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On Trade-offs Between Computational Complexity and Accuracy of
Electrochemistry-based Battery Models

Z. Khalik H.J. Bergveld M.C.F. Donkers

Abstract— In this paper, we propose several simplifications
to the so-called Doyle-Fuller-Newman (DFN) model, which is a
popular electrochemistry-based battery model. This simplified
DFN (SDFN) model allows for a computationally very efficient
implementation. The simplifications are a result of several
assumptions, which will be justified for two different parameter
sets. Finally, the SDFN model proposed is compared to the DFN
model as well as an implementation of the single-particle model,
for the two parameter sets. This will show that by making
specific assumptions, simplifications can be made that have no
significant impact on the model accuracy, while the computation
time can be drastically decreased. This leads to a simulation
time of over 3600 times faster than real-time.

I. INTRODUCTION

With the emergence of electric vehicles and widespread
usage of mobile devices, batteries are taking an increasingly
important role. To effectively manage and control batteries,
battery models are needed, e.g., for state-of-charge/state-of-
health estimation [1], active balancing [2], and fast charging
[3]. Equivalent-circuit models (ECM) are often used for
these purposes, where the battery is modeled using (pas-
sive) circuit elements, e.g., [4]. However, although ECMs
are computationally fast, these types of models provide
limited information on the internal states of the battery,
such as concentrations and potentials. The information of
these internal states is crucial for more precise control.
Therefore, electrochemistry-based models have generated
increasing interest in control applications. A widely-used
electrochemistry-based model is the so-called Doyle-Fuller-
Newman (DFN) model [5], which is described by a set
of partial differential equations (PDEs). While the DFN
model can describe internal states, due to its complexity,
computation times to simulate the model have made it, so
far, unsuitable for control-oriented applications.

There are several ways to reduce the computational burden
of the DFN model. One way to reduce complexity is to apply
model reduction to the DFN model, e.g. [6], [7]. However,
the reduction is mostly in the number of equations, while the
reduction in computation time is only marginal, when applied
to the DFN model [6]. Another way to reduce complexity
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is by simplifying the model equations. A popular example
is the so-called single-particle model (SPM) [8], and its
more advanced versions such as the SPM with electrolyte
dynamics (SPMe) [9], where the equations for solid-phase
concentration and potentials are simplified. However, gener-
ally such simplifications lead to a significant loss in accuracy,
and, usually, the simplified models are validated for a single
parameter set. While a simplified model could show good
accordance with the DFN model for one parameter set, it
may not be the case for another parameter set.

Besides addressing the complexity of the DFN model,
another way to reduce computation time is to develop
algorithms that compute the solution to the DFN model
more efficiently, see e.g. [6], [10]. In these papers, the PDEs
that describe the DFN model are spatially and temporally
discretized, which results in a set of nonlinear algebraic
equations (AEs). While there are papers where existing
toolboxes such as CasADi are used in order to solve this
set of equations [11], the use of such toolboxes can prohibit
the understanding of the model structure, which can be used
to achieve a faster implementation.

In this paper, we propose to simplify the equations of the
DFN model, to arrive at a simplified DFN (SDFN) model.
This SDFN model aims to allow for a more computationally
efficient implementation, thereby reducing computation time.
After spatial and temporal discretization of the SDFN model,
we will show that through substitution of equations, the
number of equations describing the SDFN model can be
considerably reduced to a small set of algebraic equations.
We will study the impact of these assumptions on model
accuracy for two different sets of parameters, to show the
validity of these assumptions. Furthermore, we compare the
model accuracy and computation time of the DFN model,
the proposed SDFN model, and the SPMe for two different
parameter sets. We will show that based on the proposed
assumptions, the simplifications made allow for a significant
decrease in simulation time, resulting in a simulation speed
of over 3600 times faster than real-time.

II. BATTERY MODELING

In this section, we briefly formulate the Doyle-Fuller-
Newman (DFN) model, and introduce several simplifications
that, as we will show in Section IV, have no significant
impact on the accuracy of the model, both in the input-output
behavior as well as the internal states.
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Fig. 1: DFN modeling approach for a Li-ion cell.

