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Abstract

In this paper we introduce a new generalisation of the relative Fisher Information for Markov jump
processes on a finite or countable state space, and prove an inequality which connects this object with
the relative entropy and a large deviation rate functional. In addition to possessing various favourable
properties, we show that this generalised Fisher Information converges to the classical Fisher Information
in an appropriate limit. We then use this generalised Fisher Information and the aforementioned inequality
to qualitatively study coarse-graining problems for jump processes on discrete spaces.
c⃝ 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
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1. Introduction

Lyapunov functions are important tools in the study of evolution equations. The relative
entropy, which for two probability measures µ, ρ ∈ P(X ) is given by

H (µ|ρ) =

⎧⎨⎩
∫
X

f log f dρ, if f =
dµ
dρ

exists,

+∞, otherwise,
(1)

is one such Lyapunov function that plays a crucial role in the study of forward Kolmogorov
equations. These equations describe the evolution of the distribution of a Markov process.
In recent years, extensive research has been devoted to the study of the relative entropy and
the Fisher Information (entropy production) which, amongst other things, are used to study the
trend to equilibrium for both continuous [1,26] and discrete state-space Markov processes [3,9].
Typically this involves studying the time evolution of the relative entropy (1) where ρ is the
stationary solution and µt is the time-dependent solution of the forward Kolmogorov equation
under consideration. Although it is not a metric on the space of probability measures, relative
entropy has been used as a notion of distance to equilibrium due to its favourable properties
and natural connections to statistical physics.

As opposed to what was described above, in certain cases the relative entropy is also
used to compare the time-dependent distributions of two different Markov processes. In the
context of hydrodynamic limits, Yau [41] uses the relative entropy to compare the evolution of
finite particle evolution with certain local-Gibbs states. Legoll and Leliévre [23] use relative
entropy to compare an approximate solution with the true solution of a Fokker–Planck equation
arising in molecular dynamics, and Bogachev et al. [4] compare solutions of two different
Fokker–Planck equations in the context of mean-field games.

It has recently been shown [11] that the relative entropy comparing an arbitrary
time-dependent probability measure to the solution of a Fokker–Planck equation is directly
linked to the Fisher Information and the large-deviation rate functional via an inequality. We
refer to [37, Chapter 2] for a detailed overview. In [12] the authors present a new variational
approach that uses this inequality to qualitatively study coarse-graining problems in (nonlocal)
Fokker–Planck equations. In [11] this inequality has been used to quantitatively estimate
coarse-graining errors.

While all the aforementioned references deal with diffusion processes, not much is known
about the relative entropy of two time-dependent distributions for jump processes. In recent
years, for processes on discrete spaces, new Wasserstein-like gradient-flow structures with
relative entropy as the driving functional have been discovered [7,14,24,27,28]. In this paper
we ask if the ideas described above for the continuous case can be generalised to the discrete
case, specifically for Markov jump processes:

Starting with Markov jump processes, can the relative entropy of two time-dependent
curves be connected to the large-deviation rate functional? Furthermore, can this connec-
tion be exploited to study coarse-graining problems?

In this paper we provide an answer to these questions by generalising the notion of Fisher
Information for Markov processes. In addition to studying its properties, we will show that
this generalised Fisher Information is naturally related to the relative entropy and the large-
deviation rate functional. Finally we apply this inequality to study a coarse-graining problem
on a discrete state space.
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1.1. Relative Fisher Information and large-deviation rate functional

Before we present our contributions to answering the questions mentioned above (see
Section 1.2), we introduce the classical relative Fisher Information and the large-deviation rate
functional. Unlike the relative entropy, these two objects explicitly depend on the evolution
equation under consideration.

In this paper we are interested in jump processes on a finite or countable state space X .
Using P(X ) to denote the space of probability measures on X , the law of the jump process
ρ : [0, T ] → P(X ) satisfies the evolution equation{

∂tρ = LTρ,

ρt=0 = ρ0.
(2)

In Eq. (2), LT is the adjoint of L : c0(X ) → c0(X ), the generator of the process. Note that in
the context of stochastic processes Eq. (2) is usually referred to as the forward Kolmogorov
equation. Since X is discrete, we use matrix notation and write the operator L as a (potentially
infinite) matrix L ∈ RX×X . The generator L satisfies

(L1) L(x, y) ≥ 0 for all x ̸= y and
∑
y∈X

L(x, y) = 0 for all x ∈ X , (3a)

(L2) sup
x∈X

|L(x, x)| < ∞, (3b)

(L3) L is irreducible. (3c)

These conditions are sufficient for L to be a bounded Markov operator L : c0(X ) → c0(X ),
where c0(X ) is the Banach space of functions on X that converge to zero outside of large
finite subsets of X , equipped with the supremum norm. Since LT generates a uniformly
continuous semigroup in ℓ1(X ) [13, Proposition 2.11], Eq. (2) admits a unique solution
ρ ∈ C1([0, T ]; ℓ1(X )) [13, Theorem 6.6]; since Eq. (2) preserves non-negativity and total mass,
we have ρ ∈ C([0, T ],P(X )) whenever ρ0 ∈ P(X ).

Remark 1.1. The space P(X ) is a subset of ℓ1(X ), and the weak measure topology on
P(X ) coincides with the σ (ℓ1, ℓ∞)-topology on ℓ1(X ). Recall that by Schur’s theorem, weak
and strong convergence on ℓ1(X ) are the same, even though the weak and strong topologies
may be different; therefore functions f : [0, T ] → ℓ1(X ) are strongly continuous if and only
they are weakly continuous. Since ‘weak measure convergence’ in P(X ) is the same as the
σ (ℓ1, ℓ∞)-convergence in ℓ1(X ), we will omit the term ‘weak’ in our discussion and notation,
and simply talk about ‘continuous’ functions from [0, T ] to P(X ) or to ℓ1(X ). □

The classical definition of ‘relative Fisher Information’ arises from the time derivative of
the relative entropy along two solutions of (2). Indeed, for two positive solutions µ, ρ of (2),
we have

d
dt

H (µt |ρt ) = −RL (µt |ρt ), (4)

where µt , ρt denote the time slice at time t , and (4) is used to define the right-hand side as
follows.
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Definition 1.2. For µ, ρ ∈ P+(X ), where P+(X ) is the set of strictly positive probability
measures on X , the (classical) relative Fisher Information is defined as

RL (µ|ρ) :=

∑
x,y∈X

ρ(x)L(x, y)
[
v(y) − v(x) − v(x) log

(
v(y)
v(x)

)]
, v = µ/ρ (5)

This sum is well-defined in [0,∞], since L(x, y) ≥ 0 for x ̸= y, and the term between
brackets is non-negative and vanishes if x = y. Especially, the relative Fisher Information
is non-negative. This corresponds to the well-known fact that the relative entropy decays in
time along two solutions of the same forward Kolmogorov equation (see [40, Theorem 1.1]).
It should be noted that the definition (5) of the Fisher Information coincides with the classical
notion of Fisher Information with respect to the stationary measure, i.e. when LTρ = 0
(see [3, Equation 1.4]). Alternatively, the relative Fisher Information (5) can also be seen as
the Bregman divergence of the Fisher Information with respect to the stationary measure (see
[16, Section 5.1] for details).

Remark 1.3. The notation of ‘classical’ relative Fisher information is used in Definition 1.2 to
highlight that RL is connected to the well-known relative Fisher information in the continuous
setting, see e.g. [37, Equation 1.2.8]. However, it is necessary to state the precise definition
here, since the different ways of writing the Fisher information in the continuous setting are
no longer equivalent in the discrete setting (see [3, Section 3]). This arises due to the lack of
a chain rule. □

Apart from the classical connection between (linear) Markov processes and forward
Kolmogorov equations described above, the forward Kolmogorov equations can also be viewed
as the many-particle limit of some underlying system of Markov processes. To make this
precise, consider a sequence (Xn)n∈N of independent and identical Markov processes on
state space X and generated by L . Under fairly general conditions (see for instance [10,
Theorem 11.4.1]), the sequence of empirical measures

ρN
:=

1
N

N∑
i=1

δX i , (6)

converges almost surely to the solution of (2).
This convergence is the starting point for a large-deviation result. In particular it has

been shown (see Theorem 1.4) that the sequence ρN has a large-deviation property which
characterises the probability of finding the empirical measure far from the limit ρ, written
informally as

Prob(ρN
≈ ρ) ∼ e−N (I0(ρ0)+IL (ρ)) as N → ∞,

in terms of rate functionals I0 and IL of the initial data (ρN
0 )N∈N and the path (t ↦→ ρN

t )N∈N
respectively. Formally, the rate functionals satisfy the inequalities

lim sup
N→∞

1
N

log(law(ρN )(Mc)) ≤ − inf
ρ∈Mc

(I0(ρ0) + IL (ρ)),

lim inf
N→∞

1
N

log(law(ρN )(Mo)) ≥ − inf
ρ∈Mo

(I0(ρ0) + IL (ρ))

for any measurable, closed set Mc ⊂ C([0, T ];P(X )) and open set Mo ⊂ C([0, T ];P(X )),
see [39] for a general definition. Here law(·) denotes the law of a random variable.
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In this paper we will focus on IL : C([0, T ];P(X )) → [0,∞] which has a characterisation
of the form

IL (ρ) =

⎧⎨⎩
∫ T

0
L(ρt , ∂tρt ) dt, if ρ ∈ AC([0, T ];P(X )),

+∞, otherwise.
(7)

Here AC([0, T ];P(X )) is the space of absolutely continuous trajectories in the space of
probability measures (see Appendix A).

The Lagrangian L : P(X ) × ℓ1(X ) → [0,∞] in the definition above of IL is non-negative
and convex in its second argument, and satisfies L(ρt , ∂tρt ) = 0 if and only if ρ solves
∂tρt = LTρt . The rate functional IL therefore has the crucial properties

(a) IL (ρ) ≥ 0, and (b) ρ solves (2) ⇐⇒ IL (ρ) = 0, (8)

and consequently the equation “IL (ρ) = 0” can be viewed as a variational characterisation of
the forward Kolmogorov equation.

The Lagrangian L is defined as the Legendre dual of a Hamiltonian H : P(X ) × ℓ∞(X ) →

[0,∞],

L(µ, s) := sup
ξ∈ℓ∞(X )

{∑
x∈X

ξ (x)s(x) − H(µ, ξ )

}
. (9)

In our setting of a Markov process on a discrete state space with generator L , the Hamiltonian
is explicitly given by

H(µ, ξ ) :=

∑
x,y∈X

µ(x)L(x, y)
[
eξ (y)−ξ (x)

− 1
]
, (10)

and by Legendre duality it has the alternative characterisation

H(µ, ξ ) = sup
s∈ℓ1(X )

{∑
x∈X

ξ (x)s(x) − L(µ, s)

}
. (11)

The following result places the preceding remarks in a rigorous context. We denote the space
of right-continuous functions with left limits mapping [0, T ] into P(X ) by DP(X )[0, T ], and
the dual pairing between ℓ∞(X ) and P(X ) by ⟨ f, µ⟩ =

∑
x∈X f (x)µ(x) for any f ∈ ℓ∞(X )

and µ ∈ P(X ), then the following result holds.

Theorem 1.4. Let ρN
∈ P(X ) be the empirical process (6) generated by N ∈ N

independent Markov processes (X i )i=1,...N on the state space X with generator L. Furthermore,
assume that the initial values (ρN

0 )N∈N are deterministic and converge in P(X ) to some
ρ0. Then, (ρN )N∈N satisfies a large deviations principle in DP(X )[0, T ] with rate functional
IL : C([0, T ];P(X )) → R given by (7), and which has the alternative representation

IL (µ) = sup
f ∈C1([0,T ];ℓ∞(X ))

{
⟨ fT , µT ⟩ − ⟨ f0, µ0⟩ −

∫ T

0

(
⟨∂t ft , µt ⟩ + H(µt , ft )

)
dt
}

(12)

where µ ∈ C([0, T ];P(X )) with µ|t=0 = ρ0 and the Hamiltonian H is defined in (10).
Additionally, if for some µ ∈ C([0, T ];P(X )) we have IL (µ) < ∞, then t ↦→ µt ∈ P(X ) is
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absolutely continuous, and the rate functional can be reformulated as

IL (µ) = sup
f ∈L∞(0,T ;ℓ∞(X ))

∫ T

0

(
⟨ ft , ∂tµt ⟩ − H(µt , ft )

)
dt. (13)

The existence of the large-deviation principle is a reformulation of [19, Proposition 5.10],
while the main statement of the theorem is the alternative characterisation (12); we give the
proof in Appendix B. Appendix A collects some results on absolutely-continuous curves and
integration.

1.2. Main results

As mentioned earlier, the main goal of this work is to connect relative entropy, Fisher
Information and large-deviation rate functional in the context of Markov processes on a discrete
state space. While the connection between the relative entropy and the rate functional is fairly
classical, it does not connect to the Fisher Information. As pointed out earlier, these objects
have been connected recently in the case when X = Rn and L is a diffusion operator via the
inequality (see [37, Chapter 2] and [11, Section 2.5] for details)

H (µT |ρT ) +

∫ T

0
RL (µs |ρs) ds ≤ H (µ0|ρ0) + IL (µ), (14)

where µ is a measure-valued curve (such that the right-hand side of the estimate is well
defined) and ρ solves ∂tρ = LTρ. In [37] this relation is called the free-energy-relative-Fisher-
Information-rate-functional (FIR) inequality, a terminology that we will use throughout this
paper.

We shall demonstrate in Section 2.1 that such an inequality already fails in fairly simple
situations for a Markov jump process. To get around this issue, we generalise the notion of the
relative Fisher Information.

Definition 1.5. Let λ ∈ (0, 1). We define the generalised relative Fisher Information
Rλ

L : P(X ) × P(X ) → [0,∞] (corresponding to a generator L) as follows.

1. If ρ,µ ∈ P+(X ) and supx∈X max{µ(x)/ρ(x), ρ(x)/µ(x)} < ∞, then

Rλ
L (µ|ρ) :=

∑
x,y∈X

L(x, y)
µ(y)
ρ(y)

ρ(x) −
1
λ
H
(
µ, λ log

(
µ

ρ

))
(15a)

=

∑
x,y∈X

L(x, y)

[
µ(y)
ρ(y)

ρ(x) − µ(x)

−
1
λ

(
µ(x)1−λρ(x)λ

(
µ(y)
ρ(y)

)λ
− µ(x)

)]
. (15b)

Here H is the Hamiltonian (10) that arises in the context of large deviations.
2. If ρ,µ ∈ P(X ), then

Rλ
L (µ|ρ) :=

∑
x,y∈X

L(x, y)ψλ(x, y), (15c)
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where ψλ is defined as

ψλ(x, y) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ(y)
ρ(y)

ρ(x) − µ(x)

−
1
λ

(
µ(x)1−λρ(x)λ

(
µ(y)
ρ(y)

)λ
− µ(x)

)
, if ρ(y) > 0, and ρ(x) > 0,

+∞
if ρ(y) = 0, ρ(x) > 0,

and µ(y) > 0,
0 otherwise.

Both these definitions of the generalised relative Fisher Information are consistent, i.e.
whenever both definitions apply, they give the same value (see Lemma 2.4). To motivate
these definitions, we use the characterisation (12) of the rate functional and reason formally as
follows. Let µ : [0, T ] → P(X ) be a smooth curve with IL (µ) < ∞ and ρ : [0, T ] → P(X )
be a smooth solution of the forward Kolmogorov equation (2) such that log(µ/ρ) is sufficiently
regular. Using f = λ log(µ/ρ) with λ ∈ (0, 1) in (12), we obtain

1
λ

IL (µ) ≥

∑
x∈X

log
(
µT (x)
ρT (x)

)
µT (x)−

∑
x∈X

log
(
µ0(x)
ρ0(x)

)
ρ0(x)

−

∫ T

0

(∑
x∈X

∂t log
(
µt (x)
ρt (x)

)
µt (x) +

1
λ
H
(
µt , λ log

(
µt

ρt

)))
dt

= H (µT |ρT ) − H (µ0|ρ0)

+

∫ T

0

⎛⎝ ∑
x,y∈X

L(x, y)µt (y)
ρt (x)
ρt (y)

−
1
λ
H
(
µt , λ log

(
µt

ρt

))
dt

⎞⎠ ,
where the equality follows since∑

x∈X

∂t log
(
µt (x)
ρt (x)

)
µt (x) =

∑
x∈X

∂tµt (x) −

∑
x∈X

µt (x)
ρt (x)

(LTρ)(x)

= 0 −

∑
x,y∈X

L(x, y)µt (y)
ρt (x)
ρt (y)

.

