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Characterization of disease-specific cellular
abundance profiles of chronic inflammatory
skin conditions from deconvolution of
biopsy samples
Zandra C. Félix Garza1,2*† , Michael Lenz3,4,5†, Joerg Liebmann6, Gökhan Ertaylan3,7, Matthias Born6, Ilja C. W. Arts3,
Peter A. J. Hilbers1 and Natal A. W. van Riel1,3

Abstract

Background: Psoriasis and atopic dermatitis are two inflammatory skin diseases with a high prevalence and a
significant burden on the patients. Underlying molecular mechanisms include chronic inflammation and abnormal
proliferation. However, the cell types contributing to these molecular mechanisms are much less understood.
Recently, deconvolution methodologies have allowed the digital quantification of cell types in bulk tissue based on
mRNA expression data from biopsies. Using these methods to study the cellular composition of the skin enables
the rapid enumeration of multiple cell types, providing insight into the numerical changes of cell types associated
with chronic inflammatory skin conditions. Here, we use deconvolution to enumerate the cellular composition of
the skin and estimate changes related to onset, progress, and treatment of these skin diseases.

Methods: A novel signature matrix, i.e. DerM22, containing expression data from 22 reference cell types, is used, in
combination with the CIBERSORT algorithm, to identify and quantify the cellular subsets within whole skin biopsy
samples. We apply the approach to public microarray mRNA expression data from the skin layers and 648 samples
from healthy subjects and patients with psoriasis or atopic dermatitis. The methodology is validated by comparison
to experimental results from flow cytometry and immunohistochemistry studies, and the deconvolution of
independent data from isolated cell types.

Results: We derived the relative abundance of cell types from healthy, lesional, and non-lesional skin and observed
a marked increase in the abundance of keratinocytes and leukocytes in the lesions of both inflammatory
dermatological conditions. The relative fraction of these cells varied from healthy to diseased skin and from non-
lesional to lesional skin. We show that changes in the relative abundance of skin-related cell types can be used to
distinguish between mild and severe cases of psoriasis and atopic dermatitis, and trace the effect of treatment.

Conclusions: Our analysis demonstrates the value of this new resource in interpreting skin-derived transcriptomics
data by enabling the direct quantification of cell types in a skin sample and the characterization of pathological
changes in tissue composition.
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Background
Chronic inflammatory skin diseases like psoriasis (Ps) and
atopic dermatitis (AD) have a high prevalence [1] and
often pose a burden to the patients [2, 3]. The journey of
patients with psoriasis and atopic dermatitis to get the
right treatment is lengthy [4]. Lesions of psoriasis and
atopic dermatitis are characterized by the increased prolif-
eration and abnormal differentiation of keratinocytes [5],
and the presence of immune infiltrates like T cells and
dendritic cells (DCs) [6, 7]. However, different subsets of
immune infiltrates are associated with Ps and AD [7, 8].
Psoriasis is driven by the IL-23/ Th17 T cell axis [7],

in which Th17 and Tc17 induce the release of cytokines
that lead to an inflammatory response that self-amplifies
and results in the recruitment of Th1 and Th22 T cells.
AD in contrast, is driven by Th2 and Th22 [7]. Cyto-
kines secreted by these cell types induce a decrease in
the terminal differentiation of keratinocytes and contrib-
ute to the distinctive epidermal barrier dysfunction [7].
Psoriasis and atopic dermatitis have distinct clinical
manifestations. Psoriasis is characterized by well-defined
areas of thick, dry, flaky, red skin [6]; typically on the el-
bows, knees, and scalp [3]. Features of lesions in atopic
dermatitis include patches of highly pruritic, eczematous
erythematous skin with scratch marks and serous exud-
ation; commonly observed on the face, flexures, and
wrists [9]. To better understand the underlying mecha-
nisms of these two chronic inflammatory skin diseases,
studies have explored the mRNA expression profiles of
lesional, non-lesional [10–12] and healthy skin [13],
leading to the identification of differentially expressed
genes. However, the interpretation of mRNA expression
data from the skin remains a critical challenge due to
the large heterogeneity in the samples, much affected by
the site and method of sample acquisition, as well as the
lack of good markers for several of the specialized cell
types found in this tissue. Previous investigations have
sought to identify the gene expression signature of skin-
specific cell types, structures, and processes [14, 15].
Swindell et al. [14] observed a range of inflammatory
and cytokine-related gene expression patterns in psoria-
sis patients. They identified 1233 differentially expressed
genes increased in psoriasis lesions, which were attrib-
uted to keratinocyte activity, infiltration of T cells and
macrophages. They also observed an increased inflam-
matory signature in 50% of the patients, with increased
expression of genes expressed by T cells, monocytes,
and dendritic cells. Shih et al. [15] derived expression
signatures for adipocytes, fibroblasts, melanocytes, mac-
rophages/dendritic cells, T cells, keratinocytes, append-
ages and core processes of the skin. They applied their
set of skin-specific expression signatures to the analysis of
transcriptomic datasets from 18 dermatological conditions,
including psoriasis and atopic dermatitis and showed the

