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Abstract
Anthropomorphism is generally defined as the attribution of human-like characteristics to social robots and other non-human
objects. We argue that different researchers have different interpretations of this concept, leading to measuring instruments
that focus on different subsets of human-like characteristics. In the current paper, we discuss these different interpretations
and explore a newmethod for measuring anthropomorphism, based on the Rasch model. The aim of the current work is to map
anthropomorphism as a range of human-like characteristics on a one-dimensional scale. The scale’s validity and sensitivity
were tested by comparing it with two available measuring instruments and by comparing people’s responses to different
types of agents. In three studies, we explored whether the Rasch model is suitable for measuring anthropomorphism. Despite
some limitations, results showed that the Rasch model can successfully be applied to the measurement of anthropomorphism.
Implications for future work on anthropomorphism of social robots are discussed.

Keywords Anthropomorphism · Measurement scale · Rasch model

1 Introduction

During the past decades we have seen an increasing interest
in research on social robots. They are being commercialized
and becoming available to the general public. Because of
this, understanding the effects of their appearance and behav-
ior on people’s interactions with them is gaining importance
as well. In the near future, social robots may be provided
more human-like features and are likely to be represented
as social entities with faces, engaging in social conversa-
tion with humans. These developments could make people
perceive those robots as more and more human-like. This
perceived human-likeness is an important determinant for
people’s responses to social robots (see [1,36,38]). More-
over, human-likeness in social robots has been shown to
positively affect people’s engagement with those robots [4],
people’s expectations of the robot’s navigation behavior [30],
and the robot’s persuasive power [7]. The term anthropomor-
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phism refers to the extent to which people perceive robots
and other non-human objects as human-like [2,8,9,12,20,32].
This conventional and rather general description of anthro-
pomorphism has lead to a variety of interpretations of the
concept. As a consequence, different groups of researchers
focus on different subsets of human-like characteristics.

1.1 Subsets of Human-Like Characteristics

An examination of existing measurement instruments (e.g.,
[2,5,32]) revealed that human-like characteristics are gener-
ally categorized into appearances, thoughts and emotions.
With appearances we refer to characteristics that reflect
human form or behavior (i.e., how an object or robot looks
and/or moves), including both physical shapes and physical
abilities. With their measuring instrument for anthropo-
morphism, Bartneck and colleagues [2] focused on such
appearances by asking people to indicate, among others, to
what extent a robot looks human-like, looks life-like, and
shows realistic movements. These items clearly focus on a
robot’s appearance and the extent to which this appearance
resembles the human body.

With thoughtswe refer to characteristics that reflect cogni-
tive states and processes. According toWaytz and colleagues
[32], anthropomorphism is a process of inductive inference
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which most likely occurs by attributing cognitive states that
are perceived to be uniquely human to other agents (for a
review, see [9]). Hence, anthropomorphism was measured
by asking people to indicate to what extent an agent has cog-
nitive abilities like consciousness and free will [32]. These
cognitive abilities cannot be included in the physical design
of robots, because they can only be inferred from its behavior.

Finally, with emotions we refer to characteristics that
indicate subjective conscious experiences which can be dis-
tinguished in primary and secondary ones (for an overview of
the hierarchical organization of emotions, see [26]). Eyssel
and colleagues [11] measured anthropomorphism by asking
people to indicate to what extent robots can experience such
primary and secondary emotions.

In their further work, Eyssel and colleagues [10,12] dif-
ferentiated between personality characteristics that reflect
human nature and human uniqueness. This distinction was
adapted from earlier research on social perception in humans
[16,17]. In this line of research, human nature characteris-
tics are described as characteristics of the human species
that are shared with other animals (e.g., innate and affective
traits).Uniquely human characteristics, on the other hand, are
considered to be exclusive to humans and not possessed by
any other species (e.g., social learning and higher cognition,
see [17]). Whether or not such a clear-cut distinction exists
between humans and other entities is outside the scope of the
current work, but it does explain why others have approached
it as a 2-dimensional construct.

The aim of this paper is twofold. First, we conceptualize
anthropomorphism and discuss why measurements obtained
with existing instruments may have little correspondence.
Second, we propose a method for measuring anthropomor-
phism based on the Rasch model (see for example [3]), and
test its dimensionality and validity in three studies. We end
with a discussion on the benefits and limitations of using the
Rasch model for measuring anthropomorphism.

1.2 Conceptualizing Anthropomorphism

We argue that anthropomorphism is a single predisposition,
meaning that whatever human-like characteristics an indi-
vidual ascribes to a robot—be it human nature or human
uniqueness characteristics, basic physical abilities or moral
decision making, they all stem from that single predispo-
sition to do so. This is in line with Waytz and colleagues
[31], who stated that attributions of human-like characteris-
tics stem from stable individual predispositions.

However, Waytz and colleagues [31] also referred to
anthropomorphism as the attribution of characteristics that
people regard as distinctively human, in particular mental
capacities. This view is shared by Zawieska and colleagues
[37], who argued that anthropomorphism only includes
human-like characteristics that robots do not have. As a

result of this ostensibly narrow focus, only mental capacities
(i.e., having intentions, free will, a mind of your own, con-
sciousness, and experiencing emotions) are included in the
measurement of anthropomorphism (see [31]). More specif-
ically, the Individual Differences in Anthropomorphism
Questionnaire (IDAQ) consists of items that describe charac-
teristics of specific agents (e.g., cars, cows, and mountains)
within one of three categories (i.e., technologies, animals,
and natural entities). We argue that this operationalization
of anthropomorphism insufficiently measures the concept,
because it focuses merely on a narrow subset of human-like
characteristics (mental capacities), and it includes only very
specific agents. In other words, we believe that asking a per-
son to what extent an average fish has free will does not
explain or predict that person’s responses to a social robot.
We also wonder whether such a scale can be used for com-
paring the perceived human-likeness of different types of
agents.

It is evident that the different measuring instruments have
been developed with a focus on different subsets of the con-
struct. Consequently, the question arises as to what extent
these measuring instruments of anthropomorphism measure
the same concept, and thus ultimately to whether we can
faithfully compare research findings. We view anthropo-
morphism as a one-dimensional construct, and argue that
all human-like characteristics—no matter which subset they
belong to—are ordered according to the probability with
which they are ascribed to robots. Some human-like charac-
teristics are expected to bemore easily ascribed to robots than
others. For example, human-like appearances are expected
to be more easily ascribed to social robots than underlying
cognitive states and processes, regardless of an individual’s
general tendency to anthropomorphize.

Finally, we argue that the ordering of human-like char-
acteristics with respect to the difficulty to attribute them to
robots is similar for all individuals. More specifically, people
are expected to bemore likely to attribute human-like appear-
ances to robots than they are to attribute cognitive states. Such
an invariant ordering also entails that if a person attributes the
ability of moral reasoning to a robot, (s)he is also expected
to attribute the ability of seeing to that robot. Another person
who does not attribute the ability of seeing to the same robot
is not expected to attribute the ability of moral reasoning to
it.

