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The lattice Boltzmann method (LBM) is routinely employed in the simulation of complex multiphase
flows comprising bulk phases separated by nonideal interfaces. The LBM is intrinsically mesoscale with a
hydrodynamic equivalence popularly set by the Chapman-Enskog analysis, requiring that fields slowly vary in
space and time. The latter assumptions become questionable close to interfaces where the method is also known
to be affected by spurious nonhydrodynamical contributions. This calls for quantitative hydrodynamical checks.
In this paper, we analyze the hydrodynamic behavior of the LBM pseudopotential models for the problem of the
breakup of a liquid ligament triggered by the Plateau-Rayleigh instability. Simulations are performed at fixed
interface thickness, while increasing the ligament radius, i.e., in the “sharp interface” limit. The influence of
different LBM collision operators is also assessed. We find that different distributions of spurious currents along
the interface may change the outcome of the pseudopotential model simulations quite sensibly, which suggests
that a proper fine-tuning of pseudopotential models in time-dependent problems is needed before the utilization
in concrete applications. Taken all together, we argue that the results of the proposed paper provide a valuable
insight for engineering pseudopotential model applications involving the hydrodynamics of liquid jets.

DOI: 10.1103/PhysRevE.99.053305

I. INTRODUCTION

The development of modern applications and innovative
materials involving multiphase flows [1,2] naturally sets a
compelling case for the development of suitably designed
numerical methods to be used in synergy with experimental
investigations [3] and analytical predictions [4]. The under-
standing of many of such problems is routinely rationalized
via the help of a continuum hydrodynamics: In a nutshell,
one can say that bulk phases coexist while being separated by
thin interfaces, whose width represents the smallest scale of
the continuum description. Such interfaces are characterized
by a nonzero surface tension, i.e., the force per unit area
that is the continuum manifestation of the anisotropy of
atomistic forces close to the interface. Whereas for purely
analytical calculations, the zero-width limit (“sharp interface”
hydrodynamics) is most easily handable [5–7], for numerical
simulations the situation is somehow more diversified [8–14].
In this landscape, increasing attention has been driven towards
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mesoscale simulations and, in particular, the lattice Boltz-
mann method (LBM) [15–20]. When solving the complex
fluid dynamics of multiphase flows, the traditional advantages
of the LBM (simplicity [21,22], easy handling of boundary
conditions [23,24], and easy parallelization [25]) can be fur-
ther enriched by a remarkable versatility in simulating non-
ideal equations of state (EoS) and complex interfaces [26,27].
More precisely, LBM reproduces “diffuse” interfaces, i.e.,
the bulk phases are separated by a region of finite thickness
where the fluid properties (i.e., density, velocity, and pres-
sure) change continuously. The hydrodynamical behavior of
the LBM is traditionally assessed via the Chapman-Enskog
analysis; however, from the theoretical point of view, the
main assumptions of the Chapman-Enskog analysis of having
fields slowly varying in space and time may well be violated
due to the presence of the interfaces and/or singular events,
such as breakups [28,29]. Practically, it is also found that
LBM implementations are affected by spurious contributions
at the interface [30,31]. We use the term spurious meaning
that they are not predicted by hydrodynamics. These spurious
currents are particularly relevant close to the interfaces [32].
Consequently, the actual recovery of the LBM-hydrodynamic
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“equivalence” could fail [15,33]. Natural questions then arise
on the quantitative potentiality retained by diffuse interface
LBM simulations of multiphase flows, especially in compari-
son to the analytical description of sharp interface hydrody-
namics. In fact, although it is largely acknowledged in the
literature [20,34–43] that the LBM is capable of reproduc-
ing static properties driven by surface tensions (i.e., Laplace
pressures [44] and contact angles [45]), very rarely there have
been quantitative characterizations on the recovery of time-
dependent hydrodynamics with nonideal interfaces, especially
in the presence of singular events. This paper aims to take a
step forward in the latter direction. As a prototypical problem
of a time-dependent multiphase flow with nonideal interfaces,
we refer to the Plateau-Rayleigh instability [6,46–52] of a liq-
uid ligament. The Plateau-Rayleigh instability—driven by the
tendency of the interface to minimize the area at fixed avail-
able volume—causes the fragmentation of a liquid ligament
into smaller droplets via breakup events. Numerical results
on the breakup time show a neat asymptotic behavior when
the interface width is much smaller than the ligament size.
These asymptotic results are compared with the theoretical
predictions of sharp interface hydrodynamics; moreover, our
observations are also enriched with a side-by-side comparison
of two different LBM collision operators, namely, the single
relaxation time (SRT) with shifted equilibrium [30] and the
multiple relaxation times (MRT) with Guo-like forcing [53].
Numerical simulations show that the distribution of velocity
at the interface in the vicinity of the pinch-off region is differ-
ent, causing different breakup processes. A very preliminary
investigation on some of the results presented in this paper is
also available in a recent conference proceedings [54].

