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Nomenclature

RN×M the set of real matrices of dimension N ×M
RN the set of real vectors of dimension N
G a graph associated with the nonzero pattern of the conductance matrix
C a graph associated with the nonzero pattern of the capacitance matrix
G original conductance matrix with gnd and pows node, unpartitioned
C original capacitance matrix with gnd and pows node, unpartitioned
G partitioned conductance matrix
C partitioned capacitance matrix
p, q index of connected component of G
P number of matrix partions or connected components
dt, h time-step length of a numerical integration method
t variable of time
J Jacobian matrix of dimension N ×N
I(t) ∈ RnI branch currents
nI number of branches
nV number of non-grounded nodes
0/1 matrix or vector zero/one
s function of input
s scaled time
nnz(A) number of non-zero elements of the matrix/vector A
G-net diagonal block of G
G-component connected subgraph of G
intra capacitors inside G-net
inter coupling capacitors/capacitors between two G-nets
extra capacitors connected to reference node
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Acronyms

AC Alternating Current

BE Backward Euler method

DAE Differential Algebraic Equation

KCL Kirchhoff’s Current Law

KVL Kirchhoff’s Voltage Law

MNA Modified Nodal Analysis

ODE Ordinary Differential Equation

DC Direct Current

SPICE Simulation Program with Integrated Circuit Emphasis

KKT Karush–Kuhn–Tucker or saddle point system

PDI/PDV Positive Definite system obtained when the power terminals are excited
with current (I)/voltage (V) sources

SPD Symmetric Positive Definite

BCE Branch Constitutive Equations

PSD Positive Semi-Definite
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Chapter 1

Introduction

1.1 Motivation
Ever since its earliest days, evolutions in microelectronics have followed the trend
of miniaturization, also well-known as Moore’s law. Moore’s law is the observation
that the number of transistors that can be planted on an integrated circuit would
double approximately every two years. The continuous increase in the number of
transistors as well as electronic components integrated into a chip results in circuits
that are smaller, faster, and cheaper than its predecessor. In short, the cost advantage
and performance increase with each Integrated Circuit (IC) generation. However, in
terms of circuit design, the high density of components (i.e. smaller and denser
microelectronic components) cause cross-component interference. On the other hand,
modern ICs are not only analogue or digital circuits but also mixed-signal integrated
circuits. This diversification combined with the trend of miniaturization makes the
design and manufacturing process even more complex. Due to the growth in the
complexity of modern IC design, a Design and Verification (D&V) phase is essential
to be carried out prior to manufacturing and deployment to discover undesirable
behaviors and thus minimize the possibility of producing faulty devices, saving time
and money. Thus a reliable, accurate and fast D&V phase is the main factor for
enabling new technologies timely and competitive.

In order to meet the D&V challenges faced by the semiconductor industry, hun-
dreds of Computer Aided Design (CAD) tools developed by the Electronic Design
Automation (EDA) industry are used from early stage concept to manufacturing.
As an example, SPICE (Simulation Program with Integrated Circuit Emphasis) is
a CAD tool that helps to carry out the circuit simulations for such challenges of
circuit complexity aforementioned. Nevertheless, most current EDA methods and
their supported tools do not very easily integrate with mathematical research pro-
totypes. Started in 2014, the ASIVA14 project (Analog SImulation and Variability
Analysis for 14 nm designs) aims to develop advanced numerical techniques which are
imperative to address present-day challenges in the electronics industry, see project
page [2]. The project is a joint work between Eindhoven University of Technology
(TUE), Netherlands and the Mentor Graphics in France, funded by the European
Marie Skolodowska-Curie Actions research grant. In particular, the ASIVA14 project
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addresses three topics:

1. Speeding up simulations of a certain class of periodic circuits [10],

2. Speeding up simulations of large-scale circuits,

3. Speeding up circuit’s variability analyzes [43].

This thesis focuses on the second topic, the acceleration of large-scale circuit sim-
ulations.

Due to the ever denser packed components on the ICs, interconnects and parasitic
effects have become more dominant. It is crucial to take these density induced effects
into account. This requires the simulation of very large scale electrical networks, with
a very large number of electrical and parasitic elements. This simulation is usually
time-consuming or infeasible for standard circuit simulation tools.

Very Large Scale Integration (VLSI) chips with interconnect layouts may contain
up to millions of electrical elements, including extracted parasitic RLC elements and
linear/nonlinear devices. Numerical simulation of such large networks can therefore
become very time consuming or even infeasible. Consequently, the aim of this study
is accelerating/enabling the transient simulation of large parasitic networks.
Model Order Reduction (MOR) methods are used to accelerate simulation by reduc-
ing the size of the original model. Multiple MOR approaches have been introduced,
for instance Krylov subspaces [16, 15, 26, 22, 5], balanced truncation methods [1, 35],
and elimination methods [40, 12]. However, existing MOR methods can produce dense
reduced models that become more expensive to simulate than the original systems.
Moreover, for multi-terminal networks MOR is inefficient because of generating large
reduced models and/or dense models such as when using PRIMA [33].

Many techniques have been proposed to deal with aforementioned outstanding
issues [41]. ReduceR [36], SparseRC [27] and TurboMOR-RC [34] are presented and
share the common goals which are creating sparse reduced models and working ef-
ficiently with multi-terminal networks. The proposed method, unlike the aforemen-
tioned MOR methods, does not reduce the dimension of the system matrices, there-
fore, it does not face the problems related to multi-terminal networks and creating
dense resulting matrices as MOR methods. We refer to it as a simplification method.
We do not provide a comparison between our methods and other MOR methods be-
cause methods such as SVDMOR [14] and ESVDMOR [29] consider and modify the
transfer function, which our methods do not do (instead, our methods concentrate on
the time-domain transient simulation). Also, ReduceR deals with R networks while
ours modify C networks, sparseRC [27] and TurboMOR [34] reduce the sub-nets of
RC networks. A comparison would require the three methods to be combined with
sub-net reduction, which is not the scope of the current research. This thesis proposes
three new methods for the speeding up of the transient RC network simulation with
parasitic capacitors. The considered speed up/acceleration methods are named:

1. SplitC;

2. MoveC;

3. SelectC,

6
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and they are briefly described in section 1.2.
The methods deal with linear and nonlinear circuits. The linear circuits include

only linear resistors and capacitors, whereas the nonlinear circuits may include diodes.
To speed up the simulation time our three methods mentioned above focus on the
reduction of non-zeros in C, i.e. on the (re-)moval of capacitances or even on the
dynamic capacitor selection per time-step.

The methods lead to a reduction of the transient simulation time. Their accuracy
can be controlled by a chosen threshold. In the worst case scenario (i.e. maximize
the speed-up over accuracy), MoveC and SelectC will turn out to be preferable over
SplitC.

Last but not least, also the circuit representation and modification must be ad-
dressed. Firstly, our examples (concerning both industrial and academic examples)
are based on matrices whose entries are extracted from physical circuits. For exam-
ple, the resistor and capacitor sub-networks are saved in the forms of capacitance
matrix and resistance matrix, respectively. This representation is round-off error sen-
sitive because, for instance, the values of coupling capacitance can be extremely small
(roughly between 10−14 and 10−25). Therefore, matrix operations could change the
non-zero pattern of matrices or create components which are not present in the phys-
ical circuit. Worse, our industrial based inputs C and G are not even symmetric
for some examples. As a consequence, the transient simulation time increases (the
Matlab "backslash" solver implicitly selects different algorithms for symmetric and
asymmetric systems).

Very important is that our circuits do consist of R and C components which are left
after removing inductors, diodes, transistors, etc. from certain industrial networks.
Thus, our RC networks can consist of many resistor-based connected components and
its related conductivity matrix is likely to be singular. To facilitate the existence of
a valid DC solution we must modify the RC network, which is non-trivial and will be
addressed in chapter 2.

1.2 Approaches and results - outline of the thesis
The new methods presented in this thesis are based on network reduction in order to
reduce the computational time needed for solving the equations Cx′(t) = −Gx(t)−
Bs(t) deduced from linear circuits and Cx′(t) = −Gx(t) − d(x(t)) −Bs(t) deduced
from nonlinear circuits . SplitC, MoveC and SelectC change C taking the parasitic
capacitances into account.
The thesis is organized as follows:

• In Chapter 2, we recapitulate the properties of basic electrical elements. We
show how the DAE can be derived from physical laws (i.e. Kirchhoff’s laws and
the branch equations). Furthermore, as mentioned in the previous section our
network is incomplete and we only work with RC matrices, we explain how to fix
the incomplete RC matrices such that we get a physically and mathematically
ideal RC network.

• Chapter 3 presents general mathematical analysis for the C matrices resulting
from SplitC, MoveC and DeleteC. Moreover, analytical solution and mathemat-
ical analysis for transmission line circuit are also shown as simple example.

7
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• SplitC is the method of, electrically speaking, replacing a coupling capacitor
between two nodes by two coupling capacitors with the same capacitance from
each node to ground. Mathematically speaking, two non-zero entries from C
are removed for each split coupling capacitor. Note that only coupling capac-
itors which are smaller than a chosen threshold are split. Thus, if we use a
large threshold, there is a high probability that all coupling capacitors between
nets are removed, resulting in disconnection between nets and hence accuracy
loss. Therefore, to maintain the connections between nets (at least one coupling
capacitor between every two nets), there is an additional option for SplitC. The
option is to keep the maximum capacitances per two nets regardless of the
threshold value. Chapter 4 zooms in on the SplitC method.

• MoveC is developed to improve on SplitC. There are two MoveC approaches.
In the first approach, for every two distinct connected components of G, we
select a maximum-capacitance coupling capacitor, after which we move all
other coupling capacitances (below a threshold) to join (add up to) the selected
maximum-capacitance coupling capacitor. The second approach is identical ex-
cept that we select the maximum-RC value capacitor instead of the maximum-
capacitance capacitors. Moving other coupling capacitors (below a threshold) to
join (add up to) the selected inter-component capacitors causes fewer non-zero
entries in C (i.e. sC + G is replaced by sCmove + G). Chapter 4 discusses the
MoveC method.

• Regarding SelectC, for each step tn in the transient simulation, selects the active
capacitors (above a threshold) to constitute the Cn capacitance matrix at that
time step tn (i.e. sC+G is replaced by sCn +G). A coupling capacitor is ac-
tive if the current passing through it is approximately zero. Because the SelectC
matrix uses a potentially different capacitance matrix per time-step, it is not
possible to use off-shelf ODE simulators such as Matlab’s ODE toolbox (ode23t,
ode15s, etc.). We therefore wrote a Matlab research prototype time integrator
based on a simple trapezoid (or θ-method) time integration which can handle
the dynamic selection of capacitors. Matlab was chosen because it facilitates
rapid prototyping, but even in Matlab a fast enough prototype requires special-
ized vectorized code for about any operation. Important issue is the assessment
of the improved speed of Cselect. We present Matlab timings which compare
the solution time for the full system against the solution time for the Cselect
approach. To this end our simulator aims to provide the fastest possible Matlab
implementation of the time integrator. Of interest to the project’s participant
was the potential improved speed of the Cselect approach in the industrial’s
partner commercially available circuit simulation software, but providing these
timings was deemed to be out of scope (would mean a full C++ implementa-
tion in ELDO, an industrial circuit simulator, see [11]). Working with matrix
representation rather than a graph representation of the networks (based on the
provided matrix input) caused extra numerical round-off issues to pop up in
many parts of the simulator. All of these issues are addressed in Chapter 5.

• Finally, our conclusions are presented at the end of this thesis in Chapter 6.
In general, we conclude that the reductions lead to fewer non-zeros in C which
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speeds up the transient simulation without "too much" loss of accuracy in volt-
ages and delays, depending on the industrial/academical examples at hand.

9





Chapter 2

Mathematical models for
electronic circuits with
parasitics

2.1 Introduction
We recall the formulation of network equations which is a set of Differential Algebraic
Equations (DAEs) in section 2.2. In sections 2.3 and 2.4 the transformation from
a system of KKT (Karush–Kuhn–Tucker or saddle point system [3, 30]) to PDV
(PositiveDefinite system obtained when the power terminals are excited withVoltage
sources) and the DAEs index-1 of our interest are discussed. In section 2.5 we address
the issues of incomplete RC networks used for experiments and the technique to
deal with it. The time-domain analysis for general DAEs is discussed in section 2.6.
Section 2.7 mentions round-off errors appearing due to computations or extracting
processes and how we minimize these effects.

Our circuits contain parasitic capacitors which are unavoidable and usually un-
wanted modelled capacitances (do not created by ) that exist between the parts of an
electronic component or circuit. Because the parasitic capacitances are not part of
the circuit and in general are much smaller than the circuit’s capacitors themselves,
it is thought possible to modify/relocate them without changing the circuit’s state
(too) much. Since we are dealing with circuits which contain (as part of the circuit)
the parasitic capacitors we treat them alike all other capacitances and when needed
determine which are the parasitics by using a threshold τcap, capacitance smaller than
τcap are assumed to be parasitics if the capacitor is between two distinct nets of a
resistor network.

2.2 Formulation of network equations
The mathematical model or a set of equations is generated by network constraints.
There are two types of network constraints which are branch constraints, characterized

11
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Element Branch equation
Resistor ıR = G · VR
Capacitor ıC = C · dVCdt
Inductor VL = L · dıL(t)

dt

Diode ıD(t) = d(VD(t))

Table 2.1: Basic electronic elements and their branch equations.

by branch equations, and topology constraints known as Kirchhoff’s laws. Fulfilling
these constraints gives us a set of differential algebraic equations which has to be
completed with appropriate initial conditions for the state variables.

2.2.1 Basic elements and their characteristic equations
The physical behaviour of basic network elements is described by the characteristic
equations or current - voltage relationship (Branch Constitutive Equations (BCE)). In
general, the relationship may be linear/nonlinear and may be implicitly described by
an ı−v equation ı(t) = f(v(t)), where f can be any function f : R→ R [32]. A linear
resistor with resistance R is described by the Ohm’s law equation v(t) = R · ı(t) or
ı(t) = G·v(t) with G = 1/R. On the other hand, the linear capacitor with capacitance
C is characterized by a relationship between the electrical charge q(t) it stores and
the voltage across it, q(t) = C · v. Capacitor charge is related to the current through
it by ı(t) = q′ = C ·v′(t) = C · dv(t)

dt . For a linear inductor, the characteristic equation
is a relationship between the magnetic flux and inductor’s current φ(t) = L · ı(t). The
magnetic flux is related to the voltage across the inductor by v(t) = φ′ = L · di(t)dt .
When resistor, capacitor and inductor are nonlinear, the constants R,C and L in the
characteristic functions become R(v), C(v) and L(ı) respectively. An example of a
nonlinear element is a diode whose element equation is ı(t) = Is ·

(
e
v(t)
ηVT − 1

)
, where

e.g. η ≈ 1 and VT := (kT/q) ≈ 26 mV at T = 298 K (see [32]). For simplicity
we abbreviate d(z) = Is ·

(
e
z(t)
ηVT − 1

)
, then ı(t) = d(v(t)). The basic elements and

their characteristic functions are summarized in Table 2.1. The circuit symbols for
two-terminal elements (diode, linear resistor, linear capacitor and linear inductor) are
shown in Fig. 2.1. The positive direction for current is from the plus (+) node of
higher potential v+ to the minus (-) node of lower potential v− (convention).

2.2.2 Topological constraints
Topological constraints arise from the structure of the network itself, as known as
Kirchhoff’s Current Law (KCL) and Kirchhoff’s Voltage Law (KVL). Denote branch
currents I(t) ∈ RnI , nI the number of branches, branch voltages V (t) ∈ RnV , nV the
number of non-grounded nodes, and node voltages v(t) ∈ Rnv (the voltage difference
between a node and a reference node considered as ground vref = 0). Kirchhoff’s
Current Law states that the algebraic sum of all the currents entering and leaving a
junction (node) must be equal to zero

A · I(t) = 0

12
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+ −R

ıR

+ −
C

ıC

+ −L

ıL

+ −
D

ıD

− +

V

ıV

A

ıI

Figure 2.1: The symbols for some specific components. From left to right and bottom
to top, a resistor (bottom-left), a capacitor (bottom-mid), an inductor (bottom-right),
a diode (top-left), a voltage source (top-mid) and a current source (top-right).

where A ∈ {−1, 0, 1}nv×nI describes the branch-node connections of the network
graph. Kirchhoff’s Voltage Law states that for a closed loop path the algebraic sum
of all the voltages around any closed loop in a circuit is equal to zero

AT · v(t) = V (t).

A set of network equations is formed by the topological constraints and element equa-
tions. In the next section, we introduce Modified Nodal Analysis which is commonly
used in industrial applications to generate the network equations.

2.2.3 Modified Nodal Analysis
The electrical network is fully described by both topological constraints, the charac-
teristic equations and the initial conditions for the state variables. Based on these
constraints, most computer programs employ one of three schemes to set up the net-
work equations: Sparse Tableau Approach (STA) [23], Nodal Analysis (NA) [7], or
Modified Nodal Analysis (MNA) [25, 13]. STA and NA have their own advantages
and disadvantages which are specified in [32]. On the other hand, MNA gives a com-
promise between STA and NA [20], thus it is often used to generate network equations.
In this section we concentrate on using MNA to form DAEs. To show how to formu-
late the MNA equations, we take the negative clamper circuit as an example. The
schematic of the circuit is shown in Fig. 2.2. The circuit contains two nodes and a
ground node (or reference node). The independent voltage source V (t) has a positive
terminal connected to node 1 and a negative terminal connected to the ground node.
The source signal is known. The capacitor is connected to the positive node 1 and
the negative node 2. The diode and resistor are placed in parallel connected to the
positive node 2 and the ground node.

We will formulate the MNA equations for the circuit in Fig. 2.2. For each node
other than the ground node, we write the KCL with the convention that the current
outgoing from a node possesses positive sign.

At node 1: ıVs + ıC = 0
At node 2: − ıC + ıD + ıR = 0

13
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+

−
Vs(t)

ıC

ıD
ıR

1 2

Figure 2.2: Schematic of negative diode clamper circuit.

with the provided BCEs in Table 2.1 and observing that:

VC(t) = v1(t)− v2(t)
VD(t) = v2(t)
VR(t) = v2(t)

because the ground node has zero voltage. The equations for each node become

At node 1: ıVs + C · d(v1 − v2)
dt

= 0,

At node 2: − C · d(v1 − v2)
dt

+ d(v2) + v2

R
= 0.

At this point there are two equations but three unknowns. The last equation is
the constitutive equation for the voltage source, thus v1(t) = Vs(t) leading to three
equations and three unknowns:

ıVs + C · d(v1 − v2)
dt

= 0,

−C · d(v1 − v2)
dt

+ d(v2) + v2

R
= 0,

v1(t)− Vs(t) = 0

(2.2.1)

Let x = [v; ıVs ] with v = [v1; v2]. From now on, prime ′ indicates the derivative
with respect to the time variable t. Equations (2.2.1) can be rewritten from con-
ventional formulation of MNA (for more detail about the formulation, see [13, 20])
as

[
1
−1

]
C
[

1 −1
] [ v′1

v′2

]
+
[

0
1

]
1
R

[
0 1

] [ v1
v2

]
+
[

1
0

]
ıVs +

[
0
1

]
d(v2) = 0,[

1 0
] [ v1

v2

]
− Vs(t) = 0,

⇔

 AC · C ·AT
C · v′(t) + AR · 1

R ·A
T
R · v(t) + AV · ıVs + AI · d(v2) = 0,

AT
V · v− Vs(t) = 0,

(2.2.2)

with element related incidence matrices AC ,AR,AI , and AV describe the branch-
current relations for capacitive branches, resistive branches, diode branches and branches
of voltage sources, respectively.

14
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Equations (2.2.1) can also be put in the form C −C 0
−C C 0

0 0 0


︸ ︷︷ ︸

C

 v′1(t)
v′2(t)
ı′Vs(t)


︸ ︷︷ ︸

x′(t)

+

 0 0 1
0 1

R 0
1 0 0


︸ ︷︷ ︸

G

 v1(t)
v2(t)
ıVs(t)


︸ ︷︷ ︸

x(t)

+

 0
d(v2)

0


︸ ︷︷ ︸

d(x(t))

+

 0
0
−1


︸ ︷︷ ︸

B

[Vs(t)]︸ ︷︷ ︸
s(t)

=

 0
0
0

 , (2.2.3)

or more generally

F(x′(t),x(t), t) = Cx′(t) + Gx(t) + d(x(t)) + Bs(t) = 0, (2.2.4)

where F : RN × RN × R 7→ RN and x ∈ RN is the vector solution, C ∈ RN×N is
the matrix of (linear) dynamic elements (in our case only capacitors), G is the matrix
of (linear) conductance, d : RN 7→ RN is the vector function of the nonlinear elements
(in our case only diodes), s(t) ∈ RM is the vector of all sources, B ∈ RN×M is a full
column-rank incidence matrix related to source, N and M are the dimension of the
problem and the number of sources, respectively. Equation (2.2.4) is a differential
algebraic equation (DAE) because it involves equations in both v and its derivatives.

2.3 The network with voltage or/and current sources
For doing transient simulations with providedG,C matrices, we need to drive sources
to externals. We could inject current or apply voltage sources or both of them.
Observe that if we insert voltage sources, the linear DAE system will become a saddle
point system (in this thesis called KKT system (2.3.6)). Because a KKT system
also contains unknown branch currents yu, the number of equations increases by
the number of voltage sources. For experiments with matrices G, C from industrial
circuits with many terminals, this leads to a larger indefinite and potentially less well
conditioned system. Thus in order to not increase the dimension of the system (in
case there are voltage sources), we could either inject current sources (resulting in
what we call the PDI system) or switch the system from voltage sources to current
sources by elimination of the voltage sources from the KKT system. For this latter
option, the resulting system is called the PDV system.

To illustrate this, consider a R-C segmented model of transmission line example.

15
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Figure 2.3: Transmission line example, m = 2 lines, each n = 5 nodes.

