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Abstract
In this paper we consider the classical min–# curve simplification problem in three different
variants. Let δ > 0, P be a polygonal curve with n vertices in Rd, and D(·, ·) be a distance
measure. We aim to simplify P by another polygonal curve P ′ with minimum number of vertices
satisfying D(P, P ′) ≤ δ. We obtain three main results for this problem: (1) An O(n4)-time
algorithm when D(P, P ′) is the Fréchet distance and vertices in P ′ are selected from a subsequence
of vertices in P . (2) An NP-hardness result for the case when D(P, P ′) is the directed Hausdorff
distance from P ′ to P and the vertices of P ′ can lie anywhere on P while respecting the order
of edges along P . (3) For any ε > 0, an O∗(n2 logn log logn)-time algorithm that computes P ′
whose vertices can lie anywhere in the space and whose Fréchet distance to P is at most (1 + ε)δ
with at most 2m + 1 links, where m is the number of links in the optimal simplified curve and
O∗ hides polynomial factors of 1/ε.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Geometrical
problems and computations

Keywords and phrases Computational Geometry - Fréchet distance - Simplification- Polygonal
Curves

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

Approximating a polygonal curve by another curve is a long-standing problem in compu-
tational geometry. One of the most well-known settings that has received considerable
attention is the min–# problem. That is, given a polygonal curve P = 〈p1, p2, · · · , pn〉 in
Rd, a distance measure D(·, ·) between two curves and a real value δ > 0, find a polygonal
curve P ′ = 〈p′1, p′2, · · · , p′k〉 with the minimum number of vertices such that D(P, P ′) ≤ δ.
We call the edges in P ′ links.

There are several variants of the min–# problem: (1) vertex-restricted, where vertices
of P ′ have to be a subsequence of vertices of P , (2) curve-restricted, where vertices of
P ′ can lie anywhere on P but have to respect the order along P , and (3) non-restricted,
when vertices of P ′ can be anywhere in the ambient space. For all of the cases above, it
is also a requirement that the start and end points of P ′ are identical to the start and
end points of P . For the vertex-restricted and curve-restricted cases we also refer to links
as shortcuts. Given a distance measure D(·, ·) between two curves, such as Hausdorff δH ,
directed Hausdorff

−→
δH , or Fréchet distance δF , one can apply this distance in a global or local

way in the min–# problem as follows: First, one can simply measure the distance D(P, P ′)
between the two curves; we denote this as the global distance δg. In the local setting, for the
vertex- and curve-restricted cases, one measures the distance between each link in P ′ and
its corresponding subcurve in P whose endpoints are the same as the endpoints of the link,
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and returns the maximum of these distances. We denote such a local distance by δ`. More
formally, let P ′ = 〈P (s1), P (s2), ..., P (sk)〉 with s1 = 1 < s2 < . . . < sk = n be a vertex- or
curve-restricted simplification of P . Then:

δ` := max
1≤i<k

{D(P [si, si+1], 〈P (si), P (si+1)〉) ,

where P [si, si+1] is a subcurve of P between two points P (si) and P (si+1). We will provide
the rest of our notation in the next sections.

In this paper, we focus on global distance measures under the three different variants
of restrictions on where vertices of P ′ can be placed. To the best of our knowledge there
are just a few works on this setting, obtaining preliminary results under global distance
measures only for some variants of the problem. We believe it is beneficial to study the
min–# problem under global distance measures more extensively so as to get a broader
view on the topic.

1.1 Related Work

There have been numerous results on different variants of the min–# problem mostly for the
vertex-restricted version under local distance measures. The classical algorithm proposed
by Imai and Iri [13], uses a shortcut graph to solve the vertex-restricted min–# problem
under

−→
δ`H from P ′ to P . The edges of the shortcut graph are those shortcuts of P for which

the distance between the shortcut and its corresponding subcurve is at most δ. Once all
the shortcuts are processed, the shortest path in the shortcut graph represents P ′. While
their algorithm runs in O(n2 logn) time, Chan and Chin [7] improved the running time
to O(n2). Godau [10] considered the same problem under δ`F and gave an O(n3)-time
algorithm. Guibas et al. [11] provided algorithms for computing minimum-link paths that
stab a sequence of regions in order. One of the variants, presented in Theorems 10 and 14
of [11], computes the non-restricted δgF in the plane in O(n2 log2 n) time. Bereg et al. [6]
considered global discrete Fréchet distance (δgdF ) and obtained an O(n2) algorithm for the
vertex-restricted variant and an O(n logn) time algorithm for the non-restricted variant.
Agarwal et al. [1] gave a near linear time approximation algorithm for the vertex-restricted
version under δ`F for any Lp metric, where the number of edges of the simplified curve
returned by their algorithm with respect to δ is at most the number of edges of an optimal
simplified curve with respect to δ/2.

There has been a lot of progress on solving the min–# simplification problem under the
local variant for different types of distance measures. There also exist some results on the
global variants. Recently Van Kreveld et al. [15] considered the global variant under different
distance measures. They proved that the vertex-restricted min–# problem under δgH(P, P ′)
is NP-hard, whereas they gave an output sensitive polynomial time dynamic programming
algorithm under δgF (P, P ′). They distinguished between the results on the directed Hausdorff
distance and the (undirected) Hausdorff distance. They gave a polynomial-time algorithm
for the min–# simplification under

−→
δgH(P ′, P ) (directed Hausdorff from P ′ to P ), however

they showed that the problem under
−→
δgH(P, P ′) (directed Hausdorff from P to P ′) is NP-

hard. See Table 1 for an overview of existing results on different variants of the min–#
simplification problem.
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Distance type Vertex-restricted Curve-restricted Non-restricted

−→
δgH(P, P ′) NP-hard [15] N/A N/A

−→
δgH(P ′, P ) O(n4) [15]

O(n2 logn)I (Section 5.2) NP-hardI (Section 4) poly(n) [14]

δgH(P, P ′) NP-hard [15] N/A N/A

δgF (P, P ′)
O(mn5) [15]

O(n4)I (Section 3)
O(n3)I EREW PRAM

O(n) in R1I (Section 5.1)
O(n2 log2 n) in R2 [11]
O∗
(
n2 logn log logn

)
I

(Section 5)

δgdF (P, P ′) O(n2) [6] N/A O(n logn) [6]

−→
δ`H(P, P ′) N/A N/A N/A

−→
δ`H(P ′, P )

O(n2) [7]
O(n2 logn) [13]
O(n4/3+ε) [2]

N/A N/A

δ`H(P, P ′) N/A N/A N/A

δ`F (P, P ′) O(n3) [10]
O(n logn) [1] N/A N/A

Table 1 Known results for the min-# problem under global and local distance measures. Results
with I are presented in this paper.

1.2 Our results:

In this paper, we consider the simplification problems formed by the combination of two
global distance measures, Fréchet distance and directed Hausdorff distance (δgF and

−→
δgH), with

the three possible variants on vertex placement for P ′, vertex-restricted; curve-restricted;
and non-restricted (see Table 1). In Section 3 for the vertex-restricted version under
δgF (P, P ′), we propose a O(n4)-time dynamic programming algorithm using O(n3) space.
This is an improvement of the O(mn5)-time algorithm that uses O(mn2) space presented
by Kreveld et al. [15] where m is the number of links in P ′. Next in Section 4 we prove that
computing

−→
δgH(P ′, P ) for the curve-restricted min-# simplification becomes NP-hard. To the

best of our knowledge, this is the first result in the curve-restricted setting under the global
directed Hausdorff distance. In Section 5, we give an approximation algorithm running in
O∗(n2 logn log logn) time for any ε > 0, that computes P ′ with at most 2m+ 1 links whose
local Fréchet distance to P is at most (1+ε)δ where m is the number of links in optimal sim-
plified path with respect to δ under global Fréchet distance, d is the dimension of the space
and O∗ hides polynomial factors of 1/ε. Compared to the algorithm in [11] that only applies
to curves in 2D within O(n2 log2 n) time and O(n) space, our algorithm approximately com-
putes the simplified curve in any arbitrary dimension d in an slightly faster running time
using linear space. In fact, our approximation provides an informative relationship between
the number of links in simplified curves under local and global Fréchet distances unlike the
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approximation in [1] which only respects δ and does not explicitly guarantee any bounds on
the number of links returned by the algorithm.

We end the paper by elaborating on some possible improvements on other different
variants of the problem in Table 1 and leave some open problems.