A. Doyle-Fuller-Newman Model

The DFN model is a widely used electrochemistry-based
model introduced in [5]. Fig. 1 illustrates the modeling
approach for a Li-ion cell. In the x dimension, the cell is
divided into three regions, namely the negative electrode,
the separator, and the positive electrode. In the electrodes,
Li-ions exist essentially in two phases. In the solid phase,
Li-ions are intercalated into the solid-phase material, which
is represented by spheres with radius Rs. In the electrolyte
phase, Li-ions exist in a dissolved state in the electrolyte.
In the separator, Li-ions exist only in the electrolyte phase.
During charging, intercalated Li-ions exit the solid particles
in the positive electrode and enter the solid particles in the
negative electrode. During discharging, the opposite process
happens. We will shortly summarize the governing equations
of the DFN model, which will be mostly based on the
formulation given in [12]. For compactness of notation, the
time and space dependency of the variables given will be left
out of the equations. The DFN model is governed by four
coupled partial differential equations (PDEs):

1) The Li-ion concentration in the solid phase cs(x, r, t)
for x ∈ [0, δ−] ∪ [L− δ+, L] is given by Fick’s law as

∂cs
∂t = Ds

r2
∂
∂r

(
r2 ∂cs

∂r

)
, (1a)

with boundary conditions

∂cs
∂r

∣∣
r=0

= 0, −Ds
∂cs
∂r

∣∣
r=Rs

= jn, (1b)

with Ds the diffusion coefficient of lithium in the
solid phase, and jn(x, t) is the net molar flux of Li-
ions exiting the particle. Furthermore, δ− and δ+ are
the thickness of the negative and positive electrode,
respectively, and L is the cell thickness (see Fig. 1).

2) The Li-ion concentration in the electrolyte phase
ce(x, t) for x ∈ [0, L] is given by

εe
∂ce
∂t = ∂

∂x

(
De

∂ce
∂x

)
+ as(1− t0+)jn, (2a)

with boundary conditions

Deff
e

∂ce
∂x

∣∣
x=0

= Deff
e

∂ce
∂x

∣∣
x=L

= 0, (2b)

where Deff
e = Deε

p
e is the effective Li-ion diffusion

coefficient in the electrolyte phase, in which εe is the
electrolyte phase volume fraction, p is the Bruggeman
porosity exponent, and De is the diffusion constant of

Li-ions in the electrolyte. Furthermore, in (2), as =
3εs/Rs is the specific interfacial surface area, in which
εs is the active material volume fraction, and t0+ is the
transference number of Li ions.

3) The potential in the solid phase φs(x, t) for x ∈ [0, δ−]∪
[L− δ+, L] is given by Ohm’s law, i.e.,

∂
∂x

(
σeff ∂φs

∂x

)
= asFjn, (3a)

with boundary conditions

σeff ∂φs

∂x

∣∣
x=0

=
iapp
Asurf

, σeff ∂φs

∂x

∣∣
x=δ−

= 0 (3b)

σeff ∂φs

∂x

∣∣
x=L−δ+

= 0, σeff ∂φs

∂x

∣∣
x=L

=
iapp
Asurf

, (3c)

where F is Faraday’s constant, σeff = εsσ is the
effective electronic conductivity of a porous electrode,
in which σ is the conductivity of the solid material,
Asurf is the area of the electrode plate, and iapp(t) is
the applied current through the battery, with iapp > 0
indicating charging.

4) The potential in the electrolyte phase φe(x, t) for x ∈
[0, L] is given by

∂
∂x

(
κeff(ce)

∂φe

∂x +κeff(ce)
2RT
F (t0+−1)∂ ln ce

∂x

)
=−asFjn,

(4a)

with boundary conditions

κeff(ce)
∂φe

∂x

∣∣
x=0

= φe
∣∣
x=L

= 0, (4b)

in which κeff(ce) = κ(ce)ε
p
e is the effective ionic

conductivity, where κ(ce) is given by κ(ce) =
0.00158ce exp(5.63c1.4e /105) in [12], R is the universal
gas constant, and T is the absolute temperature.

