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The process of decomposing a complex system into simpler subsystems has been of interest to com-
puter scientists over many decades, for instance, for the field of distributed computing. In this
paper, motivated by the desire to distribute the process of active automata learning onto multiple
subsystems, we study the equivalence between a system and the total behaviour of its decomposi-
tion which comprises subsystems with communication between them. We show synchronously- and
asynchronously-communicating decompositions that maintain branching bisimilarity, and we prove
that there is no decomposition operator that maintains divergence-preserving branching bisimilarity
over all LTSs.

1 Introduction

The process of decomposing a complex system into simpler subsystems is the cornerstone of behavioural
analysis regardless of where it is applied, to the atom or to the human psyche. Studying the relationship
between a complex system and the total behaviour of its decomposition is the subject matter of this paper.
However, instead of atoms or human brains, in the field of formal methods, we simply dissect automata.
This paper studies how the behaviour of a Labelled Transition System (LTS) can be distributed into a
parallel (de)composition of communicating subsystems while maintaining behavioural equivalence.

Motivation This work was motivated by a case study in the industry [4] based on which we pursued
the possibility of deducing the internal components of a system based on the model inferred by the active
model learning technique [1]. If it were possible at all, then the learned system must be equivalent to the
parallel decomposition deduced.

Our goal is to examine the possibility of such deduction and we do that by devising a decomposi-
tioning scheme with certain assumptions, then examine its equivalence with the original system.

Related Work Previous work done on the topic of decomposition focuses on uniqueness properties
and on producing simpler components. For example the primary decomposition theorem by Krohn
and Rhodes states that any automaton can be decomposed into a cascaded product of simpler automata
such that the automaton is homomorphic to its decomposition [10]. And in 1998, Milner and Moller
introduced a semantics of parallel decompositions comprising non-communicating subsystems [12], and
they proved that any finite system of behaviour can be decomposed into a unique set of prime parallel
non-communicating subsystems. While Milner and Moller’s theorem was in strong bisimulation set in
the Calculus of Communicating Systems (CCS), Luttik [11] later introduced a more general framework

http://dx.doi.org/10.4204/EPTCS.300.4
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of commutative monoids that can be used to establish unique decomposition in weak and branching
bisimulation semantics.

In contrast to those works, we consider decomposing a system based on partitioning its alphabet into
disjoint sets and we require that the subsystems communicate. In that sense, this work is more similar to
Brinksma et al. [3] and Hultström [9] who made a decomposition based on a given partition of actions.
Another similarity is the need for synchronisation between subsystems as defined in Section 4.1.

Contribution We define two decompositions of parallel communicating subsystems, one synchronous
and the other asynchronous, and we prove that both decompositions maintain branching bisimilarity [6]
with the source automaton. We also prove that there is no way of decomposing an automaton (under
certain conditions) such that it is divergent-preserving branching-bisimilar [5] to the resulting decom-
position. We consider branching bisimilarity, but the results of this paper easily carry over to other
equivalences such as weak bisimilarity.

Outline The outline of this paper is as follows. Section 2 introduces the preliminaries. Section 3
defines and discussed the general decomposition operator on which we base our arguments. Section 4
defines two decompositions of communicating subsystems, one for synchronous communication and
the other for asynchronous communication, and proves that each maintains a branching bisimulation
relation with the source automaton. Section 5 contains the proof that there is no way of decomposing
an automaton, through our general decomposition operator, such that it maintains divergence preserving
branching bisimulation with its decomposition. Finally, Section 6 discusses the results and interprets
them in light of our initial motivation.

Acknowledgement We wish to thank Rick Erkens, Bas Luttik, Thomas Neele, Joshua Moerman, Pieter
Cuijpers, Bharat Garhewal, Hans van Wezep, Arjan Mooij and the referees of the EXPRESS/SOS 2019
workshop for their thorough feedback, for sharing their knowledge, and for their motivation and support.

2 Preliminaries

In this section, we present the preliminaries of labelled transition systems, the synchronous product and
bisimulation relations, aided by [7]. We start with the definition of a labelled transition system (LTS).

Definition 2.1 (LTS). We define our LTS as a four-tuple (S,Σ,→,s0) where:

• S is a non-empty finite set of states.

• Σ is the alphabet, also referred to as the action set.

• →⊆ S×Σ×S is a transition relation.

• s0 is the initial state.

We use the notation x a−→ y to express a transition with action a from state x to state y. This and
variations of it are formally defined as follows.

Definition 2.2 (Transition Relation). Let (S,Σ,→,s0) be an LTS with s,s′ ∈ S and a ∈ Σ∪{τ}, where τ

is the internal/unobservable action. We use the following notations:
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s a−→ s′ iff 〈s,a,s′〉 ∈→.
s a−→ iff there is an s′ such that s a−→ s′.
s 6 a−→ iff there is no s′ such that s a−→ s′.
s a−→

∗
sn iff there are s1,s2, . . . ,sn ∈ S such that s a−→ s1

a−→ s2
a−→ ·· · a−→ sn.

s a−→
ω

iff there are s1,s2, . . . ∈ S such that s a−→ s1 and for all i ∈ N, si
a−→ si+1.

