

Parametric scheduler characterization

Citation for published version (APA):
van Pinxten, J., Geilen, M., & Basten, T. (2019). Parametric scheduler characterization. ACM Transactions on
Embedded Computing Systems, 18(5s), Article 110. https://doi.org/10.1145/3358226

DOI:
10.1145/3358226

Document status and date:
Published: 01/10/2019

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1145/3358226
https://doi.org/10.1145/3358226
https://research.tue.nl/en/publications/248aed9d-70d2-46c7-8349-4f03bbe65513

1

Parametric Scheduler Characterization

JOOST VAN PINXTEN, Océ Technologies B.V. and Eindhoven University of Technology

MARC GEILEN, Eindhoven University of Technology

TWAN BASTEN, Eindhoven University of Technology and TNO ESI

Schedulers assign starting times to events in a system such that a set of constraints is met and system

productivity is maximized. We characterize the scheduler behaviour for the case where decisions are made by

comparing a�ne expressions of design parameters such as task workload, processing speed, robot travelling

speed, or a controller’s rise and se�ling time. Deterministic schedulers can be extended with symbolic

execution, to keep track of the a�ne conditions on the parameters for which the scheduling decisions are

made. We introduce a divide-and-conquer algorithm that uses this information to determine parameter regions

for which the same sequence of decisions is taken given a particular scenario. �e results provide designers

insight in the impact of parameter changes on the performance of their system. �e exploration can also

be executed with the KLEE symbolic execution engine of the LLVM tool chain to extract the same results.

We show that the divide-and-conquer approach provides the results much faster than the generic symbolic

execution engine of KLEE. �e results allow visualization of the sensitivity to all parameter combinations. �e

results of our approach therefore provide more insight in the sensitivity to parameters.

CCS Concepts: •�eory of computation →Discrete optimization; •Computer systems organization
→Embedded and cyber-physical systems; Embedded so�ware; •Applied computing →Industry and
manufacturing; Decision analysis;

Additional Key Words and Phrases: Real Time Scheduling, System Design, Re-entrant Flexible Manufacturing

System

ACM Reference format:
Joost van Pinxten, Marc Geilen, and Twan Basten. 2019. Parametric Scheduler Characterization. ACM Trans.
Embedd. Comput. Syst. 1, 1, Article 1 (October 2019), 25 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

As systems are becoming more complex, they require more and more complex scheduling policies

and hence are more complex to design and analyse. Modern systems require schedulers to determine

which resource(s) execute the work, as well as the order in which the work is executed. �e

scheduler decisions become a function of the workload parameters, system con�gurations, or even

the physical layout of the underlying cyber-physical system. Analysing such schedulers becomes

very challenging since the space of possible schedules is very large.

Such schedulers can be found in smart and �exible manufacturing systems. An industrial printer

is an example. �e productivity of a printer is optimized by a scheduler that can be adjusted based

�is article appears as part of the ESWEEK-TECS special issue and was presented at the International Conference on

Embedded So�ware (EMSOFT) 2019.

�is document is the author-version of the submi�ed manuscript.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the

full citation on the �rst page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permi�ed. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM. 1539-9087/2019/10-ART1 $15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: October 2019.

1:2 Joost van Pinxten, Marc Geilen, and Twan Basten

on the speci�cation of the physical printing device and the type of work the printer is supposed to

handle. Due to the wide range of parameters for such systems it is useful to understand how the

physical system can be co-designed with the scheduler. �is understanding can be shared between

disciplines to determine the impact of parameters on system productivity, for example, for a given

scheduling policy and speci�c workloads.

We investigate how to characterize the impact of design parameters of a system on the scheduling

decisions that are taken in case that the conditions that lead to particular decisions are a�ne. Such

design parameters may include the clock speed and the relative workload of tasks for multiprocessor

systems, or the physical dimensions of modules of a manufacturing system. Symbolic execution

of the scheduler can determine which execution paths in the scheduling algorithm are taken for

di�erent parameter values. In this paper we characterise the sequence of decisions and record the

(parametric) scheduling outcomes for di�erent parameter values. Our approach achieves a fast

characterisation of scheduler decision mechanisms that use a�ne combinations of parameters to

make decisions.

We consider deterministic schedulers, in particular we are interested in those that minimize

makespan of a given set of non-pre-emptive jobs. Schedulers need to enforce orderings of events,

while meeting certain requirements on the timing of those events associated with the jobs in the

system. Our technique requires a scheduler to (re-)construct symbolic a�ne conditions for its

decisions. Our approach uses these symbolic conditions in a divide-and-conquer algorithm to �nd

regions for which the same parametric schedule is produced. Expressions for the makespan of the

result can then be found. �e problem and approach in this paper are motivated by characterising

schedulers for re-entrant manufacturing systems, but the approach is generally applicable to other

types of schedulers as well. Our approach requires that the scheduler for the given scheduling

instance (1) terminates in �nite time for any parameter combination, and (2) leads to a �nite number

of distinct parametric scheduling results. A key challenge is to cover all parameter combinations

such that the parametric decision regions are characterized including their borders, where a

scheduler changes its decision because of some critical constraint or requirement. Each parametric

decision region relates to an execution branch for concrete parameter values.

Related work is discussed in Section 2. We then de�ne symbolic scheduling (Section 3) and

illustrate how to integrate it into a classical scheduling heuristic (Section 4). We show how such

a symbolic scheduler is used to evaluate a concrete parameter combination (Section 4) and how

to interpret the information it returns (Section 5). In Section 6, we introduce an exact scheduler

characterization algorithm that covers all parameter combinations in a given range. In Section 7,

we evaluate the algorithm for the classical Shortest Processing Time First (SPTF) scheduler and

schedulers for a manufacturing system. We compare our approach to the generic symbolic execution

engine LLVM KLEE. Section 8 concludes.

2 RELATEDWORK

Determining whether a particular set of tasks and an activation pa�ern is schedulable is essential

for embedded systems. Such schedulability problems have received much a�ention for varying

scheduling policies [2, 19]. �e research on schedulability problems has initially focussed on cases

where relevant parameters, such as task durations, o�sets, relative deadlines, and periods, are given

and constant. For a given system, such solutions determine whether the system is schedulable.

Such schedulability problems have been extended to parametrized systems, where the problem is to

determine for each parameter combination whether the system is schedulable [3, 5]. Schedulability

regions have been determined for periodic task sets in [3]. �e task execution times in this work

are parametric, and it provides solutions for rate-monotonic and �xed-priority scheduling. �e

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: October 2019.

Parametric Scheduler Characterization 1:3

results show that it is possible to use hyperplane representations for these scheduling models.

�e hyperplanes determine limits on the schedulability, i.e., for which task execution times the

processors are proven to be capable of executing a workload. �e results map each parameter

combination in a parameter space to a binary outcome (schedulable or not schedulable). �e

approach is speci�c to rate-monotonic and �xed-priority scheduling. �e parametric timed automata

approach in [5] allows to determine the schedulability for a wider range of systems than [3]. �is

approach supports parametrized task sets (with parameters for completion time, relative deadline,

release times), and activation pa�erns, also taking into account non-deterministic behaviour for

�xed-priority scheduling. �e approach iteratively bounds the schedulability region. In general, the

approach of [5] may not terminate in a �nite number of steps. However, the authors show that their

approach converges for periodic task sets with bounded activation o�sets. Our approach addresses

performance characterization, which is more generic than the binary schedulability analysis. �e

result of our approach is a set of performance regions, and for each region a parametrized expression

characterizing performance aspects such as makespan. Our approach targets deterministic systems

with schedulers that can take into account the context when scheduling decisions need to be made.

Our approach can therefore handle parameters for deterministic constraints in completion time,

release time, and relative deadlines, as long as the scheduling conditions are a�ne in nature.

�e work of Nasri et al. [13, 14] extends schedulability tests for task sets when the system

is scheduled by a job-level �xed-priority scheduling algorithm. Given a set of input jobs with

non-deterministic parameters (i.e., with bounded uncertainty), their approach e�ciently determines

whether the system is schedulable under all execution scenario’s, as well as the best-case and worst-

case response times of each job. Although the goal of the work of Nasri et al. is similar to our work,

the problem that is tackled is di�erent from the one tackled in this paper. In contrast with their work,

the problem we present assumes that task execution times and timing constraints are deterministic,

and that parameters can be shared among tasks and timing constraints. Moreover, as mentioned

before, our work does not only perform schedulability checks, but it also yields performance regions

with symbolic makespan expressions characterizing the full scheduler behaviour.

�e parametric scheduling work of Subramani [15] also focuses on schedulability queries for real-

time systems, using the execution-time-constraints (ETC) framework. �is dispatching mechanism

only considers constraints from and to past events. It does not take into account that constraints

from and to known future events impact the scheduling decision, and computes a single range in

which a task/job can be dispatched.

