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Figure 1: Depiction of the main components of V-Awake. First, a patient is selected (1) and the predictions from the deep learning model
are displayed in 2, 3 and 4. Next, some of the predictions are selected (2) and the data in the dimensionality reduction plot is highlighted
(3). Some regions in the scatter plot are selected and the corresponding predictions are marked in the blocks view (4). Finally, selecting a
prediction block makes the input view display the corresponding input (5), which can be analyzed to determine if the prediction is correct.

Abstract
The usage of deep learning models for tagging input data has increased over the past years because of their accuracy and high-
performance. A successful application is to score sleep stages. In this scenario, models are trained to predict the sleep stages
of individuals. Although their predictive accuracy is high, there are still misclassifications that prevent doctors from properly
diagnosing sleep-related disorders. This paper presents a system that allows users to explore the output of deep learning models
in a real-life scenario to spot and analyze faulty predictions. These can be corrected by users to generate a sequence of sleep
stages to be examined by doctors. Our approach addresses a real-life scenario with absence of ground truth. It differs from
others in that our goal is not to improve the model itself, but to correct the predictions it provides. We demonstrate that our
approach is effective in identifying faulty predictions and helping users to fix them in the proposed use case.

CCS Concepts
• Human-centered computing → Visual analytics;
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1. Introduction

The usage of deep learning (DL) has notably increased in the past
years due to its effectiveness to solve problems of different nature.
The applications of DL models are many and can be found in a
wide range of contexts. For example, they have proved to be ef-
fective for many image-analysis tasks: object recognition [ZF14],
image captioning [CLZ15,FGI∗15,VTBE15], image segmentation
[NDL∗05] or image classification [KSH12], to name a few. An-
other successful domain is the medical field, wherein DL models
were developed to help practitioners with their daily tasks: lung
nodules detection and classification [HHH∗15], or nuclei detection
and classification [SRT∗16, CROMO13, ABA∗16].

One important field within the medical domain is the study
of sleep. In this context, individuals are subject to polysomnog-
raphy (PSG) tests when they are believed to be suffering from
sleep disorders. The PSG involves measuring brain signals, which
are recorded by electroencephalography (EEG) and analyzed after-
wards by an expert. This expert is in charge of scoring the PSG by
tagging pieces of the whole recording as sleep stages. This manual
approach is time consuming and labor intensive [BKS∗17], making
it hard to apply at a large scale. To overcome this limitation, a lot
of research has been performed to automate sleep scoring tasks,
for example, by using DL models [SDWG17, BKS∗17, LKL12,
ZWBC16, TMGZ16]. The automation of the scoring process has
obvious benefits regarding time and effort. However, it also brings
drawbacks in terms of reliability and accuracy of results.

In the medical field, it is even more important than in other fields
that models produce correct outputs to solve other complex, human
dependent tasks (e.g., diagnosis). Although models provide cer-
tainty for the predictions, it does not depict actual validity that can
be used to ensure any correctness. In addition, in real-life scenarios
there is a lack of ground truth, making it nearly impossible to ascer-
tain whether a prediction is correct or not. As a result, a reviewing
process is necessary to ensure a certain degree of correctness. This
reviewing process eliminates all the benefits of automation because
it requires an inspection of the whole output space.

In state-of-the-art work, there are many tools that support
the development of DL models [KAKC18, PHVG∗18, SGPR18,
MCZ∗17, LSL∗17, LSC∗18, WSW∗18, KJFF15]. Generally, they
enable users to see whether a model performs correctly in terms
of predictive accuracy, for example, by finding superfluous layers
or deficiencies in the training data. Nevertheless, all these tools are
applied in a development stage with the aim of improving a model.
In contrast, our work focuses on a real-life scenario in which we
have an imperfect model and no ground truth any longer. There-
fore, we aid users in an exploratory process to find the potentially
misclassified predictions. Our approach does not aim to discover
the cause of the misclassification.

To tackle the difficult task of finding misclassifications in a real-
life scenario, we present V-Awake, a visual analytics approach that
aids users to find, store, analyze and correct faulty predictions from
DL models. Our contributions are: 1) We present the first visual an-
alytics system for deep-learning based sleep staging, and 2) We ap-
ply visualization in the absence of ground truth, i.e., real-life data,
to accelerate detection of misclassification in deep-learning based
sleep staging.

We conducted our research with a sleep scoring model trained
on raw, single EEG channel data [SDWG17]. We demonstrate the
usability of our approach in a concrete, real-life use case together
with two somnologists. We discuss the limitations of our approach,
how it can be generalized to other domains that use DL models, and
we give directions for future research.

2. Medical Background

The study of sleep is an important area in medical research. It
can reveal disorders, such as apnea, narcolepsy, parasomnia or
hypersomnia, which can also relate to other types of medical
conditions such as psychiatric disorders, neurodegenerative dis-
eases [WGWF10] or cardiovascular disorders [SWA∗08]. There-
fore, having a good understanding of sleep is crucial to provide
better diagnoses of some diseases.

The current procedure to study sleep patterns in clinical settings
consists of several steps. First, a PSG is performed to record brain
signals, eye, chin and leg movements, blood oxygen level, heart
rate and breathing of the patient. After the recordings have been
obtained, a PSG technologist determines sleep stages by applying
rules defined in one of the major sleep scoring guidelines such as
the Rechtschaffen and Kales [RK68] or the American Academy of
Sleep Medicine (AASM) [BBG∗12]. The stages are usually tagged
in 30 seconds segments of the PSG, which are called epochs. Sub-
sequently, a sleep doctor uses this information to make a diagnosis.