Next, we define complementary actions, i.e., actions on which communicating systems synchronise.
Then we define the synchronous product of two automata, and show what role complementary actions
play in computing it.
Definition 2.3 (Co-actions). For an arbitrary action a that is not τ , the action a (read as a bar) is called
its co-action. Also, (a) = a. We say that actions a and a are complementary to each other and we call
them a pair of complementary actions.

We lift this operator to sets of actions such that Σ = {a | a ∈ Σ}.
Definition 2.4 (Synchronous Product). The synchronous product of two LTSs
(S1,Σ1,→1,q0)× (S2,Σ2,→2,r0) is the tuple (S1×S2,Σx,→x, (q0,r0))
where Σx = (Σ1∪Σ2)\{a,a | a ∈ Σ1∧a ∈ Σ2}.
The transition relation→x ⊆ (S1×S2)×Σx× (S1×S2) is defined as follows:

(s, t) a−→ (s′, t) iff a ∈ Σ1∧a 6∈ Σ2∧ s a−→1 s′,
(s, t) a−→ (s, t ′) iff a ∈ Σ2∧a 6∈ Σ1∧ t a−→2 t ′, and

(s, t) τ−→ (s′, t ′) iff a ∈ Σ1∧a ∈ Σ2∧ s a−→1 s′∧ t a−→2 t ′,

where τ is the unobservable action.
Next, we define two notions of behavioural equivalence.

Definition 2.5 (Branching bisimulation). Given an LTS (S,Σ,→,s0) and a relation R ⊆ S×S. We call
R a branching bisimulation relation iff for all states s, t ∈ S such that 〈s, t〉 ∈R, it holds that:

1. if s a−→ s′, then:
• a = τ and 〈s′, t〉 ∈R; or
• t τ−→

∗
t ′ a−→ t ′′, 〈s, t ′〉 ∈R and 〈s′, t ′′〉 ∈R.

2. Symmetrically, if t a−→ t ′, then:
• a = τ and 〈s, t ′〉 ∈R; or
• s τ−→

∗
s′ a−→ s′′, 〈s′, t〉 ∈R and 〈s′′, t ′〉 ∈R.

Two states s and t are branching bisimilar, denoted s -b t iff there is a branching bisimulation relation
R such that 〈s, t〉 ∈R. Two LTSs P and Q are branching bisimilar, denoted P -b Q, iff their initial states
are.

A state s with s τ−→
ω

is called divergent. Hence, a state with a τ loop is also called divergent. Branch-
ing bisimulation does not preserve divergence, i.e., a divergent state can be branching bisimilar to a
non-divergent one. Therefore, a stronger equivalence relation, namely divergence-preserving branching
bisimulation, is defined below.
Definition 2.6 (Divergence-preserving branching bisimulation). Given an LTS (S,Σ,→,s0) and a rela-
tion R ⊆ S×S. We call R a divergence-preserving branching bisimulation relation iff it is a branching
bisimulation relation and for all states s, t ∈ S with 〈s, t〉 ∈R, there is an infinite sequence s τ−→ s1

τ−→ s2
τ−→

with 〈si, t〉 ∈R for all i > 0 iff there is an infinite sequence t τ−→ t1
τ−→ t2

τ−→ and 〈s, ti〉 ∈R for all i > 0.
Two states s and t are divergence-preserving branching bisimilar, denoted s -db t iff there is a

divergence-preserving branching bisimulation relation R such that 〈s, t〉 ∈ R. Two LTSs P and Q are
divergence-preserving branching bisimilar, denoted P -db Q, iff their initial states are.
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3 The Decomposition Operation

In this section, we establish a decompositioning scheme that is based on action partitioning in order to
refer to it as the general decomposition operation on which our theorems apply. Our general decomposi-
tion operation is a function transforming a single LTS, given two disjoint actions sets, into two LTSs. It
is formally defined as follows.

Definition 3.1 (General Decomposition Operation). Given an LTS M with alphabet Σ and given two
alphabets Σ1,Σ2 such that Σ = Σ1∪Σ2 and Σ1 ∩ Σ2 = /0, we call G a general decomposition operator iff
G(M,Σ1,Σ2) = (M1,M2) such that M1 has alphabet ΣM1 with Σ1 ⊆ ΣM1 and ΣM1 ∩Σ2 = /0, and likewise,
M2 has alphabet ΣM2 with Σ2 ⊆ ΣM2 and ΣM2 ∩Σ1 = /0.

We refer to a method of decomposing automata as a decomposition operation whereas the result of
such transformation is called a decomposition. A decomposition comprises two or more automata. This
transformation is depicted in Figure 2. Throughout the paper, we compare LTSs to the synchronous
product of the decomposition, and if a a certain bisimulation relation holds between these two, then we
say that the operation maintains that relation.

The idea behind this transformation is, given a partition of actions of a system, to generate two
subsystems, each using exclusively one of the two parts.