The paper is organized as follows. In Sec. II, we recall the
basic features of the numerical methodology used; in Sec. III,
we report on the setup used for the numerical simulations;
results will be presented in Sec. IV, and in Sec. V, conclusions
will be drawn.

II. NUMERICAL MODELS

In this section, we briefly highlight the important features
of the numerical methodology based on the LBM [15,19].
For extensive technical details, the interested reader is re-
ferred to the papers cited in the following. The LBM is a
mesoscale numerical approach for the study of fluid dynamics,
which has been successfully employed to dissect complex
phenomena of scientific and technical interest in recent years
[20,23,27,37,40,55,56].

The LBM is grounded on an optimized formulation of
Boltzmann’s kinetic equation in which particle distribution
functions fα (x, t ) stream and collide on a lattice character-
ized by a finite set of velocities cα = 0, . . . , 18 in our case,
according to the following dynamics:

�α fα (x, t ) = fα (x + cα�t, t + �t ) − fα (x, t )

= −�coll
[

fα (x, t ) − f eq
α (x, t )

]
. (1)

In Eq. (1), �coll represents the collision operator, which can
be written as follows:

�coll = �t/τ (SRT),

�coll = M�M−1 (MRT),

τ represents the (single) relaxation time towards local equi-
librium [19]; M and � are the transformation matrix and the
(diagonal) matrix of the relaxation parameters, respectively:
For the details on their formulation, the reader is addressed
to Ref. [43]. More specifically, the � vector has s2 = s10 =
s12 = s14 = s15 = s16 = ω = 2c2

s
c2

s +ν
, and all the other free pa-

rameters equal to 1, where ν is the kinematic viscosity and c2
s

is the squared lattice speed of sound. No special adjustments
have been considered here because modifications on the �

vector should not affect hydrodynamic behavior of the em-
ployed method. For both the SRT and the MRT formulations,
the term f eq

α (x, t ) in Eq. (1) represents the distribution of
(local) Maxwellian equilibrium, which is given by

f eq
α (x, t ) = wαρ(x, t )

[
cα · u(x, t )

c2
s

+ [cα · u(x, t )]2

2c4
s

− [u(x, t ) · u(x, t )]

2c2
s

]
, (2)

in which ρ(x, t ) and u(x, t ) are the hydrodynamic macro-
scopic density and velocity, respectively, and wα represents
the set of weights for the D3Q19 lattice [15,33]. From
Eq. (1), macroscopic fluid density and velocity may be derived
through the zeroth and the first population momenta, respec-
tively, as follows:

ρ(x, t ) =
Npop−1∑
α=0

fα (x, t ), ρu(x, t ) =
Npop−1∑
α=0

cα fα (x, t ). (3)

One among the main interesting atouts of the LBM lies in
its effectiveness in dealing with nonideal multiphase flows
[20]: The forcing term can be conveniently implemented in
Eq. (1) to account for the phase interactions that trigger
the macroscopic phase segregation. Among the various ap-
proaches proposed in the literature, we focus on the single-
belt formulation of the pseudopotential Shan-Chen forcing
[34,57], whose force reads

F(x, t ) = −G0ψ (x, t )
Npop−1∑
α=0

ψ (x + cα�t, t )cαwα. (4)

In Eq. (4), G0 is the basic parameter which rules the inter-
particle interaction and ψ (x, t ) is the pseudopotential, a local
functional of the fluid density [58],

ψ (x, t ) = ρ0

[
1 − exp

(
−ρ(x, t )

ρ0

)]
.

