scaffold-free tissue engineering, tissue
regenerative constructs

INTRODUCTION

The past two decades have seen the emergence of tissue
engineering as a promising solution for alleviating the
massive disparity between the demand for organs for
transplantation and the available supply of organs in
the clinic [1,2]. Tissue engineering proposes an alterna-
tive concept of building and regenerating tissues and
organs for transplantation from their components: cells
and/or (bio)materials. As these components can be
made available and prepared in the laboratory, this
concept can potentially yield an unlimited and even
patient-specific source of tissues and organs, thereby
relieving the problem of organ shortage.

Tissue engineering has been applied to engineer
various organs and tissues with diverse functionalities,
from kidney, tendon, and cornea to blood vessels and
the heart. These applications to engineering specific
organsandtissueshavebeenseparatelyandextensively
addressed in excellent recent reviews (see, e.g. [3–6]). In
this opinion article, we will instead focus on the tech-
nological perspective, take a bird’s-eye view of the

major tissue engineering strategies that have been
recently developed, identify the common denomina-
tors as well as the unique strengths and limitations, and
critically evaluate the principal challenges and oppor-
tunities that lie ahead. As will become clear, progress in
the field requires a concerted effort to look more closely
into the fundamental biophysical and biomechanical
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processes that occur preimplantation (in vitro) and
postimplantation (in situ), in order to construct an
efficient and sustainable engineering methodology
for achieving functional tissue and organ regeneration.

TISSUE ENGINEERING STRATEGIES

Various tissue engineering strategies have been
devised and developed over the years. Here we

classify and briefly summarize these strategies based
on the ingredients that are used as a starting point
for regenerating the tissue (Fig. 1 and Table 1).

‘Conventional’ tissue engineering

The ‘conventional’ tissue engineering methods use a
combination of cells and scaffolds or matrices as a
starting point. The first step is obtaining tissue-
matching cells, either from primary source (i.e.
the patient) or from stem cells (e.g. embryonic stem
cells and stromal cells derived from adult bone
marrow or umbilical cord). After in-vitro expansion,
the cells are seeded onto or into the scaffold and
encouraged to populate the scaffold and to produce
their own extracellular matrix as a foundation of a
tissue for transplantation. Finally, the engineered
tissue is implanted. In this approach, the entire
tissue engineering process takes place in vitro.

The first component is the cells – the producer of
thenewtissue.Primaryautologouscellshaveprovided
substantial success as theyhave theadvantageofbeing
taken directly from the tissue source, hence prevent-
ing adverse immune response, are fully differentiated,
and readily produce tissue-specific extracellular
matrix (ECM) [7].However, these cells require invasive
cell collection, suffer from low proliferative capacity,
which may be further limited with increasing donor

KEY POINTS

� Tissue engineering holds the potential of rebuilding
new, functional tissues and organs.

� Tissue engineering involves in-vitro and in-situ steps,
both of which need to be carefully designed and
tailored to achieve tissue function.

� Biophysical and biomechanical interactions between
cells and the scaffold or biomaterials play a crucial
role in both the in-vitro and in-situ steps of tissue
engineering.

� Future studies are expected to deepen our
understanding of dynamic cell–matrix interactions as
well as to develop innovative ways to mimic and
exploit these interactions for steering tissue growth
and remodeling.

FIGURE 1. The workflow of major classes of tissue-engineering strategies. It is important to note that achieving functional
tissues and organs involve processes that take place both in vitro and in situ. In both steps, cells are in continuous dynamic
interactions and adapt to the cues provided by their environments.
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age, and carry the risk of the cells being in a diseased
state [8,9]. The use of stem cells circumvents many of
these drawbacks, although it requires additional steps
of isolating the stem cells, ensuring complete differ-
entiation or removal of all stem cells prior to trans-
plantation, and demonstrating the absence of
teratoma formation in vivo because of the cells’ inher-
ent oncogenic potential [10,11].