The formal inequality above resembles (14), where the integrand in the time integral is precisely
the generalised Fisher Information given in (15a). These formal calculations can and will be
made rigorous, resulting in the first main result of this article which we now state.

Theorem 1.6. Let ρ ∈ AC([0, T ];P(X )) be a solution of (2) and µ ∈ C([0, T ];P(X )) satisfy

IL (µ) + H (µ0|ρ0) < ∞,

with µ|t=0 = µ0. Then for any λ ∈ (0, 1) we have

H (µT |ρT ) +

∫ T

0
Rλ

L (µt |ρt ) dt ≤ H (µ0|ρ0) +
1
λ

IL (µ). (FIRλ)

It is important to note that the roles of µ and ρ in the FIR inequality (FIRλ) cannot be
interchanged, i.e. µ is a solution to the forward Kolmogorov equation and ρ is arbitrary,
since the relative entropy is not symmetric. As evident from the formal calculations above,
the generalised relative Fisher Information (15) is constructed such that the proof of the FIR
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inequality goes through. In addition to satisfying (FIRλ), the generalised Fisher Information
has several favourable properties which we now summarise (see Sections 2.2–2.3 for details).

In order to state the precise result, we introduce two concepts. First, we note that in the
case of jump processes we can identify the state space X naturally with a graph by connecting
two points of X by an edge if there is a non-zero probability to jump directly between these
states. In particular this enables us to define connected components in X (see Section 2.3
for additional details). Second, to study the behaviour of Rλ

L for λ → 0, we use the notion of
Gamma convergence (see e.g. [5] for an introduction), which is the natural type of convergence
in a variational setting.

Theorem 1.7. For λ ∈ (0, 1), the generalised Fisher Information satisfies:

(i) Rλ
L is non-negative and lower-semicontinuous on P(X ) × P(X ).

(ii) If µ, ρ ∈ P(X ) with Rλ
L (µ|ρ) = 0, then µ is a constant multiple of ρ on each connected

component of the support of ρ. In particular, if ρ ∈ P+(X ), then µ = ρ on X .
(iii) Rλ

L → RL as λ → 0 on P+(X ) × P+(X ) in the sense of Gamma convergence.

Whenever two measures ρ and µ satisfy Rλ
L (µ|ρ) = 0, Theorem 1.7(ii) provides information

on how they are related, similar to that of a logarithmic version of a Dirichlet form in
continuous state spaces. The name ‘generalised’ Fisher Information is motivated by the fact that
we can recover the relative Fisher Information (5) as a limit for λ → 0 (cf. Theorem 1.7(iii)). In
addition to this asymptotic relation, the generalised and the classical relative Fisher Information
can also be compared directly by an inequality in a fairly restrictive setting, thereby allowing
us to prove a FIR inequality with the classical Fisher Information (see Section 2.4 for details).

We point out that the FIR inequality bears similarity to the entropy-dissipation identity
that arises in the context of reversible Markov processes and more generally gradient flows
(see [30] for details). However in Theorem 1.6 (and throughout this article) we do not assume
the generator L to be reversible and therefore our results go beyond the existing results on
gradient flows. Additionally, the FIR inequality compares two curves, which is not the case for
the entropy-dissipation identity.

1.3. Application to coarse-graining

Coarse-graining is an umbrella term used for techniques which approximate a complex or
high-dimensional system by a simpler or lower-dimensional one. While there are many formal
techniques for achieving this (see [15] and references therein), rigorous mathematical analysis
is typically restricted to situations that exhibit explicit separation of temporal and/or spatial
scales, i.e. the presence of fast and slow variables. In these situations, as the ratio of ‘fast’
to ‘slow’ increases, some form of averaging or homogenisation allows one to remove the fast
scales, and obtain a limiting system that focuses on the slow ones. Recently, a new variational
technique based on studying the large-deviation rate functional has been introduced in [12,37]
to study coarse-graining limits arising in the context of diffusion processes (see Section 3.1
for details). As mentioned earlier, in this paper we apply this variational technique to study
a coarse-graining problem arising in the discrete setting (described below). The generalised
Fisher Information (15) and the FIR inequality (FIRλ) described in the last section play a
crucial role in this study.

The coarse-graining problem we study here is inspired by kinetic Monte-Carlo methods in
molecular dynamics (see [21, Chapter 5] for details). Consider a particle moving in a potential-
energy landscape, which consists of small and large barriers as described in Fig. 1. The large
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Fig. 1. Energy landscape with two macro-states.

energy barriers introduce a natural scale-separation since it is harder for the particle to jump
across them compared to the smaller barriers. More precisely we can model the behaviour
of such a particle as a Markov jump process on X = Y × Z where Y corresponds to the
states separated by the large energy barriers while Z is the part of the state space separated
by small energy barriers. For simplicity, we assume that there is only one large barrier, i.e.
Y = {0, 1} and finitely many small barriers corresponding to each of these large barriers, i.e.
Z = {1, . . . , n}. This intuitively means that the state space is divided up into two macro-states,
each of which contain n ∈ N easily accessible micro-states.

We consider the Markov process which evolves according to the generator

L̃ε = Q + εC :=

(
Q0 0
0 Q1

)
+ ε

(
D0 C0,1

C1,0 D1

)
,

where Q and C are ε-independent matrices with

∀x1 ∈ X :

∑
x2∈X

Q(x1, x2) = 0 =

∑
x2∈X

C(x1, x2). (16)

The diagonal matrix Dy , y ∈ Y , is constructed so that C satisfies the aforementioned property,
i.e.

∀z1 ∈ Z : Dy(z1, z1) := −

∑
z2∈Z

Cy,1−y(z1, z2).

We assume that Q y is irreducible for every y ∈ Y and L̃ε is irreducible. The irreducibility of
L̃ε is equivalent to assuming that C1,0 and C0,1 have at least one positive entry.

Now let us take a closer look at each of these components. The small parameter ε > 0
models the scale-separation arising due to the difference in the heights of the barriers. The
matrix Q y ∈ Rn×n encodes the jumps between micro-states within the yth macro-state. The
matrix Cy,1−y ∈ Rn×n encodes the transition from the yth macro-state to (1− y)th macro-state.
The summability condition (16) ensures that L̃ε is a generator, i.e. an operator satisfying (3a).

When ε is small, the dynamics of the particle evolving according to L̃ε splits into slow and
fast components. The fast component moves the particle within a macro-state, and the slow
component is visible as a rare jump to a different macro-state. Following [22], in order to
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focus on the slow component we rescale time by ε−1 and arrive at

Lε =
1
ε

Q + C :=
1
ε

(
Q0 0
0 Q1

)
+

(
D0 C0,1

C1,0 D1

)
. (17)

The main goal of the second part of this work is to study the behaviour of the Markov jump
process described by the forward Kolmogorov equation{

∂tµ
ε
= (Lε)Tµε,

µεt=0 = µ0,
(18)

in the limit ε → 0. In this limit it is natural to expect that the solution µε equilibrates in each
macro-state and the limit can be described by a jump process on Y , i.e. a two-point Markov
jump process. In the second part of this article we make this intuition precise (see Section 3
for details).

To state the precise result we need to introduce two objects: (1) the stationary measure
of (18), denoted by π ε ∈ P(X ), which exists since Lε is irreducible, and (2) the coarse-graining
map ξ : X → Y as ξ (x) = y for every x = (y, z) ∈ X .

For more details on this coarse-graining map see Section 3.

Theorem 1.8. Consider a sequence µε ∈ C([0, T ];P(X )) of solutions to (18). Assume that
the initial data satisfies

sup
ε>0

H (µε0|π
ε) < ∞.

We then find for a subsequence (not relabelled) such that the following holds.

1. (Compactness) The sequence µε → µ in M([0, T ] × X ), the space of non-negative,
finite measures on [0, T ] ×X , with respect to the narrow topology, and ξ#µ

ε
→ ξ#µ in

C([0, T ];P(Y)) uniformly in time.
2. (Local equilibrium) There exists µ̂ ∈ C([0, T ];P(Y)) such that for almost all t ∈ [0, T ]

∀y ∈ Y, A ⊂ Z, µt ({y} × A) = µ̂t (y)πy(A),

where for each y ∈ Y , πy ∈ P(Z) is the stationary measure corresponding to Q y .
Furthermore ξ#µ

ε
→ µ̂ in C([0, T ];P(Y)) uniformly in time.

3. (Limit dynamics) The limit µ̂ ∈ C([0, T ];P(Y)) solves

∂t µ̂ = LT µ̂

with the (limiting) generator

L :=

(
−λ0 λ0
λ1 −λ1

)
, λy :=

∑
z,z′∈Z

πy(z)Cy,1−y(z, z′).

The narrow topology used in Theorem 1.8(i) is defined via weak convergence in duality
with test functions in Cb. Furthermore, note that we do not specify the topology on P(X ) in
this result, since X is finite and thus P(X ) is a subset of a finite-dimensional space (also see
Remark 3.1). Finally, we point out that this result is a special case of our analysis in Section 3,
which also applies to the case of approximate solutions (see Remark 3.6 for details).

1.4. Comparison with other work

We now comment on the novelties developed in this paper compared with other work.
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1. In comparison with other works on the FIR inequality. As mentioned earlier, the idea of
an FIR inequality connecting the free energy (which, in our case, is the relative entropy),
the relative Fisher Information and the large deviation rate functional was discussed in
the context of diffusion processes [4,11,12,37], although most of these works do not
explicitly refer to this inequality as the FIR inequality. Our contribution lies in the
extension of the FIR inequality to the discrete settings which is substantially different
from the diffusion case treated in the references above. The main difference is that the
Hamiltonian in the discrete case has a different scaling behaviour which ensures that the
classical FIR inequality fails in the discrete setting (see Section 2.1 for details). For a
more detailed review of these connections see Section 2.5.

2. In comparison with other work on the example treated in this paper. The coarse-graining
example introduced in Section 1.3 is an averaging problem for Markov chains [22,33].
In these references, martingale techniques are used to prove a pathwise convergence
result while our proof relies on the variational framework given by the large deviations
result. Although the convergence result in this work is weaker, we obtain an explicit
local-equilibrium statement and our result also applies to approximate solutions, i.e.
curves with finite rate functional, rather than zero. This allows us to work with a larger
class of measures (see Remark 3.6). This latter property also distinguishes our approach
from other classical strategies such as geometric singular perturbation theory, see for
instance [20].

3. Comparison with variational evolutionary methods. In recent years, variational-
evolutionary structures akin to gradient flows have been developed for forward
Kolmogorov equations on finite state spaces [7,24,27,28]. This structure can also be
used to investigate singular limits [29,34,35]. However these structures are limited to
reversible Markov chains, while the approach discussed in this paper does not require
reversibility since we only use the variational structure provided by the large-deviations
principle.

4. Quantitative coarse-graining. As in the diffusion case [11,37], a natural next step is
to derive explicit error estimates for ‘finite’ scale separation. However, the strategy to
obtain those estimates does not use the full FIR inequality but only a related result
inspired by [41] and is thus omitted in this paper. For details we refer to [16, Chapter
8].

1.5. Outline of the article

In the rest of the paper we present the details of the ideas introduced above. In Section 2
we construct the generalised Fisher Information and prove the FIR inequality. In Section 3 we
study the coarse-graining problem using the variational technique developed in [12]. Section 4
provides further discussions and generalisations and certain details on the rate functional are
discussed in Appendix B. In Appendix A we collect some results on integration in infinite-
dimensional spaces and in Appendix C we provide a result on positivity of solutions for
irreducible generators.

2. Generalised relative Fisher Information and FIR inequality

In Section 2.1 we discuss a simple example where the FIR inequality fails when working
with the classical relative Fisher Information (5), following which we prove the FIR inequality
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with the generalised relative Fisher Information (15) in Section 2.2. We then prove the main
properties of the generalised Fisher Information in Section 2.3. Finally in Section 2.5 we
connect these ideas to diffusions and compare to existing results in the literature.

Remark 2.1 (Extension to Finite Measures). We restrict the treatment in what follows to
probability measures to keep the notation simple. However, the definition as well as the
properties of the generalised Fisher Information can be generalised to non-negative, finite
measures with no additional difficulties. □

2.1. Failure of FIR inequality with relative Fisher Information

Before we present the proof of the FIR inequality with the generalised Fisher Information
(described in Theorem 1.6), we first show a simple example where such an inequality (14) fails
when working with the ‘classical’ relative Fisher Information (5). Note that this is distinctly
different from the case of diffusions on continuous state space where the FIR inequality holds
for the relative Fisher Information (for a detailed discussion see Section 2.5).

The idea is to construct a sequence of curves for which the rate functional stays bounded
while the classical relative Fisher Information is unbounded in the limit, which would prove
that the FIR inequality does not hold in this setting. We consider a two-point space X = {0, 1}

and a generator given by

L =

(
−a a
b −b

)
,

for a, b > 0. Furthermore we consider a constant-in-time curve µ ∈ P(X ). For any f ∈ ℓ∞(X )
and s := f (0) − f (1), the Hamiltonian (10) can be written as

H(µ, f ) = aµ(0)
(
e−s

− 1
)
+ b(1 − µ(0))

(
es

− 1
)
.

There exists a constant c > 0 such that for any f and µ we have H(µ, f ) > −c. Therefore
using the definition of the rate functional (13) we find

∀µ ∈ P(X ) : IL (µ) = sup
f ∈L∞([0,T ];ℓ∞(X ))

∫ T

0
−H(µ, ft ) dt ≤ cT .

Next let us look at the classical relative Fisher Information (5) with ρ = (a + b)−1(b, a) ∈

P+(X ) which satisfies LTρ = 0. Writing µ = (µ0, 1 − µ0) and ρ = (ρ0, 1 − ρ0) we find

RL (µ|ρ) = a
[

(1 − µ0)ρ0

1 − ρ0
− µ0 − µ0 log

(
(1 − µ0)ρ0

µ0(1 − ρ0)

)]
+ b

[
µ0(1 − ρ0)

ρ0
− (1 − µ0) − (1 − µ0) log

(
µ0(1 − ρ0)
(1 − µ0)ρ0

)]
.

Choosing a sequence (µn) with µn
0 → 0, we have RL (µn

|ρ) → ∞, and therefore for any
C > 0, RL (µn

|ρ) ≥ CI (µ) for a large enough n. As a result, the FIR inequality with the
classical relative Fisher Information (14) does not hold in the discrete setting in general.

Remark 2.2. Note that this example did not exploit any pathological behaviour of the generator
and works for all irreducible generators L on this two-point state space. Therefore we do not
expect that there is a simple restriction on the class of admissible generators such that the FIR
inequality (14) holds. A careful look at the example reveals that the FIR inequality fails since
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log(µ0/ρ0) → −∞ as µ0 → 0, and if such choices of µ are excluded than an FIR inequality
with the relative Fisher Information might hold. This is indeed the case, as will be discussed
in Lemma 2.10.

On the other hand, the generalised relative Fisher Information (15) does not suffer from the
issue above since in this setting for any fixed λ ∈ (0, 1) we find

Rλ
L (µ|ρ) = 0 −

1
λ
H
(
µ, λ log

(
µ

ρ

))
<

c
λ
. (19)

It is not a coincidence that the FIR inequality holds for the generalised Fisher Information, as
we prove below. □

2.2. FIR inequality with generalised relative Fisher Information

In what follows we first prove an auxiliary lemma on the structure of the generalised relative
Fisher Information, which we use in Lemma 2.4 to study the consistency of its definition and
discuss some simple properties. We conclude this section by giving the proof of Theorem 1.6.

For any ρ(y), ρ(x) > 0, the function ψλ in (15c) may be rewritten as

ψλ(x, y) =
rλ(v(x), v(y))

λ
ρ(x), v =

µ

ρ
, (20)

where (ξ, η) ↦→ rλ(ξ, η) := (1 − λ)ξ − ξ 1−ληλ + λη.

Lemma 2.3. For any λ ∈ (0, 1), the function rλ : [0,∞) × [0,∞) → R defined by

rλ(ξ, η) = (1 − λ)ξ − ξ 1−ληλ + λη,

satisfies the following properties:

(i) rλ ≥ 0 on [0,∞) × [0,∞);
(ii) rλ(ξ, η) = 0 if and only if ξ = η;

(iii) For any ξ, η ≥ 0, the function λ ↦→ λ−1rλ(ξ, η) is monotonically decreasing on (0, 1);
(iv) For any ξ, η > 0, limλ→0 λ

−1rλ(ξ, η) = η − ξ + ξ log( ξ
η
) monotonically increasing.

Proof.