In this paper, we have fixed the reference density ρ0 = 1.0:
With this assumption, the interparticle strength G0 is the
only free parameter which fixes both the density ratio and
the surface tension. Forcing schemes are different for the
two collision operators; more in detail, for the SRT, starting
from Eq. (4), the component of the interaction force along
each direction can be evaluated and then used to shift the
macroscopic velocities before evaluating the equilibrium dis-
tribution functions,

u′(x, t ) = u(x, t ) + F(x, t )τ

ρ(x, t )
. (5)
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TABLE I. Main simulation parameters at G0 = −5.3 and Oh = 0.1 as a function of ligament radius for the SRT.

R0 (LU) 14 28 42 56 70 84 98

Lx 256 512 768 1024 1280 1536 1792
Ly = Lz 96 192 288 384 480 576 672
τ 0.67926 0.76297 0.83053 0.90311 0.97021 1.03776 1.10647
tcap 335 912 1611 2380 3189 4015 4846
ρl 2.1167 2.1254 2.1348 2.1450 2.1557 2.1666 2.1775
ρv 0.0836 0.0900 0.0974 0.1059 0.1156 0.1264 0.1383
σ 0.05345 0.05775 0.06277 0.06848 0.07491 0.08206 0.08991

On the other hand, for the MRT scheme, we adopted the
forcing scheme proposed in Refs. [38,42] where we compute
the equilibrium momentum by means of the velocity evaluated
as follows:

ub(x, t ) = u(x, t ) + F(x, t )

2ρ(x, t )
. (6)

For both considered collision operators, the EoS of the system
may be written as follows:

P(ρ) = ρc2
s + c2

s G0

2
ψ2. (7)

Before ending this methodological section, some remarks on
the models used are in order. The main difference in between
the two collision operators is that the SRT is solved into space,
whereas the MRT projects the distribution functions into mo-
mentum space by means of the matrix M product. This techni-
cal passage allows for increasing the stability and robustness
of the method itself. Regarding the equilibrium properties
(i.e., density ratio, surface tension, etc.), it is well known that
the basic Shan-Chen formulation is affected by some patholo-
gies. Indeed, in the SRT formulation, both the surface tension
and the density ratio depend on the relaxation parameter τ

[57], whereas in the MRT formulation, they are decoupled
from it. This is confirmed by Tables I and II. Furthermore, due
to the forcing formulation, the surface tension is a function of
the parameter G0 itself, which causes a coupling between the
EoS and the interface properties and results in the impossi-
bility to tune surface tension independently of the EoS. Some
extensions of the basic Shan-Chen force were designed to cure
such pathology. Sbragaglia et al. [27] and Falcucci et al. [37]
proposed to extend the range of interactions (i.e., multirange
approach) of the Shan-Chen forces, allowing an independent
tuning of the surface tension with respect to the EoS. Other
studies followed, aimed at systematic characterizations and

further improvements. For example, Yu and Fan [59] used a
multirange approach to allow for nonuniform meshes and grid
refinement close to nonideal interfaces; Huang et al. [60] sys-
tematically analyzed the impact of the multirange formulation
on the equilibrium properties of nonideal interfaces; Li and
Luo [61] proposed a modified approach by adding a source
term to the LBM allowing the independent tuning of surface
tension with respect to the EoS. The multirange extensions are
here not explored; rather, we focus on the basic formulation
of the pseudopotential approach to delve into some general
considerations about “dynamical” spurious currents effects
on macroscopic hydrodynamic phenomena. Indeed, the two
LBM environments are here chosen as “representative” of
two scenarios where spurious hydrodynamical effects exhibit
a different modulation in space, in one case more localized
in the pinching region and in another case localized away
from the pinching region. In other words, the two LBM
environments are not chosen to promote one with respect to
the other but rather to raise a more general question on the
dynamical distribution of nonhydrodynamical effects.