The second component is the scaffold. The
original purpose of the scaffold matrices in tissue
engineering is to provide a temporary structural
support for the cells. It is typically a fabricated
three-dimensional construct with interconnected
pores, a hydrogel, or a decellularized ECM of a tissue
[12]. The scaffold consists of biocompatible and
biodegradable synthetic or biological materials
and will be replaced by the new ECM produced
by the cells. Later, it was realized that the scaffold
can be used to deliver growth factors that promote
cell recruitment, proliferation, and matrix deposi-
tion, thereby aiding neotissue formation. This has
led to extensive research investigating the utility of
including modifying factors, such as biologically
active proteins, drugs, and DNA in the scaffolds
for tissue engineering [13,14

&&

,15–18]. More
recently, it has also been recognized that the physi-
cal, structural, and mechanical properties of the
scaffold alone (i.e. even in the absence of chemical
factors) can direct a wide range of cell behaviors
[19–24]. On the one hand, this opens up a wide
array of possibilities to rationally design 3D scaffold
structures with cell-instructive properties, exploit-
ing the rapid advance of high-resolution scaffold
fabrication techniques, to further promote directed
cell infiltration and tissue formation [25

&&

]. On the
other hand, this highlights the need to carefully
tune the physical properties of the scaffold, not only
to maintain its mechanical integrity, but also to
ensure adequate cell infiltration, differentiation,
and tissue formation after implantation.

Scaffold-free tissue engineering

A scaffold-free tissue engineering approach has also
been widely explored, where the idea is to obtain
engineered tissues directly by assembling cells with-
out the help of scaffolds. To bridge the gap in length
scale between single cells and transplantable tissues
and organs, the process is typically divided into two
steps: prefabrication of multicellular building blocks
and assembly of these building blocks into macro-
scopic tissues. Because of this modular approach,
scaffold-free tissue engineering is also sometimes
called ‘modular’ tissue engineering [26]. Similar to
conventional tissue engineering, here the entire
tissue engineering process also takes place in vitro.

The type of the building blocks from which the
tissue is assembled defines several scaffold-free tissue
engineering strategies. A common method is to use
cell spheroids or aggregates, which are usually pro-
duced by subjecting cell cultures to rotational forces
or flows, whose speed and duration can be tuned to
control the size of the resulting aggregates [27,28].
The aggregates can then be implanted directly or
coalesced to form larger tissue structures. Another
method is using cell sheets [29]. Cells are expanded
until a confluent monolayer with significant amount
of ECM is obtained, allowing the cell sheet to be lifted
from the surface as a whole [30]. The use of stimuli-
responsive materials as culture substrate allows the
cell–cell junctions and the deposited ECM to be
preserved during lifting [31]. The released cell sheets
can then be manipulated by stacking, layering, or
draping over molds to achieve thick multilayered
tissues [32]. The building blocks can also be obtained
using self-assembly methods [33]. Here, cells are cul-
tured in a non-cell-adherent mold and allowed to
interact with each other, coalesce, and produce their
own ECM. As no external forces are introduced to the
culture, the tissue formation is arguedtobetter mimic
developmental processes.

A shared advantage of these scaffold-free tissue
engineering methods is that they bypass the practi-
cal issues related to the scaffolds, including the
design and fabrication of the scaffold as well as cell
seeding, proliferation, and migration into the scaf-
fold. However, the lack of scaffold also carries the
drawback that both the cell-based building blocks
and the final tissue constructs are often mechani-
cally fragile and prone to damage during manipula-
tion [34]. Moreover, the scaffold-free tissue
engineering methods usually require extended time
to obtain sufficient number of cells and to ensure
fusion of the building blocks to obtain cohesive
tissue constructs. The major strength of scaffold-free
tissue engineering approach is the superior control
over tissue architecture, enabled by controlled
assembly and placement of building blocks consist-
ing of different cell types. In fact, there is a growing
momentum to develop techniques that combine
the strengths of scaffold-based and scaffold-free
approaches (reviewed in [35]).

Bioprinting

A unique strategy has been developed to exploit the
technological advances of additive manufacturing
while at the same time retaining the spatial control
of scaffold-free tissue engineering approaches: bio-
printing. The concept is to deposit suspensions con-
taining cells as well as hydrogels, biomaterials,
growth factors, and any other desired bioactive

In-vitro and in-situ steps in tissue engineering Kurniawan
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molecules (‘bioink’) in a spatially controlled manner
(‘printing’) to achieve 3D tissue-like architectures
[36,37]. The components and composition of the
bioink can be chosen to resemble the conventional
tissue engineering approach using degradable
(natural or synthetic) hydrogels or polymers, or
to resemble the ‘scaffold-free’ tissue engineering
approach by directly printing cell aggregates [38].
Here, again, the complete tissue formation process
takes place in vitro.

The main critical aspects are choosing the bioink
with the desired rheological properties and gelation
kinetics to ensure its printability [39,40], optimizing
the printing strategies and parameters that match
the properties of the bioink [41], and ensuring
fusion and validating the resulting construct struc-
ture and cell viability [42]. The major strength of
bioprinting is its ability to control placement of cells
within a 3D tissue-like constructs.