Parametric timed automata approaches for schedulability such as [5], [9], and [12] also return a

set of symbolic conditions, called zones. �e typical query, however, is whether a given state is

reachable. �e problem in this paper requires �nding whether any accepting state is reachable

under certain parameter evaluations, which has been shown to be PSPACE-Complete [1]. Current

approaches [9], however, do not give an algorithm to discover any accepting states automatically

and also capture the symbolic conditions for the decisions leading to these states (in the form of a

decision region). Our approach simultaneously discovers the reachable scheduling results and the

symbolic conditions under which they are reachable.

�e convexity of parametric problems is o�en based on the resulting parametric a�ne expressions,

as in [7], [10], and [16]. In these works, the throughput expressions and a�ne schedules are

determined for data-�ow graphs and iteration vectors respectively. Such results are valid on the

border of regions, whereas our problem requires the regions not to overlap. Our approach �nds

symbolic conditions that are related only to the decision making, but are not necessarily derived

from the scheduling result.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: October 2019.

1:4 Joost van Pinxten, Marc Geilen, and Twan Basten

Scheduling problems can o�en be expressed as integer programming problems. Such integer

programming problems are o�en not amenable to solving to optimality due to the complexity of

the scheduling problem. �e constraints of such integer programming problems can be expressed

by parameters [6] [7]. �is work solves a di�erent kind of parametric scheduling problem; the

decision making is performed by a general-purpose solver. �e scheduling result relates directly to

the symbolic conditions under which the result is optimal, which is not a limitation of our approach.

Our approach characterizes all results achievable by a particular scheduler, thereby characterizing

the full scheduler behaviour.

�ere have been signi�cant advances in the automated generation of test cases in recent years.

Such generic techniques can be used to cover all possible execution paths of a program. Symbolic

execution engines such as LLVM KLEE [4] keep track of symbolic variables automatically. Using

the symbolic information, LLVM KLEE tries to �nd for each execution branch concrete values for

the parameter combination that lead to that particular branch, to be used as a test case, or to show

that no concrete values can ever lead to that execution branch. LLVM KLEE is the only related

work that can be used to directly address the problem we consider in this paper. We provide an

alternative, more specialized approach that outperforms LLVM KLEE for the given problem, and

returns more insight into the productivity of schedulers under varying parameters.

3 SYMBOLIC SCHEDULING

Schedulers decide in what order and at what time events should take place. A scheduling problem

o�en contains a set of static timing constraints that are enforced regardless of the scheduler’s

decisions. For example, there may be a minimum and maximum time constraint between the

start and the end of a task. Conditional timing constraints, such as communication, processing,

recon�guration times or sequence-dependent set-up times, are active only when certain conditions

are met. �e scheduler needs to take into account that the set of active constraints can change

when the order of events or the resource allocation changes. Many schedulers �rst decide on

which resource and/or in what order the required events should take place, before start times are

determined. �e scheduler must ensure that all timing constraints of the scheduling problem are

satis�ed. A sequence of decisions is taken, based on the evaluation of certain alternatives. �e

scheduler then computes event realization times to instruct the system.

Schedulers (and programs in general) typically use concrete values to choose between options.

In symbolic scheduling, these concrete values are replaced by symbolic expressions, that relate

the values to system parameters. �e scheduler can then evaluate the symbolic expressions by

substituting the parameters with their concrete values. We show that such a symbolic scheduler can

determine to what extent the parameters may change before any decision in the decision sequence

changes. If the conditions used in the scheduler are restricted to conjunctions of a�ne inequalities

of parameters, then we can relatively e�ciently determine for all parameter combinations which

decision sequence will be taken. We assume that a symbolic scheduler returns: (i) the schedule

produced at a particular parameter point, (ii) a set of necessary symbolic conditions, i.e., a�ne

inequalities on the parameters, de�ning a region that includes all points that lead to the same

decision, and (iii) the result of a concrete decision sequence, e.g., the parametrized timing relations

between events.

4 RUNNING EXAMPLE

We �rst introduce a basic scheduling model: an m-machine n-task allocation problem. We then

explain the SPTF heuristic. We use this particular scheduler to show that our approach is applicable

to commonly used types of schedulers and as running example.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: October 2019.

Parametric Scheduler Characterization 1:5

4.1 m-machine n-task allocation problem

A queue T = 〈(t1,d1), . . . , (tn ,dn)〉 of tasks ti with duration T (ti) = di needs to be allocated on a

set ofm identical machines, referred to in general as resources. �e tasks have no dependencies

among each other. A task ti ∈ domT is executed without interruptions for the speci�ed duration

di . �e scheduling problem is to assign each task to a machine and determine a feasible schedule σ
for the start of each task that minimizes the maximum completion time of all machines Cmax.

We use a simple list scheduler heuristic as an example for our approach. List schedulers iteratively

schedule the highest ranked task onto the highest ranked resource. It su�ces to de�ne task and

resource ranks to complete the algorithm.

4.2 Shortest Processing Time First Scheduler

An SPTF scheduler is a list scheduler that iteratively schedules a remaining task with the shortest

processing time on the earliest available resource (Algorithms 1 and 2). �e result is a partitioning

of the task queue over resource queues. �e resource queues represent dependencies between

tasks which share resources, for example 〈(t1,a), (t2, 2a)〉 , 〈(t3,b)〉 expresses two resource queues

of tasks with parametric execution times with parameters a and b; t2 depends on completion of t1,

both allocated to the �rst resource.

At each step, the scheduler must select exactly one option; a tie-breaking condition is required

if several options are equally preferable. If several tasks or resources have the same duration or

availability time, then Algorithm 1 always selects the �rst occurrence, which makes it deterministic.

In literature, such a tie is typically broken arbitrarily.

Algorithm 1 Shortest processing time �rst scheduler

1: function SPTF schedule(task queue T = 〈(t1,d1), . . . , (tn ,dn)〉, resources R = 〈r1, . . . , rm〉)
2: σ = ∅ // start with an empty schedule
3: for each r ∈ R do
4: Q(r) = 〈〉 // empty queues Q for each resource
5: repeat
6: remove task x = (tx ,d) ∈ T s.t. d = min(ti ,di)∈T di
7: select resource r ∈ R with min. compl(Q(r))
8: s = compl(Q(r))
9: append x to Q(r)

10: σ (tx) = s
11: until T is empty

12: return Q,σ

Algorithm 2 Calculate completion time of a queue

1: procedure Compl(queue q)

2: return
∑
(ti ,di)∈q di

5 PARAMETRIZED SCHEDULERS

We introduce the concept of decision regions, taking the shape of polyhedra in the design parameter

space, in Section 5.1, before extending the SPTF scheduler with symbolic scheduling in Section 5.2.

In Section 5.3, we show how to extend the evaluation of conditions in the symbolic scheduler such

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: October 2019.

1:6 Joost van Pinxten, Marc Geilen, and Twan Basten

0 0.5 1 1.5 2 2.5 3 3.5 4

Time

2a b

2a + 1

(a) Schedule for parameter combination (a,b) = (1/4, 2).

0 0.5 1 1.5 2 2.5 3 3.5 4

Time

2a 2a + 1

b

(b) Schedule for parameter combination (a,b) = (1/2, 3/2).

0 0.5 1 1.5 2 2.5 3 3.5 4

Time

b 2a + 1

2a

(c) Schedule for parameter combination (a,b) = (1, 1).

Fig. 1. SPTF example schedules for task queue 〈(t1, 2a), (t2,b), (t3, 2a + 1)〉.

that it can evaluate points that are arbitrarily close to, but not on, the edge of a polyhedron. We

use this concept to deal with tie-breaking conditions, characterizing the parameter combinations

where a scheduler changes its decision. In Section 5.4, we visualize the branching conditions used

in the symbolic scheduler as a decision tree.

