

Modelling information routing with noninterference

Citation for published version (APA):
Koolen, R. P. J., & Schmaltz, J. (2016). Modelling information routing with noninterference. In International
Workshop on MILS: Architecture and Assurance for Secure Systems, Prague, 19 January 2016
https://doi.org/10.5281/zenodo.47980

DOI:
10.5281/zenodo.47980

Document status and date:
Published: 19/01/2016

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.5281/zenodo.47980
https://doi.org/10.5281/zenodo.47980
https://research.tue.nl/en/publications/d0068168-18a7-4ccc-b2a1-8fc5780774e5

Modeling Information Routing with Noninterference

Ruud Koolen and Julien Schmaltz
Eindhoven University of Technology

{r.p.j.koolen, j.schmaltz}@tue.nl

ABSTRACT
To achieve the highest levels of assurance, systems based
on the MILS architecture need to be formally analysed. In
this, a key challenge is reasoning about the inter-domain
flow of information on a finer scale than the domain level.
In this paper, we extend Rushby’s model of noninterference
with explicit between-domain information transfer, as well
as programs that determine domain behavior. These exten-
sions enable the reasoning at an abstract level built on top of
noninterference, at a much finer level than allowed by base
noninterference. As an illustration of our approach, we for-
mally model and analyze an example system inspired by the
GWV Firewall.

1. INTRODUCTION
Formal verification of software properties is a powerful

tool for achieving the highest levels of confidence that a
piece of software behaves as desired, as codified in verifi-
cational standards such as EAL6 and EAL7 of the Common
Criteria. When applied to a system built as an instance of
the MILS architectural paradigm, this verificational problem
consists of three subproblems: in order to verify the system,
one needs to verify the behavior of the separation kernel,
the individual applications, and the allowed communication
scheme between them.

Many requirements have been proposed that formalize the
behavior of a separation kernel; examples include Rushby’s
Intransitive Noninterference [5], Greve, Wilding and Van-
fleet’s Separation [2], and many variations of these schemes.
Formalizing the behavior of individual applications, on the
other hand, is a problem for which few satisfactory ap-
proaches exist; as we have argued in a previous paper [3],
existing solutions —such as illustrated by the GWV Fire-
wall [2]— are too unrealistic to be usable for practical for-
malizations. A similar predicate holds for formalizations of
the information flow between different applications; whereas
separation kernel formalizations such as noninterference in-
clude facilities for describing the forms of communication al-

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

lowed between different applications, these mechanisms are
far too coarse-grained for many practical verificational chal-
lenges.

In this paper, we propose an extension of Rushby’s non-
interference model that makes it possible to formally reason
about the communication behavior of applications running
on top of a separation kernel proven to respect a given in-
formation flow policy. The main contribution in this model
is to extend the abstract notion of noninterference such that
the flow of information can be described on a more detailed
level than allowed by base noninterference. More precisely,
the contributions of our paper are the following:

1. In Section 3, we extend the Rushby system model with
an explicit notion of information, and the way it can
flow between domains.

2. To enable the reasoning about specific programs that
run inside domains supported by the separation ker-
nel, we introduce the notion of domain programs that
determine domain behavior in Seection 4.

3. Finally, in Section 5, we illustrate the applicability of
the extensions above by performing the formal veri-
fication of an example system, re-visiting the firewall
example originally introduced by Greve, Wilding, and
Vanfleet.

Note that all models and proofs are all formalized within the
logic of the Isabelle/HOL theorem proving system [4].

2. BACKGROUND AND RELATED WORK
A separation kernel is a simple type of operating system

that provides an environment in which multiple components,
known as domains or partitions, can run independently on
a shared piece of hardware without interference from each
other. In that sense, it is not much different from a general-
purpose operating system, which might provide the same
functionality regarding processes. Unlike general-purpose
operating systems, a separation kernel provides the further
guarantee that different partitions cannot affect each other
in any way whatsoever, except through a set of well-defined
communication channels through which influence may flow.
In the absence of such a communication channel between two
partitions, one partition should not be able to distinguish
whether the other partition is present at all. This is a much
stronger guarantee than what is implemented by general-
purpose operating systems, in which mechanisms like con-
tention of resources such as processing power and memory,

or a shared data storage system such as a filesystem, provide
ways in which influence can flow unchecked.

