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A Hierarchy of Sum-Product Networks using Robustness
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Abstract

Sum-product networks are a popular family of probabilistic graphical mod-
els that have been shown to achieve state-of-the-art performance in several
tasks. When learning sum-product networks from scarce data, the obtained
model may be prone to robustness issues, and where small variations of pa-
rameters could lead to different conclusions. We discuss the characteristics of
sum-product networks as classifiers and study the robustness of them with re-
spect to their parameters. Using a robustness measure to identify (possibly)
unreliable decisions, we build a hierarchical approach where the classification
task in testing time is deferred to another model if the outcome is deemed un-
reliable. We apply this approach on benchmark classification tasks across 47
datasets. Experiments show that the robustness measure can be a meaning-
ful manner to build dynamic ensemble of classifiers and that our Hierarchical
Sum-Product Network guarantees an improvement in accuracy.

Keywords: Sum-product networks; sensitivity analysis; robustness;
classification..

1. Introduction

Probabilistic graphical models allow for the compact specification of un-
certain knowledge through a graphical language which facilitates elicitation,
improves interpretability, and achieves good inferential performance [8, 17].
Sum-Product Networks (spns) are a class of probabilistic graphical models
that allow for the explicit representation of context-specific independence.
They are popular due to their ability to represent complex distributions
while retaining efficient marginal inference [22, 27, 29]. The internal nodes
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of an spn perform (weighted) sums and multiplications, while leaves rep-
resent variable assignments. The sum nodes can be interpreted as latent
variables inducing mixtures of distributions, while the product nodes can be
interpreted as encoding probabilistic independences [14, 25]. We discuss how
spns naturally encompass the Naive Bayes classifier, which partially justifies
their good performance in classification tasks (given that Naive Bayes, albeit
quite simplistic, is one of the top performing classifiers in the literature for
a wide range of problems). We also discuss on other relations of spns and
Bayesian network classifiers.

On par with other probabilistic graphical models, spns learned from data
may generalise poorly for configurations of the variables that do not ap-
pear often, and produce unreliable and overconfident conclusions. One way
in which these problems have been dealt with in the case of other machine
learning algorithms has been through the use of ensemble learning techniques.
Such an approach takes the form of using several base learners and combining
these weak models into a composite strong learner which makes up for their
individual weaknesses. This amounts to a machine learning interpretation
of the principle of the wisdom of crowds [31]. Much of the modern work in
this area owes itself to initial achievements of Schapire [32] and Hansen and
Salamon [15]. Examples of such methods include Boosting [12], Bagging [2]
and Random Forests [3]. In each of these the basic premise of combining a
number of learners together to create a stronger model is shared but the tech-
niques used can differ in a number of ways. While boosting and bagging both
induce new weak learners by manipulating the data used as input to learning,
boosting does so in a manner whereby the output of each weak learner will
have an effect on the next weak learner created. Meanwhile, weak learners
in bagging are created independent from their respective outputs. Random
Forests also achieve its weak learners independently in a manner similar to
bagging to create its decision trees but with added layers of selecting random
subsets of features for its weak learners.

Such techniques have been used with a number of machine learning al-
gorithms but never with spns in conjunction with a measurement of each
learner’s robustness in order to inform the ensemble learning process. The
main contribution of this paper is to introduce an ensemble approach based
on a hierarchy of multiple spns classifiers which defers the decision to the
next classifier when the current prediction is not reliable. As differentiation
factor, this deferral is performed in real time using testing robustness infor-
mation rather than training information. Therefore, this new Hierarchical
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Sum-Product Network approach builds an ensemble model that is not fully
pre-learned with training data. Through the use of a robustness measure-
ment in the procedure of combining our independently created weak learners
as part of the ensemble learning process we seek to overcome some of the
sensitivity to overfitting of pre-learned ensembles and provide an accurate
and reliable technique for classification.

. Such robustness measure can be computed both at training and testing
time and is capable of discriminating reliable versus unreliable predictions,
but it requires the tuning of its threshold parameter (used to split between
reliable and unreliable predictions). For that, we propose to learn the thresh-
old from data, and we empirically show that this framework increases clas-
sification accuracy with small extra effort and performs no worse than the
strongest component spn, that is, we theoretically and empirically verify
that the accuracy of the Hierarchical Sum-Product Network increases with
respect to its strongest component. The hierarchy of spns decides, based on
their robustness measure, whether to defer the responsibility of prediction to
another spn in testing time. The measure of robustness used to build the
hierarchy and learn the automatic threshold is obtained similarly to recent
work on Credal spns [21]. We also explore the effects of parameter tuning
such as the impact of various criteria for learning a robustness threshold as
well as the behaviour when the number of layers used in the ensemble model
are increased.