over- and under-representation of various cell types in skin
diseases based on the reduction or upsurge of their defined
gene signatures. The resources provided by these investiga-
tions aid in the interpretation of expression data derived
from human skin and enable the study of tissue compos-
ition. Nevertheless, they do not directly quantify the cell-
types and tissue-specific variations in a given skin sample.
Further work is therefore needed to enumerate the abun-
dance of skin-related cell types in common chronic inflam-
matory skin conditions.
Currently, changes in cellular composition of a given

tissue are experimentally observed by flow cytometry
[16, 17] and immunohistochemistry [18, 19] studies.
However, these methods are constrained by the availabil-
ity of cell type-specific biomarkers and are restricted to
identification of a small subset of cell types. Computa-
tional methodologies, like deconvolution, have been
developed for predicting the relative fractions of multiple
cell types in a sample solely based on gene expression
profiles [20, 21]. These approaches enable the large-scale
analysis of mRNA mixtures for identifying cellular bio-
markers and novel therapeutic targets without the need
for experimental techniques [22]. Deconvolution methods,
like CIBERSORT [23], infer the abundance of various cell
types in a sample using a reference dataset and the mRNA
expression profile from the sample of interest [24]. Decon-
volution techniques have been successfully used to deter-
mine the composition of immune cell types in bulk tissue
[25], but have not been applied yet to chronic inflamma-
tory skin disorders. Using deconvolution methods to study
the cellular composition of the skin would allow the sim-
ultaneous quantification of multiple cell types, providing
additional insight into the relative abundance changes of
specific cell types that occur at the onset, development,
and treatment stages of dermatological diseases.
Here, we performed the computational deconvolution

of layer-specific and whole skin transcriptomics data into
cell type-specific fractions. We analyzed mRNA expres-
sion profiles from samples of isolated epidermis and der-
mis as well as whole skin biopsies of 114 healthy subjects,
241 psoriasis patients, and 38 patients with atopic derma-
titis. We quantified the cellular composition of the skin
and estimated the changes associated with the onset, pro-
gress, and treatment of Ps and AD. This resource aids in
the interpretation of transcriptomics data derived from
skin by allowing the direct enumeration of cell types in a
skin sample and enabling the characterization of patho-
logical changes in tissue composition associated with
chronic inflammatory skin conditions.

Methods
Aim, design, and setting
In this study, the CIBERSORT [23] deconvolution algo-
rithm is used together with a novel signature matrix,
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termed DerM22, containing all major cell types that are
present in the skin. The approach is applied to publicly
available microarray mRNA expression data from
healthy skin as well as lesional and non-lesional skin
samples from patients with psoriasis or atopic dermatitis.
The methodology is validated by comparison to
experimental results from flow cytometry and immuno-
histochemistry reported in the literature as well as by
application to independent data from isolated cell types.

Signature matrix definition and cell frequency estimation
The CIBERSORT deconvolution algorithm uses nu-sup-
port vector regression together with a signature matrix of
cell type-specific mRNA expression to estimate the cell
type composition of tissue samples. The focus of the
original work is on immune cell types to estimate the
cellular composition of blood as well as the immune cell
content in certain cancers. Recently, we have generated a
novel signature matrix, called AT21, for deconvolution of
the adipose tissue cell types [26]. Here, we have extended
the AT21 signature matrix using two publicly available
datasets containing keratinocyte mRNA expression (GEO
identifiers GSE30355 [27] and GSE36287 [28]), ensuring
its applicability to the deconvolution of skin samples. The
resulting DerM22 signature matrix (Additional file 1:
Table S2 and Additional file 2: Figure S1) contains cell
type-specific signatures of 22 isolated cell types and is
based on a reference dataset of 220 samples from 22 ori-
ginal studies Additional file 3: Table S3).
For the generation of DerM22, raw data (CEL-files) of

the 22 original studies (all hybridized to the Affymetrix
HG-U133 Plus 2.0 microarray platform) were down-
loaded from Gene expression omnibus (GEO) database
and preprocessed with Affymetrix Power Tools (https://
www.thermofisher.com/nl/en/home/life-science/micro-
array-analysis/microarray-analysis-partners-programs/
affymetrix-developers-network/affymetrix-power-tools.
html#) using the robust multi-array average (RMA)
normalization method. Then, the dataset was uploaded
to the CIBERSORT website (https://cibersort.stanford.
edu) for probe filtering based on the following three
steps: (i) select probes that are differentially expressed
between any individual cell type and all other samples (q
value < 0.3 (false discovery rate), two-sided unequal vari-
ance t-test); (ii) rank probes according to their fold
change between the respective cell type and all other
samples; and (iii) include the top G probes per cell type
in the signature matrix, where G (between 50 and 150)
is selected to minimize the condition number of the
signature matrix [23]. This resulted in a selection of
2045 probes included in DerM22, which are repre-
sented by the average probe intensity value for each of
the 22 cell types.

