

ChronoCorrelator

Citation for published version (APA):
van Dortmont, M. A. M. M., van den Elzen, S., & van Wijk, J. J. (2019). ChronoCorrelator: enriching events with
time series. Computer Graphics Forum, 38(3), 387-399. https://doi.org/10.1111/cgf.13697

Document license:
TAVERNE

DOI:
10.1111/cgf.13697

Document status and date:
Published: 10/07/2019

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1111/cgf.13697
https://doi.org/10.1111/cgf.13697
https://research.tue.nl/en/publications/c5a1299d-e463-49eb-8f95-b1a564b30344

Eurographics Conference on Visualization (EuroVis) 2019
M. Gleicher, H. Leitte, and I. Viola
(Guest Editors)

Volume 38 (2019), Number 3

ChronoCorrelator: Enriching Events with Time Series

M.A.M.M. van Dortmont1,2 , S. van den Elzen2 and J.J. van Wijk1

1Eindhoven University of Technology
2SynerScope B.V.

Event Sequences

Time-series Correlations

Visualize, Filter,
Group & Correlate

Interact, Inspect,
Tag & Refine

Figure 1: The concept of ChronoCorrelator: enable users to combine both event sequences and time series to discover correlations between
the two using a visual analytics approach and enable them to filter, group and inspect events on the fly.

Abstract
Event sequences and time series are widely recorded in many application domains; examples are stock market prices, electronic
health records, server operation and performance logs. Common goals for recording are monitoring, root cause analysis and
predictive analytics. Current analysis methods generally focus on the exploration of either event sequences or time series.
However, deeper insights are gained by combining both. We present a visual analytics approach where users can explore both
time series and event data simultaneously, combining visualization, automated methods and human interaction. We enable
users to iteratively refine the visualization. Correlations between event sequences and time series can be found by means of an
interactive algorithm, which also computes the presence of monotonic effects. We illustrate the effectiveness of our method by
applying it to real world and synthetic data sets.

CCS Concepts
• Human-centered computing → Visual analytics; Interaction design; • Mathematics of computing → Time series analysis;

1. Introduction
Event data is common across many domains, from websites logging
the activity of their visitors and software tracking the interaction
between its components, Internet of Things applications producing
various sensor and event logs, to doctors keeping records about their
patients treatments. The common theme is the desire to use this
data to monitor or improve the processes involved or to find the
source of a failure. Aside from their type and associated timestamp,
events often carry additional information (e.g., the user logging in,
the medication received by a patient and its dosage, the web page
being visited), depending on the domain and type of event involved.
In essence events often represent a change of state.

In many domains a second type of temporal data is being recorded
in the form of time series. This sensor data is often not the direct

result of an event that occurred, but a recording, at regular intervals,
of some variable belonging to the actors involved (e.g., the blood
pressure of a patient in the ICU, a temperature reading of a critical
component in a machine, the memory usage of a web server). Time
series generally do not represent a clear change of state, due to their
continuous nature, unlike event data. They can however provide
more information about the overall state of an entity that may not be
directly obtainable from event data alone. While some approaches
might simply treat this data as another type of event, our approach
is different. To enable simultaneous exploration of event and time
series data our method facilitates a user-oriented approach where
filtering, selections and attribute based partitioning are combined
with a user-controllable projection of the time series data onto the
event data, enabling them to enrich the event data with additional

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.13697

https://orcid.org/0000-0001-6935-5318

M. van Dortmont, S. van den Elzen, J. van Wijk / ChronoCorrelator: Enriching Events with Time Series

context about the underlying activities and entities. The challenge
here is that generally there is no data available to directly link
patterns in the time series data to specific events, because of the
way they are captured, separately and often for different purposes
and possibly even from independent sources. Thus, a means of
correlating events and time series is required. Simply augmenting
the events with some aggregated attribute based on the time series,
such as a mean, extremum or some other basic statistical measure
within a window around the event would not be able to encode the
complexity of patterns that may exist within the time series [Ans73].
Instead we chose an algorithmic approach to finding the linked
patterns.

Our main contributions are:

• an exploration and analysis method centered around an algorithm
that enables users to interactively find correlations between the
event sequences and time series data by encoding the results in
glyphs;

• simple local measures to find local deviations to the global corre-
lation results found by the algorithm;

• interactive, linked views displaying both event sequences and
time series data with a shared temporal axis, and;

• a prototype design (with best practices, design decisions and
limitations) showing the interaction flow using real world and
synthetic data sets.

Our work is based in part on discussions with security domain
experts working in a Security Operations Center (SOC), looking to
take a more exploratory threat hunting approach to cyber security,
during the early stages of development.

1.1. Tasks
Based on these initial discussions with the security domain experts
we came up with the following list of tasks to aid the users:

• Determine a correlation between selected events and a time
series. The security experts mentioned doing this by querying
around known alerts in various log files, looking for unusual
patterns in other log files around the same time, trying to find
patterns. The experts explained that linking event data to metrics
such as memory usage is generally done manually and finding
relations, if done at all, is done by hand.

• Determine if, for a given set of events, there are subsets which
show a stronger correlation when splitting the events into
subsets based on some attribute; for example in one of our
usage scenarios we looked at CPU and memory usage time series
and how they relate to logs containing information about applica-
tion activity. By splitting events, for example per event type, user
or application name, we investigate whether any unusual activity
in the time series can be correlated to an application or user in
the logs without splitting events into predetermined sequences
a-priori. The domain experts mentioned that they preferred an
approach that did not force them into a predefined projection of
the data, as this was a major constraint of their existing workflow,
and not ideally suited for the threat hunting scenario, i.e., divid-
ing the events into sequences based on a "server" attribute might
make looking at the data from a user perspective more difficult.
Thus our approach does not force an a-priori split on the data.

• Find events where the local pattern differs from the global
pattern; such deviations can indicate an outlier among the events.

• Annotate findings, so that results can be used in later iter-
ations of the exploration. For example, if we find suspicious
logins early on in our exploration, we can tag them for later use.

This leads us to the following user requirements:

• explore - a means to explore both events and time series;
• correlate - a method to find relationships between events and

time series;
• verify - a way to inspect and verify the results;
• detect - a way to detect local deviations from the global pattern;
• annotate - a way to annotate the events.

To achieve these requirements we provide a system that

• enables users to iteratively discover events of interest by means
of a visual exploration environment that shows both events and
time series in a shared temporal space;

• connect those events to potentially relevant time series, through
the use of an interactive, user-controlled, algorithm that can find
potential correlations;

• visually inspect the results to determine their accuracy, and enable
users to manually adjust threshold parameters;

• detect local deviations from the correlation results by means of
visual comparison of the local pattern against the global one; and
finally,

• annotate the events by means of a tagging operation, which feeds
back into the exploration environment, allowing users to iterate
on their findings.

The remainder of this paper is structured as follows: in Section 2
we discuss related work. Next, we describe our approach to event
sequence exploration and our prototype in Section 3. In Section 4
we discuss the design decisions with respect to interaction, data
manipulation and visualization centered around the correlation algo-
rithm used. Several usage scenarios [IIC∗13, SMM12] that guided
our design are given in Section 5. Limitations and observations are
discussed in Section 6. Finally, conclusions and future work are
provided in Section 7.

2. Related work
This section is divided into three separate parts, first discussing
previous work that focuses specifically on event sequences, then
providing an overview of existing work that focuses on time series
data. Finally, we discuss existing work that combines these two
types of temporal data. We also discuss some research outside the
visualization literature that focuses on similar problems.