The paper is divided as follows. Section 2 describes the notation and
defines the spns that are used in this work. It also discusses on a learning
approach and how it relates to some Bayesian network classifiers. Section 3
describes our approach to defer the decision to another spn when the pre-
diction is not reliable enough. Section 4 presents our experimental setup and
the obtained results, and finally Section 5 concludes the paper.

2. Sum-product networks

Random variables are denoted by X with a subscript (e.g., X1, Xi). A
collection of random variables indexed by a set V is denoted by XV = {Xi :
i ∈ V}. A configuration of a collection of random variables is denoted as
XV = xV . We assume that every random variable Xi is categorical and take
values in {1, . . . , |Xi|}. Indicator variables {λi,j : j = 1, . . . , |Xi|} are used
to indicate an outcome of the variable Xi. For any configuration XV = xV
we write λxv to denote the configuration of indicator variables such that
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λi,xi = 1 and λi,j = 0 for all j 6= xi. When the configuration mentions only a
subset of all the variables, say XE = e for E ⊂ V , we write λe to denote the
configuration of indicator variables that assigns λi,j = 0 if i ∈ E and ei 6= j,
and λi,j = 1 otherwise. That is, λe is the configuration of indicator variables
that is consistent with the configuration e and assigns 1 to indicator variables
associated to unrealised random variables.

An spn is a concise graphical representation of the multilinear polynomial
specifying a (discrete) probability measure [7]. In more detail, an spn is a
weighted, rooted and acyclic directed graph where internal nodes are labelled
as either sum or product operations and leaves are associated with indicator
variables. We assume that every indicator variable appears in at most one
leaf node. Every arc from a sum node i to a child j is associated with a
non-negative weight wij. Given an spn S and a node i, we denote Si the
spn obtained by rooting the network at i, that is, by discarding any non-
descendant of i (other than i itself). We call Si the sub-network rooted at
i. If w are the weights of an spn S and i is a node, we denote by wi all
the weights in (any node of) the sub-network Si rooted at i, and by wi the
vector of weights wij associated with arcs from i to children j. The height of
a (sub)network S equals the longest path (in number of arcs) from the root
to the deepest internal node (hence we do not count leaves as for the height).

The value of an spn S at a given configuration λ of its indicator variables,
written S(λ), is defined recursively in terms of its root node i. If i is a leaf
node associated with indicator variable λi,xi then Si(λ) = λi,xi . Else, if i is a
product node, then Si(λ) =

∏
j S

j(λ), where j ranges over the children of i.

Finally, if i is a sum node then Si(λ) =
∑

j wijS
j(λ), where again j ranges

over the children of i. The scope of an spn with a single (leaf) node is the
respective random variable. The scope of an spn with a root node which is
not a leaf is the union of the scopes of the sub-networks rooted at every child
of such root node. Every joint distribution over categorical random variables
can be represented by an spn. In order to ensure that any spn computes a
valid distribution and its marginals, we impose the following properties [26]:

Completeness: The scopes of children of a sum node are identical;

Decomposition: The scopes of children of a product node are pairwise
disjoint;

Normalisation: Weights are positive and the sum of the weights of arcs
leaving a sum node is one (the latter is without loss of generality).
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Every spn specifies a probability measure P such that P(X = x) = S(λx)
under such conditions, and a marginal probability can be computed by set-
ting all indicator variables of the summed out variables to one. Let E ⊆ V
and consider some evidence XE = e. Then P(XE = e) can be computed as
S(λe) [27]. Hence, it follows that S(λe) =

∑
x∼e S(λx), where x ∼ e rep-

resents all configurations of X = x that agree with evidence XE = e. The
evaluation of an spn for a given configuration λ of the indicator variables
can be performed by a bottom-up message propagation scheme where each
node sends to its parent its value. P(X = x) can also be computed by partial
propagation over a subset of the SPN nodes rather than a full propagation
over all nodes in the SPN [5]. The whole procedure takes linear time and
space (in the SPN size). Conditional probabilities can also be obtained in
linear time either by evaluating the network at query and evidence (then
dividing the result) or by applying Darwiche’s differential approach, that
propagates messages up and down the network [7, 25]. Other inferences such
as maximum-a-posteriori inference are however NP-hard to compute or even
to approximate [6].