2 Preliminaries

Let P = 〈p1, p2, · · · , pn〉 be a polygonal curve. We treat a polygonal curve as a contin-
uous map P : [1, n] → Rd where P (i) = pi for an integer i, and the i-th edge is linearly
parametrized as P (i+λ) = (1−λ)pi+λpi+1, for integer i and 0 < λ < 1. A re-parametrization
σ : [0, 1] → [1, n] of P is any continuous, non-decreasing function such that σ(0) = 1 and
σ(1) = n. We denote the subcurve between P (s) and P (t) by P [s, t], where 1 ≤ s ≤ t ≤ n.
Given two points x and y in Rd, we denote the straight-line segment connecting between
them by 〈xy〉.

p1

p2

p3

p4

p5
p6p7

p8p9

p10

q1

q2

q3
q4q5

q6q7

q8

δ
1

2

3

4

5

6

7
8

1 2 3 4 5 6 7 8 9 10

Q(t)

P (s)

s

t

P

Q

P

Q

4× [1, 8]

Figure 1 (s, t) is a free point on a reachable path in FSDδ(P,Q), where white space contains free
points and gray space contains blocked points.

To compute the Fréchet distance between P and Q, Alt and Godau [4] introduced the
notion of free-space diagram. For any δ > 0, we denote the free-space diagram between P
and Q by FSDδ(P,Q). This diagram has the domain of [1, n]× [1,m] and it consists of (n−
1)× (m−1) cells, where each point (s, t) in the diagram corresponds to two points P (s) and
Q(t). A point (s, t) in FSDδ(P,Q) is called free if ‖P (s)−Q(t)‖ ≤ δ, and blocked otherwise.
The union of all free points is referred to as the free space. The intervals induced by free
space in FSDδ(P (i), Q) for all i = 1, · · · , n is called free space intervals of the range i× [1,m].
Fréchet matching between P and Q is a pair of re-parameterizations (σ, θ) corresponding to
an xy-monotone path from (1, 1) to (n,m) within the free space in FSDδ(P,Q). The Fréchet
distance between two curves is defined as δF (P,Q) = inf(σ,θ) max0≤t≤1 ‖P (σ(t))−Q(θ(t))‖,
where (σ, θ) is a Fréchet matching and max0≤t≤1 ‖P (σ(t))−Q(θ(t))‖ is called the width of
the matching. Let a = (x1, y1) and b = (x2, y2) be two points in FSDδ(P,Q) with x1 ≤ x2
and y1 ≤ y2. We say b is reachable from a if there exists a Fréchet matching from a to b within
FSDδ(P,Q). A Fréchet matching in FSDδ(P,Q) from a to b is also called a reachable path
between a and b denoted by P(a, b). If a = (1, 1) we denote it by P(1, b). See Figure 1 for an
illustration of these concepts. Note that for each reachable path there is a combinatorially
equivalent piecewise linear reachable path, due to the convexity of free space within each
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cell [4]. We therefore assume that reachable paths are piecewise linear. Alt and Godau [4]
compute a reachable path by propagating reachable points across free space cell boundaries
in a dynamic programming manner, which requires the exploration of the entire FSDδ(P,Q)
and takes O(mn) time.

3 Vertex Restricted Problem Under δg
F (P, P ′) in Rd

Let P = 〈p1, p2, · · · , pn〉 be a polygonal curve with n vertices, where P : I → Rd with
I = [1, n]. We construct a DAG G = (V,E) such that V = {1, 2, · · · , n} and E = {(i, j) | 1 ≤
i < j ≤ n}. Here, we consider each vertex v ∈ V to be embedded at pv and each edge
(u, v) ∈ E to be embedded as the straight line segment shortcut pupv between pu and pv,
parameterized linearly by pupv(j) = v−j

v−upu + j−u
v−upv for all j ∈ [u, v]. Note that E contains

all the (directed) shortcuts in P whose start and end points are vertices of P . For any δ > 0
we now define the free space surface for P and G; see [4, 3] for definitions of free space and
free space surface.

I Definition 1 (Strips and Spines). Let (u, v) ∈ E. The δ-strip

STδ(u, v) = {(i, j) | 1 ≤ i ≤ n, u ≤ j ≤ v, ||P (i)− pupv(j)|| ≤ δ}

is the free space between P and pupv. The strip is defined as ST(u, v) = I × [u, v]. We have
STδ(u, v) ⊆ ST(u, v). The δ-spine

SPδ(v) = {(v, i) | 1 ≤ i ≤ n, ||P (i)− pv|| ≤ δ}

is the free space between P and pv. The spine is defined as SP(v) = I × v. We have
SPδ(v) ⊆ SP(v).

For any edge (u, v) ∈ E, both spines centered at the vertices of the edge are subsets of the
strip: SPδ(u), SPδ(v) ⊆ STδ(u, v) and SPδ(u) is a subset of all strips with respect to edges
incident on u. The free space surface of P and G, denoted by FSDδ(P,G), is the collection of
all strips (and spines) over all v ∈ V and (u, v) ∈ E; see Figure 2. Note that the edges in E
are directed, and hence any reachable path has to visit a sequence of spines that corresponds
to an increasing sequence of vertices in V .

We consider the spines to be “vertical” and shortcut edges in G to be “horizontal”. Each
free space cell C in ST(u, v) contains two vertical boundaries on SP(u) and SP(v), and two

Figure 2 Schematic example of a free space surface for a polygonal curve P = 〈p1, p2, p3, p4〉 (in
blue) and its shortcut graph G (in black). The strip ST(2, 4) is highlighted in pink, and the spine
SP(2) is highlighted in green. Free space is not shown.
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2
3

4
5

6 7

I = [1, 9]

8
9

1

Figure 3 Elementary intervals in each spine are created by overlaying all free space intervals
onto each spine.

horizontal boundaries. The free space on each of these boundaries is known to be a single
interval (which may be empty), see [4].

The goal of our algorithm is to compute a reachable path in the free space surface from
(1, 1) to (n, n) that uses the minimum number of strips. The main idea is to use dynamic
programming to propagate a reachable path with a minimum number of strips from spine
to spine. Each spine SP(v) = I×v contains a sequence of free space intervals of SPδ(v). Let
S ⊆ I be the union of all interval endpoints of free space intervals of SPδ(v) for all v ∈ V ,
projected onto I. The set S induces a partition of I into intervals. For each v ∈ V let Lδ(v)
be the ordered list of free space intervals obtained by subdividing the intervals of SPδ(v)
with all points in S. We call the intervals in Lδ(v), whose ending points are excluded along
I, elementary intervals; see Figure 3.

We assume that elementary intervals in Lδ(v) are ordered in increasing order of their
starting point. When clear from the context we may identify elementary intervals with their
projections onto I, and use < and = to compare intervals in the resulting total ordering of
all elementary intervals along I.

We now extend the definition of a reachable path P(a, b) whose starting and ending
points are defined with respect to two points a and b in FSDδ(P,Q) to the one that is
defined with respect to two elementary intervals r ∈ Lδ(u) and e ∈ Lδ(v) with r ≤ e and
u ≤ v. We denote a elementary reachable path from an elementary interval r to elementary
interval e by P(r, e). L(P(r, e)) denotes the length of a reachable path that is the number of
strips visited by P(r, e). We can also define the same notion of length for a reachable path
P(a, b) between two points a and b. If an elementary reachable path starts from (1, 1) and
ends to e ∈ Lδ(v) we denote it by P(1, e) for more simplicity in our notation.

We define the cost function φ : V × I → N for any point z = (v, x) ∈ SPδ(v) with v ∈ V
as φ(v, z) = minP(1,z) L(P(1, z)), where the minimum ranges over all reachable paths P(1, z)
in the free space surface. If no such path exists then φ(v, z) =∞. We will show how to use
dynamic programming to propagate φ across the free space surface. Lemma 2 below shows
some properties of elementary intervals and their sufficiency to propagate φ values across
FSDδ(P,Q).