(i) For any λ ∈ (0, 1) and ξ, η ≥ 0, the Young’s inequality yields

ξ 1−ληλ ≤ (1 − λ)ξ + λη,

and the non-negativity of rλ follows by simply rearranging the terms.
(i i) The reverse implication follows trivially by inserting ξ = η. Now assume that rλ(ξ, η) =

0. If ξ = 0, it follows that η = 0 and vice versa. Therefore without the loss of generality
we assume that ξ > 0, which implies that η > 0. By rewriting

rλ(ξ, η) = ξ
(
(1 − λ) − sλ + λs

)
, s = η/ξ,

and noting that the function s ↦→ sλ is strictly concave on (0,∞), we deduce that the
expression within the bracket vanishes if and only if s = 1, i.e. η = ξ .

(i i i) If ξ = 0 = η, there is nothing to show. Suppose ξ = 0, then λ−1rλ(ξ, η) = η, i.e.
λ−1rλ(ξ, η) is constant in λ and therefore monotonically decreasing. If η = 0 and
ξ > 0, then λ−1rλ(ξ, η) = (1/λ − 1)ξ , which is monotonically decreasing in λ since
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λ ↦→ 1/λ is monotonically decreasing. For ξ, η > 0, we begin by observing that
λ ↦→ λ−1rλ(ξ, η) ∈ C1((0, 1)), with

d
dλ

rλ(ξ, η)
λ

=
ξ

λ2

(
sλ − 1 − sλ log sλ

)
, s = η/ξ.

Since α ↦→ α logα is convex on (0,∞), it follows that sλ log sλ ≥ sλ − 1, and therefore
λ−1rλ(ξ, η) is monotonically decreasing in λ.

(iv) Let ξ, η > 0 and set s = η/ξ . Using l’Hospital’s formula it follows that

lim
λ→0

rλ(ξ, η)
λ

= η−ξ−ξ lim
λ→0

(
sλ − 1
λ

)
= η−ξ−ξ lim

λ→0

(
eλ log(s)

− 1
λ

)
= η−ξ−ξ log(s),

(21)

The monotonically increasing convergence holds due to (i i i). □

Lemma 2.4. The two definitions in Definition 1.5 are consistent; that is, whenever both
definitions apply, they give the same value. Additionally,

(i) Rλ
L (µ|ρ) ≥ 0 for all µ, ρ ∈ P(X );

(ii) Rλ
L is lower-semicontinuous on P(X ) × P(X ).

Proof. Using the Hamiltonian (10), it is easy to check that the definitions (15a) and (15b)
agree for any ρ,µ ∈ P+(X ) with supx∈X max{µ(x)/ρ(x), ρ(x)/µ(x)} < ∞, which proves the
consistency of Definition 1.5.

(i) Since ψλ(x, x) = 0 for all x , the diagonal in the double sum in (15c) vanishes. So we
consider x ̸= y, for which L(x, y) ≥ 0. If µ(x) = 0 or ρ(y) = 0, then ψλ(x, y) ≥ 0;
if ρ(y) > 0, ψλ(x, y) = 0 if ρ(x) = 0 and ψλ(x, y) ≥ 0 (due to (20) and the non-
negativity of rλ in Lemma 2.3) if ρ(x) > 0. Therefore L(x, y)ψλ(x, y) ≥ 0 for all x, y,
and Rλ

L (µ|ρ) ≥ 0.
(i i) Let ((µn, ρn))n∈N ⊂ P(X ) ×P(X ) be a sequence that converges to (µ, ρ). In particular,

µn(x) → µ(x) and ρn(x) → ρ(x) for every x ∈ X (cf. Remark 1.1).
Now let x ∈ X be arbitrary and consider y ∈ X with L(x, y) > 0. For simplicity, we
denote

ψn(x, y) =
µn(y)
ρn(y)

ρn(x) − µn(x) −
1
λ

(
µn(x)1−λρn(x)λ

(
µn(y)
ρn(y)

)λ
− µn(x)

)
.

Case 1: (ρ(y) = α > 0) Due to the pointwise convergence, there exists an α′ > 0
such that ρn(y) > α′ for sufficiently large n. In this case, we easily conclude that
ψn(x, y) → ψ(x, y) as n → ∞.
Case 2: (ρ(y) = 0, ρ(x), µ(y) ≥ β > 0) As before, there exists a β ′ > 0 such that
ρn(x), µn(y) > β ′ for sufficiently large n. Further, we have µ(x), ρ(x) ∈ [0,M] for all
x ∈ X , with some M ≥ 1. Therefore,

ψn(x, y) ≥ (β ′)2 1
ρn(y)

− M −
1
λ

M1+λ

(
1

ρn(y)

)λ
=

1
ρn(y)

[
(β ′)2

−
1
λ

M1+λ(ρn(y))1−λ

]
  

(∗)

−M.
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Since (ρn(y))1−λ
→ 0 as n → ∞, it follows that (β ′)2

≥ (∗) ≥ δ for some δ > 0 and
sufficiently large n. Consequently, ψn(x, y) → ∞ as n → ∞.
The other cases are trivial since ψn(x, y) ≥ 0. An application of Fatou’s lemma yields

lim inf
n→∞

Rλ
L (µn

|ρn) ≥

∑
x,y∈X

L(x, y) lim inf
n→∞

ψn(x, y) ≥

∑
x,y∈X

L(x, y)ψ(x, y) = Rλ
L (µ|ρ),

thereby concluding the proof. □

We are now in a position to prove the first main result of this paper.

Proof of Theorem 1.6. We proceed by approximation. Let ρ ∈ AC([0, T ];P(X )) be a solution
of (2). Since we assume the generator L to be bounded (3c) and irreducible (3b), it follows that
ρt (x) > 0 for any t > 0 and x ∈ X (see Lemma C.1 for a proof). Without loss of generality we
can assume that µ ∈ AC([0, T ];P(X )), since by Theorem 1.4 this is implied by IL (µ) < ∞.
Using Lemma A.1 we find ρ,µ ∈ W 1,1(0, T ; ℓ1(X )) and therefore ∂tρ, ∂tµ ∈ L1(0, T ; ℓ1(X )).

For ε > 0, define the function ρεt (x) := ρt (x) + εµt (x). Since µ ≪ ρε, we can define the
density

vεt (x) :=
µt (x)
ρεt (x)

∈

[
0,

1
ε

]
.

Note that vεt (x) → µt (x)/ρt (x) as ε → 0 for all x ∈ X and t > 0.
Since log(vε + δ) ∈ L∞(0, T ; ℓ∞(X )) for any δ ∈ (0, 1), using the representation (13) we

find

1
λ

IL (µ) ≥

∫ T

0
⟨log(vεt + δ), ∂tµt ⟩ −

1
λ
H(µt , λ log(vεt + δ)) dt.

We split the proof into two steps, where the first step deals with passing δ → 0 and the second
step with passing ε → 0.

Step 1: Taking the liminf (δ → 0) in the previous inequality yields

1
λ

IL (µ) ≥ lim inf
δ→0

{∫ T

0
⟨log(vεt + δ), ∂tµt ⟩ dt

}
−

1
λ

lim sup
δ→0

{∫ T

0
H(µt , λ log(vεt + δ)) dt

}
= (I ) −

1
λ

(I I ).

We now study both these terms.
Part (I ): Define the function gε,δ : [0,∞) × (0,∞) → R by

gε,δ(η, ξ ) := η log
(

η

εη + ξ
+ δ

)
.

For fixed ε, δ, the function gε,δ is globally Lipschitz on A := [0,∞)×(0,∞), and differentiable
at each (η, ξ ) ∈ A. Since ρt (x) > 0 for all t > 0 and x ∈ X , by Lemma A.3 the function
t ↦→ gε,δ(µt , ρt ) = µt (x) log(vεt (x) + δ) is an element of AC([0, T ]; ℓ1(X )), and the following
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chain rule holds for almost every t ∈ [0, T ]:

d
dt

∑
x∈X

µt (x) log(vεt (x) + δ) =

∑
x∈X

(
vεt (x)

vεt (x) + δ

ρt (x)
εµt (x) + ρt (x)

+ log(vεt (x) + δ)
)
∂tµt (x)

−

∑
x∈X

vεt (x)
vεt (x)

vεt (x) + δ
∂tρ

ε
t (x).

From this chain rule we easily deduce∫ T

0
⟨log(vεt + δ), ∂tµt ⟩ dt =

∑
x∈X

µT (x) log(vεT (x) + δ) −

∑
x∈X

µ0(x) log(vε0(x) + δ)

−

∫ T

0

∑
x∈X

vεt (x)
vεt (x) + δ

ρt (x)
εµt (x) + ρt (x)

∂tµt (x) dt

+

∫ T

0

∑
x∈X

vεt (x)
vεt (x)

vεt (x) + δ
∂tρ

ε
t (x) dt.

(22)

We now pass to the limit δ → 0 in each of the terms on the right-hand side.
Since ∂tµ, ∂tρ

ε
∈ L1(0, T ; ℓ1(X )) and vε ∈ L∞(0, T ; ℓ∞(X )) we may pass to the limit

δ → 0 using the dominated convergence theorem to obtain∫ T

0

∑
x∈X

vεt (x)
vεt (x)

vεt (x) + δ
∂tρ

ε
t (x) dt

δ→0
−−→

∫ T

0

∑
x∈X

vεt (x)∂tρ
ε
t (x) dt =

∫ T

0

∑
x∈X

vεt (x)
[
(LTρt )(x) + ε∂tµt

]
dt.

A similar argument gives∫ T

0

∑
x∈X

vεt (x)
vεt (x) + δ

ρt (x)
εµt (x) + ρt (x)

∂tµt (x) dt

δ→0
−−→

∫ T

0

∑
x∈X

1{µt (x) > 0}
ρt (x)

εµt (x) + ρt (x)
∂tµt (x) dt.

Turning to the first term in (22), using µt (x) log(vεt (x) + δ) ≥ µt (x) log(vεt (x)) for any
(t, x) ∈ [0, T ] × X , we find∑

x∈X

µt (x) log(vεt (x) + δ) ≥

∑
x∈X

µt (x) log(vεt (x)) = H (µt |ρ
ε
t ).

At time zero, the finiteness of H (µ0|ρ0) implies that whenever µ0(x) > 0 we have ρ0(x) > 0,
and therefore the density v0(x) := µ0(x)/ρ0(x) is well-defined µ0-almost-everywhere. Using
the concavity and monotonicity of the natural logarithm, for the second term in (22) we find∑

x∈X

µ0(x) log(vε0(x) + δ) =

∑
x∈X

vε0(x) log(vε0(x) + δ)ρε0(x)

≤

∑
x∈X

µ0(x) log(vε0(x)) + δ(1 + ε)

≤

∑
x∈X

µ0(x) log(v0(x)) + δ(1 + ε) = H (µ0|ρ0) + δ(1 + ε),
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where we have used ρε0 ≥ ρ0 to arrive at the second inequality. Altogether, we obtain

lim inf
δ→0

∫ T

0
⟨log(vεt + δ), ∂tµt ⟩ dt ≥ H (µT |ρεT ) − H (µ0|ρ0)

+

∫ T

0

∑
x∈X

vεt (x)
[
(LTρt )(x) + ε∂tµt (x)

]
dt

+

∫ T

0

∑
x∈X

1{µt > 0}
ρt (x)

εµt (x) + ρt (x)
∂tµt (x) dt,

which concludes part (I ).
Part (I I ): Using the definition (10) of the Hamiltonian, and

∑
y∈X L(x, y) = 0 we find

H(µt , λ log(vεt + δ)) =

∑
x,y∈X

µt (x)L(x, y)
[
eλ log(vεt +δ)(y)−λ log(vεt +δ)(x)

− 1
]

=

∑
x,y∈X

µt (x)L(x, y)
(
vεt (y) + δ

vεt (x) + δ

)λ
=

∑
x,y∈X

ρεt (x)(vεt (x))1−λL(x, y)
(

vεt (x)
vεt (x) + δ

)λ
(vεt (y) + δ)λ.

We have the upper bound⏐⏐⏐⏐⏐ρεt (x)(vεt (x))1−λL(x, y)
(

vεt (x)
vεt (x) + δ

)λ
(vεt (y) + δ)λ

⏐⏐⏐⏐⏐ ≤ ελ−1(ε−1
+ 1)λ ρε(x)|L(x, y)|,

where we have used |vεt | ≤ ε−1 and δ ∈ (0, 1). Note that the right-hand side is an element of
ℓ1(X × X ) since ρε ∈ ℓ1(X ) and L satisfies (3b). Using the dominated convergence theorem
we find

lim sup
δ→0

∫ T

0
H(µt , λ log(vεt + δ)) dt =

∫ T

0

∑
x,y∈X

ρεt (x)(vεt (x))1−λL(x, y)(vεt (y))λ dt .

This concludes part (I I ).
Putting both the parts together, we obtain

1
λ

IL (µ) ≥ (I ) −
1
λ

(I I )

≥ H (µT |ρεT ) − H (µ0|ρ0)

+

∫ T

0

∑
x,y∈X

L(x, y)ρεt (x)
[
vεt (y) −

1
λ

(vεt (x))1−λ(vεt (y))λ
]

dt

+ ε

∫ T

0

∑
x∈X

vεt (x)∂tµt (x) dt

+

∫ T

0

∑
x∈X

1{µt > 0}
ρt (x)

εµt (x) + ρt (x)
∂tµt (x) dt

= H (µT |ρεT ) − H (µ0|ρ0) +

∫ T

0
Rλ

L (µt |ρ
ε
t ) dt + ε

∫ T

0

∑
x∈X

vεt (x)∂tµt (x) dt

+ +

∫ T

0

∑
x∈X

1{µt > 0}
ρt (x)

εµt (x) + ρt (x)
∂tµt (x) dt, (23)
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where in the final identity we used the property
∑

y∈X L(x, y) = 0 and (20). This inequality
clearly resembles the FIR inequality.

Step 2: We now take the limit ε → 0. For any t ∈ (0, T ] we have

H (µt |ρ
ε
t ) =

∑
x∈X

µt (x) log(vεt (x)) =

∑
x∈X

vεt (x) log(vεt (x))ρεt (x)

=

∑
x∈X

[
vεt (x)(log(vεt (x)) − 1) + 1

]
ρεt (x) +

∑
x∈X

[µt (x) − ρεt (x)]

=

∑
x∈X

[
vεt (x)(log(vεt (x)) − 1) + 1

]
ρεt (x) − ε.

The final inequality follows since
∑

x∈X ρ
ε
t (x) = 1 + ε. The summand in the final right-hand

side is non-negative, and for each x and t such that ρt (x) > 0 we have vεt (x) → vt (x) =

µt (x)/ρt (x) for ε → 0. We therefore apply Fatou’s lemma to obtain

lim inf
ε→0

H (µt |ρ
ε
t ) ≥ lim inf

ε→0

∑
x∈X

[
vεt (x) log(vεt (x)) − vεt (x) + 1

]
ρεt (x)

≥ lim inf
ε→0

∑
x∈X

[
vεt (x) log(vεt (x)) − vεt (x) + 1

]
ρt (x)

=

∑
x∈X

[
vt (x)(log(vt (x)) − 1) + 1

]
ρt (x) = H (µt |ρt ).

As for the other expression, we use the non-negativity and lower-semicontinuity of Rλ
L (recall

Lemma 2.4 and Remark 2.1) to obtain

lim inf
ε→0

∫ T

0
Rλ

L (µt |ρ
ε
t ) dt ≥

∫ T

0
lim inf
ε→0

Rλ
L (µt |ρ

ε
t ) dt =

∫ T

0
Rλ

L (µt |ρt ) dt. (24)

Since εvεt (x) is uniformly bounded for every t ∈ (0, T ] and x ∈ X , we can pass ε → 0 in the
final term of (23) using the dominated convergence theorem, which gives

lim
ε→0

ε

∫ T

0

∑
x∈X

vεt (x)∂tµt (x)dt = 0.

Finally, since ρt (x)
εµt (x)+ρt (x) ≤ 1 and ρt (x) > 0 for any t > 0 by irreducibility of L , we can again

apply dominated convergence theorem and obtain

lim
ε→0

∫ T

0

∑
x∈X

1{µt > 0}
ρt (x)

εµt (x) + ρt (x)
∂tµt (x) dt =

∫ T

0

∑
x∈X

1{µt (x) > 0} ∂tµt (x) dt

This limit is equal to zero, as we now show using another application of the dominated
convergence theorem. Let Hm : R → [0, 1] be a smooth approximation of the Heaviside
function H with Hm(s) = 0 for s ≤ 0 and Hm(s) ↑ 1 for s > 0 as m → ∞; set
fm(s) =

∫ s
0 Hm(σ ) dσ . Since fm is Lipschitz, t ↦→ fm(µt (·)) is again absolutely continuous

by Lemma A.3, and we have the chain rule∑
x∈X

[
fm(µT (x)) − fm(µ0(x))

]
=

∫ T

0

∑
x∈X

Hm(µt (x))∂tµt (x) dt.