2.1. Learning from data

Many algorithms have been devised to “learn” spns from data [1, 11,
14, 18, 23, 24, 28, 30, 35]. A well-used approach is to employ a greedy
search on the space of spns augmenting the network in either a top-down or
bottom-up fashion. The sum nodes in an spn can be interpreted as hidden
(latent) variables in a mixture model, and the product nodes can be seen
as defining context-specific independences [25, 27]. The number of values of
the hidden variable (and hence the number of mixtures) corresponding with
a sum node is the number of outgoing arcs. For instance, [14]’s LearnSPN
algorithm starts with a single node representing the entire dataset, and re-
cursively adds product and sum nodes that divide the dataset into smaller
datasets (if columns are variables and rows are samples, then sum nodes can
be seen as horizontal partitions, while product nodes are vertical partitions)
until a stopping criterion is met. Product nodes are created by using inde-
pendence tests (pairwise tests will form a dependency graph, and variables
in distinct components of the graph become the scope of the children of the
product node), while sum nodes are created by performing clustering on the
row instances. The weights associated with sum nodes are learned as the
proportion of instances assigned to a cluster. In principle any independence
test and clustering method can be used. Since we are mainly interested in
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studying the possibility of cascading models and how that can improve ac-
curacy, we decided to employ efficient and well-known approaches for those
tasks. During clustering, we run an improved partition around medoids
(PAM) [16, 19] method for its superior efficiency in comparison to the EM
and original PAM algorithm suggested in previous approaches [5, 10, 14, 34].
This allows for faster and efficient learning for larger datasets., and as in-
dependence test we employ the G-test [33] (leaving the exploration of other
methods for future work – in spite of that, these choices have been shown to
yield good accuracy, as we will also see in the experiments).

One of the possible uses of spns is in building probabilistic classifiers,
that is, in estimating a probability distribution over class and attribute val-
ues, which can then be used to classify objects into classes by maximising
the class conditional probability [13]. Image-completion is another common
application of spns [1, 4, 10] closely related to classification. For instance,
[27] learned spns to predict the missing pixels of an image. We employ two
variations that can be valuable for classification: (1) we allow the spn learn-
ing to start with either a product or a sum node (a parameter controls that;
we call it a sum-rooted spn if the root is a sum node, and product-rooted
spn otherwise); (2) we may force the first sum node containing a target vari-
able (the class variable in classification problems) to be partitioned based on
the values of that variable (we call this as class-discriminative spn, since the
data is partitioned by the class values). Finally, we also control the maxi-
mum height of the learned spn. If we define an upper bound height h, then
when a node reaches depth h− 1, it is forced to become a product node with
all variables independent of each other, where each child will be a single sum
node (at height h) with univariate scope defining an univariate probability
distribution for that variable (and will have as children the indicator func-
tions for it). The height control is intended to analyse if the learned spns are
prone to overfitting related to their depth, but it also allows us to create a
clear relationship between spns and other classifiers. The learning algorithm
is displayed below.

learn(D, product-first, class-discriminative, max-height, height): returns an
spn
Inputs: D: dataset; product-first and class-discriminative: Booleans, max-height:
controls the height; height: starts at 0 for the main root node

1. If D contains a single variable, then
(a) Create a sum node S with children as the leaf nodes corresponding to the val-

ues of that variable, and weights according to their frequencies (with possible
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regularisation) in the data.
(b) Return S.

2. If height equals max-height−1, then

(a) Create a product node S and partition the dataset into D1, . . . , Dt (where t
is the number of variables in D), with one single variable per Di.

(b) For i = 1, . . . , t, call learn(Di, false, false, max-height, height+1) and
add these spns as children of S.

(c) Return S.

3. If product-first, then

(a) Create an empty product node S. Create an empty (undirected) graph.
(b) For every i, j, compute G-test(D,Xi, Xj) and if the p-value is below pval-

threshold (a global parameter), include an edge (i, j) in the graph.
(c) Compute the connected components C1, . . . , Ct of the graph, and partition

the dataset D into D1, . . . , Dt based on the variables that appear in each
component (Di shall contain all data related to variables in Ci).

(d) For i = 1, . . . , t, call learn(Di, false, class-discriminative, max-height,
height+1) and add each returned spn as a child of S.