Event Sequences Event sequence exploration has been ex-
tensively studied within the visualization community [DSP∗17,
PMR∗96, AMST11]. A common representation for events is to
show them as linear sequences of glyphs, while providing inter-
active means to manipulate the sequences to perform tasks such as
querying or exploration [BM13, Shn96]. For example, Plaisant et
al. [PMR∗96] describe LifeLines, a system that gives a complete
overview of a single patients records, showing patient treatments
and problems in a chronological overview. Wang et al. [WWPS10]
build on this in LifeLines2 by adding the ability to explore and
query multiple patient records at once and adding the ability to align

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

388

M. van Dortmont, S. van den Elzen, J. van Wijk / ChronoCorrelator: Enriching Events with Time Series

events across patients. Both systems represent events as glyphs on a
linear axis, representing time. In the case of LifeLines2 the system
can represent both absolute and relative time, the latter being used
when aligning events to, for example, the first occurrence of a par-
ticular event type per patient. TimeSpan [LPK∗16] focuses on the
exploration and comparison of the steps involved in the treatment of
stroke patients, with the goal of finding ways of minimizing the time
between patients having a stroke and patients receiving proper treat-
ment. In EventFlow [MLL∗13] Monroe et al. provide mechanisms
to iteratively simplify and filter complex event sequences to find
meaningful patterns. Similan2 [WPTMS12] enables users to query
event sequences to find patterns similar to the queried pattern, while
giving them control over the parameters of the underlying similarity
measure. Similarly, Chen et al. [CXR18] discuss a visual analytics
system that enables users to match and summarize sequences using
a visual query interface, that can find matches despite the presence
of noise, such as slight variations in the event order. Krstajic et
al. [KBK11] use a kernel density estimate based approach to im-
prove the scaling of event series, showing moments in time with
a higher event frequency as larger peaks. Cappers et al. [CvW18]
discuss a system called EventPad to explore event sequences by use
of multivariate regular expressions, focusing on querying, simpli-
fication and iterative refinement. Combining event sequences with
other types of data is not new. For example, Krueger et al. [KTT17]
present a system where event sequences are explored together with
geo-spatial information to gain insight into movement sequences.

Time Series Visualization of time series data has also been
broadly studied [AMST11, MS03, SC00]. The distinction we fo-
cus on is the discrete and often multivariate nature of event data
versus the often continuous nature of time series. With Time-
Searcher [HS04] Hochheiser and Shneiderman introduce a sys-
tem that enables the exploration of multiple similar time series
by use of a visual selection and filtering mechanism. Balakrishnan
et al. [BCZP11] present a visual analytics approach to exploring
time series, where users can iteratively construct an analysis pipeline.
Saito et al. [SMY∗05] present a two-tone pseudo-coloring technique
that reduces the vertical space required to visualize one-dimensional
data. Similarly Heer et al. [HKA09] discuss a variation of the often-
used line or area chart that folds charts back onto themselves to
reduce the amount of space required to display them. Federico et
al. [FHR∗14] extend this to qualitative data. Hripcsak et al. [HAP11]
designed an approach to correlate time series of lab results to each
other and to concepts mapped onto binary time series. Köthur et
al. present an approach [KWS∗15] to correlate multiple time series
with each other. Other systems exploit the cyclical nature of time to
display data differently. Van Wijk and Van Selow [vWvS99] use a
calendar-based approach to clustering of multiple time series, while
Weber et al. [WAM01] map temporal data on a spiral or helix to
enable simultaneous display of both linear and cyclical properties
of the data. We however choose the linear approach, because this
enables us to display multiple event sequences and time series in a
juxtaposed fashion.

Combined Approach There is some previous work, mainly in
the medical domain, that combines both event sequences and time
series into a single framework. Rind et al. [RWA∗13] provide an
overview of tools and methods to explore and query electronic health
records, including several that combine event data with time series

data for the same patient. For example Shahar et al. [SGBBT06] in-
troduce KNAVE-II, a system that aids the analysis of patient records
containing both event data and time series by integrating with a
database of domain knowledge. It displays both treatment events
and time series data on a single patient in a juxtaposed visualization.
It supports analysis and classification of the time series using the
database, but does not correlate events with the time series. Similarly
VisuExplore [RAM∗11] is a system showing both time series and
event data side-by-side showing patient treatment information for a
single patient. Wanner et al. [WSJ∗14] discuss a system that enables
users to link interesting intervals extracted from a time series with
events extracted from textual data. Gschwandtner et al. [GAK∗11]
propose a system, CareCruiser, that enables medical experts to align
treatment plans with data on patient condition to determine the
effects of treatments on the patient, by means of color coded high-
lighting of the time series which can show the distance to some
desired value, the progress over time or the slope of the time series.
This encoding depends on medical domain knowledge to provide
information about which values are acceptable and which are not. It
does not however directly allow for correlations between events and
time series. The way our approach differs from the systems men-
tioned here is that it does enable users to directly correlate between
event sequences and time series, thus unlocking a more powerful
way to explore the data.

Other Fields Other fields outside of visualization also seek to
tackle similar problems. Xiao et al. [XYF∗17] use Recurrent Neural
Networks (RNNs) to analyze time series & event data and apply it
to, amongst others, electronic health records to, for example, predict
sequences of diagnoses for patients in the ICU. Dunkl et al. [DR-
MGF14] use process mining techniques, such as Decision Point
Analysis, to analyze event sequences with time series data. In this
approach they attempt to bring the time series data into the event
sequences by for example adding new events when the time series
exceeds a given threshold or by adding additional attributes to exist-
ing events. Luo et al. [LLL∗14] discuss an algorithm that calculates
a global correlation between time series and event sequences. It is
in fact this algorithm that we chose to build upon for this paper. By
extending the algorithm with local measures and by using visual-
ization and interaction, we show that deeper insights can be gained
than by using the algorithm alone.

3. Approach
The disparate nature of event sequences and time series data makes it
difficult to gain insight into the relation between these two data types,
despite their shared temporal nature. Users are not only interested
in the presence of patterns in time series data, but also how these
relate to the presence of certain events in a related event sequence,
and how this information might be used to gain insight into the
cause of these events or perhaps to enable better prediction of future
occurrences for similar events based on the signal provided by the
time series. In order to do so, they need to be able to find which
subsets of events relate to patterns present in the time series data.

As mentioned in Section 1.1, the initial requirements for our pro-
totype came in part from discussions with security domain experts
on a means of threat hunting: exploring various system logs and
metrics to find new patterns.

To handle events and time series in a single application we chose

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

389

M. van Dortmont, S. van den Elzen, J. van Wijk / ChronoCorrelator: Enriching Events with Time Series

Figure 2: The main user interface of ChronoCorrelator: (A) Scented widgets to quickly filter out events; (B) Detail view; (C) A density plot
showing the global density of events, as well as a legend for the correlation results; (D) Beneath the density plot: the shared time axis; (E)
Event sequence; (F) Time series, represented by simple line charts; (G) Collapsed time series, event sequences; (H) A correlation result,
showing events, time series and glyphs in a common chart. A summary is shown in the chart description to the left; (I) Search bar allows
searching for events containing specific values; (J) Inset: the parameter GUI shown to select correlation settings.

for a representation where event sequences and time series are
displayed juxtaposed vertically with a shared horizontal temporal
axis, using proven visualization techniques. Event sequences are
represented as a series of glyphs, sharing the horizontal time axis
with the time series, which in turn are displayed as simple line-
charts. When loading a dataset, users are initially presented with
the events in a single event sequence and a chart per available
time series. Operations on the data can introduce new sequences.
For example, by grouping events by event type, users can create a
separate sequence for each event type. By default, the event glyphs
are colored by event type, but users can select attribute values to
color events by and can even annotate events with custom attributes,
by means of a text box, which can then be used to color the glyphs
or create custom groupings.

The main user interface for the prototype is shown in Figure 2.
The screen is divided into three sections. The top left shows a series
of scented widgets [WHA07] enabling quick filtering of events
being shown based on their attributes (Figure 2a). The bottom left
shows detailed information on selected events, providing details-on-
demand [Shn96] (2b). All available attributes and user added tags
are listed. From here users can click on a tag to quickly select all
events with that tag. The right side of the screen is used to show
the event sequences (2e) and time series (2f). At the top a density
plot shows the event density over time as a streamgraph [BW08]
(2c). Beneath it, the event sequences and time-series are shown. The

main workflow of the prototype application, as shown in Figure 1,
is centered around direct interaction with the sequences:

• Users can use the mouse to interact with the data to zoom &
pan as well as select events by clicking or dragging the event
sequences, enabling them to get details on the selected events.
Alternatively, they can hover over a specific event to get details
of the event in a tooltip.

• Users can collapse sequences, time series and correlation results
that are not of interest (2g), and can trigger various operations
from a context menu. From the context menu users can add or
remove tags from selected events to annotate them, use a selected
time series to filter event sequences by filtering out events that
occur when the time series is within or alternatively outside a
certain range and sort sequences. For example, this would enable
a server administrator to filter out server events that occur during
a period where the CPU usage is low.