If all human-like characteristics can be invariantly ordered
across people, we can compare people’s individual predis-
positions to anthropomorphize and the perceived human-
likeness of a robot on a single scale. One model that is
able to map a person’s predisposition to anthropomorphize
and the human-like characteristics (s)he is likely to attribute
to a robot as locations on a single dimension, and thus
seems highly suitable for measuring anthropomorphism, is
the Rasch model [3].
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1.3 The RaschModel

The Rasch model (see Eq. 1) describes the odds of a certain
response as a logistic function of person and item parameters.
In our case, this relates to the probability of attributing a
specific human-like characteristic i as an additive function
of a person n’s general predisposition to anthropomorphize
(θn) and the difficulty to attribute that specific human-like
characteristic to a robot (δi ).

ln

(
P(xni = 1)

1 − P(xni = 1)

)
= θn − δi (1)

Both parameters in this equation (an individual’s predispo-
sition to anthropomorphize θ , and the difficulty of attributing
a specific characteristic to a robot δ) are estimated by means
of maximum likelihood estimation. Predispositions of per-
sons and the difficulty of the various self-report items (i.e.,
whether or not a robot is thought to possess a certain char-
acteristic) are expressed in log odd units (also called logits).
For a specific characteristic i to have a 50% chance to be
attributed to a robot, the difficulty of that characteristic (e.g.,
δi = 1) has to be matched numerically with an equivalent
amount of a person n’s predisposition to anthropomorphize
(θn = 1).

The Rasch model, however, is not only descriptive, but
also prescriptive. It requires items (or human-like characteris-
tics) to be ordered invariantly and transitively across persons,
and persons to be ordered invariantly and transitively across
items. Thus, if a person attributes, for example, four out of
10 characteristics to a social robot, the Rasch model also
prescribes which four should be attributed: They should be
amongst the four least difficult ones. For the most difficult to
attribute characteristics, we expect to exclusively find such
attributions amongst the individuals that have a high predis-
position to anthropomorphize.

These formal Rasch model expectations can be tested
empirically against the observed data. Provided the responses
are ordered from the person with the highest to the lowest
predisposition to anthropomorphize, the model anticipates
the following response string for an averagely difficult
to attribute characteristic: 111101010000. In this response
string, a one indicates that a person agreed to the robot hav-
ing that characteristics, and a zero that a person did not. The
first four individuals all have high predisposition, so all four
are likely to attribute this characteristic to the robot. The
next four individuals have a predisposition that approaches
numerically the difficulty of this characteristic or item. As a
result, some of them will attribute this characteristic to the
robot, and others will not. Finally the last four individuals
have such a low predisposition to anthropomorphize that all
are very unlikely to attribute this characteristic to the robot.

The mean square (MS) statistic is commonly used to test
the match between model-predicted and observed response
patterns. The MS infit-value is the weighted average of the
squared standardized residuals, in which each residual is
weighted by its variance [3]. The model-predicted response
pattern (e.g., 111101010000), yields a MS infit-value of MS
= 1.00. Excessively high MS-values can be expected when
the observed response string opposes the Rasch model pre-
diction, for example when the likelihood of reporting an
experiential effect increases with diminishing susceptibility
(e.g., 000000111111). In contrast, the MS-value would be
smaller than 1.00 for an item with a deterministic response
pattern (i.e., 111111000000). In such a case, the model
prediction-to-data fit is better than what one would antici-
patewith a probabilisticmodel.MS-values below 1.00 do not
really challenge the Rasch model prediction, but can be used
to improve one’s measurement instrument. Besides MS infit
alsoMS outfit-values are often reported.MS outfit-values are
unweightedfit statistics, and aremore sensitive to unexpected
responses on relatively easy or difficult items.

The invariance assumption should be sufficiently met in
order to map both persons and human-like characteristics on
a single scale (see 1), and thus to compare individuals and
human-like characteristics against each other in ameaningful
way. For assessing item fit, MS-values up to 1.20 are con-
sidered excellent, and MS-values below 1.50 are considered
acceptable [35].

The additional advantage of the model is the invariance
between items and persons. As a result, the assessment of a
persons predisposition to antropomorphize and of the items
with respect to their difficulty are independent of each other
(so-called specific objectivity, see [34]). As results, and in
contrast to many other measurement models, measurements
of personal attributes are not defined by the specific set of
items used (see [18]). It thus also allows for items being
deleted and/or replaced. This enables the use of different sets
of items (see [33]), making this method easily adjustable
for measuring responses to different types of agents (e.g.,
animals or natural phenomena).

1.4 Research Aims

The current research was designed with the aim to explore a
new method for measuring anthropomorphism. We hypoth-
esized that anthropomorphism can be successfully mapped
onto a one-dimensional scale and that human-like character-
istics are ordered with respect to their likelihood of being
attributed to robots in a way that is similar for all individuals
in their encounter with different types of agents in differ-
ent contexts. Data from three studies were used to test these
hypotheses. Two of these studies were originally designed
with different purposes, but we will only assess results on
the included measuring instruments for anthropomorphism.
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In the first study, we developed and tested the construct
validity of a 37-itemanthropomorphismscale.With construct
validity we refer to the relation between the ordering of items
on the scale according to their difficulty and their perceived
human nature and human uniqueness. Construct validity is
high when strong relations between the locations of items on
the dimension and their perceived human nature and human
uniqueness are found. Because of the expected unidimen-
sionality, human nature and human uniqueness were also
expected to be strongly correlated.

In the second study, a 25-item version of the anthropomor-
phism scale was tested on its convergent validity. With con-
vergent validity we refer to the extent to which estimates of
the scale are related to estimates obtainedwith twoothermea-
suring instruments for anthropomorphism: the questionnaire
used by Waytz and colleagues [32, referred to as the Waytz-
instrument, see “Appendix A”] and the anthropomorphism
part of the Godspeed questionnaire developed by Bart-
neck and colleagues [2, referred to as the Godspeed-
instrument, see “Appendix B”]. Because the focus of these
instruments is on different subsets of human-like character-
istics, we expected to find moderate correlations between
the anthropomorphism scale and the Waytz- and Godspeed-
instruments. The second study was originally designed to
compare two different robots on their perceived human-
likeness. Because of this, we could use this study for testing
the invariant ordering of the items on the scale for those two
robots.

In the third study, we extended our scope from robots to
other types of agents. A 19-item version of the anthropomor-
phism scale was tested on its sensitivity for differentiating
between humans and other types of agents. This study was
originally designed to investigate people’s responses to four
types of players in a game (i.e., humans, robots, computers,
and algorithms), enabling us to compare responses for other
types of technologies than robots as well. We expected that
the scale would successfully differentiate between humans
and other types of agents.

Finally, we expected that the anthropomorphism scale
would show an invariant ordering of human-like charac-
teristics on a single dimension across all studies and all
experimental conditions.

2 Study 1

In this study, a list with 37 human-like characteristics was
created, largely based on earlier work on humanness and
anthropomorphism [2,11,16,17,32], and tested on its con-
struct validity. The human-like characteristics were modeled
as a function of a person’s predisposition to anthropo-
morphize and the difficulty to attribute that human-like
characteristic to a robot. We hypothesized that items and per-

sons could be mapped onto a single one-dimensional scale,
and that the items would be invariantly ordered according to
the difficulty with which they are attributed to a robot.

