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Summary

Efficient embedded context-based surveillance image and video analysis

Visual surveillance in dynamic scenes has a wide range of potential ap-
plications, such as security for important buildings and traffic surveillance
in cities and highways, detection of military targets, etc. Surveillance sys-
tems can perform automated event analysis using embedded video analysis
modules. Automated surveillance may reduce labor costs and decreases the
chance of missing an important event in one of the many videos in the system.
Smart surveillance systems should be able to at least detect and track mov-
ing objects, classify these objects and interpret their activities. Although such
systems have been widely explored, they still need improvements in terms
of reliability and robustness with respect to the semantic understanding and
interpretation of scenes. These improvements can be realized by including
contextual information in the video analysis that involves the relationship
between a scene and its enclosed objects and regions (e.g. in airport surveil-
lance, man-made objects like abandoned suitcases provide such contextual
information). Besides this, the extra context analysis should be embedded
into other algorithms, so that algorithm complexity and efficiency are im-
proved to limit system costs. This thesis exploits the use of contextual infor-
mation to achieve a better interpretation of events based on object behavior
with higher reliability and robustness, and also a higher semantic level of
scene understanding by adding contextual information about the scene it-
self. Context is explored at different levels: (1) feature information, such as
color, texture, edge, motion, (2) spatial region properties, such as salient re-
gion and semantic labeled region, (3) semantically meaningful information
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on events, like specific object behavior, such as jointly moving objects or ab-
normal behavior. We have developed multiple generic and fast approaches
(e.g. semantic region labeling, salient region detection, motion analysis) to
extract contextual information. The algorithms are designed to be embedded
as a processing block in another larger algorithm or another application (e.g.
labelled water region as context to be used in an advanced ship detection al-
gorithm). The first contributing part of this thesis in Chapter 3 aims at salient
region detection and explores four detection techniques based on various fea-
tures: (1) sum of edge pixels, (2) number of connected components, (3) num-
ber of straight lines and (4) the entropy of the frequency-domain features of a
DCT. It is shown that the proposed DCT-based salient region detection tech-
nique is a valuable approach. Subsequently, Chapter 4 considers semantic
region labeling in two distinct ways. The first option is labeling of each indi-
vidual specific region, e.g., separate approaches to label sky, water and road
regions, while the second way develops a general framework for labeling an
input scene with multiple semantic labels such as sky, road and vegetation
at the same time. The chapter concludes that developing specific algorithms
for each specific region is not adaptive to new region types and would need
to re-design a new approach for each new region type. Therefore, our re-
search study for semantic region labeling has resulted into proposing a gen-
eral framework for performing automatic semantic labeling of video scenes
by combining the local features and spatial contextual cues. We have demon-
strated that our region labeling is more accurate than a relevant proposal in
literature. Chapter 5 studies complexity of the algorithms proposed in Chap-
ter 3 and Chapter 4 in detail to evaluate possible implementation in (embed-
ded, real-time) video systems. The performed complexity analysis method
is based on counting native DSP operations and memory transfers assuming
a basic RISC CPU as a reference model. It is concluded from Chapters 3, 4
and 5 that the proposed contextual information extraction methods quanti-
tatively and qualitatively outperform state-of-the-art approaches in accuracy
while having a lower complexity, making these methods valuable. The last
thesis part covered in Chapter 6 presents four use cases where the proposed
techniques are validated by applying them into multiple complex surveil-
lance situations. First, the detection of moving ships in harbor surveillance
uses the semantic region labeling approach from Chapter 4 and combines
motion context information to detect moving ships reliably and in a robust
way in port surveillance videos. Second, the recognition of traffic action em-
ploys our region labeling algorithm from Chapter 4 and combines automatic
traffic-sign information, to recognize actions in traffic surveillance video. It is
proven that the proposed traffic action recognition system evaluations works