To support formal reasoning about systems based on sepa-
ration kernels, Rushby [5] introduced the notion of intran-
sitive noninterference as a formal model of the services and
guarantees provided by separation kernels; we present here
the formulation by Van der Meyden [7]. This automata-
theoretic formalization models a system as a set of security
domains —independent components separated to some de-
gree by the separation kernel— that can each access a certain
part of the system resources, such as a part of the memory
of the system allocated to that domain. Each of these do-
mains can perform a set of system calls, requests towards the
separation kernel to perform a certain restricted operation
that will hopefully change the state of the global system in
some way. Together, the domain-accessible resources and
executable system calls define a transition system, with sys-
tem calls identifying labelled actions, and domain resources
representing a (structured) state labelling function.

More formally, a Rushby system is a deterministic labelled
transition system (S, s0, D,A, step, O, obs), where

• S is a set of states;

• s0 ∈ S is the initial state;

• D is a set of domains;

• A is a set of actions, each representing a particular
system call performed by a particular domain;

• step : S ×A→ S is a transition function;

• O is a set of possible domain observations, and

• obs : S×D → O is a function describing the contents of
the system resources accessible to a particular domain
in a given state.1

In this definition, an action a ∈ A represents a system call
that can be performed by a particular domain d ∈ D. In
particular, each action can be performed only by a single
domain, denoted dom(a); as a notational convenience, the
set of actions a for which dom(a) = d is denoted as Ad.
The transition function step describes the way the system
state changes as a consequence of the execution of system
calls performed by domains; in particular, step(s, a) is the
resulting state after executing the action a in state s. As
such, the transition function can also be interpreted as a
deterministic transition relation →, with s

a→ t if and only
if t = step(s, a). As abuse of notation, we will also write
step(s, α) for sequences of states α, where step(s, []) = s and
step(s, a · α) = step(step(s, a), α).

The observation function obs abstractly describes the de-
gree to which a given domain can tell states of the whole
system apart. For a state s ∈ S and domain d ∈ D, the
observation obs(s, d) describes the state in s of all resources
that d has access to; consequently, if obs(s, d) = obs(t, d) for
states s and t, the states s and t are indistinguishable to d.
This will become critical when formalizing strong separation
properties.

1The obs function is the main difference between Van der
Meyden’s formulation of intransitive noninterference and
Rushby’s original. Instead of obs, Rushby uses a function
output : S×A→ O, defining an action-observed automaton
instead of a state-observed one.

ipurge′ ([], E) = []
ipurge′ (α · a,E) =

ipurge′ (α, (E ∪ {dom(a)})) · a
if dom(a) d for some d ∈ E

ipurge′ (α,E)

otherwise
ipurge (α, d) = ipurge′ (α, {d})

Figure 1: Van der Meyden’s formulation of the
ipurge function. ipurge′ (α,E) is the subsequence
of actions of α that are allowed to influence at least
one domain in E.

A Rushby system as defined above models the behavior of
an operating system of sorts in which a domain structure
can be recognized; it does not, as such, describe any guar-
antees regarding the level of domain isolation realized by the
operating system kernel.

An information flow policy is a description of the degree
and forms in which information is allowed to flow between
different security domains; in other words, it is a specifica-
tion of the degree to which domains running on a separation
kernel need not be perfectly isolated from each other. In
the noninterference model, such a policy takes the form of
a reflexive binary relation between domains, in which a
policy with d e approximately encodes the property
that domain e is allowed to learn information available to
domain d whenever domain d performs an action. In other
words, it roughly specifies that domain d is allowed to influ-
ence domain e through its actions.