Additionally, for construct validity purposes, the extent to
which the 37 human-like characteristics were perceived as
being human nature and uniquely human was measured. We
hypothesized that the estimated difficulties with which the
37 characteristics are attributed to a robot would be related
to their perceived human nature and human uniqueness.
Because of the proposed unidimensionality of anthropomor-
phism, human nature and human uniqueness were expected
to be strongly correlated as well.

2.1 Method

2.1.1 Participants and Design

One hundred and sixty one participants sampled through
social media participated in one of three groups in the cur-
rent study. The first group consisted of 124 participants (53
males and 71 females; Mage = 26.08, SDage = 8.82, Range
= 15 to 59) who were given a description about a robot and
completed 37 survey items. Another group of 20 participants
(9 males and 9 females, Mage = 19.94, SDage = 1.98,
Range = 18 to 23; two participants did not indicate their
age and gender) rated the 37 human-like characteristics on
human nature. The remaining 17 participants (11 males and
6 females, Mage = 21.12, SDage = 1.80, Range = 18 to 24)
rated all characteristics on human uniqueness. Participants
in all three groups participated voluntarily, gave informed
consent, and were not compensated for participation.

2.1.2 Materials and Procedure

A set of 37 items describing human-like characteristics was
constructed. For all three groups of participants, items were
arranged in alphabetical order.

For the first group of 124 participants, items were for-
mulated as a statement which could be answered with yes
(coded with a 1) or no (coded with a 0). The items were
presented through an online survey. After reading a short
explanation about the study, participants were provided with
a short description about a robot: ‘The robot has eyes to per-
ceive the environment, has arms and legs to move around
in this environment, and today the robot is trying to solve a
moral dilemma’. This descriptionwas followedby an instruc-
tion to not think elaborately about the statements and to give
the answers that first came tomind. Finally, participants indi-
cated their gender, age and education level, and they were
thanked for their contribution. This study took approximately
5 min to complete.

The two other groups of participants were not given the
description of the robot, but instead were asked to indicate to
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what extent each of the 37 items on the scale was perceived as
‘typically human’ (i.e., human nature) or ‘uniquely human’
respectively. Human nature was measured with one question
(‘To what extent is this characteristic typical for humans?’)
on a 7-point response format ranging from ‘not at all’ (coded
with a 1) to ‘very much’ (coded with a 7). Human unique-
ness was measured with one question (‘Is this characteristic
unique for humans?’) on a dichotomous response formatwith
‘not unique’ (coded with a 0) and ‘unique’ (coded with a 1)
as options. The two concepts were not further introduced or
explained to participants. We chose for a dichotomous scale
for human uniqueness because a characteristic either is, or is
not uniquely human (i.e., characteristics cannot be ‘a little’
unique for humans). Both these evaluations took approxi-
mately 5 min to complete.

2.2 Results and Discussion

2.2.1 Model Test

To test whether the data sufficiently fit the model, four tests
were conducted. First, fit statistics were used to test whether
items and persons fitted the Rasch model (for an overview,
see [3]). For assessing item fit, both infit and outfit were used.
Infit indicates unexpected observations on items that are close
in difficulty to a person’s predisposition, whereas outfit indi-
cates unexpected observations on items that are relatively
easy or difficult [23]. Infit and outfit mean square (MS) val-
ues ≤ 1.20 are considered excellent, and MS-values ≤ 1.50
are considered acceptable [35]. The second test determined
whether the items were sufficiently spread over the perceived
human-likeness dimension. The third one tested the hypoth-
esis that items all belong to a single dimension. Finally, the
fourth one tested the hypothesis that items would be invari-
antly ordered according to the difficulty of attributing them
to robots.
Item fit Ideally, each of the items contributes in a meaningful
way to the measuring instrument, indicated by a sufficient
item fit. Considering the notion that the Rasch model is
stochastic and that data dependonprobability (and not on cer-
tainty), somemisfit is to be expected [27]. An acceptable five
of the 37 items had outfitMS values outside of the acceptable
boundaries. These were items 1 (‘experience pain’, outfitMS
= 2.09), 26 (‘anticipate on surroundings’, outfit MS = 1.62),
32 (‘organized’, outfit MS = 2.74), 33 (‘estimate distances’,
outfit MS = 2.12), and 37 (‘avoid objects’, outfit MS = 1.97).
Another 7 items had outfit MS values between the good and
acceptable values (seeTable 1 for estimated itemdifficulties).

Item difficulties were estimated with a reliability of .98,
and the average item difficultywas anchored atM = .00 logits
(SD = 2.34, Range = −4.60 to 4.08). Infit MS values of the
37 items ranged from 0.72 to 1.22 (M = 0.98, SD = 0.12),
and outfit MS values ranged from 0.46 to 2.74 (M = 1.10,

SD = 0.50). These findings together indicate that there was
an acceptable item fit, meaning that there were not many
observations that did not fit the overall structure of the data.
Person fit The purpose of person fit measurement is to detect
responsepatterns that are unlikely given themodel [24].More
specifically, person fit indicates whether a person responds
as expected given his/her individual predisposition to anthro-
pomorphize. Individual predispositions to anthropomorphize
were estimated with a separation reliability of .80. The aver-
age predisposition wasM =− .21 logits (SD = 1.16; Range =
−4.13 to 2.74). Since items are responded to by individuals
who can be tired or misread the statements, some misfit is
to be expected. For an acceptable ten out of 124 participants
(8.1%), the model prediction did not fit the data as indicated
by a t-value of t ≥ 1.96. These findings indicate that there
was an acceptable person fit, meaning that there were not
many observations that did not fit the overall structure of the
data.
Item spread All items and persons are mapped onto a sin-
gle scale in Fig. 1. As can be seen in this figure, the spread
of items sufficiently covers the spread of persons. In other
words, the current scale was able to reliably measure individ-
ual predispositions to anthropomorphize for all participants
in the current sample. It also appeared that the top region of
the scale comprised many items, but not so many persons.
Thus, some items appeared to be too unlikely for persons in
the present sample to attribute to the robot, and therefore did
not contribute to the assessment of individual differences in
people’s predisposition to anthropomorphize. For this rea-
son, some of these items will be omitted from the scale in the
next studies.
Dimensionality Next, we tested the hypothesis that the items
of the anthropomorphism scale would all belong to one
dimension. Results showed that the Rasch model explained
52.8% of the variance in the data (for computational details,
see [22]). A Principal Component Analysis was performed
on the standardized residuals (i.e., the data not explained by
the model), which checks whether multiple items share the
same unexpected response pattern (for details, see [22,29]).
If the model would fit perfectly, then 52.5% of the over-
all variance would be quantification variance, revealing a
slight overfit (0.3%) to the model. Because the Rasch model
estimates probabilities for discrete events (i.e., whether a per-
son attributes a certain human-like characteristic to a robot
or not), substantial quantification variance is to be expected
(see also [15]). The empirical proportion of unexplained vari-
ance (i.e., 47.2%) was thus highly similar to the proportion
of quantification variance one would expect with a perfect
data-to-model fit (i.e., 47.5%).