Using the dominated convergence theorem on both sides, we pass to the limit m → ∞ to find

0 =

∑
x∈X

[
µT (x) − µ0(x)

]
=

∫ T

0

∑
x∈X

1{µt (x) > 0} ∂tµt (x) dt.
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Putting the results of the two steps together, we obtain

1
λ

IL (µ) ≥ H (µT |ρT ) − H (µ0|ρ0) +

∫ T

0
Rλ

L (µt |ρt ) dt,

which concludes the proof of the FIR inequality. □

2.3. Properties of the generalised relative Fisher Information

Given the set X and the operator L , we define a graph with vertices X and un-oriented
edges E ⊂ X × X as follows:

(x, y) ∈ E ⇐⇒ L(x, y) > 0 or L(y, x) > 0.

The interpretation of this graph is that two vertices are connected if they are a single jump of the
Markov process apart, in either direction. In this graph, the support supp(ρ) := {x ∈ X : ρ(x) >
0} is a subset of the vertices, and defines a subgraph by deleting all edges that do not connect
two vertices in supp(ρ). Furthermore, we can decompose supp(ρ) into connected components
Ωi , i.e. supp(ρ) = ∪i∈IΩi and for every pair x, y ∈ Ωi there exists a finite sequence (xn)n=1,...,N

in Ωi with x1 = x , xN = y and the vertices xn and xn+1 are connected for all n = 1, . . . , N −1.

Lemma 2.5. Let µ, ρ ∈ P(X ), and let supp(ρ) be decomposed into connected components
Ωi . If µ = ρ then Rλ

L (µ|ρ) = 0. Further, if Rλ
L (µ|ρ) = 0, then there exist numbers ai ≥ 0,

i ∈ I , such that µ(x) = aiρ(x) for all x ∈ Ωi . In particular, if ρ(x) > 0 for all x ∈ X and L
is irreducible, then µ = ρ.

Proof. The fact that µ = ρ implies Rλ
L (µ|ρ) = 0 follows from the definition of Rλ

L . Assume
now that Rλ

L (µ|ρ) = 0 for µ, ρ ∈ P(X ). Let Ωi be a connected component of the support
of ρ, where we exclude the trivial cases that µ vanishes identically on Ωi or that Ωi only
contains one vertex. We now show that if µ does not vanish identically it is strictly positive
on Ωi . Assume that µ|Ωi ̸> 0; since Ωi is a connected subgraph there exists x, y ∈ Ωi such
that L(x, y) > 0 and either µ(x) > 0 and µ(y) = 0 or µ(x) = 0 and µ(y) > 0. In the first
case, we estimate using (15c) (recall that ρ(x) > 0 and ρ(y) > 0) that

Rλ
L (µ|ρ) ≥ L(x, y)

(
−µ(x) +

1
λ
µ(x)

)
> 0,

since λ ∈ (0, 1). In the second case, we obtain

Rλ
L (µ|ρ) ≥ L(x, y)

(
µ(y)
ρ(y)

ρ(x)
)
> 0.

Therefore, in both cases we obtain a contradiction to Rλ
L (µ|ρ) = 0 and thus, µ|Ωi > 0.

Now, let x, y ∈ Ωi be arbitrary. Since Ωi is a connected, there exists a finite sequence
(xn)n=1,...,N with x1 = x, xN = y and either L(xn, xn+1) > 0 or L(xn+1, xn) > 0 for all
n = 1, . . . , N − 1. Furthermore, ρ > 0 on Ωi and thus (cf. (20)),

0 = Rλ
L (µ|ρ) ≥ L(x, y)ρ(x)

rλ(v(x), v(y))
λ

≥ 0, v = µ/ρ

for all x, y ∈ Ωi and hence, especially

rλ(v(xn), v(xn+1)) = 0 or rλ(v(xn+1), v(xn)) = 0.



B. Hilder, M.A. Peletier, U. Sharma et al. / Stochastic Processes and their Applications 130 (2020) 2596–2638 2615

Using Lemma 2.3, this is true if and only if v(xn) = v(xn+1) and thus,
µ(xn−1)
ρ(xn−1)

=
µ(xn)
ρ(xn)

=
µ(xn+1)
ρ(xn+1)

for all n = 2, . . . , N − 1.

Since the pair x, y was arbitrarily chosen, it follows that there exists a constant a > 0 such
that µ(x) = aρ(x) for all x ∈ Ωi .

Finally, if ρ(x) > 0 for every x ∈ X and L is irreducible, then X itself is a connected
component and we can apply the previous result. Furthermore, since µ, ρ have the same mass,
i.e. µ(X ) = ρ(X ), we have a = 1 in this case. □

Remark 2.6. Note that no claim is made about µ(x) for x ̸∈ supp(ρ); see Example 2.7 in
which Rλ

L (µ|ρ) = 0, but there exist x ∈ X with ρ(x) = 0 and µ(x) > 0. However, if one
assumes additionally that H (µ|ρ) < ∞, then necessarily µ(x) = 0 for all x /∈ supp(ρ). □

Example 2.7. We now give an example of ρ,µ, such that Rλ
L (µ|ρ) = 0 and ρ(x) = 0 but

µ(x) > 0 for some x ∈ X . Let w, z ∈ X and L such that L(x, z) = 0 as well as L(z, x) = 0
for all x ̸= w. We consider µ = δz and ρ with supp(ρ) = X \ {w, z}. The corresponding
generalised relative Fisher information (15c) is

Rλ
L (µ|ρ) =

∑
x,y∈X \{w,z}

L(x, y)ψλ(x, y)

+

∑
x∈X \{w,z}

[L(x, z)ψλ(x, z) + L(z, x)ψλ(z, x)

+L(x, w)ψλ(x, w) + L(w, x)ψλ(w, x)]
+ L(w, z)ψλ(w, z) + L(z, w)ψλ(z, w).

By the definition of ψλ, the first summation vanishes since µ(x) = µ(y) = 0 for x, y ∈

X \{w, z}. Regarding the second summation, note that L(x, z) = L(z, x) = 0 by assumption and
thus the first two terms vanish. Furthermore, ψλ(x, w) = 0 since µ(w) = 0 and ψλ(w, x) = 0
since ρ(w) = 0, and thus the remaining two terms vanish. The last two terms in the equality
above also vanish since ρ(w) = ρ(z) = 0. This show that Rλ

L (µ|ρ) = 0 but µ(z) = 1 > 0
while ρ(z) = 0, i.e. there does not exist any a > 0 such that µ(x) ̸= aρ(x) for x ̸∈ supp(ρ).
Additionally, this gives an example for which µ = aρ holds on a subgraph Ω = X \ {w, z}
with a = 0. □

Next we turn to the asymptotic behaviour of Rλ
L in the limit λ → 0, described by

Lemma 2.8. Before presenting the result, we first formally derive the limit which in this case
is the relative Fisher Information (5). Using (11), for any λ ∈ (0, 1) and f ∈ ℓ∞(X ) we find

1
λ
H(µ, λ f ) = sup

s∈ℓ1(X )

{∑
x∈X

f (x)s(x) −
1
λ
L(µ, s)

}
≥

∑
x∈X

f (x)(LTµ)(x),

where we have chosen s = LTµ and used L(µ, LTµ) = 0 (cf. (8)) to arrive at the inequality.
Substituting this into (15a) we arrive at

Rλ
L (µ|ρ) ≤

∑
x,y∈X

L(x, y)
µ(y)
ρ(y)

ρ(x) −

∑
x∈X

L log
(
µ

ρ

)
(x)µ(x) = RL (µ|ρ),

where RL (·|·) is defined in (5). Since L is the Lagrangian corresponding to the operator L , it
follows that L(µ, s) > 0 if s ̸= LTµ (recall the properties below (7)). Hence for small λ, the
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deviations from s = LTµ are penalised in the definition of the Hamiltonian (11) and therefore
for λ → 0 we expect that the supremum is attained at s = LTµ, i.e.

lim
λ↘0

1
λ
H(µ, λ f ) =

∑
x∈X

f (x)(LTµ)(x) =

∑
x,y∈X

µ(x)L(x, y)( f (y) − f (x)).

Substituting this in (15a) we expect that Rλ
L

λ→0
−−→ RL . We make this intuition rigorous in the

next result.

Lemma 2.8. (i) For all µ, ρ ∈ P+(X ), limλ↘0 Rλ
L (µ|ρ) = RL (µ|ρ) monotonically increasing.

(i i) Γ -limλ↘0 Rλ
L = RL on P+(X ) × P+(X ).

Proof. (i) Set v = µ/ρ. Using (15c), (20) we find

Rλ
L (µ|ρ) =

∑
x,y∈X

L(x, y)ρ(x)
rλ(v(x), v(y))

λ
.

Using Lemma 2.3 and applying the monotone convergence theorem we find

lim
λ→0

Rλ
L (µλ|ρλ) =

∑
x,y∈X

L(x, y)ρ(x)
(

lim
λ→∞

rλ(v(x), v(y))
λ

)
=

∑
x,y∈X

L(x, y)ρ(x)
[
v(y) − v(x) + v(x) log

(
v(x)
v(y)

)]
= RL (µ|ρ).

The monotonicity of the convergence follows from the monotonicity of λ ↦→ λ−1rλ in
Lemma 2.3.

(i i) The proof of the Γ -limit consists of a liminf and a limsup inequality (see [5, Section
1.2] for details).

The liminf inequality states that for any sequences (µλ)λ≥0, (ρλ)λ≥0 ⊂ P+(X ) which
converge in ℓ1(X ) (and therefore pointwisely) to µ, ρ ∈ P+(X ) as λ → 0, we have

lim inf
λ→0

Rλ
L (µλ|ρλ) ≥ RL (µ|ρ). (25)

Using the definition (15c) of Rλ
L , (20) and Lemma 2.3, we find with Fatou’s lemma that

lim inf
λ→0

Rλ
L (µλ|ρλ) = lim inf

λ→0

∑
x,y∈X

ρλ(x)L(x, y)
rλ(vλ(x), vλ(y))

λ

≥

∑
x,y∈X

ρ(x)L(x, y) lim inf
λ→0

rλ(vλ(x), vλ(y))
λ

,

where vλ := µλ/ρλ. To complete the proof of the liminf inequality (25) we need to bound the
right hand side of the inequality above by the relative Fisher Information. Setting sλ(x, y) =

vλ(y)/vλ(x), we find

lim inf
λ→0

rλ(vλ(x), vλ(y))
λ

= v(y) − v(x) − lim sup
λ→0

{
vλ(x)

(
sλ(x, y)λ − 1

λ

)}
.

Due to the pointwise convergence vλ → v, we have that sλ(x, y) → s(x, y) = v(y)/v(x). In
particular, for any ε > 0, we find a λε > 0 such that |sλ(x, y) − s(x, y)| < ε for all λ ∈ (0, λε).
Consequently, 0 < sλ(x, y) < s(x, y) + ε for λ ∈ (0, λε), which yields

sλ(x, y)λ − 1
λ

<
(s(x, y) + ε)λ − 1

λ
for all λ ∈ (0, λε).
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Multiplication with vλ(x) and passing to the limit λ → 0, we then obtain (cf. (21))

lim sup
λ→0

{
vλ(x)

(
sλ(x, y)λ − 1

λ

)}
≤ v(x) log(s(x, y) + ε).

Since ε > 0 may be chosen arbitrarily small, we obtain

lim inf
λ→0

Rλ
L (µλ|ρλ) ≥

∑
x,y∈X

ρ(x)L(x, y)
[
v(y) − v(x) + v(x) log

(
v(x)
v(y)

)]
= RL (µ|ρ),

as required.
Next we prove the limsup inequality, wherein for fixed µ, ρ ∈ P+(X ) we need to prove the

existence of a sequence (µλ)λ≥0, (ρλ)λ≥0 in P+(X ) which satisfies

lim sup
λ→0

Rλ
L (µλ|ρλ) ≤ RL (µ|ρ).

Due to (i) we immediately see that the constant sequence for (µλ)λ≥0, (ρλ)λ≥0, i.e. µλ = µ

and ρλ = ρ for all λ > 0 does the job, which completes the proof. □

Remark 2.9 (Role of Irreducibility). While from the very outset we have assumed that the
generator L is irreducible (cf. (3c)), it is worth noting that the definition of the generalised
Fisher Information (15c) is well defined even when this does not hold. Furthermore the various
properties of the generalised Fisher Information outlined in this and the previous section do
not require irreducibility as well. However, irreducibility of the generator is required to prove
the FIR inequality in Theorem 1.6. □

2.4. Modified FIR for classical relative Fisher Information

In what follows, we use the convergence result in Lemma 2.8 to prove a FIR-inequality with
the classical relative Fisher Information (5) by restricting the class of admissible curves µ. In
the next result we provide sufficient conditions under which

(1 − γ )RL (µ|ρ) ≤ Rλ
L (µ|ρ)

for some γ ∈ (0, 1). Recall from our discussion in Section 2.1 that this is not true in general
since we can construct a sequence for which the relative Fisher Information is unbounded while
the rate functional is bounded (and therefore the generalised Fisher Information is bounded by
Theorem 1.6). In fact, from Lemma 2.8 we know that the generalised Fisher Information Rλ

L
is always bounded from above by the Fisher Information RL , and in the following result we
show that the inequality can be reversed under certain conditions.

Lemma 2.10. Fix K < ∞, λ ∈ (0, 1) and let µ, ρ ∈ P+(X ) satisfy

sup
x∈X

⏐⏐⏐⏐log
(
µ(x)
ρ(x)

)⏐⏐⏐⏐ ≤ K .

Then there exists a γ = γ (K , λ) > 0 such that

(1 − γ )RL (µ|ρ) ≤ Rλ
L (µ|ρ). (26)

Furthermore for every K < ∞ there exists a λ0 ∈ (0, 1) such that γ (K , λ) ∈ (0, 1) for all
λ ∈ (0, λ0).
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Proof. The uniform bound on the logarithm implies that RL (µ|ρ) is well-defined. Using the
definitions of these objects we can rewrite (26) as

1
λ
H
(
µ, λ log

(
µ

ρ

))
−

∑
x,y∈X

µ(x)L(x, y) log
(
µ(y)ρ(x)
ρ(y)µ(x)

)
= RL (µ|ρ) − Rλ

L (µ|ρ)

≤ γRL (µ|ρ) = γ

⎡⎣H(
µ, log

(
µ

ρ

))
−

∑
x,y∈X

µ(x)L(x, y) log
(
µ(y)ρ(x)
ρ(y)µ(x)

)⎤⎦ .
To simplify the notation, we define

D(µ, f ) := H(µ, f ) −

∑
x,y∈X

µ(x)L(x, y)( f (y) − f (x))

=

∑
x,y∈X

µ(x)L(x, y)
[
e∇ f (y,x)

− (1 + ∇ f (y, x))
]
,

where ∇ f (y, x) = f (y) − f (x). Using the Taylor expansion of the exponential, we estimate

D(µ, λ f ) ≤

∑
x,y∈X

µ(x)L(x, y)
∑
n≥2

λn |∇ f (y, x)|n

n!

= λ2
∑

x,y∈X

µ(x)L(x, y)
∑
n≥2

λn−2 |∇ f (y, x)|n

n!

≤ λ2
∑

x,y∈X

µ(x)L(x, y)
∑
n≥2

|∇ f (y, x)|n

n!

= λ2
∑

x,y∈X

µ(x)L(x, y)
[
e|∇ f (y,x)|

− (1 + |∇ f (y, x)|)
]

=: λ2D̃(µ, f ),

where the second inequality follows since λ ∈ (0, 1). Next, we show that there exists a cK > 0
only depending on K such that D(µ, f ) ≥ cK D̃(µ, f ) uniformly for all f with ∥ f ∥∞ ≤ K .
This is equivalent to proving that

ϕ(α) :=
eα − (1 + α)

e|α| − (1 + |α|)
≥ cK

for α ∈ [−2K , 2K ]. If α > 0, then ϕ(α) = 1 and hence, it is sufficient to consider α ≤ 0. By
using l’Hospital, we can continuously extend ϕ to α = 0 by defining ϕ(0) = 1. Furthermore, ϕ
is positive and monotonically decreasing for α < 0. Since [−2K , 2K ] is compact, the existence
of cK > 0 follows from the continuity and positivity of ϕ.

We thus established that for every K < ∞, there exists a cK > 0 only depending on K
such that

1
λ
D
(
µ, λ log

(
µ

ρ

))
≤

λ

cK
D
(
µ, log

(
µ

ρ

))
.