I Lemma 2 (Elementary Intervals Properties). Let v ∈ V . The following statements are true:

1. r ∩ e = ∅ and ∪o∈Lδ(v) {o} = Lδ(v) (∀(r, e) ∈ Lδ(v) r 6= e),
2. |Lδ(v)| ≤ 2n2 + n,
3. For any two points x = (v, a) and y = (v, b) with x, y ∈ e and e ∈ Lδ(v), φ(v, x) = φ(v, y)
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SPδ(v)

b

a

(a)

SPδ(v)

a

b

(b)

SPδ(u)

sp

SPδ(v)

a

b

(c)

SPδ(u)

s

SPδ(w)

p

Figure 4 Illustration of the proof of property 3. a and b belong to the same elementary interval
e highlighted in gray. (a) if b > a (b) if a > b and p ∈ STδ(u, v) and (c) if a > b and p ∈ STδ(w, v).

Proof. 1. It follows from the definition that elementary intervals are induced by overlaying
free space intervals of all spines onto each spine SPδ(v), v ∈ V . Thus clearly r and e both
in Lδ(v) are disjoint and the union over all elementary intervals o is the list Lδ(v) that o
belongs to.

2. Consider I = [1, n]. Each spine can split I into 2n+ 1 subintervals since there exist at
most n free space intervals with 2n endpoints in each spine. We have n spines since |V | = n,
therefore I can be divided into 2n2 +n many pieces of elementary intervals. As SPδ(v) ⊆ I,
therefore |Lδ(v)| ≤ 2n2 + n, for all v ∈ V .

3. If x = y then it is trivial to see φ(v, x) = φ(v, y). Now for the sake of contradiction,
assume there exist x, y ∈ e, with x 6= y such that φ(v, x) 6= φ(v, y). Assume without loss
of generality that φ(v, x) < φ(v, y) and let m = φ(v, x). Let P(1, x) be a reachable path
with L(P(1, x)) = φ(v, x). (i) If b > a, then extending P(1, x) to continue vertically from x

to y in e yields a reachable path P(1, y) from (1, 1) to y with L(P(1, y)) = L(P(1, x)); see
Figure 4(a). Therefore φ(v, y) ≤ φ(v, x) which is a contradiction.

(ii) Now, assume that a > b. Let SPδ(u) be the last spine traversed by P(1, x) before
reaching SPδ(v). That means P(1, x) traverses STδ(u, v). Now let s be the start point of e.
Clearly the horizontal line at s hits P(1, x) at some point p where p ∈ FSDδ(P,Q). From
the definition of the elementary interval we observe that P(p, x) lies within free space, hence
does P(p, y) as well. Therefore, a straight line from p to y lies within the same free space.
Now if p ∈ STδ(u, v) then L(P(1, y)) = L(P(1, x)), thus φ(v, y) ≤ φ(v, x) and contradiction.
If p ∈ STδ(w, v) with w < u < v, then L(P(1, y)) < L(P(1, x)), thus φ(v, y) < φ(v, x) and
again a contradiction. This completes the proof. J

Since by Property 3 of Lemma 2 φ is constant on each elementary interval, we will write
φ(v, e) for each elementary interval e ∈ Lδ(v) for all v ∈ V . Note that the domain of φ allows
us to define φ not only for elementary intervals but also for reachable intervals. A subset of
elementary intervals in SPδ(v) that are reachable from an elementary interval r ∈ Lδ(u) with
u ≤ v is called reachable interval in Lδ(v) from r denoted by I(v, r) where I(v, r) ⊆ SPδ(v).
We denote φ for I(v, r) by φ(v, I(v, r)). Lemma 3 below shows a recursive formula for φ,
which we will be used in our dynamic programming algorithm.

I Lemma 3. 1. For all elementary intervals e ∈ Lδ(1): If e is reachable from (1, 1) then
φ(1, e) = 0, otherwise φ(1, e) =∞.
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2. For all v ∈ V \{1} and all elementary intervals e ∈ Lδ(v): φ(v, e) = minu≤v minr≤e φ(u, r)+
1, where the second minimum is taken over all r ∈ Lδ(u) with r ≤ e such that there is a
reachable path from r to e within STδ(u, v) with u ≤ v.

Proof. We use proof by induction. (1) Inductive base (v = 1): assume that e is reachable
from (1, 1). Since e belongs to the first spine i.e. Lδ(1), then L(P(1, e)) = 0. Thus,
φ(1, e) = L(P(1, e)) = 0. If e is not reachable from (1, 1) then there is no reachable path
from (1, 1) to e. This means any reachable path from (1, 1) to (n, n) cannot pass through e
and e cannot be part of the respective solution and should be disregarded. Therefore, for
all P(1, e), L(P(1, e)) =∞ and φ(1, e) = minP(1,e) L(P(1, e)) =∞.

(2) Inductive hypothesis (v ∈ V \ {1}). Suppose all φ values are already computed for
all r ∈ L where L = ∪v−1

u=1Lδ(u) ∪ Iv such that Iv = {r |r ∈ Lδ(v) and r ≤ e}. Now given v
and e ∈ Lδ(v), since we are looking for a simplified path P ′ whose vertices are going to be
selected from a subsequence of the vertices in P , hence we have to use Lδ(u) for all u ≤ v.
Due to the monotonicity of any reachable path from (1, 1) to e, we consider r that is smaller
than or equal to e along I i.e. r ≤ e. Thus r ∈ L. Since we also aim for finding an elementary
reachable path P(1, e) whose length is equal to φ(v, e), we compute φ(u, r) that is minimum
over all r ∈ L and u ≤ v. In other words:

min
u≤v

min
r≤e

φ(u, r).

Note that e must be reachable from r. Therefore this adds another link to φ(v, e) and we
have:

φ(v, e) = min
u≤v

min
r≤e

φ(u, r) + 1

as claimed. J

Algorithm 1 shows our dynamic programming algorithm that computes φ using the
recursive formula in Lemma 3. Our algorithm consists of three main steps: (1) Initialization,
(2) Propagation and (3) Completion. We compute the free space surface and all elementary
intervals (Initialization). We process the free space surfaces spine by spine to propagate the
reachable paths up to each spine with respect to the maintenance of minimum value of φ
(Propagation). Finally, we get the last spine and need to report those spines that already
carried out reachable path of minimum φ value from (1, 1) to (n, n) (Completion).

We provide a more detailed description of the pseudocode in the following:

1. Initialization (lines 1-5): In line 1 of Algorithm 1, we first compute the free space
surface induced by G and P . This can be done by having only strips (and spines)
connecting together with respect to the adjacency of spines in G. For every spine we
compute all the elementary intervals in it using ElemInterval procedure and store them
into a list (line 3). We skip the description of this procedure since its computation seems
obvious from the definition introduced earlier. Next in line 4, we set the cost of each
elementary interval throughout the free space surface to infinity. For those elementary
intervals that are reachable from (1, 1) we set their cost function to zero (line 5).

2. Propagation (lines 6-15): We process spines increasingly in V (expect the first one)
since G, whose vertices are representing the spines, is a DAG and the increasing order
of its vertices is given (line 6). For a SPδ(v) we compute the reachable intervals I(v, r)
originating from any elementary interval r in previous spines SPδ(u) for all, u = 1, · · · , v
(line 10) by means of a procedure called ReachInterval. The arguments of this proce-
dure are an elementary interval and a spine. We will discuss this procedure further with
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Algorithm 1: Compute Vertex-Restricted Min–# Simplification Under δgF (P, P ′) ≤ δ
1 Compute FSDδ(P,G);
2 for each v ∈ V :
3 Lδ(v)← ElemInterval(FSDδ(P,G), SPδ(v)); // Compute elementary intervals
4 for each e ∈ Lδ(v) : φ(v, e) =∞; // Initialize φ
5 for each e ∈ Lδ(1) that is reachable from (1, 1) : φ(1, e) = 0;
6 for each v ∈ V − {1} :
7 Uv = ∅;
8 for each u ∈ {1, · · · , v} :
9 for each r ∈ Lδ(u) :

10 I(v, r)← ReachInterval(r, SPδ(v)); // Compute reachable interval
11 φ(v, I(v, r)) = φ(u, r) + 1; // Assign reachable interval’s cost
12 Uv = I(v, r) ∪ Uv; // Take the union of all reachable intervals in SPδ(v)

13 L ← Subdivide(Uv, Lδ(v)); // Subdivide Uv within Lδ(v) with respect to min φ
values and store the list of subdivided intervals into L

14 for each e ∈ Lδ(v) :
15 φ(v, e) = min`∈L φ(v, `), where e ∈ `. // Assing the min value in L to

elementary intervals in Lδ(v)

16 Return vertices of P ′ by tracing back on φ values.

more computational details. Next, we assign reachable interval I(v, r) a cost incremented
by one derived from the cost of its origin, which is an elementary interval r (line 11).
We take the union of all reachable intervals originating from all elementary intervals in
spines prior to SPδ(v) and store them into a set Uv (line 12). Now, we call a procedure
called Subdivide whose arguments are the union set and the current spine. The goal
of this procedure is to compute a subdivision of reachable intervals in Uv across SPδ(v)
in which each subdivided interval has minimum φ value over all φ values of reachable
intervals in Uv that contain the subdivided interval. This provides a subdivision of min-φ
values across the current spine stored into L (line 13). We can assign the cost on each
subdivided interval to each elementary interval in the current spine by linearly traversing
both L and Lδ(v) .