To substantiate this informal property, Rushby defines a
function ipurge : A∗ × D → A∗, described in Figure 1,
that for a sequence of actions α and a domain d defines the
subsequence α′ of actions whose effects may be noticed by d
after the execution of α, according to the information flow
policy . Based on this function, Rushby defines the non-
interference property as the requirement that for all action
sequences α and β and for all domains d, if ipurge (α, d) =
ipurge (β, d), then obs(step(s0, α), d) = obs(step(s0, β), d).
In other words, if α and β are action sequences that should
have the same observable consequences for domain d accord-
ing to the information flow policy, the resulting states after
executing these action sequences in the initial state s0 should
be indistinguishable to d.

Noninterference for a given information flow policy is a
property that may or may not be satisfied by a complete
system, consisting of both an operating system of some sort
and domains running on that operating system. Noninter-
ference can be considered a property of separation kernels
if the separation kernel can guarantee that the noninterfer-
ence property always holds. That is, an operating system
can be considered a separation kernel if, for a given infor-
mation flow policy , it can guarantee that the system as a
whole satisfies the noninterference property no matter what
applications run inside particular security domains, and no
matter what these applications try to do.

Information Flow Content
The noninterference property, as described above, specifies
in formal detail the guarantees that a given application can
rely on when running as an isolated component on top of a

separation kernel. This is a great help when any attempt
is made to prove properties about the behavior of an ap-
plication in the context of a separation kernel; for in this
analysis, the behaviors of any applications that are unable
to affect the studied application can be disregarded entirely.
Domains that can affect the studied application remain a
complication, but this still greatly reduces the number of
cases to consider.

Noninterference does not provide any tools, however, for
reasoning about the detailed behavior of domains that are
allowed to influence the domain under consideration. As
an obvious example, an application domain can very rarely
function as desired if a different domain that is allowed
to influence it chooses to exercise that allowance by com-
pletely wrecking the destination domain’s working memory;
yet the noninterference property does not contain any clause
to disallow this. Meaningful cooperation between such do-
mains is only practically possible if any information ex-
change between the cooperating domains happens in the
form of some well-defined communication protocol; a typ-
ical example would be an inter-domain message passing sys-
tem as implemented by many operating systems in countless
variations. As a consequence, any domain-level formal anal-
yses of systems in which inter-domain information exchange
takes place must necessarily specify a communication pro-
tocol of some sort, and adherence thereto of the domains
involved. As noninterference by itself does not provide any-
thing like this, such a system must be specified on top of the
noninterference abstractions.

If such a system is taken for granted, it becomes possible
to reason formally about the information content transmit-
ted between domains that influence each other. If a domain
d is allowed to influence domain e, domain e is not usually
supposed to have complete access to all information accessi-
ble to d; indeed, the desire to transfer such information from
d to e in a limited way is one of the main reasons for having
d and e as two separate domains in the first place.

In practical systems, one commonly wants to achieve a situ-
ation in which a domain d transmits some of the information
it holds to a receiver domain e, while keeping other, private
information away from any domains other than itself. Con-
sequently, when doing formal analysis of systems, this is the
sort of property one would like to formally establish.

It is clear that a model describing the flow of information
content along domains would be a useful formal basis for
doing this sort of analysis. Using such a system, one could
formulate properties about the form of information transfer
that is being undertaken by particular domains. Combining
such properties with the guarantees made by the separation
kernel as formalized by the noninterference property, one
could then prove that the system as a whole, consisting of
both the separation kernel and the various domains, never
exhibits undesirable information transfer.

In this paper, we aim to develop a simple model to describe
coordinated domain information exchanges of this sort, in
a way that connects well with the guarantees delivered by
the noninterference property. We also illustrate a method
for describing the ways in which domains make use of this
system, thus specifying the behavior of domains in regards
to information transfer.