The system of equations (based on Kirchhoff’s and constitutive law) with the
current inputs is

c

0 1 2 3 4 5 6 7 8 9 10 11 12



0 6 -1 -1 -1 -1 -1 -1
1
2 -1 2 -1
3 -1 2 -1
4 -1 2 -1
5
6
7 -1 -1 2
8 -1 -1 2
9 -1 -1 2

10

[
x′
y′
]

+

0 1 2 3 4 5 6 7 8 9 10 11 12



0 2g −g −g
1 g −g 1
2 −g 2g −g
3 −g 2g −g
4 −g 2g −g
5 −g −g 2g
6 g −g 1
7 −g 2g −g
8 −g 2g −g
9 −g 2g −g

10 −g −g 2g

[
x
y

]
= 0

The 0 node is the reference node. We reorder the system such that the equation
corresponding to the reference node is placed at the end. In addition, because the
equation corresponding to the reference node equals zero and need to be removed to
make the system consistent, we replace the row and column of the reference node in
the system matrix by [N0,0] and [NT

0 ;0]. The reordered system is as follows

[
C 0 0
0 0 0

] x′
x′ref
y′

+
[
G NT

0 NT
y

N0 0 0

] x
xref
y

 = 0, (2.3.1)
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where C,G ∈ R10×10, NT
y ∈ R10, NT

0 ∈ R10 and x ∈ R10 denotes the nodal voltages,
xref ∈ R is the reference node with zero voltage, and y ∈ R2 is the current inputs.

Now, after elimination of the last equationN0x = 0 = xref . We can rewrite (2.3.1)
as

c



0 0
2 −1

2 −1
2 −1

0 0
0 0
−1 2

−1 2
−1 2

0 0


︸ ︷︷ ︸

C

x′+

g



1 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2
1 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2


︸ ︷︷ ︸

G

x +



1

1


︸ ︷︷ ︸

NT
y

y = 0, t > 0

which can be written

{
Cx′ + Gx + NT

y y = 0,
N0x = 0.

This system can be solved if the currents y =
[
Is1

Is2

]
= sy are provided:

{
Cx′ + Gx = −NT

y y,
N0x = 0.

In case the input is voltage source. Assuming that the currents flowing through
sources are all unknown, one needs replacing voltage sources (x1, x6 or v1, v6) which
leads to

17
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c



0 0
2 −1

2 −1
2 −1

0 0
0 0
−1 2

−1 2
−1 2

0 0

0

0 0



[
x′
y′
]

+

g



1 −1 1
−1 2 −1

−1 2 −1
−1 2 −1

−1 1
1 −1 1
−1 2 −1

−1 2 −1
−1 2 −1

−1 1
1

1



[
x
y

]
=



0
...

...
0
Vs1

Vs2



⇔

[
C 0
0 0

] [
x′
y′
]

+
[
G NT

s

Ns 0

] [
x
y

]
=
[
0
sx

]
(2.3.4)

where sx =
[
Vs1

Vs2

]
are the voltage sources, and y =

[
ıs1

ıs2

]
now denotes unknown

currents. Thus, if no capacitors are connected to a source (as happens in our example
here) elimination of Nsx = sx from (2.3.4) leads to elimination of y from{

Cx′ + Gx + NT
s y = 0,

Nsx = sx,

which leads to a new PDV right-hand side without derivative s′x. However, had there
been capacitors connected to v1 = s1 or v6 = s2 then (2.3.4) would have been[

C C12
C21 0

] [
x′
y′
]

+
[
G NT

s

Ns 0

] [
x
y

]
=
[
0
sx

]
and elimination of y would have caused a term s′x in the new PDV right-hand side.

We now show how to switch the KKT system to the PDV system. The KKT
system of equations (for the sake of simplicity the non-linear element such as diode

18
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d(x(t)) in (2.2.4) is omitted) is:{
Cx′ + Gx + NT

s y = 0, t0 ∈ (0, T ] ,
N0x = 0,

(2.3.6)

with y =
[
y0
y∗
]
all branch currents, y0 related to 0V source and y∗ related to other

branch currents, NT
s = [NT

0 ,N
T
y ] including those related to 0V vertices NT

0 and
known branch currents NT

y . Note that the term NT
s y in (2.3.6) generate the term

Bs(t) in (2.2.4). Input sources such as y will be functions of time multiplying with a
frequency f , and our time-end of interest is a few periods from the start, i.e., T = k/f
with typical k ∈ [1, 5].

System (2.3.6) turns out to be a DAE (see later) and of course needs an initial
solution

x(0) = x0,y(0) = y0,

to facilitate a unique solution (because it contains time derivatives). The initial
solution is addressed in equation (2.3.11). Detailed attention is given to these aspects
because moving/deactivating capacitors (or resistors) changes C and or G and can,
therefore, have unintended effects on the solutions of (2.3.6) as commented on later.

In practice, many (most) of the currents flowing through sources are not known
(unknown branch currents introduced by voltage sources). Assume a part of the

branch currents y∗ =
[
yu
ys

]
are not known, currents yu related to other to be applied

voltage sources and ys related to input current sources:

y =

y0
yu
ys

 .
Split NT

s = [NT
x ,N

T
y ] related to [y0;yu] respectively ys, N

T
x = [NT

0 ,N
T
u ] and re-

quire Nxx = sx (where sx also contain the 0V "source"). Note that by construction
NxNT

y = 0 and NyNT
x = 0 as well as NT

y ys = sy and Nxxs = sx (the latter two
relation are not symmetric).

If needed, for the sake of simplicity we will assure an order of the x degrees of
freedom (dofs) x = [x∗;xs] and write Nxx := [0,Nx][x∗;xs] = Nxxs. Thus with
currents and voltage sources combined the system of equations is a saddle point
system (KKT) in x∗ and xs dofs:{

Cx′ + Gx + NT
xxs = −NT

y ys = −sy, t0 ∈ (0, T ],
Nxxs = sx.

In the case that Nx = N0 the terms with Nx are usually omitted (implicit elimi-
nation of the 0V nodes).
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If desired, the voltage sources can be eliminated:

Cx′ + Gx + NT
xxs = −NT

y ys
⇒ NxCx′ + NxGx + NxNT

x︸ ︷︷ ︸
I

xs = −NxNT
y ys︸ ︷︷ ︸

0
⇒ Cx′ + Gx + NT

x (−NxCx′ −NxGx) = −NT
y ys

⇒ (I−NT
xNx︸ ︷︷ ︸
Mx

)Cx′ + (I−NT
xNx︸ ︷︷ ︸
Mx

)Gx = −sy

⇒ (I−Mx)︸ ︷︷ ︸
Sx

Cx′ + (I−Mx)︸ ︷︷ ︸
Sx

Gx = −sy

⇔ SxCSxx′ + SxGSxx = −sy − SxC(I− Sx)x′ − SxG(I− Sx)x
= −sy − SxCMxx′ − SxGMxx
= −sy − SxCNT

xNxx′ − SxGNT
xNxx

= −sy − SxCNT
x s′x − SxGNT

x sx.

Because NT
xNxx = NT

x sx addition of this term leads to

SxCSxx′ + (SxGSx + NT
xNx)x = NT

x sx − sy − SxCNT
x s′x − SxGNT

x sx, t ∈ (0, T ]
(2.3.7)

when the RHS (right-hand side) can be written as

SxCSxx′ + (SxGSx + NT
xNx)x = Bs + dBs′, t > 0 (2.3.8)

with s =
[
sx
sy

]
,Bs = [NT

x − SxGNT
x ,−I]

[
sx
sy

]
, and dBs′ = [−SxCNT

x ,0]
[
s′x
s′y

]
.

To simplify simulation choices we chose all sources to be either currents sx = 0 (sx
related to a 0V) or all voltages (sy = 0) labelled (PDI respectively PDV). The elim-
ination yields a system with positive (semi-)definite matrices SxCSx and SxGSx +
NT
xNx, drawback of the elimination is the appearance of the term −SxCNT

x s′x which
contains derivatives of the inputs signals s′ which typically scales with the input
frequency f ∈ [1010, 1011] Hertz (Hz) in our numerical test examples with f .

This cannot be avoided but roundoff errors are mitigated by time scaling the
system. Assume that sx, sy are of the type t 7→ s(2πft) s is the function of input, we
can solve a time scaled system (s := ft)

Sx(f ·C)Sxx′+(SxGSx+NT
xNx)x = NT

x ŝx−ŝy−Sx(f ·C)NT
x ŝ
′
x−SxGNT

x ŝx (2.3.9)

where ŝ(t) := s(2πs), s ∈ (0, f · T ]. Numerical tests show little difference in results,
but Matlab ode/dae solvers (ode15s, ode23t,etc) require (in general) this scaling to
function (a time-scale is not amongst their input parameters). We choose frequency
f ∈ [1010, 1011] Hz for two reasons: first, the application point of view, normally
circuits are operated at a 1-100 GHz frequency and second, margin of frequency
depends on time integration. As we choose simulation intervals of range [10−11, 10−10]
second (s) with dt ∈ [10−12, 10−13] s, frequency should belong to [1010, 1011] Hz.
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1 2

3

Figure 2.4: Schematic of a small circuit giving G singular.

Capacitors connected to voltage sources: We notice that the resulting PDV
system (2.3.7) has C contributing to the RHS. The to be presented circuit reductions
MoveC and SelectC alterC (move or switch off capacitors) which could cause the RHS
of (2.3.7) to change because SxCNT

x 6= SxĈNT
x (where Ĉ stands for Cmove,Csel,

etc.). This is undesirable since we suppose to solve the modified problems (MoveC,
SelectC, etc.) with the same sources (RHS with the SxCNT

x contribution). How-
ever, note that SxCNT

x in the RHS of (2.3.7) is a matrix which only contains the
capacitors to 0V and those connected to the voltage sources. Therefore, Ĉ gives iden-
tical SxĈNT

x = SxCNT
x as long as all capacitors to 0V and connected to the voltage

sources are kept in the Ĉ matrix.
Equations (2.3.8) are our equations of interest, which can deal with the application of
voltages as well as with the injection of currents. For our industrial examples, typical
input frequencies are f ∈ [1010, 1011], a typical input voltage has amplitude 1V (or
2V), and a typical injected current has amplitude 10mA (standard for current VLSI
designs).

From now on, for the sake of simplicity, we consider the system of interest (2.3.8)
to be

Cx′ + Gx = b, t > 0 (2.3.10)

where we omit Sx in (2.3.8) and use b = Bs+dBs′ from (2.3.8) (i.e. (2.3.10) represents
system (2.3.6) with Nx empty and 0V nodes eliminated).

For the initial condition, assume that at t = 0 the system has no active capacitors,
i.e., x′(0) = 0. However, x0 is bound to be non-zero due to voltage/current sources.
Thus the initial condition isGx = b. However, G is likely to be singular, for instance,
the small circuit shown in 2.4. G is singular because the KCL equation at node 3
gives zero cross in G.

Our networks are partial networks and can have so called floating nodes (single-
tons) which are nodes of degree of freedom one (degree of freedom is the number of
nodes that a node connected to).

One can partition the nodes xi to nodes also connected to a resistor, and nodes
only connected to a capacitor. In the following, we keep using C,G,x,b for the
permuted system. Thus x = [xr,xc] and permute the system into
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Cx′ + Gx = b⇔[
C11 C12
C21 C22

]
x′ +

[
G11 0
0 0

]
x = b

where G11 can still have multiple singular diagonal blocks.
Under the assumption that each connected components of C is connected to at

least one resistor, it is easy to show that C22 is non-singular and{
C11x′r + C12x′c + G11xr = b1

C21x′r + C22x′c = b2
(2.3.11)

⇔

{
x′c = C−1

22 (b2 −C21x′r)
C11x′r + G11xr = b1 −C12C−1

22 (b2 −C21x′r).
(2.3.12)

Now finally one can solve for xr if G11 is non-singular which is the case when all
of its components are non-singular, i.e., when all its components (1) have a resistor
to 0V or (2) a node connected to a (voltage or current) source. The formation of the
Schur complement C12C−1

22 C21 is (very) round-off sensitive in the sense that round-off
can create connections between capacitors which should not exist. To prevent this,
it is best to calculate this Schur-complement one C-node at a time. To avoid this
extra complication, this thesis assumes C22 is empty, i.e., for all test/input networks,
capacitors not connected to a resistor are deleted form the network.

The round-off analysis for Schur-complement and Schur-complement one-by-one
is shown as follows: Suppose C11 is the matrix block which corresponds to all nodes
disconnected to a resistor (i.e. nodes that cannot be used for DC analysis, and must be
eliminated from the system of interest), which can be done using a Schur-complement
update C22 − C21C−1

11 C12. The typical way to proceed is to calculate numerically
C11 = L̃L̃

T
by Matlab Cholesky factorization followed by updated C21L̃

−T L̃−1C12.
Because of numerical round-off C11 6= L̃L̃T (in exact arithmetic C11 = LLT ), in
general, i.e., [L̃L̃T −C11]ij = ε · ‖C11‖∞ (ε ≈ 10−15). Many (i, j) pairs are created
i 6= j (also i = j), which implies that LLT is related to a circuit with many extra
capacitors. To avoid this modification of the circuit note that a factorization of C11
can be computed step by step:

Let
S0 = C11 =

[
d1 u1
l1 S1

]
∈ Rm×m, l1 and uT1 ∈ Rm−1

S1 = S1 − l1d−1
1 u1 =

[
d2 u2
l2 S2

]
∈ R(m−1)×(m−1), l2 and uT2 ∈ Rm−2

S2 = S2 − l2d−1
2 u2

until
Sm−1 = Sm−1 − lm−1d

−1
m−1um−1 ∈ R, lm−1 and um−1 ∈ R

through node m which also produce a factorization

C11 = (L̄ + D̄)D̄−1(D̄ + Ū)

22



Mathematical models for electronic circuits with parasitics

effectively C11 = L̂L̂
T
with L = (L̄ + D̄)

√
D̄−1 (see [30]) where

L̄ =



0 0 · · · 0
l1 0 · · ·

l2
. . .

...
. . .

lm−1 0

 , D̄ =



d1 0 0 · · · 0
0 d2 0 · · ·

0 0
...

...
...

. . . 0
0 · · · 0 dm

 ,

and Ū =


0 u1
0 0 u2
...

...
. . .

0 um−1
0 · · · 0

 .

Now we create no capacitor each step but still [L̂L̂
T
− C11]ij 6= 0 at certain i = j.

Even so, the Schur-complement one-by-one has the advantage because it is easier to
compute by non-zero elements instead of computing the inverse C−1

11 .

2.4 RC circuits with DAE index 1
We consider networks with inputs are currents (known inputs) or currents derived
from voltage sources. RC circuits only involve capacitors and resistors and satisfy the
equation

C · x′(t) + G · x(t) + B · s(t) = 0 t > 0, x(t0) = x0. (2.4.1)

where the state x is the solution of the system driven by the input(s) t 7→ s(t).
Depending on C the system is

• an ODE system: C non-singular. In this case, the system (2.4.1) can be trans-
formed into the explicit ODE system

x′ = C−1(−G · x−B · s)

• a DAE system: C singular. We assume that G is non-singular and that x′(0) =
0, which allows for the computation of the steady-state (DC) solution.

In the case of a DAE, knowing the index of a DAE is an important prerequisite for its
consistent initialization and its numerical solution [6]. We focus first on the nilpotency
index, continue with the differentiation index.

Definition 2.4.1. Nilpotency index. A nilpotent matrix is a square matrix N
such that Nk = 0, for some positive integer k. The smallest such k is called the index
of the nilpotency of N (i.e. Nk = 0 but Nk−1 6= 0) [24].

Left-multiplying (2.4.1) with G−1 leads to

G−1C · x′ + x = −G−1 ·B · s (2.4.2)
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after which a Jordan decomposition [21] to G−1C leads to:

G−1C = T−1
[
G̃ 0
0 N

]
T

where T is a non-singular, time independent matrix, G̃ is a non-singular matrix and
N is a nilpotent matrix. Multiplying T from the left-hand side, the equation (2.4.2)
becomes [

G̃ 0
0 N

]
(Tx)′ + Tx = −TG−1 ·B · s.

and after splitting the transformed state into two components

Tx :=
[
y
z

]
and −TG−1Bs(t) :=

[
s1(t)
s2(t)

]
it reduces to {

y′ = G̃−1(s1(t)− y),
Nz′ = s2(t)− z.

(2.4.3)

Now the index of DAE (2.4.3) is one if N = 0 and is greater than one elsewise (in the
case of an index greater than one we would obtain

z = s2(t)−Ns′2(t) + N2s(2)
2 (t)− · · ·+ (−1)k−1Nk−1s(k−1)(t)

2

after k times taking a derivative).
Example 2.4.2. Equations (2.2.3) have DAE index-1 because:

G−1C =

 0 0 0
−RC RC 0

C −C 0

 =

 0 1 0
1 1 0
− 1
R 0 1

 RC 0 0
0 0 0
0 0 0

 −1 1 0
1 0 0
− 1
R

1
R 1


= T−1

[
G̃ 0
0 N

]
T, with N =

[
0 0
0 0

]
.

We introduce a new definition of index for general DAEs (2.2.4) which is known
as differentiation index [4, 44, 18, 17]:

Definition 2.4.3. Differentiation index. The differentiation index of (2.2.4) is
the minimum number of times that all or part of (2.2.4) must be differentiated with
respect to t in order to extract an ordinary differential equation (ODE) from (2.2.4).

Assumption 2.4.4. The conductivity matric G is non-singular.

We make the assumption 2.4.4 because as shown below it ensures that our sys-
tem (2.4.1) is a DAE of index-1, independent on C, which is needed because of our
limited control of the (used) capacitors in/of C.

In the case of linear constant coefficient systems (2.4.1), the differentiation index
is equivalent to the nilpotency index [42] of N.

Throughout this thesis we solve the DAEs of index-1. By construction we have
C and G are positive semi-definite and by assumption 2.4.4 G is non-singular. Since
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C is positive semi-definite, there exists an unitary matrix Q and eigenvalues Λ such
that

Q−1CQ =
[
Λ

0

]
.

Consider

Q−1(Cx′ + Gx) = −Q−1Bs⇔
Q−1(CQy′ + GQy) = −Q−1Bs⇔[

Λ
0

]
y′ + Ĝy = −Q−1Bs⇔[

Λ
0

]
y′ +

[
Ĝ11 Ĝ12
Ĝ21 Ĝ22

]
y = −Q−1Bs.

Let y =
[
y1
y2

]
and Q−1Bs =

[
s1
s2

]
we have

⇔

{
Λy′1 + Ĝ11y1 + Ĝ12y2 = −s1,

Ĝ21y1 + Ĝ22y2 = −s2
⇔

{
Λy′1 + Ĝ11y1 + Ĝ12y2 = −s1,

y2 = Ĝ
−1
22 (−s2 − Ĝ21y1)

Differentiate the second equation one time gives ODEs. Thus, system (2.4.1) with
G,C positive semi-definite (PSD) and G non-singular is of index-1. Observe that
only G22 needs to be non-singular. However, the G22 part of G is implicitly defined
by the nullspace of C, which we have not analyzed (yet).

2.5 Incomplete network issues
As mentioned in the previous section, our linear DAE system containing RC matrices
extracted from an incomplete network including nonlinear, dynamic elements, etc.,
therefore, RC matrices are likely to be ill-conditioned. Thus the DAE system could
not be solved, also they lack physical behaviour/network topology. After doing some
statistics on the collected RC matrices, we observe that most G matrices for experi-
ments contain many zero rows/columns, which does not satisfy assumption 2.4.4 for
the linear DAE case. Therefore, to ensure assumption 2.4.4 is satisfied a process
called G-regularization is needed before applying the methods. It includes two steps:
removing zero rows/columns in G and component singularity fix for every component
of G. G-regularization aims to create a new regular G and corresponding C without
making too many changes to the properties of original RC matrices.

Inputs: G andC supposed to be structurally symmetric i.e, the non-zero pattern is
symmetric, and vectors of gnd (reference node), exts (externals) and inputs. Output:
non-singular G̃, C̃ with smaller size compared to G and C, and updated vectors of
gnd, exts and inputs with smaller size compared to their original. The changes in the
matrices and vectors after G-regularization are shown in Table 2.2.
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Algorithm 1 G-regularization
1: Remove zero rows, columns in G and the same ones in C
2: Update the indices of gnd, exts and inputs
3: Reorder G and C by connected components of G
4: Update the indices of gnd, exts and inputs
5: for i = 1 : P do
6: if compG(i) singular then
7: GconnectG ← nodes only connected to resistor(s)
8: GconnectC ← nodes connected to resistor(s) and capacitor(s)
9: del← ∅

10: if GconnectG & ( no GconnectC || nr(GconnectC ) == 1) then
11: del← the index of min degree in G
12: else
13: del← the index of min degree in G+ C
14: end if
15: end if
16: end for
17: G̃← remove rows and columns with index del in G
18: C̃← remove rows and columns with index del in C
19: Update the indices of gnd, exts and inputs
20: Reorder G̃ and C̃ by connected components of G̃
21: Update the indices of gnd, exts and inputs.

Algorithm 1 shows the singularity-fix process: inside the loop, for each singular
ith component of G, compG(i), a node is deleted. The deleted-node is chosen by
order of priority as follows: nodes of compG(i) have no connection to C or only 1
connection to C, then we delete the node has minimum degree of freedoms (dofs) to
G. Otherwise, the node has minimum dofs of G + C is chosen. The why is that we
avoid to create many G+C components (or decouple the network), thus we have to
minimize the act of destroying coupling connections.

Algorithm 1 selects resistors to be deleted, independent on their resistance. In the
case of multiple resistors with minimal degree the first one is chosen. In the more
general case we would only need G22 to be non-singular. Because G is positive semi-
definite, its major block G22 also is. To determine its rank consider the following.

Lemma 2.5.1. C is positive semi-definite. The dimension of its nullspace is equal
to the amount of its singular connected components.

Proof. Let ek be the kth column vector of RN ,C ∈ RN×N . Let dij := ej − ei. By
construction

C =
∑

cap(i,j)

dijcijdTij +
∑

cap(k,k)

ekckkeTk (2.5.1)

C can be permuted using the order of its connected components into PCPT := Ĉ
where Ĉ is a block-diagonal matrix. The dimension of the nullspace of Ĉ is equal to
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the amount of its singular blocks because each connected component is also of form

Ĉp =
∑

cap(i,j) in Ep

dijcijdTij +
∑

cap(k,k) in Ep

ekckkeTk ,

where Ep is the set of edges belongs to component p. Ĉp is of maximal rank if
and only if there exists a capacitor to ground, i.e., cap(k, k) 6= ∅, the empty set. If
cap(k, k) = ∅ the single vector in the nullspace of Ĉp is

∑
k in Ep

ek, and the related
vector in the nullspace of Cp is

∑
k in Ep

PTek.

Corollary 2.5.2. Because G ∈ Rn×n has the same structure (2.5.1) as C ∈ Rn×n,
also sC + G has structure (2.5.1) which implies that the sC + G is non-singular
for s ∈ R if and only if its each connected component has a capacitor or resistor to
ground.

The elimination of voltage sources in the PDV version of the system of equations
creates extra capacitors and or resistors to the reference node since elimination of e.g.