The main drawback of such an approach is the amount of time
needed to score sleep stages. For instance, a technologist may spend
over one hour to score an 8-hour PSG [BKS∗17] due to the labor-
intensive nature of the scoring process that involves the analy-
sis of several indicators. In Fig. 2 five examples of EEG signals
are shown depicting the five sleep stages described in the AASM
manual [BBG∗12]. Stages N1, N2 and N3 represent the non-rem
stages, and REM indicates the rapid-eye-movement phase of the
sleep. Each stage is characterized for having different morpholog-
ical characteristics going from lighter to deeper sleep respectively.
As can be seen, the distinction between different sleep stage pat-
terns can already be hard when analyzing the signals in isolation.
In addition, technologists have many other parameters to be con-
sidered (e.g., movement sensors, oxygen level in blood, breathing
rhythm, etc.), increasing the complexity even further.

Our approach aims to aid experts that score PSGs (i.e., technolo-
gists) at correcting the output of DL models for sleep stage scoring.

3. Related Work

Most of the visualization approaches available in the literature fo-
cus on the development of a DL model. Generally, the goal is to find
issues in training/validation data, or architectural deficiencies like
superfluous layers, non suitable activation functions, etc., that can
be used to modify the initial model to create an improved version of
it. In this section, we provide an overview of techniques that deal
with understanding models, paying special attention to DL mod-
els. Our proposed approach distinguishes itself from previous work
in that we work with a real context that lacks ground truth. This
scenario has not yet been considered in the literature [HKPC18].
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Figure 2: Five 30-second epochs depicting the five different sleep
stages described by the AASM. Stages from top to bottom repre-
sent respectively lighter and deeper sleep. Stages N1 to N3 de-
pict the non-rem stages, while REM stage depicts the rapid-eye-
movement phase of sleep. Signals are recordings from Fpz-Cz
derivation [KZT∗00].

3.1. Performance Analysis

Work has been done on performance analysis of predictive mod-
els from a general perspective, focusing on the visual exploration
of several performance indicators. ModelTracker [ACD∗15] and
Squares [RAL∗17] are two systems that intend to provide insights
into the performance of classifiers. Although they share a com-
mon goal, their approaches differ. The former system presents both
training and test data, enabling users to label data as positive or
negative, tag groups and link them through iterations of the model.
Squares, for its part, strives to analyze the performance of multi-
class classifiers. To this end, it visually presents the results of the
validation data in a parallel coordinate plot fashion in which each
column represents a class. This enables a comparison of the per-
formance per class. The two systems differ from ours in that they
address scenarios with ground truth available, and their goal is to
analyze performance of models.

3.2. Neural Network Analysis

Much work has been done on understanding convolutional neu-
ral networks (CNN) [LSL∗17, KAKC18, PHVG∗18] and recurrent
neural networks (RNN) [KJFF15, SGPR18, MCZ∗17, SGB∗19].

Their main goal is to provide insight into what networks learn.
To this end, some techniques make use of 2D projections in com-
bination with labeled data in order to find what Liu et al. [LSL∗17]
call pure and impure clusters. These cluster types indicate good
or bad splitting of the data respectively. Therefore, they can be
used to investigate how the model performs. ActiVis [KAKC18]
uses 2D projections of the activations of several layers to deter-
mine whether the model learned how to properly split the input

data into classes or not. Similarly, DeepEyes [PHVG∗18] utilizes
projections to identify stable layers. This system aims at helping
during the training process, whereas ActiVis focuses its analysis
in a post-training step. Interestingly, Rauber et al. [RFFT17] con-
ducted several experiments on different datasets to demonstrate the
usability of projections to evaluate how well the models learned to
split the data. All these systems utilize 2D projections in conjunc-
tion with ground truth, that is, labeled data, whereas our approach is
meant to use those projections solely due to the absence of ground
truth. Therefore, we assume the network is able to produce good
splittings which can be used for further analysis.

3.3. Model Interpretation

In some cases, experts use models to perform complex tasks like
segmentation of anatomical structures or risk monitoring. In this
context, models provide predictions or alarms based on given data.
Inspection of model output is needed to ensure quality and be aware
of possible misbehaviors. The work of Raidou et al. [RMB∗16]
presents a system that aims to help clinicians to understand seg-
mentation models. It enables the exploration of errors in the seg-
mentation to find patterns that can help evaluate the reliability of
the model. The previous work uses labeled data to guide the explo-
ration. In other scenarios, the only available data is the steps per-
formed by the model. The work of Scheepens et al. [SMvdWvW15]
aims at visualizing the rationale of a reasoning engine that is fed
with possibly unreliable sources. Due to the nature of unreliability,
experts require a support system to discard possible false alarms.

Both examples reflect an actual necessity to support users when
using a model in a real-life scenario. Nevertheless, the concepts
introduced in these works cannot be translated directly to the sleep
staging problem nor to DL models.

3.4. Explanation Techniques

Explanation techniques are used in complex systems to provide a
better understanding of DL models. This area has recently drawn
attention due to the necessity for experts to explain how models
work. For providing explanations on CNNs, a great amount of work
has been done [SVZ13,SDBR14,MV16,ZBL∗18]. We focus on the
techniques that are most closely related to our approach.