Recursive decomposition. Note that Definition 3.1 can easily be applied recursively allowing to de-
compose behaviour into multiple components. As the alphabets over which an automaton can be decom-
posed can be empty, the number of components over which behaviour can be split can even be arbitrarily
large.

4 Branching Bisimilar Decompositions

In this section, we define two decomposition operations that are designed to maintain branching bisim-
ilarity, and we actually prove that they do. The first one (decomps) decomposes into synchronously
communicating subsystems while the second (decompa) decomposes into asynchronously communicat-
ing ones. In both of these operations, we build two automata that pass control between one another using
c messages. Only if an automaton seizes control can it perform one of its actions, otherwise it has to wait
for the other to hand control over. Formal definitions and more detail follow.

4.1 Decomposing into Synchronous Subsystems

We define the decomposition of synchronous subsystems, summarised in Figure 1 in two patterns; the top
dictates the decomposition of every state in the source LTS while the bottom dictates the decomposition
of every transition. An omitted third pattern is symmetric to the second such that the transition’s label
simply belongs to the second subsystem rather than the first.

Definition 4.1 (Synchronous Decomposition Operation). Given an LTS M = (S,Σ,→,q) and two alpha-
bets Σ1,Σ2 such that Σ = Σ1∪Σ2 and Σ1∩Σ2 = /0, then we can decompose M over Σ1 and Σ2 by applying
the following operation:

decomps(M,Σ1,Σ2) = (M1,M2) where:

1. M1 = (SC ∪ST1 ,Σ1∪ΣS1 ,→1,(q,1))
M2 = (SC ∪ST2 ,Σ2∪ΣS2 ,→2,(q,1)).
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r decomps−−−−→

sr decomps−−−−→a∈Σ1

a

r1 r2

r1 ta,s s1

cr1,r2

cr2,r1

a ts

|

|

r1 r2

r1 s1

cr1,r2

cr2,r1

ts

Figure 1: The two patterns that delineate the operator decomps (Definition 4.1).

2. For every state s in S, we introduce two states (s,1),(s,2) ∈ SC:

SC1 = {(s,1) | s ∈ S} SC2 = {(s,2) | s ∈ S} SC = SC1 ∪SC2 (1)

Notation. Tuple-states of the form (s, i) such as (s,1) and (s,2) are shortened to si. Therefore,
it is to be held throughout the paper that si is derived from s rather than it being a completely
unrelated symbol to s.

3. The set of c-actions is defined as follows:

ΣC = {cs1,s2 ,cs2,s1 | s1 ∈ SC1 ,s2 ∈ SC2} (2)

4. The sets of t actions and t states are defined as follows:

ΣT1 = {ts1 | s1 ∈ SC} ΣT2 = {ts2 | s2 ∈ SC}
ST1 = {ta,s1 | a ∈ Σ1,s1 ∈ SC1} ST2 = {ta,s2 | a ∈ Σ2,s2 ∈ SC2}

(3)

5. The complete sets of actions of M1 and M2 are respectively defined as:

ΣS1 = ΣT1 ∪ΣC ∪ΣT2 ΣS2 = ΣT2 ∪ΣC ∪ΣT1 (4)

6. The transition relations→i ⊆ (SC ∪STi)× (Σi∪ΣSi)× (SC ∪STi) are defined as follows. For i, j ∈
{1,2} and i 6= j,→i is the minimal relation satisfying the following:

(a) For all s ∈ S and for all csi,s j ∈ ΣC:

si
csi ,s j−−→i s j si

csi ,s j−−→ j s j (5)

(b) For all s,s′ ∈ S, and all a ∈ Σi, if s a−→ s′, then:

si
a−→i ta,s′i

ts′i−→i s′i

si

ts′i−→ j s′i
(6)
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Two classes of actions are introduced, c-actions and t-actions. The c-actions come in pairs, and they
resemble passing a control token between M1 and M2. For instance, looking at Figure 2, when, at some
state r ∈ S for which a pair of states r1,r2 ∈ SC exists in both M1 and M2, and control is to be passed
from M1 to M2, then a pair of complementary c actions synchronises, namely, actions cr1,r2 and cr1,r2 ,
to produce a synchronous transition in both machines from r1 to r2. Likewise, actions cr2,r1 and cr2,r1

synchronise to pass control in the opposite direction from M2 to M1.
The t-actions are introduced to synchronise transitions occurring in one machine with the other. In

addition, they require the introduction of t-states. Observe Figure 2 where an a1 transition occurs in M1.
The aim is the transition r1

a1−→ s1, but in order to synchronise this with M2, we introduce a middle state

ta1,s1 ∈ ST1 from which the only possible transition is ta1,s1

ts1−→ s1 which synchronises with the transition

r1
ts1−→ s1 in M2.
The operation (decomps) can be summarised by two patterns shown in Figure 1; the top pattern

applies to each state and the bottom one applies to each transition.