ii



well for the dataset at hand due to the considerable testing of the individual
components and the relative simplicity of the decision engines for the sce-
nario content. Third, detection of moving cars in traffic surveillance involves
two sub-cases to detect moving cars in traffic surveillance videos. In the first
sub-case, the semantic region labeling algorithm from Chapter 4 is combined
with motion information. We show that our system with more context infor-
mation does not generate false positive vehicles and misses fewer occluded
cars, compared to literature. In the second sub-case, our DCT-based salient
region detection technique from Chapter 3 is again combined with motion
information. It is indicated that, although the detection rate is somewhat re-
duced, the proposed framework leads to a better selective usage of a compu-
tationally expensive car detector, thereby making the approach more efficient.
Fourth, fast abnormal event detection is explored with a novel block-based
approach based on analyzing the pixel-based motion context, as an alterna-
tive for the conventional object-based approach. We have discovered that the
entropy of the DCT-transformed motion magnitude is a reliable measure for
classifying whether the current activity in the video is normal or not. Our
framework is generic and does not depend on the type of scene. At the end
of Chapter 6, we compare our region labeling with a recently developed re-
gion labeling system based on emerging deep learning technology. By apply-
ing the algorithms to two different datasets, we conclude that our algorithm
performs -as expected- on the average slightly lower than deep learning, but
with a lower computational complexity. Overall, the use cases provide evi-
dence that embedded context information helps to obtain a better semantic
event interpretation occurring in a monitored space.

In conclusion, this thesis shows that contextual information is not com-
plicated to extract from a surveillance video, while it adds significant value
to automated surveillance analysis, or it enables automated analysis of com-
plicated scenarios that were previously not possible or too expensive with
conventional object techniques. The presented concepts of using context in-
formation at different levels offer a higher level of understanding or a better
robustness. Emerging technologies for better context extraction in the fu-
ture can be based on thermal infrared sensing. With respect to algorithm
development, it is evident that deep learning and convolutional neural net-
works (CNNs) are playing already an important role for making surveillance
systems more intelligent and robust, but the embedding complexity aspects
and efficiency of these new tools clearly require further study to limit system
costs.
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Samenvatting