Fong et al. [FV17] compute a perturbation mask that indicates
ranges of the input space that were salient for the model when mak-
ing a prediction. Other studies address the same problem with dif-
ferent approaches. For example, Grad-CAM [SCD∗17] tries to find
salient regions in the input space by means of gradients applied
to the last convolutional layer of a CNN. It generalizes an earlier
work that introduced a method to compute the so-called Class Ac-
tivation Maps (CAM) [ZKL∗16], which also depicts an approach
to find saliency regions. The main drawback of CAM is that it is
restricted to CNNs that do not include fully-connected layers. An-
other approach was introduced by Zeiler et al. [ZF14] to find salient
regions by occluding parts of the input and attaching a deconvolu-
tion net to the model we want to analyze. All these techniques share
a common goal, although their methods differ.

Regarding explanation techniques for RNNs, Van der West-
huizen et al. [vL17] apply existing saliency methods like the ones
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Figure 3: Deep learning model for sleep stage scoring [SDWG17].
It comprises two convolutional branches with different kernel sizes,
a shortcut connection and two bidirectional LSTM layers.

described previously to temporal inputs (electrocardiogram). They
found that deletion masks provided the best results and saliency re-
gions matched medical concepts like types of waves that are used
to recognize patterns. Regarding temporal inputs and hybrid mod-
els that combine convolutional and recurrent layers, recent work
[GCWG18] analyzes saliency approaches and shows that they do
not suffice to provide good explanations. Through visualization,
they demonstrate that more research is needed to better understand
how this type of model works with temporal input data.

4. Problem Definition

We define the problem of correcting predictions in a neural network
model by means of tasks that depict the main goals in our system.
Our goal is not to improve a given model in terms of predictive ac-
curacy. Rather, it is to find incorrect predictions in environments in
which ground truth is missing to enable users to correct and indi-
cate what the prediction truly is. In this section, we firstly introduce
a description of the model and data that we use in our approach.
Next, we define a set of tasks and give a brief description of them.

4.1. Model Description and Dataset

To introduce our approach, we use a DL model [SDWG17] that
scores sleep data. A graphical, high level description is shown in
Fig. 3. It has two convolution branches with different kernel sizes:
a smaller one to capture temporal information (i.e., EEG patterns)
and a larger one to capture frequency information (i.e., frequency
components). The derived features are then concatenated and fed
to the recurrent part of the model, which is formed by two bidirec-
tional long short-term memory (LSTM) layers. A residual learn-
ing approach is used, which is stated by the fully connected layer
parallel to the bidirectional LSTMs, to keep track of the features
extracted in the convolution step. Finally, all these activations are
added up and fed to a fully connected layer with a 5-softmax ac-
tivation function that serves to normalize the output into a prob-
ability distribution of five classes. The model is trained in two
steps using data from a sleep study [KZT∗00] available on Phys-
ioNet [GAG∗00]. In the first step the representation learning (i.e.,
convolutional layers) is done. Next, a residual learning approach is
used to train the two LSTM layers as well as the shortcut connec-
tion (i.e., fully connected layer in Fig. 3). Once the model is trained,
it can be used without necessity to retrain. In this model, convo-
lutional layers act as feature extractors directly from the raw in-
put signal, while LSTM layers learn transition rules between sleep
stages. The model achieves an accuracy of 82.0% [SDWG17].

The data used to train the model represents the sleep record-
ings of 20 patients (from subject SC4001E0 to subject SC4192E0)
over two nights. A depiction is shown in Fig. 4. For each pa-
tient j and session k, a signal f j,k(t) is measured, where t ∈ Z
indicates a point in time in seconds. The signal is sampled at a
frequency of 100Hz, resulting in 100 measurements per second.
Ei, j,k = [ f j,k(30i), f j,k(30i+1), · · · , f j,k(30i+29)] represents the i-
th epoch, which is a 30-value vector for patient j and session k.
Each epoch Ei, j,k is 30 seconds long, accumulating a total of 3000
values. Finally, Ci, j,k indicates the corresponding classification for
the i-th epoch of patient j in session k.

The signal f is gathered from sensors placed on the head of the
patient during sleep. On average, there are 1075 epochs per pa-
tient and session, resulting in 1075 predictions over approximately
9 hours of sleep and above 3 million points. Examples of signal f
for each sleep stage are shown in Fig. 2. Besides all this data, we
retrieve the following information from the model:

Probabilities for each possible class are provided by DL mod-
els in classification. Thus, a function P(Ei, j,k) provides a vec-
tor PEi, j,k of probabilities where Pc

Ei, j,k
∈ [0,1] depicts the like-

lihood of epoch Ei, j,k being classified as class c. Analogous,
Pc

Ei, j,k
= P(Ci, j,k) where c is the class predicted for epoch Ei, j,k,

that is, the class with the highest probability.
Activation Maps, also named feature maps, depict the output pro-

duced by a certain layer l in a DL model after applying an in-
ternal function. This function depends on the type of layer. For
instance, convolutional layers apply convolution over the input
data to derive new features, i.e., produce an output. As evident,
these features are used to determine the classification of unseen,
new input data. Therefore, they can be used to discover simi-
larities on predictions. The function A(Ei, j,k, l) retrieves the ac-
tivation map for epoch Ei, j,k and layer l, containing a variable
number of activations ui, j,k,l .