5.1 Decision regions

We consider deterministic schedulers for which the conditions of scheduler decisions can be denoted

as the conjunction

∧
S of a set S of symbolic a�ne inequalities. �e universe of symbolic a�ne

inequalities with d parameters is represented by U = Rd+1 × { <, ≤ }. We denote a symbolic

a�ne inequality by a tuple (e, /) with e ∈ Rd+1
and / ∈ { <, ≤ }. A symbolic scheduler evaluates

parametric a�ne expressions e(p) = b · p + c , where p is a vector of parameters, b is a vector of

weights, c is a constant and · denotes a vector inner product. �e a�ne function e is represented by

a vector b consisting ofd coe�cients and the constant c , and the function evaluation of e parameter

pointp ∈ Rd becomes e(p) = [b c] · [p 1]. A symbolic a�ne inequality can be evaluated to a boolean

at a parameter point p as e(p) / 0, where / is either < or ≤. �e negation of an a�ne inequality

¬(e / 0) is de�ned as follows: ¬(e, <) is equivalent to (−e, ≤), and ¬(e, ≤) is equivalent to (−e, <).
A conjunction of symbolic a�ne inequalities can be interpreted as the intersection of the

corresponding half-spaces in the parameter space [8][11][12]. �e resulting polyhedron is therefore

convex for schedulers that use a�ne inequalities to perform their decision making. For strict

inequalities, the bounding hyperplane is excluded. �e convexity of the decision regions cannot be

guaranteed when non-linear conditions are used by the scheduler. We want to �nd a polyhedron

for every point in which, the scheduling algorithm makes the same sequence of decisions. We use

the term decision region to refer to such a convex polyhedron.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: October 2019.

Parametric Scheduler Characterization 1:7

Algorithm 1 returns the task ordering Q(r) for each resource r , and for each task t ∈ domT the

earliest possible starting time σ (t). In addition, the scheduler can keep track of the reasons why

it made these decisions for the given parameter values. For example, let the queue of symbolic

tasks and their duration expressions be 〈(t1, 2a), (t2,b), (t3, 2a + 1)〉. �e selection condition d =
min(ti ,di)∈T di (used in Algorithm 1 Line 6) can be wri�en as the conjunction of inequalities such

that the duration dx of task tx is at most the duration of any task in T :

∧
(ti ,di)∈T dx ≤ di . When

a = 1/4, b = 2, the scheduler picks task t1 with duration a �rst, and will do so for other parameter

combinations, as long as 2a ≤ b.

Similarly, the minimum completion time condition can also be expressed as a symbolic inequality,

as the completion time of a resource is the sum of a set of symbolic duration expressions. In the

example, a�er selecting task t1, the �rst (least busy) resource is selected to execute for an additional

2a time units. Both resources are available at time 0, and therefore task t1 is scheduled on r1. �e

completion times of r1 and r2 are then 2a and 0 respectively. Task t3 with time 2a + 1 = 3/2 then

remains the smallest task as long as 2a + 1 ≤ b. Resource r2 will be selected for task t3 under the

condition that there is no other resource than r2 that is idle earlier, i.e., the scheduler requires

that 0 ≤ 2a. Moreover, as resource r1 occurs earlier in the resource list than r2, the scheduler

also requires that r2 is the �rst resource in the list that is idle at the given time, i.e., the scheduler

requires that ¬(2a ≤ 0). �e two conditions combined simplify to 0 < 2a. A�er scheduling t3, the

resource completion times are 2a and 2a + 1 for r1 and r2 respectively. Finally, the only remaining

task t2 with duration b is added to the resource with minimum completion time. �e resource

selection condition 2a ≤ 2a + 1 is true regardless of the value of a, and t2 is therefore scheduled on

resource r1. �is schedule is shown in Figure 1a. For this example, Cmax = max (2a + b, 2a + 1), for

the parameter values(a,b) = (1/4, 2): Cmax = 5/2 time units.

5.2 Symbolic SPTF scheduler

Given a particular parametrized set of tasks and resources, a deterministic scheduler makes its

decisions sequentially. Algorithm 3 extends Algorithm 1 with symbolic scheduling. It captures

the conditions that distinguish between the selection of scheduling options. In Algorithm 3, the

condition for selecting task t on Line 6 is captured on Line 7. Similarly, the resource selection

condition for r is evaluated on Line 8 and is captured on Line 9.

Note that the symbolic scheduler captures only closed intervals, even though on the interface

between two decisions, only one decision is taken. We show in Section 6 that it is not necessary to

explicitly return the tie-breaking condition for our approach.

Let the queue of symbolic tasks and their duration expressions again be 〈(t1, 2a), (t2,b), (t3, 2a + 1)〉.
Figure 1 shows three symbolic schedules that are produced for this task set for three di�erent

parameter combinations ((a = 1/4,b = 2), (a = 1/2,b = 3/2) and (a = 1,b = 1)). At these parameter

combinations the scheduler returns several necessary conditions for the same decisions to be taken

as shown in Figure 2. �e relevant task and resource selection conditions are shown in Table 1
1
.

�ese selection conditions result in polyhedra that overlap, yet the scheduler only returns one

speci�c result and schedule for each parameter combination. In Figure 2, the points on the line

b = 2a belong to the blue region, as the task with duration 2a (as the �rst task in the task queue)

would be picked �rst. Similarly, the points on the line b = 2a + 1 belong to the green region, as

task t2 with duration b is picked before task t3.

1
In �gures and tables, the task indices have been omi�ed.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: October 2019.

1:8 Joost van Pinxten, Marc Geilen, and Twan Basten

Algorithm 3 Symbolic shortest processing time �rst scheduler

1: function Symbolic SPTF schedule(task queue T = 〈(t1,d1), . . . , (tn ,dn)〉, resources R =
〈r1, . . . , rm〉, parameter values p)

2: c = ∅ // initialize an empty set of conditions
3: for each r ∈ R do
4: Q(r) = 〈〉 // empty queues Q for each resource
5: repeat
6: remove x = (t ,d) ∈ T s.t. d(p) = min(ti ,di)∈T di (p)
7: c = c ∪ { (d − di , ≤) | (ti ,di) ∈ T }
8: select r ∈ R with min. compl(Q(r))(p)
9: c = c ∪ { (compl(Q(r)) − compl(Q(ri)), ≤) | ri ∈ R }

10: s = compl(Q(r))
11: append x to Q(r)
12: σ (t) = s
13: until T is empty

14: return c,Q,σ

0 1 2 3
a

0.0

0.5

1.0

1.5

2.0

b

Fig. 2. Example polyhedra returned by the symbolic scheduler for task queueT = 〈(t1, 2a), (t2,b), (t3, 2a + 1)〉,
at parameter points (a,b) = (1/4, 2), (1/2, 3/2) and (1, 1), indicated by the red dots. The regions denote for

which parameter combinations the same sequence of decisions are taken.

Table 1. Decision region details for task queue T = 〈(t1, 2a), (t2,b), (t3, 2a + 1)〉.

p = (a,b) Task Resource �eues

(1/4, 2) 2a + 1 < b 0 < 2a 〈2a,b〉 , 〈2a + 1〉
(1/2, 3/2) 2a ≤ b ∧ b ≤ 2a + 1 0 < 2a 〈2a, 2a + 1〉 , 〈b〉
(1, 1) b < 2a 0 < b 〈b, 2a + 1〉 , 〈2a〉

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: October 2019.

Parametric Scheduler Characterization 1:9

5.3 Evaluating points strictly inside a decision region

For our exploration algorithm, we need to distinguish between parameter combinations that lie

on the border of a polyhedron, and those arbitrarily close to, but not on, the border to detect in

which decision region they fall. If at parameter combination p multiple tasks tie for the smallest

duration, Algorithm 3 chooses the task that occurs �rst in the queue. I.e., on the ‘border’ between

two decision regions, exactly one of several mutually exclusive branching decisions is taken.

�e decision regions can be open or closed such as visualized for task queue

〈(t1,a), (t2, 2a), (t3, 2), (t4, 5)〉 in 1-dimensional intervals in Figure 3a. �is example is synthetic

as it allows negative task execution times. However, it illustrates aspects that may occur in realistic,

more complex examples, for more complex schedulers. �e �gure shows that any side of a schedul-

ing region can be open or closed, depending on the conditions used in the scheduler. Moreover, it

shows that schedules may occur for only a single parameter value. Point a = 0 is the only point

in the example that leads to schedule 〈(t1,a), (t2, 2a), (t3, 2)〉 , 〈(t4, 5)〉. �e maximum completion

times associated with the schedules have di�erent slopes for di�erent decision regions, as shown in

Figure 3b. In more complex examples, the makespan may even make discrete, discontinuous steps

at borders of regions. �e makespan of a schedule results from its critical paths. A parametrized

expression for the makespan of a schedule for a given speci�c parameter combination can be

determined by the algorithm presented in [16]. Such critical path expressions of the parametric

scheduling result determine the performance slopes inside the regions.

We need to evaluate parameter combinations that are just o� a region border, to �nd to which

decision region a border belongs. We add an in�nitesimally small ϵ to some of the concrete points

such that the scheduler evaluates conditions as if the parameter point is strictly inside a polyhedron

to in�uence the decisions that the scheduler makes. �is procedure is explained in Section 6.2.