To confirm that this model, while abstract, is also suf-
ficiently detailed to express realistic system properties, we

use this model to describe the properties of a simple but re-
alistic system containing domains whose behavior depends
sensitively on the content of information transferred. This
system consists primarily of a “firewall” domain that for-
wards incoming information exchanges to destination do-
mains while satisfying certain security requirements. The
example system is reminiscent of GWV’s Firewall [2] exam-
ple; indeed, this case study can be readily interpreted as the
lifting of the GWV Firewall example to Rushby’s noninter-
ference formalization.

Related Work
As noted above, the example use case constructed as an ap-
plicability test of the communication model is in many ways
a variation of the Firewall use case studied by Greve, Wild-
ing, and Vanfleet [2] as a similar test of their own separa-
tion kernel formalization, and further studied by Rushby [6]
and Van der Meyden [1]. This use case is based on GWV’s
own formalization of separation kernel behavior, which they
call Separation; this formalization is quite different from
Rushby’s noninterference, and as a consequence the details
of the specification of the firewall behavior bear little resem-
blance to the version we use.

In [3], the authors of this paper argue that the communi-
cation model used in the construction of the GWV Firewall
is too unrealistic to be useful in describing the behavior of
practical systems; while the correctness results in [2] are cor-
rect, this is accomplished only by making assumptions on
the communication structure that no realistic system can
satisfy. As such, this paper is a counterproposal of sorts,
aiming to develop a model with a better applicability to
practical systems.

3. INFORMATION TRANSFER
In this paper, we do not attempt to specify the internal

workings of a system to communicate information between
domains in a coordinated way. Instead, we axiomatize the
way such a system is to behave, and model its effects in
a form that falls within the purview of the noninterference
guarantee.

The flows of information are a famously subtle topic; an
accurate coverage of the behavior of information, and the
ways in which activities can influence it, involve such con-
siderations as results in probability theory, information the-
ory, cryptography, and several other fields. An analysis that
takes all these matters into account would make an inordi-
nately powerful vehicle for analyzing systems in which infor-
mation flows between components. Unfortunately, formulat-
ing properties for systems or components to satisfy in such a
framework —much less actually proving them— is still too
far removed from the state of the art in formal verification to
make this a feasible approach. For this reason, we propose
a model describing the behavior of flowing information that
aims to approximate reality well enough to enable formal
verification of practical information flow properties, without
claiming to accurately take into account the full subtleties
of the problem.

Two key observations inspire the model of information and
the communication thereof that we use in this paper. The
first observation is the information-theoretically elementary
point that in full generality, information about a system can
only be acquired by interacting with that system; as long as

two systems do not interact, no information flow can occur
between them in any direction. The consequence of this
in the context of a Rushby system is that no information
transfer can happen between two domains without at least
one of these domains taking an action with communicative
consequences. In particular, it is not possible for a domain
to divine information about, or present in, another domain
without performing such an action. While a domain can of
course modify its memory in a way that resembles the state
of having information about some other domain, this cannot
have an expected accurate bearing on the state of the other
domain, and thus cannot create any information about that
domain in the information-theoretic sense.

The other observation is that in the noninterference model,
information can only flow from a domain d to domain e
through actions of d; in particular, it is not possible for
domain e to collect information from d by its own accord.
That is to say, if domain e has access to a piece of informa-
tion about domain d after successive execution of actions ad
with dom(ad) = d and ae with dom(ae) = e, the information
transfer must be modelled to have happened atomically dur-
ing execution of ad; any other model would contradict the
noninterference property.

What is more, the information flow policy behind a non-
interference property is not necessarily symmetric; that is,
it is possible for domains d, e to have d e but e 6 d.
As a consequence, communication must generally take the
form of one-way message passing, in which a sender domain
transmits information to a receiver domain without paying
much heed to the fate of this message.