Saliency Maps describe how important the attributes of the input

Patient j Session k

fj,k(60) fj,k(89)

Probability function:    P(Ei,j,k)

Activation Maps:     A(Ei,j,k , l) 

Saliency Maps:       M(Ci,j,k , l)

Prediction:   arg max(P(Ei,j,k))

E0,j,k

CN,j,kC2,j,kC1,j,kC0,j,k C3,j,k

Neural Network

E1,j,k E2,j,k E3,j,k EN,j,k

 
=N2

extracted data

Figure 4: Illustration of the data used in our approach for patient j
and session k. An example of signal is given for epoch E2, j,k which
is classified as stage N2 after being run through the model.
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Figure 5: Depiction of our workflow and the mapping to the views
of our design. Arrows depict a common way of interaction, al-
though other routes are possible. Upper case words summarize the
most important actions performed in each view. The tasks that each
view performs are also shown in the diagram.

data are for a layer of the model to predict that input as a par-
ticular class. The function M(Ci, j,k, l) provides the saliency map
for the epoch corresponding to classification Ci, j,k and layer l.
In our case, each saliency map contains a constant number of
values vm

i, j,k,l ∈ [0,1] with m ∈ [0, · · · ,2999], that indicates how
important the m-th value is for layer l to classify Ei, j,k as Ci, j,k.
Our approach uses Grad-CAM [SCD∗17] to compute saliency
maps. The dimension of the map this method gives depends on
the output size of the layer. However, to keep a constant size, the
values of the output are rescaled with a linear interpolation to
match the size of the input instances, i.e., 3000 values.

4.2. Tasks

Based on multiple interviews with two somnologists and four DL
experts, we define a set of tasks that are considered relevant for the
analysis of DL predictions for sleep scoring:

T1 Fix incorrect predictions. Incorrect predictions are a serious
problem. Finding them is not a trivial task when there is lack
of ground truth. Hence, users, independently of their expertise,
should be enabled to explore the data in such a way that they can
find potentially incorrect predictions and repair them by indicat-
ing the actual class.

T2 Understand why the model made a prediction. Once poten-
tially incorrect predictions are found, it is necessary to under-
stand why the model made such a prediction. This helps users to
understand whether the prediction is correct or not.

T3 Re-tag predictions with basic support. The system must allow
users to re-tag selected predictions. Hints must be provided to
users to help them make a decision.

We designed a workflow to support the defined tasks (see Fig. 5).
Users can perform actions in whichever order they decide.

5. V-Awake

In this section we introduce the main components of our approach
(see Fig. 6 for an overview). Although it was designed for sleep

experts, the components are generic enough to be used by experts
with different backgrounds (T1).

5.1. Cohort View

The primary goal of the cohort view (Fig. 6.1) is to provide a sum-
mary of the data for each patient j and session k. The summary
displays information regarding the gender of the patient, identifier
and length of the recording session, and distribution of the predic-
tions Ci, j,k. This provides an overview that can be examined to spot
interesting cases for experts.

The summary of the predictions plays an important role because
it might show particularities that are of interest (e.g., absence of
predictions of a particular class, or an abnormal class distribution).
It is depicted with a horizontal stacked bar chart per patient. The
width of each bar encodes the ratio of predictions of a class relative
to the total number of predictions.

The ultimate goal from a usability perspective is that the user
selects a case of interest. To facilitate it, search, sort and layout
features are provided. Regarding the latter feature, users can select
a stage of interest to be placed as the first element in the stacked
bar chart to make comparisons between different subjects.

Below the panel that displays all the patients, two stacked bar
charts are shown in the same fashion. The top one shows the dis-
tribution of predictions for the patient selected in the cohort view.
The bottom one shows the aggregated distribution for all the pa-
tients. The location of both charts facilitates comparison of the lo-
cal (i.e., selected patient) and global (i.e., all patients) distributions.
Moreover, the summary view (Fig. 6.1.1) provides information re-
garding the results of the model for the validation dataset. A confu-
sion matrix is shown, which can be used by users to determine the
cases that the model fails more often. When a patient is selected,
estimated values are provided. These values are computed by inter-
polating the global values from the validation set of the model.

5.2. Predictions View

Predictions are the core items in our work. Our approach provides
two different ways to directly interact with them. They are dis-
cussed in the following subsections.

5.2.1. Sleep Cycles View

The sleep cycles view is presented in Fig. 6.2.1 and provides an
overview of the whole sleep session in a familiar manner to the ex-
pert. It emphasizes the transitions between sleep stages. This piano
roll representation enables users to spot interesting patterns quickly.
The view is based on a time series chart where x and y axes denote
time relative to the beginning of the recording and sleep stage, re-
spectively. Colors are used to encode stages. The background dis-
plays the fluctuations on the certainty of predictions (i.e., probabil-
ities P(Ci, j,k)), without interfering with the core part of the view.
Fluctuations can be utilized by the expert to spot regions in which
the model was less certain and therefore prone to misclassifications.