Visuele bewaking in dynamische scènes heeft een breed scala aan mogelijke
toepassingen, zoals beveiliging van belangrijke gebouwen en verkeerssur-
veillance in steden en snelwegen, detectie van militaire doelen, enz. Surveil-
lancesystemen kunnen geautomatiseerde analyses uitvoeren op gebeurtenis-
sen met diverse ingebedde videomodules. Geautomatiseerd toezicht kan de
arbeidskosten verlagen en verkleint de kans op het missen van een belang-
rijke gebeurtenis in een van de vele video’s in het systeem. Slimme bewa-
kingssystemen moeten op zijn minst bewegende objecten kunnen detecteren
en volgen, deze objecten kunnen classificeren en hun activiteiten kunnen in-
terpreteren. Hoewel dergelijke systemen uitgebreid zijn onderzocht, hebben
ze nog steeds verbeteringen nodig t.a.v. de betrouwbaarheid en robuustheid
van de semantische interpretatie van scènes. Deze verbeteringen kunnen
worden gerealiseerd door contextuele informatie op te nemen in de video-
analyse die betrekking heeft op de relaties tussen een scène en de daarin aan-
wezige objecten en gebieden (bijv. bij luchthavenbewaking geven de mens-
gerelateerde objecten zoals verlaten koffers dergelijke contextuele informa-
tie). Daarnaast moet de extra contextanalyse worden geı̈ntegreerd in andere
algoritmen, zodat de complexiteit en efficiëntie van de algoritmen worden
verbeterd en systeemkosten worden beperkt. Dit onderzoek gebruikt con-
textinformatie om een betere interpretatie van gebeurtenissen te bereiken op
basis van objectgedrag met een hogere betrouwbaarheid en robuustheid, en
ook om een hoger semantisch niveau van scènebegrip te krijgen door contex-
tuele informatie over de scène zelf toe te voegen. Context wordt op verschil-
lende niveau’s verkend: (1) functie-informatie, zoals kleur, textuur, vorm,
beweging, (2) eigenschappen van beeldgebieden (regio’s), zoals contrastrijke
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textuur en semantisch gelabelde gebieden, (3) semantisch zinvolle informa-
tie over het gedrag of gebeurtenis, zoals specifiek objectgedrag (bijv. geza-
menlijk bewegende objecten of abnormaal gedrag). Er zijn verscheidene ge-
nerieke en snelle algoritmen ontwikkeld (bijv. semantisch regiolabelen, de-
tectie van opvallende regio’s, bewegingsanalyse) om contextuele informatie
te extraheren. De algoritmen zijn ontworpen om te worden ingebed als een
verwerkingseenheid in een groter algoritme of een andere toepassing (zoals
gelabeld watergebied als context voor een geavanceerde detectie van sche-
pen). De eerste bijdrage van dit proefschrift in Hoofdstuk 3 richt zich op
de detectie van opvallende gebieden en onderzoekt vier detectietechnieken
op basis van verschillende kenmerken: (1) som van de pixels op een objec-
trand, (2) aantal verbonden componenten, (3) aantal rechte lijnen en (4) de
entropie van de frequentiekarakterisatie met een DCT. Er wordt aangetoond
dat de DCT-gebaseerde detectietechniek voor opvallende regio’s een goede
benadering is. Vervolgens wordt in Hoofdstuk 4 het semantisch regiolabe-
len op twee verschillende manieren beschouwd. De eerste optie is het labe-
len van elk afzonderlijk gebied, bijv. door afzonderlijke labels te geven voor
lucht-, water- en wegregio’s, terwijl de tweede manier een algemeen kader
ontwikkelt voor het labelen van een scène met verschillende semantische la-
bels zoals lucht, weg en vegetatie op hetzelfde tijdsmoment. De conclusie
is dat het ontwikkelen van specifieke algoritmen voor elke aparte regio niet
geschikt is voor nieuwe gebieden, omdat voor elk nieuw regiotype opnieuw
een ontwerp nodig is. Daarom heeft het onderzoek voor het markeren van
semantische regio’s geleid tot een algemeen kader voor het uitvoeren van au-
tomatisch labelen van gebieden in videoscènes, waarbij de lokale kenmerken
en spatiële contextuele aanwijzingen worden gecombineerd. Het is aange-
toond dat deze methode voor labelen van regio’s nauwkeuriger is dan een
relevant voorstel uit de literatuur. Hoofdstuk 5 bestudeert in detail de com-
plexiteit van de algoritmen die zijn ontworpen in de Hoofdstukken 3 en 4
om mogelijke implementatie in (ingebedde, real-time) videosystemen te eva-
lueren. De uitgevoerde methode voor complexiteitsanalyse is gebaseerd op
het tellen van intrinsieke DSP-bewerkingen en acties voor geheugenopslag,