Choosing γ = λ/cK > 0 then yields (26) and for all λ < cK , we obtain γ ∈ (0, 1). □

Using this result along with Theorem 1.6 we arrive at a modified FIR inequality for the
classical relative Fisher Information.
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Proposition 2.11. Let ρ ∈ AC([0, T ];P(X )) be a solution of (2) and µ ∈ C([0, T ];P+(X ))
satisfy IL (µ) + H (µ0|ρ0) < ∞. Furthermore assume that there exists a K < ∞ such that

sup
t∈[0,T ]

sup
x∈X

⏐⏐⏐⏐log
(
µt (x)
ρt (x)

)⏐⏐⏐⏐ ≤ K .

Then there exists a sufficiently small λ (see Lemma 2.10) such that

H (µT |ρT ) + (1 − γ )
∫ T

0
RL (µt |ρt ) dt ≤ H (µ0|ρ0) +

1
λ

IL (µ),

with γ ∈ (0, 1).

Remark 2.12 (Convexity of Generalised Fisher Information). Let µ, ρ ∈ P+(X ). Using the
explicit representation for the Hamiltonian (10) we find

Rλ
L (µ|ρ) =

∑
x,y∈X

L(x, y)
[
µ(y)

ρ(x)
ρ(y)

− µ(x)
]

−
1
λ

∑
x,y∈X

µ(x)L(x, y)

×

[(
µ(y)ρ(x)
µ(x)ρ(y)

)λ
− 1

]

=

∑
x,y∈X

L(x, y)
[
µ(y)

ρ(x)
ρ(y)

− µ(x)
]

−
1
λ

∑
x,y∈X

L(x, y)

×

[(
ρ(x)
ρ(y)

)λ
µ(y)λµ(x)1−λ

− µ(x)

]
Since αλβ1−λ is concave for α, β > 0 and λ ∈ (0, 1) it follows that the third term on the right
hand side is concave in µ. Since the rest of the terms on the right hand side are linear in µ it
follows that the generalised Fisher Information is convex in the first entry. □

2.5. Comparison with diffusion processes

So far we have limited our discussion to Markov jump processes. In this section we will
apply the connections between the relative entropy, the generalised Fisher Information and the
rate functional described earlier to the case of diffusions. In what comes next, we first define
each of these objects for diffusions and then connect to the existing literature. Since our focus
in this paper is on the discrete setting, we will keep the treatment in this section formal.

Consider a stochastic differential equation on Rd ,

d X t = b(X t )dt +
√

2σ (X t )d Bt , (27)

where b : Rd
→ Rd , σ : Rd

→ Rd×d , Bt is a standard Brownian motion in Rd and
X0 ∈ Rd is the initial data. The corresponding forward Kolmogorov equation (also called
the Fokker–Planck equation in this case) evolves according to{

∂tρ = LTρ := div(bρ) + ∇
2

: Aρ

ρt=0 = ρ0,
(28)

where A := σσ T
∈ Rd×d , ρ0 ∈ P(Rd ) is the initial data, ∇

2 is the Hessian and for two matrices
B, B̃ ∈ Rd×d , B : B̃ = tr(BT B̃). Here LT is the adjoint corresponding to the generator

L f (x) := −b(x) · ∇ f (x) + A(x) : ∇
2 f (x). (29)
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Throughout this section we assume that the coefficients and the solution to (28) are sufficiently
smooth (for a more general setup see [11]). For any probability measures µ, ρ ∈ P(Rd ) and a
Markov generator L , we define the relative Fisher Information as

RL (µ|ρ) :=

∫
Rd

[
−L log

(
µ

ρ

)
µ+ L

(
µ

ρ

)
ρ

]
=

∫
Rd

⏐⏐⏐⏐∇ log
(
µ

ρ

)⏐⏐⏐⏐2
A
µ,

where |x |
2
A := xT Ax . This is continuous version of the classical relative Fisher Information (5).

Here we have inherently assumed that µ, ρ have sufficiently smooth densities (not renamed)
such that this object is well defined. Note that, since we are working with ‘linear’ diffusion
processes, the Fisher Information depends on the generator L only via the matrix A. As in
the discrete case (recall (4)), when µ, ρ are solutions to (28), the relative Fisher Information
satisfies the relation

RL (µt |ρt ) = −
d
dt

H (µt |ρt ).

The corresponding large-deviation rate functional IL : C([0, T ];P(X )) → R is (see
e.g. [8,32])

IL (µ) = sup
f ∈C1([0,T ];C2

b (Rd ))

∫
Rd

fT dµT −

∫
Rd

f0 dµ0−

∫ T

0

(∫
Rd
∂t f dµt + H(µt , ft )

)
dt,

(30)

with the Hamiltonian

H(µ, f ) :=

∫
Rd

e− f Le f dµ =

∫
Rd

L f + Γ ( f, f ) dµ. (31)

Here Γ is the carré-du-champ operator corresponding to the Markov generator L (see [2,
Section 1.4.2])

Γ ( f, g) :=
1
2

[L( f g) − f Lg − gL f ] = ∇ f · A∇g.

The (A-weighted) quadratic structure on the right hand side is particular to the diffusion
processes.

For any λ ∈ (0, 1), and probability measures µ, ρ ∈ P+(Rd ), the continuous state-space
counterpart of the generalised Fisher Information (15) is

Rλ
L (µ|ρ) :=

∫
Rd

µ

ρ
L∗ρ −

1
λ
H
(
µ, λ log

(
µ

ρ

))
= (1 − λ)RL (µ|ρ),

where L∗ denotes the L2(Rd , ρ)-adjoint of L . The equality here follows by using (31). Note
that this is different from the discrete case where the generalised Fisher Information is bounded
from above by the relative Fisher Information (recall Lemma 2.8) and the reversed inequality
only holds in a fairly restrictive setting (see Lemma 2.10). This is due to the simpler structure
of the Hamiltonian (31) which can be written as a combination of a linear and a quadratic
term, as opposed to a genuine exponential structure in the discrete case.

Following the formal approach used for deriving the FIR inequality (cf. Section 1.2), we
arrive at

H (µT |ρT ) + (1 − λ)
∫ T

0
RL (µt |ρt )dt ≤ H (µ0|ρ0) +

1
λ

IL (µ),
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which has been derived recently in [11], and without the connection to large deviations in [4].
In [4] such an inequality is proven rigorously by directly studying the time derivative of the
relative entropy and using appropriate regularity results for a very wide class of Fokker–Planck
equations, while here we derive this inequality by studying the dual formulation of the rate
functional. Similar ideas have also been developed for the (nonlinear) Vlasov–Fokker–Planck
equation in [12, Theorem 2.3].

3. Coarse-graining

In this section we study the coarse-graining problem introduced in Section 1.3, which we
now recall. Consider a family of forward Kolmogorov equations{

∂tµ
ε
= (Lε)Tµε,

µεt=0 = µ0,
(32)

on X = Y × Z with Y = {0, 1} and Z = {1, . . . , n}, generated by the family of operators

Lε =
1
ε

Q + C :=
1
ε

(
Q0 0
0 Q1

)
+

(
D0 C0,1

C1,0 D1

)
, (33)

i.e. with

Q((y, z), (y′, z′)) =

{
Q y(z, z′) if y′

= y
0 otherwise,

C((y, z), (y′, z′)) =

⎧⎪⎨⎪⎩
Cy,y′ (z, z′) if y′

̸= y
Dy(z) if y′

= y and z′
= z

0 otherwise

for x = (y, z), x ′
= (y′, z′) ∈ X satisfying

∀x ∈ X :

∑
x ′∈X

Q(x, x ′) = 0 =

∑
x∈X

C(x, x ′),

and diagonal matrix Dy , y ∈ Y , which satisfies

∀z ∈ Z : Dy(z) := −

∑
z′∈Z

Cy,1−y(z, z′). (34)

Here Lε is irreducible, and therefore (32) admits a stationary solution π ε ∈ P(X ). Additionally
we assume that Q0 and Q1 are irreducible as well. In what follows we will use ∇ f (y, x) :=

f (y) − f (x).

Remark 3.1 (Topologies on P(X )). Since X is a finite set, P(X ) can be identified with a closed,
bounded (and thus compact) subset of the finite-dimensional vector space RX . Therefore, there
is no necessity to distinguish between different notions of convergence on P(X ), since there
is a unique topology which makes RX a (Hausdorff) topological vector space. In particular,
the notion of uniform convergence (generated by the total variation distance) and narrow
convergence (weak convergence with test functions in Cb) are equivalent and coincide with
the standard convergence on RX . □

The rest of this section is devoted to studying the behaviour of (32) in the limit of ε → 0.
We now outline an abstract variational framework, developed in [12], that will be used to study
this problem.



2622 B. Hilder, M.A. Peletier, U. Sharma et al. / Stochastic Processes and their Applications 130 (2020) 2596–2638

3.1. A variational framework for coarse-graining

Let ρε : [0, T ] → P(X ) be a family of solutions to the forward Kolmogorov equations (32),
and let ILε be the corresponding family of large-deviation rate functionals associated to the
underlying stochastic process (recall Theorem 1.4). Since the solutions ρε are characterised by
ILε via ILε (ρε) = 0, establishing the limit behaviour as ε → 0 consists of answering two
questions:

(1) Compactness: Do solutions of ILε (ρε) = 0 have useful compactness properties,
allowing one to extract a subsequence that converges in a suitable topology, say τ?

(2) Liminf inequality: Is there a limit functional I ≥ 0 such that

ρε
τ
−→ ρ H⇒ lim inf

ε↘0
ILε (ρε) ≥ I (ρ)? (35)

And if so, does one have

I (ρ) = 0 ⇐⇒ ∂tρ = LTρ,

for some limiting operator L?

As we shall see in the coming sections, the method we use answers both these questions
for approximate solutions. By this we mean that we work with a sequence of time-dependent
probability measures which satisfy supε>0 ILε (µε) < ∞. The exact solutions are special
cases when ILε (µε) = 0. Consequently, all our results follow from this uniform bound and
assumptions on well-prepared initial data (which is exactly the right hand side of the FIR
inequality (FIRλ)).

The question of compactness will be answered by the uniform bound on the rate functional.
Since our state space is finite, this bound along with the Arzelà–Ascoli theorem will provide
us with suitable compactness properties (see Section 3.2 for details).

In answering the second question, we will make use of two crucial ingredients. First, that
the rate functional has a duality relation of the type (recall Theorem 1.4),

IL (µ) = sup
f
JL (µ, f ), (36)

where the supremum is taken over an appropriate class of functions. Second, that the problem
is of coarse-graining type as we expect that in the limit of ε → 0, the dynamics in each
macro-state equilibrates and the limiting object is a jump process across the macro-states (recall
discussion in Section 1.3). We characterise this behaviour by means of a coarse-graining map
which identifies the relevant degrees of freedom. In our setting we choose this to be a mapping
onto the macro-states, i.e. ξ : X → Y with ξ (x) = y for every x = (y, z) ∈ X . The coarse-
grained equivalent of ρε : [0, T ] → P(X ) is the push-forward ρ̂ε := ξ#ρ

ε
: [0, T ] → P(Y).

For a discussion on coarse-graining mappings in other contexts see [37, Section 1.4].
The core of the argument for the liminf inequality (35) is summarised in the following

formal calculation:

ILε (ρε) = sup
f

JLε (ρε, f )

f =g◦ξ

≥ sup
g

JLε (ρε, g ◦ ξ )⏐⏐↓ ε → 0 (37)
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sup
g

J (ρ, g ◦ ξ )

(∗)
=: sup

g
Ĵ (ρ̂, g)

(∗∗)
=: Î (ρ̂)

Let us now go through each of these lines. The first line is the dual characterisation of the rate
functional (36). The inequality on the second line follows by restricting the class of admissible
functions f to functions of the type f = g◦ξ . Here we have made a choice to restrict ourselves
to functions of the form f = g ◦ ξ . Following this inequality we pass to the limit using the
compactness results derived earlier. The choice of coarse-graining map is crucial here since we
cannot expect convergence for functions f which still have access to the full information.

In the next step (∗), we pass from the full limit measure ρ to the coarse-grained measure
ρ̂. To do that rigorously we need a local-equilibrium result, which describes how we can
reconstruct the full information in ρ which is lost by considering only ρ̂. As we shall see
in Section 3.3, this result crucially depends on the generalised Fisher Information and the FIR
inequality.

Finally, we define in (∗∗) a new functional Î . In a successful application of coarse-graining,
this functional is connected to an evolution equation similar to (8). In our example it turns out
that Î is again a large deviations rate functional and connected to a lower dimensional effective
equation.

In what follows we go through each of the steps described above to derive the behaviour
of (32) as ε → 0. In Section 3.2 we prove compactness results, Section 3.3 contains the
local-equilibrium result and in Section 3.4 we prove the liminf inequality.

3.2. Compactness

In the following result we discuss the compactness properties. We prove a two-level
compactness result, a weaker result on the original space X and a stronger result on the
coarse-grained space Y .

Lemma 3.2. Let a sequence µε ∈ C([0, T ];P(X )) satisfy

sup
ε>0

ILε (µε) < ∞.

Then there exist µ ∈ M([0, T ] × X ) and a subsequence (not relabelled) such that

(i) µε → µ in M([0, T ] × X ) narrowly with µ =
∫ T

0 µt for a Borel family {µt }t∈(0,T ).
(ii) ξ#µ

ε
→ ξ#µ in C([0, T ];P(Y)) with respect to the uniform topology in time.

Proof. Since [0, T ] × X is compact, every subset of M([0, T ] × X ) is tight. Furthermore,
since µε =

∫ T
0 µ

ε
t with µεt ∈ P(X ) the set {µε, ε > 0} is uniformly bounded in M([0, T ]×X ),

and so by Prokhorov’s theorem and the equi-integrability of the map t ↦→ µεt (X ), we have that
µε → µ narrowly in M([0, T ] ×X ) for some µ ∈ M([0, T ] ×X ). Furthermore where µ has
the representation µ =

∫ T
0 µt for a Borel family {µt }t∈(0,T ) due to the disintegration theorem.

To prove the second statement we use the Arzelà–Ascoli theorem [31, Theorem 45.4]. Using
the characterisation (13) of the rate functionals ILε , we obtain

M ≥ ILε (µε) ≥

∫ T

0

[⟨
1[s1,s2](t)

g ◦ ξ

λ
, ∂tµ

ε
t

⟩
− Hε

(
µεt ,1[s1,s2](t)

g ◦ ξ

λ

)]
dt, (38)
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for any s1, s2 ∈ [0, T ], g ∈ ℓ∞(Y) and λ > 0, where Hε is the Hamiltonian corresponding to
the generator Lε (see (10)). We then calculate

Hε

(
µεt ,1[s1,s2](t)

g ◦ ξ

λ

)
=

∑
x1∈X

µεt (x1)
∑
z2∈Z

ε−1 Q y1 (z1, z2)
(

e−
1
λ
1[s1,s2](t)∇g(y1,y1)

− 1
)

+

∑
x1∈X

µεt (x1)
∑
z2∈Z

Cy1,1−y1 (z1, z2)

×

(
e−

1
λ
1[s1,s2](t)∇g(y1,1−y1)

− 1
)

≤ 0 + C̄
(

e
1
λ

2∥g∥∞ − 1
)
1[s1,s2](t),

where C̄ := supy∈Y ∥Cy,1−y∥ is independent of ε > 0 and s ∈ [0, T ] and the zero in the final
inequality follows since ∇g(y1, y1) = 0. Note that D0 and D1 do not contribute to the equality
above. Substituting this bound into (38) with λ = −∥g∥∞/ log

√
|s2 − s1| and using absolute

continuity on t ↦→ µεt we find

⟨g, ξ#µ
ε
s2

− ξ#µ
ε
s1

⟩ =

∫ s2

s1

⟨g ◦ ξ, ∂tµ
ε
t ⟩ dt

≤ λM + λC̄ |s2 − s1|

(
e

1
λ

2∥g∥∞ − 1
)

=
∥g∥∞M

− log
√

|s2 − s1|
+

∥g∥∞C̄ |s2 − s1|

− log
√

|s2 − s1|

(
1

|s2 − s1|
− 1

)
≤ 2∥g∥∞

M + C̄ |1 − |s2 − s1| |

| log |s2 − s1| |
.

Since the narrow topology coincides with the uniform topology and the upper bound does not
depend on ε this gives equicontinuity of (ξ#µ

ε). Furthermore, ξ#µ
e is naturally bounded from

above in C([0, T ];P(Y)) and thus, we can apply the Arzelà–Ascoli theorem which gives the
statement. □

3.3. Local-equilibrium

As stated earlier, our interest is in studying the slow behaviour of the dynamics and we do
this by focussing on a coarse-grained description of the model (via ξ ). However information is
lost in the coarse-graining procedure, and in this section we reconstruct this lost information
by proving a ‘local-equilibrium’ result, which crucially depends on the FIR inequality.