To prevent visual clutter in the global trend, a preprocessing step
is applied to the data to extract possible outliers. It consists of ex-
tracting consecutive prediction sequences that belong to the same
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Figure 6: User interface of V-Awake. Numbers depict the views and components of our approach: cohort view (1) and confusion matrix (1.1),
predictions view with sleep cycles view (2.1) and blocks view (2.2), dimensionality reduction view (3), selections view (4) and input view (5).

class and contain less predictions than a set threshold. The thresh-
old can be adjusted by the user. For example, users can set a lower
value to extract outliers that form very quick transitions. This helps
to find cases in which the model rapidly changes stages, potentially
indicating that there are misclassifications. The visual encoding in
the sleep cycles view highlights transitions that should not occur
in a normal context. In a normal sleep pattern, transitions should
happen in a specified order. For instance, it is not possible to im-
mediately move from awake to REM. Outliers are visually repre-
sented as dots visually disconnected from the main trend, which is
represented as a piano roll. This particular visualization supports
the task of spotting faulty predictions (T1).

The view relies on brushing to focus on a specific area of the pre-
dictions space. The other views are updated accordingly restricting
further actions to the selected area. Furthermore, when an action is
performed in other components, the sleep cycles view updates ac-
cordingly by visually de-emphasizing corresponding predictions.

5.2.2. Blocks View

Similar to the sleep cycles view, the blocks view (Fig. 6.2.2) depicts
an overview of all the predictions generated for a selected patient
and session, which are represented as blocks and are placed sequen-
tially from the top-left corner to the bottom-right corner. The major
difference with previous is the visual encoding and the interactions.
While the sleep cycles view emphasizes transitions between stages,
this focuses on the sequentiality of the predictions. The blocks view
serves two main purposes:

1. Give an overview of the predictions in constant time inter-
vals. Intervals directly connect with medical concepts (e.g., N1
should last up to 7 minutes). To provide more flexibility, time
intervals are adjustable by users, allowing the exploration of the
predictions from different time perspectives.

2. Highlight the predictions that are under consideration. The
location of this view is ideal for depicting the predictions that
are filtered out from other components. This allows users to be
aware of the time position of the predictions that are selected
after performing brushing in other views (see Fig. 6). Moreover,
users can directly add or remove elements by clicking them. This
provides fine-grained control over the elements that are currently
selected. This control is useful to incorporate or exclude predic-
tions that are located nearby in time and that the expert considers
to be interesting for a further analysis.

The size of the blocks can encode extra information such as the
probability and the entropy of a prediction. The latter is defined as:

−
n

∑
c=0

Pc
Ei, j,k · logn Pc

Ei, j,k ,

where n is the number of classes. This encoding helps to visually
identify predictions that deviate from others in terms of probabil-
ity. The probability metric emphasizes high probability predictions,
while entropy emphasizes extreme cases in which the probability
values are very similar.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



Humberto S. Garcia Caballero & Michel A. Westenberg & Binyam Gebre & Jarke J. van Wijk / V-Awake

Subject A

Subject B

TSNE MDS PCA

Subject A Subject A

Subject B Subject B

Figure 7: Comparison of tSNE, MDS and PCA for two subjects
in a setting with ground truth available. Each square represents a
prediction, the color depicts the predicted sleep stage. Circles with
a black border represent predictions from the model that do not
match the label assigned as ground truth. tSNE works, in general,
better than other methods to identify borderline cases.

5.3. Dimensionality Reduction View

The dimensionality reduction view (Fig. 6.3) depicts a scatter plot
with a dimensionality reduction computed over all the activations
of a layer on the predictions of a given patient and session. It is used
to find incorrect predictions by identifying visual overlaps (i.e., im-
pure clusters). The data displayed in this view is defined as:

σ([A(E0, j,k, l),A(E1, j,k, l), · · · ,A(EN, j,k, l)],nc),

where σ represents a dimensionality reduction function and nc
is the number of principal components that σ provides. The ratio-
nale for the election of a layer is that each layer in a DL model
learns different features from data. The layers close to the output
are believed to effectively separate the features linearly [DJV∗14].

We considered three dimensionality reduction functions: Prin-
cipal Component Analysis (PCA) [Pea01, Hot33, Jol11], Multi-
dimensional Scaling (MDS) [Kru64] and t-distributed Stochastic
Neighbor Embedding (tSNE) [MH08]. Figure 7 shows a compari-
son of the them for two different subjects in a context with ground
truth. The same model as in our approach is used to compute the
projections. Circles with black borders depict misclassified predic-
tions. As can be seen, PCA tends to group cases belonging to the
same class and does not discern misclassified cases, hence we dis-
carded this method. On the other hand, MDS and tSNE appear to
better divide the space so that boundary cases for incorrect predic-
tions stand out more. tSNE is the default option in this view. The
design of the this view addresses task T1 since the location of the
predictions in the plot might provide useful information.

Generally, dimensionality reduction techniques use heuristics to
find the most optimal solution. They involve randomization, re-
sulting in a different output every time the method is executed.

Even though this randomization has benefits, it can worsen the ex-
ploratory process since the user would not get the same result in two
different executions. To prevent this from happening, we decided to
set the seed to a fixed value. Nevertheless, we provide users with
options to set a random or a different value for the seed if desired.

We heavily rely on linking and brushing to help users spot sus-
picious elements, with the previously introduced components all
coupled. Multiple dimensionality reduction plots can be visualized
at the same time. They all are coupled, enabling an exploratory pro-
cess in which we could compare different aspects:

1. Different layers. Users might be interested in exploring the di-
mensionality reduction output for activations of different layers.
This is useful, for example, when the model has a hybrid archi-
tecture. Exploring the activations of convolution and recurrent
layers side by side can lead to interesting findings. By default,
the previous-to-last layer is selected because it has been shown
that it performs the best for these methods.