III. SIMULATIONS SETUP

We have performed the LBM simulations in a three-
dimensional (3D) box of LxLyLz lattice sites. The Plateau-
Rayleigh instability is triggered through a sinusoidal pertur-
bation with a fixed amplitude and a constant wavelength (see
Fig. 1). More specifically, the initial condition for the ligament
radius is r(x) = R0 + δ sin ( 4πx

Lx
), where R0 is the unperturbed

ligament radius. The domain size and the ligament radius are
chosen to accommodate roughly two wavelengths of the most
unstable mode of the instability [6]. The perturbation δ is as-
signed the three different values of R0/30, R0/20, and R0/10.
The breakup phenomenon is driven by some characteristic
parameters, and between them, the Ohnesorge number (Oh)

TABLE II. Main simulation parameters at G0 = −5.3 and Oh = 0.1 as a function of ligament radius for the MRT.

R0 (LU) 14 28 42 56 70 84 98

Lx 256 512 768 1024 1280 1536 1792
Ly = Lz 96 192 288 384 480 576 672
τ 0.67293 0.74445 0.79942 0.84575 0.88667 0.92350 0.95745
tcap 347 981 1803 2775 3878 5098 6424
ρl 2.1086 2.1086 2.1086 2.1086 2.1086 2.1085 2.1085
ρv 0.0778 0.0779 0.0779 0.0779 0.0778 0.0778 0.0778
σ 0.04951 0.04952 0.04952 0.04955 0.04953 0.04953 0.04954
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δ

λ
λ

Lz

Lx

Ly

FIG. 1. Initial configuration for the numerical simulations. A
cylindrical ligament of radius R0 is perturbed with a sinusoidal
wave along the axial (x) coordinate. The perturbation wavelength
corresponds to the fastest growing mode of the Plateau-Rayleigh
instability [6].

and the capillary time tcap are defined as follows:

Oh = μ√
ρlσR0

, tcap =
√

ρlR3
0

σ
, (8)

where ρl is the liquid density, μ is the dynamic viscosity, and
σ is the surface tension. For our numerical simulations, the
interparticle strength G0 [27,37] has been fixed to −5.3 LU
(lattice units hereafter), which allows a fair grid convergence
study at changing the ligament radius R0 from values compa-
rable to the interface thickness to values much larger. Regard-
ing the choice of the Ohnesorge number, a few remarks are
in order. According to the literature on the breakup of liquid
ligaments [62–64], it is known that, for Oh < 1, instability
phenomena of the liquid jet start to take place, causing the
formation of pinched regions, which, eventually, lead to the
breakup of the liquid column. To accomplish our analysis in
the LBM framework, we have fixed Oh = 0.1, which is a
well-established value on the pinching breakup regime [65].
Moreover, through such a value, it is possible to have a set of
corresponding numerical viscosities that grant the numerical
stability of the LBM algorithm [15,33] as explained in the
following. The ligament radius R0 has been varied in the
range of 14–98 LU. Table I reports the corresponding values
of density ratio and surface tension retrieved with the SRT
approach for the different values of R0. To accurately evaluate
the surface tension σ as a function of the ligament radius, we
first carried out a set of steady-state simulations to perform
the well known Laplace test [66]. With the SRT collision
operator, the Laplace test requires accounting for the natural
adaptation of σ to the kinematic viscosity value [57], whereas
in the MRT framework, such an effect is absent. To retrieve
a reliable value for the surface tension for all ligament radii
reported in Table I, we have implemented an iterative proce-
dure aimed at providing stable values for σ . More specifically,
we chose a first attempt estimation for the viscosity, aimed
at ensuring numerical stability; with the corresponding τ , we
have performed the Laplace test according to three values
of the static droplet radius, obtaining a first estimate of σ .
By using the obtained value of surface tension in Eq. (8),
we find the new viscosity value that meets the Oh = 0.1
target: Since the values of σ, ρl , and ρv (vapor density) are
intimately connected to that of τ in the SRT approach, we
have iterated the above-described procedure until the relative

