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Introduction. Consider a two-dimensional surface S with a height function h : S → R. The
Morse-Smale complex (MS-complex) of T is a topological complex that provides information
about the features of the height function on the terrain. It consists of the critical points
(minima, saddles and maxima) of h in T , together with steepest-descent paths from saddles
to minima and steepest-ascent paths from saddles to maxima. In the continuous case, the
MS-complex is well-defined if h is a Morse function: each critical point of h has a distinct
height, and certain types of degeneracies do not occur. To allow computing MS-complexes
on real-world measurement data, which typically is discrete, several extensions of Morse
functions to the discrete case have been studied. An extensive explanation of the most
prominent of those, discrete Morse theory, is provided by Forman [2]. Based on discrete
Morse theory, there have been several approaches to define discrete MS-complexes. In this
work we focus on the discrete MS-complex defined by Shivashankar et al. [3]. We present a
kinetic data structure (KDS) for this MS-complex. That is, we consider a height function h

that changes over time, and provide a data structure to track the MS-complex throughout
this movement. This can be used to efficiently analyze time-varying data.
Discrete MS-complex. The discrete MS-complex computed by Shivashankar et al. is
defined by a discrete gradient field, which is a set of gradient pairs. While gradient fields
are defined for any cell complex, to simplify the presentation, we assume here that the
input is a triangulated (two-dimensional) terrain K. In this setting, there are two types
of gradient pairs: those between vertices and edges, and those between edges and faces.
Specifically, a vertex v1 is paired with the edge {v1, v2} towards its lowest neighbor v2. (If
no neighbor lower than v1 exists, then v1 is not paired with an edge.) Furthermore consider
the triangles {v1, v2, v3} and {v1, v2, v′

3} incident to an edge {v1, v2}. This edge is paired
with the face {v1, v2, vmin} where vmin is the lowest vertex among v3 and v′

3. (If none of v3
and v′

3 are lower than both v1 and v2, then {v1, v2} is not paired to a face.) A vertex, edge
or face that is not paired with anything is called critical; critical vertices, edges and faces
are minima, saddles and maxima, respectively (see Fig. 1a–c). The ascending manifold of a
minimum v is obtained by traversing reversed gradient pairs, starting from v. The descending
manifold of a maximum v is obtained by traversing gradient pairs, starting from v.
KDS. We aim to construct a KDS to maintain the minima, saddles and maxima, and the
ascending and descending manifolds as the vertices continuously change their height. We
assume that at no point in time, three vertices have the same height. Our data structure is
inspired by the one proposed by Agarwal et al. for maintaining contour trees kinetically [1].
Like Agarwal et al. we use link-cut trees, a data structure that stores a forest of rooted trees
dynamically, supporting edge insertions and deletions. Furthermore, the root of each tree
can be set and for any vertex the root of its tree can be found. All of these operations take
logarithmic time.

To maintain the ascending and descending manifolds, we use two link-cut trees, T↓ and T↑
(see Fig. 1d). T↓ represents the vertex-to-edge gradient pairs. Specifically, T↓ contains a
vertex for each vertex in K, and it contains the edge {v1, v2} for each vertex-to-edge gradient
pair (v1, {v1, v2}). In the static setting discussed by Shivashankar et al., the ascending
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Figure 1 (a) A terrain with vertex heights; (b) vertex-edge (blue) and edge-face (red) gradient
pairs; (c) minima (blue), saddles (green) and maxima (red); (d) T↓ (blue) and T↑ (red).

manifolds are computed by a BFS starting from each minimum, traversing reversed gradient
pairs. Such a BFS corresponds to traversing one complete tree in T↓. Hence, each tree in T↓
represents an ascending manifold; we ensure that its minimum is the root of the tree.

T↑ represents the edge-to-face gradient pairs. Specifically, T↑ contains a vertex for each
face in K, and it contains the edge ({v1, v2, v3}, {v1, v2, v′

3}) for each edge-to-face gradient
pair ({v1, v2}, {v1, v2, v}). Again, as this mirrors the BFS in the static setting, each tree
in T↑ represents a descending manifold; we ensure that its maximum is the root of the tree.
Event handling. We first show how to maintain the set of vertex-edge gradient pairs; that
is, T↓. Changes in the vertex-edge gradient pairs happen because the lowest neighbor of
a vertex changes. Specifically, when the lowest neighbor of vertex v changes, v needs to
be paired with its incident edge that is now lowest. To track this information, we store a
tournament tree for each vertex v, to maintain its lowest neighbor. This tournament tree
contains v’s neighboring vertices and v itself. This leads to three types of events: the lowest
neighbor can move from one neighbor v1 to another neighbor v2 (in which case we update T↓
by deleting {v, v1} and inserting {v, v2}), the lowest neighbor can move from a neighbor v1
to v itself (in which case we delete {v, v1} from T↓), or the lowest neighbor can move from v

to a neighbor v1 (in which case we insert {v, v1} into T↓). Several such events can happen
at the same time, in which case we handle them one by one. To avoid adding cycles to T↓,
we first execute all edge deletions, and then all insertions. Similarly we maintain T↑, by
maintaining for each edge {v1, v2} which of v1, v2, v3 and v′

3 is the lowest. After an event has
been handled, we can locally determine which vertices, edges and faces in the neighborhood
are minima, saddles and maxima, respectively, and mark them as such.
Running time. Because an event influences only the neighborhood of a single vertex or face,
per event only a constant number of link / cut operations need to be carried out. Assuming the
maximum vertex degree in K is bounded by a constant, events can be processed in O(log n)
time each. Hence, if there are k changes to the MS-complex, our KDS can compute those
in O(k log n) time in total.
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