The above PDEs (1)-(4) are coupled by a Butler-Volmer rate
equation, which describes the chemical reaction rate at the
solid/electrolyte interface. This rate equation is given by

jn = i0
F

(
exp

(
αaF
RT η

)
− exp

(
− αcF

RT η
))
, (5a)

which is only defined for x ∈ [0, δ−] ∪ [L − δ+, L] and
assumed zero for x ∈ (δ−, L−δ+). In (5a), αa is the anodic
transfer coefficient, αc is the cathodic transfer coefficient,
and the overpotential at the electrodes η(x, t) is defined as

η = φs − φe − U(c̄s), (5b)

in which U(c̄s) denotes the equilibrium potential of the
electrode, which can be given by a pre-defined function typi-
cally of the solid-phase concentration at the solid-electrolyte
interface c̄s(x, t) = cs(Rs, x, t). Furthermore, the exchange
current density i0 in (5a) is given by

i0 = k0c
αa
e (cs,max − c̄s)αa(c̄s)

αc , (5c)

where k0 is the rate constant of the electrochemical reaction,
and cs,max is the maximum concentration in the solid-phase.
Finally, the terminal battery voltage is computed with

V (t) = φs(L, t)− φs(0, t) +
Rf

Asurf
iapp(t), (6)

in which Rf is an empirical contact resistance.
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B. Simplified Doyle-Fuller-Newman Model

In order to reduce computational complexity, some sim-
plifications can be made on the DFN model. We will show
using simulation results in Section IV that the simplifications
proposed below do not significantly sacrifice the accuracy for
two different parameter sets. The assumptions made to arrive
at this simplified model are as follows.
[A1]: The rate equation (5a) can be linearized with respect

to the overpotential η around the origin, due to the
fact that αaF

RT = αcF
RT � η.

[A2]: The effective ionic conductivity κeff is constant over
x, i.e., κ̃eff = κ(c̃e)ε

p
e , where c̃e is the average Li-

ion concentration in the electrolyte.
[A3]: The time derivative of the electrolyte concentration

∂ce
∂t is sufficiently small so that the term ln ce in

(4) can be linearized with respect to ce around a
linearization point c∗e , i.e., ln ce ≈ ln c∗e +

ce−c∗e
c∗e

.
Using [A1], and that αa + αc = 1, the resulting linearized
Butler-Volmer equation (of (5a)-(5b)) can be written as

jn = i0
RT (φs − φe − U). (7)

Furthermore using [A2] and [A3], (4) can be simplified to

∂
∂x

(̃
κeff

∂φe

∂x +κ̃eff
2RT
F (t0+−1)

∂

(
ln c∗e+

ce-c∗e
c∗e

)
∂x

)
=−asFjn, (8)

with the boundary conditions given in (4b). Thus, the
simplified DFN model is given by (1)-(3), (8), (4b), (7),
(5c), and (6). Note that through the simplifications we have
eliminated much of the non-linearity of the DFN model.
The only non-linearities with respect to the state variables
cs, ce, φs, φe remain in the equation for i0(cs, ce) as well as
the equilibrium potential U(c̄s).

III. MODEL IMPLEMENTATION

The objective of this paper is to compare the
computational complexity and the accuracy of several
electrochemistry-based models, including the newly pro-
posed SDFN model. To have low computational complexity
of the proposed SDFN model, we propose a computationally
efficient implementation of this model. This implementation
is warranted by Assumptions [A1]-[A3], and involves several
steps. Firstly, fairly standard spatial and temporal discretiza-
tion is applied to arrive at a set of nonlinear algebraic
equations (AEs). Secondly, the set of AEs is reduced to
a smaller set of AEs through substitution, after which the
resulting set of AEs can be solved using Newton’s method.
The discretization procedure described here is similar to the
procedure presented in [6]. Therefore, in this section, we will
shortly summarize this procedure to formulate the set of AEs
that arise from the discretization. For further details on the
discretization approach, the reader is referred to [6].