Is the Decomposition a Simplification? The decomposition is obviously larger than the original sys-
tem. That is due to the nature of an alphabet-partitioning-based decomposition where subsystems must
hand control over between one another. Thus, every subsystem must have, for each state in the original,
multiple ones expressing where control lies. In special cases, a smaller component may suffice; for ex-
ample, in Figure 2, because state r enables no b actions, a state r2 is not needed and all transitions going
to r2 can instead go to r1. However, we believe that our definition the way it is is more understandable
because of its generality and symmetry. The element of simplification lies not in reducing the size of a
system but rather in partitioning its alphabet.

Computing the Synchronous Product. For a decomposition (M1,M2) by Definition 4.1, the syn-
chronous product Mx = M1×M2 is the LTS (Sx,Σ1∪Σ2,→x,(q1,q1)), where:

Sx = S1×S2 = (SC ∪ST1)× (SC ∪ST2)

= (SC×SC)∪ (ST1×ST2)

∪ (ST1×SC)∪ (SC×ST2)

(7)

with ΣS1 ,ΣS2 ,ST1 ,ST2 being sets introduced by decomps. The transition relation→x is defined as follows
for i, j ∈ {1,2} and i 6= j:

1. if s a−→ s′ and a ∈ Σi then by (6) there is a state ta,s′i ∈ STi and a pair of complementary actions
ts′i , ts′i ∈ ΣSi such that:

(si,si)
a−→x sa

τ−→x (s′i,s
′
i), (8)

where sa =

{
(ta,s′i ,si) if i = 1,
(si, ta,s′i) if i = 2.

2. For all s ∈ S, there exist csi,s j ,cs j,si ∈ ΣC such that, by (5), si
csi ,s j−−→i s j and si

csi ,s j−−→ j s j, and thus:

(si,si)
τ−→x (s j,s j) (9)
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decomps−−−−→
{a1,a2},{b1}

r

s

a1a2 b1 ta2,r1 ta1,s1

r1 r2

s1 s2

a1

cr1,r2

cr2,r1

ts1

a2 cs1,s2

tr1

tr2

cs2,s1

|

r1 r2

s1 s2

tb1,r2ts1

cr1,r2

cr2,r1

tr2

tr1

cs1,s2

b1

cs2,s1

Figure 2: Example of synchronous decomposition operation of Definition 4.1.

4.2 Proof that the synchronous decomposition operation maintains branching bisimula-
tion

In this subsection, we show an application of decomps (Definition 4.1) to a sample LTS, we demon-
strate that decomps maintains branching bisimilarity, and then we prove that branching bisimilarity is
maintained through any and all applications of decomps.

Figure 2 shows the LTS at the left side and its decomposition at the right side. The two patterns
shown in Figure 1 can be applied directly to this LTS. The top pattern applies twice, once per state, and
the bottom pattern applies three times, once per transition.

Next, we compute the synchronous product and form one LTS shown at the right of Figure 3. The
nodes are divided into two equivalence classes, top and bottom. The states in the top class are branching
bisimilar to state r whereas the states in the bottom one are branching bisimilar to state s.

The following proves the branching bisimilarity and thus proves that there is a way of decomposing
an LTS such that branching bisimilarity is maintained.

Theorem 4.2. Given an LTS M = (S,Σ,→,s0) and two alphabets Σ1,Σ2 such that Σ = Σ1 ∪ Σ2 and
Σ1 ∩Σ2 = /0, and given an LTS Mx = M1×M2 where (M1,M2) = decomps(M) by Definition 4.1, then
M -b Mx.

Proof. Let M1 = (SC ∪ST1 ,Σ1∪ΣS1 ,→1,q1) and M2 = (SC ∪ST2 ,Σ2∪ΣS2 ,→2,q2).
Define a relation R⊆ S×((SC∪ST1)×(SC∪ST2)) with R = {〈s,(sn,sn)〉, 〈r′,(ta,r′n ,rn)〉, 〈r′,(rn, ta,r′n)〉

| s,r,r′ ∈ S,n ∈ {1,2}, a ∈ Σ, r a−→ r′}. We prove that R is a branching bisimulation relation through the
following cases:

1. Consider a pair 〈s,sx〉= 〈s,(sn,sn)〉 where n ∈ {1,2}.
(a) Assume s a−→ s′. Then we have two cases:

i. a ∈ Σ1. Then, by (8), sx
a−→x (ta,s′n ,sn). We see that 〈s′,(ta,s′n ,sn)〉 ∈R.

ii. a ∈ Σ2. Then, by (8), sx
a−→x (sn, ta,s′n). We see that 〈s′,(sn, ta,s′n)〉 ∈R.

(b) Assume sx
a−→x s′x. Then we have the following three cases:

i. a ∈ Σ1∧a 6∈ Σ2, then this transition is only possible, by definition, through the transition

s a−→ s′ for some s′ such that s′x
(8)
= (ta,s′ ,s1). We see that 〈s′,s′x〉 ∈R.
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-b

r

s

a1a2 b1 (ta2,r1 ,s1) (ta1,s1 ,r1)

(r1,r1) (r2,r2)

(s1,s1) (s2,s2)

(s2, tb1,r2)

a1

τ

τ

τ

a2
τ

τ

b1

τ

τ

Figure 3: Showing branching bisimulation on the example of Figure 2.

ii. a ∈ Σ2∧a 6∈ Σ1. This is a symmetric case where s a−→ s′ and s′x
(8)
= (s2, ta,s′). We see that

〈s′,s′x〉 ∈R.
iii. a ∈ Σ1 ∧ a ∈ Σ2, then the only transition possible is the τ transition of (9). Then s′x =

(sm,sm) where m ∈ {1,2} and m 6= n. We see that 〈s,s′x〉 ∈R.