Combining these observation readily yields a theory of
information in which information is a resource held by par-
ticular domains, which can then transmit this information
to other domains —in accordance with the information flow
policy— by performing actions. Domains can only acquire
information by receiving it from other domains in this way,
with one exception: each domain is presumed to at all times
have perfect information about its own state. Importantly,
this is the (only) way in which information can ever enter the
formal system; there is no other way in which information
can be synthesized from nothing.

The model sketched here can be formalized as an extension
to the Rushby formalization of operating systems. A Rushby
system with information is a Rushby system as defined in
Section 2, together with a set I of possible units of informa-
tion. In each state s, each domain d has access to a certain
set of pieces of information; and this set is part of the ob-
servation obs(s, d) that the domain can make of the state.
That is to say, for a Rushby system with information with
observation domain O, the set O has the form O = 2I ×O′;
for convenience of notation, we will just write i ∈ obs(s, d)
to denote that domain d has access to information unit i in
state s.

Each unit of information i ∈ I is presumed to describe
the state of a particular domain d, which is called the sub-
ject of the unit of information; this subject is denoted as
subject(i), for subject : I → D. Based on this notion, we
can describe the message passing semantics that character-
ize the flow of information between domains. These message
passing semantics amount to the property that information
may be transmitted through the execution of actions, from
the domain executing the action, assuming that domain has
access to the transmitted information, to arbitrary receiver

domains. Another property implied by the message passing
semantics is that a domain can never remove information
from being accessible to another domain; once a domain has
received a unit of information, it can only be deleted by a
voluntary action performed by that domain.

Interpreted in the context of the set I and observation
function obs, these semantics translate to two formal axioms
that a Rushby system with information must satisfy:

• if i ∈ obs(s, d) and a is an action such that dom(a) 6=
d, then i ∈ obs(step(s, a), d) (information may not be
removed by anyone other than the domain holding it);
and

• if i ∈ obs(step(s, a), d) and i 6∈ obs(s, d), then either
i ∈ obs(s, dom(a)), or subject(i) = dom(a) (informa-
tion transmitted by a domain is accessible to that do-
main, either inherently due to having that domain as
its subject, or due to having received this information
in the past).

Together, these axioms approximately characterize the way
information behaves when transported through a message-
passing-style communication system.

A Rushby system with information —that is to say, a Rushby
system with an information domain I and an observation
function satisfying these axioms— models an operating sys-
tem that features a well-defined inter-domain communica-
tion system. It does not, by itself, have any bearing on the
separation guarantees offered by the operating system. In
particular, it is notable that the message passing axioms do
not in any way mention the information flow policy; do-
mains can transmit information to arbitrary receivers, with
no concern for the opinion of any information flow policy in
regards to this information transfer.

From a formal point of view, the consequence of this —
by design— is that the message-passing properties and the
noninterference property are independent properties that a
Rushby system might satisfy. That is to say, the message-
passing properties over some information domain I, and the
noninterference property for some information flow policy
 , can be interpreted as orthogonal extensions to the base
Rushby system.

However, we hold that the message passing properties are
defined in such a way that the noninterference property, if
applicable, has the expected semantics when applied to the
concept of information as defined by the message passing
theory. Because both the noninterference property and the
message passing properties are defined in terms of the ob-
servation function, any restrictions offered by the noninter-
ference property regarding allowed sources of influence to
this observation function apply to message-passing informa-
tion transfer as well. In particular, if d and e are domains
such that d 6 e, any information transmission from d to e
is disallowed by the noninterference property; for if d were
to transmit a unit of information i to e through execution
of the action a, this action would modify the observation of
domain e, which is disallowed by the noninterference prop-
erty. We hold that this is exactly the desired behavior of
information in the context of noninterference.

It must be pointed out that the model of information pre-
sented here, while inspired by information-theoretical con-
cerns, does not come close to capturing the full semantics

of information that that theory dictates. In particular, this
model cannot express a situation in which a domain receives
information from different sources, combines it in a nontriv-
ial way, and transmits the combination (but not the source
material). If, for example, a domain is to receive sensitive
information from some source domain, encrypt it using some
secret key, and transmit the resulting non-sensitive cipher-
text to some receiver domain, the theory of information pro-
posed here cannot model this exchange in a sensible way.