5.4 Interpreting a symbolic scheduler as a decision tree

�e decision sequences that can be taken by the SPTF scheduler for the task queue

〈(t1, 2a), (t2,b), (t3, 2a + 1)〉 are visualized in Figure 4 as a decision tree. For each parameter com-

bination p = (a,b) a particular sequence of decisions (i.e., a path in the decision tree) is followed.

Starting from the le�, the branches of the tree contain the minimum task and resource selection,

and the leaves show the resulting resource queues. In Section 6 we present a structured way to

�nd for all parameter combinations which branch of the decision tree is taken. �is allows the

behaviour of the scheduler to be characterized with respect to the parameters.

�ere are branches that cannot be taken for any parameter combination p. �e task t1, with

duration 2a, for example, is always smaller than t3 with duration 2a+1, so task t3 cannot be scheduled

before scheduling t1. Figure 2 shows the decision regions for strictly positive parameters. Figure 5

shows the geometric decision regions for each combination { (a,b)| − 1 ≤ a ≤ 8/5 ∧ −1 ≤ b ≤ 8/5 }.
Only three decision regions fall in the positive quadrant. For the remaining decision regions, at

least one parameter is negative.

As a or b becomes negative, at least one task duration becomes negative. As before, we allow

negative tasks durations for illustration purposes. Behaviour that we see in this example may also

occur in more complex schedulers. For some negative task durations the SPTF scheduler delivers the

same schedule as for certain positive parameters, although following a di�erent decision sequence.

An example occurs in Figure 8, the two decision regions that are labelled with C correspond to

di�erent paths in the decision tree visualized in Figure 4. Di�erent sequences of decisions can lead

to the same internal state of the scheduler, which may lead to the same scheduling result.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: October 2019.

1:10 Joost van Pinxten, Marc Geilen, and Twan Basten

-2 0 2 4 6 8

<2,a>,<5,2a>

<2,5>,<a,2a>

<2,2a>,<a,5>

<a,2a>,<2,5>

<a,2>,<2a,5>

<a,2a,2>,<5>

<2a,a,2>,<5>

<2a,a,2,5>,<>

(a) Open and closed intervals for di�erent scheduling regions for varying values of a.

-2 2 4 6 8
a

5

10

15

20

Cmax

<2a,a,2,5>,<>

<2a,a,2>,<5>

<a,2a,2>,<5>

<a,2>,<2a,5>

<a,2a>,<2,5>

<2,2a>,<a,5>

<2,5>,<a,2a>

<2,a>,<5,2a>

(b) Maximum completion time of resources for varying values of a.

Fig. 3. Scheduling regions and maximum completion times for scheduling the task queue

〈(t1,a), (t2, 2a), (t3, 2), (t4, 5)〉 on two resources.

6 EXPLORING PARAMETER COMBINATIONS

In Section 6.1, we present a divide-and-conquer approach that identi�es to which decision regions

each parameter combination belongs. �e divide-and-conquer approach does so by evaluating the

corner points of convex polyhedra, until it is determined that all combinations inside a polyhedron

result in the same decision region. To characterize the scheduler for all parameter combinations

for polyhedra with strict inequalities, we describe a procedure to generate ϵ corners, i.e., corner

points that are an in�nitesimal distance away from an open corner of a polyhedron, in Section 6.2.

Compared to LLVM KLEE [4], our divide-and-conquer approach is a depth-�rst approach. In

contrast to LLVM KLEE, we explore an execution path to termination, by evaluating speci�c

concrete points. LLVM KLEE uses a mix of several approaches to identify new (arbitrary) concrete

points that continue into di�erent (non-terminated) execution paths.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: October 2019.

Parametric Scheduler Characterization 1:11

. . .

. . .

.

A:〈2a,b, 2a + 1〉 , 〈〉

B:〈2a,b〉 , 〈2a + 1〉

C:〈2a, 2a + 1〉 , 〈b〉

D:〈2a〉 , 〈b, 2a + 1〉

E:〈2a, 2a + 1,b〉 , 〈〉

C:〈2a, 2a + 1〉 , 〈b〉

B:〈2a,b〉 , 〈2a + 1〉

F:〈2a〉 , 〈2a + 1,b〉

G:〈b, 2a, 2a + 1〉 , 〈〉

H:〈b, 2a〉 , 〈2a + 1〉

I:〈b, 2a + 1〉 , 〈2a〉

J:〈b〉 , 〈2a, 2a + 1〉

t1

t2

t3

r1

r2

r1

r2

t2
t3

t1
t3

r1

r2

r1

r2

r1

r2

t3

t3

t2

t2

t3

t3

r1

r2

r1

r2

r1

r2

r1

r2

r1

r2

r1

r2

Fig. 4. Example decision tree for SPTF scheduling tasks 〈(t1, 2a), (t2,b), (t3, 2a + 1)〉. A solid edge is a decision

on a task, and a dashed edge is a decision on a resource. Greyed out decisions cannot be taken due to

conflicting requirements on the parameter values.

1.0 0.5 0.0 0.5 1.0 1.5
a

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

b E

I

B

B

G
H

C
C

A

A:<2a,b,2a + 1>,<> -> 0
B:<2a,b>,<2a + 1> -> 2a + 1
B:<2a,b>,<2a + 1> -> 2a + b

C:<2a,2a + 1>, -> 4a + 1
C:<2a,2a + 1>, -> b
E:<2a,2a + 1,b>,<> -> 0

G:<b,2a,2a + 1>,<> -> 4a + b + 1
H:<b,2a>,<2a + 1> -> 2a + 1
I:<b,2a + 1>,<2a> -> 2a + b + 1

Fig. 5. Geometric visualization of which parameter combinations lead to which resource queues for the

example in Figure 4. The legend shows resource queues and symbolic maximum completion times for each

explored decision region. The le�ers relate to the leaves in Figure 4.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: October 2019.

1:12 Joost van Pinxten, Marc Geilen, and Twan Basten

6.1 Divide-and-conquer approach

Algorithm 4 shows a divide-and-conquer approach that covers all parameter combinations in

a given bounded convex parameter region CP . It returns a set of pairs consisting of a set of

constraints de�ning a convex polyhedral parameter region and the parametric result that the

scheduler produces in that region.

Lines 5 to 7 collect all the constraints and all the scheduler results for all corner points of the

parameter region CP . A convex polyhedron can be transformed into a set of corner points using

the double description library [8]. Each point in the polyhedron (including the corner points) is

related to a particular execution branch in the decision tree. Lines 10 to 12 check if all constraints

found (Line 11) hold in all corner points ofCP (Line 10). If so, then the recursion ends and we arrive

at Line 19. �is situation is visualized in Figure 6a. All corner points returned the same scheduling

result (дtot contains only one element); therefore we can return a pair with CP and the schedule

result, in Line 19. In the case that one of the constraints was found not to hold for one of the corner

points (Line 12, Figure 6b), the region CP contains points from more than one decision region. In

that case, we use that constraint to split the region CP in two new (smaller) regions in Lines 13, 14;

Algorithm 15 then recursively computes the results for the two new, smaller, parameter regions

(Lines 15, 16) and returns the union of their separate results (Line 17).

Algorithm 4 Divide-and-conquer for symbolic scheduling

1: function DivideConqer(scheduling problem P , bounded convex parameter polyhedron CP)

2: // Empty sets to record conditions and scheduler results
3: ztot = ∅,дtot = ∅
4: // Combine the conditions of all corners
5: for each corner pϵc of Epsilon corners(CP) do
6: zi ,дi = evaluate problem(P , pϵc)

7: ztot = ztot ∪ zi
8: дtot = дtot ∪ дi
9: // Check whether all corners admit to all conditions

10: for each corner pϵc of Epsilon corners(CP) do
11: for each z ∈ ztot do
12: if ¬z(pϵc) then // Divide into two polyhedra
13: CP1 = CP ∪ { z }
14: CP2 = CP ∪ { ¬z }
15: R1 = DivideConqer(P ,CP1)
16: R2 = DivideConqer(P ,CP2)
17: return R1 ∪ R2 // Return all regions
18: Let дm be the only element of дtot .
19: return { 〈CP ,дm 〉 }

6.2 Evaluating polyhedra with strict inequalities

�e conditions leading to decision regions may include strict inequalities and non-strict inequalities.

We represent a polyhedron with strict inequalities that exclude bounding faces using corner

points that are at an in�nitesimally small distance from the concrete corner (ϵ corners), inside

the polyhedron. To determine such ϵ corners for strict inequalities (i.e., an open interface of

a polyhedron), we use the technique visualized in Figure 7. �is technique creates a smaller

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: October 2019.

Parametric Scheduler Characterization 1:13

0 2 4 6 8 10
0

2

4

6

8

10

(a) Intersection covers all points in the hatched convex polyhedron.