An additional factor would result in an increase of 6.8%
in the proportion of explained variance. The set of items
thus largely tapped into a single dimension only. These
findings supported the expected unidimensionality of the

123



482 International Journal of Social Robotics (2019) 11:477–494

Table 1 Item difficulties (δ), infit- and outfit mean squares, average values of human uniqueness and human nature (with the latter adjusted to the
same scaling by subtracting 1 and dividing it by 7) of the anthropomorphism scale in Study 1

Item δ (SE) Infit MS Outfit MS Human uniqueness Human nature

1. Experience pain 4.08 (.60) 1.04 2.04 0.00 0.54

2. Unhappy about the dilemma 3.77 (.52) 0.91 0.69 0.88 0.75

3. Imaginative 3.52 (.47) 0.86 0.51 0.71 0.78

4. Angry 3.32 (.44) 0.87 0.71 0.06 0.78

5. Empathize 2.84 (.36) 0.73 0.46 0.41 0.73

6. Happy 2.71 (.35) 0.88 0.86 0.12 0.69

7. Chose the dilemma 2.71 (.35) 1.03 1.13 0.82 0.75

8. Satisfied 2.29 (.30) 0.79 0.58 0.12 0.54

9. Responsible 2.29 (.30) 0.86 0.64 0.24 0.72

10. Free will 2.20 (.30) 1.14 1.14 0.18 0.63

11. Understand others’ emotions 1.88(.27) 0.86 0.62 0.24 0.66

12. Ambitious 1.68 (.26) 0.95 0.72 0.76 0.81

13. Understands the dilemma 1.21 (.23) 1.04 0.92 0.94 0.67

14. Recognize others’ emotions 0.55 (.21) 0.89 0.85 0.06 0.60

15. Intention not to harm others 0.47 (.21) 1.06 1.03 0.59 0.65

16. Think about the dilemma 0.42 (.21) 0.94 0.85 0.88 0.81

17. Self-conscious 0.42 (.21) 0.99 0.95 0.29 0.73

18. Jump 0.26 (.20) 1.22 1.24 0.00 0.34

19. Deliberate actions − 0.15 (.20) 1.11 1.38 0.06 0.58

20. Talk − 0.19 (.20) 0.95 1.04 0.24 0.78

21. Solve riddles − 0.47 (.20) 1.01 0.99 0.47 0.67

22. Recognize voices − 0.72 (.21) 1.11 1.46 0.00 0.48

23. Understand language − 0.89 (.21) 0.86 0.75 0.24 0.75

24. Rational − 0.93 (.21) 1.05 1.36 0.71 0.76

25. See depth − 0.97 (.21) 1.07 1.21 0.00 0.55

26. Anticipate on surroundings − 1.45 (.23) 1.09 1.62 0.12 0.58

27. Conscious about surroundings − 1.66 (.24) 0.72 0.54 0.00 0.50

28. Detect color − 1.83 (.24) 0.92 0.87 0.00 0.54

29. Purposeful − 1.96 (.25) 0.92 1.50 0.18 0.58

30. Calculate − 2.16 (.26) 0.94 0.78 0.35 0.67

31. See − 2.54 (.29) 1.13 0.98 0.00 0.35

32. Organized − 2.73 (.31) 1.17 2.74 0.18 0.52

33. Estimate distances − 2.73 (.31) 1.12 2.12 0.06 0.48

34. Pick up objects − 3.05 (.34) 1.02 0.86 0.06 0.54

35. Walk − 3.61 (.42) 1.02 1.49 0.00 0.48

36. Detect objects − 3.02 (.48) 1.07 0.99 0.00 0.49

37. Avoid objects − 4.60 (.61) 0.99 1.97 0.00 0.39

scale, showing that individual differences in predispositions
to anthropomorphize can be assessed on a single scale of
equal additive units. In other words, all human-like charac-
teristics included in the scale were successfully mapped onto
a single dimension, ranging from low to high on perceived
human-likeness.
Invariant ordering To test the hypothesis that items on the
scale would be invariantly ordered according to the diffi-

culty of attributing them to robots, the sample was split in
half and item difficulties were estimated twice: once for
participants with even and once for participants with odd
identification numbers. Consistent with the hypothesis of
person-independent item difficulties, the two estimates of the
37 items were highly similar, r = .97, p < .001. The item
invariance plot is provided in Fig. 2a. As can be seen in this
figure, the ordering of items on the scale by their difficulty

123



International Journal of Social Robotics (2019) 11:477–494 483

Fig. 1 Item-person map of Study 1, displaying the estimates of partici-
pant’s predisposition to anthropomorphize and the item difficulty linked
with each human-like characteristic mapped onto a single scale of equal
additive units. Each number on the right represents an item. Each dot
on the left represents a person

to ascribe them to the robot is similar across the samples of
participants with even and odd identification numbers.

We also performed the ‘Wright’s challenge’ (see [3]).
For this, the sample was split in half once more, but this
time according to the participants’ estimated predisposi-
tions. More specifically, item difficulties were estimated for
participants with high predispositions and for participants
with low predispositions to anthropomorphize separately.
The estimates of the 37 items were again highly similar,
r = .92, p < .001. The item invariance plot is provided
in Fig. 2b. As can be seen in this figure, the ordering of items
on the scale is also similar across the samples of participants
with high and low individual predispositions to anthropo-
morphize.

2.2.2 Construct Validity

To test the hypothesis that the ordering of items of the anthro-
pomorphism scale according to their difficulty was related
to perceived human nature and human uniqueness, item
difficultieswere comparedwith themean scores on these con-
cepts. Results showed moderate but significant correlations
between item difficulties and human nature (r = .60, p <

.001) and between item difficulties and human uniqueness
(r = .44, p < .01). The higher a characteristic was rated
on human nature and/or human uniqueness by participants
in the content validity groups, the less likely participants in
the survey were to attribute that specific human-like charac-
teristic to a robot. These results support the expectation that
the difficulty to attribute a specific characteristic to a robot
is related to that characteristic’s perceived human nature and
human uniqueness. In line with previous literature [10], a
significant correlation was found between human nature and
human uniqueness (r = .71, p < .001), indicating that items
that were rated high on human nature were more likely to be
indicated as being uniquely human, whereas items that were
rated low on human nature were less likely to be indicated
as being uniquely human. This finding supports the expec-
tation that human-like characteristics can be mapped onto a
one-dimensional scale.

2.3 Conclusions

In the current study, a 37-item anthropomorphism scale was
tested on its construct validity. Results showed that people’s
responses sufficiently fitted the Raschmodel, indicated by an
acceptable data-to-model fit. Also, all human-like character-
istics included in the scale could be successfullymapped onto
a single dimension, confirming the hypothesis that anthro-
pomorphism can be measured on a single scale of equal
additive units. Moreover, an invariant ordering was found
when splitting the sample in half, supporting the expectation
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Fig. 2 Item invariance plots of the item difficulties of subjects with a
even and odd identification numbers and b high and low predisposi-
tions to anthropomorphize in Study 1. Each number represents an item,

corresponding with the numbers in Table 1. Red lines indicate 95%
confidence intervals. (Color figure online)

that human-like characteristics can be invariantly ordered
with respect to the probability of ascribing them to a robot.

As expected, items high in human nature were found to
be more difficult to attribute to a robot than those low in
human nature. Additionally, uniquely human characteristics
were shown to be more difficult to attribute to robots than
non-unique ones, as indicated by their locations on the scale.
These results indicated that the difficulty of attributing a spe-
cific item of the scale to a robot was related to that item’s
perceived human-likeness. As such, item difficulties are a
valuable indicator of how a specific characteristic perceived
human-likeness, which is an important aspect in the mea-
surement of anthropomorphism. In sum, the scale had high
construct validity and the method so far seems to be suit-
able for measuring anthropomorphism. In the next study, the
scale’s convergent validitywill be tested by comparing itwith
existing measuring instruments.