2 1

4

3

Figure 2.5: Circuit before elimination of node 1.

node 1 above (Fig. 2.5) alters the circuit to the form (Fig. 2.6)

2
3

4

Figure 2.6: Circuit after elimination of node 1.

when the contribution resistor r12 between nodes 1 and 2 is altered in resistor to
ground contributing e1

(
1
r12

)
eT1 , i.e., making the connected component non-singular.

Also the application of a voltage source (see Fig 2.7) in the KKT version of the
system of equations leads to a singular component with a matrix representation as
in (2.5.2)
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+

−
Vs(t)

c
g

1 2 3

Figure 2.7: Apply a voltage source.

G + C =


1 −1 0 0
−1 2 −1 0

0 −1 1 1
0 0 1 0

 , (2.5.2)

Suppose resistance and capacitance are equal to 1. The component with a con-
nected source in (2.5.2) is non-singular because addition of row2 := row1 + row2,
followed by row3 := row3 + row2 leads to

1 −1 0 0
0 1 −1 0
0 0 0 1
0 0 1 0

 ,
which is non-singular because it can be symmetrically. Permuted to unit upper

triangular by swapping the last two columns/rows. Observe that the addition of a
current source (version PDI) would modify (2.5.2) to 1 −1 0

−1 2 −1
0 −1 1

 ,
i.e., it keeps a singular component singular. To conclude the examination of the
dimension of the nullspace of sC + G we still have to consider (2.5.2) for the case
that g 6= c.  g − g

−g g + c −c
− c c

 . (2.5.3)

First consider the case of a component which is a tree, of which a simplified (chain
without side-branches) version can be seen in (2.5.3) In this very simple case, replaced
addition of equations (row2 := row2+row1, row3 := row3+row2) leads to a singular

matrix

g −g
c −c
0 0

. In the case of a tree with a single branch, see Fig. 2.8
g −g
−g g + c1 + c2 −c1 −c2

−c1 c1
−c2 c2

 , (2.5.4)
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c1

c2

g
1 2 3

4

Figure 2.8: Circuit with a single branch.

after row2 := row2 + row1, one needs to scale the 2nd equation to eliminate the −v2
coefficient in the 3rd row, ditto for elimination of −c2 in row 4. Since the scaling
constitutes a non-singular operation which does not alter the rank of the matrix, one
ends up with a zero row at the end which shows that also (2.5.4) can be reduced to
an upper triangular matrix, i.e.,

Corollary 2.5.3. The PDV and KKT version of the system of equations still lead to
non-singular sC + G matrices.
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Table 2.2: G,C after G-regularization

Ex Matrix Size G #0-crosses cond(G) cond(G+sC) #comps
G

#comps
G + C

#comps G #comps G + C #singular Largest Size largest Size gnd
in G have 1 dof have 1 dof comps G comps G comps comp

2
in 34356 7771 inf 9.1E+17 8107 1 7771 0 - - - -

bf fix 26584 0 inf 5.3E+5 336 3 0 0 336 334 1886 1
af fix 26248 0 3.6E+7 2.9E+5 336 3 0 0 0 334 1885 1

3
in 18928 0 inf inf 1474 197 1 0 - - - -

bf fix 18927 0 inf inf 1473 197 0 0 1473 1226 1813 1
af fix 17454 0 1.7E+6 2.8E+6 1473 197 199 196 0 1226 1812 1

3.5
in 6889 2 inf inf 1475 197 1 0 - - - -

bf fix 6885 0 inf inf 1471 197 0 0 1471 1226 1447 2
af fix 5414 0 2.9E+6 3.6E+5 1471 198 1163 197 0 1226 1446 2

4
in 15582 40 inf 3.7E+19 1117 1 43 0 - - - -

bf fix 15539 0 inf 1.3E+8 1074 1 0 0 1074 747 265 3
af fix 14465 0 1E+8 4.2E+6 1078 1 2 0 0 749 264 3

4.5
in 6020 227 inf 6.6E+19 1117 1 230 0 - - - -

bf fix 5790 0 inf 8.2E+6 887 1 0 0 887 854 115 3
af fix 4903 0 1E+7 3.7E+5 887 1 296 0 0 854 114 3

6.5
in 8080 524 inf 2.6E+19 1417 1 527 0 - - - -

bf fix 7553 0 inf 1.1E+4 890 1 0 0 890 34 1039 3
af fix 6663 0 3.8E+6 5.4E+3 890 1 45 0 0 34 1038 3

26
in 16862 44 inf 2.2E+19 152 1 44 0 - - - -

bf fix 16817 0 inf 2.2E+9 161 1 7 0 107 1 6856 1
af fix 16710 0 1.6E+10 7.9E+8 239 1 75 0 0 1 6856 1

• Matrix: in implies as loaded from the .mat file (include gnd/powers); bf fix implies after removal of 0-crosses and af fix
implies after G-regularization (exclude gnd/powers)

• size G: order of G

• #0-crosses in G: number of zero columns/rows in G

• cond(G) and cond(G + sC): condition number of G and G + sC, respectively, where s = 1/dt = 1013

• #compsG and #comps(G + C): number of components (diagonal blocks) of G and G + C, respectively

• singular comps: number of singular components which is identical to the number of removed nodes (no gnd comp)

• largest comp: the ith component which is the largest

30



Mathematical models for electronic circuits with parasitics

• #compsG have only 1 dof and #comps(G + C) have only 1 dof: nb of
1-dof comps in G and G + C, respectively

• size gnd comp: size of the gnd/power component

• cells with " - " stand for uninteresting information

In table 2.2, we observe that the number of connected components in G (or diag-
onal blocks in G) increases (especially in example 26). This is because in the regular-
ization process the row and column in between the first and the last rows/columns of
a diagonal block of G could be deleted, resulting in two diagonal blocks in G. Electri-
cally speaking, when a node which is neither the first nor the last node in a connected
component is deleted, two smaller connected components of G will be generated. In
the process, we exclude the gnd/power node in af fix because we only concentrate
on the properties of the matrix which will be used in the simulation. Practically,
we should remove the equation(s) corresponding to reference (gnd/power) node(s)
to make the systems consistent and af fix is the system matrix of the system of
equations.

Now for simplicity, we still use the notations C,G, etc. for the matrices after
G-regularization.

2.6 Circuit simulation
The Modified Nodal Analysis (MNA) method leads to a system of differential - alge-
braic equations, reformulated (2.2.4):

Cx′(t) + Gx(t) + d(x(t)) + Bs(t) = 0, t > 0 (2.6.1)

The vector x(t) ∈ RN represents the unknown node voltages and branch currents of
the system, and Bs ∈ RN is the input vector. The system (2.6.1) is usually solved
from a given initial condition or DC solution x(t0) = x0. Usually, x0 is obtained by
solving for the DC solution:

Gx(t0) + d(x(t0)) + Bs(t0) = 0,

when all the dynamic elements are omitted from the circuit and a DC input (constant
input) is applied. Next, starting from the initial condition x0, the system (2.6.1) is
discretized for time points tk ∈ (0, T ] , k = 1, · · · , TN , where T represents the stop
time of the simulation. To this end the backward Euler formula implicit integration
scheme is used at time point tk:

C · x(tk)− x(tk−1)
tk − tk−1

+ Gx(tk) + d(x(tk)) + Bs(tk) = 0.

More in general (2.6.1) can be written in form

Cx′(t) = −Gx(t)− d(x(t))−Bs(t) = f(x, t),

and we implemented the integration method

C · x(tk)− x(tk−1)
tk − tk−1

= θf(x(tk), tk) + (1− θ)f(x(tk−1), tk−1),
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which reduces to Euler implicit (backward) for θ = 1. This leads to

Fk(x(tk)) = 0,

where

Fk(x(tk)) = C · x(tk)− x(tk−1)
tk − tk−1

− θf(x(tk), tk)− (1− θ)f(x(tk−1), tk−1),

which system we solve with an undamped Newton method. To approximate x(tk) we
set x(0)

k := x(tk−1) and iterate x(l+1)
k := x(l)

k − J−1
F (x(l)

k )F(x(l)
k ). The multiplication

with J−1
F (x(l)

k ) is equivalent to solving a linear system of equations, which we do with
the Matlab backlash operator, a (k-independent in case of RC circuit) LU factorization
of JF(x(l)

k ) := JF(x(t0)). Most of the computation time is spent in assembling the
derivative matrix JF(x(l)) and in solving systems with it. Therefore, increasing the
sparsity of C and/or G would potentially help to accelerate the transient simulation.

Because G can be ill-conditioned our simulator can employ scaling, i.e., instead
of (2.6.1) we solve SCSy′+SGSy+Sd(Sy) +SBs = 0 where S is a diagonal matrix
such that sii = 1

gii
if gii 6= 0 and sii = 1 if gii = 0, where gii is a diagonal entry of G.

2.7 Round-off errors and input errors
The circuits under consideration are either contributed by the industry or self-made
small academical ones. The industrial circuits are defined by means of conductance
and capacitance matrices, which in a few cases are not symmetric. To continue with
these examples, we symmetrize C and G:

G = G + GT

2 , C = C + CT

2 .

Some of the properties of the conductance and capacitance matrices we do not/cannot
verify for the (larger) industrial examples. For instance, that they are positive semi-
definite.

Later on, to ensure that the components ofG are non-singular (needed to ensureG
itself is non-singular, which is needed to have a DAE of index 1), we will either remove
resistors from G or add resistors-to-0V to G. This procedure is also round-off error
sensitive. In addition, to confirm that whether a G-component is non-singular or not,
we have to determine all edges related to this component. However, to determine all
edges, we have to convert the matrix related to the G-component into edge information
and that process is round-off sensitive. Typically, assume a vertex is connected to
three resistors, with resistances r1, r2, and r3. The G-component’s matrix will then
have a diagonal entry r1 + r2 + r3, and computing the edges will lead to edges with
related conductivities, r1, r2, r3 and r0, the latter being a round-off resistance. These
round-off resistances can only be removed with proper care. One way to avoid the
issue with the round-offs’ presence (yes or no) is to estimate the condition number
of the G-component with Matlab condest(), but this only provides an indication of
potential singularity.
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In addition, in order to determine intra (capacitors inside G-net), inter (coupling
capacitors/capacitors between two G-nets) and extra (capacitors connected to refer-
ence node) net capacities, round-off errors also can increase the amount of extra net
capacities. Also here, round-off error treatment was put into place. Issue is that a
round-off induced capacitance loop typically is of order 10−15 times the capacitance
value. There is no problem, as long as the capacitance range (value from minimum
capacitance to maximum capacitance) is small: If the smallest capacitor is in the
order of the largest one times 10−15 then we no longer can distinguish round-off loops
from real capacitors to 0V.

MoveC, see Chapter 4, is also round-off error sensitive. In matrix form, this
happens when we move/remove capacitors connected to the same node. When some
of these capacitors are removed (by subtracting i.e., Cmove = C−∆C), there remains
a small ε which we cannot say whether it represents a capacitor to ground or a round-
off error. To avoid unwanted round-off error, we construct an element related incidence
matrix AC and a diagonal matrix (whose elements are capacitances) as constructing
C in (2.2.2). In this way, Cmove is also created by ÃC without subtracting matrix.

Round-off errors occur in all phases of the simulation. Also the transient simula-
tion leads:

1. In general scaling the system SCSx′ + SGSx = SBs with a diagonal non-
singular matrix S leads to non-symmetric matrices SCS and or SGS because
IEEE arithmetic is only commutative but not associative. The same holds
for the diode operator dx 7→ SD(dx)S. The round-off errors are small, but
the Matlab backslash A \ b solver is sensitive to these non-symmetric cases,
leading to three times slower system-solution times. We solve this by explicitly
symmetrizing SCS and SGS by replacing them by 1

2 (SCS + (SCS)T ) and
1
2 (SGS + (SGS)T ) respectively, where 1

2 (SCS + (SCS)T ) is guaranteed to be
symmetric because IEEE arithmetic is commutative. However, this costs some
computational time.

2. Advancing the time-step as t := t+dt is round-off error sensitive but this matters
only in the case of the C-select implementation, which also uses t = t−dt when
the current C-select solution is rejected and we set C-select := C. Also here,
unfortunately, due to round-off, t := t+ dt followed by t = t− dt does not need
to yield to original value of t which can be and turned out to be an issue if the
source functions are of heavy-side step nature (when the Matlab square function
was used to emulate binary signals). This can be solved by using indices for t.

2.8 Summary
In this chapter, we emphasize that our circuits are incomplete which need to be fixed
by removing zero crosses and G-regularization. This is needed to make the system of
equations solvable. In addition, when there are voltage sources driven to the network,
additional rows and columns are needed to describe unknown branch currents. The
resulting system of equations would be very large for practical examples and takes
a very long time to simulation or infeasible. To prevent adding rows and columns,
we switch the system driven by voltage sources to system driven by current sources
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(the current sources are branch currents derived from voltage sources). Besides, we
mention that our system of interest is DAEs of index-1. Moreover, we provide the way
to calculate the nullspace of C and to determine the singularity of C, G and G+ sC.
Lastly, we describe the round-off errors and input errors that occur before and during
transient simulation. We also provide the techniques to minimize the errors.
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Chapter 3

Mathematical analysis

3.1 Introduction
This chapter examines the errors caused by moving capacitors for the to be presented
SplitC and MoveC in Chapter 4, and DeleteC as an intermediate step of MoveC. More
specifically, we examine for each method the related currents and see how much they
could differ. We compute the net current differences between the original problem
and MoveC problem, and between the original problem and SplitC problem:

Iorig
p − Imove

p = −1TpC0(v′ − v̂′)− 1TpG0(v− v̂),

Iorig
p − Isplit

p = −1TpC0(v′ − v̂′)− 1TpG0(v− v̂)− 1TpCsv̂′.

The details about the formulations are described in the next section. We show that
in the worst case

∣∣Iorig
p − Isplit

p

∣∣/∣∣Iorig
p

∣∣ = 1, implying a 100% relative error. In par-
ticular, we show that MoveC problem maintains the capacitance between nets while
SplitC does not. This leads to very large error for SplitC in the worst case scenario
which is described latter in Chapter 4. In order to show how much net current Iorig

p

differs from Imove
p , and Iorig

p versus Isplit
p we first describe the net current difference in

Section 3.2. The section defines net current for each problem and the net current dif-
ferences between the three problems. For illustration purpose, a simple transmission
lines circuit is first given and afterward yields the formulas for general RC circuits.
Indeed, the net current is the currents via coupling capacitors between any two nets,
see Definition 3.2.1 and the net current differences between the original problem and
other problems are equal to the sum of all the currents via capacitors and resistors
to ground.Thereafter we consider the differences ‖Iorig

p − Imove
p ‖ and ‖Iorig

p − Isplit
p ‖

(on a per net-basis) in Section 3.3, using both the Euclidean norm and the infinity-
norm. Also, an upper bound of d(v−v̂)

dt for general RC circuits is provided. Since the
estimates require also estimate of ‖v− v̂‖, the estimate of ‖v− v̂‖ and the analytical
solutions of the three problems are calculated in Section 3.4. This section gives ana-
lytical solutions and an upper bound for ‖v− v̂‖ for general circuit with non-singular
capacitance matrix. Addition estimates of ‖C‖∞, ‖∆C‖∞, ‖1TpC‖∞ and ‖1Tp ∆C‖∞
are presented in Section 3.5. First, ‖C‖∞ is estimated in Section 3.5.1. We also
examine modifications of ∆C, for instance ∆Cmove = Corig −Cmove for MoveC and
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∆Cdel for DeleteC in Section 3.5.2 and ∆Csplit for SplitC in Section 3.5.3. Section 3.6
shows the exact solution for a transmission line class of problems, i.e., with m lines
and n internal nodes for each lines.

3.2 The net current difference Iorigp − Imove
p

For each (i, j) ∈ E (set of edges) define dij = ei−ej ∈ RN , where ek ∈ RN is the k-th
unit vector. Note that E can be split into E = Ecap ∪Eres ∪ . . . , where e.g. Ecap and
Eres are the set of edges related to capacitances and resistances, respectively. Assume
that the components of G (after exclusion of the reference node gnd) partition the
set of nodes V into V = V1 ∪ V2 ∪ . . . ∪ VP where Vp contains all nodes belong
to component p, p = 1, . . . , P , with P is the number of components, and define
Ep = {(i, j) : i, j ∈ Vp}, p = 1, 2, . . . , P set of edges related to capacitances inside
component p, Ep,q = {(i, j) : i ∈ Vp, j ∈ Vq, p 6= q}, p, q = 1, 2, . . . , P is the set of
edges related to coupling capacitances. Observe that by construction, Ep,q = Eq,p,
for all p, q and that Ep := Ep,p, for all p = 1, 2, . . . , P . Because the reference node gnd
has been removed, the capacitors to node gnd are related edges in Ep,0 = {(i, gnd) :
i ∈ Vp}, p = 1, 2, . . . , P (and E0,p := Ep,0 for all p). Because the components are those
of G, there are no resistors related to edges in Ep,q, i.e., Ep,q only contains coupling
capacitors edges. Define the edges related to all coupling capacitors by

Einter =
P⋃

p,q=1,
p 6=q

Ep,q.

For our example in Fig. 3.1 we find P = 2, E1 = E2 = ∅, E1,0 = {(2, gnd), (3, gnd)},
E2,0 = {(5, gnd), (6, gnd)} and Einter = E1,2 = {(2, 5), (3, 6)} with V1 = {1, 2, 3} and
V2 = {4, 5, 6}. To describe the net current, we first use the example in Fig. 3.1.

3.2.1 The net current difference of a transmission line circuit
We assume that the KCL corresponding to the reference node has been eliminated
from the system of equations which cause capacitors to ground have associated edges
in E1,0 and E2,0. This also means that Ecap and Ep do no longer contain edges related
to capacitors to ground. Based on our system of equations (2.3.10) (assume the input
sources are currents) we know (Kirchhoff’s current law) that

Cv′ + Gv = Isource (3.2.1)

where Isource is the vector of input sources, for our example Isource = [s1; 0; 0; s2; 0; 0].
For the nodal numbering 1, 2, . . . , 6 in Fig. 3.1. We find

G =


g12 −g12 0 0 0 0
−g12 g12 + g23 −g23 0 0 0

0 −g23 g23 + g3 0 0 0
0 0 0 g45 −g45 0
0 0 0 −g45 g45 + g56 −g56
0 0 0 0 −g56 g56 + g6

 =
[
G11 0
0 G22

]
,

(3.2.2)
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A

Is1

g12 g23

g3c2 c3

A

Is2

g45 g56

g6c5 c6

c25 c36

1 2 3

4 5 6

Figure 3.1: Two lines model.

C =


0 0 0 0 0 0
0 c2 + c25 0 0 −c25 0
0 0 c3 + c36 0 0 −c36
0 0 0 0 0 0
0 −c25 0 0 c5 + c25 0
0 0 −c36 0 0 c6 + c36

 =
[
C11 C12
C21 C22

]
, (3.2.3)

Isource = Bs(t) =


1 0
0 0
0 0
0 1
0 0
0 0


[
s1(t)
s2(t)

]
, (3.2.4)

where instead of s(t), we sometimes write u(t). Our notation works as follows: cij is
the capacitance of the capacitor between nodes i and j. Also, ck is the capacitance
between node k and gnd. Ditto for gij and gk. Sometime we write c(i, j) for cij .
Nodal capacitors are denoted C(i, j) respectively C(k).

Now Cv′ stands for the vector of currents, flowing out of nodes, each component
being a sum of currents flowing through capacitors connect to the corresponding node.
Thus

Cdv
dt

= Isource −Gv, t > 0. (3.2.5)
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We first examine the term Cdv
dt

. Related to Fig. 3.1 we have:

C = c25d25dT25 + c36d36dT36 + C0 (3.2.6)

= c25


0
1
0
0
−1
0

[0 1 0 0 −1 0
]

+ c36


0
0
1
0
0
−1

[0 0 1 0 0 −1
]

+ C0 (3.2.7)

= c25


0 0 0 0 0 0
0 1 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −1 0 0 1 0
0 0 0 0 0 0

+ c36


0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 0 0 1

+


0 0 0 0 0 0
0 c2 0 0 0 0
0 0 c3 0 0 0
0 0 0 0 0 0
0 0 0 0 c5 0
0 0 0 0 0 c6


(3.2.8)

=


0 0 0 0 0 0
0 c2 + c25 0 0 −c25 0
0 0 c3 + c36 0 0 −c36
0 0 0 0 0 0
0 −c25 0 0 c5 + c25 0
0 0 −c36 0 0 c6 + c36

 . (3.2.9)

where C0 is a diagonal matrix whose diagonal elements are capacitances of capacitors
connected to reference node gnd. For this example Einter = {(2, 5), (3, 6)} = E1,2
(because capacitances to ground have been eliminated and net internal capacitances
do not exist). Now look more closely at C and the related two nets. The first net
contains degrees of freedom V1 = {1, 2, 3} and the second net contains degrees of
freedom V2 = {4, 5, 6}. Based on (3.2.6) we find that for arbitrary z ∈ RN (N = 6)

Cz =c25d25dT25z + c36d36dT36z + C0z
=c25d25(z2 − z5) + c36d36(z3 − z6) + C0z
=c25e2(z2 − z5) + c36e3(z3 − z6)− c25e5(z2 − z5)− c36e6(z3 − z6) + C0z

=


0

c25(z2 − z5)
c36(z3 − z6)

0
0
0

−


0
0
0
0

c25(z2 − z5)
c36(z3 − z6)

+ C0z

=
∑

(i,j)∈E1,2

c(i, j)ei(zi − zj)−
∑

(i,j)∈E1,2

c(i, j)ej(zi − zj) + C0z

Substituting z := dv
dt

=
[
dv1

dt
, ...,

dvN
dt

]
, we find

Cdv
dt

=



0
c25

d(v2−v5)
dt

c36
d(v3−v6)

dt
0
0
0

−


0
0
0
0

c25
d(v2−v5)

dt

c36
d(v3−v6)

dt

+ C0
dv
dt

=


0
ı25
ı36
0
0
0

−


0
0
0
0
ı25
ı36

+ C0
dv
dt
, (3.2.10)

38



Mathematical analysis

using the branch constitutive equation for capacitor ıij = cij
d(vi − vj)

dt
.