• Transformations can be applied to time series, such as Z-
normalization, resampling or a de-trending operation, which can
help improve correlation results.

• Users can also run a correlation test based on an algorithm that
is explained in depth in Section 4. Given a set of selected events
and a time series, users are presented with a UI to configure
the input parameters for the correlation algorithm, thus they are
enabled to apply their domain knowledge for the configuration of
the algorithm and it is not treated as a black box. The parameter
UI (2j) shows a small section of aggregated time series, which

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

390

M. van Dortmont, S. van den Elzen, J. van Wijk / ChronoCorrelator: Enriching Events with Time Series

shows the average shape of the time-series before and after the
selected events for the given window size, which helps the user to
choose the right parameter values, and the tool will pre-seed the
main parameters of the algorithm with reasonable values, based
on the selected events and time-series. Once the algorithm has
run, the results are shown in a combined event sequence and time
series display (2h) that enables users to further interact with the
parameters controlling statistical significance thresholds of the
algorithm. By default the chosen values for the thresholds are set
to give a reasonable level of confidence, but users can choose to
either increase or decrease these thresholds. Given results found
during correlation, users may wish to go back to refine their filters
and selections or add tags to mark the selected events. The left
area of a chart shows information about that item. In case of
correlation results it also shows a summary view, which is visible
even when the correlation result is collapsed.

• Instead of computing correlations on all events in a selection
as a single sequence, users can also decide to perform a “Split
& Correlate” operation, which splits the selection into separate
sequences based on chosen event attributes and performs a corre-
lation operation on the sequences separately. The results of this
operation are ordered from highest to lowest confidence score.

An example of how ChronoCorrelator shows the results can be seen
in Figure 2 where the results of a “Split & Correlate” operation are
shown. The results of the correlation operation also enable users
to compare the global result produced by the algorithm against the
local patterns in the data, enabling them to find local deviations, as
we discuss in Section 4.4.

The work of Du et al. [DSP∗17] focuses mainly on event sequence
analysis and exploration, but it enumerates strategies that can be used
to outline the capabilities of ChronoCorrelator, to allow for easier
comparison with existing tools. Our system supports extraction of
records and categories (strategies S1 & S2), enables time windowing
of the sequences by using time series as a filter (S5) and through
the use of both predefined & custom categories it can be used to
group events together (S9). The interactive discovery of potential
correlations between events and time series, however, does not
clearly fall in any of the defined categories, though in a way it can
be considered as an instance of “aligning” (S4).

4. Correlation algorithm
Our approach to combining events and time series together is cen-
tered around the interactive application of the algorithm by Luo
et al. [LLL∗14] capable of detecting the presence, temporal order
and direction of correlations between a set of events and a time
series. By integrating this algorithm into a visual analytics work-
flow, users are enabled to quickly scan the possible parameter space
and determine if correlations can be found. This enables them to
answer questions like “Can events be predicted from fluctuations
in a signal?” or “What effect do certain events have on a signal?”.
We chose this algorithm because it is one of the few that focuses on
the combination of time-series and event data, its relative simplicity
and its ability to indicate not only the presence of correlation but
also the direction of the relation (i.e., is it an event followed by a
change in the time series or vice-versa) and the effect (i.e., are the
events correlated with an increase or a decrease in the time-series).
By enabling interaction between the users and the algorithm using

Γfront

Γrear

Θ

k = 4

Figure 3: Sampling approach shown for a single event and window
size k = 4. Γfront takes the four preceding entries from the time series,
Γrear takes the four entries following the event and for Θ entries
are randomly sampled from the entire time series. This forms three
samples of length k. One directly preceding the event, one directly
following it and one bootstrapped from the entire time series.

visualization and interaction techniques we enable users to refine
the parameters of the algorithm. Thus, we do not treat it as a black
box, but choose to enable direct control of its parameters by the
user, while supporting the user by providing good default settings
based on the data and visual feedback on their choices. One of
the limitations of the algorithm, however, is that it produces one
global outcome for all selected events. To enable users to detect
local deviations to the global pattern, we also introduce a pair of
local measures, which we detail in Section 4.2. By visualizing the
results side-by-side we enable users to detect local deviations from
the global pattern.

4.1. Global algorithm
In this section we briefly describe the concept behind the algorithm
for determining global correlations, both to introduce the terminol-
ogy and symbols used later in the paper and to show how our local
additions relate to the global results of the algorithm and to show
where we deviate from the interpretation of these results. For a more
in-depth and generalized discussion of the algorithm, including a dis-
cussion of its performance and accuracy, please refer to the work by
Luo et al. [LLL∗14]. The algorithm approaches the question of corre-
lation as a two-sample problem. The input for the algorithm consists
of: a set of events E, with E = {e1, ...,en}; a time series TS, with
TS = {t1, ..., tm}, where each ti is a tuple of a timestamp and a value;
a window size k and a neighborhood size r, where r is at most n−1.
The algorithm consists of several steps. In the first step it creates
three sets of subsequences of length k each, all taken from the time
series. Figure 3 shows the concept for window size k = 4. Each set
will contain n subsequences, equal to the number of selected events.
The first two, Γfront and Γrear, consist of sampled subsequences of
size k taken from the time series before and after the occurrence
of each event in E, i.e., Γfront = {lfront

k (TS,ei), i = 1, ...,n}, where

lfront
k (TS,ei) is the subsequence of length k taken from series TS

before the occurrence of event ei. The same holds for Γrear for sub-

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

391

M. van Dortmont, S. van den Elzen, J. van Wijk / ChronoCorrelator: Enriching Events with Time Series

sequences that follow the events in E. For the edge case where there
are not enough elements in the time series before or after an event,
we chose to repeat the first or last element, respectively, to fill in
the gaps. The third set, Θ, with Θ = {θ0, ...,θn} contains sampled
subsequences θi, again of length k, but these subsequences are con-
structed by random sampling from TS. In short each of the three sets
contains n samples of length k.

In the second step a nearest neighbor based method [Sch86] is
applied for both Γfront and Γrear. For this purpose ChronoCorrelator
implements several distance metrics, including a simple Euclidean
measure and the more robust DTW [BC94] metric.

Using Γfront as an example, a combined sample pool Z = Γ∪Θ is
constructed. Each sample only occurs in either Γ or Θ, making the
sets effectively mutually exclusive, though samples with identical
values could potentially result from the random sampling. This does
not violate the definition of mutually exclusive used here as long
as a specific sample is clearly marked as being a member of only
one of Γfront or Θ, so that for each sample in Z we know whether it
comes from Θ or Γfront. For each sample in Z we wish to determine
the set of r nearest neighbors. Now using an indicator function:

Ir(x,Γ f ront ,Θ) =

1, if x ∈Θ∧NNr(x,Z) ∈Θ

1, if x ∈ Γ f ront ∧NNr(x,Z) ∈ Γ f ront

0, otherwise.

(1)

where x is a sample in Z and NNr(x,Z) indicates the rth nearest
neighbor of x in Z\x, we can define a measure:

Tr,p =
1
pr

p

∑
i=1

r

∑
j=1

I j(xi,Γ
f ront ,Θ). (2)

Here p = 2n in our situation, which is the total size of the combined
sample pool Z (see the work by Luo [LLL∗14] for a more in-depth
explanation why). This measure is the proportion, in the set of r
nearest neighbors, for each subsequence taken from the same set
(Γ or Θ) as the given subsequence. This ratio should be low if the
samples are mixed well (i.e., we cannot distinguish between samples
taken from Γ or Θ) and high when a large proportion of nearest
neighbors comes from the same set, thus implying the underlying
distributions of Γ and Θ are different. Then given a large enough
sample pool size p,

C =
√

pr
(Tr,p−µr)

σr
(3)

has a standard Gaussian distribution with

µr = (λ1)
2 +(λ2)

2 (4)

and

σr = λ1λ2 +4λ
2
1 λ

2
2 (5)

where, for our case λ1 = λ2 = n/p. Now it is a simple application
of the Gaussian distribution test, C > α with, for example, α = 2.58
for P = 0.01, to determine if Γfront and Θ are taken from different
distributions. The same test is also applied to Γrear. If either set is
found to be significantly different, we can state that E and TS are
correlated (E ∼ TS). If Γfront and Θ are statistically different, we
can state that the events E often follow significant changes in TS,
which we can denote as TS→ E. If Γrear and Θ are statistically

different, we can state that the events E often precede significant
changes in TS, which we can denote as E → TS. Thus aside from
being able to determine the presence of a correlation, the algorithm
also detects the apparent temporal ordering of events and changes
in the time series. Note that this implies that if an event occurs
during a statistically different interval, where both the preceding and
following samples in the time series statistically differ from Θ, this
would be detected as a TS→ E case, since the event is preceded by
changes in the time series. However, this is where we diverge from
the algorithm described by Luo et al. [LLL∗14] by treating this case
as a separate outcome TS↔ E.