0 2 4 6 8 10
0

2

4

6

8

10

(b) Intersection does not cover all points of the hatched convex polyhedron. The algorithm can split the

polyhedron along one of the two red dashed lines.

Fig. 6. Two situations for the intersection (outlined in thick black) of the green, yellow and blue conditions

returned by their respectively coloured corners.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: October 2019.

1:14 Joost van Pinxten, Marc Geilen, and Twan Basten

2 0 2 4 6 8 10 12
0

2

4

6

8

10

c1

c2

c3

c4

S1

S2

(S2, c4)

(S2, c1)

(S2, c3)

(S1, c2)

(S1, c1)

Fig. 7. Creating ϵ corners. c1, c2, c3, c4 are corners of a polyhedron, and S1 and S2 are strict inequalities

(dash-dot lines). Calculate new concrete corners by translating si a concrete distance, using 1/3rd of the

minimum (perpendicular) distance δ (Si , ck) of Si to each other corner ck . This generates new corner points

(the red dots) without removing corners (such as c1) on non-strict inequalities (solid lines).

polyhedron, by tightening the conditions (i.e., translation in the �gure) such that they cut o� the

points that lie on the interface of the strict inequality Si = (e, <). �e points

{
x ∈ Rd | e(x = 0)

}
are those that lie on the hyper-surface de�ned by e; we call such points adjacent to Si . We �nd a

distance δ , to be added in the normal direction of the inequality Si , such that concrete new corner

points for a new polyhedron CP ′ (spanned by the red corners and c1) are created. δ is chosen small

enough to retain all corners that are not adjacent to this strict inequality. �e distance at which a

corner ck not adjacent to Si would be cut o� is the perpendicular distance δ (Si , ck). �erefore, any

concrete translation distance δ of Si less than the minimum perpendicular distance of Si to any

non-adjacent corner point ck does not cut o� corner points that are not adjacent to Si .
Translating the inequality Si with a concrete value leads to a smaller concrete polyhedron

CP ′. �e corner points of CP ′ that do not coincide with any corner of CP are used to determine

the ϵ corners. �e ϵ corner is determined by moving the original corner in the direction of the

corresponding concrete corner(s) of CP ′ by an in�nitesimal distance. �is creates a corner point

for which no concrete point lies between that corner and the original corner. As multiple corners

may be cut and generated (as for S1 and corners c3 and c4) we need a way to distinguish which new

corners relate to the old corners. To do so, we take the concrete δ small enough so that any new

corner is generated closer to its original corner than to any other corner. �is distance should be

less than half the minimum of the distance to adjacent corners and the perpendicular distances to

non-adjacent corners.

In Figure 7, a simpler method seems possible; namely, for each corner point adjacent to a strict

inequality, generate new corners that are in the direction of the adjacent corner points. When

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: October 2019.

Parametric Scheduler Characterization 1:15

more than one strict inequality is supplied for a corner point, this method would generate multiple

corner points, each of which is still adjacent to at least one other strict inequality. �erefore, this

simpler procedure will not always lead to the correct corner points to describe the polyhedron with

strict inequalities.

For the procedure sketched here to work, the symbolic scheduler that is used by the exploration

algorithm should be capable to evaluate conditions for parameter values with in�nitesimal parts.

6.3 Soundness and termination

In this section we provide arguments that the results of our divide-and-conquer approach are

sound and that the approach terminates. Soundness of the approach requires that the parameter

combinations correspond to the correct execution path and parametric scheduling result. Recall

the requirement on the symbolic scheduler to return a (su�ciently) complete set of constraints for

the path corresponding to a concrete point.

6.3.1 Soundness. Each concrete parameter combination has a particular execution path asso-

ciated with it. Each execution path maps to some parametric scheduler result, from which the

(parametric) productivity can be deduced. Let p ∈ CP be a parameter combination in some convex

parameter polyhedron CP . Assume the execution path of p is not associated with the execution

path of any other point p ′ ∈ CP \ {p }, and that our divide-and-conquer approach incorrectly

reports that p has the same execution path as all other points in CP .

Our approach only reports all parameter combinations in the same decision region when each

corner point of CP admits to the union of the conditions for all corner points (Line 12). �e above

assumptions imply that the execution path for p occurs only under some condition that does

not hold for at least one of the corners of CP . However, as CP is a convex polyhedron, no a�ne
condition (i.e., half-space) exists that includes p from CP , while not also including at least one of

the corners ofCP . �is contradiction shows that p ∈ CP belongs to the same decision region, under

the assumption that indeed a su�ciently complete set of conditions is returned at each (ϵ-)corner.

6.3.2 Termination. �e termination argument is similar to the argument in [10]. On Lines 13

and 14, the two smaller, non-empty, polyhedra CP1, CP2 cover all parameter combinations in CP ,

without overlap. Recall from the introduction the assumptions that (1) the symbolic scheduler

terminates a�er a �nite time for any parameter combination, and (2) that the exploration leads to a

�nite number of decision regions. As the polyhedra always become strictly smaller in the split on

Lines 13 and 14, eventually the base case is reached on Line 19. �e base case is then recursively

propagated back to form the result for the initial call of Algorithm 4.

7 EXPERIMENTAL EVALUATION

We apply our approach to several schedulers to show that the technique is applicable to both

classical processor scheduling and scheduling techniques relevant for manufacturing systems. �e

result of our parametric scheduler characterization allows us to investigate scheduling productivity

with respect to design parameters for re-entrant manufacturing systems.

�e divide-and-conquer experiments described in this paper have been implemented and executed

with Python3, using the Python wrapper for the CDD [8] double description library. To compare

our approach to alternative methods, we implemented these simple scheduling algorithms in C,

and used LLVM KLEE v2.0 with the recommended LLVM clang 6.0 compiler and Z3 SMT solver to

execute the benchmark set.

�e parameter combinations inside a given convex polyhedron are forwarded to the actual

scheduling algorithm. For the other parameter combinations, the C-program simply exits before

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: October 2019.

1:16 Joost van Pinxten, Marc Geilen, and Twan Basten

1.0 0.5 0.0 0.5 1.0 1.5 2.0
a

1.0

0.5

0.0

0.5

1.0

1.5

2.0
b

2a + 1

3a + b + 1

3a + b + 1

1

3a

2a + b + 1

2a + b + 1

b + 1

0

2a + b

b + 1

0

2a + 1

b 2a + b

a + b + 1

2a
0 1

3a + b

2a + 1

a + 1
3a

2a + b

Fig. 8. SPTF performance characterization for task queue 〈(t1,a), (t2, 2a), (t3,b), (t4, 1)〉. The maximum com-

pletion times are shown per decision region.

performing any scheduling, leading to one additional reported execution path. �e compiled

C-programs are then symbolically executed using the KLEE execution engine. �is execution

results in the exploration of all execution paths, and a report of concrete points that lead to the

di�erent execution paths. All experiments have been performed on an Intel Core i7 960 with 12 GB

RAM, running 64-bit Ubuntu 18.04.

7.1 Shortest Processing Time First scheduler

Figure 4 shows the characterisation of the SPTF scheduler for task queue 〈(t1, 2a), (t2,b), (t3, 2a + 1)〉.
For p+ = (a,b) with strictly positive parameters (a > 0,b > 0) three decision regions are found. As

task durations 2a and 2a + 1 are already ordered, these decision regions correspond to the relative

ordering of b to 2a and 2a + 1. �e decision regions have maximum completion times that depend

both on a and b. �e static part of the task duration, 1, in 2a + 1 is not critical as long as b > 2a + 1.

Figure 8 shows the performance characterization for the task queue 〈(t1,a), (t2, 2a), (t3,b), (t4, 1)〉,
for −1/2 ≤ a ≤ 1,−1/2 ≤ b ≤ 2; 22 di�erent scheduler results are found in 26 decision regions.

�e maximum completion time in the region R1 = {(a,b) | 0 ≤ a ≤ 1/2, 0 ≤ b ≤ 1} depends either

on a or on b, but not on both. For all parameter combinations in R1, the task with duration 1 is the

last to be scheduled as none of the other tasks are bigger in this region, and therefore always ends

up in the maximum completion time expression. �e two examples of Figures 4 and 8 illustrate the

results of our divide-and-conquer approach. �e parametric results per decision region correspond

directly to a convex surface describing the makespan of the system, which also holds for the other

experiments in this paper.

7.2 Schedulers for re-entrant manufacturing systems

Re-entrant manufacturing systems are interconnected machines that perform operations on a

product. �e product is processed by one of the machines multiple times; i.e., the product re-enters

one of the machines. An example of such a re-entrant manufacturing system is an industrial printer.

A duplex printer prints an image on both sides of a sheet using a single printing station. Timing

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: October 2019.