3. Completion (line 16): We skip explanation on this part since it appears to be clear
from the context and pseudocode.

We now provide further explanations on computational side of the two procedures ReachInterval
and Subdivide.
Elementary Reachable Interval Procedure. The two arguments of this procedure are
an elementary interval r ∈ Lδ(u) and a spine SPδ(v), u ≤ v. This procedure computes
(possibly noncontinuous) interval in Lδ(v) that is reachable from r within STδ(u, v). All we
need is to find start and end pointers of an reachable interval in SPδ(v). This can be done
by using the algorithm proposed in Lemma 3 of [3]. We have the following lemma:

I Lemma 4. Let u and v be two integers such that 1 ≤ u < v ≤ n. One can compute all
∪r∈Lδ(u)I(v, r) in O(|Lδ(u)|) time.

I Corollary 5. Let u and v be two integers such that 1 ≤ u < v ≤ n. One can compute all
∪r∈Lδ(u)I(v, r) in parallel in O(

√
|Lδ(u)|) time using O(

√
|Lδ(u)|) processors.
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Proof. Consider lists L1, L2, · · ·Lk of elementary intervals in Lδ(u) where k = |Lδ(u)|/s for
some s > 1 and Li 6= Lj with i 6= j. We associate to each list Li with i = 1, 2, · · · , k,
a processors that can compute ∪r∈LiI(v, r) in O(s) according to Lemma 4. Taking s =√
|Lδ(u)| completes the proof. J

Subdivide Procedure. We are given a set of reachable intervals Uv with their φ values. We
need to efficiently compute a subdivision of reachable intervals in Uv where each subdivided
interval takes the minimum value of φ from all subintervals in Uv which overlap the respective
subdivided interval. To achieve this, we overlay all intervals in Uv vertically onto the XY -
coordinate plane in such a way that their start and end points are (increasingly) encountered
along Y -axis and their φ values are (increasingly) set along X-axis. Due to the monotonicity
of reachable intervals their end and start points are sorted along SPδ(v) and correspondingly
along Y -axis as well. Now all we need is to compute the lower envelope (in terms of φ values)
over all intervals in Uv (see Figure 5). The algorithm described in Section 5 of [5] allows us
to achieve this efficiently for the case where the ordering in which the start and end points
of intervals are being visited along the Y -axis is given. We have the following lemma:

I Lemma 6. Let S = {S1, · · · , SN} be a set of segments in the plane and the left-to-right
order of endpoints of segments in S is given. One can compute a lower envelope of size
O(N) induced by segments in S in O(N) time.

I Corollary 7 (Discussion in [12]). Let S = {S1, · · · , SN} be a set of segments in the plane.
The lower envelope with linear complexity can be computed by parallelization in O(log2 N)
time using O(N/ logN) processors in the EREW (Exclusive Read, Exclusive Write) PRAM
Model.

Applying Lemma 6 to Uv yields a subdivision of intervals into some subdivided subin-
tervals each with their exclusive φ value (see Fig 5). We immediately have the following
lemma:

I Lemma 8. For any v ∈ V \{1}, Subdivide (Uv, Lδ(v)) computes a list L as a subdivision
of Uv in O(|Uv|) time, where |Uv| = v ·

(
maxvu=1 |Lδ(u)|

)
and |L| = O(|Uv|).

Proof. There are v many Lδ(u) for all u = 1, · · · , v on which r can be placed and I(v, r)
is reachable interval starting from r ∈ Lδ(u). Each Lδ(u) has |Lδ(u)| many such a r as
defined above. Thus, the number of reachable intervals in Uv is |Uv| = v ·

(
maxvu=1 |Lδ(u)|

)
.

Now following Lemma 6, computing the bottommost envelope of N = |Uv| intervals in
XY -coordinate plane resulting in subdivided intervals takes O(|Uv|). Therefore the runtime
follows the latter upper bound. It again follows from Lemma 6 that L has complexity of the
number of reachable intervals in Uv which is |L| = O(|Uv|). J

I Theorem 9. Algorithm 1 has runtime of O(n4) using O(n3) space.

Proof. In line 1 of Algorithm 1 we compute the free space surface implicitly by computing
all strips. There are O(n2) strips and each takes O(n) to compute its free space diagram,
hence the whole line takes O(n3). In line 3, the ElemInterval procedure takes O(n3) since
we overlay all O(n) free space on all spines intervals onto each spine to compute elementary
intervals for one spine which takes O(n2). We have a v-loop hence ElemInterval takes
O(n3). Line 4 also initialize all elementary intervals in O(n2) time since there is a r-loop on
Lδ(v) and also note that |Lδ(v)| = O(n2) by Lemma 2, Property (2). Line 5 obviously takes
O(n2) by a similar argument made for the latter line.
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2
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4
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10
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Figure 5 (a) and (b) give an illustration of subdivide procedure and (c) is the process occurred
in line 15 of Algorithm 1. In this example let Lδ(v) contain elementary intervals distributed within
the interval I = [1, 20]. In (a) there are two reachable intervals I(v, r2) and I(v, r4) of φ values 4
and 2, respectively. In (b) the lower envelope technique results in having a subdivision of min φ

values on SPδ(v). Here the green curve indicates the lower envelope of the intervals in terms of the
φ values. In (c) each elementary interval in Lδ(v) can take the min φ value obtained from (b).

Line 10 with the r-loop together takes O(|Lδ(u)|) by Lemma 4 which would be O(n2)
following Lemma 2. Also line 11 and line 12 with the r-loop together take O(n2). Taking
the two outer u-loop and v-loop into account yields us O(n4) runtime so far.

Line 13 has Subdivide procedure that runs in O(|Uv|) by Lemma 8. Since we still have
an outer v-loop thus this line takes in the total order of

n∑
v=1
|Uv| =

n∑
v=1

v · ( vmax
u=1
|Lδ(u)|) =

n∑
v=1

v · n2 = O(n4).

Line 15 is computable by a linear traverse over L and Lδ(v). Having |L| = O(|Uv|)
by Lemma 8, |Lδ(v)| = O(n2) from Lemma 2 and an outer v-loop we get O(n4). Line 16
obviously traverse all elementary intervals in the free space surface that they have number
of O(n3). Therefore Algorithm 1 has total running time of O(n4).

Note that the space is depending on the number of φ values that is the same as the
number of elementary intervals throughout the free space surface. By Lemma 2, the total
number of elementary intervals is

∑n
v=1 |Lδ(v)| = O(n3). Therefore the space required for

Algorithm 1 is O(n3). J

I Corollary 10. Algorithm 1 can run in O(n3) time using O(n4/ logn) space in EREW
PRAM Model.

Proof. The only difference compared to the proof of Theorem 9 is the application of Corol-
lary 5 and Corollary 7 in line 10 and line 13 of Algorithm 1, respectively. In line 10, we
can compute ReachInterval in O(

√
|Lδ(u)|) time that is equivalent to O(n) by Lemma 2,

Property 2. Also using O(n) processors requires O(n) space per spine thus, O(n2) space in
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total by now. We have O(n2) strips and computing ReachInterval takes O(n) per strip
therefore O(n3) time so far.

In line 13, given |Uv| many reachable intervals on SPδ(v) we can compute the lower
envelope of them in O(log2 |Uv|) time using O(|Uv|/ log |Uv|) space. Therefore, the total
runtime on Subdivide procedure is

n∑
v=1

O(log2 |Uv|) =
n∑
v=1

O(log2(v · ( vmax
u=1
|Lδ(u)|))

=
n∑
v=1

O(log2(v.n2)) =
n∑
v=1

O
(

log2 v + log2 n+ 2 log v logn
)

=
n∑
v=1

O(log2 v) +
n∑
v=1

O(log2 n) + 2
n∑
v=1

O(log v logn)

= O(n log2 n).