A. Discretization

As a first step, spatial discretization is applied on the
partial differential equations (PDEs) (1) - (3) and (8).
The equation describing the diffusion of the solid-phase
concentration (1) is discretized along the radial direction

using a finite-difference-method (FDM), to arrive at a set of
differential algebraic equations (DAEs). The other equations
(2), (3), and (8) are discretized using a finite-volume-method
(FVM), and the resulting set of nonlinear DAEs is given as

d
dtcs = Acscs +Bcsjn (9a)
d
dtce = Acece +Bcejn (9b)

0 = Aφsφs +Bφsjn + Cφsiapp (9c)
0 = Aφeφe +Bφejn

+Dφe

(
diag(c∗e)

−1ce + ln(c∗e)
)
, (9d)

where the bold faced characters refer to their respective
vector variables, which are defined as

cs(t) = [ cs(x1,r1,t) ... cs(x1,rnr,n ,t) ... cs(xnn+np ,rnr,p ,t) ]
>
,

ce(t) = [ ce(x1,t) ... ce(xnn+ns+np ,t) ]
>
,

φs(t) = [ φs(x1,t) ... φs(xnn ,t) ... φs(xnn+np ,t) ]
>
, (10)

where xi and ri are the grid points of the discretization,
and φe, jn are defined similarly to ce and φs, respectively.
Furthermore, in (10), nn, ns, np are the number of elements
of the FVM discretization, and nr,n, nr,p are the number of
elements of the FDM discretization. How to construct matri-
ces Ai, Bi, i ∈ {cs, ce, φs, φe}, Cφs

, and Dφe
is explained in

detail in [6]. Note that in contrast to the set of DAEs obtained
after spatial discretization in [6], except for the coupling
through jn, the four sets of equations (9) are linear in the
state variables cs, ce,φs,φe. The four sets of DAEs (9) are
coupled by the linearized (with respect to η = φs−φe−U )
Butler-Volmer rate equation, written as

jn = diag
(

i0(c̄s,c̄e)
RT

)
(φs − φ̄e −U(c̄s)), (11)

in which the diag(v) denotes a diagonal matrix with the
elements of vector v on the main diagonal. Furthermore, in
(11), the barred variables c̄s, c̄e, and φ̄e refer to selected
version of their boldfaced counterparts, where c̄s denotes
the vector of solid-phase surface concentrations, and c̄e and
φ̄e denote the parts of ce and φe given in the electrodes,
respectively. Mathematically, c̄s, c̄e, φ̄e and cs, ce,φe are
related, respectively, as follows

c̄s = Ācscs, c̄e = Ācece, φ̄e = Āφe
φe, (12)

where

Ācs = diag
(
Inn ⊗ [01×nr,n−1, 1], Inp ⊗ [01×nr,p−1, 1]

)
Āce = Āφe

=

[
Inn

0 0
0 0 Inp

]
.

The differential equations (9a) and (9b) can further be
discretized in time with sampling time δt using a backward
Euler scheme, to arrive at the following set of AEs

0 = Âcscs(tk) + B̂csjn(tk) + cs(tk−1) (13a)

0 = Âcece(tk) + B̂cejn(tk) + ce(tk−1) (13b)
0 = Aφsφs(tk)+Bφsjn(tk)+Cφsiapp(tk) (13c)

0 = Aφeφe(tk)+Bφejn(tk)+Dφe

(
Ξ1
φe
ce(tk)+Ξ2

φe

)
(13d)
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where tk ∈ {1, . . . , tf} is the sample time, in which tf is the
final sample time. Furthermore, Âcs = (δtAcs − Inrnnp

),
B̂cs = δtBcs , Âce = (δtAce − Inx

), B̂ce = δtBce ,
Ξ1
φe

= diag(ce(tk−1))−1, and Ξ2
φe

= ln(ce(tk−1)). Note
that we have chosen the linearization point c∗e as ce(tk−1)
in accordance with assumption [A3]. The approximation
ln(ce) ≈ Ξ1

φe
ce+ Ξ2

φe
is then valid as long as the difference

between ce(tk) and ce(tk−1) is relatively small.