2. Consider a pair 〈r,rx〉= 〈s′,(ta,s′n ,sn)〉 where n ∈ {1,2}, a ∈ Σ and s a−→ s′.

(a) Assume r a−→ r′. Then we show that rx
τ−→x r′x and r′x

a−→x r′′x and 〈r,r′x〉 ∈R and 〈r′,r′′x 〉 ∈R.
We do this for a ∈ Σ1. The case for a ∈ Σ2 is symmetric.

i. r′x
(8)
= (s′2,s

′
2). We see that 〈r,r′x〉 ∈R.

ii. Since r = s′ and r a−→ r′, then by (8), there exists a state r′′x such that r′x
a−→x r′′x , and

r′′x = (ta,s′′2 ,s
′
2), where s′′ = r′. We see that 〈r′,r′′x 〉 ∈R.

(b) Assume rx
a−→x r′x. By the definition of →x, it is only possible that a is a τ action and that

n = 1. Thus, r′x
(8)
= (s′2,s

′
2). We see that 〈r′,r′′x 〉 ∈R.

3. Consider a pair 〈r,rx〉= 〈s′,(sn, ta,s′n)〉 where n ∈ {1,2}, a ∈ Σ and s a−→ s′. This case is symmetric
to Case 2.

Corollary 4.3. It follows from Theorem 4.2 that there is a universal way of decomposing an LTS M
using a general synchronous decomposition operator (Definition 3.1) such that M is branching-bisimilar
to the synchronous product of its decomposition.

4.3 Decomposing into Asynchronous Subsystems

We consider asynchronous communication between subsystems simply because many practical systems
use asynchronous communication and the aim is to extend our proof towards that. So, we define a new
decomposition operation (decompa) such that the communication between subsystems is asynchronous.
We assign each subsystem a queue that stores received messages until they are consumed. An action of
sending such a message does synchronise, however, with the queue of the opposite side receiving it. The
operation decompa is summarised in Figure 4.
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r decompa−−−−−→

sr decompa−−−−−→a∈Σ1

a

Hr1,εI Hr2,εI

Hr2, tr1I

Hr1,Q1I

Hta,s1 ,Q1I

Hs1,Q1I

cr1,2

cr2,1τ

a ts1

|

|

Hr1,εI Hr2,εI

Hr1, tr2I

Hr1,Q2I

Hr, ts1 ·Q2I Hr,Q2 · ts1I

Hs1,Q2I

cr1,2
τ

cr2,1

ts1 τ

Figure 4: The two patterns that delineate the decompa operator (Definition 4.5).

Definition 4.4 (LTS with Queue). A queue is an ordered-list of actions. An LTS with a queue is a
transition system of the shape (S×Q,Σ,→,s0). A state in S×Q holds the contents of the queue Q and
is written as Hs,QI.

Elements in a queue are concatenated using the · operator. Appending an element m to the back of a
queue Q produces the queue m ·Q, while Q ·m represents the queue with m in the front. The symbol ε

represents the empty queue.

Definition 4.5 (Decomposing into asynchronous subsystems). Given an LTS M = (S,Σ,→,r0) and two
alphabets Σ1,Σ2 such that Σ = Σ1 ∪Σ2 and Σ1 ∩Σ2 = /0, then we can decompose M over Σ1 and Σ2 by
applying the following operation:

decompa(M,Σ1,Σ2) = (M1,M2) where, for i, j ∈ {1,2} and i 6= j, Mi is an LTS with a queue (Defi-
nition 4.4) defined as follows:

1. Mi = ((SC ∪STi ,Qi),Σi∪ΣSi ,→i,r1)

2. For every state in S, we introduce a pair of states s1,s2 ∈ SC, a pair of c-actions, and a pair of
t-actions:

SCi = {si | s ∈ S} SC = SC1 ∪SC2

ΣCi, j = {csi, j | s ∈ S} ΣTi = {tsi | s ∈ S}
(10)

3. Sets of t-states are defined as follows:

STi = {ta,si | a ∈ Σi,si ∈ SCi} (11)

4. Sets of synchronous actions are defined as follows:

ΣSi = ΣTi ∪ΣTj ∪ΣCi, j ∪ΣC j,i (12)

5. The transition relation→i ⊆ (SC ∪ STi)×Qi× (Σi ∪ΣSi)× (SC ∪ STi)×Qi is the minimal relation
satisfying the following:

(a) For all s ∈ S:

Hsi,QiI
csi, j−−→i Hs j,QiI Hsi,QiI

csi, j−−→ j Hsi, ts j ·QiI (13)
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(b) For all s,s′ ∈ S, and all a ∈ Σi, if s a−→ s′, then:

Hsi,QiI
a−→i Hta,s′i ,QiI

ts′i−→i Hs′i,QiI

Hsi,QiI
ts′i−→ j Hsi, ts′i ·QiI

(14)

(c) Consuming an element from the front of a queue is an internal transition of the form:

Hs,Q · ts′I
τ−→ Hs′,QI

(15)

We see in (13) that the two automata synchronise on action csi, j . The effect is a message sent from
Mi and received in the queue of M j. The same occurs in (14). Moreover, this makes sending messages
only possible when both machines are in sync, i.e., on the same state si. This model is inspired by
asynchronous communication in practice and we found it necessary that a sent message is received
before any other actions are performed by either side.