Finally, the algorithm can detect, if present, the effect type of the
correlation, i.e., whether there is a noticeable monotonic effect on TS
related to the occurrence of E and whether it is positive or negative,
as defined in Luo et al. [LLL∗14]. It does this by calculating a
two-sample t-test, which, for our case, can be defined as:

tscore =
µΓfront −µΓrear√

σ 2
Γfront+σ 2

Γrear

n

(6)

This tscore can then be tested against a value αeffect (where for ex-
ample αeffect = 2.58 implies P = 0.01). If tscore > αeffect then there
is a negative monotonic effect (E −→ TS, TS −→ E or TS −↔ E) and
if tscore < −αeffect there is a positive monotonic effect (E +→ TS,
TS +→ E or TS +↔ E). For values where |tscore| < αeffect no clear
effect can be detected. Note that the algorithm provides us with a
single result for the entire set E.

The runtime complexity of the algorithm is O(n2), mainly be-
cause of the distance measure that needs to be calculated for each of
the subsequences in Z between each other.

Note that the use of the Gaussian distribution test requires that the
underlying distribution should be normal, which is not something we
can always guarantee for real world data sets. However, because of
the central limit theorem, if the number of events is high enough, this
should not be a problem. A common threshold for this is 30, however
depending on the dataset, a smaller number may be sufficient. The
prototype warns when a smaller number of events is used to test the
correlation. We also choose a default p-value of 0.01 that is stricter
than the more common 0.05, although the user is free to alter these
values by adjusting the α parameter.

The algorithm is designed to operate on regularly sampled time
series, however, the time series may be irregularly sampled. To
compensate for this, ChronoCorrelator can resample the time series,
although we found that, at least in our test cases, even with irreg-
ularly sampled time series the results were, in general, acceptable
even without resampling, since the correlation scores differed little
from the results when resampling.
4.2. Local measures
As mentioned earlier, we extend the global results produced by the
algorithm with some local measures that provide an indication of
local deviations. First, we determine the µts and σts of the entire
time series. Then, for each event ei, we take the corresponding
subsequences from Γfront and Γrear and determine if the means,
µ

front
i and µrear

i , are significantly different from µts:

δ
front
i = |µ front

i −µts|> σts (7)

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

392

M. van Dortmont, S. van den Elzen, J. van Wijk / ChronoCorrelator: Enriching Events with Time Series

(a) E +→ TS (b) TS −→ E (c) E +↔ TS, local deviation

Figure 4: Glyphs used to convey correlation, direction and effect. The results are displayed over a combined display of the time series, in
gray, and the event sequence (colored diamonds) beneath it. Results are encoded into flag-like glyphs. Images: (a) shows a correlation where
an event is followed by a positive increase in the time series. The local correlation is in agreement with the global correlation. (b) An event
following a drop in the time series. Again, both local and global scores agree. (c) An event where both Γfront and Γrear differ significantly
globally from the rest of the time series, however for the event shown we are unable to detect a local correlation, hence the gray color.

and

δ
rear
i = |µrear

i −µts|> σts. (8)

This produces one of 4 outcomes: if neither are true, we find no
local correlation; if both are true, we find that TS↔ E, if only δ

front
i ,

TS→ E and if only δ rear
i , E → TS. This gives us a local indicator

of both the correlation and its direction. For the local effect we use
the following equation:

fi =
µrear

i −µ
front
i

σts
. (9)

If fi ≥ 1 we consider it a local positive effect (+), if fi ≤ −1 we
consider it a local negative effect (-) and when −1 < fi < 1 we
consider it undecided (?).

4.3. Robustness to noise
There are two main ways noise can be a factor for the global algo-
rithm. Firstly, noise can be introduced on the event side, by running
the algorithm on a set of events, where some of the selected events
are different from the others and thus likely uncorrelated to whatever
time series we are trying to match them against, or by leaving out
some events that should have been included, though the later case
is generally less problematic. From tests on both synthetic and real
world data, we found that as long as the size of our event selection
was large enough, having a few missing or extra events did not have
that much of an impact on the end result. An important factor in
this regard is the neighborhood size r. Since this does not have to
be overly large [LLL∗14], the algorithm is in general fairly robust
against this type of noise.

The second type of noise is noise in the time series. To test the
robustness of the algorithm, we tested this with a synthetic data set
where we have multiple noisy time series, where we introduce the
same, correlated, signal in each, but with varying signal strengths:
we start with a signal that is about twice as strong as the strongest
background noise and reduce that in steps to 75%, 50%, 40%, 30%,
25% and 10%. Each reduction in signal strength had a noticeable
effect on the Z-scores, however we determined that even at 40% the
algorithm was able to determine a correlation, even though at this
level it was not always clearly visible to the observer anymore. At
even lower levels we needed to adjust the confidence threshold α ,

though below 25% this meant that the correlation was no longer sta-
tistically relevant. We also noted that for the lower signal strengths,
the relatively simple measures that were used to determine the de-
fault values for the window size k and neighborhood size r were
no longer producing optimal values, however for the test we kept
these at a fixed level. Another factor in this is the chosen distance
measure used to determine the nearest neighbors. The default, DTW,
seemed to produce generally more satisfactory correlations on our
real data sets, however we noted that during our synthetic noise tests
the simpler Euclidean measure was slightly more robust to this type
of noise as the signal got weaker, though the difference was small.

4.4. Visual Representation of Correlation
To communicate the results of the correlation to the user and to en-
able the comparison of local results to the global ones, the following
aspects should be shown:

1. presence and direction of the global correlation;
2. presence and type (positive or negative) of any global monotonic

effect;
3. presence and direction of any local correlation;
4. presence and type of any local effect;
5. the relation of the above with the events and time series used for

the correlation.

These aspects are shown in several ways in ChronoCorrelator. We
display a textual representation of the correlation and the parameters
used, next to the result sequence. This covers points 1 through 4,
but does not communicate the relation between event sequence and
time series effectively. To this end, we encode the individual event
results as glyphs.

4.4.1. Glyph design
We show the correlation by means of flag-like glyphs projected on
top of the event sequence and time series. The glyphs are positioned
in such a way, as to enable per event verification of the global results,
both against the local results and the actual time series in question.

The glyphs consist of three main parts, as shown in Figure 4.
The first part is a vertical line or “flag post” starting in the event
belonging to the glyph to the top of the time series. This enables
a quick comparison of the event position in relation to the related

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

393

M. van Dortmont, S. van den Elzen, J. van Wijk / ChronoCorrelator: Enriching Events with Time Series

Figure 5: Legend for the color scale used in the application.

pattern in the time series. The second part is a marker, shown on
top of the flag pole between the time series and the event sequence:
An upward pointing arrow when there is a global positive effect, a
downward pointing arrow when there is a global negative effect and
a circle when no effect could be determined. The global effect is also
encoded into the color of this marker. The colors are chosen from the
ColorBrewer2 site [Bre13]. We chose a color-blind friendly diverg-
ing sequence (Figure 5), using a red-yellow-blue scale, where red
encodes a positive and blue a negative effect, as shown in Figure 4.
We chose the arrow representation, because it is a representation
most users will be familiar with for encoding changing values, as
seen, for example, in a stock ticker. The third part is the “flag” itself,
which is placed above the time-series. This encodes three aspects:

• the direction of the global correlation; encoded into the direction
of the flag: right for E→ TS, left for TS→ E and both ways for
TS↔ E. This enables users to verify the correctness of the global
direction of the correlation against the patterns in the time series.
If they align there should be a deviation in the time series beneath
the flag itself;

• the window size k; the flag extends k time steps out from the flag
post in the detected direction, allowing for easy inspection of
the correlation in relation to the time-series. By encoding k into
the flag size users can quickly see if the chosen value for k was
correct or whether a different value may be warranted;

• the local direction and effect. The top half encodes the local
correlation and direction in an orange-white-purple color scale,
also chosen from the ColorBrewer2 site (Figure 5), and the bottom
half encodes the local effect in a the same red-yellow-blue scale

used for the markers. A legend at the top of the screen explains
the color-coding used.