error on two consecutive values of surface tension was less
than 5%. For the MRT, no such procedure was needed as
viscosity variations have a negligible impact on the algorithm.
Once we acquired the asymptotic surface tension value for
both collision operators, we performed simulations with flat
interfaces to find the correct liquid and vapor densities cor-
responding to the simulation parameters. Finally, after this
last set of simulations, we obtained all the input data needed
to perform the ligament simulations. Table II displays the
values of density ratio and surface tension obtained with the
MRT collision operator: As is apparent from the comparison
between Tables I and II, the values provided by the MRT
display a negligible dependence of the physical properties on
the employed computational grid.

Before closing this section, we notice that the breakup
of a thin ligament has already been studied by means of
an axisymmetric LBM formulation in Refs. [67–71]; in this
paper, we extend the results already available in the literature
by performing a 3D grid convergence analysis by analyzing
the effect of different collision operators on the predictions of
hydrodynamics and by performing a more detailed analysis on
the properties of the breakup process.

IV. RESULTS

According to the parameters reported in Tables I and II,
we have performed the numerical simulations for the breakup
of the liquid ligament for δ = R0/10. In Fig. 2, we report
results on the time evolution (up to the breakup point) and the
breakup times Tbreak at changing the grid resolution. Note that
the breakup time has been made dimensionless with respect
to the capillary time tcap. For both collision operators, we
observe a very neat trend of the breakup time increasing with
the simulation resolution and, thus, with the initial radius
R0, in line with the numerical results in Ref. [72]. In our
working conditions, sharp interface hydrodynamics predicts
a dimensionless breakup time that is a function only of the Oh
and δ (see Ref. [73] and references therein). Since the Oh and
δ are fixed, the observed grid dependency cannot be explained
in terms of sharp interface hydrodynamics, and it is an effect
induced by the finite width of the interface. It naturally
becomes the question of how much these finite width effects
are hydrodynamical. To cope with this issue, one would
need to use a diffuse interface hydrodynamic solver for the
corresponding hydrodynamic equations predicted by the LBM
[15,33]. Finite width effects are expected to be negligible for
large resolutions, and one can use the results of sharp interface
hydrodynamics (see Ref. [73] and references therein) for
comparison. For the Ohnnesorge number used Oh = 0.1, the
breakup process is known to produce two mother droplets
and two satellite droplets. In Fig. 2(b), the cases in which
stable secondary droplets are found are reported with filled
symbols. We would like to stress that only stable droplets
have been considered, that is, secondary droplets that live
for a period of time, at least, comparable to the capillary
time tcap. It is known, in fact, that, in the pseudopotential
framework of LBM multiphase flows, small droplets tend to
be reabsorbed in the vapor phase as discussed in Refs. [40,74].
In our simulations, the SRT provides stable secondary droplets
for R0 � 70 LU, whereas the MRT collision operator provides
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(a)

R 0 = 2 8 (L U ) ; t = 7 R 0 = 9 8 (L U ) ; t = 7

R 0 = 2 8 (L U ) ; t = 8 R 0 = 9 8 (L U ) ; t = 8

R 0 = 2 8 (L U ) ; t = 1 0 R 0 = 9 8 (L U ) ; t = 1 0

(b) (c)