Parametric Scheduler Characterization 1:17

2 4 6 8 10 12 14

0

20

40

60

80

100

Minimum loop time l

M
ak
es
pa
n

Fig. 9. Eager Scheduler applied to 25 identical sheets, l− = l , l+ = l + 3. The di�erent decision regions

are colour coded in the bo�om. The top part of the graph shows the makespan as a function of l−. As the
minimum loop time increases, the slope of the makespan becomes less steep, while the starting o�set for

subsequent line segments is slightly higher.

requirements between products at the printing station are determined by the product’s type, as well

as the processing order at the printing station. �e output order is pre-determined by an operator.

A scheduler for a re-entrant machine then needs to interleave product �ows at di�erent stages

(passes) to optimize the productivity of the machines. We assume here that (i) the minimum

re-entrant loop time l− and maximum re-entrant loop time l+ are design-time parameters that

are constant during scheduling, (ii) that the set-up times S : Z × Z → R between two products

(z1, z2) ∈ Z 2
at the re-entrant processing station are determined fully by their product types, (iii)

that the set-up times between products with the same type are the smallest possible, and (iv) that

the products all need to be processed twice by some processing station (i.e., products are processed

in two passes). For sake of simplicity of presentation, the set-up times of the machines include the

processing time, and are the same between �rst pass processing and the second pass processing.

7.2.1 Eager Scheduler. �e Eager Scheduler [17] selects the ‘�rst ��ing slot’ in which an op-

eration can be executed. It does so by trying to insert a re-entrant operation into an operation

sequence in such a way that it does not in�uence the chosen timing of previously scheduled

operations. �e Eager Scheduler iteratively inserts the second pass operation of the next product

into a sequence of (initially only �rst pass) operations. �e scheduler �xes the re-entering time for

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: October 2019.

1:18 Joost van Pinxten, Marc Geilen, and Twan Basten

a product a�er inserting its second pass to the earliest time allowed by the constraints. Evaluating

whether an operation can be inserted while satisfying all constraints is possible through a modi�ed

longest-path algorithm that detects the presence of positive cycles and does not allow changing

the operation times of previously scheduled operations. �e presence of a positive cycle indicates

that the constraints cannot be met. �e symbolic scheduler needs to determine a constraint on

parameters for which a given cycle is positive.

Enumerating all cycles in a graph is prohibitively time-consuming, and many of the resulting

positive cycle expressions will be redundant. Instead, it is su�cient to return some positive cycle

expression if an explored choice is infeasible. Our exploration algorithm, Algorithm 4, can then

divide the polyhedron on that condition, to separate the decision regions on the outcome of that

cycle. Additional positive cycles may appear during recursive evaluation of the smaller polyhedra.

Figure 9 shows how the Eager Scheduler performs for 25 identical products under variation of the

minimum loop time, with a maximum bu�er time of 3 seconds. �e makespan per product increases

as the minimum loop time increases, until another product �ts in the loop. At that point, the

scheduler can avoid some idle time by �lling the loop more. �us, the decision regions returned by

the scheduler correspond to the number of products that �t in the re-entrant loop. As the minimum

loop time increases, the slope in each region decreases; the minimum loop time parameter occurs

fewer times in the critical path. Performing such an evaluation for typical product queues will lead

to a be�er understanding of which minimum loop time is productive.

7.2.2 Pa�ern Scheduler. If the products in a re-entrant �ow-shop are coming in a regular pa�ern,

then instead of optimizing a single product at a time, we can interleave pa�erns with each other.

�is is exploited by the Pa�ern Scheduler [18]. By aligning �rst and second passes of products

from di�erent instances of the pa�ern, large set-up times can be avoided. A good heuristic is to

�nd the maximum number of pa�erns that �t in the loop and allow the alignment of the two

passes. We analyse a scheduler that determines how many pa�erns �t in a 2-re-entrant loop, and

then calculates which pa�ern interleaving schedule would be inde�nitely repeatable. A pa�ern

Z = 〈z1, . . . , zk 〉 is an ordered list of |Z | product types. �e pa�ern repeats r times in the job.

�e number of pa�erns n that can be concurrently in the re-entrant loop is calculated in a way

similar to the steady-state performance estimator [18] for re-entrant �ow-shops, which models

a steady-state pa�ern scheduler. It calculates how many interleaved pa�erns could be executed

in the interval between the minimum and maximum loop time. �e bu�er range is denoted by

lb = l+ − l−). Figure 10a shows that the �rst passes (solid rectangles) of pa�ern k are interleaved

with the second passes (dashed rectangles) of pa�ern k − n. Pa�ern time tp is derived as a sum of

set-up times, given this particular interleaving of �rst and second passes, and use the knowledge of

the pa�ern that the product type of i − n · |Z | is the same as i:

tp =
∑
zi ∈Z
(S(zi , zi−n · |Z |) + S(zi−n · |Z |, zni + 1))

=
∑
zi ∈Z
(S(zi , zi) + S(zi , zi+1))

In steady state, this means that the �rst passes of a pa�ern k and the second passes of a re-entrant

pa�ern k − n are processed every tp time units. For any product zi , the deadline D(zi) (denoted

with red dashed arrows in Figure 10b) between the �rst and second passes must be satis�ed for a

valid schedule to exist. �e relative due date D(zi) is assumed constant, and parametrized by l+.

Before the second pass of a product of pa�ern k is executed, n pa�erns (n · |Z | products) must be

processed, plus a �rst pass product from pa�ern k + n + 1. �at is, for each product zi ∈ Z , the

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: October 2019.

Parametric Scheduler Characterization 1:19

chosen loop time t∗l = n · tp + S(zi , zi+n · |Z |) ≤ D(zi) should be less than the re-entrant due date

D(i). �e set-up time S(zi , zi+n · |Z |) = S(zi , zi) in Figure 10a corresponds to the set-up time between

ak+n
1

, and ak
2
. �is constraint is shown as the cycle of bold edges in Figure 10b, and is the same

for each instance of the pa�ern, but may be di�erent for each product type within the pa�ern.

�erefore, we can locally check whether the deadlines for each product type in the pa�ern can be

met for a particular value of n.

�e number n of pa�erns that �t in the loop is determined by the pa�ern time tp , the maximum

additional set-up time ts = maxzi ∈Z S(zi , zi), l− and l+ as follows:

n∗ =

⌊
l−
tp

⌋
nmax =

⌊
l+ − ts
tp

⌋

n =


0 if nmax ≤ 0

nmax if 1 ≤ nmax < n∗
n∗ otherwise

�e maximum number of pa�erns that �t in the loop is thennmax . To maintain a high throughput,

the scheduler tries to �t n∗ pa�erns in the loop, such that n∗ · tp ≥ l−, because then the re-

entrant products can return exactly a�er �nishing some previous pa�ern’s �rst passes. However,

if n∗ > nmax then there exists no n such that the pa�ern can return within the time window

l− ≤ n∗ · tp ≤ l+. In that case the scheduler uses the maximum number of pa�erns that �t in the

loop n = nmax .

�e actual timing of operations is determined by �rst �lling the loop with n products, then

interleave products of pa�ern k with k − n in steady-state, until the loop needs to be emptied

again. Appropriate sequence-dependent set-up times for this sequence are added, and earliest

realization times (i.e., a schedule) are calculated. All conditions in this decision process are captured

symbolically as expressions in the minimum loop and bu�er times l− and lb .

If no complete pa�ern �ts in the loop (i.e., nmax = 0), then the interleaving procedure schedules

both passes of a product to be processed before the next product starts its �rst pass. �is is rather

ine�cient, so if nmax = 0 the previously mentioned Eager Scheduler is invoked instead.

Figure 11 shows for a pa�ern of three products, repeated 5 times, how the minimum loop time

and bu�er time impact the decisions made by the pa�ern scheduler. One pa�ern takes 15/2 time

units, while the maximum �rst to second pass set-up time of the same product is ts = 2. Figure 11

shows that for these combinations of minimum loop times and bu�er times at most two pa�erns

are used in the loop. �e interpretation of the triangle { (l−, lb) | 15 ≤ l− ∧ l− + lb < 17 ∧ lb ≥ 0 }
is that one pa�ern less is interleaved because the maximum loop time (being the minimum loop

time plus bu�er time) is not su�cient yet to allow the product’s second pass to start. In this

region, the adjusted loop time n · tp < l− is less than the minimum loop time, and therefore some

unproductive idle time has been inserted between pa�erns. �e productivity is therefore decreased

if the minimum loop time is increased and idle time is introduced, until an additional pa�ern �ts

again. In the bo�om le�, the more irregular structure of the regions is due to the Eager Scheduler

making less regular decisions.