Using (3.2.10) and the branch equation for resistor ıij = gij(vi− vj), equation (3.2.5)
becomes

0
ı25
ı36
0
0
0

−


0
0
0
0
ı25
ı36

+C0
dv
dt

=


s1
0
0
s2
0
0

−


ı12
−ı12 + ı23
−ı23
ı45

−ı45 + ı56
−ı56

−


0
0

g3
0

0
g6

v
︸ ︷︷ ︸

G0

, t > 0,⇔


0
ı25
ı36
0
0
0

−


0
0
0
0
ı25
ı36

+ C0
dv
dt

=


s1
0
0
s2
0
0

−


ı12
−ı12 + ı23
−ı23 + ı3

ı45
−ı45 + ı56
−ı56 + ı6

 , t > 0, (3.2.11)

where ı3 and ı6 are the currents through g3 respectively g6 to ground and G0 is a
diagonal matrix whose diagonal elements are conductances of conductors connected
to reference node gnd. Define 1p ∈ RN , p = 1, ..., P by

1p =
∑
i∈Vp

ei

and note that
∑P
p=1 1p = 1 := [1, · · · , 1]T because V1 ∪ V2 ∪ . . . ∪ VP = V . In our

example for net 1, V1 = {1, 2, 3} i.e., a set of degree of freedom belongs to net 1, so

11 = e1 + e2 + e3 =


1
1
1
0
0
0

 and 12 =


0
0
0
1
1
1

 .

Then for (3.2.11)

1T1 C
dv
dt

= 1T1
(
Isource −Gv

)
⇔ (3.2.12)

1T1
(


0
ı25
ı36
0
0
0

−


0
0
0
0
ı25
ı36

+ C0
dv
dt

)
= 1T1

(

s1
0
0
s2
0
0

−


ı12
−ı12 + ı23
−ı23 + ı3

ı45
−ı45 + ı56
−ı56 + ı6


)
⇔

ı25 + ı36 + c2
dv2

dt
+ c3

dv3

dt
= s1 − 1T1 G0v = s1 − ı3. (3.2.13)
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This is KCL for a cut-set (set of edges cut by a closed surface) that surrounds net 1.
Thus

1TCdv
dt

= ı25 + ı36 + c2
dv2

dt
+ c3

dv3

dt
− ı25 − ı36 + c5

dv5

dt
+ c6

dv6

dt

= s1 + s2 − ı3 − ı6 = s1 + s2 − 1TG0v.

This is KCL for a cut-set that surrounds both net1 and net 2
For our example we move the capacitor related to edge (3, 6) to edge (2, 5) which

results in one capacitor at (2, 5) with capacitance ĉ25 = c25 + c36. We call the related
capacitance matrix the MoveC matrix Ĉ

Ĉ =


0 0 0 0 0 0
0 c2 + ĉ25 0 0 −ĉ25 0
0 0 c3 0 0 0
0 0 0 0 0 0
0 −ĉ25 0 0 c5 + ĉ25 0
0 0 0 0 0 c6

 . (3.2.14)

Then the MoveC related Kirchhoff’s laws are

Ĉv̂′ + Gv̂ = Isource

and similar to (3.2.12) we find

1T1 Ĉ
dv̂
dt

= 1T1
(
Isource −Gv̂

)
⇔

1T1
(


0
ı̂25
0
0
0
0

−


0
0
0
0
ı̂25
0

+ C0
dv̂
dt

)
= 1T1

(

s1
0
0
s2
0
0

−


ı̂12
−ı̂12 + ı̂23
−ı̂23 + ı̂3

ı̂45
−ı̂45 + ı̂56
−ı̂56 + ı̂6


)
⇔

ı̂25 + c2
dv̂2

dt
+ c3

dv̂3

dt
= s1 − ı̂3. (3.2.15)

Let Ip is the sum of currents flowing out of the net p through the coupling capacitors
which have exactly one vertex in Vp. Equations (3.2.13) and (3.2.15) show that


ı25 + ı36︸ ︷︷ ︸
Iorig

1

+c2
dv2

dt
+ c3

dv3

dt
= s1 − ı3, (3.2.16a)

ı̂25︸︷︷︸
Imove

1

+c2
dv̂2

dt
+ c3

dv̂3

dt
= s1 − ı̂3. (3.2.16b)

⇔


Iorig
1 + 1T1 C0

dv
dt

= s1 − 1T1 G0v, (3.2.17a)

Imove
1 + 1T1 C0

dv̂
dt

= s1 − 1T1 G0v̂. (3.2.17b)
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(3.2.17a)− (3.2.17a)⇒ Iorig
1 − Imove

1 + 1T1 C0
d(v− v̂)

dt
= −1T1 G0(v− v̂). (3.2.18)

Note that (3.2.16a) and (3.2.16b) can be rewritten
1T1 Ĉ

dv̂
dt

= s1 − 1T1 G0v̂,

1T1 C
dv
dt

= s1 − 1T1 G0v.

i.e., to estimate Iorig
1 − Imove

1 we need to estimate d(v−v̂)
dt as well as v− v̂.

Now for error estimate (3.2.18), observe that our analysis for Fig. 3.1 is also valid
when the two nets have internal capacitors because multiplication with 1p leads to
zero capacitance sums (as it did for the net-p internal resistors).

3.2.2 The net current difference of general RC circuits
Definition 3.2.1. Given the problem related to an RC network

Cv′ + Gv = Isource

The net current Ip of net p at any given time t is defined to be

Ip(t) =
P∑
q=1,
q 6=p

Ip,q(t),

where
Ip,q(t) =

∑
(i,j)∈Ep,q

cij(v′i(t)− v′j(t)).

i.e., Ip(t) is the sum of all currents via coupling capacitors between net p and
nets q with capacitors connected to net p. Consider currents related to net p for the
unmodified problem

1TpCv′ = 1Tp (Isource −Gv)⇔
P∑
q=1,
q 6=p

∑
(i,j)∈Ep,q

cij(v′i − v′j) +
∑

(i,j)∈Ep

cij(v′i − v′j)+
∑

(i,gnd)∈Ep,0

civ
′
i

= Sp −
∑

(i,j)∈Eres(p)

gij(vi − vj)−
∑

(i,gnd)∈Eres(p,0)

givi ⇔ (3.2.20)

Iorig
p +

∑
(i,gnd)∈Ep,0

civ
′
i = Sp −

∑
(i,gnd)∈Eres(p,0)

givi, (3.2.21)

where Sp =
∑
i∈Vp si, the total current sources applied to net p. In (3.2.20), the

internal capacitance currents and resistor currents eliminate each others which leads
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to (3.2.21). Denote v̂ solution of MoveC problem or SplitC problem. The net current
for MoveC of the modified problem is

Imove
p =

P∑
q=1,
q 6=p

∑
(i,j)∈Ep,q

ĉij(v̂′i − v̂′j) = Sp −
∑

(i,gnd)∈Eres(p,0)

giv̂i −
∑

(i,gnd)∈Ep,0

civ̂
′
i.

The net current difference for MoveC is

Iorig
p − Imove

p =
P∑
q=1,
q 6=p

∑
(i,j)∈Ep,q

cij(v′i − v′j)−
P∑
q=1,
q 6=p

∑
(i,j)∈Ep,q

ĉij(v̂′i − v̂′j) (3.2.22)

=
(3.2.20)

−
∑

(i,gnd)∈Eres(p,0)

gi(vi − v̂i)−
∑

(i,gnd)∈Ep,0

ci(v′i − v̂′i) (3.2.23)

=− 1TpC0(v′ − v̂′)− 1TpG0(v− v̂). (3.2.24)

The current difference for SplitC is different as it adds capacitors to ground:

Iorig
p − Isplit

p = −
∑

(i,gnd)∈Eres(p,0)

gi(vi − v̂i)−
∑

(i,gnd)∈Ep,0

ci(v′i − v̂′i)−
∑

(i,gnd)∈Ep,0

civ̂
′
i

= −1TpC0(v′ − v̂′)− 1TpG0(v− v̂)− 1TpCsv̂′, (3.2.25)

where Cs is diagonal matrix created by splitting coupling capacitors to ground. How-
ever, in the worst case scenario, when we split all coupling capacitors, the relative net
current difference becomes

∣∣Iorig
p − Isplit

p

∣∣
Iorig
p

=

∣∣ P∑
q=1,
q 6=p

∑
(i,j)∈Ep,q

cij(v′i − v′j)−
P∑
q=1,
q 6=p

∑
(i,j)∈Ep,q

ĉij(v̂′i − v̂′j)
∣∣

∣∣ P∑
q=1,
q 6=p

∑
(i,j)∈Ep,q

cij(v′i − v′j)
∣∣ = 1,

i.e., a 100% relative error (Isplit
p = 0 because there are no coupling capacitors left,

they are all split to ground). With this we want to emphasize that MoveC always
maintains capacitance between nets even in the worst case scenario, which leads to
small solution error.

3.3 Estimate for net current difference
∣∣∣Iorigq − Imove

q

∣∣∣
For the error estimate we focus on the net current difference Iorig− Imove which does
not involve the term 1TpCsv̂′ of SplitC. This extra term indicate that SplitC generates
large errors if there are larger currents through capacitors split to be connected to
the ground. Based on (3.2.24), Iorig

1 − Imove
1 = −1T1

(
C0

d(v−v̂)
dt + G0(v − v̂)

)
. The

relative inter-component-q error is given by∣∣Iorig
q − Imove

q

∣∣∣∣Iorig
q

∣∣ =

∣∣1Tq C0
d(v− v̂)

dt
+ 1TqG0(v− v̂)

∣∣∣∣Sq − 1Tq C0
dv
dt
− 1TqG0v

∣∣ . (3.3.1)
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To obtain
∣∣Iorig
q −Imove

q

∣∣∣∣Iorig
q

∣∣ ≤ a
b , we need estimates of the form

∣∣Iorig
q − Imove

q

∣∣ ≤ a (upper

bound) and
∣∣Iorig
q

∣∣ ≥ b (lower bound). For a lower bound for
∣∣Iorig
q

∣∣ use
Iorig
q = Sq −

(
1Tq C0

dv
dt

+ 1TqG0v
)

︸ ︷︷ ︸
=:∆

,

assume |∆| < |Sq| and apply the inverse triangle inequality
∣∣a − b∣∣ ≥ ∣∣|a| − |b|∣∣ for

a = Sq and b = ∆, this results in∣∣Iorig
q

∣∣ =
∣∣Sq −∆

∣∣ ≥ ∣∣|Sq| − |∆|∣∣
whence

1∣∣Iorig
q

∣∣ ≤ 1
|Sq| − |∆|

= 1

|Sq| −
∣∣1Tq C0

dv
dt

+ 1TqG0v
∣∣ . (3.3.2)

For an upper bound for
∣∣Iorig
q −Imove

q

∣∣ we will exploit the Euclidean or infinity norms.

3.3.1 An estimate for |Iorig
q − Imove

q | using the 2-norm
There are two ways to exploit the Euclidean ‖.‖2 norm. First,

∣∣Iorig
q − Imove

q

∣∣ =
∣∣1Tq (C0

(dv
dt
− dv̂
dt

)
+ G0(v− v̂)

)
︸ ︷︷ ︸

=:w

∣∣. (3.3.3)

To estimate the product aTb for a,b ∈ RN we can use Cauchy–Schwarz or the inner
product-relation

aTb = ‖a‖2‖b‖2 cos(∠(a,b)) ≤ ‖a‖2‖b‖2, (3.3.4)

where ∠(a,b) the angle between two non-zero vectors a and b. Based on (3.3.4), (3.3.3)
can be estimated above∣∣Iorig

q − Imove
q

∣∣ = ‖1q‖2‖w‖2 cos(〈1q,w〉) ≤ ‖1q‖2‖w‖2

because | cosφ| ≤ 1 for all angles φ, where

‖1q‖2 = ‖
∑
i∈Iq

ei‖2 =
√
|Vq|.

With |Vq| the number of degrees belonging to component q.
Consider the term C0

dv
dt where C0 contains precisely one capacitor with capaci-

tance c to ground connected to nodal voltage v1(t) = sin(2πft), see Fig. 3.2.
In that case C0

dv
dt = cdv1

dt = 2πfc · cos(2πft) will be large when fc is large (a
different way to see this is to time-scale the system as in (2.3.9) which then becomes
(fC)x′(s)+Gx(s) = Isource where now v1(s) = sin(2πs)). Hence, we assume that our
circuits have capacitances to ground (much) smaller than their operating frequency.
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ıc

1

Figure 3.2: Circuit having a capacitance to ground.

Left to do is to estimate

‖w‖2 =
∥∥∥C0

d(v− v̂)
dt

+ G0(v− v̂)
∥∥∥

2
≤ ‖C0‖2

∥∥∥d(v− v̂)
dt

∥∥∥
2

+ ‖G0‖2‖v− v̂‖2.

Thus

∣∣Iorig
q − Imove

q

∣∣ ≤√|Vq| · (‖C0‖2 ·
∥∥∥d(v− v̂)

dt

∥∥∥
2

+ ‖G0‖2 · ‖v− v̂‖2
)
. (3.3.5)

Applied for transmission lines example we have

∣∣Iorig
q − Imove

q

∣∣ ≤√|Vq| · (max{c2, c3, c5, c6} ·
∥∥∥d(v− v̂)

dt

∥∥∥
2

+ max{g3, g6} · ‖v− v̂‖2
)
.

Another estimate for
∣∣Iorig
q − Imove

q

∣∣, suppose q = 1 for transmission lines example, is

∣∣Iorig
1 − Imove

1
∣∣ =

∥∥∥1T1 C0
d(v− v̂)

dt
+ 1T1 G0(v− v̂)

∥∥∥
2

=
∥∥∥ [0 c2 c3 0 0 0

]
· d(v− v̂)

dt
+
[
0 0 g3 0 0 0

]
· (v− v̂)

∥∥∥
2

≤
∥∥∥ [0 c2 c3 0 0 0

] ∥∥∥
2
·
∥∥∥d(v− v̂)

dt

∥∥∥
2
+∥∥∥ [0 0 g3 0 0 0

] ∥∥∥
2
·
∥∥∥(v− v̂)

∥∥∥
2

=
√
c22 + c23 ·

∥∥∥d(v− v̂)
dt

∥∥∥
2

+ g3‖v− v̂‖2.

For general RC circuits,

∣∣Iorig
p − Imove

p

∣∣ =
∥∥∥1TpC0

d(v− v̂)
dt

+ 1TpG0(v− v̂)
∥∥∥

2
(3.3.6)

≤
√ ∑
i∈Ep,0

c2i ·
∥∥∥d(v− v̂)

dt

∥∥∥
2

+
√ ∑
i∈Eres(p,0)

g2
i ‖v− v̂‖2. (3.3.7)

This leads v− v̂ to be estimated, see Section 3.4. As an alternative to (3.3.6) we can
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estimate:∣∣Iorig
1 − Imove

1
∣∣ =

∥∥∥1T1 C0
d(v− v̂)

dt
+ 1T1 G0(v− v̂)

∥∥∥
2

=
∥∥∥ [0 c2 c3 0 0 0

]
· d(v− v̂)

dt
+
[
0 0 g3 0 0 0

]
· (v− v̂)

∥∥∥
2

≤
∥∥∥c2 d(v2 − v̂2)

dt
+ c3

d(v3 − v̂3)
dt

+ g3(v3 − v̂3)
∥∥∥

2

=
∣∣c2 d(v2 − v̂2)

dt
+ c3

d(v3 − v̂3)
dt

+ g3(v3 − v̂3)
∣∣.

For net p of a general circuit,∣∣Iorig
p − Imove

p

∣∣ =
∥∥∥1TpC0

d(v− v̂)
dt

+ 1TpG0(v− v̂)
∥∥∥

2

≤
∣∣ ∑

(i,gnd)∈Ep,0

ci
d(vi − v̂i)

dt
+

∑
(i,gnd)∈Eres(p,0)

gi(vi − v̂i)
∣∣.

3.3.2 An estimate for
∣∣∣Iorig

q − Imove
q

∣∣∣ using ∞-norm

Based on (3.2.5) and assume q = 1∣∣Iorig
1 − Imove

1
∣∣ =

∣∣1T1 C0
d(v− v̂)

dt
+ 1T1 G0(v− v̂)

∣∣
=
∣∣ [0 c2 c3 0 0 0

]
· d(v− v̂)

dt
+
[
0 0 g3 0 0 0

]
· (v− v̂)

∣∣
≤
∥∥∥ [0 c2 c3 0 0 0

] ∥∥∥
∞
·
∥∥∥d(v− v̂)

dt

∥∥∥
∞∥∥∥ [0 0 g3 0 0 0

] ∥∥∥
∞
·
∥∥∥(v− v̂)

∥∥∥
∞

= (c2 + c3) ·
∥∥∥d(v− v̂)

dt

∥∥∥
∞

+ g3 ·
∥∥∥(v− v̂)

∥∥∥
∞

and for general RC circuits∣∣Iorig
p − Imove

p

∣∣ =
∣∣1TpC0

d(v− v̂)
dt

+ 1TpG0(v− v̂)
∣∣

≤
∑

(i,gnd)∈Ep,0

ci ·
∥∥∥d(v− v̂)

dt

∥∥∥
∞

+
∑

(i,gnd)∈Eres(p,0)

gi ·
∥∥∥(v− v̂)

∥∥∥
∞

using that ‖.‖∞ also is an associated (induced/ matrix norm).

3.3.3 An estimate of d(v−v̂)
dt

Next, we estimate
∥∥∥d(v−v̂)

dt

∥∥∥
2
. Assume that there exists α > 0 such that

dvi(t)
dt

≤ α and dv̂i(t)
dt

≤ α (3.3.8)
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for all nodal voltages vi and v̂i.
Bound (3.3.8) is valid if the derivatives of vi and v̂i are all bounded in time, but

the derivatives can be very large. Define the one-vector 1 = [1, ..., 1]T ∈ RN , and
define vector (in-)equalities such as a ≤ b ⇔ ai ≤ bi, ∀i = 1, ..., N . Using these
definitions one finds

0 ≤
∣∣dv
dt

∣∣ =


∣∣dv1

dt

∣∣
...∣∣dvN
dt

∣∣

 ≤
 α

...
α

 = α · 1 and 0 ≤
∣∣dv̂
dt

∣∣ ≤ α · 1.
Using the Euclidean norm, one finds∥∥∥dv

dt

∥∥∥
2
,
∥∥∥dv̂
dt

∥∥∥
2
≤ α · ‖1‖2 = α

√
N

which implies ∥∥∥dv
dt
− dv̂
dt

∥∥∥
2︸ ︷︷ ︸

‖u‖2

≤
∥∥∥dv
dt

∥∥∥
2

+
∥∥∥dv̂
dt

∥∥∥
2
≤ 2α

√
N. (3.3.9)

Using the infinity-norm and 0 < a ≤ b⇒ ‖a‖p ≤ ‖b‖p for p =∞ which leads to

0 ≤
∥∥∥dv
dt

∥∥∥
∞
,
∥∥∥dv̂
dt

∥∥∥
∞
≤ α and

∥∥∥d(v− v̂)
dt

∥∥∥
∞
≤ 2α. (3.3.10)

Estimates (3.3.9) and (3.3.10) can be overestimates because d(v−v̂)
dt could be small

relative to the size of dv
dt ,

dv̂
dt , for instance when v̂(t) = v(t) + ε (a constant small

error) and dv
dt is large.

3.4 An upper bound for ‖v− v̂‖
Without loss of generality, denote v = xo and v̂ = xm.The solution of

x′ = Ax + b(t), x(0) = x0

is given by

x = eAt
[∫ t

0
e−Asb(s)ds+ x0

]
, x0 = I

[∫ 0

0
b(s)ds+ x0

]
= x0.

Now assume that the nodes are numbered as follows: first, the nodes to which only
capacitors are connected, and next the ones to which only resistors are connected,
then

Cx′(t) + Gx(t) + I(t) = 0⇔[
C11 0
0 0

]
x′(t) +

[
G11 G12
G21 G22

]
x(t) + I(t) = 0 (3.4.1)
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x = [xc;xr] = [x1;x2]. Assume G is non-singular. Because G is SPD, G22 is also
SPD which implies that G22 is non-singular. Now for our error analyzes, we will
consider two cases, C11 non-singular and C11 singular.

Case 1: Assume C11 non-singular (i.e. all nets of C11 are non-singular, i.e. have
a capacitor to ground). Then (3.4.1) is equivalent to{

C11x′1(t)+ G11x1(t) + G12x2(t) + I1(t) = 0
G21x1(t) + G22x2(t) + I2(t) = 0.

(3.4.2)

and implies
C11︸︷︷︸
=:C

x′1(t) + (G11 −G12G−1
22 G21)︸ ︷︷ ︸

=:G (if needed, is SPD)

x1(t) + I1 −G12G−1
22 I2︸ ︷︷ ︸

−b(t)

= 0,

x2(t) = −G−1
22 (I2 + G21x1(t))

⇔

{
Cx′1(t) + Gx1(t) = b(t),
x2(t) = −G−1

22 (I2(t) + G21x1(t))
⇔

{
x′1(t) = −C−1Gx1(t) + C−1b(t),
x2(t) = −G−1

22 (I2(t) + G21x1(t))

which latter ODE holds for both original capacitance matrix Co and MoveC capaci-
tance matrix Cm, and defines

xo1(t) = e−C−1
o Gt

(∫ t

0
eC−1

o GsC−1
o b(s)ds+ x1(0)

)
, (3.4.3)

xm1 (t) = e−C−1
m Gt

(∫ t

0
eC−1

m GsC−1
m b(s)ds+ x1(0)

)
. (3.4.4)

Assume x1(0) = 0. Applying a standard telescoping argument

xo1(t)− xm1 (t) = e−C−1
o Gt

∫ t

0
eC−1

o GsC−1
o b(s)ds− e−C−1

m Gt
∫ t

0
eC−1

m GsC−1
m b(s)ds

= e−C−1
o Gt

∫ t

0
eC−1

o GsC−1
o b(s)ds− e−C−1

m Gt
∫ t

0
eC−1

o GsC−1
o b(s)ds

+ e−C−1
m Gt

∫ t

0
eC−1

o GsC−1
o b(s)ds− e−C−1

m Gt
∫ t

0
eC−1

m GsC−1
m b(s)ds

=
(
e−C−1

o Gt − e−C−1
m Gt

)∫ t

0
eC−1

o GsC−1
o b(s)ds

+ e−C−1
m Gt

∫ t

0

(
eC−1

o GsC−1
o − eC−1

m GsC−1
m

)
b(s)ds. (3.4.5)

Thus, small ‖xo1(t)− xm1 (t)‖ can be obtained by having{
e−C−1

o Gt − e−C−1
m Gt, (3.4.6a)

eC−1
o GsC−1

o − eC−1
m GsC−1

m . (3.4.6b)
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close to the zero matrix. We suspect that these matrices are close to zero ifCo−Cm :=
∆C is small. Thus we analyze (3.4.6a) as a function of ∆C

h1(∆C) = e−C−1
o Gt − e−(Co−∆C)−1Gt

= e−C−1
o Gt − e−[Co(I−C−1

o ∆C)]−1Gt

= e−C−1
o Gt − e−(I−C−1

o ∆C)−1C−1
o Gt

=
(
eI − e(I−C−1

o ∆C)−1
)
e−C−1

o Gt. (3.4.7)

which latter factor is small if its exponent matrix is close to zero which holds if

(I−C−1
o ∆C︸ ︷︷ ︸
=:∆

)−1 ≈ I⇔ C−1
o ∆C ≈ 0. (3.4.8)

Therefore, to determine how small the error ‖xo−xm‖ we need to control the quantity
∆ = C−1

o ∆C. To this end, one can use:
For ‖∆‖ < 1 we have

(I−∆)(I + ∆ + ∆2 + . . .+ ∆n) = I−∆n+1

⇒ (I−∆)
∞∑
i=0

∆i = I

⇒ (I−∆)−1 =
∞∑
i=0

∆i ≈ I

⇒
∞∑
i=0

(C−1
o ∆C)i ≈ I or

∞∑
i=1

(C−1
o ∆C)i ≈ 0.