(e) Return S.

4. Create an empty sum node S.

5. If class-discriminative (and the class variable is part of D), then

(a) Partition the dataset D into D1, . . . , Dt, with t the number of classes, based
on the values of the class variable in D.

(b) For i = 1, . . . , t, call learn(Di, false, false, max-height, height+1) and
add each returned spn as a child of S with associated weight proportional to
the number of occurrences (with a possible regularisation) of i in the class
variable.

(c) Return S.

6. Partition the dataset D into D1, . . . , Dt, using a call to the partition-around-
medoids clustering algorithm, where samples are seen as multi-dimensional vectors.

7. For i = 1, . . . , t, call learn(Di, false, false, max-height, height+1) and add
each returned spn as a child of S with associated weight proportional to number of
samples in cluster i.

8. Return S.

By using some particular settings when calling the learning algorithm, we
obtain variations/generalisations of some Bayesian network classifiers.

Lemma 1. Let a Bayesian network classifier be defined as a model where
the class variable is the only root node and has all features (that is, non-class
variables) as children. A class-discriminative sum-rooted spn generalises
a Bayesian network classifier, that is, it can encode the same model as a
Bayesian network classifier.
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Proof. Because the class variable of the Bayesian network classifier is a par-
ent of every single variable, their conditional probability tables will be in-
dexed by the values of the class variable, and hence will be learned using
the data related to that class only. Each child of the root node of the class-
discriminative sum-rooted spn can represent the conditional probability of
the features given that particular value of the class, so it can encode the
same distribution as the Bayesian network classifier (since an spn can repre-
sent any distribution, even if that may be resource demanding). Finally, the
marginal probability of the class, which is encoded in the root node of the
Bayesian network classifier, can be encoded in the weights of the sum node
which is the root of such spn.

Lemma 2. A class-discriminative sum-rooted spn of height 2 generated by
Algorithm learn is equivalent to a Naive Bayes model.

Proof. The result follows from Lemma 1 and the height restriction, since ev-
ery node which is a child of the root node will reach the limit of the height
and will become a product node that makes all variables independent. There-
fore, the sum nodes of the next layer represent the conditional probability of
each feature given the class (for the appropriate value of the class according
to the path from the root of the spn).

Lemma 3. A class-discriminative product-rooted spn of height 3 generated
by Algorithm learn is equivalent to a Naive Bayes model over variables that
were not discarded by a feature selection procedure (based on components of
the independence graph constructed by pairwise tests).

Proof. There are two points to realise here:

1. The product root node will act as a feature selection procedure, since
the scopes of the children are disjoint, only one of them will have the
class variable; during testing, the messages coming from all other chil-
dren will be irrelevant, since they will be the same whichever is the
class value, and thus they could be safely ignored (computing them
does not cost much in spns, but crucially they do not interfere in the
class prediction).

2. The only child of the product root node containing the class will be a
class-discriminative sum-rooted spn of height 2, because (by the learn-
ing algorithm) the child of a product node cannot be another product
node (it is redundant to have a product node as child of a product
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node). Finally, by Lemma 2 this sub-network is equivalent to a Naive
Bayes model.

3. Hierarchical Sum-Product Networks

To expand on the ability of spns to apply successfully to classification on
datasets which are perhaps noisy or otherwise difficult to decisively classify,
we propose an approach of cascading spns into what we term a Hierarchical
Sum-Product Network (hspn). This is achieved through a combination of en-
semble learning methods and the deferring of predictions using multiple spn
models achieved through the use of a Credal Sum-Product Network (cspn).

As a high-level overview, our approach is one wherein a list of spns or-
dered according to their training prior, are learned using subsets of the train-
ing data and used to return a classification. The decision-making process in
testing time iterates through the hierarchy of spns as each fails our expected
robustness target until one finally meets it or the last model has been reached.
The ranking of the models in the list, the model which is used as the final
default model, and the criteria and thresholds learned to make this possible
are described in further detail here.

To begin with, our approach takes the existing data and generates a train-
ing and test set through cross-validation. Within each split, the training set
is used to generate a predetermined number u of smaller subsets of equal
size as part of a bagging process with repetition. For each of these generated
bags, a different spn Si is learned with i = 1, ..., u, all with identical param-
eters in order to produce a diverse set of models in a generalisable way (the
spns vary because they are trained in different subsets of the training set).