met een standaard RISC-CPU als referentiemodel. Uit de Hoofdstukken 3,
4 en 5 wordt geconcludeerd dat de ontworpen methodes voor contextuele
informatie-extractie kwantitatief en kwalitatief beter presteren dan de gepu-
bliceerde algoritmen qua nauwkeurigheid, terwijl ze een lagere complexiteit
hebben. Het laatste deel van het proefschrift in Hoofdstuk 6 beschrijft vier ge-
vallen waarin de ontwikkelde technieken gevalideerd worden door ze toe te
passen in diverse complexe surveillance-situaties. In het eerste geval gebruikt
de detectie van bewegende schepen in havenbewaking het semantische regi-
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olabelen uit Hoofdstuk 4 en combineert bewegingsinformatie als context om
bewegende schepen betrouwbaar en op een robuuste manier te detecteren
in bewakingsvideo’s. Het tweede geval over verkeersgedrag exploiteert het
ontworpen regiolabelen uit Hoofdstuk 4 en combineert dit met automatisch
gevonden verkeersbordinformatie om gedrag in een bewakingsvideo te her-
kennen. Experimentele evaluaties tonen aan dat de herkenning van verkeers-
gedrag goed werkt voor de betreffende dataset vanwege het intensief testen
van de afzonderlijke componenten en de relatieve eenvoud van de beslis-
singseenheid voor gedragsanalyse. Het derde geval omvat het detecteren van
bewegende auto’s bij verkeerscontrole met daarin twee deelgevallen om be-
wegende auto’s te detecteren in verkeersbeveiliging. In het eerste deelgeval
wordt het algoritme voor het markeren van semantische gebieden uit Hoofd-
stuk 4 gecombineerd met bewegingsinformatie. Het systeem met meer con-
textinformatie genereert geen foute voertuigdetecties en mist minder auto’s
die nog niet waren gedetecteerd, in vergelijking met systemen uit de litera-
tuur. In het tweede deelgeval wordt de DCT-gebaseerde methode voor regi-
odetectie uit Hoofdstuk 3 opnieuw gecombineerd met bewegingsinformatie.
Hoewel de detectiesnelheid enigszins is verlaagd, leidt het nieuwe voorstel
tot een beter selectief gebruik van een rekenintensieve detectie, waardoor het
geheel efficiënter wordt. Als vierde geval wordt een snelle abnormale gebeur-
tenis gedetecteerd met een nieuwe, blokgebaseerde aanpak met daarin het
analyseren van de pixelgebaseerde bewegingscontext, als een alternatief voor
de conventionele objectgebaseerde benadering. Er wordt gevonden dat de
entropie van de DCT-getransformeerde bewegingswaarde een betrouwbare
maat is om te classificeren of de huidige activiteit in de video normaal is of
niet. Het ontwikkelde systeem is generiek en hangt niet af van het type scène.
Aan het einde van Hoofdstuk 6 wordt het ontworpen regiolabelen vergeleken
met een vergelijkbaar nieuw ontwikkeld systeem op basis van Deep Learning
technologie door de algoritmen toe te passen op twee verschillende datasets.
De conclusie is dat het algoritme uit het onderzoek –zoals verwacht– gemid-
deld iets lager scoort dan Deep Learning, maar met een lagere rekenkundige
complexiteit. Over het algemeen leveren de onderzochte situaties het bewijs
dat inbedden van contextinformatie helpt bij het verkrijgen van een betere
semenatische interpretatie van de gebeurtenissen in een bewaakt gebied.
indent Concluderend laat dit proefschrift zien dat contextuele informatie niet
ingewikkeld is om te extraheren uit een bewakingsvideo, terwijl het signi-
ficante waarde toevoegt aan geautomatiseerde surveillance-analyse. Daar-
naast maakt het geautomatiseerde analyse van ingewikkelde scenario’s mo-
gelijk die voorheen niet mogelijk waren of te duur zijn voor een conventio-
neel herkenningssysteem. De gepresenteerde concepten voor het gebruiken
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van contextinformatie op verschillende niveau’s bieden een hoger begripsni-
veau of een betere robuustheid. Opkomende technologieën voor een betere
extractie van context in de toekomst kunnen gebaseerd zijn op thermische in-
fraroodcamera’s. Met betrekking tot de ontwikkeling van algoritmen, is het
duidelijk dat Deep Learning en convolutionele neurale netwerken (CNN’s) al
een belangrijke rol spelen om surveillancesystemen intelligenter en robuuster
te maken, maar de complexiteitsaspecten en de efficiëntie van deze nieuwe
technieken moeten duidelijk verder worden bestudeerd voor het begrenzen
van de systeemkosten.
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1