We settled on this flag-like glyph after trying several other repre-
sentations, shown in Figure 6. For example, in an earlier iteration
(Figure 6(a)) we used arrow-head shapes, pointing left or right, in-
stead of the simpler rectangular shapes we settled on, rendered on
top of the time-series. However, these had several disadvantages.
Firstly, it was not intuitively clear to users which temporal direc-
tion was being encoded by the different arrow directions. Secondly
the arrow-heads suffered from poor readability when neighboring
glyphs start overlapping, in particular, when zoomed out. This prob-
lem also exists for the chosen glyphs of course, however, they suffer
less from the readability issue, in question. To deal with the overlap,
we also implemented a hovering interaction which hides any over-
lapping flags near the mouse cursor and we highlight the section
of the time-series connected to the highlighted glyph, so inspecting
individual results remains possible. To further deal with the issue
of overlap obscuring some of the glyph details, we also encode the
global correlation, direction and effect into the color of two horizon-
tal lines at the top of the chart, above the flags, as shown in Figure 4.
The colors are the same diverging scales used for the local effect
encoding in the individual glyphs: the top line encodes the direction
in an orange-white-purple scale and the bottom line encodes the
effect in a red-yellow-blue scale. This representation was added
to enable quick comparison between the global and local results,
encoded in glyphs, in particular, when zoomed out, or when glyphs
of neighboring events overlap, partially obscuring the individual
glyphs. Examples of this can be seen in Figures 4(a) and 4(b), where
the local results seem to agree with the global results and Figure 4(c)
where they do not. It should be noted that while the exact shape of
the glyphs may be obscured in some cases, the flag colors, encoding
the local results remain clearly visible, as can be seen in Figure 9, for
example. Note that when this happens the glyphs start forming two
horizontal lines, not unlike the ones at the top of the screen. Thus,
even when the window size k is larger than the distance between
two neighboring events, causing overlap and even when zooming
out might cause some of the details of the glyphs to become diffi-
cult to distinguish, users are still able to quickly detect any local
deviations to the globally detected results by simply comparing the
two lines at the top of the chart with the lines formed by the glyphs.

(a) Arrow design, projected on top of time series,
using whiskers to encode the global effect. The arrow
covered both the window before and after the event
and its direction indicated the correlation direction.

(b) Flag design, showing only global information,
using a red-green color scheme to encode the effect,
which was also encoded in the whiskers beneath the
flag.

(c) Final flag design, showing local and global infor-
mation, flag above the time series to avoid occlusion,
added global color encoding at the top of the chart,
using arrowhead instead of whiskers to encode ef-
fect.

Figure 6: Evolution of the glyph design.

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

394

M. van Dortmont, S. van den Elzen, J. van Wijk / ChronoCorrelator: Enriching Events with Time Series

Figure 7: Summary view example, global (circles) and local
(stacked bars) results are not in agreement.

Furthermore, we also show a summary of the global and local re-
sults in the control area of the chart, even when it is collapsed, as
can be seen in Figure 7. This summary view uses the same color
coding as the flags to show the global correlation in the form of
two colored circles and the local distribution of local correlations
in the form of stacked horizontal bar charts, again using the same
diverging color scales. The top circle encodes the direction of the
global correlation: orange for E → TS, purple for TS→ E, white
for TS↔ E and finally gray if no correlation was detected. The top
bar encode the distribution of the local results using the same color
scheme. The bottom circle indicates whether the global effect was
positive (red), negative (blue) or unclear (yellow). The bar next to
it, in turn, encodes the distribution of the local effect results. This
summary enables quick inspection of multiple correlations at both
the global and local levels, even when the chart itself is collapsed, as
well as enabling a quick comparison of the global and local results.
In the case of Figure 7, we can see for example that the local and
global results are not in agreement. The local scores seem to indicate
it may be necessary to split the events further, since the results seem
to largely fall into 2 separate groups, which was not clear from the
global score alone.

5. Usage scenarios
We have applied our approach to both synthetic and real-world
datasets. As discussed earlier we mainly used the synthetic data sets
to verify the functionality and to test the robustness against noise.
One dataset was created by monitoring memory usage, CPU usage
and disk usage on a server to create the time-series, sampling every
second. To generate the events we monitored user login, logout,
process creation and termination over a period of 5 hours. During
this test we ran some applications on top of any that were already
running on the server in question. One generated a heavy CPU load,
while another, designed to generate a considerable memory load,
was repeatedly started and stopped both via a script and manually.
A second set is based on an open data set containing information
about the treatment of patients in an Intensive Care Unit (ICU) over
a period of years, called MIMIC-III [GAG∗00, JPS∗16]. It contains
treatment information, as well as information about admission, dis-
missal and, if applicable, death of the patients. It also has data on
various monitored values which we can map to a time series per
patient.

5.1. Server Administration
Server administrators attempt to keep servers operating in proper
working order, ensuring that all authorized users can run their tasks.
This can be particularly challenging in environments where work-
loads are dynamic, varying in type of task and resource requirements.
To monitor the health of such systems, the administrators may set
up basic alerting to monitor for situations where resource usage is
high for a prolonged period or where critical tasks take more than
an acceptable amount of time. It then falls to the administrator to de-
termine the cause of the alert and, if necessary, remedy the situation.

The challenge here is that there is no direct link in the data from the
alert events to the actual cause of the resource usage. Performance
data is generally logged separately and in a different format from
event logs. The alerting system itself may also be separate from the
event logging system, though alerts are often also logged as events.

The task of finding the cause of the alerts is a type of root cause
analysis, where the administrator is tasked with establishing a time-
line leading up to the alerts with the stated goal of taking away
the cause of the problems and, if possible, preventing any future
occurrence. Traditionally, administrators use a variety of tools to
analyze these cases, such as grep [BK09], LogStash [Tur13] or
Nagios [Bar08]. They use these tools to first extract the relevant
intervals from the performance logs based on the timestamp informa-
tion provided by the alert. From there they have to query the event
logs to extract the likely event sequences involved from the logs,

(a) Moving average of memory usage was above threshold (30GB), triggering
alerts. The alert events are shown in the top sequence.

(b) Filtered and selected 855 Process Creation events.

(c) Split & Correlate operation applied on the procName attribute, creating
separate sequences for each separate process name.

(d) Increasing the correlation thresholds improves direction detection and
shows only one process correlated with all peaks. Circled correlation is differ-
ent from others and is not correlated with TaskKill or TimeOut.

Figure 8: Server administration example, showing several steps in
the exploration.

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

395

M. van Dortmont, S. van den Elzen, J. van Wijk / ChronoCorrelator: Enriching Events with Time Series

enabling them to manually inspect the sequences further to find a
likely source of the alerts. By applying our visual analytics approach
instead, we enable the administrators to simultaneously explore the
event and performance data and by enabling them to quickly corre-
late events, such as the alerts to the time series, they can instantly
see how the two data sources are related. In our example our admin-
istrator has received alerts about anomalous memory usage on one
of the servers after hours. A quick look at the data shows that there
is indeed increased memory usage, shown in Figure 8(a). The alerts
were triggered because the average memory usage during a minute
was higher than 30GB. To find a likely cause we filter and select the
Process Creation events, which are logged to track the starting of an
application (Figure 8(b)). To find correlations with memory usage
we then apply the “Split & Correlate” operation on the selected
events and the memory usage time series. This operation, as its name
implies splits the event sequence on a given attribute (or attributes).
In our case we chose to split on the procName attribute, which is
the name of the executable being run. It then applies a correlation
operation with suitable default settings for the window size k and the
α threshold and orders the results based on how well they correlate.
After inspecting the results we removed several sequences, which
had no correlation or involved normal system processes, and are left
with the correlations as seen in Figure 8(c).