3 Study 2

The current study was designed to investigate the relation
between different measuring instruments for anthropomor-
phism in people’s evaluations of two different robots. Data
of this study will be used to test the convergent validity of
our anthropomorphism scale. With convergent validity we
refer to the extent to which estimates obtained with the scale
converged with those obtained with two commonly used
measuring instruments for anthropomorphism: the Waytz-
instrument and the Godspeed-instrument.We tested to which
extent estimates made with the three different instruments
would be related. In addition, two different robots were eval-
uated on their perceived human-likeness, and we expected
an invariant ordering of the items on the scale for those two
robots.

3.1 Method

3.1.1 Participants and Design

One hundred and thirty one participants sampled through
social media participated in this study. Of these 131 par-
ticipants, 48 were male and 83 female (Mage = 34.86,
SDage = 17.59, Range = 13 to 77). They were randomly
assigned to one of two groups in which they watched a video
of a robot that either resembled mostly human-like physical
features (n = 68) ormostly human-like cognitive features (n =
63). The two robots did not differ on any of the three included
anthropomorphismmeasuring instruments (all t’s < 1.31, all
p’s > .20), allowing data of both experimental conditions to
be combined into a single sample for the analyses. All partic-
ipants participated voluntarily, gave informed consent, and
were not compensated for participation.

3.1.2 Materials and Procedure

Participants performed the study online. On the welcome
page, they could choose to complete the study in Dutch or in
English, after which they were provided information about
the procedure of the study in their preferred language. Next,
they watched a short (about 1 min) video of one of the two
robots, depending on the experimental condition they were
in. The robot with human-like physical features was running
around and pouring water in a cup (the video can be found at
https://goo.gl/npyDfG), and the robot with human-like cog-
nitive features appeared to become angry at a person who
left dirt on the floor (the video can be found at https://goo.
gl/i2Sqgg).

After participants watched the video of one of the two
robots, they completed the three measuring instruments for
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Table 2 Item difficulties (δ),
infit- and outfit mean squares of
the anthropomorphism scale in
Study 2

Item δ (SE) Infit MS Outfit MS

13. Understands the dilemma 5.76 (.76) 1.30 5.21

2. Unhappy about the dilemma 5.76 (.76) 0.71 0.10

9. Responsible 4.43 (.46) 0.76 0.22

5. Empathize 4.22 (.43) 1.15 1.64

4. Angry 3.88 (.39) 1.00 2.01

12. Ambitious 3.05 (.31) 1.03 0.73

11. Understand others’ emotions 2.62 (.28) 0.79 0.81

17. Self-conscious 2.46 (.27) 1.04 0.97

14. Recognize others’ emotions 1.29 (.22) 1.03 0.97

27. Conscious about surroundings − 0.23 (.21) 0.93 0.77

19. Deliberate actions − 0.58 (.21) 1.08 1.07

21. Solve riddles − 0.63 (.21) 1.20 1.17

23. Understand language − 0.72 (.22) 1.04 0.89

31. See − 1.01 (.22) 0.94 0.92

25. See depth − 1.01 (.22) 1.01 5.97

20. Talk − 1.27 (.24) 0.96 0.95

29. Purposeful − 1.39 (.24) 0.94 0.68

26. Anticipate on surroundings − 1.69 (.26) 0.92 0.72

18. Jump − 2.40 (.31) 1.01 0.92

30. Calculate − 2.84 (.36) 0.92 0.81

36. Detect objects − 3.28 (.41) 0.82 0.31

33. Estimate distances − 3.67 (.48) 0.78 0.51

22. Recognize voices − 3.67 (.48) 1.06 0.90

35. Walk − 3.92 (.52) 1.12 0.83

34. Pick up objects − 5.16 (.82) 1.59 0.70

anthropomorphism. The first one was a 25-item version of
the anthropomorphism scale that was developed and tested in
Study 1 and adjusted for the current study (see Table 2 for the
items in this study). Some of the most difficult items, as well
as the easiest one, were deleted because they were expected
to contribute little to estimations of people’s predisposition to
anthropomorphize (i.e., items 1, 3, 6, 7, 8, 10, and 37 in Table
1). Three items were deleted because the construct validity
test in Study 1 showed that they did not sufficiently relate to
anthropomorphism (i.e., items 24, 28, and 32, in Table 1).
Item 15 in Table 1 was deleted because it was phrased as a
double negation. Itemswere formulated as a statement which
could be answered with yes (coded with a 1) or no (coded
with a 0).

The second questionnaire was the Godspeed-instrument
(see “AppendixB”),which consisted of 5 items (α = .71)with
a 5-point response format. Five dummy items were included
to make the goal of this questionnaire and of this study less
obvious. Participants’ averaged responses across the five tar-
get items were used in the analyses. The third questionnaire
was the Waytz-instrument (see “Appendix A”), which con-
sisted of 6 items (α = .78) with a 5-point response format.

Participants’ averaged responses across the six items were
used in the analyses.

After completing these questionnaires, participants com-
pleted several questionnaires that were related to the original
purpose of the study. These questionnaires measured con-
cepts such as desire for control, need to belong, trust, and
predictability. Data on these questionnaires will not be used
in our analysis. Finally, participants indicated their age and
gender, were debriefed and thanked for their participation.
The study took approximately 10 min to complete.

3.2 Results and Discussion

3.2.1 Model Test

In this section, the hypotheses that items and persons can be
mapped onto a single one-dimensional scale, and that items
are invariantly ordered according to the difficulty with which
they are ascribed to a robot are tested. The section has the
same structure as in Study 1.
Item fit As in Study 1, most items fitted themodel sufficiently
with infit and outfit MS values ≤ 1.50 (see Table 2 for esti-
mated item difficulties), except for items 13 (‘understands
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Fig. 3 Item invariance plot of the item difficulties of a Studies 1 and 2, and b robots with mostly physical and cognitive human-like features. Each
number represents an item, corresponding with the numbers in Table 2. Red lines indicate 95% confidence intervals. (Color figure online)

moral dilemmas’, outfit MS = 5.21), 5 (‘empathize’, outfit
MS = 1.64), 4 (‘angry’, outfit MS = 2.01), 25 (‘see depth’,
outfitMS = 5.97), and 34 (‘pick up objects’, infitMS = 1.59).