Datasets
The deconvolution approach is applied to various public
datasets from two different Affymetrix microarray plat-
forms. The main analysis is performed on datasets from
the Affymetrix HG-U133 Plus 2.0 platform (GPL570 in
GEO), which was chosen to avoid any cross-platform
issues with the reference dataset used to generate
DerM22. This data includes a dataset with measured
expression of different skin layers that were separated by
laser capture microdissection [29] (GSE42114) and 1006
whole-skin 4–6 mm punch biopsy samples from healthy
people and individuals with psoriasis or atopic dermatitis
(Table 1).
Datasets from a second microarray platform (Affyme-

trix HG-U133A, GPL96 in GEO) is used to test the
cross-platform performance of the algorithm as well as
for validation of the deconvolution approach using iso-
lated cell types. The datasets contain skin samples from
psoriasis (study GSE6710) [39], as well as several isolated
cell types that were used to build the original LM22
signature matrix as published in [23] (studies E-MEXP-
750, GSE22886, GSE4527, GSE5099, GSE7138, and data
from [40, 41]). Furthermore, samples from isolated kera-
tinocytes (studies GSE26688 [42] and GSE6932 [43]),
epidermal stem cells, and transit amplifying cells (study
GSE4858) [44] are also included.
For both microarray platforms, raw data (CEL-files)

were downloaded and RMA-normalized with Affymetrix
Power Tools as described above.

Validation of the approach
We used four different ways of assessing the perform-
ance of DerM22 in deconvoluting skin samples, namely
(i) comparison of cell fractions to experimental results
from flow cytometry analysis reported in the literature,
(ii) comparison of ratios of two cell counts between two
phenotypic conditions to literature reports from immu-
nohistochemistry analysis, (iii) cross-platform analysis of
isolated cell types from independent datasets, and (iv)
comparison of deconvolution of datasets from multiple
original studies to test the reproducibility of results.

Flow cytometry data
A manual (non-systematic) literature review was per-
formed to identify quantitative reports about the cellular
composition of the human skin. A total of 5 original
studies that report cell type-specific cell counts in hu-
man skin were selected. Information about the cell type,
disease state, number of individuals, and the marker
used for cell counting was extracted along with the
mean and standard error (where available) of reported
counts (Additional file 4: Table S1).
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Immunohistochemistry ratios
Three of the studies included in our deconvolution ana-
lysis [10, 37, 38] also reported immunohistochemistry-
based cell counts of myeloid dendritic cells (mDCs),
macrophages, or CD8+ T Cells (Fig. 1b). These counts
are, however, usually reported as cell count per area of
skin tissue and are difficult to convert into fractional cell
counts, i.e. number of cells of the respective cell type per
total number of cells. Therefore, we calculated ratios of
average cell counts between lesional and non-lesional
skin samples or between skin samples from before and
after UV-treatment. We used these ratios for compari-
son of our CIBERSORT-based estimates to the immuno-
histochemistry values.

Cross-platform comparison
The independent cross-platform validation of the skin
deconvolution using DerM22 was performed based on the
Affymetrix HG-U133A dataset. Probe matching was
performed via the biomaRt R package. Subsequently, the
percentages of all 22 cell types from the DerM22 signature
matrix were calculated and compared to the known iso-
lated cell type of the respective samples (Fig. 1a and c).

Inter-study variability
For an evaluation of the reproducibility of skin cell com-
position estimates, the means and standard deviations of
the nine original studies were compared per cell type
(Fig. 1d and Additional file 5: Figure S2).

Statistics
Non-parametric (Wilcoxon) tests were used to account
for the skewed distributions of relative cell type compos-
ition and the limited range of possible values between 0
and 1. For comparisons with repeated measures within
the same person (i.e. lesional vs. non-lesional or before
vs. after treatment), the Wilcoxon signed rank test was
used. Non-paired comparisons (diseased versus healthy,
mild versus severe psoriasis) were performed using the
Wilcoxon rank sum test. Tests are considered significant
for p-values smaller than 0.05 (unadjusted or Benjamini-
Hochberg adjusted, as indicated in the text). All reported
p-values are without correction for multiple testing, if
not stated otherwise.

Results
Verification of skin-specific signature matrix
To assess the performance of DerM22, we compared our
deconvolution results with experimental observations
reported in the literature from flow cytometry studies
(Additional file 3: Table S3) of healthy skin and lesional
skin of psoriasis (Fig. 1a). For this comparison, we derived
the relative fraction of keratinocytes and immune infil-
trates from eight independent datasets (studies
GSE13355, GSE14905, GSE30999, GSE34248, GSE41662,
GSE78097, GSE32924, GSE36842, described in Table 1) [10,
30–34, 38]. The average relative abundance derived from
the deconvolution analysis was close to the average results
of the flow cytometry studies focused on healthy and
lesional psoriasis total immune infiltrates [45–47], and
healthy plasmacytoid dendritic cells (pDCs) [48]. The

Table 1 Skin biopsy-derived microarray datasets used for deconvolution analysis

Skin disease Accession number Samples Location of sample acquisition Reference

Psoriasis GSE13355 180 Lesional samples: trunk or upper/lower limbs.
Healthy and non-lesional samples: buttock or upper thigh area

[30]

GSE30999 170 Lesional samples: trunk or upper/lower limbs.
Healthy and non-lesional samples: anatomical region similar to that of the lesional
sample.