We can now begin to form a hypothesis using our domain knowl-
edge. The processes involved are three system utilities TaskKill,
TimeOut and ConHost and one other application TestLimit64. We
know that ConHost is involved in handling console processes. We
also know that the process itself usually does not heavily use CPU
or memory. It does however indicate that whatever is going on was
most likely being performed from a console window, since there
is a strong correlation. The other two system processes, TaskKill
and TimeOut also do not have a heavy CPU or memory load. Their
functions are respectively to kill a running task by process id or
name and to introduce a delay in scripted environments respectively.
We can see that the occurrences of TaskKill seem to correlate with
most of the decreases in memory usage in the time window being
investigated, which suggests that TaskKill may have been used to
terminate whatever process was causing the memory usage. It is also
clear that there are two instances of TimeOut correlated with almost
each peak in the memory usage. As seen in Figure 8(d), there is only
one process correlated with the start of each peak in the memory
usage time series, including the circled peak: TestLimit64. We also
note that this peak shows a different local pattern, which is one of
the things that first drew our attention to it. A quick internet search
tells us that this utility is used to simulate memory loads from the
command line.

Given the above we can reconstruct the sequence of events that
lead to the alerts. A script running from a command prompt (corre-
lation with ConHost) is set up to run TestLimit64 for a short period
of time before killing the test utility using TaskKill. To perform the
wait between the start of the utility and the termination, as well as
the wait between ending one instance of the test utility and starting
a new cycle TimeOut was used. However, the circled peak is not
correlated to any instance of TaskKill or TimeOut. It is correlated to
a ConHost and a TestLimit64 instance. This suggests that it was a
separate run of the test utility, most likely from a separate console. It
is also this manual instance, together with the surrounding scripted

instances that seems to have triggered the alerts, which use a moving
average to detect heightened memory usage.

As we, the authors, are the culprits in this particular example case,
we can confirm that this is essentially what happened. While this
particular case may have simply been a test for our prototype, the
techniques combining visualization, interaction, algorithmic support
and human domain knowledge described here can be used in general.
This scenario is based on the threat hunting scenario laid out by
the security experts we talked to during the initial design phases.
While working on this usage scenario, we found and subsequently
implemented several operations that make using the tool more ef-
ficient, for example, we found that the ability to manually sort the
sequences and time series to be useful in keeping an overview. Also,
the introduction of the “Split & Correlate” operation was the result
of using our own prototype. It makes quickly correlating various
partitionings of the events against a given time series simple. The
combination of partitioning and further application of other opera-
tions is one that makes iteratively exploring data easier and can be
seen in other tools as well [CvW18]. By presenting the results from
the operation in an order where the strongest correlations are found
at the top, ChronoCorrelator helps in sifting through the results.
The use of visualization and our local measures helps in finding
deviations in the global pattern that the main algorithm is not able
to detect, such as the local deviations in Figure 8(c).

5.2. MIMIC-III
Our second usage scenario, based on the MIMIC-III set [GAG∗00,
JPS∗16], describing the condition and treatment of patients in an
ICU, contained real, but anonymized, records for some 40,000 pa-
tients, spanning over a decade. By applying ChronoCorrelator to
this data set, we illustrate the generic nature of the method. We
picked several patients from the data set, based on availability of
data for the patients and investigated whether we could find any
correlation between the treatment used and the patient vital signs,
as recorded in the set. For the time series we chose several vital
signs that are recorded for most, if not all, patients, such as: Heart
rate, Mean blood pressure, O2 Saturation level and Respiratory rate.
This is one of the areas where this data set is different from the
first usage scenario: the time series are generally only applicable to
the events relating to one patient. Thus we investigated the patients
separately. Also, the time-series in this data set are sparser than in
the first scenario. In this scenario we used the notes by the health
care professionals included in the data set as a ground truth for the
patient status and treatments chosen. For our events we used the
administering of medications, the admission or discharge from the
ICU during a hospital stay, which in some cases could happen mul-
tiple times, and various procedures performed on the patients. Here
we filtered out certain events, such as the administering of standard
saline solution, as this is done for most patients, continuously, over
the course of their stay in the ICU and correlating interval events, es-
pecially longer interval events, is difficult with the current approach,
as we discuss in Section 6.

In one case, for example, where a patient was brought into hospital
because of cardiac arrest we found a strong correlation between the
administering of Morphine Sulfate, several hours before the eventual
death of the patient, and both the O2 saturation and the heart rate.
This was achieved by first splitting the events on their type and

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

396

M. van Dortmont, S. van den Elzen, J. van Wijk / ChronoCorrelator: Enriching Events with Time Series

(a) TS −→ E correlation between O2 Saturation and Morphine Sulfate being
administered. Matched against notes indicating Comfort Measure Only order,
shortly before patient death.

(b) Correlation between body temperature and notes mentioning Arctic Sun,
a device meant to cool down patients. Note that due to the small number of
events, evidence for effect was not strong enough.

(c) Splitting on medication shows a correlation between a drug called Amio-
darone and heart rate.

Figure 9: Result images for the MIMIC-III data set.

then applying the Split & Correlate operation on the INPUT events,
which describe the various substances being administered to the
patients. This leads us to believe that Morphine, an analgesic, was
used as a comfort measure to reduce discomfort toward the end.
Validating this with the notes provided, suggests that the patient was
extubated by order of the family around the same time and that a
CMO order was given (Comfort Measures Only) by the family, as
shown in Figure 9(a). We noted that the correlations where the local
measures were in strong agreement with the global correlation score,
like this one, often indicated a clear correlation.

In another patient we isolated NOTES events mentioning “Arctic
Sun” and correlated them to the patient body temperature. There
was a correlation between the two as can be seen in Figure 9(b). An
internet search revealed that “Arctic Sun” refers to a medical device
used to rapidly lower the body temperature of patients to reduce
the risk of brain damage [Wik]. Note that due to the relatively low
number of events involved evidence for the presence of a global
monotonic effect was not strong enough to be statistically significant,
which is one of the limitations of the algorithm, as we also discuss
in Section 6.

Similarly, on the data for a final patient, suffering from sepsis, we
applied the Split & Correlate operation to find a correlation between
the administering of a drug called Amiodarone and the heart rate,
which is an antiarrhythmic medication, which suggests it might have
an effect on heart rate as seen in Figure 9(c). The drug is used to
lower the heart rate which is in line with the fact that according
to the correlation, the drug was first administered after the heart
rate increased and the effect of the drug events is that the heart rate
is lowered, which is reflected in the apparent decrease in the time
series after the event (TS −→ E).

This scenario is different in that in most scenarios it would not
make sense to explore the data of multiple patients together, as the

events relating to one patient would likely not be correlated to any
time series recorded from another patient.

6. Discussion and Limitations
The usage scenarios in Section 5 show that combining data from
event sequences and time series can improve insights into the behav-
ior of the underlying entities involved.

By combining visualization and interactive exploration of the data
with algorithmic support for correlation detection, we provide users
with the ability to find patterns that extend beyond what they could
find by only looking at events or time series in isolation, while also
giving them some statistical evidence supporting the correlation.

Furthermore, by extending the global results produced by the
algorithm by Luo et al. [LLL∗14] with a set of local measures and
visualizations, users are enabled to detect local deviations in the
global correlation pattern. By applying the prototype to various
usage scenarios we discovered the need for several features, such as
the Split & Correlate feature, time series re-sampling capabilities
and sequence sorting options.

However, the usage scenarios also show that the global algorithm
has limitations. It is fairly sensitive to variations in the input param-
eters. The algorithm works best with a larger number of events, and
because it determines the presence of correlation by determining
the difference between samples taken before and after the events
with random samples taken from the entire time series, it may have
difficulty detecting patterns where events are correlated with pro-
longed changes in the time series. In essence, the algorithm can
be overwhelmed by an abundance of signal in the noise. This is
however not necessarily a problem for ChronoCorrelator, as we do
not use the algorithm as a black box. Instead we give users full
control of the input parameters of the algorithm, thus being able to
take advantage of their domain knowledge in the process, we do
however aid the user by calculating reasonable default values for
the parameters. Also, it is not necessary to rely on this particular
algorithm, as it could be replaced by another.