Since both the initialization part of the algorithm and ReachInterval take O(n3) in any
ways, hence the formers dominate the latter and therefore the total runtime is O(n3).

The total space required for the algorithm increases since we use O(|Uv|/ log |Uv|) pro-
cessors to handle Subdivide procedure, therefore the total space used by this procedure
is:

n∑
v=1

O(|Uv|/ log |Uv|) =
n∑
v=1

O(vn2/ log(vn2)) = O(n4/ logn),

as claimed. J

I Theorem 11 (Vertex-Restricted Fréchet Distance). Let P be a polygonal curve with n

vertices and δ be a positive real value. One can compute vertex-restricted min–# simplifi-
cation problem under global Fréchet distance in O(n4) time using O(n3) space. In the case
that EREW PRAM Model is allowed, one can compute the problem in O(n3) time using
O(n4/ logn) space.

4 Curve-Restricted Min–# Under The Directed Hausdorff P ′ → P

4.1 Preliminaries
The directed Hausdorff distance between two curves is defined as

−→
δgH(P,Q) = max

1≤i≤n
min

1≤j≤n
||P (i)−Q(j)||

The Subset Sum problem is an NP-hard problem where we are given a set of integers A
and an integer B. The goal is to find a set A′ ⊆ A that sums to exactly B.
In the next subsection we look at the decision variant of Curve-Restricted Min–#,
meaning that given a curve P , a real value δ, a distance metric D(·, ·), and an integer k we
want to determine if there exists a simplification P ′ of at most k links such that D(P, P ′) ≤ δ.
The proof in this section draws inspiration from the NP-hardness proof for the min–# path
problem on polyhedral surfaces given by Kostitsyna et al. [14]. However, it does not trivially
follow from that proof. Instead of being able to directly construct a polyhedral surface with
the holes and gates we want, we must now construct a curve such that the set of points with
a distance to P greater than δ has the desired shape. This also makes it impossible to use
vertical fences like in [14].
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4.2 NP-hardness
I Theorem 12. Let U = (A = {a1, . . . , an}, B) with a1, . . . , an, B ∈ N be an instance
of the Subset Sum problem. It can then be transformed in polynomial time to instance
U ′ = (P, δ,

−→
δgH(P ′, P ), k) of the Curve-Restricted Min–# problem so that the curve P

can be simplified to a polygonal curve P ′ from p1 to pn of k links and
−→
δgH(P ′, P )≤ δ iff there

is a set A′ ⊆ A where
∑

ai∈A′
ai = B.

Our transformation works as follows: We set δ to be equal to max
ai∈A

ai. Let γ then be an
arbitrarily small constant such that 0 < γ � δ. We set k to be 2n − 1. Without loss of
generality we require our set A to be sorted in such a way that 0.5an < B. We then create
four sets of subcurves M = {m0, . . . ,mn−1}, R = {r0, . . . , rn−1}, F = {f1, . . . , fn−1}, L =
{l1, . . . , ln−1}. There is also one additional subcurve t. We refer to the vertices defining the
curves by subscript, e.g. the first vertex of curve m0 is m0

0. The curves are defined by the
description given in Appendix A. Important to note is that the subcurves in sets R,L as
well as t between t2 and t9 are almost completely horizontal except for some protrusions on
them which we call γ-spikes that have the curve move a vertical distance of 0.5γ from the
rest of the curve and then immediately back again to continue in a horizontal manner. The
x-coordinates of half of these spikes are associated with the integers in A, the other half
have an x-coordinate close to 0.

Figure 6 Curve P that is created by transforming an instance U with A = {1, 2, 4}, B = 6. The
sizes of the γ-spikes created by points {r0

2, r
0
5, t4, t7} ∪ {ri2, ri3, ri6, li2, li5, li6|0 < i ≤ n − 1} have been

exaggerated for clarity.

The subcurves are concatenated in the cyclical order r → m → l → f and eventually
appended by t to form our curve P .
So the complete curve P is equal to:

{r0
0, . . . , r

0
7,m

0
0,m

0
1, l

1
0, . . . , l

1
8, f

1
0 , f

1
1 , r

1
0, . . . ,m

n−1
1 , t0, . . . , t9}

See Figure 6 for an example.
Given P and the allowed deviation δ the following lemma is true:
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I Lemma 13. Any curve P ′ that simplifies P and has at most 2n− 1 links has exactly one
vertex on each subcurve r ∈ R, one vertex on each subcurve l ∈ L, one vertex on t, and no
other vertices.

Proof. Let Nδ(P ) be the δ-neighborhood of P , defined as

Nδ(P ) = {(x, y)|
−→
dgH((x, y), P ) ≤ δ}

The constraint that our simplified curve P ′ must have
−→
dgH(P ′, P ) ≤ δ means that every link

of P ′ must be completely contained in Nδ(P ). Inversely, all points that are further than δ
from their closest point in P form an implicit obstacle O, defined

O = {(x, y)|(x, y) 6∈ Nδ(P ) = {(x, y)|
−→
dgH((x, y), P ) > δ}}

No part of P ′ can intersect O. O is shown in Figure 7.

Figure 7 Implicit obstacle of a section of a transformation curve P shown in red. The size of
the downward pointing γ-spikes and the holes in the obstacle they induce have been exaggerated
for clarity, the upward pointing γ-spikes are not depicted. The leftmost holes alternate between
having x-coordinate 0.5γ and 0 and so are not naturally aligned.

The curve P has been carefully constructed to shape O for our purposes. P ’s subcurves
from sets R and L have vertical distance 2δ+γ between them, meaning the δ-neighborhood
around those sections only has a gap of thickness γ between them. The γ-spikes make it so
that there are holes in this gap at the x-coordinate of the spikes that allow P ′ to shortcut
from a point on any li to ri and from any ri to li+1.

If we consider the subcurves in {R,L} and t between t2 to t9 to be vertical levels it is
clear from Figure 7 that no link of P ′ can traverse more than two vertical levels without
intersecting O. If we want our simplification to traverse downwards we either need to pass
through one of the holes induced by γ-spikes or go around the horizontal end of the verti-
cal level, which takes at least 2 links. Furthermore, on each vertical level there are only 2
specific points from where we would be able to align the next two holes in order to traverse
two vertical levels with one link (See Figure 8). All other links can traverse one hole, and
thus one vertical level, at most. But, as we will show below, skipping a level by aligning
holes will make it impossible for P ′ to reach t9 in 2n − 1 links or less. Since we have 2n
vertical levels and we cannot skip any, it is clear that the only way for a simplification to
have 2n− 1 links is to have exactly one vertex on each vertical level, meaning that each of
our links needs to pass through exactly one of the induced holes in O.

The reason skipping vertical levels will never result in a simplification that reaches t9 in
2n−1 links is that since skipping still needs 2 links per 2 vertical levels, a simplification can
only reach t9 in 2n − 1 links if it has only one vertex on t. So the final link of P ′ needs to
pass through a hole between rn−1 and t and then end in t9. If we look at the x-coordinates
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Figure 8 By first moving to a specific position so the next two holes are aligned, it is possible
to skip a vertical level. This takes the same number of links as traversing the holes one at a time.

from which we can align the holes and skip a level it becomes clear that once we have
used a skip this becomes impossible. To skip any level , we must first move to a vertex to
align the next two holes. We will call this vertex a skip vertex. To skip level li,we need to
give our skip vertex either x-coordinate 0.75γ or 0.75γ + 0.75ai. If we want to skip level
ri we must give it x-coordinate −0.25γ or −0.25γ − 0.25ai+1. (For details on how these x-
coordinates are computed, see Appendix B.) After the skip, our new vertex has x-coordinate
−0.25γ,−0.25γ − 0.25ai, 0.75γ, or 0.75γ + 0.75ai+1 respectively. Without using a link to
readjust, this fractional γ-component of the x-coordinate will propagate downwards with
every new link. Since using a link to readjust would require our simplification to have more
than 2n− 1 links and since t9’s x-coordinate has an integer γ-component, no minimum-link
simplification can use a skip. J

Let Cµ(u) be the set of points on subcurve u that are reachable from the starting point
of P in at most µ links without skipping vertical levels. The following lemma is then also
true:

I Lemma 14. The x-coordinates of the points in C2i−1(li) encode all possible subsets of
Ai = {a1, a2, . . . , ai−1, ai}.