Cell-free tissue engineering

A diametrically opposite approach of the scaffold-
free tissue engineering has also recently emerged:
cell-free tissue engineering. This approach focuses
on endogenous regeneration of the damaged tissue,
aided by acellular bioresorbable scaffolds that are
implanted in the functional site [43]. The underly-
ing hypothesis in this approach is that the host
response to the implanted scaffold can be steered
to induce regeneration of the functional tissue
[44,45]. The complete tissue formation process
occurs in situ, hence the approach is also known
as ‘in-situ TE’.

The absence of cells allows cell-free tissue engi-
neering to bypass all issues related to cell sourcing
and seeding, simplifies regulatory hurdles, allows
quick and off-the-shelf availability of treatments,
and eliminates the time-consuming and labor-inten-
sive process of in-vitro tissue formation [46]. The
main challenge is scaffold design. In particular, all
aspects of the scaffold, from its material composition,
microstructure, surface chemistry, topography, bio-
activity, mechanical properties, degradation profile,
to its gross macroscopic morphology, must be pre-
ciselydesigned and tailored in vitro to induce the right
tissue-specific responses in vivo. These responses
include the recruitment and infiltration of the
desired (progenitor) cells, differentiation and polari-
zation of the cells, matrix deposition, and the func-
tional maintenance of the tissue construct.
Importantly, all of these steps need to be taken into
consideration in the complex in-situ context, for
example, foreign-body reaction and the associated
immune response, contact with blood flow, and local
mechanical stretching of the tissue.

PUSHING THE (IN-VITRO AND IN-SITU)
BOUNDARIES

The ultimate goal of tissue engineering is to regen-
erate tissue function at the affected site. Different
elements that are needed for tissue function have
started to be tackled, primarily in terms of cellular
composition and tissue architecture. Looking
ahead, we reflect on the in-vitro and in-situ focus
points that represent the outstanding scientific chal-
lenges and exciting technological possibilities in
tissue engineering for the near future.

In vitro: controlling cell organization to
achieve tissue function

In-vitro tissue engineering has made considerable
advances in obtaining tissue constructs with the
desired cell compositions and complex tissue archi-
tectures. One of the most critical next challenges is
to achieve organization at the cell level, which is
especially crucial for the physiological function of
mechanically active tissues like the cardiovascular
and musculoskeletal tissues [47]. The challenge is
two-fold: understanding the fundamental principles
underlying cellular organization in native, living
tissues, and figuring out ways to manipulate cellular
organization in engineered tissues and organs.
Importantly, cellular organization is known to be
governed by the local cell–matrix physical and
mechanical interactions, through processes, such
as contact guidance [48–50], strain avoidance
[51,52], flow-induced alignment [53,54], and curva-
ture avoidance [55–57]. Although the molecular
mechanisms underlying such processes are cur-
rently still intensely debated [58], from a tissue
engineering perspective, these phenomena provide
an attractive avenue for achieving tissue ordering
and organization at the cell scale.

In the context of scaffold-based tissue engineer-
ing, this is possible by designing scaffolds that pro-
vide cells with specific cues like fiber size, pore size,
mechanical properties, and overall geometry [59

&

] –
parameters that can be finely tuned using today’s
scaffold fabrication techniques (e.g. rapid prototyp-
ing, electrospinning/writing) [60], even in combina-
tion with additional environmental cues [61

&

,62
&&

].
For scaffold-free tissue engineering, cell organiza-
tion can potentially be achieved by micropatterning
the multicellular building blocks, for example, aided
by nanotopography/microtopography and DNA or
ligand printing [63,64]. Fundamental research on
cellular response to these local cues using minimal
models is clearly poised to strongly accelerate effi-
cient optimization of the experimental parameters
in achieving this high-resolution cellular organiza-
tion [65]. It is envisioned that this exciting
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development will pave the way to engineered autol-
ogous tissues and organs that are as function-ready
as possible for transplantation.

In situ: understanding, recreating, and
steering tissue remodeling

Urged by the obvious role of the biophysical and
biomechanical interactions between cells and the
cellular environment in tissue formation and func-
tion, there has been a growing need for experi-
mental platforms that allow one to subject cells
and tissue constructs to a variety of biomimetic
physical and mechanical cues in a controllable
manner – ‘bioreactors’ [66,67

&

]. By providing cul-
ture conditions that closely recapitulate the envi-
ronmental conditions of the native/desired tissues
(Fig. 2), the hypotheses are that bioreactors can
promote the formation and growth of viable tis-
sues and organs for the in-vitro steps of tissue
engineering [68] and that bioreactors can help
us predict and steer tissue formation and evolution
for the in-situ steps of tissue engineering in the
presence of passive and active cues from the cellu-
lar microenvironment [69].