Item difficulties were estimated with a reliability of α

= .98. The average item difficulty was anchored at M = .00
logits (SD = 3.14, Range = −5.16 to 5.76). Infit MS values
of the 25 items ranged from 0.71 to 1.59 (M = 1.00, SD =
0.18). Outfit MS values of the 25 items ranged from 0.10 to
5.97 (M = 1.23, SD = 1.35).
Person fit Individual predispositions to anthropomorphize
were estimated with a reliability of α = .78. The average pre-
disposition wasM = .33 logits (SD = 1.59, Range =−5.70 to
5.47). For a reasonable eight out of 131 participants (6.1%),
the model prediction did not fit the data as indicated by a
t-value of t ≥ 1.96.
Dimensionality The Rasch model explained 63.7% of the
variance in the data. If the model would fit perfectly, then
63.5% of the overall variance would be quantification vari-
ance. The empirical proportion of unexplained variance (i.e.,
36.3%) was thus highly similar to the proportion of quan-
tification variance expected with a perfect data-to-model fit
(i.e., 36.5%). An additional factor would result in an increase
of a trivial 3.6% in the proportion of explained variance. The
set of items thus largely tapped into a single factor only.
Invariant ordering The ordering of the item difficulties was
highly similar to that obtained in Study 1, as indicated by a
strong positive correlation between the item difficulties esti-
mated in Studies 1 and 2 (r = .88, p < .001, see Fig. 3a
for the invariance plot). This result supports the expectation
that the probability with which the various human-like char-
acteristics are ascribed to robots is largely independent of
the individual’s predisposition to do so. In other words, the
scale showed an ordering of human-like characteristics that
is similar for different individuals in different samples.

To explore whether the expected invariance of item diffi-
culties also holds across the two different robots that were
evaluated, the sample was split in half with respect to the
robot that was evaluated. Consistent with the hypothesis of
robot-independent item difficulties, the two sets of estimates
(one for the robot with mostly physical human-like features,
the other for the robot with mostly cognitive human-like fea-
tures) were highly similar (r = .97, p < .001, see Fig. 3b for
the invariance plot). This finding again supports the expec-
tation that human-like characteristics are invariantly ordered
with respect to the difficulty to attribute them to robots.

3.2.2 Convergent Validity

To test to what extent estimates obtained with the anthropo-
morphismscale convergedwith the twocommonly usedmea-
suring instruments for anthropomorphism, the three scales
were compared. Results indicated a low, but statistically
significant correlation between our scale and the Godspeed-
instrument (r = .22, p = .01). After correcting for measure-
ment error attenuation, the correlation remained rather low
(r = .30, for computational details, see [6]). In addition, a
moderate and statistically significant correlation was found
between our scale and the Waytz-instrument (r = .46, p <

.001). After correcting for measurement error attenuation,
this correlation remained rather moderate (r = .59).

3.3 Conclusions

In this study, an adjusted 25-item version of the anthropo-
morphism scale was compared with two available measuring
instruments for anthropomorphism to test for convergent
validity. Results showed that, as in Study 1, people’s
responses sufficiently fitted the Rasch model, indicated by
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an acceptable data-to-model fit. This result supported the
expected invariant ordering of human-like characteristics
with respect to their item difficulty. Additionally, the scale
correlated with existing measures of anthropomorphism, but
not to the extent to which we could claim convergence. This
indicates that our understanding of anthropomorphism is still
limited. We will elaborate more on this in the general discus-
sion.

No differences between the robots were found on any of
themeasuring instruments for anthropomorphism.Theorder-
ing of items on our anthropomorphism scale was also highly
similar for both robots, indicating that the two robots in this
study were perceived as equally human-like. An interesting
question thus is how well the scale differentiates between
other types of agents. In the next study, people’s predisposi-
tions to anthropomorphize humans, robots, computers, and
algorithms will be compared.

4 Study 3

The current study was originally designed to investigate peo-
ple’s responses to different types of players in a social game:
the Ultimatum Game (see [13]). Data of this study will be
used to explore the anthropomorphism scale’s sensitivity for
differentiating between various types of technologies. We
compared people’s responses to humans, robots, computers,
and algorithms. We hypothesized that the scale would suc-
cessfully differentiate humans from robots. In addition, we
explored whether a difference exists between the attribution
of human-like characteristics to computers and algorithms.

4.1 Method

4.1.1 Participants and Design

Twohundred and twoparticipants (89males and113 females;
Mage = 34.69, SDage = 11.12, Range = 18 to 76) were
recruited via Amazon Mechanical Turk (MTurk) to partici-

pate in an online experiment. They were randomly assigned
to one of four experimental conditions (Agent type: human
vs. robot vs. computer vs. algorithm) of a between-subjects
design. Participants were paid $1 for their participation.

4.1.2 Materials and Procedure

Participants performed the study online. To create a social
interaction that provides opportunities to anthropomorphize
the agents, participants played the Ultimatum Game (see
[13]). In this game, two players divide a sum of credits. The
first player (the agent) proposes a certain division and the sec-
ond player (the participant) decides whether (s)he accepts
or rejects the offer. Participants in the algorithm condition
were told that there were no other players available, and that
they would be connected to an algorithm that would ‘ran-
domly generate offers’ during the game. Participants in the
other three conditions were told to be playing the game with
humans, robots, or computers. During the game, participants
were shown pictures of the other players. An example of each
of the agents is provided in Fig. 4.

After playing the Ultimatum Game, participants com-
pleted an adjusted 19-item version of the anthropomorphism
scale. The main dependent variable in this study was par-
ticipants’ behavior in the ultimatum game, and the anthro-
pomorphism scale was included to explore the possible
mediating/moderating role of anthropomorphism. Since the
latterwas not themaingoal, anddue to timeconstraints, fewer
indicators were used in this study. Items for this adjusted ver-
sion were selected from the original set of 37 items in such
a way that they would still cover a wide range of the anthro-
pomorphism continuum (see Table 3 for the items in this
study). Items were formulated as a statement which could be
answered with yes (coded with a 1) or no (coded with a 0).

After completing the anthropomorphism questionnaire,
participants indicated their age and gender, were debriefed,
thanked for their participation, and paid through the MTurk
system. The experiment took approximately 6 min to com-
plete.

Fig. 4 Examples of pictures used in the a human, b robot, c computer, and d algorithm groups in Study 3
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4.2 Results and Discussion

4.2.1 Model Test

In this section, the hypotheses that items and persons can be
mapped onto a single one-dimensional scale and that items
are invariantly ordered according to the difficulty with which
they are ascribed to agents are tested. The section has the
same structure as in studies 1 and 2.
Item fit Most items fitted the model sufficiently with infit
and outfit MS values ≤ 1.50 (see Table 3 for estimated item
difficulties), except for items 12 (‘ambitious’, outfit MS =
1.59), 33 (‘estimate distances’, outfit MS = 1.97), and 30
(‘calculate’, outfit MS = 5.59).

Item difficulties were estimated with a reliability of α

= .98. The average item difficulty was anchored at M = .00
logits (SD = 1.83, Range = −4.15 to 3.05). Infit MS values
of the 19 items ranged from 0.76 to 1.29 (M = 1.00, SD =
0.17). Outfit MS values of the 19 items ranged from 0.46 to
5.59 (M = 1.14, SD = 1.12).
Person fit Individual predispositions to anthropomorphize
were estimated with a reliability of α = .88. The average
predisposition was M = − .15 logits (SD = 3.28, Range =
−5.79 to 5.31). For a reasonable ten out of 202 participants
(5.0%), the model prediction did not fit the data as indicated
by a t-value of t ≥ 1.96.
Dimensionality The Rasch model explained 52.4% of the
variance. If the model would fit perfectly, then 52.1% of the
overall variance would be quantification variance. The pro-

portion of unexplained variance (i.e., 47.6%)was highly sim-
ilar to the proportion of quantification variance expectedwith
a perfect data-to-model fit (i.e., 47.9%). An additional factor
would result in an increase of 8.3% of the explained variance.