[31]

GSE34248 28 Lesional samples: unspecified.
Healthy and non-lesional samples: anatomical region similar to that of the lesional
sample.

[32]

GSE41662 48 [32]

GSE78097 33 Lesional samples: trunk, upper/lower limbs, scalp, and palmoplantar areas.
Healthy and non-lesional samples: anatomical region similar to that of the lesional
sample.

[33]

GSE14905 82 Lesional samples: trunk or upper/lower limbs.
Healthy and non-lesional samples: anatomical region similar to that of the lesional
sample.

[34]

GSE47751 34 Lesional and non-lesional samples: dependent on the location of the lesion. [35]

GSE117239 324 Lesional and non-lesional samples: trunk and extremities. [36]

Atopic dermatitis GSE27887 35 Lesional samples: dependent on the location of the lesion.
Healthy and non-lesional samples: anatomical region similar to that of the lesional
sample.

[37]

GSE32924 33 [10]

GSE36842 39 [38]
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predicted relative abundance of keratinocytes was under-
estimated for healthy skin and overestimated for lesional
psoriasis skin compared to Keratin 10 [45–47]. However,
Keratin 10 is a marker of differentiated keratinocytes only
and does not account for those with the ability to prolifer-
ate [43], i.e. epidermal stem cells and transit amplifying cells
[47, 49]. Therefore, this discrepancy suggested that the ker-
atinocytes category in our approach accounts for both the
differentiated and proliferating keratinocytes. Further, our
method predicted a lower amount of B cells and plasmacy-
toid dendritic cells in lesional psoriasis than the one ob-
served in the flow cytometry studies [48, 50]. Next, we
assessed the cross-platform performance of the algorithm
by performing the deconvolution of lesional psoriasis ex-
pression data acquired with Affymetrix HG-U133A (study
GSE6710) [39]. In comparison to the same platform-results,
the predicted relative fraction of the cross-platform im-
mune infiltrates, B cells, and pDCs was overestimated in
health and disease. The average of the predicted fractions
for cross-platform keratinocytes were close to the average
values from the same platform-results.
Limited by the absence of literature, the verification

with flow cytometry data was not possible for atopic
dermatitis. However, the three studies included in our ana-
lysis [10, 37, 38] also described immunohistochemistry-
based cell counts of mDCs, macrophages, and CD8+ T cells
(Fig. 1b). To verify our predicted estimates for atopic
dermatitis, we compared our deconvolution-based rela-
tive fractions to the average immunohistochemistry values
based on the ratio between lesional and non-lesional skin
samples or between before and after phototherapy
(Fig. 1b). All average fractions per groups from our decon-
volution estimates were close in value to the ratios ob-
tained from the immunohistochemistry cell counts. The
immunohistochemistry-based ratio of myeloid dendritic
cells was approximate to 3 for all three data points, while
the deconvolution-based ratio was around 2. For the mac-
rophages, both methodologies suggested a greater spread
in the ratio of lesional to non-lesional and phototherapy
treated lesional skin. The deconvolution-based ratios

calculated for macrophages and CD8+ T cells were in
close agreement with the immunohistochemistry-based
values. These results suggested that the amount of CD8+

T cells and macrophages decreases with treatment. Fur-
ther, our observations indicated that the amount of mac-
rophages and dendritic cells is higher in the lesional skin
of patients with atopic dermatitis compared to their non-
lesional skin, regardless of the disease state.
Based on the observations from the cross-platform de-

convolution results, we questioned whether expression
data of isolated cell types from a different platform (i.e.
Affymetrix platform HG-U133A) would be adequately
assigned to the right cellular subset using DerM22.
Thus, we deconvolved data from the isolated 22
leukocyte subsets included in the signature matrix LM22
developed by Newman et al. [23] and expression data
from keratinocytes [43], epidermal stem cells and transit
amplifying cells [44] (Fig. 1c). LM22 comprised data on
11 major leukocyte types, i.e. B cells, dendritic cells, eo-
sinophils, monocytes and macrophages, mast cells, poly-
morphonuclear cells, natural killer cells (NK), plasma
cells, CD4+ T cells, CD8+ T cells, and γδ T cells. As
expected, with the exception of CD8+ cells, data of iso-
lated cell types included in DerM22 was accurately cate-
gorized, including subsets and activation states of these
cell types, despite the cross-platform differences. The
CD8+ cells in DerM22 included mainly CD8+ cells, but
also other T cell subsets, like γδ T cells and T helpers,
and other immune cells. Nevertheless, the overlap of
CD8+ cells with the latter was close to zero. Further, the
data on isolated epidermal subsets, i.e. epidermal stem
cells, transit amplifying cells, and keratinocytes were all
categorized as keratinocytes. This result confirmed that
the keratinocytes category in our method accounts for
both proliferating and differentiated keratinocytes. The
expression data from the epidermal stem cells and transit
amplifying cells was also partially classified as adipocytes,
suggesting that these epidermal subsets may share some
similarities regarding expression signatures with the adi-
pocytes. Despite the good performance of DerM22 when