Introduction

1.1 Potential of embedded context-based automatic image
and video analysis

Visual surveillance in dynamic scenes using video analysis has a wide range
of potential applications, such as industrial inspection for manufacturing,
disease surveillance in healthcare, security for infrastructures and important
buildings, traffic surveillance in cities and highways, detection of military tar-
gets, etc.

Video surveillance has been a key component in ensuring security at air-
ports, banks, casinos and correctional institutions. Recently, governmental
agencies, businesses and even schools are turning towards smart video surveil-
lance systems as a means to increase public security. The objective of smart
video surveillance is to alert police or security officers in case there is any
dangerous or suspicious event occurring in a location under video surveil-
lance. Automated video surveillance systems reduces labor costs so less hu-
man operators have to observe many video feeds simultaneously. Further-
more, the chance of missing an important event in one of the many surveil-
lance videos among the huge amount of information contained in parallel
viewing of video channels is decreased. To substitute human operators by
a smart video surveillance system, such system should be able to take de-
cisions autonomously by means of video analysis so as to decide in which
situation an alert should be provided in real-time. For reliable decision mak-
ing, video surveillance systems need to include accurate and reliable video
analysis techniques to correctly interpret events in surveillance scenes. Al-
though there have been substantial advances in this field, there is still a need
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for improving the existing systems in terms of reliability and robustness with
respect to event interpretation and a real semantic understanding of scenes.

Adding extra information about objects and/or scenes can lead to a bet-
ter classification and understanding of events occurring in the surveillance
scenes and thereby the reliability and robustness of the systems can be im-
proved. For example, a car detected in a parking place is a normal situation,
whereas a car standing on tramway rails is a reason to raise an alarm. In this
example, the rails are static object information from the surroundings acting
as contextual information. Such extra information leads to a better classifica-
tion and understanding of events occurring in the surveillance scenes and is
referred as contextual information.

Contextual information is defined based on the relationship between a
scene and objects/regions within that particular scene. Experiments in scene
perception have shown that the human visual system makes extensive use
of these relationships for facilitating object detection and scene understand-
ing [1]. Inspired by this concept, the overarching objective of developing
context-based automatic surveillance systems is that the systems take the re-
lationships between the scene and the objects (i.e. contextual information)
into account. The potential benefit is that a higher level of object detection
and scene leading to an improved event understanding. This is a challenging
aspect which is not often considered in research and most current approaches
are not designed to make use of contextual information.

Context-based image and video analysis algorithms can be embedded as
a processing block in another larger algorithm or another application. For ex-
ample, a context-based region labelling algorithm that is used to semantically
label water region, can be embedded and used in a larger ship detection algo-
rithm. Such algorithms or systems are referred to as embedded context-based
algorithm or systems.

1.2 Key aspects of embedded context-based automatic
surveillance image and video analysis

A typical context-based video surveillance system may comprise several cam-
eras, recording equipment and screens for visualization of the video streams
to the security operators. An overview of such a system is shown in Fig-
ure 1.1. A brief description of each part is provided as follows:

• Network and Image/Video Data Storage. Several cameras are connected to
the system via a network so that the generated videos are transferred to
the system and may be stored in large databases for later retrieval.

2



1.2. Key aspects of embedded context-based automatic surveillance image
and video analysis

• Video Analysis. To enable the automated processing of video streams
from surveillance cameras, context-based video analysis algorithms pro-
cess the video stream in (near) real-time and extract objects and scene-
related information. Processing context information can play a useful
role in object and region detection by reducing the number of object
categories and positions that need to be considered.

• Metadata. The output of context-based video analysis algorithms is stored
along with the video data and is called metadata: semantic information
about the video.

• Output. The output of video surveillance systems can be alarming sig-
nals which alert security officers in case of alarming situations identified
by a context-based decision making system. In addition, information re-
lated to the object/regions can be provided to the operator for further
analysis of the scenes.

Note that the context-based video analysis algorithms are embedded inside
the security system in Figure 1.1. We want to remark that the physical location
of these analysis algorithms is not important. They can operate on a central
processing server or be embedded inside the cameras, or even distributed. In
practice, this will be often a hybrid solution.

An example of a context-based surveillance system is a traffic surveil-

Figure 1.1: Typical video surveillance system setup.

lance analysis system. In such system, traffic signs and zebra-crossing regions
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can be detected by the “Context-Based Object / Region Detection” step in Fig-
ure 1.1 as contextual information. Additionally, a group of people and possi-
bly other moving objects such as moving cars can be detected. The exploited
information can be provided to the decision making step, i.e. “Context-Based
Decision Making”, in Figure 1.1 to make a decision whether or not an alarm-
ing signal should be provided.