Next, the ordering of items in the current study was
compared with that of Study 1. Results showed a moder-
ate but significant correlation between the two estimates
(r = .58, p < .01, see Fig. 5 for the invariance plot).
Despite the significant correlation between the item diffi-
culties, many of the estimated difficulties appeared outside
of the 95% confidence interval, indicating substantial differ-
ences between the two studies. Someof these items (i.e., ‘pick
up objects’, or ‘walk’) had lower item difficulties in Study 1
than in Study 3, and some (i.e., ‘calculate’, or ‘understands
language’) had lower itemdifficulties inStudy3 than inStudy
1. Some human-like characteristics were thus more easy or
more difficult to attribute to a specific type of agent than
other characteristics. More specifically, the expected invari-
ant ordering of human-like characteristics with respect to
their probability of being ascribed to non-human agents was
not supported when other agents than robots were evaluated.
In the following sections, we will investigate the invariant
ordering of the items in Study 3 in more detail.

4.2.2 Invariant Ordering of Items

To explore which human-like characteristics differed in their
probability of being attributed to humans, robots, computers,
and algorithms, item difficulties were estimated separately

Table 3 Item difficulties (δ),
infit- and outfit mean squares of
the anthropomorphism scale in
Study 3

Item δ (SE) Infit MS Outfit MS

14. Recognize others’ emotions 3.05 (.36) 1.29 1.03

2. Unhappy about the dilemma 2.36 (.32) 1.10 0.70

4. Angry 2.17 (.31) 0.83 0.60

11. Understand others’ emotions 1.90 (.29) 0.93 0.53

13. Understands the dilemma 1.51 (.27) 0.99 0.79

27. Conscious about surroundings 1.04 (.25) 0.78 0.46

18. Jump 1.04 (.25) 0.86 0.73

35. Walk 0.27 (.22) 0.87 0.64

17. Self-conscious 0.17 (.22) 0.76 0.54

26. Anticipate on surroundings 0.12 (.22) 0.96 0.64

34. Pick up objects − 0.02 (.22) 0.92 0.71

12. Ambitious − 0.30 (.21) 1.09 1.59

20. Talk − 0.30 (.21) 0.99 0.77

33. Estimate distances − 0.95 (.21) 1.05 1.97

36. Detect objects − 1.20 (.21) 0.80 0.71

21. Solve riddles − 1.54 (.21) 1.34 1.17

29. Purposeful − 2.12 (.22) 1.17 1.14

23. Understand language − 3.04 (.24) 1.03 1.31

30. Calculate − 4.15 (.29) 1.25 5.59
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Fig. 5 Item invariance plot of
the item difficulties in Studies 1
and 3. Each number represents
an item. Red lines indicate 95%
confidence intervals. (Color
figure online)
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for each of these four player types. Although all correlations
between the four sets of item difficulties were significant (see
Table 4), some of the characteristics were clearly different in
their probability of being ascribed to specific agents.

Figure 6 displays the item invariance plots between each
of the agent types. As can be seen in this Figure, three of
the 19 items (i.e., items 18 ‘jump’, 34, ‘pick up objects’,
and 35 ‘walk’) were consistently less likely to be ascribed to
algorithms and computers than to robots and humans. This
should not come as a surprise, as computers and algorithms
lack themorphology that accommodates such physical activ-
ities. This finding revealed that a comparison between the
agent types is unfair on specific attributes.Using a computer’s
ability to perform physical features as a measurement of its
human-likeness is similar to judging people who are bound
to a wheelchair as less human than their able counterparts for
not being able to jump.

4.2.3 Sensitivity in Differentiating Between Agents

To test the extent towhich the anthropomorphismscale differ-
entiates humans from other player types, a one-way Analysis
of Variance (ANOVA) was conducted with agent type as
independent variable and the individual predisposition to
anthropomorphize as dependent variable. Results indicated a

statistically significant effect of agent type,F(3, 201)=42.04,
p < .001, η2 = .39. More specifically, anthropomorphism
was highest for humans (M = 3.50, SD = 2.35), followed by
robots (M = −0.63, SD = 2.81), algorithms (M = −1.53, SD
= 2.82) and computers (M = −1.59, SD = 2.29), see Fig. 7a.

Pairwise comparisons (LSD) showed a statistically sig-
nificant difference between humans and all other agents,
t(198) = 11.03, p < .001, d = 1.89. Post-hoc compar-
isons using Bonferroni correction indicated that differences
between any two groups other than human were not signifi-
cant.

Interestingly, after removing the threemorphology-related
items (i.e., items 18, 34, and 35) from the scale, the dif-
ferences in anthropomorphism between non-human player
types became smaller, with estimations being highest for
humans (M = 3.48, SS = 2.34), followed by robots (M =
−0.83, SD = 2.90), algorithms (M = −1.32, SD = 2.83)
and computers (M = −1.35, SD = 2.37), see Fig. 7b. This
could be caused by the nature of the experiment, because all
players behaved in the exact same way during the Ultima-
tumGame.When those players were subsequently compared
with respect to characteristics that they were equally likely
to possess based on the behavior that they showed, it should
not come as a surprise that no differences between themwere
found.

Table 4 Correlations between
item difficulties in the four
experimental conditions in
Study 3

Human Robot Computer

Algorithm r = .74 p < .001 r = .68 p < .01 r = .88 p < .001

Computer r = .59 p < .01 r = .50 p = .03

Robot r = .73 p < .001
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Fig. 6 Item invariance plots of the item difficulties of each of the four experimental conditions in Study 3: algorithm, computer, robot, and human.
Each number represents an item. Red lines represent 95% confidence intervals. (Color figure online)

4.3 Conclusions

In the current study, an adjusted 19-item version of the
anthropomorphism scale was used to investigate the scale’s
sensitivity. Results showed that, as in Studies 1 and 2, peo-
ple’s responses sufficiently fitted the Rasch model, indicated

by an acceptable data-to-model fit. This result supported the
expected invariant ordering of the human-like characteristics
with respect to their item difficulty.

An adequate level of sensitivity was found. The scale was
able to differentiate humans from different types of techno-
logical players, but it did not differentiate those players from
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Fig. 7 Visualization of averaged person measures on the scale a before and b after removing the biased items in Study 3. Whiskers represent 95%
confidence intervals

each other. Presumably the conceptual differences between
those player types were too small to be detected by the cur-
rent version of the scale. Additionally, the scale’s sensitivity
droppedwhen threemorphology-related itemswere removed
from the analysis.

5 General Discussion

The current researchwas designed to explorewhether anthro-
pomorphism can be successfully measured using the Rasch
model, whether the concept can be mapped onto a one-
dimensional scale, and whether human-like characteristics
are ordered in a way that is similar for all individuals in
their encounter with robots and other types of agents in dif-
ferent contexts. We argued that human-like characteristics
can be ordered according to the probability with which they
are ascribed to robots, and that this ordering of human-like
characteristics on the range of perceived human-likeness is
similar for all individuals in their encounter with different
types of agents. We developed a set of human-like charac-
teristics and used data from three studies to test the scale’s
psychometric qualities. These studies had designs with dif-
fering contexts and experimental conditions, and people’s
predispositions to anthropomorphize were compared in dif-
ferent samples with different types of agents.