B. Solution Method

The set of nonlinear AEs (13) obtained after discretiza-
tion can be solved using any root-finding algorithm, such
as Newton’s method. However, due to the relatively large
number of state variables, the use of such algorithms can
be computationally slow. A large part of the computational
effort is in the computation of the inverse of the Jacobian
of the AEs (13). Therefore, in [6] a method was proposed
in which Newton’s method was applied sequentially to each
set of equations of (13), thereby reducing the computation
of the inverse of a single large Jacobian to the computation
of the inverses of four smaller Jacobians. However, in doing
so, some information of the large Jacobian is lost, which
means that a quadratic convergence rate can no longer be
achieved. Still, the computation time of the large Jacobian is
sufficiently large, that the method proposed in [6] is faster
than solving (13) directly using Newton’s method.

Rather than sequentially solving (13), we propose a so-
lution method, which retains the full information of the
Jacobian of (13), but reduces the number of AEs. This can be
done by substitution of equations, such that one state variable
remains. In doing so, the full information of the Jacobian of
(13) is contained in a smaller Jacobian related to equation of
the remaining variable. The derivation involves solving (11)
for the chosen state variable, and solving their associated
equation given in (13) for jn. State variable φs is both linear
in jn and its associated equation in (13) can be explicitly
solved for jn. Hence, the set of AEs (13) will be reduced to
one set of AEs such that φs can be implicitly solved using
the Newton’s method, from which cs,ce,φe can be obtained.

The derivation of the reduced set of AEs is as follows.
First, we solve (11) for φs, which gives

φs(tk)−φ̄e(tk)−Fjn(c̄s(tk), c̄e(tk))jn(tk)−U(c̄s(tk))=0,
(14)

where Fjn(c̄s, c̄e) = diag
(

2α
RT i0(c̄s, c̄e)

)−1
. Then, by solv-

ing (13c) for jn, jn can be given by

jn(tk) = −B−1
φs

(Aφs
φs(tk) + Cφs

iapp(tk)) (15)

These expressions allow the state variables c̄s, c̄e to be
expressed as a function of φs by first substituting jn in (15)
into their respective associated equations given in (13), i.e.,

Âcici(tk)−B̂ciB−1
φs

(Aφs
φs(tk)+Cφs

iapp(tk))+ci(tk−1)=0,

for i ∈ {s, e}, then solving this for their respective state
variables and pre-multiplying by Acs , Ace , resulting in

c̄i(tk) = Γciiapp(tk) + Φciφs(tk) + Θci , (16a)

where Γci = ĀciÂ
−1
ci B̂ciB

−1
φs
Cφs

, Φci =

ĀciÂ
−1
ci B̂ciB

−1
φs
Aφs

, and Θci = ĀciÂ
−1
ci ci(tk−1), for

i ∈ {s, e}. Note the presence of the full state vectors cs
and ce, which can be obtained by (16a), except without the
pre-multiplication by Ācs and Āce , respectively. Similarly,
φ̄e can be expressed as a function of φs and ce by
substituting (15) into (13d), i.e.,

Aφeφe(tk)−BφeB
−1
φs

(Aφsφs(tk) + Cφsiapp(tk))

+Dφe

(
Ξ1
φe
ce(tk) + Ξ2

φe

)
= 0, (16b)

then solving (13d) for φe and pre-multiplying by Āφe
, giving

φ̄e(tk)=Γφe
iapp(tk)+Φφe

φs(tk)+Πφe
ce(tk)+Θφe

(16c)

in which Γφe
= Āφe

A−1
φe
Bφe

B−1
φs
Cφs

, Φφe
=

ĀφeA
−1
φe
BφeB

−1
φs
Aφs , Πφe = −ĀφeA

−1
φe
DφeΞ1

φe
, and

Θφe
= −Āφe

A−1
φe
Dφe

Ξ2
φe

.
The above steps allow the number of AEs given in (13) to

be reduced, by substituting (15), (16a), and (16c) into (14),
leading to an expression of the form F (φs(tk)) = 0, which
can be solved using Newton’s method, i.e.,

φm+1
s (tk) = φms (tk)− γJ(φms (tk))−1F (φms (tk)), (17)

where m ∈ {1, . . . ,M}, in which M is the maximum
number of iterations, represents the current iteration in
Newton’s method, J is the Jacobian of F , and γ is a damping
coefficient which can be used to warrant convergence. Note
that the Jacobian of F has (nn + np) rows and columns,
which is considerably smaller than the Jacobian of (13),
which would have (3 + nr,p + nr,n)(nn + np) + 2ns rows
and columns. Note that since Θi, i ∈ {cs, ce, φe}, and
Πφe

change at every time step, these matrices have to be
updated at every time step. Further note that matrices Γi
and Φi, i ∈ {cs, ce, φe} can be pre-computed, which saves
computation time.