As the next step, a criterion needs to be applied in order to combine or
order these models and their decisions. Existing common approach based
that decision solely in their training or validation accuracy. While this is
logical, it is also susceptible to overfitting to the training data. Instead, we
propose a schema where the models are ordered by the expected training
accuracy, and the final decision (about which model to use for prediction of
a given test instance) is taken on the basis of the estimated robustness of the
given test instance. This allows to generalise better to new unseen samples
and circumstances and mitigate severe overfitting to training data.

In order to obtain a measure of robustness for issued predictions, we allow
parameters of the model to vary within a certain set and verify whether the
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outcome (predicted class) remains the same whichever choice of parameters
we make. Let Sw denote a spn whose weights are w. We can investigate
the robustness of a model by varying the weights w inside some fixed space,
subject to the constraint that they still define a (normalised) spn, following
on the work of [21]. A cspn is a set {Sw : w ∈ C}, where C is a subset of
the Cartesian product of probability simplexes, and each probability simplex
constrains only the weights associated with a single sum node. In this way,
an spn is a cspn where weights take values in a singleton C, and every choice
of weights w inside C specifies an spn. Thus, the cspn induces a credal set,
that is, a (not necessarily convex) set of probability measures [20]. We are
particularly interested in cspns formed as follows: for each sum node with
local weights w, we use an ε-contamination of w (with 0 ≤ ε ≤ 1) such that
no child value vj is below zero and the value of all children sum to 1

Cw,ε =

{
(1− ε)w + εv : vj ≥ 0,

∑
j

vj = 1

}
. (1)

Under such definition, we obtain w when ε = 0 (a precise spn) and the whole
simplex when ε = 1 (a vacuous spn).

Now, given a class variables Xc, evidence XE = e, and an cspn, we say
that an assignment c1 for Xc credally dominates another assignment c2 if

min
w∈C

[
Sw(λc1,e)− Sw(λc2,e)

]
> 0 (2)

whereby the configuration c1 alongside evidence e produces an spn more
probable at the smallest level of contamination than an spn with configu-
ration c2. This task can be performed efficiently in polynomial time [21]
when the number of classes is bounded and the internal graph of the spn is
a tree. Following the proposals of [9], assume an spn has been learned from
data, and used to issue a classification based on the maximum probability
class label. Given a value ε > 0, we say that a classification is ε-robust if
the respective class label is not credally dominated by any other class label
in the cspn obtained by ε-contamination of the spn. The robustness of a
prediction ρ is the largest value of ε for which the maximum probability class
is robust.

In this work, we employ the robustness of a prediction ρ to decide whether
to defer the decision to another model. Our approach here is based on cas-
cading our two or more cspns obtained through our earlier bagging until
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one of them is confident in providing a decision or the last cspn is reached.
Because the cspns issue the same prediction of the corresponding spn, from
now on we call them spns (but bear in mind that they are equipped to issue
a robustness value). In other words, a list of spns S1, . . . , St (with t ≥ 2)
has been learned from data and a list of robustness thresholds τ1, . . . , τt are
also constructed during training. These spns are then used in order to pre-
dict the class variable, in sequence. When Si is employed to predict instance
x, we compute the robustness value ρSi

(x) of the issued prediction, and if
ρSi

(x) ≤ τi, then we ignore the prediction and increment i, moving to the
next spn until we reach the last level of our hierarchy (in that case, the last
spn is used regardless of its robustness value).

Before doing this however, we order our list of spns in a meaningful way
to attempt to make the most out of their respective strengths. Firstly we
sort our models by their training accuracy Acc so that the spn Sb with the
highest accuracy is selected as initial level:

Sb = arg max
∀i=1...t

{Acc(Si|Di} . (3)

where Di is the training dataset used to learn Si and Acc(S|D) means the
accuracy of classifier S over instances D. This initial level is followed by the
rest of the models in decreasing order of accuracy, repeating the process with
the remaining spns. Assuming perfect additional models, the maximum
margin of improvement that our hierarchical ensemble could gain, in this
ideal case, regarding this first level is defined as the difference between the
maximum possible accuracy (that is, 100%) and Acc(Sb|D). Since those ideal
models cannot be expected, we define a parameter g to represent the targeted
gain we wish to see from each following weaker model in the hierarchy:

Acc(Sb|D) +
(

1− Acc(Sb|D)
)
· g . (4)

where g is a percentage 0 ≤ g ≤ 1 of the difference between our best spn
and a perfect 100% accuracy which we will set as our improvement target
when learning thresholds. If g = 0, we simply want accuracy better than
Acc(Sb|D), while g → 1 tends to 100% accuracy as goal (g = 1 would ensure
that specific classifier is never used to classify).