The question may arise “why do we still see synchronisation? Is this still considered asynchronous
communication?”; and the answer is that it is asynchronous in the sense that the sending party does not
know whether and when the receiving party is willing to receive the communication. This is different
from synchronous communication where the sender knows that the receiver is willing to participate.

For this construction, a queue of size 1 is enough as it never contains more than one message. If
the size of the queue was more than 1, then the transition in (14) can apply recursively until the queue
is full. However, any transition beyond the first one does not translate into a transition in the product
because action csi, j needs to synchronise with its co-action. In other words, in the product automaton, the
queue cannot contain more than one message. Therefore, the upperbound of size 1 of the queue is not a
requirement, but rather follows from the construction.

4.4 Proof that the Asynchronous Decomposition Operation Maintains Branching Bisim-
ulation

In this subsection, similar to Section 4.2, we prove that the asynchronous decomposition operation
(decompa) also maintains branching bisimilarity. Figure 5 shows the result of applying decompa to
the same example behaviour as in Figure 2. In Figure 6, we compute the synchronous product of the
decomposition of Figure 5 and then divide the nodes of the product into two equivalence classes, top and
bottom. The states in the top class are branching bisimilar to state r whereas the states in the bottom on
are branching bisimilar to state s.

Next, we prove that any LTS decomposed using Definition 4.5 maintains branching bisimulation with
its decomposition, thus by proving that there is at least one universal method of decomposing LTSs into
asynchronous ones while maintaining branching bisimulation.

Theorem 4.6. Given an LTS M = (S,Σ,→,s0) and two alphabets Σ1,Σ2 such that Σ = Σ1 ∪ Σ2 and
Σ1 ∩Σ2 = /0, and given an LTS Mx = M1×M2 where (M1,M2) = decompa(M) by Definition 4.5, then
M -b Mx.

Proof. Let M1 = ((SC ∪ST1 ,Q1),Σ1∪ΣS1 ,→1,r1) and M2 = ((SC ∪ST2 ,Q2),Σ2∪ΣS2 ,→2,r1).
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decompa−−−−−→
{a1,a2},{b1}

r

s

a1a2 b1 Hta2,r1 ,εI Hta1,s1 ,εI Hs2, tr2I

Hr1,εI

Hs1,εI Hs2,εI

Hr2,εI
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a1

cr1,2
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ts1
a2

cs1,2

tr1

tr2

cs2,1τ

τ
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τ
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cs2,1

Figure 5: Example of asynchronous decomposition operation (Definition 4.5).

Define a relation R ⊆ S× ((SC ∪ST1 ,Q1)× (SC ∪ST2 ,Q2)) with R =

{〈s,(Hsi,εI,Hsi,εI)〉,
〈s,(Hsi, ts jI,Hs j,εI)〉,〈s,(Hs j,εI,Hsi, ts jI)〉,
〈s,(ta,si ,Hri,εI)〉,〈s,(Hri,εI, ta,si)〉,
〈s,(Hsi,εI,Hri, tsiI)〉,〈s,(Hri, tsiI,Hsi,εI)〉,
〈u,(tb,s′i ,Hri, tsiI)〉,〈u,(Hri, tsiI, tb,s′i)〉 |
r,s,u ∈ S and i, j ∈ {1,2} where i 6= j and a,b ∈ Σi and r a−→ s b−→ u}.

We prove that R is a branching bisimulation relation through the following cases:

1. Consider a pair 〈s,sx〉= 〈s,(Hsi,εI,Hsi,εI)〉 where i ∈ {1,2}.

(a) Assume s a−→ s′. Then if a ∈ Σ1, then sx
a−→1 s′x where s′x

(14)
= (ta,s′i ,Hsi,εI) with i = 1. Else if

a ∈ Σ2 then sx
a−→2 s′′x where s′′x

(14)
= (Hsi,εI, ta,s′i) with i = 2. We see that both pairs 〈s,s′x〉 and

〈s,s′′x 〉 are in R.
(b) Assume sx

a−→x s′x. Then we have the following three cases:
i. a ∈ Σ1∧a 6∈ Σ2, then this transition is only possible, by definition, through the transition

s a−→ s′ for some s′ such that s′x
(14)
= (ta,s′ ,s1). We see that the pair 〈s′,s′x〉 ∈ R and is

covered in case 4.
ii. a ∈ Σ2∧a 6∈ Σ1. This is a symmetric case where s a−→ s′ and s′x

(14)
= (s2, ta,s′). We see that

the pair 〈s′,s′x〉 ∈R and is covered in case 5.
iii. a ∈ Σ1∧a ∈ Σ2, then the only transition possible is the τ transition of (13). Then either

s′x = (Hs j,εI,Hsi, ts jI) or s′x = (Hsi, ts jI,Hs j,εI) where j ∈ {1,2} and j 6= i. We see that in
both possible values of s′x, the pair 〈s,s′x〉 ∈R and is covered in cases 2 and 3.