IV. SIMULATION STUDY

In this section, we will study the computational perfor-
mance and accuracy of the simplified DFN (SDFN) model
described in Section II.B. Specifically, the impact of As-
sumptions [A1]-[A3] made in Section II on the accuracy
compared to the full DFN model is studied. Furthermore, the
SDFN model is compared to the SPMe [9], and DFN model,
in terms of model accuracy and computational performance.
Note that in our implementation of the SPMe, besides
Assumption [A2], which has also been applied in [9], As-
sumptions [A1] and [A3] have also been applied. However,
as we will show below, these assumptions do not have a
significant impact on accuracy. The above simulation studies
will be done using two different sets of parameters, obtained
from [12] and [13]. Interestingly, the parameter set from [12]
has been parametrized from a high-power (HP) cell, while
the parameter set from [13] has been parameterized from
a high-energy (HE) cell. Some striking differences will be
observed below.
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Fig. 2: Comparison of output voltage and root-mean-square
error (RMSE) between the full DFN model and the simpli-
fied DFN model, with two different parameter sets which
represent a high power (HP) battery [12] and a high energy
(HE) [13] battery, where the initial state-of-charge is 20 %.

A. Validation of Assumptions [A1]-[A3]

In order to validate Assumptions [A1]-[A3] described in
Section II, the full DFN model is compared to the DFN
model with varying assumptions at three different initial
state-of-charge (SoC) values. The implementation of the full
DFN model is based on the implementation described in
[6]. The implementation is then adapted for each of the
assumptions accordingly, to study the impact Assumptions
[A1]-[A3] have on the accuracy of the model.

In Fig. 2, the output voltage of the full and simplified
DFN model, and its associated RMS error are shown. We
observe that the full and simplified model have no visible
difference in output voltage for both parameter sets, which
shows that Assumptions [A1]-[A3] do not have a significant
effect on accuracy. To further elaborate, in Table I, the
root-mean-square error (RMSE) of the output voltage V
and normalized electrolyte concentration ce/ce,0 between
the full DFN model and the DFN model with varying
simplifications is shown for the two different parameters
sets. More specifically, each RMSE is computed over three
separate simulations, where the initial SoC is selected as
20%, 50%, and 80%. The RMS errors of the normalized
electrolyte concentration shows how the assumptions affect
the internal states. Note that we have only chosen to use the
electrolyte concentration to represent the internal states, as
the effect of the assumptions on the other internal states, e.g.
cs, φe, φs was similar to the effect on ce. In both parameter
sets, aside from the output voltage RMSE of the HE case,

TABLE I: The effect of assumptions [A1]-[A3] introduced
in Section II on RMS error (RMSE) for the high-power (HP)
[12] and high-energy (HE) [13] parameter set.

RMSE V [mV] ce/ce,0 [10−3]
HP [12] HE [13] HP [12] HE [13]

[A1] 0.00045 0.017 0.0013 0.0069
[A2] 0.0047 0.021 0.023 0.30
[A3] 0.00064 0.00040 0.0019 0.00016
[A1]-[A3]
(SDFN) 0.0047 0.021 0.024 0.30
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Fig. 3: Discharge curve and normalized electrolyte concen-
tration for the DFN model (solid lines), SDFN model (dashed
lines), and SPMe (dotted lines) at several C-rates, simulated
for the high-power (HP) [12] and the high-energy (HE) [13]
parameter set.

by far the largest RMS error is made with [A2]. It should be
noted, however, that even this error is still small relative to
the operating values of the output voltage, which is usually
between 2.7 V - 4 V, and normalized electrolyte concentra-
tion. Remarkably, even though in the HE case the RSME
errors resulting from Assumptions [A1] and [A2] are similar
in magnitude, they don’t add up when used simultaneously,
as is the case in the SDFN model. Note that the normalized
electrolyte concentration is a ratio, and therefore 0.3×10−3 is
indeed a very small error. Furthermore, it can be noticed that
the RMS errors shown for the HE parameter set are generally
larger than the HP parameter set. This can be explained by
the fact that the solid-phase diffusion is less limiting, while
solid-phase conductivity is higher in the HP parameter set
than in the HE parameter set. Therefore, over-potentials are
generally higher in the HE case than in the HP case, which
in turn leads to larger concentration gradients in the HE case.
Higher over-potentials violate [A1], while larger deviations
from the average electrolyte concentration violates [A2].