Proof. Because of Lemma 13, we know that any path to a point in C2i−1(li) passes through
an γ-spike-induced hole with every link. Because the holes are vertically precisely in the
middle of two vertical levels, we have for each path vertex vj on any minimum link path
that

vjx = hx + [hx − vj−1x ]

where vjx is the x-coordinate of vertex vj and hx is the x-coordinate of the hole that the link
passes through to reach vj . (which has an identical x-coordinate to the γ-spike that induces
it.) For each point c ∈ C2i−1(li) reachable this way the x-coordinate is equal to iγ +

∑
a∈Ac

a,

where Ac ⊆ A are the integers associated with the holes the path went though to reach c.
The proof of this follows by induction:
(1) Consider our base case where we want to make our first link between the starting point
(0, 0) and a point on l1. Finding the ways we can do this is equivalent to finding the set
C1(l1). There are two possible holes to go through, with x-coordinates equal to 0.5γ and
0.5a1 +0.5γ. Of this second hole we say it is associated with a1. The two points on l1 we can
reach by cutting through of these two holes have x-coordinates γ and ai + γ, respectively.
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We see that the invariant holds, the first point encoding the empty set, and the second point
encoding the set {a1}.

(2) Now consider the induction step: We have a set C2i−1(li) of points encoding all
possible subsets of Ai by having the x-coordinate of each point c ∈ C2i−1(li) be equal to
iγ +

∑
a∈Ac

a. There is only one hole between li and the next vertical level ri. So the set

C2i(ri) only contains the points gotten by cutting from each c through the hole, which has
x-coordinate 0. This means that for each c there is a point c′ ∈ C2i(ri) with x-coordinate
−iγ −

∑
a∈Ac

a. There are then two possible holes that can be taken to get to a point on

the next level li+1 (or t if we have reached the end of P ). The holes have x-coordinates
0.5γ and 0.5ai+1 + 0.5γ. For each point in C2i(ri) there are then two reachable points in
C2(i+1)−1(li+1). Because vjx = hx + [hx − vj−1x ], their x-coordinates are (i + 1)γ +

∑
a∈Ac

a

and (i + 1)γ + ai+1 +
∑
a∈Ac

a respectively. Because our set C2i−1(li) encoded all possible

subsets up until then and for each point there are two new points in C2(i+1)−1(li+1) for
both the case where the next variable is added to the subset and the case where it isn’t,
the set C2(i+1)−1(li+1) encodes all new possible subsets. So our invariant holds. (For a
visualization, see Figure 9) J

Figure 9 Example of all possible paths between r0 and l3. Holes in the implicit obstacle are
marked in blue. For some points the x-coordinate is given. The x-coordinates of the bottommost
points are, from left to right: 3γ, a1 + 3γ, a3 + 3γ, a1 + a3 + 3γ = a2 + 3γ, a1 + a2 + 3γ, a2 + a3 +
3γ, a1 + a2 + a3 + 3γ

Given Lemma 13 and Lemma 14 we know that all points on t that are reachable with
2n− 1 links without skips encode a possible subset of A. Given that the x-coordinate of the
endpoint of P is on t and has an x-coordinate equal to B+nγ we know that if the endpoint
is reachable in 2n−1 links there must be a subset of A that sums to B, solving our instance
of Subset Sum.

Seeing as our transformation only requires a linear number of subcurves, and each sub-
curve has a constant number of vertices, our transformation is clearly polynomial. This
means that Curve Restricted Min–# using

−→
δgH(P ′, P )as a distance metric is NP-hard.
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4.3 Extension to non-degenerate curves

To keep the proof simple our constructed curve P is degenerate seeing as the distance
between each γ-spike and the next curve is exactly 2δ, giving 0-width holes. The proof
can be easily adjusted to use a non-degenerate curve however: Aside from γ, we introduce
another small constant ζ where 0 < ζ � γ � δ. We then lower the tip of each downward
pointing spike by ζ so the holes have a positive, if extremely small, width. The reachable
points on each li are now intervals, but they are small and spread out enough that we can
still associate each interval with a subset of A.

5 Non-Restricted Min–# Under δg
F (P, P ′) in Rd

In this section we present a simple approximation algorithm for non-restricted variant of
min–# that discretizes the feasible space in which an optimal simplified curve can be placed.
As we mentioned earlier Guibas et al. [11] proposed an O(n2 log2 n)-time algorithm that
solves non-restricted simplification under δgF (P, P ′) in the plane. In this section we show
our algorithm runs slightly faster in any arbitrary dimension d. The shortcut graph approach
proposed by Imai and Iri [13] is somehow concealed in the spirit of our algorithm. More
precisely, we compute a set of polynomially many links in the discretized space and we
validate whether each link is part of the graph or not by checking its Fréchet distance to
some subcurve of P . To speed up the validation process, we use a data structure to decide
whether the Fréchet distance between a link and a subcurve of P is at most δ or not. We
incrementally add such links to our graph G until all of the links in discretized space are
processed. Once construction of G is completed, we compute the shortest path in G and
return the links in P ′. For a better understanding of our pseudocode, here we define some
notations. Consider a ball B(o, r) of radius r > 0 centered at o ∈ Rd. A partitioning of
the space into a set of disjoint cells of side length l by a set of axis parallel hyperplanes is
denoted by Prt(Rd, l). A discretization of B(o, r) into a set Go of cells of side length l is an
intersection between Prt(Rd, l) and B(o, r) denoted by Prt(B(o, r), l). For any pi ∈ P we
denote Gpi as Gi for brevity.

As we can see Algorithm 2 is a straightforward computation of valid shortcuts and
shortest path in the shortcut graph G. The Validate procedure takes as arguments a
segment 〈c1c2〉 and a subcurve P [i, j] and its task is to (approximately) decide whether
δF (〈c1c2〉, P [i, j]) ≤ δ or not, more precisely it returns ‘true’ if δF (〈c1c2〉, P [i, j]) ≤ (1 + ε)δ
and ‘false’ otherwise. we efficiently implement the Validate procedure by (lines 9, 11, 13)
by means of the data structure in [9]. Here we slightly rephrase their lemma according to
our terminology:

I Lemma 15 (Theorem 5.9 in [9]). Let P be a polygonal curve in Rd with n vertices.
One can construct a data structure of size O

(
(ε−d log2(1/ε))n

)
and construction time of

O
(
(ε−d log2(1/ε))n log2 n

)
, such that for any query segment 〈ab〉 and two vertices pi and pj

in P , one can compute a (1 + ε)-approximation of δF (〈ab〉, P [i, j]) in O(ε−2 logn log logn)
query time.

Now we have the following lemma:

I Lemma 16. Let 0 < ε ≤ 1 and let 〈ab〉 be a segment in Rd such that a and b are confined
inside two cells h′ ∈ Gi and h′′ ∈ Gj, respectively. If δF (〈ab〉, P [i, j]) ≤ δ, then for all corners
c′ ∈ h′ and c′′ ∈ h′′ Validate(〈c′c′′〉, P [i, j]) returns ‘true’.
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Algorithm 2: Compute Non-Restricted Min–# Simplification Under δgF (P, P ′) ≤ δ

1 forall i ∈ {1, · · · , n} do
2 Compute Prt

(
B(pi, δ), εδ/2

√
d
)
and Gi.