2. Number of principal components. In most of the cases the use
of two components enables a fairly sufficient exploration. How-
ever, when this is applied, the sequential nature of the predictions
is lost. To tackle this, in our approach it is possible to switch from
2 to 1 principal component, used for the vertical axis, while the
horizontal axis is used for the sequence number of the epoch.
When this occurs, the plot adapts the axes to either show both
components, or the only main component together with the se-
quence number of the prediction.

5.4. Selections View

To facilitate addressing task T1, we provide a mechanism to store
selections of predictions. They are collected and presented in this
view (see Fig. 6.4). Selections are depicted by indicating the occur-
rences of predictions for each class. To enable a quick identifica-
tion, a textual label is displayed together with the summary. Labels
are defined by the user at the creation of a selection.

An indicator depicting the number of selected predictions is also
shown. It reflects either an absolute or distinct count of predictions.
The latter count is also used to compute a ratio over the total. The
ratio is used to visually inform the user in case it goes above a
threshold. The threshold is determined by subtracting 100 and the
model’s accuracy percentage. This acts as a warning to keep the
number of selected predictions low. The rationale for this threshold
is that, assuming that the model’s accuracy is similar to the one
obtained for the evaluation data, then it should make around the
same percentage of incorrect predictions in a real-life scenario.

5.5. Input View

Understanding why the DL model made a prediction (T2) is ad-
dressed with this view (Fig. 6.5). By visualizing an instance of in-
put data (i.e., an epoch Ei, j,k), a resolution can be made to decide
the correctness of a prediction (i.e., a classification Ci, j,k).

Our approach displays the values of signal f for a given epoch.
Also, consecutive epochs can be displayed side-by-side at the same
time to give a notion of context to the users. Furthermore, users can
move forwards and backwards to retrieve the next or the previous
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prediction’s input respectively. This can be performed by pressing
the right or left arrow on the keyboard. We visualize epochs by
means of traditional line plots, with a fixed scale for the y-axis
to facilitate the comparison of signals that have different ampli-
tudes. Although this information is enough for the expert to in-
fer the stage that an epoch represents, we also provide some clues
on what the model was seeing at the moment of making a deci-
sion. To this end, our approach provides the corresponding values
of a saliency map. By default, the saliency maps M(Ci, j,k, l) and
M(Ci, j,k, l

′), where l and l′ represent two convolutional layers from
two convolutional branches of our model, are averaged. The layer
parameter can be adjusted to visualize any convolutional layer of
the model, or a combination of them. Saliency maps are encoded
as one-dimensional heat maps. This enables an easy exploration of
the salient regions of the input, without disturbing the visualization
of the input data itself. This design addresses task T2.

Finally, the re-tagging task (T3) can be performed in this view.
To quickly change the class of a prediction, glyphs are presented on
the top of the view. Colors encode the class that a glyph represents.
We also use position and text to encode some other information:

• The glyph at the left-most position indicates the current value
associated to the prediction. In case it is the original prediction,
it is marked with the label P, which stands for Prediction. If the
class was changed by the user, the label F is used, which stands
for Fixed. Moreover, the glyph also shows the probability that
the model produced by a text label.
• The other glyphs are slightly separated from the previous ones.

This emphasizes that the probabilities they depict are normalized
with respect to their values. This is helpful because the model we
use tends to produce high-probability predictions. As a result, the
probabilities for the rest of stages are extremely low, making it
hard to enable a comparison between them. By normalizing their
values, an easier comparison can be made by the user.

When a prediction is corrected, the visual encoding in all the
other displays changes accordingly to indicate so. This is helpful to
avoid the user from revisiting corrected predictions.

6. Use Case

Sleep is a natural process consisting of transitions between sleep
stages that tend to follow rules. Alterations in the transitions can be
an indicator of a sleep disorder. These alterations can be reflected
in different manners: a longer duration of a particular stage (e.g.,
stage N1 should last up to 7 minutes), continuous changes between
stages (e.g., from N2 to awake and vice versa) or the absence of
some stage (e.g., REM). These patterns might represent either the
effect of a sleep disorder, or problems in our predictive model to
correctly classify sleep stages. The main goal of the exploration is
to find out possible misclassifications and fix them.

We demonstrate our approach by means of a use case on a single
dataset [KZT∗00]. The subjects considered for our use case range
from SC4201E0 to SC4822GC. These subjects were not considered
in the training phase of the DL model. Note that the original source
of the dataset also provides the ground truth, which we use in a pos-
terior stage to calculate the percentage of actual misclassifications
found in the exploratory use cases. We show how components in

our approach together with domain knowledge from experts enable
the identification of possible misclassifications as well as interest-
ing patterns from the cohort.

6.1. Exploration Patient 1

The exploration (see Fig. 6 for an overview) was conducted with the
help of the somnologists. We picked a patient that seemed interest-
ing because of the deviations in the distribution of sleep stages. The
expert remarked that it was unusual to not have a single prediction
of REM stage. This could be because the patient has some disorder,
or because the model was wrong when making predictions.