B. Model Comparison
In Fig. 3, discharge curves and normalized electrolyte

concentration are shown for both parameter sets at various
C-rates for three different models, i.e., DFN model, SDFN
model, and SPMe. For both parameter sets, in all cases, there
is no visible difference between the DFN and SDFN model,
which further shows the validity of [A1]-[A3]. We can further
see that for the HP parameter set, there are no visible
differences between the three models up to 10 C. At 50 C, the
SPMe shows some inaccuracy at the output voltage compared
to the DFN model, even though the normalized electrolyte
concentration is still close to the DFN model. Interestingly,
the opposite is observed with the HE parameter set, where the
electrolyte concentration with the SPMe corresponds to the
DFN model rather well up to 0.5 C, while the difference in
output voltage is substantially worse. Therefore, we observe
that an accurate modeling of the output voltage does not
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Fig. 4: Output voltage using various models for the high-
power (HP) [12] and the high-energy (HE) [13] parameter
set. The applied current profile is taken from [14].

necessarily mean an accurate representation of the internal
states, and vice versa.

In Fig. 4, the output voltage is shown for the HP and
HE battery simulated with a measured current profile of an
electric-bike drive cycle [14]. This current profile represents
a typical use of a battery, with a relatively fast-changing
current, to show how the different battery models perform
in such conditions. Consistent with the above analysis, for
the HP case, all three models correspond well, while for the
HE case the DFN and SDFN are visually identical, and the
output voltage of the SPMe is significantly different. In Table
II, the RMS errors and computation times corresponding
to the simulations shown in Fig 4 are shown. Here, the
computation times are an average over 5 simulations. Fur-
thermore, the computation time is measured from the point
where the main simulation loop starts to the point where the
loop ends. The computation time of pre-defined matrices,
outside this loop, is not included, since it is independent of
simulation time. The SPMe is the fastest model, as would
be expected due to the lower model complexity, although
with the HE parameter set, the RMSE is unacceptable. The
SDFN model, on the other hand, has very small RMS errors,
while the computation time is at least an order of magnitude
smaller than the computation time of the DFN model. These
results show that by making the Assumptions [A1]-[A3],
simplifications can be made that have no significant impact
on the model accuracy, while the computation time can be
drastically decreased, to achieve a simulation time of over
3600 times faster than real-time.

V. CONCLUSIONS

In this paper, we have proposed several simplifications to
the so-called Doyle-Fuller-Newman (DFN) model, lending
a computationally very efficient implementation. The set of
assumptions made to arrive at the SDFN model have been
justified by showing that the impact of the assumptions on
the accuracy of the DFN model is negligible. This has been
done for two different parameter sets, where one represents
a high-power (HP) battery and the other a high-energy (HE)
battery. Furthermore, the SDFN model has been compared to

TABLE II: The RMS errors (RMSE) of the output voltage
V and computation times corresponding to the simulations
shown in Fig. 4.

RMSE V [mV] Comp. time [s]
HP [12] HE [13] HP [12] HE [13]

DFN - - 67.4 22.6
SDFN 0.021 0.046 0.71 0.99
SPMe 0.19 30 0.30 0.39

the DFN model and the SPMe model, for the two parameter
sets. While the SPMe is accurate for the HP parameter
set, its accuracy is unacceptable for the HE parameter set.
The SDFN model, on the other hand, has very small RMS
errors, while the computation time is at least an order of
magnitude smaller than the computation time of the DFN
model. This has shown that by making Assumptions [A1]-
[A3], simplifications can be made that have no significant
impact on the model accuracy, while the computation time
can be drastically decreased, to achieve a simulation time of
over 3600 times faster than real-time.
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