In the first study, we hypothesized that items and persons
could be mapped onto a single one-dimensional scale, and
that itemswould be invariantly ordered according to the diffi-
culty with which they are attributed to a robot. Additionally,
the estimated difficulties with which the 37 characteristics
are attributed to a robot were expected to be related to their
perceived human nature and human uniqueness. In the sec-
ond study, we tested the extent to which estimates made with

three different measuring instruments for anthropomorphism
would be related. In the third study, we hypothesized that
the anthropomorphism scale would successfully differenti-
ate humans from other types of agents.

All hypotheses were (at least partially) confirmed, and the
next sections describe in more detail the dimensionality of
anthropomorphism, implications for further research, and the
comparison of the three different measuring instruments.

5.1 Dimensionality of Anthropomorphism

Across studies, an invariant ordering of human-like charac-
teristics was found, indicating that this ordering was similar
for different people in their encounter with different types
of agents in different contexts. This finding was supported
by dimensionality tests that consistently indicated that the
data could be represented in a one-dimensional structure.
More specifically, in each of the studies, an additional factor
would result in only a small increase in the proportion of
explained variance. This result supported the hypothesis that
anthropomorphism can be represented as a one-dimensional
construct.

Tests of construct validity showed significant correlations
between item difficulties and their perceived human nature
and human uniqueness, supporting the expectation that the
scale measures anthropomorphism. Together, these findings
indicate that human-like characteristics are ordered in such a
way that they range from low to high on a single dimension.

5.2 Implications for Further Research

Findings on some of the characteristics have important
implications for future research and thus need some further
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consideration. For example, in Study 1 the item ‘Experience
pain’ was rated as extremely low in human uniqueness and
as medium in human nature, but it appeared to be the most
difficult one to ascribe to a robot. One possible explanation
for this unexpected finding could be that a nervous system
is necessary for experiencing pain, which is not unique for
humans, but is something that robots clearly do not have.

This result also raises the issue of physical versus cogni-
tive capacities. For humans and other organisms, the ability
to move around in the (physical) environment is a given,
whereas for certain technological artifacts this may not be
so obvious. Likewise, future artificial intelligence may cre-
ate agents with high mental capacities without a body, which
makes it easier for them to solve a moral dilemma than to
pick up an object. This issue may become apparent in the
near future, and more research is needed to further investi-
gate this. A large benefit of the Rasch approach is the ability
to select items for a specific design, and as such can cope
with such technological developments.

Another important finding was that when morphology-
related characteristics (i.e., the items about a robot being
able to jump, walk, and pick up objects) were disregarded
in Study 3, the differences on anthropomorphism between
robots, computers, and algorithmsdecreased. Future research
can be designed to explore whether we can create a measure
for anthropomorphism that is universal for various types of
agents (e.g., humans, animals, technologies, and deities).

5.3 Comparison of Measuring Instruments

The anthropomorphism scale was compared with two avail-
able measuring instruments for anthropomorphism to test
for convergent validity. These available instruments were
the Godspeed- and Waytz-instruments. We tested whether
measurements obtained with the three instruments would be
related. This hypothesis was confirmed by significant cor-
relations between the scale and both other instruments, but
these correlations were rather low.

Although these correlations were smaller than expected,
this should not come as a surprise, given the nature of the dif-
ferent instruments. They were all developed with different
views on the concept anthropomorphism. The Godspeed-
instrument focuses on mostly appearance-related features,
whereas the Waytz-instrument focuses mostly on cognition-
related features.

The low correlation also clearly shows that we still have
limited understanding of what anthropomorphism entails,
and thus what indicators are best used in its measurement. It
is only when multiple different measuring instruments con-
verse that we can claim to fully grasp what the indicators of
anthropomorphism are. We believe that the Rasch model is
a promising tool to uncover such indicators and thus what
anthropomorphism truly entails.

5.4 Limitations and Future Research

In all studies, the items of the anthropomorphism scale were
ordered alphabetically, which may have influenced people’s
responses to certain items because of order effects. The items
on the scale should be ordered randomly in future studies to
prevent the occurrence of such ordering effects.

All studies were performed with mainly Dutch and Amer-
ican participants, so their cultural backgrounds and experi-
ences with technology could have been quite similar. Earlier
work has shown that people’s tendencies to attribute human-
likeness to non-humans can be related to religion [14], and
that people from different countries (such as individualistic
versus collectivistic ones) respond differently to computers
[19] and evaluate robots differently [28]. It would be inter-
esting to investigate whether cultural differences influence
people’s predispositions to anthropomorphize.

In addition, we used social media for sampling partici-
pants in studies 1 and 2, and thus relied on data gathered from
experimenters’ acquaintances. This may have led us to end
up with homogeneous groups of participants, which could
partly explain the high consistencybetween those studies. For
increasing our understanding of the concept anthropomor-
phism, it is important to also collect data from more diverse
groups and check whether the high consistency prevails.

InStudy2, each statementwas presented as a general state-
ment about ‘a robot’, and not specifically aimed at the robot
that participants watched in the short movie clip. This could
explainwhy no differences in anthropomorphismwere found
between the two robots. Future research that is designed to
investigate evaluations of different robots should therefore
not use the scale in a general way, but rather phrase each
question to be specifically about a certain robot (or other
non-human object).

We did not test whether people had previous knowledge
about or experience with robots. This experience could influ-
ence people’s responses to those robots (see e.g., [21,25]) and
should therefore be taken into account in future studies. The
Rasch model offers a promising approach to investigate how
such experiences affect a person’s predisposition to anthropo-
morphize, the difficulty of ascribing a specific characteristics
to a robot, or both.

5.5 Conclusions

Despite some limitations, we have shown that anthropomor-
phism can be measured on a one-dimensional scale, and that
items are ordered invariantly when this scale is applied to
robots. TheRaschmodel thus provides a reliableway ofmea-
suring anthropomorphism. Because of the invariant ordering
of the human-like characteristics, the scale provides oppor-
tunities for comparing various types of agents and robots
with each other across studies. The method also provides the
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possibility to select items based on the context of the study,
making it a versatile tool for measuring anthropomorphism.

Findings of Study 3 showed that different types of agents
(except humans) were difficult to distinguish, presumably
because the behavior of these different agentswas identical. It
is therefore an interesting question how the method performs
when interactions with different types of agents are evalu-
ated. Ultimately, a scale can be developed that contributes to
our understanding ofwhatmakes people attribute human-like
characteristics to social robots and other non-humans. This
understanding can help designers to create robots as social
entities that are accepted as members of our society.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

A Waytz-Instrument

Items of the anthropomorphism questionnaire adapted from
[32], answered on a 5-point or a 7-point response format.

“Towhat extent does the robot have thoughts of its own?”
“To what extent does the robot have intentions?”
“To what extent does the robot have a free will?
“To what extent does the robot have a consciousness?”
“To what extent does the robot have desires?”
“To what extent does the robot have values and norms?”
“To what extent does the robot experience emotions?”

B Godspeed-Instrument

The items of the anthropomorphism part of the Godspeed
questionnaire (adapted from [2]), answered on a 5-point or a
7-point response format.

“Fake - Natural”
“Machinelike - Humanlike”
“Unconscious - Conscious”
“Artificial - Lifelike”
“Moving rigidly - Moving elegantly”
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