To illustrate the purpose of this, let’s imagine a hierarchy with two ranked
spn with training accuracies of 0.8 and 0.7 respectively. Since the second spn
model SPN 2 is weaker a priori, we only expect decisions to be taken by this
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model in the subset of samples where the decisions are very accurate, in other
words, more accurate than the targeted gain defined in Eq. 4. For achieving
this accuracy with SPN 2, weaker and less robust samples are discounted from
the subset until Acc(S ′2|More robust decisions only) ≥ Targeted Gain.

Let D(S, τ) = {x ∈ D : ρS(x) ≥ τ}, that is, D(S, τ) is the subset of
instances of D over which S has robustness at least τ . Since those weaker
models are only deemed to be used in those cases where there is some extra
confidence on their prediction, their prediction will only be considered if the
robustness value ρ is above a model’s robustness threshold τi. Following the
previous example, decisions at testing time are only referred to teh second
and following levels if the prediction of SPN 1 is deemed not to be reliable,
which is measured by the robustness of its decision, that is below the learned
robustness threshold τi. Thus, these thresholds values τi are learned during
training as the minimum threshold for which the accuracy of the subset of
predictions fulfilling the robustness condition is such that Acc(Si|D(Si, τi)) >

Acc(Sb|D)+
(

1−Acc(Sb|D)
)
·g. No τ threshold is needed for the last level of

the hierarchy since the last spn prediction is used regardless of its robustness
value.This is obtained by algorithms hspn learn and hspn predict.

hspn learn(D, t, g): returns the learned models and threholds required for the Hierar-
chical SPN
Inputs: D: training dataset; t: number of of spns to be learned through bagging. g:
improvement percentage used to calculate the expected gain in the hierarchy.

1. For i = 1, . . . , t
(a) Create a subsampled dataset Di using bagging.
(b) Train Si ←learn(Di, product-first, class-discriminative, max-height,

height) using global pre-defined parameters.

2. Estimate the spn of maximum accuracy Sb = arg maxi {Acc(Si, Di)},∀i ∈ 1, . . . , t.

3. Sort the spn models in decreasing order of accuracy S′ = Si1 , . . . , Sit , with i1 = b.

4. Add Sb also to the end of the list S′. (A possible add-on here is to replace this
last layer or even first and last layer with a different model, for instance with the
spn learned from the full training data Sfull =learn(D, product-first, class-
discriminative, max-height, height).)

5. For i over the indexes of spns in the list S′ − 1:
(a) Select τi as the smallest τ ∈ [0, 1] so that Acc(S′

i|D(S′
i, τ)) > Acc(Sb|D) +(

1−Acc(Sb|D)
)
· g (if that never happens, then τi ← 1).

6. Return the learned list of sorted models S′ and associated set of τs.

hspn predict(D,S′, τ): returns a set of classifications
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Inputs: D: test dataset; S′: list of spns learned in training and sorted by accuracy; τ : set
of learned thresholds

1. For Dj as the samples in D:

(a) For i over indexes in the list S′:

i. If ρS′
i
(Dj) > τi or S′

i is last in S′, then

A. Take the prediction from S′
i: pred(Dj) = arg maxC PrS′

i
(C|Dj).

B. break

2. Return the set of hspn classifications pred.

When defining the order of our cascading we again sorted the models by
accuracy ranging from the best model to the weakest by training accuracy
with our strongest spn being repeated again as the last model in cascading
(so as to become the surrogate model if no other has issued a prediction).
In doing so we sought to create a model which discriminated heavily against
weaker models except when they were very confident in their predictions,
surpassing in robustness the (expected) better models in the initial levels of
the hierarchy and only if those already did not issue a prediction. The initial
model accepts only the most confident of classifications from its strongest
spn in the list before then deferring to the next strongest if the first model’s
threshold is not met. This repeats with each weaker model. To deal with
those cases where no decision is taken with sufficient robustness throughout
the full hierarchy, a final level is added at the bottom of the hierarchy. This
could be either the model with the highest accuracy in training (that is, re-
peating the first layer of the hierarchy) or a new model with access to all
of the data in training. The result of this combination is that the interme-
diate levels of the hierarchy (which are potentially weaker models) are only
used on the condition that they are extremely confident. Our intuition is
that in doing this our model should only ever improve with cascading with
additional layers. In deciding whether to use a model with access to all the
information or a bag which performed the strongest in training as the final
layer is something that we leave for the experimental section.