�is result enables a designer to study the ability of the bu�er to adapt to di�erent pa�erns with

respect to the physical layout of the printer. Improvements can then be explored on how a larger

minimum loop time or a larger bu�er would impact the ability to adapt to di�erent pa�erns. For

this particular scheduler, adding additional bu�ering capabilities above some threshold does not

yield additional productivity. By performing such an analysis for typical use cases, a designer can

make more informed decisions.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: October 2019.

1:20 Joost van Pinxten, Marc Geilen, and Twan Basten

ak
1

ak−n
2

bk
1

bk−n
2

ck
1

ck−n
2

ak+n
1

ak
2

t∗l ≤ l+

repeated n times

ta1,a2

ta2,b1

tb1,b2

tb2,c1

tc1,c2

tc2,a1

ta1,a2

tp

(a) A time representation of the interleaving of n pa�erns, starting at the first pass of pa�ern k .

1

a

2

1

b

2

1

c

2

1

a

2

1

b

2

1

c

2

1

a

2

1

b

2

1

c

2

pa�ern k − n pa�ern k pa�ern k + n

l−

. . .

. . .

. . .

. . .

−l+

(b) An event graph representation of the interleaving of n pa�erns.

Fig. 10. A steady-state pa�ern interleaving example.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Minimum loop time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Bu
ffe

r t
im

e

Fig. 11. Pa�ern scheduling for three products, repeated 5 times. In the green area, one pa�ern is used in the

loop, in the orange area two pa�erns are used. If no pa�ern fits in the loop (below le� of the green area),

then the eager scheduler decides on the operation ordering.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: October 2019.

Parametric Scheduler Characterization 1:21

Table 2. Parametric scheduling exploration statistics. The columns show per instance how many evaluations

(E) were performed (i.e., symbolic schedule calls), how many regions (R) were generated, and how many

di�erent parametric scheduler results (PSR) were found. The last columns show the execution time (tdc) of
the divide-and-conquer algorithm including all scheduling calls, and execution time tKLEE for the generic

symbolic execution engine.

Scheduler Instance E R PSR tdc tKLEE

SPTF Figure 2 18 3 3 0.2s 16s

SPTF Figure 3a 30 8 8 0.8s >3000s

SPTF Figure 5 65 10 8 1.3s 20s

SPTF Figure 8 172 24 21 5.5s 251s

Eager Figure 9 193 14 14 289s >3000s

Pa�ern Figure 11 1066 45 11 948s >3000s

7.3 Comparison with LLVM KLEE

Table 2 shows some runtime statistics for the example instances discussed in the previous subsec-

tions. �e SPTF scheduler is very fast at evaluating single parameter points, and the task queues

are rather small. �ese experiments only contain few di�erent scheduler results and decisions. In

these cases, our divide-and-conquer approach does not branch much more than strictly necessary

in these cases, as the number of regions is close to or equal to the number of parametric scheduler

results found. �e Eager Scheduler and Pa�ern Scheduler require many more evaluations to cover

the initial convex parameter region. In all experiments, almost all the time is spent in evaluating

corner points, and the time spent gathering the conditions and choosing a branching condition

were negligible. In comparison, all but the smallest benchmarks take more than 3000 seconds to

execute with LLVM KLEE. Even for such simple algorithms as SPTF, the automatic tracking of

symbolic variables and evaluation of many SMT queries seems to lead to an exponential increase

in the running time of the benchmarks. Tight loops that depend on symbolic values lead to many

calls to the SMT solver, but even with one parameter and four tasks (Figure 3a) the execution time

is signi�cant. In addition, the queries generated for the di�erent concrete values do not reveal

the particular segmentation directly, nor does it currently allow direct access to the parametric

scheduling results.

�e experiment of Figure 11 shows that many redundant regions were found, most leading to

the same parametric scheduler results, which are in this case part of the same (green) decision

region. �e green area could have been detected by three cuts, but the cuts that were generated for

the eager scheduler also cut the green area in more parts than necessary. �ese experiments can

possibly be sped up by heuristically (instead of arbitrarily) choosing a separation condition that

typically leads to fewer corner evaluations.

7.4 Scalability

We present some results to investigate the scalability of our method for the SPTF case. We vary

the number of processors, the number of parameters, and the number of tasks. In the previous

subsection we have shown that LLVM KLEE has excessive execution times for our parametrized

models, even for the smallest cases with one or two parameters. �e execution paths of an instance

with additional parameters includes at least the execution paths of the instance without those

additional parameters. It is therefore unlikely that the exploration mechanism of LLVM KLEE will

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: October 2019.

1:22 Joost van Pinxten, Marc Geilen, and Twan Basten

�nd execution paths signi�cantly more e�ciently when more parameters are used in the instance.

We therefore focus only on the scalability of our divide-and-conquer algorithm.

�e �rst scalability experiment consists of SPTF instances with ten tasks, two to �ve processors,

and up to four parameters. We have generated 10 random instances for each combination of

processor and parameter count. �e coe�cients of the parameters and the constants are fractions.

�e denominator and numerator of the fractions were both drawn uniformly from { 1, 2, . . . , 10 }.
�e results of this experiment are shown in Figure 12. �e time and region axes are shown on a

logarithmic scale. �e results for LLVM KLEE are not visualized due to the excessive computation

times for all but the smallest instances.

�e number of parameters has a signi�cant impact on both the number of decision regions that

need to be covered, as well as the running time of the divide-and-conquer approach. We observe a

growing trend for the worst-case execution time of the algorithm for increasing processor counts.

Even though each processor on average receives fewer tasks, there are more decision regions to be

determined, and therefore the execution time of our algorithm grows. �e running time as well

as the number of decision regions grows exponentially for increasing parameter count. As the

solutions necessarily grow in size, simply enumerating the answer may require exponential time.

�is is a common practical limitation for exact parametric methods.

Note that we could also choose to iteratively explore the decision regions for di�erent subsets of

the parameters, so as to avoid the exponential running time increase. Once the scheduler behaviour

is analysed (and potentially optimized) for one subset of parameters, we can then iteratively choose

another subset of parameters. �is e�ectively slices the larger problem into smaller sub-problems.

�e second scalability experiment varies the task set size from two to 20, and uses two processors

and only one parameter. Figure 13 shows the results of our approach on this benchmark. For

varying task set size n, the number of unique regions identi�ed grows with about O(n2). �e

runtime of our method grows withO(n3) when only one parameter is used, which can be explained

by multiplying the number of regions by the scheduling time of a single SPTF instance, which

takes O(n) time.

�ere is signi�cant variation in running times in both experiments. �is variation is caused by

the relative values of the randomly generated fractions. �is means that, despite the instances

having the same general characteristics, the coe�cients of each task’s parameters have a signi�cant

impact on the running time.

In both experiments, it shows that the number of regions found is highly correlated to the running

time. �e goal of the approach is to �nd all regions. In the very best case, the (exponentially many)

solutions still need to be enumerated, and the running time therefore scales at least linear to the

number of the regions. �is trend holds for larger task set sizes in Figure 13c. �at is, for this set of

experiments our approach scales, on average, with the expected time complexity.

8 CONCLUSION

A scheduler has signi�cant impact on the productivity of a system. We therefore want to �nd out

how a design parameter in a given range in�uences the sequence of decisions made in a scheduler.

�ese decisions lead to the activation or avoidance of timing constraints, and therefore to a particular

system performance. In this paper, we introduced a symbolic scheduling model that captures the

conditions under which certain decisions are taken. We introduced a divide-and-conquer algorithm

that uses such information from symbolic schedulers to determine which parameter combinations

lead to the same scheduling decisions for deterministic scheduling algorithms. It covers all possible

parameter combinations in a given range. It can be used to exhaustively test how the system

behaves in this range.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: October 2019.

Parametric Scheduler Characterization 1:23

2 3 4 5

Number of processors

10
0

10
1

10
2

10
3

10
4

10
5

T
i
m

e
[
s
]

Parameters

1 2 3 4

(a) Runtime for varying number of processor and

parameter counts.

2 3 4 5

Number of processors

10
1

10
2

10
3

10
4

D
e
c
i
s
i
o

n
r
e
g

i
o

n
s

f
o

u
n

d

Parameters

1 2 3 4

(b) Number of regions for varying processor and

parameter counts.

Fig. 12. Parameter and processor count scalability results of the divide-and-conquer method for randomly

generated SPTF instances.