Next we analyze (3.4.6b):

h2(∆C) = eC−1
o GsC−1

o − eC−1
m GsC−1

m

= eC−1
o GsC−1

o − e(Co−∆C)−1Gs(Co −∆C)−1

= eC−1
o GsC−1

o − e(I−C−1
o ∆C)−1C−1

o Gs(I−C−1
o ∆C)−1C−1

o

= eC−1
o GsC−1

o − eC−1
o Gse((I−C−1

o ∆C)−1−I)C−1
o Gs(I−C−1

o ∆C)−1C−1
o

= eC−1
o Gs

(
I− e((I−C−1

o ∆C)−1−I)C−1
o Gs(I−C−1

o ∆C)−1
)
C−1
o .

is small if (3.4.8) holds.
Employing Mathematica, we compute the analytical solution for the original prob-

lem derived from the circuit in Fig. 3.1 and the MoveC problem. For simplicity, as-
sume that c25 = ci = 1, gij = gi = 1 for all 1 ≤ i, j ≤ 6 and c36 = c. xr = [x1;x4],
xc = [x2;x5;x3;x6].

Co =


2 −1 0 0
−1 2 0 0

0 0 c+ 1 −c
0 0 −c c+ 1

 , G11 =


2 0 −1 0
0 2 0 −1
−1 0 2 0

0 −1 0 2
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G12 =


−1 0

0 −1
0 0
0 0

 = GT
21, G22 =

[
2 0
0 2

]
, s(t) =

[
cos(2πt)
a · cos(2πt)

]
. (3.4.9)

To be studied for error estimate is e±C−1
o Gt where Co is diagonalizable. Then for

c = 1, using Mathematica we find that

C−1
o G =


1 1

2 − 2
3 − 1

3
1
2 1 − 1

3 − 2
3

− 2
3 − 1

3
4
3

2
3

− 1
3 − 2

3
2
3

4
3

 = WDW−1

where

W =


1
4 (1−

√
17) 1

4 (
√

17− 1) 1
4 (1 +

√
17) 1

4 (−1−
√

17)
1
4 (1−

√
17) 1

4 (1−
√

17) 1
4 (1 +

√
17) 1

4 (1 +
√

17)
1 −1 1 −1
1 1 1 1

 ,

D =


1
4 (7 +

√
17) 0 0 0

0 1
12 (7 +

√
17) 0 0

0 0 1
4 (7−

√
17) 0

0 0 0 1
12 (7−

√
17)


and e±C−1

o Gt = We±DtW−1. Furthermore, compute

xo(t) = e−C−1
o Gt

(∫ t

0
eC−1

o GsC−1
o b(s)ds+ x(0)

)
where for a = 0 in (3.4.9) we find

C−1
o b(s) = C−1

o G12G−1
22 s(t)

=


− 1

3 − 1
6

− 1
6 − 1

3
0 0
0 0

 s(t).
For Cm, (see (3.2.14)), after permutation we get

Cm =


2 + c −1− c 0 0
−1− c 2 + c 0 0

0 0 1 0
0 0 0 1


and C−1

m G = WmDmW−1
m where (c = 1 is the capacitance of the capacitor c36 to be

moved)

Wm =


1
4 (1−

√
17) 1

20 (3
√

41− 17) 1
4 (1 +

√
17) 1

20 (−17− 3
√

41)
1
4 (1−

√
17) 1

20 (17− 3
√

41) 1
4 (1 +

√
17) 1

20 (17 + 3
√

41)
1 −1 1 −1
1 1 1 1

 ,
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Dm =


1
4 (7 +

√
17) 0 0 0

0 1
20 (23 + 3

√
41) 0 0

0 0 1
4 (7−

√
17) 0

0 0 0 1
20 (23− 3

√
41)


and for a = 0,

C−1
m b(s) = C−1

m G12G−1
22 s(t)

=


− 3

10 − 1
5

− 1
5 − 3

10
0 0
0 0

 s(t).
The solutions xo and xm are plotted in Fig. 3.3 for c = 1 and in Fig. 3.5 for c = 0.25:

Out[ ]=

xo_2 xo_5 xo_3 xo_6 xo_1 xo_4

xm_2 xm_5 xm_3 xm_6 xm_1 xm_4

1 2 3 4
t

-0.04

-0.02

0.02

0.04

0.06

x

Figure 3.3: Analytical solution of xo and xm respectively, c = 1.

We observe that if the move capacitor c36 is small, the error |xo − xm| is small.
Finally, the inverse of Cm can be determined analytically as well, as follows. Consider
C−1
o ∆C. First, assume we move precisely 1 capacitor then

∆C = −d36c36dT36︸ ︷︷ ︸
uuT

+d25c36dT25︸ ︷︷ ︸
vvT

,

two rank-1 updates Cm = Co −∆C

⇒ C−1
m = (Co −∆C)−1 =: (Co + uuT − vvT )−1 ⇔

C−1
m = (Co + uuT︸ ︷︷ ︸

B

−vvT )−1.

Using Woodbury formula, then

(B− vvT )−1 = B−1 + B−1vvTB−1

1 + vTB−1v
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Out[ ]=

|xo_2-xm_2| |xo_5-xm_5| |xo_3-xm_3|

|xo_6-xm_6| |xo_1-xm_1| |xo_4-xm_4|

1 2 3 4
t

0.001

0.002

0.003

0.004

0.005

0.006

x

Figure 3.4: Absolute error of xo and xm, c = 1.

Out[ ]=

xo_2 xo_5 xo_3 xo_6 xo_1 xo_4

xm_2 xm_5 xm_3 xm_6 xm_1 xm_4

1 2 3 4
t

-0.04

-0.02

0.02

0.04

0.06

x

Figure 3.5: Analytical solution of xo and xm respectively, c = 0.25.

where
B−1 = C−1

o −
C−1
o uuTC−1

o

1 + uTC−1
o u

.

Thus

C−1
m = C−1

o −
C−1
o uuTC−1

o

1 + uTC−1
o u

+

(
C−1
o −

C−1
o uuTC−1

o

1 + uTC−1
o u

)
vvT

(
C−1
o −

C−1
o uuTC−1

o

1 + uTC−1
o u

)
1 + vT

(
C−1
o −

C−1
o uuTC−1

o

1 + uTC−1
o u

)
v

.

The inverse of Co is easy to compute because it is a block Toeplitz matrix, see
section 3.6. Summarized, we find that for case 1:

Corollary 3.4.1.

‖v(t)− v̂(t)‖ = ‖xo(t)− xm(t)‖ ≤ c(t)‖∆C‖ (3.4.10)
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Out[ ]=

|xo_2-xm_2| |xo_5-xm_5| |xo_3-xm_3|

|xo_6-xm_6| |xo_1-xm_1| |xo_4-xm_4|

1 2 3 4
t

0.0005

0.0010

0.0015

0.0020

x

Figure 3.6: Absolute error of xo and xm, c = 0.25.

if all involved sources are smooth enough. More precisely, the antiderivatives in (3.4.3)
and (3.4.4) should exist in the sense of Riemann or Lebesgue integration. Hence, the
integrals/antiderivatives of s → eC−1

o GsC−1
o b(s), s → eC−1

m GsC−1
m b(s) should exist,

which is definitely the case for continuous s → eC−1
o GsC−1

o b(s) which implies for
continuous s → b(s). Essentially, binary (non-differentiable) periodic sources (such
as the Matlab "square" function) induce an element b ∈ (L1([0, T ]))N which implies
that t→

∫ t
0 e

C−1
o GsC−1

o b(s)ds, t ∈ [0, T ] an element of W 1,1([0, T ])N using Lebesgue
integration, where

W k,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω), ∀|α| ≤ k}.

Case 2: For our simplest error analysis case, we demand that both Cmove and
Corig are non-singular. This may not be automatically the case. Assume V1 = {1, 3}
and V2 = {2, 4} i.e., nodes 1 and 3 belong to component 1 of G or G-net 1, and
respectively. Also, cb is in component 1 of C and ca is to be moved capacitor. There
are two cases:

1. ca is also in component 1 of C. C-net 1 contains nodes {1, 2, 3, 4, 5}. The
resulting C-net is the same.

2. ca is in component 2 of C, C-net 1 contains nodes {1, 2} (Fig. 3.7) and C-net 2
contains nodes {3, 4, 5} (Fig. 3.8). This can create extra C-nets (Fig. 3.10). For
example:

cb

1 2

Figure 3.7: C-net 1.
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ca

5 4 3

Figure 3.8: C-net 2.

Move ca onto cb:

cb

ca

1 2

Figure 3.9: C-net 1 is non-singular.

5 4 3

Figure 3.10: C-net 2: move and one of components is singular.

We can rewrite equation (3.4.1) into:[
C 0
0 0

]
x′(t) + Gx(t) = b(t). (3.4.11)

Assume C is singular. Because it is symmetric there exists Q−1 = QT such that

Q−1CQ =
[
Λ

0

]
which, settingB =

[
Q

I

]
, induces a splitting different from (3.4.11):

B−1
[
C

0

]
By′(t) + B−1GBy(t) = B−1b(t)⇔

Λ
0

0

y′(t) + B−1GBy(t) = B−1b(t) ⇔
E:=B−1GB[

Λ
0

]
y′(t) +

[
E11 E12
E21 E22

]
y(t) =

[
s1(t)
s2(t)

]
where one needs E22 to be non-singular, which is the case becauseG is positive definite
thus E = B−1GB = BTGB is also positive definite (B−1GB,y) = (GBy,By) =
(Gz, z) > 0 if y 6= 0 which implies E22 positive definite, i.e., E22 is non-singular.
Thus we find{

Λoy′1(t) = (E12E−1
22 E21 −E11)y1(t)−E12E−1

22 s2(t) + s1(t),

Λmŷ′1(t) = (Ê12Ê
−1
22 Ê21 − Ê11)ŷ1(t)− Ê12Ê

−1
22 s2(t) + s1(t)
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Observe dim(ker(Co)) = dim(ker(Cm)) is needed to ensure we solve an identical
amount of ODEs for both the original and MoveC problem. To conclude: we have
provided error estimates which will be small if C−1

o ∆C ≈ 0 (see (3.4.8)). Therefore,
Section 3.5 will estimate ‖C‖∞ and ‖∆C‖∞.

3.5 Estimates for ‖C‖∞, ‖∆C‖∞, ‖1TpC‖∞ and ‖1Tp ∆C‖∞
Earlier versions of the error estimates for the net current difference (3.2.24), (3.2.25)
and the voltage difference (3.4.5) require ‖1TpC‖∞ and ‖1Tp ∆C‖∞. That is why
these estimates are presented as well. We have C symmetric positive definite, thus
‖C‖2 = ρ(C), the spectral radius of C and ‖C−1‖2 = 1

λmin(C) where λmin(C) is
not known. A lower bound for ‖C−1‖ can be obtained using that 2-norm and ∞-
norm are sub-multiplicative, i.e., ‖I‖ = ‖CC−1‖ ≤ ‖C‖‖C−1‖ ⇒ ‖C−1‖ ≥ 1

‖C‖ , i.e.,
‖C−1‖2 ≥ 1

ρ(C) , which is a very large bound.

3.5.1 The value of ‖C‖∞
By definition, the infinity norm of a matrix C ∈ RN×N is

‖C‖∞ = max
i=1,...,N

N∑
j=1
|cij |︸ ︷︷ ︸

=:si

Thus, to calculate ‖C‖∞ one must determine its absolute row sums si, 1 ≤ i ≤ N .
Each non-zero row in C is related to a node 1 ≤ i ≤ N with at least one connected
capacitor. If only one capacitor is connected to node i, the row has only two non-zero
entries as shown in Fig. 3.11

Figure 3.11: Two none-zero entries at row i.

which leads to si = |cij |+ | − cij | = 2cij .
If two capacitors are connected to node i, the row has three non-zeros entries as shown
in Fig. 3.12

and si = |cij + cik|+ | − cij |+ | − cik| = 2(cij + cik).
Assuming that Ecap also contains the edges related to capacitors connected to the

reference node. If (i, g) ∈ Ecap and g is the reference node, then column and row g
will be eliminated from C. Thus if row i would have only one capacitor connected to
a non-reference node (see Fig. 3.13) one finds si = |cg + cij |+ | − cij | = 2cij + cg.
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Figure 3.12: Three none-zero entries at row i.

Figure 3.13: Node i has one capacitor connected to the reference node g and one
capacitor connected to a non-reference node j.

Thus in general one obtains

si = 2
∑

(i,j)∈Ecap
j non-reference node

cij +
∑

(i,j)∈Ecap
j reference node

cij ,

and thus

‖C‖∞ = max
i=1,...,N

{ ∑
(i,j)∈Ecap

j non-reference node

2cij +
∑

(i,j)∈Ecap
j reference node

cij

}
.

3.5.2 The value of ‖∆Cmove‖∞ and ‖∆Cdel‖∞
Assume that for each pair of net numbers 1 ≤ p, q ≤ P, p 6= q, there are two special
nodes (ipq, jpq) which form one edge m(p, q) := (ipq, jpq) called the destination edge.
We also assume that capacitors to ground cannot be moved (as the related ground
nodes have been eliminated).
We intend to move the capacitor between nodes i and j with i ∈ Vp (node i in net p)
and j ∈ Vq (node j in net q), p 6= q. The destination is between nodes ipq and jpq,
ipq 6= i and jpq 6= j. For α = 0, 1 (α = 0: create ∆Cdel; α = 1: create ∆Cmove) one
obtains

∆Cdel/move =
∑
p,q
p 6=q

( ∑
(i,j)∈Ep,q,

(i,j)6=m(p,q),
cij<τcap

−cijdijdTij

︸ ︷︷ ︸
delete

+ α
∑

(i,j)∈Ep,q,
(i,j)6=m(p,q),
cij<τcap

cijdm(p,q)dTm(p,q)

︸ ︷︷ ︸
add

.
)

(3.5.1)
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Note that (3.5.1) contains two terms. In further examinations we will omit the con-
dition cij < ε for simplicity of notation. For the first term of (3.5.1), each edge which
will be moved i.e., each (i, j) ∈ Ep,q, (i, j) 6= m(p, q) first is deleted which leads to a
row and related row sum (see Fig. 3.14)

Figure 3.14: Delete capacitors cij and cik.

and

si =
N∑
j=1
|cij | = | − cij − cik|+ |cij |+ |cik| = 2(cij + cik).

The second term of (3.5.1) accumulates all capacitances at the destination edge(s)
m(p, q) (see Fig. 3.15) and has a typical row and related row sum sipq = 2α(cij + cik).

Figure 3.15: Accumulate capacitors cij and cik at the destination edge (ipq, jpq).

Summarized we find that for the first term:

si =
∑
p,q
p 6=q

∑
(i,j)∈E(p,q),

(i,j)6=m(p,q)

2cij

and for the second term, for the sake of simplicity we assume that no two move edges
are connected

sipq = α
∑

(i,j)∈E(p,q),

(i,j)6=m(p,q)

2cij

which combines leads to

‖∆Cmove‖∞ = max
{

max
p,q
p 6=q

{ ∑
(i,j)∈E(p,q),

(i,j) 6=m(p,q)

2cij
}
,max
p,q
p 6=q

{
α

∑
(i,j)∈E(p,q),

(i,j) 6=m(p,q)

2cij
}}

. (3.5.2)

The expression (3.5.2) cannot be simplified. To see this, let the circuit be (see
Fig. 3.16)
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Figure 3.16: Move/deleted capacitors. Nodes have only one capacitor connected to.

If cij , ckl are moved to c(ipq, jpq) then the maximum is attained in the second term
of (3.5.2)

‖∆C‖∞ = max
{

max{2cij , 2ckl},max
p,q
{2α(cij + ckl)}

}
= max

p,q
{2α(cij + ckl)}.

However, when there are more than one capacitor connected to a node to be moved/deleted
(see Fig. 3.17) the maximum is attained in the first term of (3.5.2)

Figure 3.17: Move/deleted capacitors. Nodes have capacitors connected to.

‖∆Cmove‖∞ = ‖∆Cdel‖∞ = max{2cij + 2cik,max{2αcij + 2αcik}},

with i ∈ net c, j ∈ net p, k ∈ net q.

3.5.3 The value of ‖∆Csplit‖∞
Here we consider ‖∆Csplit‖∞ for ∆Csplit related to Csplit = C + ∆Csplit. Let Esplit
be the set of edges related to the to be split capacitors. cij and cik with i ∈ Ip, j ∈
Iq, k ∈ Ic, p 6= q 6= c are made to connected to the reference node (Fig. 3.18).

We say that cij and cik are made to connected to the reference node because the
matrix representation of a capacitor connected to the reference node is a diagonal en-
try in C. Splitting coupling capacitors cij and cik results in four capacitors connected
to the reference nodes

Csplit =

 cij + cik 0 0
0 cij 0
0 0 cik

 , with C =

 cij + cik −cij −cik
−cij cij 0
−cik 0 cik

 .
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Figure 3.18: Split coupling capacitors to the reference node.

We get for two to be removed/split capacitors with nodes i, j, k in arbitrary nets that

∆Csplit =

 0 cij cik
cij 0 0
cik 0 0

 ,
all edges or components in netlist between net p and q. Herein, netlist is a connectivity
description of an electronic circuit, see [10, 45]. In the general case one finds

‖∆Csplit‖∞ = max
i with (i,.)∈Esplit

{ ∑
(i,j)∈Esplit

cij

}
,

i.e., ‖∆C‖∞ is the maximum total connected capacitance over all nodes (i with (i, .) ∈
Esplit).

3.5.4 Calculation of ‖1T
kC‖∞

Now each non-zero row in C is related to a capacitor, either interior to the net or on
its boundary. Boundary (inter-net) capacitors are related to nodes (i, j) ∈ Ep,q with
p 6= q. Same net capacitors related to (i, j) ∈ Ec (see Fig. 3.19) do not contribute to
1Tc C.

Figure 3.19: Same net capacitor.

i, j ∈ Ic ⇒ 1Tc
(
cijdijdTij

)
= 0T ∈ R1×N , because
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1Tc
(
cijdijdTij

)
=
(∑
k∈Ic

ek
)T(

cijdijdTij
)

=
(∑
k∈Ic

ek
)T
cij

(
ei − ej

)(
ei − ej

)T
=
(
ei + ej

)T
cij

(
ei − ej

)(
ei − ej

)T
= 0T .

since
(
eTi + eTj

)(
ei − ej

)
= 1− 0 + 0− 1 = 0.

Consider node i with all of its connected capacitors, here with (i, j), (i, k) ∈ Ebnd
(Fig. 3.20)

Figure 3.20: Node i connected to nodes j and k via capacitors.

which contributes these entries to C:

cij + cik . . . −cij . . . −cik
...

. . .
...

...
...

−cij . . . cij . . .
...

...
...

...
. . .

...
−cik . . . . . . . . . cik

←

←

←

row i in net c

row j in net p

row k in net q

(3.5.3)

and this node leaves only one row with nonzeros cij + cik,−cij ,−cik. The part of the
matrix shown in (3.5.3) is obtained by(∑

l∈Ic

el
)T

︸ ︷︷ ︸
1Tc

[
cijdijdTij + cikdikdTik

]
= eTi

[
cijdijdTij + cikdikdTik

]

= cij eTi (ei − ej)︸ ︷︷ ︸
=1

dTij + cij eTi (ei − ek)︸ ︷︷ ︸
=1

dTik

= cijdTij + cikdTik

= [0, ...,
i
↓

cij + cik, 0, ..., 0,
j
↓

−cij , 0, ..., 0,
k
↓
cik, 0, ..., 0],
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so
N∑
l=1

cil = 2
∑

i∈Ic,l∈Id
c 6=d

cil. (3.5.4)

To be taken into account is that grounded nodes are eliminated

Figure 3.21: A part of a circuit with reference node k.

If k is a ground node (in net q) (Fig. 3.21) then only +cik occurs the diagonal of
C (at location ii), and −cik does not occur. Together with (3.5.4) this leads to

N∑
l=1

cil = 2
∑

i∈Ic,l∈Id
c 6=d

cil +
∑

i∈Ic,l∈Ignd
c 6=gnd

cil

All combined one gets (now assume (i, .) ∈ Ek, above assumed (i, .) ∈ Ec):∥∥∥1TkC∥∥∥∞ = max
(i,.)∈Ekq

{
2

∑
i∈Ik,l∈Iq
k 6=q

cij +
∑

i∈Ik,l∈Ignd
k 6=gnd

cij

}
.

3.5.5 Calculation of ‖1T
q ∆Cmove/del‖∞ and ‖1T

q ∆Csplit‖∞

We calculate ‖1q∆C‖∞ for the case that ∆C is related to Cmove/Cdel (is one case,
α dependent) and the case that ∆C is related to Csplit.

Calculation of ‖1Tq ∆Cmove/del‖∞

First, let ∆C be related to Cmove/ Cdel. Again, since ground nodes are eliminated,
capacitors to ground cannot be moved, and are assumed are not deleted. Multi-
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ply (3.5.1) with 1Tp leads to two terms, the first being

1Tp ∆Cmove/del =
(∑
l∈Ip

el
)T  ∑

(i,j)∈Emove∩Ep,q
p 6=q

−cijdijdTij



=︸︷︷︸
j 6=Ip∀j

∑
i∈Ip

eTi

 ∑
(i,j)∈Emove∩Ep,q

p 6=q

−cijdijdTij


=

∑
(i,j)∈Emove∩Ep,q

p 6=q
i∈Ip

−cij eTi dij︸ ︷︷ ︸
=1

dTij

= −
∑

(i,j)∈Emove∩Ep,q
p 6=q
i∈Ip

cijdTij .