S RT - t = 1 0

M RT - t = 1 0

FIG. 2. Panel (a): We report the LBM density evolution as a function of the nondimensional time (t ) for the SRT collision operator and
for different resolutions. Panel (b): We report the dimensionless breakup times as a function of the ligament radius for both the SRT and the
MRT. The filled symbols refer to the presence of satellite droplets in postbreakup conditions. Panel (c): postbreakup conditions for both the
SRT and the MRT.

secondary droplets that live considerably less than a single
capillary time. Such a short-living feature is due to their initial
diameters, which tend to be smaller with the MRT than with
the SRT. By comparing the diameters obtained with the two
collision operators to the analytic, numerical, and experimen-
tal results in the literature [50,75,76], we find that the SRT
approach provides more accurate predictions. This surely calls
for a careful comparison with the existing LBM data in the
literature. Earlier investigation by Premnath and Abraham
[67] used an axisymmetric LBM formulation with source
terms embedded in the LBM dynamics in the Bhatnagar-
Gross-Krook (BGK) approximation. The Carnahan-Starling
EoS was used with a dynamic viscosity ratio of 4 between the
liquid and the vapor phase. The authors report the formation
of satellite droplets with an initial cylinder radius of 50 grid
points (their Fig. 7), hence well below our largest resolutions
used. Srivastava et al. [68] proposed an axisymmetric LBM
formulation with the Shan-Chen force and the forcing scheme
provided by the equilibrium shift, essentially the same as our
forcing scheme for the SRT simulations. For Oh = 0.09, they
reported the formation of satellite droplets with a dynamic
viscosity ratio of about 30, which is consistent with our
results. Another axisymmetric LBM formulation proposed by
Liang et al. [70] makes use of a phase field van der Waals
model and adds the forcing term as a source to the BGK
evolution. They use an initial cylinder radius with 60 grid
points and report the presence of satellite droplets with a dy-
namic viscosity ratio of about 16.6. In the recent investigation
by Liu et al. [71], the authors report numerical simulations
with an axisymmetric LBM with a color-gradient model and a
MRT collision operator, reporting the formation of satellite
droplets. Finally, in the recent simulations by some of the
authors with the Shan-Chen force for a multicomponent fluid
and a MRT forcing scheme, the emergence of the satellite
droplets was found [77]. These facts said, it is likely that the
missed formation of satellite droplets in our MRT simulations
originates from the chosen EoS and the choice of a viscosity
ratio that sensibly differs from one.

Although at a very qualitative level, results in Fig. 2
provide a clue to a physically different behavior of the two
collision operators with the SRT looking “more physical” than
the MRT. This result is strange and counterintuitive since the
Chapman-Enskog analysis predicts that SRT is affected by
extra forcing-dependent stress contributions, which are large
at large forces (i.e., close to interfaces). These observations
stimulated further analysis on the quantitative comparisons
between the numerical simulations and the theoretical predic-
tions. To this aim, we kept the resolution fixed to the largest
used in Fig. 2 and investigated the breakup time at changing
δ. In Fig. 3, results of the numerical simulations are compared
with the predictions of sharp interface hydrodynamics from
Ref. [52] and linear stability analysis. Regarding the latter,
the growth rate ω is considered as a function of both the wave
number and the Ohnesorge number ( see Eq. (28) in Ref. [6]).
Knowing the growth rate, the breakup time in the linear
approximation can be calculated from Tbreak = ln(R0/δ)/ω

FIG. 3. Influence of the initial perturbation ε = δ

R0
for the two

collision operators on the nondimensional breakup time and compar-
ison with literature data [52] and linear stability analysis prediction
[49].
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FIG. 4. Panel (a): Normalized perturbation with respect to the initial perturbation value at x ≈ Lx/2 (and x = Lx/8 in the inset) as a function
of nondimensional time. Panel (b): Three snapshots of interface evolution at t  = 7–9 both for the SRT and for the MRT.