The central idea is to pass ε → 0 in the FIR inequality, obtain a vanishing bound on
the generalised Fisher Information and then study the properties of the limiting object. More
precisely, we combine the lower-semicontinuity property of Rλ

L with the FIR inequality (FIRλ)
to show that in the limit of ε → 0, the time-dependent sequence µε becomes stationary in the
micro-state variable and the time dependence completely shifts onto the macro-state variable.
We first prove an auxiliary lemma which discusses the limit of the stationary measure π ε and
then prove the local-equilibrium result.

Lemma 3.3. Let (π ε)ε>0 ⊂ P(X ) be a sequence of stationary measures corresponding to Lε,
i.e. (Lε)Tπ ε = 0 for every ε > 0. Then there exists a positive probability measure π ∈ P+(X )
satisfying QTπ = 0, with π ε → π in P+(X ).
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Proof. Due to the compactness of P(X ), we find some π ∈ P(X ) such that π ε → π as
ε → 0. Passing ε → 0 in ε(Lε)Tπ ε = 0 yields

QTπ = 0 ⇐⇒ ∃α ∈ [0, 1] such that π =

(
απ0

(1 − α)π1

)
, (39)

where πy ∈ P(Z) is the stationary measure of Q y , y ∈ Y .
We now show that π ∈ P+(X ), which follows if α ∈ (0, 1) since πy ∈ P+(Z) due to the

irreducibility of Q y . Using (Lε)Tπ ε = 0 and
∑

z′∈Z Q y(z, z′) = 0, for every y ∈ Y we find

0 =

∑
z∈Z

((Lε)Tπ ε)(y, z) =

∑
z,z′∈Z

[1
ε

Q y(z′, z)π ε(y, z′) + C1−y,y(z′, z)π ε(1 − y, z′)
]

+

∑
z∈Z

Dy(z)π ε(y, z)

=

∑
z,z′∈Z

C1−y,y(z′, z)π ε(1 − y, z′) +

∑
z∈Z

Dy(z)π ε(y, z),

Furthermore passing ε → 0 and using (34) we obtain

0 = −

∑
z∈Z

D1−y(z)π (1 − y, z) +

∑
z∈Z

Dy(z)π (y, z).

Finally, using (39) and λy := −
∑

z∈Z Dy(z)πy(z) we have

−αλ0 + (1 − α)λ1 = 0 H⇒ α =
λ1

λ0 + λ1
.

Since λy > 0 (recall that Lε is irreducible if and only if Cy,1−y has at least one positive entry
for all y ∈ {0, 1}) we have α ∈ (0, 1) and therefore π ∈ P+(X ). □

Lemma 3.4. Let a sequence µε ∈ C([0, T ];P(X )) satisfy

sup
ε>0

{
ILε (µε) + H (µε0|π

ε)
}
< ∞, (40)

where (π ε)ε>0 ⊂ P(X ) is a sequence of stationary measures of Lε converging to π ∈ P+(X )
as ε → 0. Then there is a µ̂ ∈ C([0, T ];P(Y)) such that for almost every t ∈ [0, T ],

∀y ∈ Y, AZ ⊂ Z, µt ({y} × AZ ) = µ̂t (y)πy(AZ ). (41)

Here µ is the limit of (µε)ε>0 (see Lemma 3.2) and for each y ∈ Y , πy ∈ P(Z) is the stationary
measure corresponding to Q y . Furthermore ξ#µ

ε
→ µ̂ in C([0, T ];P(Y)) uniformly in time.

Proof. Using (40) and the FIR inequality in Theorem 1.6, we find

H (µεT |π ε) +

∫ T

0
Rλ

Lε (µ
ε
t |π

ε) dt ≤
1
λ

ILε (µε) + H (µε0|π
ε) ≤ M

H⇒

∫ T

0
Rλ

Lε (µ
ε
t |π

ε) dt ≤ M,

for some constant M < ∞ independent of ε. Recall that Lε = ε−1 Q + C . Due to the linearity
of Rλ

L with respect to L , we find that

ε−1
∫ T

0
Rλ

Q(µεt |π
ε) dt +

∫ T

0
Rλ

C (µεt |π
ε) dt ≤ M.
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Multiplying with ε and letting ε → 0 we find

lim inf
ε→0

∫ T

0
Rλ

Q(µεt |π
ε) dt ≤ 0.

Using the non-negativity and lower-semicontinuity property of the generalised relative Fisher
Information (cf. Lemma 2.4), together with the Borel-measurability of the non-negative
functions t ↦→ RQ(µεt |π

ε), we obtain from Fatou’s lemma that

Rλ
Q(µt |π ) = 0 for almost every t ∈ (0, T ). (42)

In what follows, for y ∈ Y we use µt (·|y) ∈ P(Z) for the family of conditional measures
corresponding to µt , i.e. we write µt (y, z) = µt (z|y)(ξ#µt )(y). We show that Rλ

Q(µt |π ) = 0
if and only if µt (z|y) = πy(z) for any x = (y, z) ∈ X with (ξ#µt )(y) > 0. Using the
representation (15b) and by disintegration we find

Rλ
Q(µt |π ) =

∑
x,x ′∈X

Q(x, x ′)

[
µt (x ′)

π (x)
π (x ′)

−
1
λ
µt (x)1−λµt (x ′)λ

(
π (x)
π (x ′)

)λ]
=

∑
y∈Y

∑
z,z′∈Z

(ξ#µt )(y)Q y(z, z′)

×

[
µt (z′

|y)
πy(z)
πy(z′)

−
1
λ
µt (z|y)1−λµt (z′

|y)λ
(
πy(z)
πy(z′)

)λ]
=

∑
y∈Y

(ξ#µt )(y)Rλ
Qy

(µt (·|y)|πy).

Here, we used that the conditional measure π (·|y) ∈ P(Z) is the stationary measure πy of Q y

since (ξ#π )(y) > 0. Using (42) along with the irreducibility of Q y , the fact that πy ∈ P+(Z) and
Lemma 2.5 we find µt (z|y) = πy(z) for any (y, z) ∈ X with (ξ#µt )(y) > 0, and therefore (41)
follows since it holds trivially whenever (ξ#µt )(y) = 0. By the convergence properties of ξ#µ

ε

given in Lemma 3.2, we find µ̂ := ξ#µ ∈ C([0, T ];P(Y)) such that ξ#µ
ε

→ µ̂ uniformly in
time. □

3.4. Liminf inequality

As discussed in Section 3.1, the final step is to prove a liminf inequality which will also
provide us with the limit dynamics. We prove this result in the next theorem.

We define the (limiting) functional IL : C([0, T ];P(Y)) → R by

IL (µ̂) := sup
g∈C1([0,T ];ℓ∞(Y))

⎧⎨⎩∑
y∈Y

gT (y)µ̂T (y) −

∑
y∈Y

g0(y)µ̂0(y)

−

∫ T

0

[∑
y∈Y

∂t gt (y)µ̂t (y) +

∑
y,y′∈Y

µ̂t (y)L(y, y′)

×

(
e∇gt (y′,y)

− 1
) ]

dt

⎫⎬⎭ ,
(43)



B. Hilder, M.A. Peletier, U. Sharma et al. / Stochastic Processes and their Applications 130 (2020) 2596–2638 2627

with the (limiting) generator L defined as

L :=

(
−λ0 λ0
λ1 −λ1

)
, λy :=

∑
z,z′∈Z

πy(z)Cy,1−y(z, z′). (44)

Here πy ∈ P+(Z) is the stationary measure of Q y (recall Lemma 3.4). Since g = 0 is
admissible, IL ≥ 0. Furthermore we have the equivalence

IL (µ̂) = 0 ⇐⇒ ∂t µ̂ = LT µ̂. (45)

Lemma 3.5. Under the same assumptions of Lemma 3.4 we assume that µε → µ narrowly
in M([0, T ] × X ) and ξ#µ

ε
→ µ̂ in C([0, T ];P(Y)) (recall Lemma 3.2). Then

lim inf
ε→0

ILε (µε) ≥ IL (µ̂).

Proof. We write the rate functional ILε : C([0, T ];P(X )) → R (defined in (12)) as

ILε (µε) = sup
f ∈C1([0,T ];ℓ∞(X ))

J ε(µε, f ),

with

J ε(µε, f ) := ⟨ ft , µ
ε
T ⟩ − ⟨ f0, µ

ε
0⟩ −

∫ T

0

∑
x,x ′∈X

µt (x)

×

(
∂t ft (x) + Lε(x, x ′)

[
e∇ f (x ′,x)

− 1
])

dt.

Using A := { f = g ◦ ξ : g ∈ C1([0, T ]; ℓ∞(Y))} we have

ILε (µε) ≥ sup
f ∈A

J ε(µε, f ),

where

J ε(µε, g ◦ ξ ) = ⟨gT ◦ ξ, µεT ⟩ − ⟨g0 ◦ ξ, µε0⟩ −

∫ T

0
⟨∂t (gt ◦ ξ ), µεt ⟩ dt

−

∫ T

0

∑
(y,z)∈Y×Z

µεt ((y, z))
∑
z′∈Z

Cy,1−y(z, z′)
(
e−∇gt (y,1−y)

− 1
)
.

(46)

We now show that (46) converges to (43) term by term. Since ξ#µ
ε
t → µ̂t uniformly in

t ∈ [0, T ], for the first three terms in the right hand side of (46) we find

⟨gT , ξ#µ
ε
T ⟩ − ⟨g0, ξ#µ

ε
0⟩ −

∫ T

0
⟨∂t gt , ξ#µ

ε
t ⟩ dt

ε→0
−−→ ⟨gT , ξ#µT ⟩ − ⟨g0, ξ#µ0⟩ −

∫ T

0
⟨∂t gt , ξ#µt ⟩ dt.
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Using Lemma 3.4 for the final term in (46) yields∫ T

0

∑
(y,z)∈Y×Z

µεt ((y, z))
(
e−∇gt (y,1−y)

− 1
)∑

z′∈Z

Cy,1−y(z, z′) dt

ε→0
−−→

∫ T

0

∑
(y,z)∈Y×Z

πy(z)µ̂t (y)
(
e−∇g(y,1−y)

− 1
)∑

z′∈Z

Cy,1−y(z, z′) dt

=

∫ T

0

∑
y∈Y

µ̂t (y)
(
e−∇g(y,1−y)

− 1
)
λy dt.

where λy is defined in (44). Altogether, we obtain

lim inf
ε→0

ILε (µε) ≥ lim inf
ε→0

J ε(µε, g ◦ ξ )

= ⟨gT , µ̂T ⟩ − ⟨g0, µ̂0⟩ −

∫ T

0
⟨∂t gt , µ̂t ⟩

+

∑
y∈Y

µ̂t (y)
(
e−∇g(y,1−y)

− 1
)
λy dt

for every g ∈ C1([0, T ]; ℓ∞(Y)). Taking the supremum over such functions concludes the
proof. □

Remark 3.6 (Limiting Behaviour of Solutions). So far, in all the steps we have assumed that the
sequence µε are approximate solutions in the sense that they satisfy supε>0 ILε (µε) < ∞. The
case when µε is a sequence of solutions to the forward Kolmogorov equation (32) is a special
case of our analysis, which corresponds to the choice ILε (µε) = 0. Lemma 3.5 implies that
the limiting evolution for a sequence of solutions is given by (45). Theorem 1.8 summarises
the results for a sequence of solutions. □

4. Conclusion and discussion

In this paper we construct a generalised relative Fisher Information in the context of Markov
jump processes on possibly countable discrete state space. This generalised Fisher Information
has various favourable properties, and connects naturally to the relative entropy and the large
deviation rate functional. We then use these connections to solve a coarse-graining problem in
the context of Markov jump processes.

We now discuss some open questions and connected problems.
Coarse-graining in more general setting. As mentioned in the introduction, our

coarse-graining example was already discussed using martingale techniques in [22]. Related
ideas have also been discussed in [33, Chapter 16]. We now discuss whether more general
settings can also be treated by our method. For that we distinguish two cases, finite state
spaces and countable state spaces. In the case of finite state spaces, we expect that our proofs
straightforwardly generalise to the case there are more than two macro-states which each have a
different (finite) number of macro-states, i.e. Y is an arbitrary finite set and X = ∪y∈Y{y}×Zy .

In contrast the case of infinite state spaces provides more difficulties. A particular one is
that the compactness argument in Lemma 3.2 via Prokhorov’s theorem relies on the fact that
the state space is finite and thus compact. In [12] this is solved by using the FIR inequality
to obtain bounds on the free energy which are in turn used to obtain compactness results.
However, it is an open question, whether such a strategy is applicable in the discrete case.
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Other stochastic processes. The approach to the FIR inequality presented in this work
is rather general, which we now formally outline. Let X be a smooth manifold with tangent
bundle T X and L : X × T X → R a Lagrangian, or more generally an L-function [30], i.e.
L is nonnegative, convex in its second argument and induces an evolution equation via

L (x, s) = 0 ⇐⇒ s = A(x).

Note that we do not assume that L originates from a large deviations principle. Furthermore,
suppose that there is a smooth Lyapunov function F : X → R connected to the evolution
equation ∂t x = A(x).

We now construct a relative entropy-type functional comparing two elements from X by
using the Bregman divergence of F ,

F (x |y) := F (x) − F (y) − ⟨dF (y), x − y⟩ ,

where dF is the Fréchet derivative of F . Then, we can formally define the generalised relative
Fisher Information in this case as

Rλ
A(x |y) :=

⟨
d2F (y)(A(y)), x − y

⟩
−

1
λ
H(x, λ(dF (x) − dF (y))),

where H(x, ·) is the Legendre transform of L(x, ·) for fixed x ∈ X . By construction, these
functionals satisfy the FIR-type inequality

F (xT |yT ) − F (x0|y0) +

∫ T

0
Rλ

A(xt |yt ) dt ≤
1
λ

∫ T

0
L(xt , ∂t xt ) dt,

with y : [0, T ] → X satisfying ∂t y = A(y). We still expect that Rλ
A converges for λ → 0

to the classical relative Fisher Information RA, similar to the motivation of Lemma 2.8.
However, whether Rλ

A is also a non-negative functional is an open question. We suspect that
the Lagrangian and the Lyapunov function have to be connected in some appropriate sense for
this to hold. One example of such a connection would be when both originate from a large
deviations principle.

This is also related to the important question, ‘How to construct Lyapunov functions?’.
There are, in principle, multiple approaches to do this. For example, a specific choice can be
motivated via a gradient flow result or via a large deviations principle. In the case discussed
in this work, both methods are valid. While the fact that the relative entropy can be obtained
via a large deviations principle is well known, gradient flow results for discrete state spaces
are relatively new, see e.g. [24]. Further results for both these approaches also exist for certain
nonlinear systems, see e.g. [14,18]. However it is not clear if and how these are connected and
whether they can be used in the construction of a generalised relative Fisher Information as
described above.

Quantification of coarse-graining error. The FIR inequality has been successfully used
to quantify error in relative entropy between two different forward Kolmogorov equations in
the context of diffusion equations. Similar questions can be asked in the Markov jump process
context, for instance to prove rates of convergence — note that in this paper we only prove
qualitative convergence. However the role of the generalised Fisher Information and the FIR
inequality in proving such quantitative estimates is an open problem. To do this, we expect
that the right object to consider is not the FIR inequality but a related result inspired by [41]
(see [16, Chapter 8] for preliminary results).
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Appendix A. Banach-space-valued functions

In this appendix we briefly summarise some properties of functions from an interval [0, T ]
into the Banach space ℓ1(X ); we follow the treatment in [17] and use their terminology. While
in this paper the set X is assumed to be either finite or countable, in this appendix we assume
that X is countable, and to simplify notation we assume that X = N; the results for the finite
case are all classical.

First we define the space AC([0, T ];P(X )) of absolutely continuous trajectories in the space
of probability measures. This is the space of curves µ : [0, T ] → P(X ) that satisfy

For every ε > 0, there exists δ > 0 such that for any finite set of disjoint intervals
([ak, bk])k∈I ⊂ [0, T ] with

∑
k∈I |bk − ak | < δ we have

∑
k∈I ∥µ(bk) − µ(ak)∥ℓ1(X ) < ε.

Note that the metric used in the definition above is the ℓ1-norm, which is consistent because
strong and weak continuity coincide.