We applied this technique to several schedulers, to show that di�erent kinds of problems and

schedulers can be characterised by this technique. �e results are gathered much faster than with

the generic LLVM KLEE symbolic execution engine. Due to the typically tight loops in a scheduling

algorithm, the KLEE engine queries the underlying SMT solver very o�en. Instead of branching

and updating the SMT query for each branch in the tight loop, it could be interesting to append a

condition to an SMT query only a�er each concrete full execution of a tight loop. We have shown

in this paper that this gives su�cient information to explore all scheduling results, and we believe

that this has the potential to speed up the exploration performed by LLVM KLEE. �e construction

of condition expressions can be similar to that of our approach. We believe that many deterministic

schedulers are amenable to our analysis. �e symbolic scheduling can be introduced to an existing

scheduler to include symbolic relations with relatively few modi�cations.

ACKNOWLEDGMENTS

�is work is part of the research programme Robust CPS with project number 12693 which is

(partly) �nanced by the Netherlands Organisation for Scienti�c Research (NWO). We thank the

anonymous reviewers for their helpful comments.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: October 2019.

1:24 Joost van Pinxten, Marc Geilen, and Twan Basten

3 6 9 12 15 18 21 24

Task set size

0

100

200

300

400

T
i
m

e
[
s
]

(a) Runtime with varying task set sizes.

3 6 9 12 15 18 21 24

Task set size

0

25

50

75

100

125

D
e
c
i
s
i
o

n
r
e
g

i
o

n
s

f
o

u
n

d

(b) Number of regions with varying task set sizes.

0 15 30 45 60 75 90 105 120 135

Decision regions found

0

100

200

300

400

T
i
m

e
[
s
]

(c) Number of regions versus running time for varying task set sizes.

Fig. 13. Results of the divide-and-conquer method for SPTF instances with varying task set sizes.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: October 2019.

Parametric Scheduler Characterization 1:25

REFERENCES

[1] Rajeev Alur and David L. Dill. 1994. A �eory of Timed Automata. �eoretical computer science 126, 2 (1994), 183–235.

DOI:h�p://dx.doi.org/10.1016/0304-3975(94)90010-8

[2] Neil Audsley, Alan Burns, Mike Richardson, Ken Tindell, and Andy J. Wellings. 1993. Applying new scheduling

theory to static priority pre-emptive scheduling. So�ware Engineering Journal 8, 5 (Sep. 1993), 284–292. DOI:
h�p://dx.doi.org/10.1049/sej.1993.0034

[3] Enrico Bini and Giorgio C. Bu�azzo. 2004. Schedulability Analysis of Periodic Fixed Priority Systems. IEEE Trans.
Comput. 53, 11 (Nov 2004), 1462–1473. DOI:h�p://dx.doi.org/10.1109/TC.2004.103

[4] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and Automatic Generation of High-

coverage Tests for Complex Systems Programs. In OSDI’08. USENIX Association, Berkeley, CA, USA, 209–224.

[5] Alessandro Cima�i, Luigi Palopoli, and Yusi Ramadian. 2008. Symbolic Computation of Schedulability Regions Using

Parametric Timed Automata. In 2008 Real-Time Systems Symposium (RTSS’08). IEEE, 80–89. DOI:h�p://dx.doi.org/10.

1109/RTSS.2008.36

[6] Paul Feautrier. 1988. Parametric Integer Programming. RAIRO-Operations Research 22, 3 (1988), 243–268.

[7] Paul Feautrier. 1992. Some E�cient Solutions to the A�ne Scheduling Problem. I. One-dimensional time. International
Journal of Parallel Programming 21, 5 (1 Oct 1992), 313–347.

[8] Komei Fukuda and Alain Prodon. 1996. Double Description Method Revisited. Combinatorics and Computer Science
(1996), 91–111. DOI:h�p://dx.doi.org/10.1007/3-540-61576-8 77

[9] Paul Gastin, Sayan Mukherjee, and B Srivathsan. 2018. Reachability in Timed Automata with Diagonal Constraints. In

International Conference on Concurrency �eory (CONCUR’18).
[10] Amir Ghamarian, Marc Geilen, Twan Basten, and Sander Stuijk. 2008. Parametric �roughput Analysis of Synchronous

Data Flow Graphs. In 2008 Design, Automation and Test in Europe (DATE’08). IEEE, 116–121. DOI:h�p://dx.doi.org/10.

1109/DATE.2008.4484672

[11] Khaled R. Heloue, Sari Onaissi, and Farid N. Najm. 2012. E�cient Block-Based Parameterized Timing Analysis

Covering All Potentially Critical Paths. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD) 31, 4 (April 2012), 472–484. DOI:h�p://dx.doi.org/10.1109/TCAD.2011.2175392

[12] �omas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits Vaandrager. 2001. Linear Parametric Model Checking of

Timed Automata. In Tools and Algorithms for the Construction and Analysis of Systems (TACAS). Springer, Berlin,

Heidelberg, 189–203. DOI:h�p://dx.doi.org/10.1016/S1567-8326(02)00037-1

[13] Mitra Nasri and Björn B. Brandenburg. 2017. An Exact and Sustainable Analysis of Non-preemptive Scheduling. In

2017 IEEE Real-Time Systems Symposium (RTSS’17). IEEE, 12–23. DOI:h�p://dx.doi.org/10.1109/RTSS.2017.00009

[14] Mitra Nasri, Geo�rey Nelissen, and Björn B. Brandenburg. 2018. A Response-Time Analysis for Non-Preemptive Job

Sets under Global Scheduling. In 2018 30th Euromicro Conference on Real-Time Systems (ECRTS), Vol. 106. 9–1.

[15] Krishnamurthy Subramani. 2001. Parametric Scheduling - Algorithms and Complexity. In High Performance Computing
(HiPC 2001). Springer, Berlin, Heidelberg, 36–46.

[16] Joost van Pinxten, Marc Geilen, Martijn Hendriks, and Twan Basten. 2018. Parametric Critical Path Analysis for Event

Networks with Minimal and Maximal Time Lags. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD) 37, 11 (2018), 2697–2708. DOI:h�p://dx.doi.org/10.1109/TCAD.2018.2857360

[17] Umar Waqas, Marc Geilen, Jack Kandelaars, Lou Somers, Twan Basten, Sander Stuijk, Patrick Vestjens, and Henk

Corporaal. 2015. A Re-entrant Flowshop Heuristic for Online Scheduling of the Paper Path in a Large Scale Printer. In

2015 Design, Automation and Test in Europe (DATE’15). IEEE, 573–578. DOI:h�p://dx.doi.org/10.7873/DATE.2015.0519

[18] Umar Waqas, Marc Geilen, Sander Stuijk, Joost van Pinxten, Twan Basten, Lou Somers, and Henk Corporaal. 2016. A

Fast Estimator of Performance with Respect to the Design Parameters of Self Re-Entrant Flowshops. In Euromicro
Conference on Digital System Design (DSD’16). IEEE, 215–221. DOI:h�p://dx.doi.org/10.1109/DSD.2016.26

[19] Fengxiang Zhang and Alan Burns. 2009. Schedulability Analysis for Real-Time Systems with EDF Scheduling. IEEE
Trans. Comput. 58, 9 (2009), 1250–1258. DOI:h�p://dx.doi.org/10.1109/TC.2009.58

Received April 2019; revised June 2019; accepted July 2019

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: October 2019.

http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1049/sej.1993.0034
http://dx.doi.org/10.1109/TC.2004.103
http://dx.doi.org/10.1109/RTSS.2008.36
http://dx.doi.org/10.1109/RTSS.2008.36
http://dx.doi.org/10.1007/3-540-61576-8_77
http://dx.doi.org/10.1109/DATE.2008.4484672
http://dx.doi.org/10.1109/DATE.2008.4484672
http://dx.doi.org/10.1109/TCAD.2011.2175392
http://dx.doi.org/10.1016/S1567-8326(02)00037-1
http://dx.doi.org/10.1109/RTSS.2017.00009
http://dx.doi.org/10.1109/TCAD.2018.2857360
http://dx.doi.org/10.7873/DATE.2015.0519
http://dx.doi.org/10.1109/DSD.2016.26
http://dx.doi.org/10.1109/TC.2009.58

	Abstract
	1 Introduction
	2 Related work
	3 Symbolic scheduling
	4 Running example
	4.1 m-machine n-task allocation problem
	4.2 *sptf Scheduler

	5 Parametrized schedulers
	5.1 Decision regions
	5.2 Symbolic *sptf scheduler
	5.3 Evaluating points strictly inside a decision region
	5.4 Interpreting a symbolic scheduler as a decision tree

	6 Exploring parameter combinations
	6.1 Divide-and-conquer approach
	6.2 Evaluating polyhedra with strict inequalities
	6.3 Soundness and termination

	7 Experimental evaluation
	7.1 *sptf scheduler
	7.2 Schedulers for re-entrant manufacturing systems
	7.3 Comparison with LLVM KLEE
	7.4 Scalability

	8 Conclusion
	Acknowledgments
	References