(See figure on previous page.)
Fig. 1 Performance assessment of signature matrix DerM22 for deconvolution of gene expression data from skin biopsies. a The accuracy of
DerM22 is analyzed by comparing the mean deconvolution results (blue) to mean flow cytometry data (red) for samples of healthy subjects
(triangle), and the lesional skin of psoriasis patients (square). For the flow cytometry data and CIBERSORT results, the standard error is shown for
all cell subsets except for the flow cytometry-derived psoriasis pDCs values given that it was not reported in the original study. Also, the cross-
platform bias is explored by the comparison of the deconvolution results (blue) from microarray data acquired in the same platform as DerM22,
i.e. Affymetrix HG-U133 Plus 2.0, to data obtained using a different platform (green), i.e. Affymetrix HG-U133A. b The performance of DerM22 is
also compared to immunohistochemistry results from three different studies, i.e. GSE36842 (yellow), GSE27887 (black), GSE32924 (white), for which
expression data is also available. This is done by deriving the ratio of average myeloid dendritic cells (CD11c), macrophages (CD206), and CD8+ T
cells in lesional to non-lesional skin, or in treated to untreated lesional skin of atopic dermatitis (AD). The plotted ratios correspond to the ratios
of the average for each subgroup. c The cross-platform bias is further analyzed by deconvolving expression data from 25 different isolated cell
types acquired with Affymetrix HG-U133A. The estimated fractions of each cell type are presented in a heatmap, ranging from 0% (black) to 100%
(bright blue). d-f The consistency of the mean results (+/− standard deviation) across independent datasets of skin in health and disease is
examined for CD4+ T cells, plasmacytoid dendritic cells (pDCs), and keratinocytes. For results on other cell types see Additional file 5: Fig. S2
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used to deconvolve expression data from a different plat-
form, one should be cautious as cross-platform bias re-
mains a potential error factor.
It is known that expression data is prone to significant

variations depending on the site or method of acquisition
[15]. Thus, we assessed the consistency of the mean de-
convolution results for each cell type comprised in
DerM22 across nine independent public datasets. The
panels D to F of Fig. 1 depict the relative fraction of kerati-
nocytes, plasmacytoid dendritic cells, and CD4+ T cells
inferred from the samples of healthy skin and non-lesional
and lesional skin of patients with psoriasis and atopic
dermatitis in each independent study. The results for the
rest of the cellular subsets in DerM22 are presented in the
Additional file 5: Figure S2. The standard deviation was
calculated for each mean relative fraction. The estimated
abundance of cellular subsets of atopic dermatitis and
healthy skin were close in value for all datasets. In the
psoriasis datasets, a wider spread was observed despite the
similarity in the protocol and target group.

Deconvolution of layer-specific expression from healthy
skin
After our verification, we used the signature matrix
DerM22 to analyze mRNA expression data extracted

from the epidermal and dermal skin layers, as well as the
basal and suprabasal epidermal sublayers, from healthy
subjects (Fig. 2). The deconvolution of layer-specific ex-
pression data estimated the relative abundance of kerati-
nocytes, fibroblasts, endothelial cells, adipose stem cells,
adipocytes, and leukocytes in the skin layers. Our results
suggested that keratinocytes account for 79% of the cells
in the epidermis. The fraction of immune cells in the
epidermis was predicted to be close to 9%. The main im-
mune cells estimated for the epidermis were CD4+ T
cells, macrophages, neutrophils, dendritic cells, and nat-
ural killer cells. The percentage of CD8+ T cells was esti-
mated to be lower than 1%. Unexpectedly, the missing
12% of the cell types estimated for the epidermis corre-
sponds to adipocytes (10%) and adipose stem cells (2%),
which were observed in both the basal and suprabasal
epidermal sublayers. The presence of adipocytes and adi-
pose stem cells was also predicted for the dermis (23
and 42%, respectively). Other cell types allocated to the
dermis were the fibroblasts (7%), endothelial cells (2%),
myeloid dendritic cells (4%), and CD4+ T cells (4%).
These layer-specific profiles of healthy skin provide a
general overview of the proportion in which each cell
type is expected to be observed in the epidermis and
dermis.
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Estimation of cell type relative abundance profiles for
healthy skin and lesional and non-lesional skin of
psoriasis and atopic dermatitis
Next, we investigated whether the relative fractions de-
rived from the deconvolution of whole skin- expression
data would reflect the structural changes and the inflam-
matory hallmark that characterizes the lesions of psoria-
sis and atopic dermatitis (Fig. 3a-c and Additional file 6:
Figure S3). Results of healthy skin biopsies (Fig. 3a) sug-
gested that 40.9% of the cells in the samples correspond
to keratinocytes, while 29.4% was allocated to adipose
stem cells, 16.9% to adipocytes, 6.8% to leukocytes, and
6% to other cell types. Note that in contrast with the
expression data used to compute the layer-specific com-
position of the skin described in Fig. 2, the data from
the skin samples considered in this section comprises
information from all the skin layers at once. Compared
to healthy skin, our results showed a marked and signifi-
cant increase in the abundance of keratinocytes (+ 21.9
percentage points (pp)) and immune cells (+ 3.2 pp), and
a decrease in adipose stem cells (− 13.3 pp) and adipo-
cytes (− 9.6 pp) in the psoriasis lesions (Fig. 3a, c). The
immune cells that dominated this increase are mono-
cytes (+ 1.41 pp), CD4+ and CD8+ T cells (+ 0.73 pp.
and + 0.24 pp., respectively), and dendritic cells (+ 1.06
pp) (Fig. 3b-c). In the lesional skin of atopic dermatitis,
we observed on average a 2.5 percentage points increase
in the fraction of keratinocytes and 3.4 pp. in the relative
abundance of adipocytes compared to healthy skin
(Fig. 3a). We could, however, not establish statistical sig-
nificance for these comparisons (Fig. 3c). Similar to the
lesions of psoriasis, the lesional skin of atopic dermatitis
showed on average an increase in the percentage of
immune cells (+ 0.9 pp) and a decrease in the relative
abundance of adipose stem cells (− 6.5 pp) compared to
healthy skin (not significant). However, the predicted
abundance of immune cells was on average higher in the
lesional skin of psoriasis compared to atopic dermatitis.
Adipocytes were predicted to be lower in lesional skin
compared to non-lesional skin, with the lowest fractions
estimated for lesions of psoriasis.
In addition to the general profiling of the changes in