1.2.1 General challenges in context-based image and video
analysis

Extracting contextual information and exploiting this information to correctly
detect regions and interpret actions in surveillance scenes contain multiple
challenging aspects. The first challenge involves the definition of contextual
information, since this can be interpreted in multiple ways. It is evident that
context indicates a form of side information that is added to the object of in-
terest. For a car on a crossing, this could be e.g. a traffic sign or the road
upon which it is driving. The side information is then of help in assessing the
regular or irregular behavior of the car or point to a traffic event. In the the-
sis, several forms of side or context information will be explored. The second
challenge involves developing reliable and robust algorithms for extracting
the side information from a surveillance video. For example, for a car on a
crossing, appropriate algorithms should be used/developed to detect objects
i.e. car, traffic signs and road. The third challenge involves exploiting the
extracted information to improve the semantic understanding of the scenes.
For example, the detection of traffic signs near a detected car on a road ex-
plains whether or not an illegal action is occurring in the scene. Finally, it is
challenging to develop generic frameworks which can be scene independent.
A generic algorithm should be able to analyze different scenes with different
objects e.g. moving cars in roads and moving ships in water. In designing
algorithms to address the above-mentioned challenges, it is important that
the algorithms are efficiently implemented, so that they can be embedded in
(near) real-time systems.

1.2.2 Research Scope of the present thesis

To address the first challenge, i.e. to find out which information is the most
informative context information in outdoor surveillance scenes, our research
defines the regions based on their saliency and semantic meaning which de-
pends on the application. For example, regions containing man-made objects
such as abandoned suitcases in airports can be considered as a region with
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high saliency. Additionally, it is proposed that regions can be labeled seman-
tically such as water, road and sky, etc., which are the most common regions
in outdoor scenes can be defined. Region analysis is applied in two ways:
(1) to detect an arbitrary region in an image for general purposes, or (2) to be
embedded in another larger algorithm or an application as side or contextual
information. In addition to region-level information, low-level features are
also explored such as motion context at pixel level, in order to achieve a bet-
ter scene understanding. For example, for detecting moving ships in harbor
surveillance applications, motion features and region information (e.g. water
regions) provide contextual information. In this example, information is cat-
egorized at the pixel (motion) and region (water) levels.

To address the second challenge, i.e. to choose algorithms for extracting
the information, it is desired to create models that are scalable in computa-
tional complexity, while maintaining a good recognition performance. In our
research our emphasis will be on developing reliable and robust algorithms
with low computational complexity. To achieve the robustness, the proposed
approaches are designed independently of the scene and in order to achieve
low computational complexity simple algorithms are fused into our designs.

To work out the third general challenge, i.e. to exploit the extracted infor-
mation, semantically meaningful relations between the extracted information
are taken into account . For instance, in the example of ship detection a se-
mantically meaningful concept is that moving ships are recognized by salient
motions within water regions because logically speaking ship movements are
not expected outside of water regions.

To address the last challenge, i.e. developing generic frameworks, this
thesis focuses on providing solutions, which are based on common aspects in
various surveillance scenes. For example, the proposed solution for moving
ship detections can be applied to moving cars in road regions.

Summarizing, it is within the scope of our research to develop reliable and
robust algorithms that are generic and have low computational complexity
for extracting and exploiting categorized contextual information in surveil-
lance video analysis.

As a technical consequence of our research scope, we account for con-
textual information in static background (road, sky, etc.) and moving back-
ground (water). Additionally, information at multiple layers of regions are
taken into account as side information. For example, zebra crossings and
traffic signs are accounted for as supplementary, informative layers of road
regions. As such in some of the research cases we design algorithms that can
be embedded in another application.
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1.3 Specific problem statement

The above observations regarding the context-based surveillance scene un-
derstanding motivate the problem statement of this thesis, which can be sum-
marized as follows.
It is our objective to develop techniques to provide contextual information derived
from surveillance videos and images, using generic solutions or solution architec-
ture that can handle variations in a given scene. The adopted techniques are suited
for (near) real-time applications and can be quickly reconfigured and reused for new
surveillance-related applications.

To achieve our objective, contextual information should be defined, cat-
egorized and embedded in a solution architecture or in frameworks. The
algorithms should be analyzed in terms of computational complexity. The
performance of the frameworks should be analyzed for real applications. To
this end, the specific Research Questions (RQs) for this thesis are formulated
as follows.