Nonetheless, we hold that this theory of information is
an approximation of the real semantics that is sufficient to
accurately model many formal verification properties that
involve information flow across domains. In Section 5, we
support this proposition through an example verification of
an information flow property in a noninterference system
using this model of information.

4. DOMAIN PROGRAMS
In Rushby’s formalization of systems based on a separa-

tion kernel, the noninterference property describes a guar-
antee that the separation kernel makes, no matter what the
individual domains attempt to do; that is, it models domains
as black boxes with no specified behavior at all. When for-
malizing of larger systems running on top of a separation
kernel, this is only one piece out of many in the complete
formalization effort. In such a system, the individual do-
mains tend to run components that also have a well-defined
specification of their own, and the desired behavior of the
system as a whole can only come to pass if the individual
domains meet their own specifications. It follows, then, that
in order to prove properties of the system as a whole, one
first needs to prove properties regarding the behavior of the
individual domains.

At first sight, the noninterference formalization does not
seem like it can easily express any such properties. The
Rushby model of a system running an operating system ker-
nel (which may or may not be a separation kernel) defines a
transition system in which domains can perform any action
from a certain action set in any state of the system; while
the response of the kernel to this action is deterministic,
the domain action taken is not. Domains tend to run pro-
grams of some sort, that in particular system states choose
particular actions to execute, and as such are very differ-
ent from nondeterministic action-taking processes; but this
distinction does not easily fit into the Rushby model.

This semantic divide is not an actual conflict, however.
The transition system defined in Section 2 describes the way
the separation kernel responds to system calls from domains
in particular states if the domain were to issue these system
calls. As such, it does not model a complete system with
separation kernel and domain implementations; rather, it
models a platform created by the separation kernel on which
domain applications can run. To model a complete system,
one needs to provide a Rushby transition system combined
with a description of the actions particular domains choose
to take, which models the application programs running in-
side the domains the separation kernel defines.

In order to model these application behaviors, we propose
the notion of a domain program, which for a given domain
describes the actions a domain chooses to take in each state
of the system as a whole. Formally, for a domain d, a pro-
gram for d is a function P : S → Ad, that for any given state

s ∈ S defines the action P (s) with dom(P (s)) = d that the
domain d chooses to execute in state s.2

Given a program for a domain d, or indeed programs for all
domains e ∈ E for some E ⊆ D, we can study the property
that the system as a whole satisfies some requirement as long
as the behavior of the domains E is described by the programs
P . This proposition can be fleshed out as the requirement
that for all action sequences α, if each action a in α for which
dom(a) ∈ E is the action specified by the relevant program
P , the system-wide requirement holds after executing the
action sequence α.

We can formally define this scheme as follows. We say an
action sequence α = a · α′ respects a program P for domain
d in state s, if and only if

• either dom(a) 6= d, or a = P (s); and

• α′ respects P in state step(s, a).

We can then say that a property Q holds for a system run-
ning programs P1 . . . Pn, if and only if Q holds in any state
reached by executing, in the initial state s0, an action se-
quence α that respects all of P1 . . . Pn.

By combining this framework with the noninterference prop-
erty, a system characterization can be given that describes
the behavior of both the separation kernel, and the applica-
tions running in any of the domains we wish to specify. Using
this characterization, one can prove that under the assump-
tion that noninterference holds, for any action sequence that
respects the specified domain programs, the resulting state
has the desired property. We argue that this is a mean-
ingful and natural way to prove system properties based on
formal specifications of individual components. In the next
section, we demonstrate this technique by applying it to the
task of proving the correct behavior of an example firewall
system, based on properties assumed to hold for the firewall
program.