cellular subsets related to the lesional and non-lesional
skin of psoriasis and atopic dermatitis, we explored the
changes in cell type composition that may distinguish
severe from mild cases of these dermatological disorders.
For this analysis, we considered 13 samples for severe
and 14 for mild psoriasis, and 10 samples for severe and
37 for mild atopic dermatitis. The mean abundance of
each cellular subset is plotted for mild and severe cases
of psoriasis (Fig. 3d) and atopic dermatitis (Fig. 3e). Se-
vere cases of psoriasis showed a significant increase (cor-
rected p < 0.05) in the abundance of adipose stem cells
and keratinocytes compared to mild cases. Further, a

significant decrease (corrected p < 0.05) in the relative
fraction of adipocytes and endothelial cells was observed
for severe psoriasis. In severe cases of atopic dermatitis,
only adipose stem cells showed a significant decrease
(corrected p < 0.05) in their relative fraction.
An important application of deconvolution methodolo-

gies in the field of dermatology is the tracing of treatment
progress. Here, we used our signature matrix to decon-
volve expression data from samples of atopic dermatitis
(GSE27887), shined with narrow-band ultraviolet light B
(UVB) treatment (Fig. 4), and psoriasis (GSE47751 and
GSE117239), treated with Etanercept (Fig. 5). The dataset
on atopic dermatitis (GSE27887) comprises expression
data on lesional and non-lesional skin biopsy samples be-
fore and after phototherapy (Fig. 4 and Additional file 7:
Figure S4) [37]. The datasets on psoriasis contain expres-
sion data on biopsy samples from lesional skin before,
during, and after treatment with a biologic agent targeting
TNF-α, as well as samples from non-lesional skin at
baseline (Fig. 5 and Additional file 8: Figure S5 and
Additional file 9: Figure S6) [35, 36]. Fig. 4 depicts the fold
change in the relative fraction of CD4+ T cells, endothelial
cells, eosinophils, erythroblasts, mesenchymal stromal
cells, and myeloid dendritic cells in the lesional and non-
lesional skin before and after treatment. Our results sug-
gested that narrow-band UVB phototherapy induces
stronger changes in the cellular composition of lesional
skin than in non-lesional skin. In the lesional skin, the
relative fraction of myeloid dendritic cells, erythroblasts,
and CD4+ T cells were reduced due to the treatment,
while the abundance of endothelial cells and mesenchymal
stromal cells increased (without correction for multiple
testing). Non-lesional skin irradiated with narrow-band
UVB did not result in any significant changes except for
an increase in endothelial cells as compared to before
phototherapy. Figure 5 shows the estimated fraction of
keratinocytes for the samples on datasets GSE47751 and
GSE117239 at baseline and specific timepoints of treat-
ment with Etanercept, a biologic agent that hinders the
synergy between TNF-α and IL-17A and results in re-
duced inflammation levels and a lower abundance of kera-
tinocytes [35, 36]. Our results showed a clear reduction of
the keratinocytes fraction when treated with Etanercept.
The estimated keratinocytes fraction at the end of the
treatment was similar to the predicted abundance of this
cell type in non-lesional skin. Cell types associated with
inflammation also returned to values similar to those esti-
mated for non-lesional skin (Additional file 8: Figure S5
and Additional file 9: Figure S6).