Next we turn to Bochner spaces. We refer to [17] for the concepts of measurability and
Bochner integrability of a function u : [0, T ] → ℓ1(N). The Bochner space L1(0, T ; ℓ1(N))
is defined as the space of equivalence classes of strongly Lebesgue-measurable functions with
finite norm

∥u∥L1(0,T ;ℓ1(N)) :=

∫ T

0
∥u(t)∥ℓ1(N) dt.

The space W 1,1(0, T ; ℓ1(N)) is defined as the subset of L1(0, T ; ℓ1(N)) of functions with weak
derivatives in L1(0, T ; ℓ1(N)).

Lemma A.1. Let u : [0, T ] → ℓ1(N); then u ∈ AC([0, T ]; ℓ1(N)) iff u ∈ W 1,1(0, T ; ℓ1(N)).
In this case the derivative ∂t u(t) exists in the classical sense at almost all t , it is a.e. equal to
the weak derivative of u, and we have

u(τ ) − u(σ ) =

∫ τ

σ

∂t u(t) dt, for all 0 ≤ σ ≤ τ ≤ T,

where the integral is in the sense of Bochner.

Proof. The space ℓ1(N) is separable and is the dual of the space

c0(N) =

{
(un)n∈N ∈ RN

: lim
n→∞

un = 0
}
,
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equipped with the supremum norm. This implies that ℓ1(N) has the Radon–Nikodym prop-
erty [17, Th. 1.3.21]. The assertion then follows from [17, Th. 2.5.12 and Prop. 2.5.9]. □

For the proof of Theorem 1.6 we need a generalisation of the chain rule to absolutely
continuous functions with values in ℓ1(N). When u ∈ AC([0, T ];R) and f ∈ C1(R), the
chain rule is standard and can be found e.g. in [6, Cor. 8.11]; the extension to functions f
that are only Lipschitz was first proved by De La Vallée Poussin [38, p. 467] (see also [36,
Remark A.3] and a more in-depth treatment in [25]). The following lemma generalises this
extension to compositions of the form f (u(t), v(t)) under special conditions on f :

Lemma A.2. Let A⊂ E⊂R2, and let f : E→R be globally Lipschitz continuous and
differentiable at each point of A. Let u, v ∈ AC([0, T ];R) satisfy (u(t), v(t)) ∈ A for all
t . Define w(t) := f (u(t), v(t)). Then w is absolutely continuous, and the chain rule holds in
the following sense. There exists a null set N ⊂ [0, T ] such that w, u, and v are differentiable
at each t ∈ [0, T ] \ N, and such that

w′(t) = ∂1 f (u(t), v(t))u′(t) + ∂2 f (u(t), v(t))v′(t) for all t ∈ [0, T ] \ N . (47)

Proof. First note that by the Lipschitz continuity of f , w is absolutely continuous. To prove the
chain rule (47), we restrict ourselves to the set of t for which u, v, and w each are differentiable;
the remainder N of [0, T ] is a null set. Consider such a t ∈ [0, T ] \ N ; since (u(t), v(t)) ∈ A,
f is differentiable at (u(t), v(t)), and therefore (47) follows from the classical chain rule. □

We then use the previous lemma to prove the chain rule for two nonnegative ℓ1-valued
functions.

Lemma A.3. As in Lemma A.2, let f : A → R be globally Lipschitz continuous and
differentiable at each point of A. Let u, v ∈ AC([0, T ]; ℓ1(N)) satisfy (u(t, x), v(t, x)) ∈ A
for all t and x. Define the function

w(t, x) = f (u(t, x), v(t, x)) for each x ∈ N and t ∈ [0, T ].

Then w ∈ AC([0, T ]; ℓ1(N)) and

∂tw(t, x) = ∂1 f (u(t, x), v(t, x))∂t u(t, x) + ∂2 f (u(t, x), v(t, x))∂tv(t, x)

for a.e. t ∈ [0, T ] and all x ∈ N. (48)

Note that pointwise evaluation is a continuous operation on ℓ1(N), and therefore commutes
with time differentiation; this shows that there is no ambiguity in the notation ∂tw(t, x), since
[w′(t)](x) = d/dt [w(t, x)] for almost all t and all x .

Proof. The absolute continuity of w follows directly from the Lipschitz continuity of f . To
prove the chain rule (48), fix x ∈ N and observe that t ↦→ u(t, x) and t ↦→ v(t, x) are elements
of AC([0, T ]; [0,∞)); therefore

∂t [w(t, x)] = ∂t [ f (u(t, x), v(t, x))]
Lemma A.2

= ∂1 f (u(t, x), v(t, x))∂t u(t, x) + ∂2 f (u(t, x), v(t, x))∂tv(t, x),

for all x and all t ∈ [0, T ] \ Nx for some null set Nx . Defining the null set N := ∪x∈NNx we
find that this expression holds for all x and all t ∈ [0, T ] \ N , which proves the lemma. □
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Appendix B. Proof of Theorem 1.4

The large deviation result and the corresponding rate functional (see (7)) for Markov chains
on a finite or countable state space have been discussed in [19, Proposition 5.10]. The main
objective of Theorem 1.4 is to give a different characterisation of the rate functional which is
more useful in the context of coarse-graining (discussed in Section 3.1). The proof is inspired
by techniques developed in [8, Section 4], where the authors study large deviation principles
in the context of weakly-interacting diffusions.

We define

J̃s,t (µ, f ) :=

∑
x∈X

ft (x)µt (x) −

∑
x∈X

fs(x)µs(x) −

∫ t

s

∑
x∈X

∂u fu(x)µu(x) + H(µu, fu) du.

(49)

Corollary B.1. Let µ ∈ C([0, T ];P(X )), I ⊂ N a finite index set and [sk, tk] ⊂ [0, T ], k ∈ I
be a finite family of pairwise disjoint intervals. Then for any function g =

∑
k∈I ϕkχ[sk ,tk ] ∈

L∞(0, T ; ℓ∞(X )), with ϕk ∈ ℓ∞(X ) and indicator function χI (on interval I ), there exists
a monotonically decreasing sequence gn

∈ C1([0, T ]; ℓ∞(X )) such that ∥gn
− g∥ℓ∞(X ) → 0

pointwise almost everywhere in (0, T ) as n → ∞ and

J̃0,T (µ, gn)
n→∞
−−−→

∑
k∈I

J̃sk ,tk (µ, g),

where J̃s,t is defined by (49).

Proof. For every k ∈ I there exists a decreasing sequence (hk,n)n∈N ⊂ C1([0, T ];R) such
that hk,n(t) ∈ [0, 1] for every t ∈ [0, T ] and hn,k → χ[sk ,tk ] pointwise almost everywhere for
n → ∞. Furthermore, since there are only finitely many k we can choose the hn,k such that
they have pairwise disjoint support for n large enough. Finally, we assume that there exists a
C < ∞ not depending on n such that∑

k∈I

∫ T

0
|∂t hk,n| dt ≤ C.

We define gn
t (x) :=

∑
k∈I ϕk(x)hk,n(t) ∈ C1([0, T ]; ℓ∞(X )). This sequence is monotonically

decreasing and satisfies gn
→ g pointwise almost everywhere for n → ∞.

Now, we recall that

J̃0,T (µ, gn) =

∑
x∈X

gn
T (x)µT (x) −

∑
x∈X

gn
0 (x)µ0(x) −

∫ T

0

∑
x∈X

∂t gn
t (x)µt (x) +H(µt , gn

t ) dt.

(50)

We first consider the asymptotic behaviour of
∫ T

0 H(µt , gn
t ) dt . Since hk,n have pairwise-disjoint

support for large n, we find by the monotone convergence theorem∫ T

0
H(µt , gn

t ) dt =

∫ T

0

∑
x,y∈X

µt (x)L(x, y)
[
e∇gn

t (y,x)
− 1

]
dt

=

∑
k∈I

∫ T

0
χsupp(hk,n )

∑
x,y∈X

µt (x)L(x, y)
[
ehk,n (t)∇ϕk (y,x)

− 1
]

dt
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n→∞
−−−→

∑
k∈I

∫ tk

sk

∑
x,y∈X

µt (x)L(x, y)
[
e∇ϕk (y,x)

− 1
]

dt =

∑
k∈I

∫ tk

sk

H(µt , gt ) dt.

To study the first three terms on the right side of (50), for any φ ∈ C1([0, T ];R) we define

Fk,n(φ) := hk,n(T )φ(T ) − hk,n(0)φ(0) −

∫ T

0
∂t hk,n(t)φ(t) dt =

∫ T

0
hk,n(t)∂tφ(t) dt,

Fk(φ) := φ(tk) − φ(sk) =

∫ tk

sk

∂tφ(t) dt,

where the second equality follows from the integration by parts formula. Note that both Fk,n
and Fk are linear in φ and

|Fk,n(φ)| ≤ |hk,n(T )φ(T )| + |hk,n(0)φ(0)| +

∫ T

0
|∂t hk,n(t)||φ(t)| dt ≤ (2 + C) ∥φ∥∞ ,

|Fk(φ)| ≤ 2 ∥φ∥∞ ,

where the bounds are uniform in n, and that limn→∞ Fk,n(φ) = Fk(φ) for all φ ∈ C1([0, T ];R)
and k. Now consider an arbitrary φ ∈ C([0, T ];R) and sequence φl ∈ C1([0, T ];R) which
uniformly converges to φ for l → ∞. Then for every k we find

lim
n→∞

Fk,n(φ) = lim
n→∞

lim
l→∞

Fk,n(φl) = lim
l→∞

lim
n→∞

Fk,n(φl) = lim
l→∞

Fk(φl) = Fk(φ).

Using this, for any µ ∈ C([0, T ];P(X )) we find∑
x∈X

gn
T (x)µT (x) −

∑
x∈X

gn
0 (x)µ0(x) −

∫ T

0

∑
x∈X

∂t gn
t (x)µt (x) dt

=

∑
k∈I

∑
x∈X

ϕk(x)
[

hk,n(T )µT (x) − hk,n(0)µ0(x) −

∫ T

0
∂t hk,n(t)µt (x) dt

]
=

∑
k∈I

∑
x∈X

ϕk(x)Fk,n(µ(x))
n→∞
−−−→

∑
k∈I

∑
x∈X

ϕk(x)Fk(µ(x))

=

∑
k

[∑
x∈X

ϕk(x)µtk (x) −

∑
x∈X

ϕk(x)µsk (x)

]
,

where we have used Fubini’s theorem to arrive at the first equality and the dominated
convergence theorem to pass to the limit. Together with the convergence of the Hamiltonian
proved earlier, we have the result. □

Proof of Theorem 1.4. We first prove the large-deviation principle itself. Applying [19] to the
generator L , we take for its core D the space c0(X ), equipped with the supremum norm, so
that the dual D′ is isomorphic to ℓ1(X ). Then [19, Proposition 5.10] implies that ρN satisfies
a large-deviation principle in DP(X )[0, T ] with rate function

ÎL (µ) =

⎧⎨⎩
∫ T

0
L̂(µt , ∂tµt ) dt, if µ ∈ D-AC([0, T ];P(X )),

+∞, otherwise.
(51)

Here the Lagrangian L̂ : P(X ) × ℓ1(X ) → [0,∞] given in terms of H in (10) by

L̂(µ, s) := sup
f ∈c0(X )

⟨ f, s⟩ − H(µ, f ),
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and the space D-AC([0, T ];P(X )) is the space of curves ν : [0,∞) → P(X ) such that
t ↦→ ⟨ f, ν(t)⟩ is absolutely continuous for all f ∈ D = c0(X ), with a unique weak-star
measurable derivative u : [0,∞) → D′

= ℓ1(X ) in the sense that (d/dt)⟨ν(t), f ⟩ = ⟨ f, u(t)⟩
for all f ∈ c0(X ) and t ≥ 0.

The rate function ÎL in (51) differs from IL in (7) in two ways. First, the explicit domain
of definition in (7) is AC([0, T ];P(X )), the space of curves that are absolutely continuous in
ℓ1(X ); this is a subspace of D-AC([0, T ];P(X )). Secondly, L(µ, s) is defined as a supremum
over ℓ∞(X ), while L̂(µ, s) is defined as the same supremum but over the smaller space c0(X ),
implying that L̂ ≤ L.

Nonetheless, we have ÎL = IL . To show this, we first note that for s ∈ ℓ1(X ) and
µ ∈ P(X ), we have

sup
f ∈ℓ∞(X )

⟨ f, s⟩ − H(µ, f ) = sup
f ∈c0(X )

⟨ f, s⟩ − H(µ, f ), (52)

and therefore L̂(µ, s) = L(µ, s) for all s ∈ ℓ1(X ). Indeed, fix s ∈ ℓ1(X ) and f ∈ ℓ∞(X ), and
let fn ∈ c0(X ) be the truncation of f to the first n elements of X . Then∑

x∈X

fn(x)s(x) →

∑
x∈X

f (x)s(x) and∑
x,y∈X

µ(x)L(x, y)
[
e fn (y)− fn (x)

− 1
]

→

∑
x,y∈X

µ(x)L(x, y)
[
e f (y)− f (x)

− 1
]
,

both by the dominated convergence theorem, since s ∈ ℓ1(X ) and (x, y) ↦→ µ(x)L(x, y) ∈

ℓ1(X × X ). This proves (52), and shows that for s ∈ ℓ1(X ), L̂(µ, s) = L(µ, s).
Next, by [19, Proposition 2.12], curves µ with ÎL (µ) < ∞ satisfy µ ∈ AC([0, T ];P(X )).

Since curves in AC([0, T ];P(X )) have derivatives in ℓ1, any curve with ÎL (µ) < ∞ satisfies

ÎL (µ) =

∫ T

0
L̂(µt , ∂tµt ) dt =

∫ T

0
L(µt , ∂tµt ) dt = IL (µ).

This proves that ÎL = IL whenever ÎL < ∞. For the remaining case ÎL (µ) = ∞ there are
three possibilities:

1. µ ̸∈ D-AC([0, T ];P(X )), therefore µ ̸∈ AC([0, T ];P(X )) and IL (µ) = ∞ also;
2. µ ∈ D-AC([0, T ];P(X )) but µ ̸∈ AC([0, T ];P(X )) and again IL (µ) = ∞;
3. µ ∈ AC([0, T ];P(X )) but

∞ =

∫ T

0
L̂(µt , ∂tµt ) dt ≤

∫ T

0
L(µt , ∂tµt ) dt,

so that again IL (µ) = ∞.

This proves that IL = ÎL and concludes the proof of the large-deviation principle.
We now continue with the characterisation (12). We define

ĨL (µ) := sup
f ∈C1([0,T ];ℓ∞(X ))

J̃0,T (µ, f ),

where J̃0,T is given by (49).
The plan of the proof is now as follows. We first show that ĨL (µ) < ∞ for µ ∈

C([0, T ];P(X )) implies that µ ∈ AC([0, T ];P(X )). We then show that IL (µ) ≥ ĨL (µ) and
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vice versa which yields the equality. In particular, applying integration by parts in (49) since
µ ∈ AC([0, T ];P(X )), yields

IL (µ) = sup
f ∈L∞(0,T ;ℓ∞(X ))

∫ T

0
⟨ ft , ∂tµt ⟩ − H(µt , ft ) dt,

which is the last part of the statement.
We now show by contradiction that µ ∈ C([0, T ];P(X )) and ĨL (µ) < ∞ implies

µ ∈ AC([0, T ];P(X )). Suppose ĨL (µ) < ∞, but µ /∈ AC([0, T ];P(X )), i.e. there exists
an ε > 0 such that for any δ > 0, there exists a finite family of pairwise-disjoint intervals
[sk, tk] ⊂ [0, T ], k ∈ I with∑

k∈I

|tk − sk | < δ and
∑
k∈I

∑
x∈X

|µtk (x) − µsk (x)| ≥ ε.

Next, for an arbitrary A > 0, we define g ∈ L∞(0, T ; ℓ∞(X )) as

gt (x) := A
∑
k∈I

sign(µtk (x) − µsk (x))χ[sk ,tk ](t).

Using Corollary B.1, there exists a sequence gn
∈ C1([0, T ]; ℓ∞(X )) such that

J̃0,T (µ, gn)
n→∞
−−−→

∑
k∈I

J̃sk ,tk (µ, g). (53)

Note that the latter expression is well defined since g|[sk ,tk ] ∈ C1([sk, tk]; ℓ∞(X )) for all k ∈ I.
Moreover, there exists a C < ∞ which only depends on µ and L such that∑

k∈I

∫ tk

sk

H(µt , gt ) dt ≤ CeA
∑
k∈I

|tk − sk | < CeAδ,

since sign(µtk − µsk ) is uniformly bounded in X . Furthermore, we find∑
k∈I

[∑
x∈X

gtk (x)µtk (x) −

∑
x∈X

gsk (x)µsk (x)

]
= A

∑
k∈I

∑
x∈X

sign(µtk (x) − µsk (x))(µtk (x) − µsk (x))

= A
∑
k∈I

∑
x∈X

|µtk (x) − µsk (x)| ≥ Aε.