The second term is

1Tp ∆Cmove =
(∑
l∈Ip

el
)
α

∑
(i,j)∈Emove∩Ep,q

p 6=q
(ipq,jpq)/∈Emove
(ipq,jpq)∈Epq

cijdipq,jpqd
T
ipq,jpq

= α
∑

(i,j)∈Emove∩Ep,q
p 6=q
ipq∈Ip

(ipq,jpq)/∈Emove
(ipq,jpq)∈Epq

cij eiTpqdipq,jpq︸ ︷︷ ︸
=1

dTipq,jpq

= α
∑

(i,j)∈Emove∩Ep,q
ipq∈Ip

(ipq,jpq)/∈Emove
(ipq,jpq)∈Epq

cijdTipq,jpq .

The last two results combined leads to

‖1Tk ∆Cmove/del‖∞ = max
{

max
(i,.)∈Emove∩Ekq

i 6=ikq

{ ∑
(i,j)∈Ekq

2cij
}
,

max
(ikq,.)∈Ekq

{
α

∑
(ikq,j)∈Ekq

2cikqj
}}

(3.5.5)

where the last term

α
∑

(ikq,j)∈Ekq

2cikqj = α
∑

(ikq,jkq)∈Ekq

2cikqjkq .

Both inside maxima (3.5.5) are implicit maxima over nets q 6= k, coupled to net k.
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Calculation of ‖1Tk ∆Csplit‖∞

1Tp ∆Csplit =
(∑
l∈Ip

el
)T  ∑

(i,j)∈Esplit∩Ep,q
p 6=q

cij(eieTj + ejeTi )



=︸︷︷︸
j 6=Ip∀j

∑
i∈Ip

eTi

 ∑
(i,j)∈Esplit∩Ep,q

p6=q

cij(eieTj + ejeTi )


=

∑
(i,j)∈Esplit∩Ep,q

p 6=q
i∈Ip

cij eTi ei︸︷︷︸
=1

eTj

=
∑

(i,j)∈Esplit∩Ep,q
p 6=q
i∈Ip

cijeTj

thus

‖1Tk ∆Csplit‖∞ = max
i∈Vk

{
max

(i,.)∈Esplit∩Ekq
i 6=ikq

{ ∑
(i,j)∈Ekq

cij

}}
.

3.6 An example system Cx′ + Gx = b with exact
solution

In the previous section we found an expression for the solution of our DAE/ODE,
using general system of ODE solutions

x = eAt
(∫ t

0
e−Asb(s) + x(0)

)
, t > 0 (3.6.1)

which enable us to establish error estimates.
This section will work out in detail, for a transmission line class of problems how

the solution of (3.6.1) depends on the resistance and capacitance values. Except for
giving more insight into the structure of x of (3.6.1) this solution is also useful for
the verification of the correct implementation of our circuit simulation.

Definition 3.6.1. Let A ∈ Rn×m and B ∈ Rp×q then

A⊗B =


a11B a12B . . . a1mB
a21B a22B . . . a2mB
...

...
an1B an2B . . . anmB


is called Kronecker product of A and B.
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Assume our transmission line problem is that in Fig. 3.1 with m lines with each n
internal nodes, i.e., each with n − 1 internal resistors of r > 0 Ohm. Assume all
capacitors are c > 0 Farad. Assume nodes are numbered left-right and bottom-top.
This leads to m×m block matrices with n× n blocks:

G =


An

An

. . .
An

 = Im ⊗An ∈ Rmn×mn

and

C =


b0In b1In

b−1In b0In
. . .

. . . . . . b1In
b−1In b0In

 = Bm ⊗ In ∈ Rmn×mn

with

An =


a0 a1

a−1 a0
. . .

. . . . . . a1
a−1 a0

 , Bm =


b0 b1

b−1 b0
. . .

. . . . . . b1
b−1 b0


and

a−1 = −1, a0 = 2, a1 = −1; b−1 = −1, b0 = 2, b1 = −1 (3.6.2)

(for our application C and G are symmetric, i.e., a−1 = a1 and b−1 = b1 ) which are
Toeplitz matrix with eigenvalues

λp(An) =
{
a0 +

(
a1

√
a−1

a1
+ a−1

(√a−1

a1

)−1)
cos( pπ

n+ 1)
}n
p=1

=
{

2− 2 cos( pπ

n+ 1)
}n
p=1

, (3.6.3)

µq(Bm) =
{
b0 +

(
b1

√
b−1

b1
+ b−1

(√b−1

b1

)−1)
cos( qπ

m+ 1)
}m
q=1

=
{

2− 2 cos( qπ

m+ 1)
}m
q=1

. (3.6.4)

These are the eigenvectors of An and Bm:

sp =
((a−1

a1

)i/2 sin( pπ

n+ 1)
)n
i=1
∈ Rn, Sn = [s1, . . . , sn] ∈ Rn×n

tq =
((b−1

b1

)i/2 sin( qπ

m+ 1)
)m
i=1
∈ Rm, Tm = [t1, . . . , tm] ∈ Rm×m.
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With these results define:

σ(G) = {λp(An)}p=1,...,n
σ(C) = {µq(Bm)}q=1,...,m

H = diag( λ1, . . . , λn︸ ︷︷ ︸
repeat m times

, . . .) = Im ⊗ λ ∈ Rmn×mn

D = diag(µ1, . . . , µ1︸ ︷︷ ︸
n times

, . . . , µm, . . . , µm︸ ︷︷ ︸
n times

) = µ⊗ In ∈ Rmn×mn

V = Im ⊗ Sn ∈ Rmn×mn
W = Tm ⊗ In ∈ Rmn×mn,

where
λ = diag(λ1(An), ..., λn(An))
µ = diag(µ1(Bn), ..., µm(Bm))

Observations:

1. operator G is the standard 3-point FDM discretization of −∂2
x

2. operator C is the standard 3-point FDM discretization of −∂2
y

3. operator
F := cC + G/r = G/r + cC = An/r ⊕ cBm

is the standard 5-point FDM discretization of

−1
r
∂2
x − c∂2

y ,

a uniform tensor grid anisotropic diffusion operator.

Matrices C andG are both “block-diagonal”: Let p be the permutation which renum-
bers nodes first bottom-top and next left-right, i.e., in Matlab notation:
p = ((0:(m-1))’*n) + (0:(n-1)) + 1; p = p(:)

Example: Standard node numbers for m = 3 and n = 4
9 10 11 12
5 6 7 8
1 2 3 4

and permuted p = [1 5 9 2 6 10 3 7 11 4 8 12] node numbers:
3 6 9 12
2 5 8 11
1 4 7 10

Define permutation matrix

P = [ep(1), . . . , ep(mn)] ∈ Rmn×mn.

Then

PTCP =


Bm

Bm

. . .
Bm

 = In ⊗Bm ∈ Rmn×mn

is an n× n block diagonal matrix with m×m blocks.
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Lemma 3.6.2. Assume that sign(a−1) = sign(a1) and sign(b−1) = sign(b1) (which
holds due to (3.6.2)). Then eigendecompositions exist

1. C = WDWT and

2. G = VHVT

3. F = UΛUT

with

• D,H and Λ diagonal and

• W,V and U orthogonal (WTW = I, etc.)

Proof. C,G and F are real-valued symmetric block-Toeplitz matrices with eigenval-
ues (3.6.3) and (3.6.4).

Theorem 3.6.3. For all positive integers m and n

1. W−1GW = G, V−1CV = C

2. DV = VD, HW = WH

3. WV = U and U is orthogonal

4. CG = GC, C and G commute (not used below)

and if in addition n = m (not likely for a transmission line example) also:

5. PTCP = G

6. PTWP = V.

Proof. One can use the properties of the Kronecker product:

• Im ⊗ In = Imn for all natural n,m

• (A⊗B)(C⊗D) = (AC)⊗ (BD) for all compatible A,B,C and D

• (A⊗B)−1 = A−1 ⊗B−1.

Thus for instance:

WV = (Tm ⊗ In)(Im ⊗ Sn) = (TmIm)⊗ (InSn) = Tm ⊗ Sn.

See [28] for many more properties of the Kronecker product. For instance, if Ax = λx
and By = µy then

(A⊗B)(x⊗ y) = λµ · (x⊗ y)

which shows that the eigenpairs of F are

( c
r
λp(An)µq(Bm), tq ⊗ sp)

for all p = 1, . . . , n and q = 1, . . . ,m.
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1. To see that W−1GW = G holds:

W−1GW ?= G⇔

GW ?= WG⇔

VHV−1︸ ︷︷ ︸
G

W ?= W VHV−1︸ ︷︷ ︸
G

⇔

(Im ⊗ Sn) (Im ⊗ λ)︸ ︷︷ ︸
H

(Im ⊗ Sn)−1(Tm ⊗ In) ?= (Tm ⊗ In)(Im ⊗ Sn) (Im ⊗ λ)︸ ︷︷ ︸
H

(Im ⊗ Sn)−1 ⇔

(ImImImTm)⊗ (SnλS−1
n In) ?= (TmImImIm)⊗ (InSnλS−1

n )⇔

Tm ⊗ (SnλS−1
n ) = Tm ⊗ (SnλS−1

n ). (3.6.5)

V−1CV = C can be similarly shown.

2. DV = VD, HW = WH

DV = (µ⊗ In)(Im ⊗ Sn) = (µIm)⊗ (InSn) = (Imµ)⊗ (SnIn) = (Im ⊗ Sn)(µ⊗ In) = VD

HW = (Im ⊗ λ)(Tm ⊗ In) = (ImTm)⊗ (λIn) = (TmIm)⊗ (Imλ) = (Tm ⊗ In)(Im ⊗ λ) = WH.

3. WV = U

WV = (Tm ⊗ In)(Im ⊗ Sn) = (TmIm)⊗ (InSn) = Tm ⊗ Sn = U.

Also U is orthogonal because

UTU = (Tm ⊗ Sn)T (Tm ⊗ Sn) = (TTmTm)⊗ (STnSn) = Im ⊗ In = Imn

(becauseG and C are symmetric, their eigenvectors are orthogonal, i.e., TTmTm =
Im and STnSn = In)

4. CG = GC
CG = (Bm ⊗ In)(Im ⊗An) = Bm ⊗An

GC = (Im ⊗An)(Bm ⊗ In) = Bm ⊗An.

5. PTCP ?= G if m = n with G = Im ⊗An

PTCP = PT (Bm ⊗ In)P = In ⊗Bm

when m = n,
PTCP = In ⊗Bn, G = In ⊗An

thus
PTCP = G iff An = Bn

which is true by initial assumption of coefficients ao = bo = 2, a1 = b1 =
−1 and a−1 = b−1 = −1. Therefore, PTCP = G when m = n.
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6. PTWP ?= V if m = n with V = Im ⊗ Sn
PTWP = PT (Tm ⊗ In)P = In ⊗Tm

when m = n,
PTWP = In ⊗Tn, V = In ⊗ Sn

because An = Bn therefore they have the same set of eigenvectors Tn = Sn.
Thus PTWP = V.

Based on properties 1 – 4 in Theorem 3.6.3

C−1G =
C=WDW−1

WD−1W−1G

= WD−1W−1GWW−1

=
W−1GW=G

WD−1GW−1

=
G=VHV−1

WD−1VHV−1W−1

⇐⇒
DV=VD

WVD−1HV−1W−1

⇐⇒
WV=U

UD−1HU−1

whence (cC)−1(G/r) = U(1/(cr)D−1H)U−1 and
cCx′ + (1/r)Gx = b⇐⇒

x′ + U(1/(cr)D−1H)U−1x = c−1C−1b.

For the homogeneous case one finds (set b = 0)

x′ = −U(1/(cr)D−1H)U−1x
= U(−1/(cr)D−1H)U−1x⇐⇒

x(t) =
[
exp

(
t ·U(−(1/(rc))D−1H)U−1

)]
x(0)

= U
[
exp(−(t/(rc))D−1H)

]
U−1x(0)

x(t) = UE(t)U−1x(0)
where diagonal matrix

E(t) = exp(−(t/(rc))D−1H)
= diag(e−

t
rc ·

hii
dii )

for i = 1, . . . ,mn is stable when diag(D), diag(H) > 0 because rc > 0 by definition.
This hold for our example because An and Bm are positive definite which implies
eigenvalues ofD andH are positive. Also observe that for a transmission line example
m is small and bounded whence µq(B) stays well away from zero for all q.

Now use Duhamel’s formula when the system is not homogenous:

x′(t) = Ax(t) + f(t)⇐⇒

x(t) = exp(tA)x(0) +
∫ t

0
exp((t− s)A)f(s) ds (3.6.6)

= exp(tA)
(
x(0) +

∫ t

0
exp(−sA)f(s) ds

)
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which in our case

x′(t) = Ax(t) + c−1C−1b(t)⇐⇒

x(t) = exp(tA)x(0) + c−1
∫ t

0
exp((t− s)A)C−1b(s) ds

= UE(t)U−1x(0) + c−1U
∫ t

0
E(t− s)U−1C−1b(s) ds

(3.6.7)

For the transmission line, we put a signal on node 1 only, i.e.,

b(t) = e1 ·A · (1− cos(2π · f · t))/2. (3.6.8)

which is such that b(0) = 0 and b′(0) = 0, which seems compatible with x0 = 0.

Observe that a single non-zero source at node 1 is equivalent to a Dirichlet boundary
condition for F which is zero everywhere except in a single point (patch) which makes
the transmission line problem dissimilar to standard convection-diffusion boundary
value problems.

Further, observe that the choice of b in (3.6.8) does not correspond to a physical
realistic transmission line as this choice essentially grounds the (eliminated) neighbor
nodes at the start and end of a all transmission lines.

Thus, for our case (assume for now x(0) = 0)

x(t) = exp(tA)x(0) + c−1
∫ t

0
exp((t− s)A)C−1b(s) ds

= c−1U
∫ t

0
E(t− s)U−1C−1b(s) ds

One has
CU = WDW−1︸ ︷︷ ︸

C

WV︸︷︷︸
U

= WDV = WVD = UD

(CU)−1 = U−1C−1 = (UD)−1 = D−1U−1

Thus (3.6.7) becomes

x(t) = c−1U
∫ t

0
E(t− s)D−1U−1b(s) ds

= c−1U
∫ t

0
ED(t− s)U−1b(s) ds

where
ED(t− s) = exp(−((t− s)/(rc))D−1H) ·D−1

= diag( 1
dii
· e−

(t−s)
rc ·

hii
dii )

Let U = [u1 u2 . . . umn], i.e., ui , i = 1, ...,mn columns of U orthogonal. Com-
pute

UED(t− s) =
[
u1 · e−

(t−s)
rc ·

h11
d11 · d−1

11 . . . umn · e
− (t−s)

rc ·
hmn,mn
dmn,mn · d−1

mn,mn

]
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U−1b(s) =
[
uT1 . . . uTmn

]  b1(s)
...

bmn(s)


= [uT1 b1(s) + . . .+ uTmnbmn(s)]

=

 c1(s)
...

cmn(s)


,

which shows that

UED(t− s)U−1b(s) =
[
u1 · e−

(t−s)
rc ·

h11
d11 · d−1

11 · c1(s) + . . .+

umn · e
− (t−s)

rc ·
hmn,mn
dmn,mn · d−1

mn,mn · cmn(s)
]

and

x(t) = c−1
[
u1d

−1
11

∫ t

0
e−

(t−s)
rc ·

h11
d11 · c1(s) ds+ . . .+

umnd−1
mn,mn

∫ t

0
e
− (t−s)

rc ·
hmn,mn
dmn,mn · cmn(s) ds

]
Now for some non-zero sinusoidal inputs bi(s) , i = 1, ...,mn (most inputs are zero)
one can compute U−1b(s) = UTb(s) using expressions∫

ecx sin(bx)dx = ecx

c2 + b2
[c · sin(bx)− b · cos(bx)]∫

ecx cos(bx)dx = ecx

c2 + b2
[c · cos(bx) + b · sin(bx)] ,

and use the result to validate the circuit simulation.

3.7 Conclusion
The estimates for the current differences in Sections 3.2 – 3.5 are used in Section 4.3
on the error analysis for MoveC and SplitC. We underline the net current differences
between the original problem and MoveC problem, and between the original problem
and SplitC problem:

Iorig
p − Imove

p = −1TpC0(v′ − v̂′)− 1TpG0(v− v̂),

Iorig
p − Isplit

p = −1TpC0(v′ − v̂′)− 1TpG0(v− v̂)− 1TpCsv̂′.

and that in the worst case |Iorig
p −Isplit

p |/|Iorig
p | can provide 100% relative error because

of losing many coupling capacitors. In addition, we estimate the difference v− v̂ for
general circuit for general circuit with non-singular capacitance matrix in Section 3.4.
Addition estimates of ‖C‖∞, ‖∆C‖∞, ‖1TpC‖∞ and ‖1Tp ∆C‖∞ are presented in
Section 3.5 for related capacitance matrices of the three problems. Finally, Section 3.6
shows the exact solution for a transmission line class of problems, i.e., with m lines
and n internal nodes for each lines.
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Chapter 4

SplitC and MoveC: splitting
and moving coupling
capacitors

4.1 Introduction
In this chapter, we introduce MoveC method to deal with parasitic/coupling capac-
itors of RC networks. MoveC can be used for any circuit containing RCc parasitics
to further reduce the number of parasitic capacitors after any netlist reduction. The
approach improves the sparsity of the capacitance matrix by moving many small cou-
pling capacitors to specific coupling capacitors. MoveC method reduces the number of
capacitors of RC networks but maintains the same network size. Although MoveC re-
duces the amount of capacitors, it does preserve the total network capacitance and the
net-to-net coupling capacitance, which is essential for preserving accuracy. Numerical
results demonstrate that MoveC leads to sparse systems, faster transient simulation
and accurate results.
The chapter is organized as follows. In Section 4.2, we introduce MoveC method. It
involves a specific (G-net) node ordering and algorithm. In Section 4.3, theoretical
proofs and electrical reasoning for MoveC error is given within a given threshold.
Numerical experiments of realistic netlists are shown in Section 4.4. In Section 4.5
we draw conclusions.

4.2 The MoveC method
We will first introduce some basic concepts. Let G = (V, E) be an undirected graph,
V = {v1, v2, ..., vn} be the set of vertices or nodes and E ∈ {(vi, vj) : vi, vj ∈ V } be
the set of edges. A graph is called connected if there is a path between every pair of
nodes in the graph. A connected component [8, 39] of a graph G, by definition of [37],
“is a maximal connected subgraph of G. A graph G that is not connected has two or
more connected components that are disjoint and have G as their union”.
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For MoveC, it is essential to identify the coupling capacitors. The connected compo-
nents of G can, electrically speaking, be interpreted as nets. Then C(i, j) is a coupling
capacitor if net(i) 6= net(j), i.e., the net containing node i is not identical to the net
containing node j. For the sake of simplicity we assume that G is block partitioned
in P × P blocks where the nodes related to each block (component/net) 1 ≤ p ≤ P
are mutually strongly connected. For A ∈ RN×N , we define S(A) = {(i, j) : aij 6= 0}
(we will later describe how to achieve this situation). Let Cp|q is matrix with Cpq

non-zero block and zero elements elsewhere. For instance, if C is partitioned into
2× 2 blocks, we have

C =
[
C11 C12
C21 C22

]
, C1|2 =

[
0 C12
0 0

]
.

Observe that Cp|q is not a block-part of C (which would be smaller in size).
However, block Cpq has the same amount (and values of) non-zeros as Cp|q.

The algorithm steps are as follows:
In phase 1 - Determine coupling capacitors:

Lines 1 and 2 Usually, the gnd node is known, and if not, it can be identified by
the node which has the largest number of non-zero elements in both G and C .
Power node(s) pows is/are node(s) whose number of neighbors in the matrices
G and C is much larger than others (but not the gnd). After determining the
gnd and pows, we delete the corresponding rows and columns.

Line 3 Reorder the conductance matrix G by connected components. The reordered
conductance matrix G = G (P,P) will be a block-diagonal matrix.

Line 4 Reorder the capacitance matrix C with the same permutation P into C =
C (P,P). The reordered capacitance matrixC contains diagonal and off-diagonal
blocks. Off-diagonal-blocks are related to coupling capacitances. For example,
off-diagonal-block C12 of matrix C contains the coupling capacitors between
nets 1 and 2.

In phase 2 - Determine the move nodes:

Line 7 In case argmax is not unique, we pick the first one encountered. Note that
"the first one encountered" likely depends on the order of the node numbers
(still free to choose within each G-net).

In phase 3 - move elements:

Lines 12-14 Capacitors C(i, j) which satisfy the moving condition c(i, j) ≤ ε will be
moved between nodes k(p,q) and l(p,q).

In phase 4 - Reordering:

Lines 19 and 20 Finally, G, Ĉ are reordered by P−1, i.e., compute G(P−1,P−1)
and Ĉ(P−1,P−1) (having the original order). Finally, gnd and pows are inserted
again.
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Algorithm 2 MoveC algorithm
Input: G ,C , 0 < ε� 1, terminal nodes and nodemap
Output: Simplified Ĉ and Ĉ
Phase 1 - Determine coupling capacitors
1: Find gnd and power node(s)
2: Mark and temporarily remove gnd and power node(s) from G ,C
3: Permute G by connected components of G ; G← G (P,P)
4: Permute C by the same connected-component permutation of G ; C← C (P,P)

Coupling capacitors are on off-diagonal blocks of C
Phase 2 - Determine move-nodes
5: for p = 1 : P do . P is the number of components
6: for q = 1 : P do
7: (k(p,q), l(p,q)) := arg max

(i,j)∈S(Cp|q)
{c(i, j)} . k, l ∈ {1, ..., N}, 1 ≤ p, q ≤ P.