In addition to improving the existing bioreac-
tors to further fine tune the in-vitro culture con-
ditions of the tissue constructs, two promising
research directions have started to be explored.
First, in most in-vivo environments, multiple cues
are simultaneously at work, but the combinatorial
effects of multiple environmental cues on cells and

tissues are still poorly understood. Smart designs of
bioreactors will allow decoupling of such cue com-
binations and help bridge our fundamental under-
standing of cell response (typically to single cues)
and physiological tissue functions. For example,
recent development of bioreactors that allow
decoupling of mechanical stretch and shear flow
demonstrates that these cues act nonsynergisti-
cally in regulating cell–cell signaling [70], cell
proliferation [71], and neovessel formation [72],
highlighting the need to better understand the
underlying mechanisms of tissue growth. Second,
bioreactors endow us with the possibility of quan-
titatively controlling the cues in a spatiotempo-
rally resolved manner. When combined with
physiologically relevant scaffold and tissue geom-
etries, this has an enormous potential for disease
modeling and drug screening. For example, by
simulating different in-vivo conditions in vitro,
one can mechanistically identify the possible
causes of the disease and test different therapeutic
strategies systematically [73].

CONCLUSION

Research over the past few years has not only dem-
onstrated significant advances in each of the TE
approaches, but has also resulted in new, innovative
strategies and methodologies that are designed to
overcome the limitations of the existing methods.
This strong technological progress has the potential
to elevate the physiological functionality of the

FIGURE 2. Cell and tissue response is sensitively dependent on cues and stimulation present in their environment. For tissue
engineering purposes, these in-situ cues and stimulations can be mimicked and exploited in vitro to steer functional tissue
formation and regeneration.
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engineered tissues, to broaden the application areas
(i.e. the possibility to engineer more diverse tissues
and organs), and to increase the clinical accessibility
and robustness of the engineered constructs (e.g. by
simplifying the constructs in view of the ethical,
social, and regulatory concerns). At the same time,
fundamental research on cell–matrix and cell–
material interactions has proven to be vital in deep-
ening our understanding of the in-vitro and in-situ
processes during tissue formation and remodeling. A
concerted effort in these basic and technologically
oriented research lines will enable a more directed,
hypothesis-based tissue engineering and away from
inefficient trial-based and error-based approach.
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29. L’Heureux N, Pâquet S, Labbé R, et al. A completely biological tissue-
engineered human blood vessel. FASEB J 1998; 12:47–56.

30. Haraguchi Y, Shimizu T, Yamato M, Okano T. Scaffold-free tissue engineering
using cell sheet technology. RSC Adv 2012; 2:2184–2190.

31. Li M, Ma J, Gao Y, Yang L. Cell sheet technology: a promising strategy in
regenerative medicine. Cytotherapy 2019; 21:3–16.

32. Kim MS, Lee B, Kim HN, et al. 3D tissue formation by stacking
detachable cell sheets formed on nanofiber mesh. Biofabrication 2017;
9; 015029.

33. Saba I, Jakubowska W, Bolduc S, Chabaud S. Engineering tissues without
the use of a synthetic scaffold: a twenty-year history of the self-assembly
method. Biomed Res Int 2018; 2018:1–13.

34. Schon BS, Hooper GJ, Woodfield TBF. Modular tissue assembly strategies
for biofabrication of engineered cartilage. Ann Biomed Eng 2017;
45:100–114.

35. Ovsianikov A, Khademhosseini A, Mironov V. The synergy of scaffold-based
and scaffold-free tissue engineering strategies. Trends Biotechnol 2018;
36:348–357.

36. Zhang YS, Yue K, Aleman J, et al. 3D bioprinting for tissue and organ
fabrication. Ann Biomed Eng 2017; 45:148–163.

37. Cui H, Miao S, Esworthy T, et al. 3D bioprinting for cardiovascular regenera-
tion and pharmacology. Adv Drug Deliv Rev 2018; 132:252–269.

38. Moldovan NI, Hibino N, Nakayama K. Principles of the Kenzan method for
robotic cell spheroid-based three-dimensional bioprinting. Tissue Eng Part B
Rev 2017; 23:237–244.