[49,52]. We note that the MRT collision operator is well
aligned with linear stability analysis reported in Ref. [49],
whereas the SRT is practically overlapped with result pre-
sented in Ref. [52] where computation fluid dynamics Navier-
Stokes (NS) simulations have been used for the same test
case. In view of the results displayed in Figs. 2 and 3,
one then asks where the mismatch between the two collision
operators emerges, i.e., whether it is in the initial stage (where
we are linearly unstable) or later at the pinch-off stage. To
answer this question, we inspected the perturbation growth
rate in the initial stage of the ligament destabilization and
considered the ligament silhouettes for the whole dynamics
up to breakup. The results are reported in Fig. 4. We observe
that the initial destabilization process is the same and well
in line with the prediction of sharp interface hydrodynamics.
The difference between the two dynamics rather lies in the
pinching regime. To have a deeper understanding of the
ligament deformation near the breakup, we also look at the
nondimensional “minimum” ligament radius as a function of
the nondimensional time. Results are reported in Fig. 5. The
minimum ligament radius is defined as the smallest radial
coordinate in a configuration at a given time. We further make
this quantity dimensionless by normalizing with the initial
ligament radius. Note that sharp interface hydrodynamics pre-
dicts a linear trend of the minimum ligament radius [5,78] and
the linear trend is more in line with the SRT dynamics than
the MRT. It is worth nothing that the above presented method
is characterized by a diffuse interface which tends to occupy
few lattice points. Even though with increasing resolution the
interface thickness tends not to influence results reliability,
it is also true that for the maximum radius here considered
(namely, R0 = 98 LU) the interface still occupies 4 LU. Here,
we consider that the interface is physically located exactly in
the middle of the interface thickness. Thus, the LBM solver

may be compared with the sharp interface hydrodynamics,
whereas the interface width h(x, t) is greater than the half
of interface thickness (about 2 LU). Below that threshold,
there is no possibility to compare these two methods, and
comparison would be formally incorrect. It is important to
point out that the presented solvers do not introduce any
special treatment so to reduce the interface thickness. Usually,
such models are characterized by interfaces which occupy few
sites but some technicalities have been developed so to reduce
the number of nodes occupied by the interface. Moreover, this
thickness cannot be zero, such as a sharp interface solver,
and, its tuning will represent an additional degree of freedom
while approaching these simulations. In the present paper, we
have decided to modify the ligament radius while keeping

FIG. 5. Normalized minimum ligament height near the breakup
time.
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FIG. 6. Comparison of the time evolution of the normalized
velocity magnitude according to the SRT and the MRT collision
operators.

unchanged the interface thickness rather than modify the
lattice sites occupied by the interface with the same ligament
radius. To delve deeper into the problem, we compare the
velocity profiles for the ligament during the time evolution of
the surface instability leading to the liquid column breakup.
Results are displayed in Fig. 6. The figure displays the dimen-
sionless velocity magnitude v∗ = |ub|

R0/tcap
for both collision op-

erators for selected times. To facilitate a comparison between
the velocity distribution and the curvature profile, we compare
the spatial distribution of the velocity field in both the MRT
and the SRT at similar interface morphology. We observe that
the dimensionless velocity profiles are different for the MRT
and the SRT, both in spatial distribution and in magnitude.
This difference in velocity greatly pertains to the vapor phase,
and the velocity distributions are differently correlated to the
curvature: whereas, for the SRT, the velocity localizes in
the region of maximum curvature, for MRT, it localizes in
the regions of maximum curvature changes. Moreover, when
curvature increases, the velocity contributions increase. A