8: end for
9: end for
Phase 3 - Move elements
10: for i = 1 : N do
11: for j = 1 : N do
12: if (i, j) ∈ S(Cp|q) & c(i, j) ≤ ε then
13: C− = cijdijdTij (remove)
14: C+ = cijdk(p,q)l(p,q)dTk(p,q)l(p,q) (add)
15: end if
16: end for
17: end for
18: Cmove := Ĉ := C.
Phase 4 - Reordering
19: ReorderG, Ĉ by the inverse permutation of G to get simplified Ĉ← Ĉ(P−1,P−1)

and G← G(P−1,P−1)
20: Put back the gnd and power node(s) in Ĉ and G to get Ĉ and G
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Remark: We do not move coupling capacitors connected to gnd or pows. Moving
the small capacitors makes Ĉ sparser than C. Instead of the maximum coupling
capacitance criterion in step 7 we can employ a time constant [40] strategy: For
every two diagonal blocks, we find the maximum time constant of each block, for
instance, the maximum time constant of net p is τp = max

net(i)=p

{
diag(C(i,i))
diag(G(i,i))

}
and the

maximum time constant of net q is τq = max
net(j)=q

{
diag(C(j,j))
diag(G(j,j))

}
. Then with k =

arg max
net(i)=p

{
diag(C(i,i))
diag(G(i,i))

}
and l = arg max

net(j)=q

{
diag(C(j,j))
diag(G(j,j))

}
the capacitor to move to is

C(k, l). This is motivated heuristically by the idea that moving coupling capacitors to
between two nodes (with high RC time constant) of two nets will lead to small solution
errors. To avoid that we add additional non-zero elements into the system matrix C,
we only consider already existing capacitors between nets as candidates. However,
this criterion is likely to move small capacitors to edges (i, j) which previously had no
related capacitors, i.e., they could increase the density of C. The criterion shown in
step 7 of Algorithm 2 is maximum coupling capacitance: Capacitor to move to
is the maximum coupling capacitance per each coupling net (or off-diagonal block in
C). With this strategy we do not create additional capacitors. Besides, adding small
capacitances to the maximum capacitance of off-diagonal-block seems reasonable since
we do not significantly change the netlist.

For the sake of an example, focus on the circuit in Fig. 3.1. The permutation P to
reorder the nodes into G-nets turn out to be the identity, so we focus on the system
Cx′(t) +Gx(t) = Bs(t) with G, C and B as in equations (3.2.2), (3.2.3) and (3.2.4).
Now, suppose that c25 is the selected coupling capacitor between net 1 and net 2 to
move to. If c36 satisfies the condition for moving it, we move c36 to c25 between node
2 and 5, to get

∑
c = c25 + c36 in (4.2.1). Simultaneously, diagonal elements will be

changed respectively to the changes in the off-diagonal-block elements.
Note that MoveC does not make any change to the G matrix. G is only used

to determine the connected components (or nets) which are used to determine the
coupling capacitances in C. The MoveC system related to the original system (3.2.1)
based on Algorithm 2 is:

Ĉx̂′(t) + Gx̂(t) = Bs(t)

where x̂ = x + δx, and the MoveC matrix Ĉ = Cm = C−∆C is given by:

Ĉ =


0 0 0 0 0 0
0 c2 +

∑
c 0 0 −

∑
c 0

0 0 c3 0 0 0
0 0 0 0 0 0
0 −

∑
c 0 0 c5 +

∑
c 0

0 0 0 0 0 c6

 =
[
Ĉ11 Ĉ12
Ĉ21 Ĉ22

]
(4.2.1)

with
∑
c = c25 + c36 and
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∆C =


0 0 0 0 0 0
0 −c36 0 0 c36 0
0 0 c36 0 0 −c36
0 0 0 0 0 0
0 c36 0 0 −c36 0
0 0 −c36 0 0 c36

 . (4.2.2)

Observe that ∆C ∈ R6×6 is symmetric, positive semi-definite. Note that the
entries in ∆C are a function of threshold and MoveC strategy.

4.3 Error analysis for global and inter-net currents
We compute the current between two nets for MoveC and SplitC to see which one
gives the larger error compared to the original. The inter-net current for MoveC
has already been computed in Section 3.2, so here we focus on the inter-net current
for SplitC. Consider the two transmission line example (Fig. 3.1) which contains two
nets connected to each other via coupling capacitors. For our example we split the
capacitors related to edge (3, 6) and edge (2, 5) which results in capacitors to ground.
We call the related capacitance matrix the SplitC matrix Ĉ,

Ĉ =


0 0 0 0 0 0
0 c2 + c25 0 0 0 0
0 0 c3 + c36 0 0 0
0 0 0 0 0 0
0 0 0 0 c5 + c25 0
0 0 0 0 0 c6 + c36

 .

Then the SplitC related Kirchhoff’s laws induced equations are

Ĉv̂′ + Gv̂ = Isource

and similar to (3.2.13) we find

1T1 Ĉ
dv̂
dt

= 1T1 (Isource −Gv̂)⇔

1T1 Ĉ
dv̂
dt

= 1T1




s1
0
0
s2
0
0

−


ı̂12
−ı̂12 + ı̂23
−ı̂23 + ı̂3

ı̂45
−ı̂45 + ı̂56
−ı̂56 + ı̂6



⇔ (4.3.1)

(c2 + c25)dv̂2

dt
+ (c3 + c36)dv̂3

dt
= s1 − ı̂3.

Let Ip be the current over all edges which have exactly one vertex in Vp. The (3.2.13)
and (4.3.1) show that
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ı25 + ı36︸ ︷︷ ︸
Iorig

1

+c2
dv2

dt
+ c3

dv3

dt
= s1 − ı3, (4.3.2a)

0︸︷︷︸
Isplit

1

+(c2 + c25)dv̂2

dt
+ (c3 + c36)dv̂3

dt
= s1 − ı̂3 (4.3.2b)

⇔


Iorig
1 + 1T1 C0

dv
dt

= s1 − 1T1 G0v, (4.3.3a)

Isplit
1 + 1T1 (C0 + Cs)

dv̂
dt

= s1 − 1T1 G0v̂, (4.3.3b)

remind that Cs is diagonal matrix created by splitting coupling capacitors to ground.

(4.3.3a)− (4.3.3b)⇒ Iorig
1 − Isplit

1 + 1T1 C0
dv− dv̂
dt

− 1T1 Cs
dv̂
dt

= −1T1 G0(v− v̂).

Note that (4.3.2a) and (4.3.2b) can be rewritten
1T1 Ĉ

dv̂
dt

= s1 − 1T1 G0v̂,

1T1 C
dv
dt

= s1 − 1T1 G0v.

To get an estimate for the relative error, we also have to estimate Iorig
1 , which is

given in (3.3.2). Thus we find for net q:

∣∣Iorig
q − Isplit

q

∣∣
|Iorig
q |

=

∣∣∣∣−1Tq C0
d(v− v̂)

dt
+ 1T1 Cs

dv̂
dt
− 1T1 G0(v− v̂)

∣∣∣∣∣∣∣∣Sq − 1Tq C0
dv
dt
− 1TqG0v

∣∣∣∣ .

just as for the MoveC in (3.3.1), but now v̂ is related to SplitC, so the error will be
different. For MoveC, the net currents are preserved since the coupling capacitance
doesn’t change after MoveC.

4.3.1 Global error in term of net current of MoveC/SplitC
The original problem after permutation based on G-nets leads to a block-matrix
problem, here, for the sake of simplicity show for our example in Fig. 3.1:[

C11 C12
C21 C22

] [
x′1
x′2

]
+
[
G11 0
0 G22

] [
x1
x2

]
=
[
s1(t)
s2(t)

]
⇔

{
C11x′1 = s1(t)−G11x1(t)−C12x′2
C22x′2 = s2(t)−G22x2(t)−C21x′1.

SplitC, with the assumption that we remove all coupling capacitors, gives[
C̃11 0
0 C̃22

] [
x̃′1
x̃′2

]
+
[
G11 0
0 G22

] [
x̃′1
x̃′2

]
=
[
s1(t)
s2(t)

]
⇔
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{
C̃11x̃′1 = s1(t)−G11x̃1(t)
C̃22x̃′2 = s2(t)−G22x̃2(t).

(4.3.5)

SplitC decouples coupling capacitors, therefore, in (4.3.5) we completely lose the
currents between the nets. Mathematically speaking, the system of equations (4.3.5)
is a decoupled problem since x1 does not interact with x2; x1 and x2 can be solved
for independently. In practice, for large G and C, the loss of the inter-net currents
may result in large errors.

Thus SplitC may cause errors (up to 100%) when the source in one net get decou-
pled from sources in a (previously) connected net (when s1 or s2 is close (or equal) to
zero). MoveC, assuming that small coupling capacitors are moved into one coupling
capacitor, gives[

Ĉ11 ĉ12
ĉ21 Ĉ22

] [
x̂′1
x̂′2

]
+
[
G11 0
0 G22

] [
x̂1
x̂2

]
=
[
s1(t)
s2(t)

]
⇔

{
Ĉ11x̂′1 = s1(t)−G11x̂1(t)− ĉ12x̂′2,
Ĉ22x̂′2 = s2(t)−G22x̂2(t)− ĉ21x̂′1,

where ĉ12 is a matrix with only one non-zero entry.

Potential error estimates and Elmore delay

For the circuit in Fig. 3.1 with ∆C in (4.2.2), using (3.4.10) we find that the error de-
creases to zero for c36 → 0 (in finite time). For the sake of illustration, consider (3.5.1)
applied to our example in Fig. 3.1.

Definition 4.3.1. Let eK and eM ∈ RN be the K-th and M -th unit vectors, respec-
tively, and define

gM = G(:,M) =

 g(1,M)
...

g(NMG,M)

 , cM = C(:,M) =

 c(1,M)
...

c(NMC ,M)

 ;

where c(.,M) and g(.,M) are the capacities respectively conductivities connected to
node M . Define:

GM = ‖gM‖ =
MG∑
i=1

g(i,M),

CM = ‖cM‖ =
MC∑
i=1

c(i,M),

RMK = (eM − eK)TG−1(eM − eK)

where MC is the amount of capacities connected to node M and MG is the amount
of conductivities connected to node M . RMK is the path resistance between nodes
M and K [36].
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An alternative strategy for MoveC, suppose er and τ be the bounds of the voltage
error and delay error (Elmore delay [38]), respectively. We move a coupling capacitor
c(i,M) from node M to node K if

• ciM
hGM + CM

<
er
2

• ciM
hGK + CK

<
er
2

• RMKCK < τ

The result of this strategy will be discussed later on.

General local error formula

Let CM and GM be defined as in Definition 4.3.1. Suppose the local error at node M

is bounded by er, i.e.,
∣∣∣∣xM − x̂MxM

∣∣∣∣ < er, we can remove c(i,M) connected to node M

if
c(i,M)

hGM + CM
<
er
2

Similarly, with
∣∣∣∣xK − x̂KxK

∣∣∣∣ < er, we can add ciM to node K if

c(i,M)
hGK + CK

<
er
2 .

For SplitC, with the error bound er, we can split c(i,M) if

c(i,M)
hGM + CM

< er.

Therefore the condition for removing a capacitor is sharper than that of splitting a
capacitor

c(i,M)
hGM + CM

<
er
2 < er.

In order words, there will be more coupling capacitors removed by the condition
of SplitC than the condition of MoveC. Locally, removing a coupling capacitor may
cause larger error than when we split a coupling capacitor to the ground. Nevertheless,
practical experiments show that the result of MoveC with removing and adding step is
more accurate than SplitC. In the next section we show why MoveC is more accurate
than SplitC.

An electrical explanation for MoveC

The electrical reason why MoveC does not introduce large error is that in a resistive
net, all node-voltages usually change at the same time and with the same rate (except
for nodes with high RC time constant). In addition, we have ı = cdvdt and with the
realistic assumption that dvdt is almost the same for all pairs of nodes, we would expect
that the total amount of current via capacitive coupling remains the same, no matter
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where we put the coupling capacitors in a net as long as we put them somewhere
between the nets. On the other hand, if we split, the error can rapidly increase
because we start to change the current flowing between the nets, by decreasing the
total amount of coupling capacitors.
The global error analysis below will show how errors accumulate during MoveC and
SplitC, and proof the reasoning above.

4.3.2 The delay error
In the previous sections we have made the assumption of worst case on voltage error.
In this section we will show what we have from this assumption and what it means
in electrical reasoning. In the worst case, we assume:

1. The Elmore delay from va to vb is small RabCb < τ , Rab = (ea− eb)TG−1(ea−
eb) is the path resistance between nodes a and b (see [36]). In other words, the
change in node-voltage with respect to time t at every node is almost the same,
i,e.,

dva
dt
≈ dvb

dt

2. The current via each node can be bounded above by

ic = c
d(vi − vj)

dt
|
t=tn

≤ c2Vdd
dt

and ir = (vi − vj)gij ≤ 2Vddgij ,

where Vdd the amplitude of the signal and dt is minimum time step.

With the assumption of worst case, we have seen that MoveC always gives more
accurate results than SplitC. However, MoveC may fail if the above assumption does
not hold. Electrically speaking, the time for current flowing from node a through
resistor(s), capacitor(s) (including charging and discharging) to node b will have a
difference, called delay. The Elmore delay [38] from node a to b is small or large
depending on whether the RC time constant from a to b is small or not, i.e., [Reff ×
C]a to b < τ . Suppose two node-voltages in the same net do not change with the same
rate: dva

dt �
dvb
dt , i.e., the change in voltage at node a is much larger than the change

in voltage at node b. As a result, it breaks the first assumption of worst case and
may lead to large error in MoveC. With this observation, however, we can set locally
the additional condition [Reff × C]a to b < τ for moving a capacitor from a to b to
preserve local delay error within τ .
Loosely speaking, indeed locally (looking at one node) the error can be relatively
large, but globally the impact on the delay over the full net is averaged out, as we will
see in the numerical result, even if we move off nodes with relatively high RC time
constant.

4.4 Numerical results
In this section, we present some results to demonstrate MoveC’s performance. MoveC
is implemented in MATLAB [31] 8.1 (R2013a). To find the connected components of
G , mentioned in the section 2, we used the Matlab function components which is in

79



SplitC and MoveC: splitting and moving coupling capacitors

Boost Graph Library [19].
Fig. 4.1 plots the sparsity structures of the original G ,C and the reordered G,C
matrices. The original G ,C matrices are reordered by the connected components to
find the coupling capacitors between nets. Fig. 4.2 shows the sparsity structure of
Ĉ (after MoveC) with the number of nonzero elements in Ĉ is reduced significantly
compared to C.

Figure 4.1: Sparsity structures of the original G ,C and reordered G,C.

Table 4.1: Numerical results of MoveC, moving cij if cij < ε.

Netlist ε Type #C Sim. Error #Er.
Time (s) meas.

1. N = 32,376;
#R = 53,915;
#MOS = 11,386

- Orig. 265,089 11,073 3.4% 10/5331

10−17 MoveC 102,577 4645 3.4% 10/5331
Red. rate 61.3% 2.4X

10−16 MoveC 89,959 4545 3.5% 10/5331
Red. rate 66.1% 2.4X

2. N = 47,358;
#R = 82,801;
#MOS = 11,987

- Orig. 307,015 47,782 4.1ps 0/1

10−17 MoveC 157,944 8400 2.3ps 0/1
Red. rate 48.55% 5.6X

10−16 MoveC 130,752 8303 2ps 0/1
Red. rate 57.41% 5.8X
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Figure 4.2: Sparsity structure of Ĉ

Table 4.2: Numerical results of SplitC, splitting cij if cij < ε.

Netlist ε Type #C Sim. Error #Er.
Time (s) meas.

1. N = 32,376;
#R = 53,915;
#MOS = 11,386

- Orig. 265,089 11,703 3.4% 10/5331

10−17 SplitC 64,476 1981 2.5% 10/5331
Red. rate 75.68% 5.6X

10−16 SplitC 25,761 1669 63.6% 465/5331
Red. rate 90.28% 6.6X

2. N = 47,358;
#R = 82,801;
#MOS = 11,987

- Orig. 307,015 47,782 4.1ps 0/1

10−17 SplitC 113,985 6378 0.11ps 0/1
Red. rate 62.87% 7.5X

10−16 SplitC 59,630 5364 9.12ps 1/1
Red. rate 80.58% 8.9X

Table 4.3: MoveC’s results with criteria ciM/(hGM + CM ) < er and ciM < 10−14.

Netlist er Type #C Sim. Error #Er.
Time (s) meas.

1. N = 32,376;
#R = 53,915;
#MOS = 11,386

- Orig. 265,089 11,073 3.4% 10/5331

0.1% MoveC 98,255 5010 3.4% 10/5331
Red. rate 63% 2.2X

1% MoveC 89,484 4012 3% 10/5331
Red. rate 66.2% 2.8X

2. N = 47,358;
#R = 82,801;
#MOS = 11,987

- Orig. 307,015 47,782 4.1ps 0/1

0.1% MoveC 130,243 8590 3ps 0/1
Red. rate 57.6% 5.6X

1% MoveC 119,033 8414 1.5ps 0/1
Red. rate 61.2% 5.7X

Table 4.1 shows some MoveC’s results for two multi-terminal netlists extracted
from real chip designs compared to the results obtained by SplitC, see Table 4.2. We
introduce SplitC as a simplification in which we completely replace every coupling
capacitors, that are smaller than a given threshold ε, by two capacitors to ground,
i.e., if |C(a, b)| = c ≤ ε then |C(a, b)| = 0, |C(a, 0)| = |C(b, 0)| = c. In the ta-
ble 4.1, each row consists of a netlist with its information such as the number of
nodes N , the number of resistors #R and the number of MOS devices #MOS. For
each netlist, at each threshold ε, the sparsity structure before and after simplifica-
tion are noted by the number of capacitors #C. The reduction rates (Red. rate) are
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shown for the corresponding columns. For example, the percentage reduction in #C is
(#COrig−#CMoveC)×100

#COrig
, the Red. rate in simulation time (Sim. Time) is Sim. TimeOrig

Sim. TimeMoveC
.

The "Error" displays either the maximum relative error (%) or maximum absolute
error (picosecond) of all measurements. The number of error measurements (#Er.
meas.) is the number of measurements whose relative error exceeds 2% or whose
absolute error exceeds 10 ps. For instance in the seventh column of table 4.1, the first
netlist has 5331 important measurements and 10 of which exceed 2% relative error.
The second netlist has only one important measurement which does not exceed 10ps.
The absolute error and the relative error are computed between the measurements of
the original and the simplified circuit.
As shown in tables 4.1 and 4.2, for the two netlists, both MoveC and SplitC give a
reduction up to more than 50% for the number of capacitors (#C) and the speedup
up to more than 2X. SplitC reduces much more the number of capacitors and hence
gives faster transient simulation than MoveC. However, with higher threshold SplitC
gives larger error and more error measurements. For MoveC, by experiments even
with higher threshold, the maximum errors do not exceed 5% for relative error and
10ps for absolute error. Also, there are constantly the same 10 sensitive measure-
ments exceeding 2% error. We can even increase the threshold ε for more speedup.
However, by experiments these netlists with bigger thresholds, we didn’t obtain much
speedup since the number of coupling capacitors below 10−15 does not vary greatly
from the number of coupling capacitors below 10−16.
Table 4.3 shows results of another strategy to remove coupling capacitors. The strat-
egy is based on the local error er (when removing one capacitor) to remove a capacitor.
The results confirm our electrical reasoning that even if the local delay error is large,
the global impact on the delay over the full net is averaged out because we preserve
the total coupling capacitances between nets. For the two netlists, MoveC has more
or less the same speedup, reduction and error as results shown in table 4.1.

Fig.4.3 shows voltage outputs of SplitC, MoveC and the original problem at a spe-
cific node. SplitC with threshold 10−16 completely fails since the difference toward
the reference is big (up to 15ps). The differences of the other outputs toward the
reference are about 3.6ps (smaller than the time step used for integration) so they
are acceptable.

Numerical results of MoveC for several other realistic netlists are listed in table 4.4.
MoveC gives speedups of more than 2X while preserving the default accuracy criteria
(typically within 2% for relative error and 10ps for absolute error).

4.5 Conclusion
MoveC is an efficient method to speedup transient simulation of RC interconnect cir-
cuit after usual reduction, without accuracy loss theoretical and electrical arguments
for MoveC’s performance are given and confirmed by numerical experiments. MoveC
is applicable in a robust way, even for sensitive netlists, because the error is controlled
by a single threshold. Speedup up of a factor 2 and more is reported without accuracy
loss.
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Figure 4.3: Voltage outputs of SplitC, MoveC and the original problem. From left to
right: SplitC with thresholds 10−16(orange), reference(cyan), SplitC 10−17(magenta),
MoveC with errors 10%(green), 1%(beige) and 0.1%(pink)

Table 4.4: MoveC’s results for realistic netlists

Netlist CPU orig CPU MoveC CPU #MOS #R #Cc orig #Cc MoveC #Cgnd orig #Cgnd MoveC #nodes
(103s) (103s) orig/MoveC

1 3.1 1.2 2.7 9931 28937 169979 47088 111765 33129 20096
2 2.7 1 2.7 14022 45262 213455 62282 267263 72085 26647
3 45.4 18 2.6 1378 13042 21686 1425 33397 520 4117
4 3.1 1.2 2.5 14022 44232 218787 64182 257853 68848 26141
5 2.1 0.9 2.4 11592 36373 163806 51603 206753 58640 22413
6 3.9 1.7 2.3 14738 42228 371545 115810 465626 11434 41037
7 3.6 1.6 2.2 12101 39223 186655 53430 155182 48213 27400
8 2.6 1.2 2.2 9749 27259 153837 44655 109312 33023 19374
9 2 0.9 2.2 11592 36765 158440 49731 216539 61837 22904
10 1.8 0.9 2.1 12912 39953 172202 53581 230962 67757 24642
11 1.5 0.7 2.1 11386 40980 125222 41798 259429 73272 26205
12 2.1 1 2.1 6078 47140 120555 16563 35250 6649 15179
13 5.6 2.7 2.1 33003 100412 481604 137469 538431 149993 67400
14 2.8 1.4 2.1 9943 27888 160323 46310 106832 32671 19472
15 5.4 2.6 2.0 21151 77119 255544 79584 466503 132509 51844
16 3.1 1.5 2.0 19356 72722 212347 60998 461258 129681 49064
17 1.8 0.9 2.0 12912 40250 177529 55720 221254 64686 24360
18 1.7 0.9 1.9 13816 53717 159604 50399 333251 91944 33063
19 2.1 1.1 1.9 13816 52887 164481 52147 329359 89180 32428
20 1.4 0.8 1.9 11386 41607 120601 40032 265313 76241 26784
21 4.2 2.3 1.9 33543 102488 481408 136388 555321 158290 69803
22 0.09 0.05 1.8 3338 3999 24774 7689 147715 24512 4615
23 2.4 1.3 1.8 9749 29627 151136 43727 114714 34678 21528
24 2.3 1.3 1.8 23803 230617 322137 76170 988350 107638 163078
25 3 1.7 1.7 28265 93212 434697 164168 243583 115358 50243
26 2.2 1.3 1.7 11987 54699 135393 44253 406094 106707 41079
27 55.6 32.4 1.7 24544 61534 245899 76964 350392 26158 59008
28 0.115 0.07 1.7 2931 7936 63380 20771 31344 7461 13419
29 1.5 0.9 1.7 23973 120555 169935 30614 312869 26338 45508
30 1.4 0.9 1.6 12706 54930 98390 34479 351536 114433 32023
31 0.6 0.4 1.6 11276 29569 52413 28323 297733 76763 20975
32 1.6 1 1.6 11915 55834 89412 28388 396054 127104 41420
33 2 1.3 1.6 11141 41567 128350 38310 222190 66739 27501
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Chapter 5

SelectC: switching capacitors
off and on at demand

5.1 Introduction
In this chapter, we propose an efficient method for the case of RC networks with
dense capacitive coupling. The basic idea is to deactivate small coupling capacitors
between distinct resistor nets for the time(s) that their currents is negligible. In
particular, coupling capacitor currents at the current time step are used to decide
which coupling capacitors will be active in the next step of the transient simulation.
Thus, for many time steps, sparser capacitance matrices are obtained and replace
the original capacitance matrix in the system matrix, thus providing faster transient
simulation. For several experiments to be described later, the method gives promising
results.