2. Consider a pair 〈s,sx〉= 〈s,(Hsi, ts jI,Hs j,εI)〉.

(a) Assume s a−→ s′. Then sx
τ−→x (Hs j,εI,Hs j,εI), and we covered the pair 〈s,(Hs j,εI,Hs j,εI)〉 in

case 1.
(b) Assume sx

a−→x s′x. The only possible transition in→x is if a is a τ action consuming the queue
message ts j then s′x = (Hs j,εI,Hs j,εI) and we covered the pair 〈s,(Hs j,εI,Hs j,εI)〉 in case 1.
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3. Consider a pair 〈s,sx〉= 〈s,(Hs j,εI,Hsi, ts jI)〉. Symmetric to case 2.

4. Consider a pair 〈s,sx〉= 〈s,(ta,si ,Hri,εI)〉 such that r a−→ s.

(a) Assume s b−→ s′. Then sx
τ−→x (Hsi,εI,Hri, tsiI).

(b) Assume sx
b−→x s′x. The only possible transition in →x is if b is a τ action resulting from

the synchronisation of the two transitions ta,si

tsi−→i Hsi,εI and Hri,εI
tsi−→ j Hri, tsiI. Then, in

the product, sx
τ−→x (Hsi,εI,Hri, tsiI); and the pair 〈s,(Hsi,εI,Hri, tsiI)〉 ∈R and is covered in

case 6.

5. Consider a pair 〈s,sx〉= 〈s,(Hri,εI, ta,si)〉. Symmetric to case Case 4.

6. Consider a pair 〈s,sx〉= 〈s,(Hsi,εI,Hri, tsiI)〉 such that r a−→ s.

(a) Assume s b−→ s′. Then because of the queue-consuming transition Hri, tsiI
τ−→ j Hsi,εI, then

sx
τ−→x (Hsi,εI,Hsi,εI).

The pair 〈s,(Hsi,εI,Hsi,εI)〉 is covered in case 1.

(b) Assume sx
b−→x s′x, then there are two possible values for b:

i. Action b is a queue-consuming τ , then sx
τ−→x (Hsi,εI,Hsi,εI); and the pair

〈s,(Hsi,εI,Hsi,εI)〉 is covered in case 1.

ii. b ∈ Σi, then sx
b−→x (tb,s′i ,Hri, tsiI) such that s b−→ s′; and the pair 〈s′,(tb,s′i ,Hri, tsiI)〉 ∈R.

7. Consider a pair 〈s,sx〉= 〈s,Hri, tsiI,Hsi,εI)〉. Symmetric to case 6.

8. Consider a pair 〈s,sx〉= 〈s,(ta,si ,HHpi,εI, triI)〉 such that p b−→ r a−→ s. Then sx
τ−→ (ta,si ,Hri,εI); and

the pair 〈s,(ta,si ,Hri,εI)〉 is covered in case 4.

9. Consider a pair 〈s,sx〉= 〈s,(Hpi, triI, ta,si)〉 such that p b−→ r a−→ s. This is symmetric to case 8.

Corollary 4.7. It follows from Theorem 4.6 that there is a universal way of decomposing an LTS M using
a general asynchronous decomposition operator (Definition 3.1) such that M is branching-bisimilar to the
synchronous product of its decomposition.

5 Proof that no decomposition operation maintains -db

In this section, we prove that there is no way of decomposing an LTS such that it is divergence-preserving
branching-bisimilar to the synchronous product of its decomposition.

We define confluence based on [8].

Definition 5.1 (Confluence). An LTS (S,Σ1 ∪Σ2,→,s0) is called confluent over Σ1 and Σ2 iff for all

states s,sa,sb ∈ S and for all a ∈ Σ1 and b ∈ Σ2, if s a−→ sa and s b−→ sb, then there is a state sc such that
sb

a−→ sc and sa
b−→ sc.

Lemma 5.2. Any LTS M that is the synchronous product (Definition 2.4) of two LTSs M1 and M2 whose
action sets are Σ1 and Σ2 respectively, is confluent over two sets Σ1 \Σ2 and Σ2 \Σ1.