The correlation is based on a user controlled window parameter
k, however, there currently is no mechanism in place to extract the
actual (likely) length of the pattern that is being sampled, thus the
correlation may be linked to only a part of a larger pattern. Adding
such a capability could aid in better understanding the patterns found.
The default value for k is however chosen by extracting the first peak
in the autocorrelation of the time series, as suggested by Luo et
al. [LLL∗14] and this seems to produce a reasonable estimate for
the cases we looked at. We also provide the user with an averaged
time-series of size 2∗ k centered around the events, which can help
in choosing a sensible value for k. Finally, the glyphs themselves
encode k in the flag size, so users are enabled to compare the window
size against the time-series, thus enabling them to visually inspect
the correctness of this setting. For the second important parameter,
the number of neighbors r, we chose ln(p), which is suggested as a
good choice in literature [Sch86, LLL∗14].

Scalability may be an issue when the amount of events and time
series measurements increases, both in terms of visualization and in
terms of the performance of the correlation algorithm. To mitigate
the scaling issues in the visual representation it may be necessary to
use some form of aggregation to keep the visualization both read-

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

397

M. van Dortmont, S. van den Elzen, J. van Wijk / ChronoCorrelator: Enriching Events with Time Series

able and responsive. For example, integrating a technique such as
discussed in Krstajic et al. [KBK11], would help keep the event
sequences readable even when dealing with large numbers of events.
However, as mentioned in Section 4.4.1, users are still able to inter-
pret the glyphs, even when there is overlap, since the local results,
encoded in the flag color remains visible even when there is a large
degree of overlap and the global results are doubly encoded in a
pair of colored lines at the top of the chart (Figure 4(a)). On the
algorithm side, the best way of improving performance is reducing
the number of events used for correlation. Using sampling when
event counts become too large could keep the algorithm usable in an
interactive fashion, as long as users still have the option to apply the
algorithm to the full set, with the knowledge that it could take longer.
The current implementation has acceptable interactive performance
for event selections of up to roughly 10,000 events and time-series
with 300,000 steps. Any more, and the calculation time increases to
beyond interactive levels, as also observed by Luo et al. [LLL∗14],
so a dual approach might be warranted, where interactivity is main-
tained when working with large sets by operating on a sample by
default, while still allowing the system to run the algorithm on the
entire set to get the most accurate results.

Our prototype currently has limited querying capabilities. Be-
cause our focus was on the correlation algorithm, we only imple-
mented some simple querying capabilities into our system. To de-
liver a single environment, that can be broadly used, it should also
implement querying capabilities such as those found in the work
discussed in Section 2.

7. Conclusion
We present a novel visual analytics approach to gain insight into
event data in combination with time series data.

We show that an approach combining these two disparate, but
related, data types helps users to gain insight into the relation be-
tween patterns in time series data and the underlying events that
are linked to these patterns. By providing users with the ability to
correlate events with selected time series, via algorithmic support,
they can determine if there is a relationship between the two, and do
so in a manner which gives statistical support for their findings. By
extending the global algorithm with local measures we enable users
to also find deviations from the global pattern. Through our usage
scenarios we have shown that our visual analytics approach aids in
the analysis of event and time series data by providing the means
to build and test hypotheses that are backed by statistical evidence.
Since the suggested approach does not make any assumptions on the
underlying data, it is generic and can be used in a wide range of do-
mains, such as, but not limited to, system administration, electronic
health record analysis or finance.

7.1. Future Work
Currently the application of the correlation algorithm and the time-
series-as-filter operation are the primary means of interaction be-
tween event sequences and time series. Adding more operations
could increase the applications further. One could imagine opera-
tions, such as the ability to filter time series based on event intervals,
the generation of new time series based on event sequence data
or conversely the extraction of new events from a time series, as
possible candidates.

Another possible extension would be the addition of correlation
capabilities between pairs of time series or pairs of event sequences,
complementing the capabilities of the current algorithm that focuses
on correlations between events and time series alone. The correlation
algorithm currently only supports point events, not interval events, so
perhaps a rule-based approach to simplify event sequences [CvW18]
could enable users to link complex event subsequences to patterns
within time series instead of the current approach where single
events are used for correlations.

References
[AMST11] AIGNER W., MIKSCH S., SCHUMANN H., TOMINSKI C.:

Visualization of Time-Oriented Data. Springer Publishing Company,
Incorporated, 2011. 2, 3

[Ans73] ANSCOMBE F. J.: Graphs in statistical analysis. The American
Statistician 27, 1 (1973), 17–21. 2

[Bar08] BARTH W.: Nagios: System and Network Monitoring, 2nd ed. No
Starch Press, San Francisco, CA, USA, 2008. 9

[BC94] BERNDT D. J., CLIFFORD J.: Using dynamic time warping to find
patterns in time series. In Proc. 3rd Int. Conf. on Knowledge Discovery
and Data Mining (1994), AAAIWS’94, AAAI Press, pp. 359–370. 6

[BCZP11] BALAKRISHNAN R., CHEVALIER F., ZHAO J., PIETRIGA E.:
Exploratory analysis of time-series with chronolenses. IEEE Trans. Vis.
Comput. Graphics 17 (09 2011), 2422–2431. 3

[BK09] BAMBENEK J., KLUS A.: grep Pocket Reference: A Quick
Pocket Reference for a Utility Every Unix User Needs. Pocket Refer-
ence (O’Reilly). O’Reilly Media, 2009. 9

[BM13] BREHMER M., MUNZNER T.: A multi-level typology of abstract
visualization tasks. IEEE Trans. Vis. Comput. Graphics 19, 12 (Dec 2013),
2376–2385. 2

[Bre13] BREWER C. A.: Colorbrewer2. http://colorbrewer2.org/, 2013.
[Online; accessed 2018-08-09]. 8

[BW08] BYRON L., WATTENBERG M.: Stacked graphs - geometry &
aesthetics. IEEE Trans. Vis. Comput. Graphics 14, 6 (Nov 2008), 1245–
1252. 4

[CvW18] CAPPERS B. C. M., VAN WIJK J. J.: Exploring multivariate
event sequences using rules, aggregations, and selections. IEEE Trans.
Vis. Comput. Graphics 24, 1 (2018), 532–541. 3, 10, 12

[CXR18] CHEN Y., XU P., REN L.: Sequence synopsis: Optimize visual
summary of temporal event data. IEEE Trans. Vis. Comput. Graphics 24,
1 (Jan. 2018), 45–55. 3

[DRMGF14] DUNKL R., RINDERLE-MA S., GROSSMANN W.,
FRÖSCHL K. A.: Decision point analysis of time series data in process-
aware information systems. In CAISE Forum 2014 (June 2014), ceur-
ws.org/Vol-1164/, pp. 33–40. 3

[DSP∗17] DU F., SHNEIDERMAN B., PLAISANT C., MALIK S., PERER
A.: Coping with volume and variety in temporal event sequences: Strate-
gies for sharpening analytic focus. IEEE Trans. Vis. Comput. Graphics
23, 6 (June 2017), 1636–1649. 2, 5

[FHR∗14] FEDERICO P., HOFFMANN S., RIND A., AIGNER W.,
MIKSCH S.: Qualizon graphs: Space-efficient time-series visualization
with qualitative abstractions. In Proc. 2014 Int. Working Conf. on Ad-
vanced Visual Interfaces (New York, NY, USA, 2014), AVI ’14, ACM,
pp. 273–280. 3

[GAG∗00] GOLDBERGER A. L., AMARAL L. A. N., GLASS L., HAUS-
DORFF J. M., IVANOV P. C., MARK R. G., MIETUS J. E., MOODY
G. B., PENG C.-K., STANLEY H. E.: PhysioBank, PhysioToolkit, and
PhysioNet. Circulation 101, 23 (2000), e215–e220. 9, 10

[GAK∗11] GSCHWANDTNER T., AIGNER W., KAISER K., MIKSCH S.,
SEYFANG A.: CareCruiser: Exploring and visualizing plans, events,
and effects interactively. In 2011 IEEE Pacific Visualization Symposium
(March 2011), pp. 43–50. 3