5. THE FIREWALL SYSTEM
In order to test the suitability of the theories presented in

the previous two sections for the job of compositional ver-
ification of information-handling systems, we performed a
formal verification of a simple example system. This exam-
ple system is based on GWV’s Firewall example system [2],
and like the original it is centered around a domain that
prevents certain sensitive information from reaching an un-
trusted receiver by scrutinizing the information it passes on.

The system whose global properties we seek to verify con-
sists of four components that are relevant to the security
requirements. The system is based on an operating system,
which we presume to satisfy the guarantees of a separation
kernel for some as of yet to-be-determined information flow
policy. Inside this separation kernel live a trusted domain
t, with access to sensitive information i with subject(i) = t;
an untrusted domain u; and a firewall domain f with the
responsibility of mediating any information transfers from t

2This makes a domain program a deterministic quantity: a
specific action is deterministically chosen based on the sys-
tem state. This model can easily be extended to a nonde-
terministic variant with no real consequences; in this paper,
we use the deterministic version for simplicity.

to u. We assume that t, u and f are all distinct domains3.
For this system, we want to ensure —and formally verify—
that u never gets access to i.

The system is designed around two design properties that
together ensure this security requirement. One property is
that the operation system is a separation kernel, configured
for an information flow policy such that no information flow
from t to u is possible which does not pass f . The other
property is that the firewall domain contains a program that
takes care never to forward the information i to such a do-
main that the information might reach u— a property which
we shall need to specify in further detail.

To verify the desired security requirement, we specify some
requirements that the system design informally described
above should satisfy. Based on that, we can then proceed to
prove that whenever a system meets all those requirements,
the desired security requirement should follow.

For a given information flow policy, a communication path
from a domain d to domain e is a sequence of domains
[d1, d2, . . . , dn], such that d1 = d, dn = e, and di di+1

for all i < n. A communication path contains a domain c if
di = c for some i. Using this definition, we can formalize the
requirement that no information flow from t to u is possible
that does not pass f — this property can be codified as the
proposition that no communication path from t to u exists
that does not contain f .

To describe the behavior of the firewall domain, a predi-
cate can be described regarding the program P that deter-
mines its behavior. Naively, one might try to specify the
firewall behavior as the requirement that the firewall pro-
gram P never chooses to transmit information i to domain
u; but this is unsufficient, as the firewall might instead trans-
mit the information i to a domain u′, with u′ u.

Instead, a stronger version of this property is required.
Let E ⊆ D be the set of all domains e such that a com-
munication path from e to u exists that does not contain
f . Then the behavior of the firewall domain can be fully
specified as the following requirement: as above, let P be
the program running in domain f . Then we require that for
all states s and for all domains e ∈ E, if i 6∈ obs(s, e), then
i 6∈ obs(step(s, P (s)), e). That is to say, P never chooses to
transmit the information i to any domain in E.

Together, these two properties are sufficient to prove the
desired security requirement that the information i never
reaches domain u. In more formal detail, we can prove the
following theorem:

• For a Rushby system with information I, distinct do-
mains t, u, and f , and information unit i ∈ I;

• assuming the information message passing axioms as
defined in Section 3 hold; and

• assuming noninterference holds for an information flow
policy ; and

• assuming satisfies the information flow property de-
fined above; and

• assuming P is a program for f satisfying the program
property above: then

3Though technically, the proof below still works unchanged
if t = f .

• for all action sequences α that respect P :

• it holds that i 6∈ obs(step(s0, α), u).

With the requirements defined as above, the proof of this
property is actually pretty trivial. By induction, we can
prove that i 6∈ obs(step(s0, α), e) for all e ∈ E. For α = α′ ·a,
we can recognize three cases:

• Either dom(a) ∈ E, in which case by induction i 6∈
obs(step(s0, α

′), e). From the message passing axioms
it follows that i 6∈ obs(step(s0, α

′ · a), e); or

• dom(a) = f , in which case a = P (step(s0, α
′)). By

induction we have i 6∈ obs(step(s0, α
′), e), and from

the property of P we get i 6∈ obs(step(s0, α
′ · a), e); or

• no communication path from dom(a) to e exists that
does not pass through f , which in particular means
that dom(a) 6 e. By noninterference it follows that
obs(step(s0, α

′ · a), e) = obs(step(s0, α
′), e), and thus

by induction i 6∈ obs(step(s0, α
′ · a), e).