REM stage usually happens after N3, or after a short period of
N2. In Fig. 2, we can see that N1 and REM are somewhat simi-
lar in shape. Therefore, it may be that the model had difficulties to
distinguish them. We started the exploration by narrowing the anal-
ysis to consider awake, N1 and N2. We noticed some interesting
patterns in the sleep cycles view. For instance, we saw that slightly
two hours after the start of sleep, there was a noticeable drop in the
probability prediction and there were some outliers from N1 (see
Fig. 8 S2). We selected that region for further analysis. After mov-
ing forward in the sleep cycles view, we saw two other interesting
patterns: quick alternations between awake and N1. This pattern
was seen between four and five hours after the beginning of sleep
(see Fig. 8 S3). The pattern looked suspicious because of the quick
changes between stages. We selected and saved them for analysis.

At the beginning of the sleep cycles view, there were two periods
of awake followed by some predictions of N1 and N2 (see Fig. 8
S1). We noticed that the probability of the model dropped in that
region considerably. When we selected slightly more than the first
hour of sleep, the dimensionality reduction plot showed some over-
lapping areas that looked suspicious. We selected and saved those
areas. Nearly at the end of the sleep record, there was a period of N3
predictions (see Fig. 8 S4). According to the expert, this was sus-
picious because N3 tends to shrink during the night. We selected
all these predictions for further analysis. Figure 9 shows some of
the overlapping areas for selections S1, S2, S3 and S4. The brushed
predictions are potential misclassifications.

At that point, we focused only on the dimensionality reduction
plot to observe the whole picture. We observed sparse predictions
of class N1 and N3 in an area principally covered by predictions of
class N2. Therefore, we selected and saved predictions belonging
to classes N1 and N3 in the overlapping area (see Fig. 9 S5).

After performing the selections, we ended up with 311 predic-
tions. While reviewing the input data for each prediction, we an-

00h 01h 02h 03h 04h 05h 06h 07h 08h 09h
REM

N3

N2

N1

W
S1 S3S2 S4

Figure 8: The four selections made in the exploratory use case.
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Figure 9: Selection of possible misclassifications. For instance, S5
depicts an area of N2 predominance, but N1 and N3 predictions
are found.

notated 217 as misclassified, which represented the 69% of the
whole selection. Posterior analysis using the ground truth showed
that there were 249 predictions that were actually misclassifica-
tions. Therefore, we found 87% of the misclassifications with our
approach. It is important to remark that the information about the
number of misclassifications was not available during the explo-
ration of the data. During annotation of the block of N3 predictions
nearly at the end of sleep, we discovered that they were misclas-
sified because the input signals seemed to contain an artifact (see
Fig. 10) following a very regular pattern. The expert indicated that
this might be due to a problem with the location of the sensors that
were interfering with the movements of the eyes.

The needed time to analyze the plots and to select pieces of data
was about 5 minutes. We do not measure the time to analyze each
individual epoch. However, if we consider the time proposed by the
sleep scoring manual [BBG∗12], which recommends to invest up
to 2 seconds per epoch, it would result in above 10 minutes. If we
apply the same time per epoch for the whole output space, it would
result in investing 39 minutes. Therefore, we would roughly save
24 minutes for this particular subject.

6.2. Exploration Patient 2

For the second exploration, we used the same patient and session as
shown in the video demonstrating the usage of our approach. This
session contained 775 predictions. We immediately observed that
the sleep cycles seemed to be more uniform. It could also be seen
in the locations of predictions in the dimensionality reduction view,
which were better localized forming clusters-like structures.
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Figure 10: Strange artifact found during exploratory process. It is
too regular and free of noise to depict a bio-signal.

In this case, we took advantage of the outliers from the sleep
cycles view and the location of predictions in the dimensionality
reduction plot. The sleep cycles view showed some interesting ar-
eas that contained outliers. They were seen after one hour and a half
(a N2 sequence with N1 and N3 outliers), slightly before two hours
(a REM sequence with N1 and N2 outliers), around three hours (a
N2 sequence with N3 and REM outliers) and so on. When select-
ing each of these areas individually, we observed the correspond-
ing predictions in the dimensionality reduction view. We observed
some overlapping areas in this plot. They could be an indicator of
misclassifications, thus we selected and saved them.

After repeating this process iteratively, we created a global se-
lection with 57 predictions. This represented the 7% of the total
output space. Out of those predictions, we found 35 misclassifi-
cations. Posterior analysis using the ground truth showed that there
were 63 misclassifications. Therefore, we were able to find the 55%
of misclassifications. As for the previous patient case, this informa-
tion was not available beforehand.

7. Discussion and Limitations

The use case depicted in Section 6 shows how our approach can be
used by experts to utilize domain knowledge to guide exploration
towards finding misclassifications.

Finding misclassifications when there is no ground truth is an
unsolvable problem per se. Visually exploring and analyzing pre-
dictions can shed light and ensure a certain degree of correctness.
The ability to select parts of data based on observations enables ex-
perts to incrementally cover most of the misclassified predictions.
The tight interaction between components helps to verify earlier
assumptions (e.g., quick transitions between stages might represent
misclassifications).

As for other approaches, ours has limitations. For instance, the
usage of our system does not guarantee the discovery of all the mis-
classifications. The interaction and exploration of predictions can-
not always lead to finding all the faulty predictions, and in some
cases it might become difficult to understand the dimensionality
reduction. Moreover, the dimensionality reduction might be inef-
fective if the model produced poor separations of the feature space.
This limitation is not specific to our approach but inherent to the
dimensionality reduction approach.