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

398

M. van Dortmont, S. van den Elzen, J. van Wijk / ChronoCorrelator: Enriching Events with Time Series

[HAP11] HRIPCSAK G., ALBERS D. J., PEROTTE A. J.: Exploiting time
in electronic health record correlations. JAMIA 18, Supplement (2011),
109–115. 3

[HKA09] HEER J., KONG N., AGRAWALA M.: Sizing the horizon: The
effects of chart size and layering on the graphical perception of time
series visualizations. In Proc. SIGCHI Conference on Human Factors
in Computing Systems (New York, NY, USA, 2009), CHI ’09, ACM,
pp. 1303–1312. 3

[HS04] HOCHHEISER H., SHNEIDERMAN B.: Dynamic query tools
for time series data sets: Timebox widgets for interactive exploration.
Information Visualization 3, 1 (2004), 1–18. 3

[IIC∗13] ISENBERG T., ISENBERG P., CHEN J., SEDLMAIR M.,
MÃŰLLER T.: A systematic review on the practice of evaluating vi-
sualization. IEEE Trans. Vis. Comput. Graphics 19, 12 (Dec 2013),
2818–2827. 2

[JPS∗16] JOHNSON A. E. W., POLLARD T. J., SHEN L., LEHMAN L.-
W. H., FENG M., GHASSEMI M., MOODY B., SZOLOVITS P., AN-
THONY CELI L., MARK R. G.: MIMIC-III, a freely accessible critical
care database. Scientific Data 3 (May 2016), 160035 EP –. Data Descrip-
tor. 9, 10

[KBK11] KRSTAJIC M., BERTINI E., KEIM D. A.: CloudLines: Compact
display of event episodes in multiple time-series. IEEE Trans. Vis. Comput.
Graphics 17, 12 (2011), 2432–2439. 3, 12

[KTT17] KRUEGER R., TREMEL T., THOM D.: VESPa 2.0: Data-driven
behavior models for visual analytics of movement sequences. In 2017 Int.
Symposium on Big Data Visual Analytics (BDVA) (Nov 2017), pp. 1–8. 3

[KWS∗15] KÖTHUR P., WITT C., SIPS M., MARWAN N., SCHINKEL S.,
DRANSCH D.: Visual analytics for correlation-based comparison of time
series ensembles. Comput. Graph. Forum 34, 3 (June 2015), 411–420. 3

[LLL∗14] LUO C., LOU J.-G., LIN Q., FU Q., DING R., ZHANG D.,
WANG Z.: Correlating events with time series for incident diagnosis. In
Proc. 20th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining (New York, NY, USA, 2014), KDD ’14, ACM, pp. 1583–1592. 3,
5, 6, 7, 11, 12

[LPK∗16] LOORAK M. H., PERIN C., KAMAL N., HILL M., CARPEN-
DALE S.: TimeSpan: Using visualization to explore temporal multi-
dimensional data of stroke patients. IEEE Trans. Vis. Comput. Graphics
22, 1 (Jan 2016), 409–418. 3

[MLL∗13] MONROE M., LAN R., LEE H., PLAISANT C., SHNEIDER-
MAN B.: Temporal event sequence simplification. IEEE Trans. Vis.
Comput. Graphics 19, 12 (Dec 2013), 2227–2236. 3

[MS03] MULLER W., SCHUMANN H.: Visualization methods for time-
dependent data - an overview. In Proc. Winter Simulation Conference.
(Dec 2003), vol. 1, pp. 737–745. 3

[PMR∗96] PLAISANT C., MILASH B., ROSE A., WIDOFF S., SHNEI-
DERMAN B.: Lifelines: Visualizing personal histories. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (New
York, NY, USA, 1996), CHI ’96, ACM, pp. 221–227. 2

[RAM∗11] RIND A., AIGNER W., MIKSCH S., WILTNER S., POHL M.,
TURIC T., DREXLER F.: Visual exploration of time-oriented patient data
for chronic diseases: Design study and evaluation. In Proc. 7th Conf. on
Workgroup Human-Computer Interaction and Usability Engineering of
the Austrian Computer Society: Information Quality in e-Health (Berlin,
Heidelberg, 2011), USAB’11, Springer-Verlag, pp. 301–320. 3

[RWA∗13] RIND A., WANG T. D., AIGNER W., MIKSCH S., WONG-
SUPHASAWAT K., PLAISANT C., SHNEIDERMAN B.: Interactive in-
formation visualization to explore and query electronic health records.
Foundations and Trends in Human-Computer Interaction 5, 3 (Feb. 2013),
207–298. 3

[SC00] SILVA S. F., CATARCI T.: Visualization of linear time-oriented
data: a survey. In Proc. First Int. Conf. on Web Information Systems
Engineering (2000), vol. 1, pp. 310–319. 3

[Sch86] SCHILLING M. F.: Multivariate two-sample tests based on nearest
neighbors. Journal of the American Statistical Association 81, 395 (1986),
799–806. 6, 11

[SGBBT06] SHAHAR Y., GOREN-BAR D., BOAZ D., TAHAN G.: Dis-
tributed, intelligent, interactive visualization and exploration of time-
oriented clinical data and their abstractions. Artificial Intelligence in
Medicine 38, 2 (2006), 115 – 135. Temporal Representation and Reason-
ing in Medicine. 3

[Shn96] SHNEIDERMAN B.: The eyes have it: A task by data type tax-
onomy for information visualizations. In Proc. IEEE Symp. on Visual
Languages (Washington, DC, USA, 1996), VL ’96, IEEE Computer Soci-
ety, pp. 336–. 2, 4

[SMM12] SEDLMAIR M., MEYER M., MUNZNER T.: Design study
methodology: Reflections from the trenches and the stacks. IEEE Trans.
Vis. Comput. Graphics 18, 12 (Dec 2012), 2431–2440. 2

[SMY∗05] SAITO T., MIYAMURA H. N., YAMAMOTO M., SAITO H.,
HOSHIYA Y., KASEDA T.: Two-tone pseudo coloring: compact visual-
ization for one-dimensional data. In IEEE Symp. Inf. Vis., INFOVIS 2005.
(Oct 2005), pp. 173–180. 3

[Tur13] TURNBULL J.: The Logstash Book:. James Turnbull, 2013. 9

[vWvS99] VAN WIJK J. J., VAN SELOW E. R.: Cluster and calendar
based visualization of time series data. In IEEE Symp. Inf. Vis., INFOVIS
1999, San Francisco, California, USA. (Oct 24-29 1999), IEEE Computer
Society, pp. 4–9. 3

[WAM01] WEBER M., ALEXA M., MÜLLER W.: Visualizing time-series
on spirals. In Proc. IEEE Symp. on Information Visualization (Washington,
DC, USA, 2001), INFOVIS 2001, IEEE Computer Society, pp. 7–. 3

[WHA07] WILLETT W., HEER J., AGRAWALA M.: Scented widgets:
Improving navigation cues with embedded visualizations. IEEE Trans.
Vis. Comput. Graphics 13, 6 (Nov. 2007), 1129–1136. 4

[Wik] WIKIPEDIA: Arctic Sun medical device; [online, accessed 2018-03-
30]. 11

[WPTMS12] WONGSUPHASAWAT K., PLAISANT C., TAIEB-MAIMON
M., SHNEIDERMAN B.: Querying event sequences by exact match or
similarity search: Design and empirical evaluation. Interacting with
Computers 24, 2 (2012), 55 – 68. 3

[WSJ∗14] WANNER F., SCHRECK T., JENTNER W., SHARALIEVA L.,
KEIM D. A.: Relating interesting quantitative time series patterns with
text events and text features. In Visualization and Data Analysis, San
Francisco, CA, USA, Feb 3-5, 2014 (2014), p. 90170G. 3

[WWPS10] WANG T. D., WONGSUPHASAWAT K., PLAISANT C.,
SHNEIDERMAN B.: Visual information seeking in multiple electronic
health records: Design recommendations and a process model. In Proc.
1st ACM Int. Health Informatics Symposium (New York, NY, USA, 2010),
IHI ’10, ACM, pp. 46–55. 2

[XYF∗17] XIAO S., YAN J., FARAJTABAR M., SONG L., YANG X., ZHA
H.: Joint modeling of event sequence and time series with attentional
twin recurrent neural networks. CoRR abs/1703.08524 (2017). 3

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

399