66 Parallel Communicating Decompositions

-b

r

s

a1a2 b1 (ta2,r1 ,Hs1,εI) (ta1,s1 ,Hr1,εI)

(Hr1,εI,Hr1,εI) (Hr2,εI,Hr2,εI)

(Hr2, tr1I,Hr1,εI)

(Hr2,εI,Hr1, tr2I)

(Hs1,εI,Hs1,εI) (Hs2,εI,Hs2,εI)

(Hs2, ts1I,Hs1,εI)

(Hs2,εI,Hs1, ts2I)

(Hs2,εI, tb1,r2)

(Hs2, tr2I,Hr2,εI)

(Hs1,εI,Hr1, ts1I)

Hr1,εI,Hs1, tr1I a1

τ τ

ττ

τ

τa2

τ τ

τ

τ

b1

ττ

τ

τ

Figure 6: Showing branching bisimulation following Figure 5.

Proof. Consider the synchronous product (S1×S2,Σx,→x,(q0,r0)) from Definition 2.4 and some actions
a ∈ Σ1 \Σ2 and b ∈ Σ2 \Σ1. Then a 6= b. Consider some states s,s′ ∈ S1, t, t ′ ∈ S2, and sa ∈ S1× S2.
We know that if (s, t) a−→ sa then that is due to a transition s a−→ s′ and that makes sa = (s′, t), and that

given a transition t b−→ t ′, then a transition (s′, t) b−→ (s′, t ′) is possible. Similarly, if (s, t) b−→ (s, t ′) then
(s, t ′) a−→ (s′, t ′). Therefore, the defined synchronous product is confluent.

Figure 7 (centre) shows a simple LTS P. Concretely, it is defined as ({p,r,s},Σ1 ∪Σ2,→, p) with

alphabets Σ1 = {a} and Σ2 = {b} and transitions p a−→ r and p b−→ s. In the following lemma and theorem,
we prove that no way of decomposing P maintains divergence-preserving branching bisimulation.

Lemma 5.3. Given the LTS P (Figure 7, centre) with action set Σ1∪Σ2, let P1 and P2 be two LTSs with
action sets ΣP1 and ΣP2 respectively, and with Σ1⊆ΣP1 and Σ2⊆ΣP2 and Σ1∩Σ2 = /0=Σ1∩ΣP2 =ΣP1∩Σ2.
Let Px be the synchronous product P1×P2 by Definition 2.4. Then P 6-db Px.

Proof. We prove this lemma by contradiction. Assume that P -db Px, and let px be the initial state of Px,
then p -db px. As p is not divergent and cannot do a τ-transition, it holds that only finite sequences of
τ’s are possible from px. This can be seen as follows. If px

τ−→ p1
τ−→ p2

τ−→ ·· · , then p -b pi for all i > 0.
Hence, px is divergent. But this is not possible because p is not divergent. So, px takes a finite number
of τ steps to reach some state p′x where p′x 6

τ−→.

Since it must be that p -db p′x, and since p a−→ r and p b−→ s where a ∈ Σ1 and b ∈ Σ2, then there are

two states rx and sx such that p′x
a−→ rx and p′x

b−→ sx, and r -db rx and s -db sx.
Now because a∈Σ1\Σ2 and b∈Σ2\Σ1, then Px is confluent over these two sets, then there must exist

a state p′′x such that rx
b−→ p′′x . However, r 6 b−→. Therefore, r 6-db rx. Contradiction. Therefore P 6-db Px.

The proof is illustrated in Figure 7 showing that divergence-preserving branching bisimulation (-db)
does not hold when decomposing the LTS P due to the confluence property of decompositions. On the
other hand (literally the other hand of the same figure), branching bisimulation holds when decomposing
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Figure 7: Illustration for Lemma 5.3.

LTS P. The reason it holds under -b, but not under -db is that the former admits infinite τ cycles,
i.e. divergence, which, as demonstrated here in right side of the figure, avoids the premise of confluence
altogether. [2] provides a similar insight into how divergence maintains branching bisimilarity but breaks
divergence-preserving branching bisimilarity.

Theorem 5.4. There is no decomposition operation that maintains divergence-preserving branching
bisimulation (-db) for all LTSs.

Proof. We prove this theorem by contradiction. Assume that there is a decomposition operation that
maintains -db for all LTSs. Then it must do so for any arbitrary LTS P. But since Lemma 5.3 proves
that no LTS maintains -db for one such LTS P, i.e the one in Figure 7, then there is no decomposition
operation that maintains -db for all LTSs.

6 Interpretation

One way to understand this fundamental result is that if the subsystems of the decomposition must
communicate, then there is no escape from introducing divergence in order to maintain equivalence over
any and all decompositions of LTSs.

With respect to automata learning, this result implies that, unless one values divergency, it is not
possible to make any assumption about the distribution of components based on the information that is
learned. If one can observe divergencies while learning behaviour, it might be possible to say something
about the internal structure of a system though this will be highly non trivial to accomplish.

And with respect to software, our result says that it is always possible to distribute a piece of soft-
ware over different components if one allows divergent behaviour. Otherwise, such a distribution is not
possible and based on our proof. One can see that this already applies to very simple behaviours.

Furthermore, divergence, in an industrial context, is undesired due to the requirement of fairness,
i.e., one subsystem seizing unfair control over the total behaviour of the system through infinite looping.
This means that if some decomposition is found to maintain fairness, then that is guaranteed not to be
the case universally over all contexts and all LTSs.
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