RQ1 : Categorization of contextual information
As explained above, contextual information can be extracted at different lev-
els from scenes. It is, however, not sufficiently explored which levels can be
used for extracting contextual information. Therefore, our first question is:

• RQ1 : How do we define and categorize contextual information for outdoor
surveillance video applications?

RQ2 : Detection of features in video surveillance
Detection and labeling of regions are key aspects in analyzing and under-
standing of surveillance videos. It is, however, unclear how salient regions
and semantically labeled regions can be used to improve surveillance scene
understanding. We therefore ask the following questions:

• RQ2a : How can salient regions detection and semantic regions labeling be
used for surveillance applications?

• RQ2b : Which approaches perform better in terms of accuracy for salient re-
gion detection and for semantic region labeling?

RQ3 : Computational complexity
For (near) real-time applications, it is important that the developed algo-
rithms have low computational complexity. For the analysis of the compu-
tational complexity of the algorithms, we ask the following questions:

• RQ3a : How is the computational complexity of algorithms estimated?
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• RQ3b : Are salient region detection and semantic region labeling methods
developed in this thesis feasible for (near) real-time applications with respect to
complexity and do they differ from available methods in the literature in terms
of computational complexity?

RQ4 : Surveillance video applications
It is important to investigate whether the theoretical concepts and methods
developed in this thesis are applicable and make difference in real surveil-
lance applications. Accordingly, we eventually pose questions:

• RQ4a : Are detecting salient regions and labeling of regions with semantically
meaningful labels feasible in practical surveillance applications?

• RQ4b : In which cases and scenarios does the use of contextual information
contributes to obtain more reliable and robust surveillance systems in practice?

1.4 Contributions

In this section we review the contributions of this research for each chapter.

• Contributions to salient region detection
In our research we have explored the salient regions as a support of con-
text information. These regions provide information about surrounding
regions of objects. We have analyzed a number of simple, fast salient
region detection techniques based on various features, such as sum
of edge pixels, number of connected components, number of straight
lines found by the Hough transform and the entropy of Discrete Co-
sine Transform (DCT) coefficients. We have found that the DCT-based
technique provides better results compared to the other salient detec-
tion techniques. We have shown that the performance of our DCT-
based salient region detection technique outperforms with a relevant
approach in the literature.

• Contributions to semantic region labeling
We have introduced semantic labeling of specific regions and generic
region labeling approaches.
On the subject of semantic labeling of specific regions, we have pre-
sented our research on detecting three specific regions which occur most
frequently in an outdoor scene, i.e. sky, water and road. In particular,
in our road detection approach, we avoid using color and texture prop-
erties and design a novel road detection technique based on two parts:
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(1) heat map-based motion analysis and (2) straight line detection.
On the subject of generic region labeling, our major contribution is in-
troducing a generic framework based on spatial context (in our case
vertical position information) for labeling regions. We have introduced
two models for generic framework: (1) gravity-based and (2) Global Re-
gion Statistics (GRS)-based models. Furthermore, we have compared
the region-labeling performance of our semantic region labeling ap-
proaches with a relevant approach in the literature and we concluded
that our gravity-based region labeling is more accurate than the other
approaches.

• Contributions to complexity analysis
We have applied complexity analysis method based on counting native
DSP operations and memory storage actions with a basic RISC CPU as
a reference model. We have analyzed computational complexity of our
DCT-based salient region detection and gravity-based semantic region
labeling approaches. In our analysis, we have estimated the complexity
of the developed algorithms to show that our algorithms are not only
offering accurate region analysis, but also execute with low complex-
ity, to support application in (near) real-time and embedded systems.
We have compared the computational complexity of our DCT-based
salient region detection and gravity-based semantic region labeling ap-
proaches with the relevant salient region detection and semantic region
labeling approaches in the literature. Our complexity estimation indi-
cates that our salient region detection and semantic region labeling ap-
proaches are feasible for (near) real-time applications with respect to
complexity.