Discussion
To simplify the interpretation of skin transcriptomics
data and enable the study of cellular composition, previ-
ous investigations have identified mRNA expression
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signatures of skin-specific cell types, structures, and pro-
cesses [14, 15]. However useful, these resources do not
allow for the quantitative analysis of the numerical varia-
tions of multiple cell types in a skin sample. In this

study, we designed DerM22, a signature matrix that in-
cludes the mRNA expression signatures of skin-specific
and immune cell types. We used this signature matrix to
quantify changes in the cellular abundance of the skin in

C

E

D

BA

Fig. 3 Deconvolution of skin biopsies from healthy subjects and patients with psoriasis and atopic dermatitis. a Comparison of the average
cellular abundance derived from gene expression data of 648 biopsy samples from the skin of healthy subjects and patients with atopic
dermatitis and psoriasis. The samples from psoriasis and atopic dermatitis account for lesional and non-lesional skin. The average cellular
abundance is combined into five groups, i.e. immune cells (turquoise), stem cells (brown), keratinocytes (light brown), adipocytes (light yellow),
and others (white). b Detailed description of average values in the fractions of immune infiltrates across healthy and disease skin phenotypes
(depicted in the donut chart from panel a). c Heatmap of significant over (red) or under (blue) represented cell types comparing lesional to non-
lesional and healthy skin samples. Non-significant results (uncorrected p > 0.05) are kept blank. Significant results after correction for multiple
testing are labeled with a star. d-e Comparison of the estimated cell-type specific fractions for mild (x-axis) and severe (y-axis) cases of psoriasis
and atopic dermatitis. The diagonal in each plot indicates the point at which the estimated fraction for a given cell type for the mild case would
be equal to the one of the severe cases. The deviation from the diagonal indicates the difference between mild and severe cases of psoriasis and
atopic dermatitis. Cell types with a corrected p-value lower than 0.05 are indicated with an asterisk
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Fig. 4 Changes in cellular composition due to narrow-band UVB phototherapy in atopic dermatitis. Comparison of the abundance of CD4+ T
cells (a), endothelial cells (b), eosinophils (c), erythroblasts (d), mesenchymal stromal cells (e), and myeloid dendritic cells (f) in the lesional and
non-lesional skin of atopic dermatitis patients before and after narrow-band UVB phototherapy. The y-axis of each panel corresponds to the
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dataset GSE27887 [37] was used for this analysis. Results for other cell types can be found in Additional file 7: Figure S4
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Fig. 5 Reduction in the abundance of keratinocytes upon treatment of psoriasis with Etanercept. Comparison of the abundance of keratinocytes
in lesional and non-lesional skin before, during, and after treatment with a biologic agent using expression data from two different datasets, i.e.
GSE47751 [35] (a) and GSE117239 [36] (b). The p-values of each comparison are presented above each box in the boxplots. Results for other cell
types can be found in Additional files 8: Figure S5 and Additional file 9: Figure S6
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health and chronic inflammatory dermatological disor-
ders. We show that the characteristic inflammatory hall-
mark and structural changes associated with the lesional
skin of these diseases are reflected in the relative frac-
tions derived from the deconvolution of whole skin- ex-
pression data from 648 samples. We observed a marked
increase in the relative abundance of keratinocytes and
leukocytes in the lesions of psoriasis and a small non-
significant increase in AD lesions. Further, our results
suggest the presence of adipose tissue cells within the
skin layers. Interestingly, the relative fraction of these
cells varies from healthy to diseased skin, and from non-
lesional to lesional skin.
Human skin comprises a complex mix of cell types,

the abundance of which is altered in psoriasis and atopic
dermatitis [51, 52]. Psoriasis is characterized by the
hyperproliferation and disturbed differentiation of kera-
tinocytes, which results in the thickening of the epider-
mis [53]. This trait is due to the increased levels of
IL-17, which induce a self-amplifying inflammatory re-
sponse in the keratinocytes that drives the development
of the psoriasis lesions and the recruitment of leukocytes
into the skin [54]. These immune infiltrates include
dendritic cells, macrophages, and T cells [55, 56]. In
agreement with this, we observed a significant increase
in the relative abundance of keratinocytes, T cells,
monocytes, plasmacytoid dendritic cells, and to a lesser
extent macrophages in the lesional skin of psoriasis
compared to the non-lesional skin (Fig. 3a-c). Lesions of
atopic dermatitis contain a large number of resident and
infiltrated immune cells, e.g., dendritic cells, eosinophils,
and T cells [57]. Our results indicated that the relative
fraction of these cell types increases considerably in the
lesional skin of atopic dermatitis, compared to the non-
lesional and healthy skin (Fig. 3b). Suárez Fariñas et al.
[10] previously reported that non-lesional skin is distinct
from healthy skin concerning epidermal differentiation
and immune abnormalities. They described that non-
lesional AD skin has a variable immune phenotype,
which depends on the severity and extent of the disease.
In contrast with their observations, our results suggested
a tendency towards a lower fraction of immune cells in
the uninvolved skin of atopic dermatitis compared to the
healthy skin (Fig. 3b), although we could not establish
statistical significance when comparing healthy vs. unin-
volved atopic dermatitis samples when comparing sam-
ples within studies (Fig. 3c). Further studies need to
establish whether this lacking significance is due to the
limited power in our analyses or whether the effect seen
in Fig. 3a,b is due to incorporation of different datasets
for healthy individuals and individuals with atopic
dermatitis, which may result in a slight bias due to batch
effects, although the influence of batch effects is only
small (Fig. 1d, Additional file 5: Figure S2).