Together these cases show that i 6∈ obs(step(s0, α), e) for all
e ∈ E, which in particular means that i 6∈ obs(step(s0, α), u).

We hold that the existence of this proof suggests that the
theories proposed in Sections 3 and 4 are sensible models
of the phenomena they describe. Certainly, it implies that
both theories are sufficiently powerful to describe the neces-
sary components in a formal verification of a system that is
reasonably realistic.

We feel that the simplicity of the correctness proof above
is a strong indication that the model of information and
domain programs used here is a fairly natural one. To fur-
ther support this claim, we codified both the theories in this
paper and the correctness proof above in the logic of the
Isabelle/HOL theorem proving system [4]; this serves the
dual purpose of both verifying the correctness of the proof,
and determining whether the proof is as simple as the paper
version above suggests. We can confirm that the proof is
both correct, and as simple as we had hoped; this in stark
contrast to the complicated technical circumlocutions neces-
sary to finish many other computer-verified proofs of system
correctness. For reference, the Isabelle/HOL proof script
making up this formalization is available on http://www.
win.tue.nl/˜jschmalt/publications/mils16/mils16.html .

6. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced a theory modeling the de-

tailed flow of information in a system based on a separation
kernel described by Rushby’s noninterference formalization.
We also described a method for specifying the contribu-
tion of domain applications to the realization of formally
verified properties. We have shown that this combination
yields a practical formal verification framework through the
case study of the verification of a variant of the GWV Fire-
wall system, in an effort backed up by the logic of the Is-
abelle/HOL theorem proving system.

One thing that remains unclear is the degree to which
the simplified theory of information used in this verification
is necessary, as opposed to basing verification on the real
information theory of which the model presented here is, ul-
timately, a crude approximation. Formalizing a verification

framework that takes into account the full tenets of infor-
mation theory, probability theory, cryptography, and related
subjects remains a daunting task, and tools for performing
actual properties on actual systems using this framework
even more so. On the other hand, if successful, such a
project could vastly expand the range of properties and sys-
tems for which formal verification is feasible, while rooting
existing verifications in ever more solid ground; the authors
shall follow any new approaches in this area with great in-
terest.

Acknowledgments
We acknowledge funding from the European Union’s Sev-
enth Framework Programme (FP7/2007-2013) under grant
agreement no 318353 (EURO-MILS project: http://www.
euromils.eu).

7. REFERENCES
[1] R. V. der Meyden. Remarks on the gwv firewall.

Available at http://www.cse.unsw.edu.au/˜meyden/
research/gwv-firewall.pdf, October 2010.

[2] D. Greve, M. Wilding, and W. M. Vanfleet. A
separation kernel formal security policy. In Fourth
International Workshop on the ACL2 Theorem Prover
and Its Applications, July 2003.

[3] R. Koolen and J. Schmaltz. Formal methods for MILS:
Formalisations of the GWV firewall. In International
Workshop on MILS: Architecture and Assurance for
Secure Systems, January 2015.

[4] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL:
A Proof Assistant for Higher-Order Logic, volume 2283
of LNCS. 2002.

[5] J. Rushby. Noninterference, transitivity, and
channel-control security policies. Technical report,
December 1992.

[6] J. Rushby. A separation kernel formal security policy in
PVS. Technical report, Computer Science Laboratory,
SRI international, 2004.

[7] R. van der Meyden. What, indeed, is intransitive

noninterference? In J. Biskup and J. LÃşpez, editors,
Computer Security âĂŞ ESORICS 2007, volume 4734
of Lecture Notes in Computer Science, pages 235–250.
Springer Berlin Heidelberg, 2007.