39. Jia W, Gungor-Ozkerim PS, Zhang YS, et al. Direct 3D bioprinting of
perfusable vascular constructs using a blend bioink. Biomaterials 2016;
106:58–68.

40. Gao T, Gillispie GJ, Copus JS, et al. Optimization of gelatin-alginate compo-
site bioink printability using rheological parameters: a systematic approach.
Biofabrication 2018; 10:034106.

41. Gao G, Kim BS, Jang J, Cho DW. Recent strategies in extrusion-based three-
dimensional cell printing toward organ biofabrication. ACS Biomater Sci Eng
2019; 5:1150–1169.

42. Moldovan NI. Progress in scaffold-free bioprinting for cardiovascular medi-
cine. J Cell Mol Med 2018; 22:2964–2969.

Organogenesis

596 www.co-transplantation.com Volume 24 � Number 5 � October 2019



43. Wissing TB, Bonito V, Bouten CVC, Smits AIPM. Biomaterial-driven in situ
cardiovascular tissue engineering—a multidisciplinary perspective. npj Regen
Med 2017; 2:18.

44. Rothuizen TC, Damanik FFR, Anderson JM, et al. Tailoring the foreign body
response for in situ vascular tissue engineering. Tissue Eng Part C Methods
2014; 21:436–446.

45. Mariani E, Lisignoli G, Borzı̀ RM, Pulsatelli L. Biomaterials: foreign bodies or
tuners for the immune response? Int J Mol Sci 2019; 20:E636.

46. Sengupta D, Waldman SD, Li S. From in vitro to in situ tissue engineering. Ann
Biomed Eng 2014; 42:1537–1545.

47. Bayrak E, Yilgor Huri P. Engineering musculoskeletal tissue interfaces. Front
Mater 2018; 5:24.

48. Ray A, Lee O, Win Z, et al. Anisotropic forces from spatially constrained focal
adhesions mediate contact guidance directed cell migration. Nat Commun
2017; 8:14923.

49. Buskermolen ABC, Suresh H, Shishvan SS, et al. Entropic forces drive
cellular contact guidance. Biophys J 2019; 116:1994–2008.

50. Schoenenberger AD, Foolen J, Moor P, et al. Substrate fiber alignment
mediates tendon cell response to inflammatory signaling. Acta Biomater
2018; 71:306–317.

51. Ristori T, Notermans TMW, Foolen J, et al. Modelling the combined effects of
collagen and cyclic strain on cellular orientation in collagenous tissues. Sci
Rep 2018; 8:8518.

52. Chagnon-Lessard S, Jean-Ruel H, Godin M, Pelling AE. Cellular orientation is
guided by strain gradients. Integr Biol 2017; 9:607–618.

53. Poduri A, Chang AH, Raftrey B, et al. Endothelial cells respond to the direction
of mechanical stimuli through SMAD signaling to regulate coronary artery size.
Development 2017; 144:3241–3252.

54. Wijesekara P, Ng WH, Feng M, Ren X. Bioengineering the innate
vasculature of complex organs. Curr Opin Organ Transplant 2018;
23:657–663.

55. Gouveia RM, Koudouna E, Jester J, et al. Template curvature influences cell
alignment to create improved human corneal tissue equivalents. Adv Biosyst
2017; 2017:1700135.

56. Pieuchot L, Marteau J, Guignandon A, et al. Curvotaxis directs cell migration
through cell-scale curvature landscape. Nat Commun 2018; 9:3995.

57. Werner M, Kurniawan NA, Korus G, et al. Mesoscale substrate curvature
overrules nanoscale contact guidance to direct bone marrow stromal cell
migration. J R Soc Interface 2018; 15:20180162.

58. Tamiello C, Buskermolen ABC, Baaijens FPT, et al. Heading in the right
direction: understanding cellular orientation responses to complex biophysi-
cal environments. Cell Mol Bioeng 2016; 9:12–37.

59.
&

Kennedy KM, Bhaw-Luximon A, Jhurry D. Cell-matrix mechanical interaction in
electrospun polymeric scaffolds for tissue engineering: implications for scaf-
fold design and performance. Acta Biomater 2017; 50:41–55.

This article discusses in detail the ways in which mechanical interactions between
cells and scaffolds or the extracellular matrix can influence tissue-engineering
processes, as well as how such interactions can be taken into account for an
informed design of scaffolds for tissue engineering.
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