quantitative assessment of how much the observed velocity
distribution is spurious would require the solution of the full
hydrodynamic equations in the presence of a vapor phase [6].
Nevertheless, the difference between the SRT and the MRT
emerging from Fig. 6 suggests that both collision operators
lead to spurious contributions that develop “dynamically” and
whose spatial localization is different for the same curvature
profiles. Specifically, if the spurious currents on the MRT
are more localized at the pinch-off region, this can cause
the breakup time to be different and the satellite droplets
to be smaller after breakup. One could then reconsider the
comments on the hydrodynamic recovery via the Chapman-
Enskog theory: Although the SRT has extra terms with respect
to the MRT in its Chapman-Enskog expansion, the mismatch
may be originated by the fact that the impact of spurious
currents is more effective in the present MRT implementation.
In other words, the bulk equations are more correct in the
MRT than in the SRT, but the interface boundary conditions
are dynamically more spurious in the MRT than in the SRT.
One could think of readsorbing this effect of spurious current
in a modified stress tensor so that the dynamics of the MRT
would be that of a system with a slightly different Ohne-
sorge number. At the largest resolution analyzed, however,
this would not be possible: We do not observe any steady
satellite droplets, whereas theory predicts them to exist [64].
Summarizing, for the specific test case analyzed, the pinching
of the interface generates momentum, and it is significantly
influenced by the distribution of spurious currents. As we
may observe from Fig. 6, the MRT with this specific set
of parameters shows a stronger concentration of velocities
in the pinching region, whereas the SRT presents weaker
interference. We think this is the reason why the breakup
dynamics captured from the SRT better matches the expected
results, despite presenting some possible lacks of consistency
while reconstructing the NS equation.

V. CONCLUSIONS

We have investigated the dynamics of a liquid ligament
perturbed via a Plateau-Rayleigh instability by means of
the LBM. More specifically, we have considered two LBM
collision operators, the SRT and the MRT, implemented in a
multiphase numerical scheme based on the Shan-Chen EoS
[34,36,57]. We have seen that numerical simulations display
a neat asymptotic behavior in the limit where the interface
thickness is sensibly smaller than the characteristic radius of
the liquid ligament. Such behavior has been compared with
the predictions of sharp-interface hydrodynamics [5,78] for
both LBM environments. Adopting the same EoS, the two
collision operators displayed a different behavior with the
SRT granting results more adherent to the theoretical and
experimental evidence from the literature, compared to the
MRT. In particular, even if the breakup dynamics presents
a very similar trend between the two collision operators in
the early stages of the instability, the SRT provides a pinch-
ing evolution closer to the theoretical predictions with the
eventual formation of a long-living secondary droplet after the
ligament breakup, which we have not detected in the MRT
environment. This difference is traced back to the dynamic
distribution of spurious currents rising in the pinching region.
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For the specific realizations of EoS adopted, the MRT—
despite a higher numerical stability granted in the set of
hydrodynamical parameters characterizing the simulation—
displays a spurious currents pattern localized towards the flex
of the ligament silhouette in the pinching region; the SRT,
on the other hand, is characterized by a different distribution
of the spurious velocities, which appear to be localized away
from the pinching region, hence the dynamics of the ligament
breakup is less affected by such a spurious pattern and pro-
vides results closer to the sharp-interface hydrodynamics.

On a more general perspective, some comments are in or-
der. Our results show that, whenever spurious currents effects
are weak in the pinching region, the LBM results can quan-
titatively match the ones obtained through the sharp-interface
hydrodynamics from the initial perturbation destabilization up
to the breakup point. The fact that our simulations with the
SRT perform better than the MRT may well depend on the
specificity of the parameters chosen here, causing dynamical
spurious currents to distribute less in the pinching region.
Although the issue of spurious currents has been pretty well
detailed for “static” problems [27,32,60,79–81], very little is
known about dynamical problems. Hence, we do not want to
promote a collisional operator rather than the other; instead,
we want to point out that different dynamical distributions of
spurious currents may produce quantitatively different results.

Of course, this is just a macroscopic property which obviously
hides many nontrivial dependencies on the parameters and
technical details of the models used. This also opens up
future perspectives in determining the impact of the different
parameters or choices at hand (e.g., EoS, thermodynamic
consistency, surface tension coupling with EoS, collisional
scheme, interface width, Knudsen effects, etc.) to obtain a
“unifying view” on what are the causes behind the emergence
of dynamical spurious currents.
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