The following lemma shows that our hspn approach can only improve
classification accuracy (in asymptotic terms) with respect to the best classi-
fier in the collection.

Lemma 4. Let S ′ = S1, . . . , St−1, St (with S1 = St) be a list of classifiers
and corresponding τ as obtained by the method hspn learn, D the training
data and Dval the validation data, both sampled independently and identically
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distributed. Let C be the classifier as defined by the method hspn predict
with data, S ′ and τ as input. As |D| and |Dval| go to infinity, we have
Acc(C|Dval) ≥ Acc(S1|Dval).

Proof. As |D| and |Dval| go to infinity, Acc(Si|Dval(Si, τi)) approaches the
value Acc(Si|D(Si, τi)) ≥ Acc(S1|D) for every i (by construction). We also
have Acc(S1|Dval) approaching Acc(S1|D), and hence all classifiers, whenever
they are used, obtain accuracy equal or superior to that of S1, and the result
follows.

4. Experiments

We begin the experiments by creating a collection of spns based on
identical learning constraints but obtained via random bagging of the ini-
tial training set with repetition. A total of 47 datasets from UCI (http:
//archive.ics.uci.edu/ml/) were used and the accuracy of the multiple
spns obtained using a 10-fold cross-validation (repeated 6 times and aver-
aged). All datasets were curated and contain only categorical variables. Our
goal is to compare our deferring hierarchical model against non-hierarchical
competitors that may use multiple learned spns. We also aim to perform
ablation experiments for our method in order to examine the effect of differ-
ent parameters on the outcome and deferral process among the hspn layers.
Thus, we will explore the effect of parameters such as the threshold g that
define when an spn issues predictions, and the number of layers in the hier-
archy.

4.1. Comparison with other ensemble ideas

First of all, some alternative well-performing methods were designed to
act as comparison in our experiments. The goal of this initial experiment is to
demonstrate that the hspn approach performs on par with well-performing
approaches, three of which we compare against our hspn and describe here.
As first competitor, we use the best learned individual spn out of all the
bagged models in each fold of the cross-validation. Our second competitor is
an spn obtained using the entire training set (respecting the folds, obviously).
Note that these two approaches are equivalent to our hspn with threshold
parameter g set to 100% and an appropriate last layer, that is, where all
decision are referred to the last level of the hierarchy, which could be defined
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Figure 1: Five-layer hspn average accuracy across all 47 UCI datasets. Threshold g
as defined in Expression 4. Voting is by majority, full-train spn uses all data and no
cascading, while best-full, full-full and best-best indicate which spnis used in the first and
last layers of the hspn model.

as either the best bagging model or the one with the full training set. Finally,
the third comparative approach was implemented comprising of a voting
system whereby the classification which received the most votes from the
spns generated through bagging would be issued with tie-breakers resolved
randomly. Since it is possible to use strongly performing models other than
the best performing spn as first or last layer and still observe an increase in
accuracy as by Lemma 4, three variations of our hspn are tested where the
stronger classifier used for the first and last layers are respectively: the best
spn out of the bagging Sb (best-best) in both layers, the best spn Sb and a
spn trained with the full dataset D before bagging Sfull (best-full), and a spn
trained with the full dataset D Sfull in both layers (full-full). All our hspn
versions in these experiments are composed of five layers, resulting in three
spns created by bagging plus the stronger classifiers as first and final layers.
The comparison is performed ensuring the same conditions to all compared
methods so that the datasets in each fold is exactly the same. The threshold
learning parameter g is varied between 10% and 100%. Each layer is learned
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as a product-rooted spn without learning constraints with regard to height
or class-discrimination.
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Figure 2: Percentage of datasets for which the five-layer full-full hspn wins (in terms of
overall accuracy for a dataset) against competitors (ties are equally split). Therefore,
higher values are better.