Thus, using (53) we find

J̃0,T (µ, gn) ≥
1
2

∑
k∈I

J̃sk ,tk (µ, g) ≥
1
2

(
Aε − CeAδ

)
,

for sufficiently large n. Since δ > 0 and A > 0 were arbitrary, the right-hand side can be
arbitrarily large. More specifically, for a given A, we choose δ = εAe−A/(2C), thereby yielding

ĨL (µ) ≥ J̃0,T (µ, gn) ≥
1
4
εA.

Since A can be made arbitrarily large, this contradicts ĨL (µ) < ∞. Hence, µ ∈ C([0, T ];
P(X )) and ĨL (µ) < ∞ imply that µ ∈ AC(0, T ; ℓ1(X )).
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Next, we show that IL (µ) ≥ ĨL (µ). For µ /∈ AC([0, T ];P(X )) we have IL (µ) = ∞ and
therefore IL (µ) ≥ ĨL (µ). For µ ∈ AC([0, T ];P(X )), on the other hand, we have

IL (µ) =

∫ T

0
L(µt , ∂tµt ) ≥

∫ T

0
⟨ ft , ∂tµt ⟩ − H(µt , ft ) dt = J̃0,T (µ, f ),

for any curve f ∈ C1([0, T ]; ℓ∞(X )), where we used integration by parts to arrive at the final
equality. This yields IL (µ) ≥ ĨL (µ).

We complete the proof by showing that IL (µ) ≤ ĨL (µ) for µ ∈ AC([0, T ];P(X )). Note
that since µ ∈ AC([0, T ]; ℓ1(X )) ≡ W 1,1(0, T ; ℓ1(X )) and

J̃0,T (µ, f ) =

∫ T

0
⟨ ft , ∂tµt ⟩ − H(µt , ft ) dt for all f ∈ C1([0, T ]; ℓ∞(X )),

we have that J̃0,T (µ, ·) : L∞(0, T ; ℓ∞(X )) → R is a continuous (nonlinear) functional.
Since every element in L∞(0, T ; ℓ∞(X )) can be approximated pointwise by a sequence in
C1([0, T ]; ℓ∞(X )), we can extend the above representation to all f ∈ L∞((0, T ); ℓ∞(X )) by
using the dominated convergence theorem. In particular, this yields that

sup
f ∈C1([0,T ];ℓ∞(X ))

J̃0,T (µ, f ) = sup
f ∈L∞(0,T ;ℓ∞(X ))

J̃0,T (µ, f ).

Now, for any fixed ε > 0 and for almost every t ∈ (0, T ) exists a gt ∈ ℓ∞(X ) such that∑
x∈X

gt (x)∂tµt (x) − H(µt , gt ) ≥ max {L(µt , ∂tµt ) − ε, 0} ,

where we used the definition of the Lagrangian. Note that t ↦→ gt might not be an element of
L∞(0, T ; ℓ∞(X )). Therefore, we define the sequence

f k
t (x) :=

{
gt (x) if ∥gt∥ℓ∞(X ) ≤ k,

0 otherwise,

with k ∈ N. Then, by construction we have that 0 ≤
∑

x∈X f k
t (x)∂tµt (x) − H(µt , f k

t ) ≤

L(µt , ∂tµt ) for all k ∈ N, where t ↦→ L(µt , ∂tµt ) ∈ L1(0, T ; [0,∞)) since µ ∈

AC([0, T ];P(X )). Furthermore, using f k
t (x) ≤ gt (x) for all x ∈ X and almost all t ∈ (0, T )

and the dominated convergence theorem, we find∑
x∈X

f k
t (x)∂tµt (x) − H(µt , f k

t )
k→∞
−−−→

∑
x∈X

gt (x)∂tµt (x) − H(µt , gt ),

for almost every t ∈ (0, T ). Hence, we can apply the dominated convergence theorem to obtain

lim
k→∞

J̃0,T (µ, f k) = J̃0,T (µ, g) ≥

∫ T

0
L(µt , ∂tµt ) dt − εT .

Finally, since f k
∈ L∞(0, T ; ℓ∞(X )) for all k ∈ N we obtain that the left-hand side is bounded

from above by ĨL (µ). Therefore, since ε > 0 was arbitrary, we obtain ĨL (µ) ≥ IL (µ) which
proves the statement. □

Appendix C. Positivity of solution to the forward Kolmogorov equation

In this appendix we show that the solution to the forward Kolmogorov equation with a
bounded and irreducible generator is strictly positive. While we expect this result to be known,
we could not find a reference for it, and therefore provide the result here for completeness.
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Lemma C.1. Let ρ ∈ AC([0, T ];P(X )) be a solution to (2), where the generator L
satisfies (3a)–(3c). Then ρt ∈ P+(X ) for every t > 0.

Proof. Since L is a bounded Markov generator with ν := supx∈X |L(x, x)| < ∞, we
can write L = P − ν I for a matrix P with non-negative entries and identity matrix I .
Note that LT generates a uniformly continuous semigroup on ℓ1(X ) which conserves mass,
i.e. if µt = et LT

µ0, then
∑

x∈X µt (x) =
∑

x∈X µ0(x). Therefore, we can write et LT
=∑

n≥0
tn (LT )n

n!
(x, y) = et(PT

−ν I )
= e−νt et PT

. We will show that et LT
(x, y) > 0, by proving

that et PT
(x, y) > 0.

Since L is irreducible, for every x, y ∈ X with x ̸= y, there exists a finite sequence
x0, x1, . . . , xN ∈ X containing no doubled points with x0 = x, xN = y and L(xn, xn+1) > 0.
Using L = P − ν I , P(xn, xn+1) = L(xn, xn+1) > 0 we find

(PT )N (x, y) ≥

N−1∑
i=1

PT (xi+1, xi )PT (xi , xi−1) =

N−1∑
i=1

P(xi , xi+1)P(xi−1, xi ) > 0.

Therefore

et PT
(x, y) ≥

t N (PT )N

N !
(x, y) > 0.

Since x, y ∈ X are arbitrary, it follows that et LT
is a positive semigroup and therefore

et LT
: P(X ) → P+(X ) for all t > 0. □

References

[1] A. Arnold, J.A. Carrillo, L. Desvillettes, J. Dolbeault, A. Jüngel, C. Lederman, P.A. Markowich, G. Toscani,
C. Villani, Entropies and equilibria of many-particle systems: An essay on recent research, Monatsh. Math.
142 (1) (2004) 35–43.

[2] D. Bakry, I. Gentil, M. Ledoux, Analysis and Geometry of Markov Diffusion Operators, in: Grundlehren der
mathematischen Wissenschaften, vol. 348, Springer International Publishing, 2014.

[3] S.G. Bobkov, P. Tetali, Modified logarithmic Sobolev inequalities in discrete settings, J. Theoret. Probab. 19
(2) (2006) 289–336.

[4] V. Bogachev, M. Röckner, S. Shaposhnikov, Distances between transition probabilities of diffusions and
applications to nonlinear Fokker–Planck–Kolmogorov equations, J. Funct. Anal. 271 (5) (2016) 1262–1300.

[5] A. Braides, Gamma-convergence for Beginners, in: Oxford Lecture Series in Mathematics and its Applications,
vol. 22, Oxford University Press, 2002.

[6] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, in: Universitext,
Springer-Verlag New York, 2011.

[7] S.-N. Chow, W. Huang, Y. Li, H. Zhou, Fokker–planck equations for a free energy functional or Markov
process on a graph, Arch. Ration. Mech. Anal. 203 (3) (2012) 969–1008.

[8] D.D. Dawson, J. Gärtner, Large deviations from the McKean-Vlasov limit for weakly interacting diffusions,
Stochastics 20 (4) (1987) 247–308.

[9] P. Diaconis, L. Saloff-Coste, Logarithmic Sobolev inequalities for finite markov chains, Ann. Appl. Probab.
6 (3) (1996) 695–750.

[10] R. Dudley, Real Analysis and Probablity, Wadsworth & Brooks/Cole, 1989.
[11] M.H. Duong, A. Lamacz, M.A. Peletier, A. Schlichting, U. Sharma, Quantification of coarse-graining error

in langevin and overdamped langevin dynamics, Nonlinearity 31 (10) (2018) 4517–4566.
[12] M.H. Duong, A. Lamacz, M.A. Peletier, U. Sharma, Variational approach to coarse-graining of generalized

variational approach to coarse-graining of generalized gradient flows, Calc. Var. Partial Differential Equations
56 (4) (2017).

[13] K.-J. Engel, R. Nagel, in: S. Axler, K. Ribet (Eds.), A Short Course on Operator Semigroups, in: Universitext,
Springer-Verlag New York, 2006.

http://refhub.elsevier.com/S0304-4149(19)30068-7/sb1
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb1
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb1
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb1
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb1
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb2
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb2
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb2
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb3
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb3
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb3
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb4
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb4
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb4
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb5
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb5
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb5
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb6
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb6
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb6
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb7
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb7
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb7
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb8
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb8
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb8
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb9
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb9
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb9
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb10
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb11
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb11
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb11
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb12
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb12
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb12
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb12
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb12
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb13
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb13
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb13


2638 B. Hilder, M.A. Peletier, U. Sharma et al. / Stochastic Processes and their Applications 130 (2020) 2596–2638

[14] M. Erbar, M. Fathi, V. Laschos, A. Schlichting, Gradient flow structure for McKean-Vlasov equations on
discrete spaces, Discrete Contin. Dyn. Syst. Ser. A 36 (12) (2016) 6799–6833.

[15] D. Givon, R. Kupferman, A. Stuart, Extracting macroscopic dynamics: model problems and algorithms,
Nonlinearity 17 (6) (2004) R55.

[16] B. Hilder, An FIR Inequality for Markov Jump Processes on Discrete State Spaces (Master Thesis),
Eindhoven University of Technology / University of Stuttgart, 2017, Master Thesis, Eindhoven University
of Technology/University of Stuttgart (https://goo.gl/6jn8AE).

[17] T. Hytönen, J. Van Neerven, M. Veraar, L. Weis, Analysis in Banach spaces, Volume I: Martingales and
Littlewood-Paley Theory, in: A Series of Modern Surveys in Mathematics, vol. 63, Springer, 2016.

[18] R. Kraaij, Large deviations for Markov jump processes with mean-field interaction via the comparison principle
for an associated Hamilton-Jacobi, J. Stat. Phys. 164 (2) (2016) 321–345.

[19] R. Kraaij, Large deviations of the trajectory of empirical distributions of Feller processes on locally compact
spaces, Ann. Probab. 46 (2) (2018) 775–828.

[20] C. Kuehn, Multiple Time Scale Dynamics, Springer International Publishing, 2015.
[21] S. Lahbabi, Étude Mathématique de Modèles Quantiques et Classigue Pour les Matériaux Aléatoires à l’échelle

Atomique (Ph.D. thesis), Université de Cergy-Pontoise, 2013.
[22] S. Lahbabi, F. Legoll, Effective dynamics for a kinetic Monte–Carlo model with slow and fast time scales,

J. Stat. Phys. 153 (6) (2013) 931–966.
[23] F. Legoll, T. Lelièvre, Effective dynamics using conditional expectations, Nonlinearity 23 (9) (2010)

2131–2163.
[24] J. Maas, Gradient flows of the entropy for finite Markov chains, J. Funct. Anal. 261 (8) (2011) 2250–2292.
[25] M. Marcus, V.J. Mizel, Absolute continuity on tracks and mappings of sobolev spaces, Arch. Ration. Mech.

Anal. 45 (4) (1972) 294–320.
[26] P. Michel, S. Mischler, B. Perthame, General relative entropy inequality: an illustration on growth models,

J. Math. Pures Appl. 84 (9) (2005) 1235–1260.
[27] A. Mielke, A gradient structure for reaction–diffusion systems and for energy-drift-diffusion systems,

Nonlinearity 24 (4) (2011) 1329–1346.
[28] A. Mielke, Geodesic convexity of the relative entropy in reversible Markov chains, Calc. Var. Partial

Differential Equations 48 (1) (2013) 1–31.
[29] A. Mielke, On evolutionary Γ -convergence for gradient systems, in: A. Muntean, J. Rademacher, A. Zagaris

(Eds.), Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity, Springer
International Publishing, 2016.

[30] A. Mielke, M.A. Peletier, M. Renger, On the relation between gradient flows and the large-deviation principle,
with applications to Markov chains and diffusion, Potential Anal. 41 (4) (2014) 1293–1327.

[31] J.R. Munkres, Topology, second ed., Prentice Hall, 2000.
[32] K. Oelschlager, A martingale approach to the law of large numbers for weakly interacting stochastic processes,

Ann. Probab. (1984) 458–479.
[33] G.A. Pavliotis, A. Stuart, Multiscale Methods: Averaging and Homogenization, Springer Science & Business

Media, 2008.
[34] E. Sandier, S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm.

Pure Appl. Math. 57 (12) (2004) 1627–1672.
[35] S. Serfaty, Gamma-convergence of gradient flows on Hilbert spaces and metric spaces and appliations, Discrete

Contin. Dyn. Syst. Ser. A 31 (4) (2011) 1427–1451.
[36] E. Shargorodsky, J.F. Toland, Bernoulli Free-Boundary Problems, Vol. 912–918, American Mathematical Soc.,

2008.
[37] U. Sharma, Coarse-graining of Fokker-Planck Equations (Ph.D. thesis), Eindhoven University of Technology,

2017.
[38] C.d.l. Vallée Poussin, Sur l’intégrale de Lebesgue, Trans. Amer. Math. Soc. (1915) 435–501.
[39] S.R.S. Varadhan, Asymptotic probabilities and differential equations, Comm. Pure Appl. Math. 19 (3) (1966)

261–286.
[40] J. Voigt, Stochastic operators, information, and entropy, Comm. Math. Phys. 81 (1) (1981) 31–38.
[41] H.-T. Yau, Relative entropy and hydrodynamics of Ginzburg-Landau models, Lett. Math. Phys. 22 (1) (1991)

63–80.

http://refhub.elsevier.com/S0304-4149(19)30068-7/sb14
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb14
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb14
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb15
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb15
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb15
https://goo.gl/6jn8AE
https://goo.gl/6jn8AE
https://goo.gl/6jn8AE
https://goo.gl/6jn8AE
https://goo.gl/6jn8AE
https://goo.gl/6jn8AE
https://goo.gl/6jn8AE
https://goo.gl/6jn8AE
https://goo.gl/6jn8AE
https://goo.gl/6jn8AE
https://goo.gl/6jn8AE
https://goo.gl/6jn8AE
https://goo.gl/6jn8AE
https://goo.gl/6jn8AE
https://goo.gl/6jn8AE
https://goo.gl/6jn8AE
https://goo.gl/6jn8AE
https://goo.gl/6jn8AE
https://goo.gl/6jn8AE
https://goo.gl/6jn8AE
https://goo.gl/6jn8AE
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb17
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb17
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb17
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb18
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb18
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb18
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb19
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb19
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb19
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb20
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb21
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb21
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb21
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb22
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb22
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb22
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb23
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb23
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb23
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb24
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb25
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb25
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb25
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb26
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb26
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb26
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb27
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb27
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb27
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb28
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb28
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb28
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb29
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb29
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb29
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb29
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb29
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb30
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb30
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb30
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb31
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb32
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb32
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb32
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb33
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb33
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb33
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb34
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb34
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb34
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb35
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb35
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb35
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb36
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb36
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb36
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb37
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb37
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb37
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb38
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb39
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb39
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb39
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb40
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb41
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb41
http://refhub.elsevier.com/S0304-4149(19)30068-7/sb41

	An inequality connecting entropy distance, Fisher Information and large deviations
	Introduction
	Relative Fisher Information and large-deviation rate functional
	Main results
	Application to coarse-graining 
	Comparison with other work
	Outline of the article

	Generalised relative Fisher Information and FIR inequality
	Failure of FIR inequality with relative Fisher Information
	FIR inequality with generalised relative Fisher Information
	Properties of the generalised relative Fisher Information
	Modified FIR for classical relative Fisher Information
	Comparison with diffusion processes

	Coarse-graining 
	A variational framework for coarse-graining
	Compactness
	Local-equilibrium
	Liminf inequality

	Conclusion and discussion
	Declaration of competing interest
	Acknowledgements
	Appendix A. Banach-space-valued functions
	Appendix B. Proof of Theorem 1.4
	Appendix C. Positivity of solution to the forward Kolmogorov equation
	References