3 E ← ∅;
4 V ← ∅;
5 forall i ∈ {2, · · · , n− 2} and j ∈ {i+ 1, · · ·n− 1} do
6 forall h1 ∈ Gi and h2 ∈ Gj do
7 forall corner c1 ∈ h1 and corner c2 ∈ h2 do
8 if Validate(〈c1c2〉, P [i, j]) = true then
9 E ← E ∪ 〈c1c2〉 and V ← V ∪ {c1, c2}

10 if Validate(〈p1c1〉, P [1, i]) = true then
11 E ← E ∪ 〈p1c1〉 and V ← V ∪ {p1, c1}
12 if Validate(〈c2pn〉, P [j, n]) = true then
13 E ← E ∪ 〈c2pn〉 and V ← V ∪ {c2, pn}

14 Return the shortest path in G = (V,E).

Proof. Let c′ be an arbitrary corner of h′ and c′′ an arbitrary corner of h′′. Note that
Diam(h′) = Diam(h′′) =

√
d · (εδ/2

√
d) = εδ/2, where Diam(h′) and Diam(h′′) are the diame-

ter of cells h′ and h′′, respectively. Hence `1 = ‖a − c′‖ ≤ (ε/2)δ and `2 = ‖b − c′′‖ ≤
(ε/2)δ. Given the two segments 〈ab〉 and 〈c′c′′〉 the Fréchet distance between them is
δF (〈c′c′′〉, 〈ab〉) = max{`1, `2} = (ε/2)δ by [4]. Now by applying a triangle inequality
between the segments and path P [i, j] we have: δF (〈c′c′′〉, P [i, j]) ≤ δF (〈ab〉, P [i, j]) +
δF (〈c′c′′〉, 〈ab〉) ≤ δ + εδ/2 = (1 + ε/2)δ. We build the data structure of Lemma 15 for
〈c′c′′〉 with respect to parameter ε/3 that yields a (1 + ε/3)-approximation of the Fréchet
distance between 〈c′c′′〉 and P [i, j] denoted by D. We have:

D ≤ (1 + ε/3)δF (〈c′c′′〉, P [i, j]) ≤ (1 + ε/3)(1 + ε/2)δ = (1 + 5ε/6 + ε2/6)δ ≤ (1 + ε)δ,

for ε < 1. Therefore, for all corners c′ ∈ h′ and c′′ ∈ h′′ such that Validate(〈c′c′′〉, P [i, j])
returns ‘true’ as claimed. J

I Lemma 17. Let δ > 0 be a real number. For any real number 0 < ε ≤ 1, Algorithm 2
returns a simplified curve P ′ such that δ`F (P, P ′) ≤ (1+ε)δ and P ′ has complexity of at most
2m+ 1 where m is the number of links in optimal simplified curve P ∗ under δgF (P, P ∗) ≤ δ.

Proof. Let P be the shortest path in G returned by the algorithm. It follows from Lemma 16
that for every edge e = c1c2 in P, there exist a pair (i, j) with 1 ≤ i < j ≤ n such that
Validate(e, Pe) returns ‘true’, i.e., δF (e, Pe) ≤ (1 + ε)δ, where c1 ∈ B(pi, δ), c2 ∈ B(pj , δ)
and Pe = P [i, j]. Therefore,

δ`F (P, P ) = max
e∈P
{δF (Pe, e)} ≤ (1 + ε)δ.

Now let m be the minimum number of links in P ∗ such that δgF (P, P ∗) ≤ δ. Let (σ, θ)
be a Fréchet matching realizing δgF (P, P ∗) ≤ δ. Let tk and tk+1 be two real values such
that 0 ≤ tk < tk+1 ≤ 1 and consider a fixed link 〈lklk+1〉 in P ∗ where lk = P ∗(θ(tk)) and
lk+1 = P ∗(θ(tk+1)). Let pi and pj be the first and last vertices along P [x, y], respectively
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where i < j, x = P (σ(tk)) and y = P (σ(tk+1)). We know that there exists some ti with
tk ≤ ti such that pi = P (σ(ti)) and a = P ∗(θ(ti)). This means ‖pi−a‖ ≤ δ and a ∈ B(pi, δ),
thus a ∈ Gi. We denote the subcurve P ∗[θ(ti), θ(tj)] by Ck. Using similar argument we can
see b = P ∗(θ(tj)) for some tj > ti and b ∈ Gj . By applying Lemma 16 to the subsegment 〈ab〉
and P [i, j], there are two corners p and q of some hypercells hi ∈ Gi and hj ∈ Gj , respectively
near a and b such that Validate(〈pq〉, P [i, j]) returns ‘true’, i.e. δF (〈pq〉, P [i, j]) ≤ (1 + ε)δ.

Now let ti−1 and tj+1 be two values such that pi−1 = P (σ(ti−1)), a′ = P ∗(θ(ti−1)) and
pj+1 = P (σ(tj+1)), b′ = P ∗(θ(tj+1)). We denote the subcurve P ∗[θ(ti−1), θ(i)] which is to
the left of Ck by Lk. We similarly denote subcurve P ∗[θ(tj), θ(j + 1)] which is to the right
of Ck by Rk. Now observe that since Lk lies entirely within the cylinder of width δ around
segment P [i− 1, i], thus the shortcut 〈a′a〉 connecting the two endpoints of Lk entirely lies
within the cylinder defined. Similarly the shortcut 〈bb′〉 connecting the endpoints of Rk lies
within the cylinder defined with respect to P [j, j+1]. Note that δF (〈a′a〉, P [i−1, i]) ≤ δ and
δF (〈bb′〉, P [j, j+1]) ≤ δ, hence by another using of Lemma 16, two corner s of some hypercell
hi−1 ∈ Gi−1 and t of another hypercell hj+1 ∈ Gj+1 such that Validate(〈sp〉, P [i − 1, i])
and Validate(〈qt〉, P [j, j + 1]) return ‘true’. Now Algorithm 2 computes 〈sp〉, 〈pq〉 and
〈qt〉 in P ′ instead of LK , Ck and Rk in P ∗. Observe that the number of links in P ∗

covered by |Ck| is smaller than 1, i.e., |Ck| ≤ (k + 1) − k = 1 for all k ∈ {1, · · · ,m}. Also
realize that |Lk| = |Rk−1| for all k ∈ {2, · · · ,m}. The number of links in P ∗ is equal to
m =

∑m
k=1((k + 1)− k) >

∑m
k=1 |Ck|. Therefore, the number of links in P ′ is equal to:

m∑
k=1

(|Lk|+ |Ck|+ |Rk|) = |L1|+ |Rm|+
m∑
k=1
|Ck|+

m−1∑
k=1
|Rk|

< |L1|+ |Rm|+m+
m∑
k=1
|Rk|

Now since, P ∗ has m+ 1 vertices and every Rk covers exactly one vertex in P ∗ we have:

|L1|+ |Rm|+m+
m∑
k=1
|Rk| = 1 + 1 +m+m− 1

= 2m+ 1

as claimed. J

I Lemma 18. Algorithm 2 has runtime of O
(
ε−dn logn

(
log2(1/ε) logn+ε−(d+2)n log logn

))
.

Proof. The number of hypercells in each ball is bounded by (δ/(εδ/
√
d))d = O(ε−d).

There are n2 possible valid shortcuts pq as the corners of some hypercells in Gi and
some other Gj . Hence, we have O(ε−2dn2) shortcuts for validation process that whether
δF (pq, P [i, j]) ≤ (1 + ε)δ or not. On the other hand by Lemma 15 we speed up val-
idate procedure. The construction time takes O

(
(ε−d log2(1/ε))n log2 n

)
and its query

takes O(ε−2 log log logn) per shortcut. Having O(ε−2dn2) shortcuts, the whole valida-
tion process takes O((ε−2d+2n2 logn log logn)). Therefore the total runtime would be the
sum of construction time of the data structure of Lemma 15 and the latter one which is:
O
(
ε−dn logn

(
log2(1/ε) logn+ εd+2n log logn

))
as claimed. J

We summarize this section with the following theorem:

I Theorem 19. Let P be a polygonal curve with n vertices in Rd and δ > 0. For any
0 < ε ≤ 1, Algorithm 2 computes ‘Non-Restricted Min–#’ in O

(
ε−dn logn

(
log2(1/ε) logn+



XX:20 On Optimal Min–# Curve Simplification Problem

ε−(d+2)n log logn
))

time which returns a simplified curve P ′ that has the length at most 3m
under δ`F (P, P ′) ≤ (1 + ε)δ, where 2m+ 1 is the number of links in optimal simplified curve
P ∗ such that δgF (P, P ∗) ≤ δ.

5.1 Curve Restricted problem Under δg
F (P, P ′) in R1

We consider the curve restricted min–# problem in R1 under the global Fréchet distance .
We propose a greedy algorithm using the man-dog terminology as follows:

1. If the man and dog are staying at the same point, then let the dog go until the leash
length gets δ.

2. Let the dog drag the man by the leash of length δ. If the leash gets cut off, then move
the man to the dog’s position and go to 1. Otherwise, let man and dog continue walking
in the same pace along P by the leash of length δ. If a shorter leash is sufficient, then
let the man stay and let the dog go until the length of leash get δ and repeat 2.