The chapter is presented as follows. In Section 5.2 we introduce the SelectC
method. Section 5.3 addresses error estimate issues. Numerical results are showed in
Section 5.4. Finally, in Section 5.5 we provide conclusions.

5.2 The SelectC method
Because SelectC [9] deals with coupling capacitors (the capacitors between distinct
G-components), it is vital to identify those capacitors. This is done by reordering C
by G-components as described in the first procedure of algorithm 3. To explain the
idea of SelectC, let cij be a capacitor between nodes i and j of distinct nets. The
current ıc passing through cij (direction i→ j) is

ıc = cij ·
d(xi − xj)

dt
≈ cij ·

(
xi(tn+1)− xi(tn)

tn+1 − tn
− xj(tn+1)− xj(tn)

tn+1 − tn

)
= ı̃c. (5.2.1)

When ic is negligible, i.e., ic ≤ τsel, then cij is said to be inactive (here we assume that
cumulative effects are neglected) and can be deactivated in the capacitance matrix.
In other words, SelectC is the method of selecting active/inactive coupling capacitors
based on the currents going through them. The inactive capacitors are coupling
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capacitors whose node voltages barely change from the previous time step to the
current one. To ensure the voltage derivative part is minor and the ic value is not
affected by the cij value, the possibly inactive capacitors cij to be removed should
have capacitance smaller than a chosen constant τcap. Eventually, a capacitance is
removed if both {

cij ≤ τcap
ı̃c ≤ τsel,

(5.2.2)

where τsel and τcap are user-defined thresholds. Algorithm 3 summarizes the entire
flow of SelectC method.

Algorithm 3 SelectC
1: procedure Use the G-components to determine the coupling capaci-

tors
2: [comps,∼] = components(G)
3: [∼,P] =sort(comps)
4: G = G(P,P)
5: C = C(P,P)
6: end procedure
7: procedure Dynamic selection of coupling capacitors
8: n = 0, C(n)

sel := C, x(tn) is DC solution
9: while tn < tend do

10: n = n+ 1
11: k = 0; x(k)

n−1 = x(tn−1) = xn−1

12: while ‖f(x(k)
n−1)‖∞ > ε do . Newton iteration

13: x(k+1)
n−1 = x(k)

n−1 − J−1
f f(x(k)

n−1)
14: k = k + 1
15: end while
16: x(tn) = x(m)

n−1 . ‖f(x(m)
n−1)‖∞ < ε

17: if ‖dx(tn−1)‖∞ := ‖x(tn)− x(tn−1)‖∞ ≥ τdx & C(n−1)
sel 6= C then

18: C(n−1)
sel := C

19: n = n− 1
20: else
21: build C(n)

sel satisfying (5.2.2)
22: end if
23: end while
24: end procedure

The condition of ‖dx(tn−1)‖∞ ≥ τdx and C(n−1)
sel 6= C is used to back up the

solution x(tn) in case there is a large difference between the two consecutive vector
of solutions x(tn) − x(tn−1) = dx(tn−1). τdx is an absolute value as time scaling
the linear version of (2.2.4) by s := f · t (frequency f) reduces (2.2.4) to f(x(s)) =
f ·Cx′(s)+Gx(s)+Bu(s), s ∈ (0, f ·T ] where instead of x′(t) = O(f) time the input
signal, x′(s) = O(1) times inputs signal. This implies that with or without time
scaling x(tn−1)−x(tn) = dt ·O(f) and x(sn−1)−x(sn) = dt · 1 where dt ·O(f) = ds.
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Figure 5.1: The ratio of the number of active capacitors during transient simu-
lation (star-dotted line). The time steps where the recalculation with all capaci-
tors is required (dotted line). The time steps correlate with the simulation interval
[0, 5.5]× 10−10.

5.3 SelectC error estimate
We have found no tangible manner to estimate an upper bound for the error xoriginal−
xselect. The reason being that Duhamel’s formula (see (3.6.6)) only applies in the case
that the system of ODE’s related to our DAE is of the form x′ = Ax+b with the time-
independent constant coefficient A matrix. However, for SelectC, the coefficient of C
are time-dependent (capacitors are deactivated and reactivated), i.e., A = −CselectG
depends on time.

5.4 Numerical results
In this section, we present results of SelectC for large linear RC networks derived
from realistic designs of very-large-scale integration (VLSI) chips (netlists 1 and 2 in
Table 5.1) and a self-created nonlinear network (netlist 3, Fig. 5.5). For the linear
networks the square voltage inputs 2·square(2πft) are injected to one external per
net and for nonlinear network, the input square(2πft) is driven to the first external of
the first net. The error ε = 10−8 is chosen for condition of Newton iteration. SelectC
is implemented in MATLAB ver. 9.4(R2018a). The method requires G,C to be
reordered by G-components, as mentioned in Algorithm 3. We employed the MAT-
LAB function components which is in the Boost Graph Library [19]. The numerical
integration is Backward Euler with constant increment.

Figure 5.1 shows the ratio of the number of active capacitors during the transient
simulation (of netlist 1) when Csel is used. While full transient simulation requires
full C elements, SelectC uses full C elements only 10 times (to recompute the time
steps) when the condition of ‖dx(tn)‖∞ ≥ τdx and C(n)

sel 6= C meets (because the
signal suddenly rises from 0 to 2 and falls from 2 to 0, see Fig. 5.3 the top figure for
the input signal - plotted in blue line). For other time steps, for instance at time step
tn = t250, Csel is sparser than C (Fig. 5.2).

Table 5.1 shows some SelectC’s results for two multi-terminal netlists extracted
from real chip designs and a self-created nonlinear netlist compared to the results
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Figure 5.2: Csel (left) at time step tn = t250 is much sparser than the original (re-
ordered) C (right).

obtained by their original problem. Herein, N denotes the number of nodes, τcap
and τsel are thresholds for selecting inactive capacitors in (5.2.2), τdx = 1 (linear
case) and τdx = 0.1 (non-linear case) indicate the condition of re-computing the
time step with dramatic change in dx, and Avg#cap stands for the mean number of
the active capacitors during the transient simulation. Indeed, for the original problem
Avg#cap is the number of capacitors in C network and is computed by the MATLAB
command nnz(triu(C,1)), i.e., the number of non-zero elements of the strictly upper
triangular of C. For the SelectC system, Avg#cap stands for the division of the sum
of the amount of the active capacitors per time step over the total number of the time
steps. The reduction rates (Red. rate) are shown for the corresponding columns.
For instance, the percentage reduction in Avg#cap is (Avg#caporig−Avg#capsel)·100

Avg#caporig ,
the Red. rate in simulation time (Sim. Time) is Sim.Timeorig

Sim.Timesel
. Finally, Rel. Error

displays the maximum relative error (in voltage) of all variables and is computed by
max

i=1,2,...,N

{
‖xi − xCseli ‖∞

}
/ max
i=1,2,...,N

{‖xi‖∞} with ‖xi‖∞ = max
k=1,2,...,nT

{|xi(tk)|}, nT
is the number of time steps. Time Newt. Iter. and Time Lin. Solver are time
needed for Newton iteration (without linear solving) and for solving the linear system
inside, respectively.

The transient simulation time strongly depends on the sparsity of the resulting
matrices (Table 5.1). Obviously, SelectC can reduce about 90% of the average density
of the original C, leading to faster transient simulation time (at maximum by a factor
of 7 in netlist 1). Additionally, the error is acceptable for τsel = 10−8 Amperes(A)
(for instance in netlist 1 Fig. 5.3). For τsel = 10−4(A), especially in netlist 2 we gain
more speed up, however, the accuracy is not acceptable (Fig. 5.4). Note that the
Time Lin. Solver of the SelectC problem is faster than that of the original problem
(up to 8.9X). However, considering the transient simulation time, the speedup is only
up to 7X since there needs the computation effort at Csel construction at every time
step.

Finally focus at the non-linear circuit in Fig. 5.5, more specifically focus on the
sole capacitors (call it C) connected to the source (first capacitor on the very left
in bottom to top direction). As mentioned in capacitors connected to voltage
sources on page 23, capacitors connected to voltage sources are moved to the right
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Table 5.1: Numerical results of SelectC. Netlists 1 and 2 are linear, netlist 3 is non-
linear.

Netlist τcap(F ) τsel(A) Type Avg#cap Sim. Rel. Time Lin. Time Newt.
Time (s) Error (V) Solver (s) Iter. (s)

1. N
=
18,927

- - Orig. 168,309 619 - 588 31

1e-14
1e-8 SelectC 15,090 105 6e-4 77 11

Red. rate 91% 5.9X 7.6X 2.8X

1e-4 SelectC 17,756 88.5 3.1e-2 66 10
Red. rate 89.5% 7X 8.9X 3.1X

2. N
=
6,887

- - Orig. 14,161 53 - 48 6

1e-14
1e-8 SelectC 2,102 23 3.1e-4 15 5

Red. rate 85% 2.3X 3.2X 1.2X

1e-4 SelectC 611 11.6 6e-2 7 4
Red. rate 94.7% 4.6X 6.9X 1.5X

3. N
= 32

- - Orig. 23 7.7 - 0.4 4

1e-14
1e-8 SelectC 8 7.1 3.3e-4 0.2 3.3

Red. rate 65.2% 1.1X 2X 1.2X

1e-4 SelectC 3 6.7 4.7e-4 0.2 3.2
Red. rate 86.9% 1.15X 2X 1.25X

hand side (since voltage sources are eliminated), i.e., the contribution of C ends up
in the right hand side. Hence, possible de-activation and or reactivation change the
right hand side of our system and does lead to large errors. Therefore, as indicated
in Chapter 2 Section 2.3, C should not be deactivated/reactivated or moved.

5.5 Conclusions and outlook
The SelectC technique provides faster transient simulations of RC networks up to
the factor of 7. The method works nicely with signals having constant period of
times, for instance trapezoidal, pulse and/or square signals for problems with many
C-parasitic. To be investigated are the reliability and automatic detection/generation
of the method (more precisely, given an error tolerance, which value of τsel and τcap
we should choose, and vice versa), and also the application of SelectC for general
circuits including nonlinear elements.
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Figure 5.3: The top figure: Transient simulation of the original system versus SelectC
system (netlist 1), the output 12976 gives maximum absolute error, inputs are square
signals injected to one external/net, τsel = 10−8(A). The bottom figure shows the
zoom in of the two marked points (from the top figure) shown the difference (about
10−3) between the original problem and the modified one. The delay error (horizontal
line) is about 0.03 (picosecond) and is also acceptable.
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Figure 5.4: The zoom in of transient simulation of the original system versus SelectC
system (netlist 2), the output 3308 gives maximum absolute error, inputs are square
signals injected to one external/net, τsel = 10−4(A). The two marked points shown
the large difference (about 10−1) between the original problem and the modified one.
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Figure 5.5: An academical nonlinear network. Coupling capacitor cc = 10−15(F),
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Chapter 6

Conclusions and
Recommendations

6.1 Conclusions

In this dissertation, we presented new numerical methods to speedup the transient
simulation of dense parasitic RC networks. In particular for networks derived from
real designs of very-large-scale integration (VLSI) chips with parasitic capacitors.
These new methods focus on the parasitic capacitors.

First, Chapter 4 presents MoveC which moves parasitic capacitances. Typi-
cally, parasitic capacitors connect two distinct resistor singly connected components.
MoveC determines (for each two distinct components) the largest coupling capacitor
between them and next moves coupling capacitances (between the same components)
which are smaller than a default threshold to the largest coupling capacitance. We
mention "one of the largest coupling capacitances" because there might be capaci-
tances with the same maximum value. The criteria of moving coupling capacitors can
be changed by the user, for instance, one can choose larger or smaller threshold τmove
for moving small coupling capacitors, for which coupling capacitors under τmove will
be moved to other place. Note that we should not create extra coupling capacitances
because results can become sub-optimal. For certain networks (from industry) a fac-
tor 2 speedup was found. Of course in case with few coupling capacitors, speedup (as
expected) is minimal.

We also mentioned SplitC in this chapter to compare to MoveC. For SplitC, each
small coupling capacitor which is smaller than a default threshold is replaced by two
capacitors, one from each vertex to the reference node. The capacitance value of each
capacitor to reference node equals that of the removed coupling capacitor. Numerical
experiments show that using SplitC speeds up the process but also can result in large
simulation errors. This happens when the coupling capacitances between two nets
are under threshold and are removed resulting in two decoupled components.

Chapter 5 introduced SelectC as another method to reduce simulation time. At
each time step of the transient simulation, SelectC select active coupling capacitors
to be included in the simulation at the next time step. An active coupling capacitor
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is a coupling capacitor whose current ıc is large enough, i.e., ıc > τsel. This way, we
solve sparser problem at each time step because we use sparser Csel. The speedup of
SelectC can reach up to a factor 7 with acceptable error. In general, the speedup of
these three methods is high for dense parasitic capacitors.

To show the simulation speed improvement, simulations were run for all of SplitC,
MoveC and SelectC in a Matlab environment. To run these simulations we needed
to apply sources (current or voltage). The precise position of where the sources are
applied influences the speedup factors, but cannot be extracted from the data from
the (industrial) networks.

6.2 Recommendations
In the future, it might be useful to investigate the following. For MoveC, one could
also change the condition of where to move small coupling capacitors to, for example,
instead of moving to the capacitor with maximum capacitance, one can move to other
maximal capacitances with the same value. By this way, we can avoid adding too
many small coupling capacitors to only one maximum capacitor which might result
in a very large capacitor between nets.

For SplitC, we can improve SplitC by only splitting small coupling capacitors
< τsplit and keep at least one coupling capacitor between two nets. This will avoid
that SplitC can disconnect nets.

All presented methods can be extended to the non-linear case, with promising
results, shown by solving an academic non-linear circuit with SelectC in this thesis.

The last point we would like to mention is the determination of a strategy for
positioning of the sources. As mentioned in the previous section, the results of the
simulation are affected by the position of the sources. One proposed strategy for
positioning the sources is to inject a source to one potential vertex at a time and
run the full simulation. The source vertex where we obtain the maximum number of
non-zero nodal voltages and the smallest voltage errors be appointed as the source
position.
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Appendix

We supply the code in Mathematica for research in Chapter 3, section 3.4. The code
provide the results and Figures 3.3, 3.4, 3.5, 3.6,
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ClearAll

a = 0;

st = {Cos[2* Pi* s], a* Cos[2* Pi* s]};

b = G12.Inverse[G22].st;

G11 = {{2, 0, -1, 0}, {0, 2, 0, -1}, {-1, 0, 2, 0}, {0, -1, 0, 2}};

G12 = {{-1, 0}, {0, -1}, {0, 0}, {0, 0}};

G21 = Transpose[G12];

G22 = {{2, 0}, {0, 2}};

G = G11 - G12.Inverse[G22].G21;

c =
1

4
;(*c=1;*)

(*orig problem*)

C11 = {{2, -1, 0, 0}, {-1, 2, 0, 0}, {0, 0, 1 + c, -c}, {0, 0, -c, 1 + c}}

CinvG = Inverse[C11].G

VCinvG = Transpose[Eigenvectors[CinvG]]

DCinvG = Eigenvalues[CinvG]

Cinvb = Inverse[C11].b

TimeConstrained[xc = MatrixExp[-CinvG* t].Integrate[MatrixExp[CinvG* s].Cinvb, {s, 0, t}],

Infinity];

xr = -Inverse[G22].(st + G21.xc);

(*moveC problem*)

C11 = {{2 + c* 1, -1 - c* 1, 0, 0}, {-1 - c* 1, 2 + c* 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}

CinvG = Inverse[C11].G

VCinvG = Transpose[Eigenvectors[CinvG]]

DCinvG = Eigenvalues[CinvG]

Cinvb = Inverse[C11].b

TimeConstrained[xcm = MatrixExp[-CinvG* t].Integrate[MatrixExp[CinvG* s].Cinvb, {s, 0, t}],

Infinity];

xrm = -Inverse[G22].(st + G21.xcm);

(*plot xo,xm*)

Plot[{xc, xr, xcm, xrm}, {t, 0, 4},

PlotLegends →

Placed[{"xo_2", "xo_5", "xo_3", "xo_6", "xo_1", "xo_4", "xm_2", "xm_5", "xm_3", "xm_6",

"xm_1", "xm_4"}, Above], AxesLabel → {t, x}, LabelStyle → Directive[Blue, Bold],

PlotStyle → {Thickness[0.01]}, TicksStyle → Directive[FontSize → 16],

AxesStyle → Directive[Gray, FontSize → 16], GridLines → Automatic]

xrxrm = Abs[xr - xrm];

xcxcm = Abs[xc - xcm];

Plot[{{xcxcm}, {xrxrm}}, {t, 0, 4},

PlotLegends →

Placed[{"|xo_2-xm_2|", "|xo_5-xm_5|", "|xo_3-xm_3|", "|xo_6-xm_6|", "|xo_1-xm_1|",

"|xo_4-xm_4|"}, Above], AxesLabel → {t, x}, LabelStyle → Directive[Blue, Bold],

PlotStyle → {Thickness[0.01]}, TicksStyle → Directive[FontSize → 16],

AxesStyle → Directive[Gray, FontSize → 16], GridLines → Automatic]

Clear[a, t, c]



Summary

Numerical methods for accelerating transient simu-
lation of dense parasitic RC networks
The growth in the complexity of modern Integrated Circuit (IC) design makes the
design and manufacturing process more and more complex. Circuit simulation is
necessary since it helps to discover undesirable behaviors prior to manufacturing and
deployment, and thus minimize the possibility of producing faulty devices, saving
time and money. Due to the ever denser packed components on the ICs, intercon-
nects and parasitic effects have become more dominant. It is crucial to take these
density induced effects into account. This requires the simulation of very large scale
electrical networks, with a very large number of electrical and parasitic elements.
Related simulation is usually time-consuming or infeasible for standard circuit simu-
lation tools. This thesis focuses on speeding up the transient RC network simulation
with parasitic capacitors. The considered speed up / acceleration methods are: (1)
SplitC, (2) MoveC and (3) SelectC.

All three methods affect the matrix DF(x) in the Newton update DF(x)dx =
−F(x) with DF(x) = sC+G, where C represents the capacitance matrix related to
the unaccelerated or accelerated method, and G represents the conductance matrix.
A circuit with fewer capacitors implies fewer non-zero entries in C. The time it takes
to solve the linear system in general depends on the amount of non-zeros in sC+G,
i.e., in C and in G. To speed up the simulation time our three methods mentioned
above focus on the reduction of non-zeros in C, i.e., on the (re-)moval of capacitances
or even on the dynamic capacitor selection per time-step.

SplitC is the method of, electrically speaking, replacing a coupling capacitor be-
tween two nodes by two coupling capacitors with the same capacitance from each
node to ground. Mathematically speaking, two non-zero entries from C are removed
for each split coupling capacitor. Note that only coupling capacitors which are smaller
than a chosen threshold are split. Thus, if we use a large threshold, there is a high
probability that all coupling capacitors between nets are removed, resulting in discon-
nection between nets and hence accuracy loss. Therefore, to maintain the connections
between nets (at least one coupling capacitor between every two nets), there is an
additional option for SplitC. The option is to keep the maximum capacitances per
two nets regardless of the threshold value.

MoveC is developed to improve on SplitC. There are two MoveC approaches. In the
first approach, for every two distinct connected G components, we select a maximum-
capacitance coupling capacitor, after which we move all other coupling capacitances



(below a threshold) to join (add up to) these selected maximum-capacitance coupling
capacitors. The second approach is identical except that we select the maximum-RC
value capacitor instead of the maximum-capacitance capacitors. Moving other cou-
pling capacitors (below a threshold) to join (add up to) the selected inter-component
capacitors causes fewer non-zero entries in C. Thus speed up the operation F in the
Newton’s iteration.

Regarding SelectC, for each step tn in the transient simulation, selects the active
capacitors (above a threshold) to constitute the Cn capacitance matrix at that time
step tn (i.e. sC + G is replaced by sCn + G). A coupling capacitor is active if the
current passing through it is approximately zero. Because the SelectC matrix uses a
potentially different capacitance matrix per time-step, it is not possible to use off-shelf
ODE simulators such as Matlab’s ODE toolbox (ode23t, ode15s, etc.). We therefore
wrote a Matlab research prototype time integrator based on a simple trapezoid time
integration which can handle the dynamic selection of capacitors. Matlab was chosen
because it facilitates rapid prototyping, but even in Matlab a fast enough prototype
requires specialized vectorized code for about any operation. Important issue is the
assessment of the improved speed of Cselect. We present Matlab timings which com-
pare the solution time for the full system against the solution time for the Cselect
approach. To this end our simulator aims to provide the fastest possible Matlab im-
plementation of the time integrator. Of interest to the project’s participant was the
potential improved speed of the Cselect approach in the industrial’s partner commer-
cially available circuit simulation software, but providing these timings was deemed
to be out of scope (would mean a full C++ implementation in ELDO). Working with
matrix representation rather than a graph representation of the networks (based on
the provided matrix input) caused extra numerical round-off issues to pop up in many
parts of the simulator. All of these issues are addressed.

Numerical experiments are shown to verify the performance for each proposed
method. In general, we conclude that the reductions lead to fewer non-zeros in C
which speeds up the transient simulation without "too much" loss of accuracy in
voltages and delays, depending on the industrial / academical examples at hand.
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