We performed an informal qualitative evaluation of our approach
with both somnologists and DL experts. They found our approach
useful and helpful to fill the gap in current settings in which a DL
model is used. They expressed that being able to see the context of
the predictions in different forms was very helpful. For instance,
linking the time-location of a prediction with its location in the
dimensionality reduction plot was useful to better analyze incor-
rect predictions. They also found views and visualizations of our
approach appropriate for sleep experts. They stated that, after some
explanation, the dimensionality reduction view was understandable
and useful for spotting incorrect predictions. Also, the ability to
create selections that matched hypotheses was an interesting way
of addressing the problem. Finally, they also remarked that visual-
izing the input for a particular prediction in conjunction with the
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saliency map was useful to understand what the model was rec-
ognizing in signals. Having a smaller version of the sleep cycles
view in the cohort view was proposed by one of the somnologists.
This could help spot interesting patients from an overview of the
transitions between sleep stages. However, it might be difficult to
visualize due to the size of the components.

The somnologists also pointed at the lack of a mechanism to fil-
ter cases with some interesting properties. Filtering cases in which
the input signal is mostly 0 volts would be desirable because it
might reflect a misplacement or disconnection of the electrodes.
The experts would also like to use the system to better understand
the model. The interest of the experts arose when they observed
the input of incorrect predictions. Even though this is not the goal
of our system, we certainly believe this would greatly improve the
system.

When the somnologists were asked whether they could use data
corrected with our approach despite the fact it cannot be guaran-
teed to be fully correct, one stated the following: "It really, really
depends on where the errors lie. If there is some misclassification
between N1 and N2, it probably will not affect the clinical interpre-
tation too much. But if all errors converge to misclassifying REM as
something else, it will affect it. As another example; if epochs are
misclassified as wake sparsely through the hypnogram, it may result
in a very fragmented looking hypnogram, which may be classified
as abnormal; while if the same amount of (mistaken) wake epochs
are grouped into 2 or 3 a little bit longer periods of consolidated
wake, it may look normal to a doctor". We believe these issues are
addressed by our approach since users can spot suspicious patterns,
analyze them in terms of activations from the DL model and inspect
corresponding input data. From the comments of the somnologist
we can argue that the number of found misclassifications is not cru-
cial as long those that could affect the diagnosis of sleep disorders
are analyzed.

7.1. Approach Generalization

Deep learning models can be used to detect cancer tissue in video
frames (e.g., colonoscopy [UTA∗18]). Generally, the traditional ap-
proach works by examining a patient with a tubular camera that ex-
plores the colon while the doctor analyzes the video in real time.
Deep learning can be incorporated in this process to aid doctors
during examination. Our approach can be generalized to be applied
in this scenario. Sleep staging and cancer detection share the char-
acteristic of having sequences of predictions of a recording session.
The sleep staging model uses epochs, while the cancer detection
model uses video frames. Although the nature of the data is differ-
ent, they have the temporal aspect in common. Both tasks aim to
classify input sequences in a small set of classes and both scenarios
are divided by patients and sessions. To generalize our approach, it
would need to handle video frames keeping the rest of the system
intact.

7.2. Scalability

The bottleneck of our approach is the dimensionality reduction.
Our implementation is able to compute tSNE over one thousand of

records with thousands of dimensions in a few seconds. If the num-
ber of dimensions was higher, a pre-process step could be applied
to randomly project dimensions to a lower space, feeding the result
to the dimensionality reduction technique. This approach seems to
be effective for tSNE as Donahue et al. stated [DJV∗14]. In our
approach, we handle over 1000 samples per patient on average. In
case this number was too high to be handled, the analysis could
be performed by examining chunks of thousands of samples per
time. The major drawback of this approach would be to ensure that
we have enough representatives of each class in each step. On the
visual aspect, the main concern is the number of classes that our
approach is able to present. In the case of sleep scoring, there are
only five different classes. However, in other domains this number
might be substantially higher.

8. Conclusions and Future Work

In this work, we have presented V-Awake: a visual analytics ap-
proach to find and correct faulty predictions in real-life scenarios.
It is a novel visual analytics approach that combines different vi-
sual and interactive components to enable users to effectively find
and correct predictions in a sleep staging context.

We have demonstrated the usability of our approach in a use
case. It shows that our approach can be used to find suspicious pat-
terns that can represent misclassifications. Besides, a generalization
of our approach has also been proposed, stating that it can be trans-
ferred to other domains with minor modifications. The discussion
with experts reflected a real interest from them in our approach as
well as ways to improve it. Although our tool does not guarantee
a perfect correction, it does enable experts to analyze interesting
patterns to make sure that a proper diagnosis can be performed af-
terwards.

As future work, we would like to investigate how to incorporate
active learning such that users could reinforce the model with our
approach. This idea requires more research to ensure that the learn-
ing process provides benefits instead of creating a bias in the model
that deteriorates the predictive accuracy. We also plan to extend the
approach such that users can explore the dimensionality reduction
plot from a higher level, that is, focusing on the entire cohort pop-
ulation rather than a single patient. We expect this to provide some
further insight into patients that have more faulty predictions. Our
idea is that we could apply a dimensionality reduction method over
the entire population to find groups of patients that share similar pe-
culiarities in terms of activations of layers. With this, users would
only have to analyze some representative subjects from a particu-
lar cluster and apply the learned facts to the rest (e.g., majority of
faulty predictions in stage REM, similar sleep patterns, etc.).
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