In Figure 1 we show the average accuracy across all datasets showing that
on average the hspn model using the full training set as first and last layers
performed the strongest overall with accuracy increasing as the threshold for
deferral was relaxed and more models were utilised in predicting the classes.
Moreover, it can be observed that, while maximum accuracy for our chosen
model is obtained using a threshold g around 20%, this parameter is not
critical and mostly easy to tune since no large decrease is produced for a
large range of values. We also observe that all hspn models obtain average
accuracies higher than that of their initial layer model for all values of g.
Since the full-full hspn model (that is, the one with first and last layer
equal to the spn trained with the full training data, while other layers are
produced by bagging) performs best, and hence we have decided to proceed
with it from now on. In Figure 2 we see the percentage of datasets for which
the full-full hspn obtained a better result than its competitor (hence values
above 50% means that it performed better overall).
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Figure 3: Number of attempts per layer of a five-layer full-full hspn at different thresholds.

4.2. Analysis of hspn Behaviour

The expanded use of other layers can be observed in Figure 3 whereby
as threshold gain is decreased the number of instances being attempted by
each layer increases in proportion to that model’s position in our hierarchy.
Eventually, however the increase in accuracy levels off to varying degrees as
the threshold continues to become more and more flexible. This is more ap-
parent as more and more instances are classified using weaker layers without
the same level of confidence in that layer’s ability to classify it correctly.
However if both first and last layers are the same then this levelling becomes
more protracted. If we look then to Figure 3 it can be seen clearly how
as the threshold is reduced, while each bag layer increases the number and
proportion of instances it classifies, the first layer takes on the vast majority
of new instances initially deferred to the end. Even at a threshold g of 0
we should not expect to see all of the instances being classified by the ini-
tial layer. Most interestingly, the varying value of the threshold has mostly
shifted predictions between first and last layer, while the intermediate layers
take care of a somewhat similar number of predictions where they are confi-
dent enough to issue a classification. In Figure 4 we also note the accuracies
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achieved on the instances classified by those layers. This may suggest that
these layers are only classifying instances for which they are quite certain
of a correct answer. Meanwhile it is apparent from averaging over the ac-
curacy of all datasets that our hspn does not perform much stronger than
that of a single spn trained using the full training set. However, Figure 2
shows the number of individual cases in which our model outperformed each
competitor, making it clear that the hspn succeeded in outperforming each
competitor including the full train spn in considerably more than 50% of the
47 datasets.
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Figure 4: Average accuracy achieved by each layer in a five-layer full-full hspn.

4.3. Ablation Experiments: Increasing the number of layers

Further to this we compare the behaviour of our method when the number
of layers is increased from 5 to 11. A collection of 10 spns are learnt through
bagging as above alongside an spns with access to the full fold training set
and together these constitute a larger hspn. In our results we observed
that the overall behaviour noted with five layers held for extra layers. The
behaviour of proportions of deferral between layers across threshold values
and the relative accuracy of each layer is much the same as with 5 layers. As
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a main variation regarding the smaller hspn it seems apparent that there
is a lower gradient in the accuracy changes regarding the threshold value
as the number of layers increases. However, this levelling off is inevitable
and it would seem that with additional layers comes less requirement for the
threshold to be strict. The number of cases in which the hspn outperforms
the Voting spn model reducing with the increased layers suggests that adding
additional layers will add to the overall complexity of the model and that the
improved performance will not grow linearly with the number of layers. The
process of learning larger numbers of spn also brings with it proportionally
increased time costs for relatively little performance gain. A single small
dataset from our experiments saw its runtime increase from 32 seconds to 1
minute and 13 seconds as we increased the number of layers from 5 to 11.
Similarly for a larger dataset the runtime increased from 6 minutes and 53
seconds to 14 minutes and 49 seconds. In total each experiment across all
datasets took around 10 days to complete (if using a single modern CPU).
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Figure 5: Ten-layer hspn analysis. On the left, average accuracy against voting and full
train spns, with superior performance. On the right, percentage of victories against the
same competitors (ties are equally split).

5. Conclusions

In this work we developed a new method of ensemble learning using spns
through the creation of a hierarchy of learned classifiers. In testing time, this
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herarchical approach defers the classification of the ensemble model to the
hierarchical layer deemed most confident according to its robustness value.
This robustness having been computed by a credal sum-product network,
obtained by perturbing parameters of the original sum-product network. The
proof for Lemma 4 is presented to show that our approach can only improve
classification accuracy with respect to the initial classifier in the ensemble
hierarchy. This proof is given empirical weight through multiple experiments
using UCI datasets. The behaviour of the hierarchical spn continues to be
observed when the number of hierarchical layers is increased substantially
and also when using different types of models for its initial and final layers.
These experiments also suggest that this approach can be more powerful than
a number of state of the art competitors.
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