3. Once the dog gets pn, let the man get pn. Return the man’s walking as P ′.

5.2 Vertex Restricted min–# Under δg
H(P ′, P )

We thicken the edges of P by amount δ. This induces a simple polygon P with (possibly)
h = O(n) holes inside it. Now all we need is to decide whether each shortcut (pi, pj)
1 ≤ i < j ≤ n lies completely within that polygon P or not. For this we proprocess P
into a data structure such that for any straight line query ray ρ originated from some point
inside the P, compute the first point on the boundary of P hit by ρ. We can use the data
structure proposed by [8] of size O(n+ h2) and construction time O(n+ h2polylogh) which
answers a query in O(logn) query time. We have n2 possible shortcuts (pi, pj) and need to
examine whether each shortcut lies inside P or not in order to store them in the edge set
of Gδ graph. We originate a ray at pi and compute a hit point x on the boundary of P hit
by the ray in O(logn) query time. All we need is to compare the length of the ray to the
length of the shortcut. If ‖pi − x‖ ≥ ‖pi − pj‖ then the shortcut lies inside P, otherwise it
does not. Once edge set of Gδ constructed, we compute the shortest path on it. As a result
we have the following theorem.

I Theorem 20. Let δ > 0 and let P be a curve with n vertices. One can compute vertex-
restricted min–# simplification under

−→
δgH(P ′, P ) in O(n2polylogn) time using O(n2) space.

6 Discussion

In this paper we considered three different variants of the min–# curve simplification prob-
lem; vertex-restricted, curve-restricted and non-restricted. For vertex restricted under global
Fréchet distance we gaveO(n4)-time dynamic programming algorithm that usesO(n3) space.
We proved that curve-restricted min–# simplification under global directed Hausdorff from
P ′ to P is NP-hard. We also gave a simple approximation algorithm for non-restricted case
under global Fréchet distance which runs slightly faster than the one in [11] in any arbitrary
dimension that guarantees an upper bound on the number of links in the simplified curve
returned by the algorithm. We also presented a linear time greedy algorithm for the curve
restricted version under global Fréchet in 1D. Solving this variant in dimensions higher than
one seems to be hard, and we leave further consideration of this problem including a possible
NP-hardness proof to future work.
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A Definition of the subcurves of P

The parameter ζ is set to 0 in the normal proof. For the extension shown in Section 4.3, ζ
is a real value such that 0 < ζ � γ � δ.

The description for r0 is different than for all ri where i 6= 0.
r0 = {r0

0, r
0
1, r

0
2, r

0
3, r

0
4, r

0
5, r

0
6, r

0
7}

where r0
0 = (0, 0)

r0
1 = (0.25γ, 0)
r0

2 = (0.5γ, 0.5γ + ζ)
r0

3 = (0.75γ, 0)
r0

4 = (0.5a1 + 0.25γ, 0)
r0

5 = (0.5a1 + 0.5γ, 0.5γ + ζ)
r0

6 = (0.5a1 + 0.75γ, 0)
r0

7 = (δ, 0)

if i 6= 0, ri also contains γ-spikes pointing upward. The polylines are defined by
ri = {ri0, ri1, ri2, ri3, ri4, ri5, ri6, ri7, ri8}
ri0 = (−4iδ − γ, 4iδ + 2iγ)
ri1 = (−0.25γ, 4iδ + 2iγ)
ri2 = (0, 4iδ + [2i− 0.5]γ − ζ)
ri3 = (0.5γ, 4iδ + [2i+ 0.5]γ + ζ)
ri4 = (0.75γ, 4iδ + 2iγ
ri5 = (0.5ai+1 + 0.25γ, 4iδ + 2iγ)
ri6 = (0.5ai+1 + 0.5γ, 4iδ + [2i+ 0.5]γ + ζ)
ri7 = (0.5ai+1 + 0.75γ, 4iδ + 2iγ)
ri8 = ([4i+ 1]δ, 4iδ + 2iγ)

mi = {mi
0,m

i
1}

where mi
0 = ([4i+ 1]δ, [4i− 1]δ + [2i− 0.5]γ)

mi
1 = ([4i+ 3]δ + γ, [4i− 1]δ + [2i− 0.5]γ)

li = {li0, li1, li2, li3, li4, li5, li6, li7, li8}
where li0 = ([4i− 1]δ + γ, [4i− 2]δ + [2i− 1]γ)
li1 = (0.5ai + 0.75γ, [4i− 2]δ + [2i− 1]γ)
li2 = (0.5ai + 0.5γ, [4i− 2]δ + [2i− 1.5]γ − ζ)
li3 = (0.5ai + 0.25γ, [4i− 2]δ + [2i− 1]γ)
li4 = (0.75γ, [4i− 2]δ + [2i− 1]γ)
li5 = (0.5γ, [4i− 2]δ + [2i− 1.5]γ − ζ)
li6 = (0, [4i− 2]δ + [2i− 0.5]γ) + ζ

li7 = (−0.25γ, [4i− 2]δ + [2i− 1]γ)
li8 = ([−4i+ 2]δ, [4i− 2]δ + [2i− 1]γ)

f i = {f i0, f i1}
where f i0 = ([−4i+ 2]δ, [4i− 3]δ + [2i− 1.5]γ)
f i1 = (−4iδ − γ, [4i− 3]δ + [2i− 1.5]γ)
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t = {t0, t1, t2, t3, t4, t5, t6, t7, t8, t9} where
t0 = ([4n− 1]δ + γ, [4n− 1]δ + [2n− 0.5]γ)
t1 = ([−4n+ 4]δ − γ, [4n− 1]δ + [2n− 0.5]γ)
t2 = ([−4n+ 4]δ − γ, [4n− 2]δ + [2n− 1]γ)
t3 = (0.25γ, [4n− 2]δ + [2n− 1]γ)
t4 = (0.5γ, [4n− 2]δ + [2n− 1.5]γ − ζ)
t5 = (0.75γ, [4n− 2]δ + [2n− 1]γ)
t6 = (0.5an + 0.25γ, [4n− 2]δ + [2n− 1]γ)
t7 = (0.5an + 0.5γ, [4n− 2]δ + [2n− 1.5]γ − ζ)
t8 = (0.5an + 0.75γ, [4n− 2]δ + [2n− 1]γ)
t9 = (B + nγ, [4n− 2]δ + [2n− 1]γ)

B Computing the x-coordinates of skip vertices

If we want to skip vertical level li we need to place a skip vertex on ri−1 such that one of
the holes between ri−1 and li, and the hole between li and ri are aligned. We can construct
lines between these holes and then intersect those lines with ri−1 to find the viable locations
for skip vertices. We will show how to compute the vertex that is on the line containing the
leftmost hole between ri−1 and li. How to compute the other location follows easily.
Each hole has the x-coordinate of the γ-spike that induces it and is exactly between two
vertical levels. So the coordinates of the leftmost hole between ri−1 and li are (0.5γ, [4i −
3]δ+[2i−1.5]γ). The coordinates of the hole between li and ri are (0, [4i−1]δ+[2i−0.5]γ).
Using a simple linear equation the function for the line between the holes is
2δ+γ
−0.5γx+ [4i− 1]δ + [2i− 0.5]γ = y

The y-coordinate of all points on ri−1 (except γ-spikes) is [4i− 4]δ+ [2i− 2]γ, so to find the
x-coordinate we need to solve
2δ+γ
−0.5γx+ [4i− 1]δ + [2i− 0.5]γ = [4i− 4]δ + [2i− 2]γ
Getting rid of the intercept on the left side of the equation we get
2δ+γ
−0.5γx = −3δ − 1.5γ
If we let z = (δ + 0.5γ) then our equation becomes

2xz
−0.5γ = −3z
Dividing by z we get

2x
−0.5γ = −3
This solves to x = 0.75γ.

Using the rightmost hole only changes the denominator of the slope of our line function
to −0.5γ − 0.5ai, making the final equation solve to x = 0.75γ + 0.75ai

Computing the x-coordinate of the vertex needed to skip a level ri is very similar. The
coordinates of the involved holes are (0, [4i−1]δ+[2i−0.5]γ) and (0.5γ, [4i+1]δ+[2i+0.5]γ)
(assuming we use the leftmost hole between ri and li+1). li has y-coordinate [4i−2]δ+[2i−
1]γ, so the equation we are solving is
2δ+γ
0.5γ x+ [4i− 1]δ + [2i− 0.5]γ = [4i− 2]δ + [2i− 1]γ
using the same steps as above this becomes
2δ+γ
0.5γ x = −δ − 0.5γ
2xz
0.5γ = −z
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2x
0.5γ = −1
x = −0.25γ
Using the rightmost hole instead makes our equation solve to x = −0.25γ − 0.25ai+1.
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