One intriguing finding in our results is the abundance of
adipose stem cells and adipocytes predicted for the skin in
health and disease. Figure 2 shows a low but present frac-
tion of adipose stem cells in the epidermal layer and
sublayers. Chavez-Munoz et al. [58] described the trans-
differentiation of adipose stem cells into keratinocytes,
which could potentially explain the observed fraction of
adipose stem cells in the epidermal layer. The deconvolu-
tion of data from isolated cell types (Fig. 1c) indicated that
there is a minor overlap in the expression of keratinocytes
and adipose stem cells. The role of adipose stem cells in
the skin has not been fully elucidated yet. However, it has
been suggested that adipose stem cells may contribute to
the maintenance of a healthy epidermis and dermis [59].
The inferred tissue composition derived from the expres-
sion data of whole-skin biopsies (Fig. 3a) also suggested the
presence of adipose stem cells in the skin. It has been
shown that mesenchymal stem cells are involved in the
immunomodulation of lymphocytes in the skin [60]. They
can inhibit the proliferation and differentiation of these
immune cells through the induction of cell cycle arrest,
cell-to-cell contact, secretion of soluble mediators, and the
regulation of dendritic cells and monocytes [60]. Psoriasis
and atopic dermatitis involve impaired immunoregulation
[61], which could be related to the lower amount of adi-
pose stem cells in both diseases compared to the healthy
skin. Adipocytes were predicted to exist in the epidermal
and dermal layers of the skin, with a higher relative fraction
in the dermis compared to the epidermis. The presence of
adipocytes in the dermis has been described in the litera-
ture [62, 63], but it does not entirely explain the predicted
abundance. Adipocytes were also observed in the results
from the whole-skin biopsies deconvolution (Fig. 3a), par-
ticularly in the non-lesional skin of atopic dermatitis. In
the lesional skin of psoriasis, the estimated abundance of
adipocytes was the lowest in comparison to non-lesional
psoriasis, atopic dermatitis, and healthy skin. We propose
two factors that may contribute to these trends. (i) In skin
diseases, the increased contribution of keratinocytes and
immune cells would decrease the fractions of adipose stem
cells and adipocytes accordingly. (ii) The punch biopsies
from which the expression data was derived may have had
a varying depth depending on the location of sample acqui-
sition, and the state and severity of the disease. This would
result in samples with varying content of adipose tissue.
Further studies are needed to discriminate between these
possibilities and investigate the role of adipose cell types in
chronic inflammatory dermatological disorders.
Another unexpected finding was the low fraction of

CD8+ T cells in the epidermis (Fig. 2), i.e. below 1%. Previ-
ous studies have reported an abundance of CD8+ T cells
in the epidermis [64]. These T cells have been observed at
the borderline of the epidermis and the dermis in humans
in healthy or psoriatic skin [65]. The discrepancy of our
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results with those reported in the literature may be due to
the method of sample acquisition, i.e. laser capture micro-
dissection, which was used to isolate the layer-specific skin
samples. In agreement with literature, we observed a
higher fraction of CD4+ T cells in the dermis [64]. Despite
being predominantly found in the dermis, CD4+ T cells
have also been observed in the epidermis [65]. Future
studies should aim to quantify the abundance of these cel-
lular subsets within the skin layers in health and disease.
Our deconvolution analysis yields consistent results across

independent skin-expression datasets (Fig. 1c) and shows a
good performance when compared to immunohistochemis-
try cell counts (Fig. 1b) and flow cytometry data from
immune infiltrates (Fig. 1a). Despite the positive results
regarding the validation of the methodology, it remains lim-
ited. Future efforts should be dedicated to generating experi-
mental data that could aid in the additional validation of
DerM22. Further, our proposed methodology has two fun-
damental limitations. (i) The first limitation is the fidelity of
the reference profiles. We tried to address this issue by using
a wide range of samples for each cell type. However, it
remains a significant constraint, mainly due to the known
expression changes in the disease state [14]. Recently, Shih
et al. [15] defined 20 gene signatures identified solely from
skin-derived expression data. Their set of gene signatures
included smooth muscle, adipocytes, fibroblasts, keratino-
cytes, T cells, and macrophages/DC. These cell types are
also included in our signature matrix, but in contrast with
them, we included other leukocyte subsets and were able to
quantify the abundance of each cell type included in
DerM22. (ii) The second limitation is the accurate deconvo-
lution of cross-platform data [23]. We assessed this issue by
comparing the results achieved for expression data on the
same platform as DerM22 with data of a different platform
(Fig. 1a-b). It was evident that the deconvolution of cross-
platform data led to similar relative fractions (Fig. 1a) and
that isolated cell types were adequately identified (Fig. 1b).
However, one should still be cautious when dealing with
cross-platform data.

Conclusions
Here, we have defined a signature matrix that enables the
direct enumeration of the different cell-types in whole-
skin and skin layer-specific composition based on mRNA
expression data. By analyzing mRNA expression data of
648 subjects, we observed and quantified the characteristic
pathological changes of the increased number of keratino-
cytes and infiltration of immune cells associated with
psoriasis and atopic dermatitis. Overall, we show that de-
convolution-based methodologies can be used to interpret
transcriptomic data from whole skin samples and provide
insight into the pathological changes associated with skin
diseases and their treatment.
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