• Contributions in surveillance applications
We have contributed with several use cases, i.e. moving ship detec-
tion in port surveillance, traffic action recognition, moving car detec-
tion from traffic surveillance videos and fast abnormal event detection.
The contributions of context are very different in these cases. For ex-
ample, in port surveillance, the detection of the water region as con-
textual information can help detect ships, because ships can only travel
within the water region. In another example in traffic action recogni-
tion for safety, the presence of a zebra crossing along with the traffic
signs provide contextual information to identify people who cross the
road in safe locations. Furthermore, we have compared our gravity-
based region labeling with a recently developed region labeling sys-
tem [2] which is based on emerging deep learning technology. We have
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demonstrated that the accuracy of deep learning-based and our gravity-
based semantic region labeling approaches are comparable. Although
the deep learning approach is more accurate, it is also known to be
clearly more complex.

1.5 Outline and scientific background

This section provides an outline of the main chapters of this thesis and the re-
lated publication background. A schematic breakdown of the thesis chapter
organization is depicted in Figure 1.2. Chapter 2 provides a technical intro-
duction to context categorization and extracting contextual information from
different levels of a scene, i.e. pixel, region/object and scene. The following
Chapters 3, 4 and 5, present contributions and algorithms to each of these
three areas. We have summarized several surveillance applications using one
or another form of context in Chapter 6. Finally, conclusions and future work
are presented in Chapter 7. The individual chapters are summarized below
with their publication history.

Figure 1.2: Schematic breakdown of the thesis chapters.

Chapter 2. This chapter presents an introductory overview of techniques
for the image/video scene understanding. The chapter introduces several
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levels of scene understanding, i.e., pixel, region/object, context and scene
levels. Also, it reviews the state-of-the-art approaches to extract information
at the introduced levels.

Chapter 3. This chapter describes our research on scene analysis, namely
on detecting salient regions for outdoor surveillance video. We introduce four
salient region detection techniques, which are based on sum of edge pixels,
number of connected components, the number of straight lines found by the
Hough transform and the entropy of DCT coefficients. The experimental re-
sults show that our DCT-based approach outperforms a known approach in
the literature. The findings of this chapter are published in Int. Symp. Info.
Theory Benelux (2014) and IEEE Trans. on CE (2017).

Chapter 4. This chapter addresses our work on research on region labeling
for outdoor surveillance applications. Besides our specific region labeling, we
introduce the gravity-based and GRS-based models as generic region label-
ing approaches. Experimental results indicate that our gravity-based model
gives the best results and outperforms other similar approaches. The work
from this chapter is based on publications in Int. Wksh. Comp. Vision. Appl.
(CVA) (2011), Int. Symp. Info. Theory Benelux (2014), Netherlands. Conf. on
Comp. Vision. (2014), IEEE Trans. on CE (2017) and Proc. Int. Conf. Con-
sume. Electron. (2017)

Chapter 5. This chapter investigates the complexity analysis of the pro-
posed approaches for DCT-based salient region detection and gravity-based
semantic region labeling approaches. Experimental results highlight that both
approaches presented and discussed in this study are suitable for real-world
applications in surveillance videos. The results of this chapter were used for
publication in IEEE Trans. on CE (2017) and Proc. Int. Conf. Consume. Elec-
tron. (2017).

Chapter 6. This chapter outlines different surveillance applications that
are constructed using the contextual extraction algorithms from the previous
chapters. Example applications are the traffic action recognition, the detec-
tion of cars from a moving vehicle with a constantly varying background and
active ship tracking in a harbor with a PTZ camera. The final application im-
plements abnormal event detection from video surveillance. The applications
discussed in this chapter were published in IEEE Trans. on CE (2017), SPIE
Journal Electronic Imaging (2015), Book Chapter in Emerg. Res. on Net. Mul-
timed. Comm. Sys. (2015), Proc. Int. Conf. on Img. Proc. Compt. Vis. Patt.
Recog. (IPCV) (2012), the IEEE AVSS Conf. (2013) and Netherlands Conf. on
Comp. Vision (2014).

Chapter 7. This chapter sums up the most important findings of the thesis
and summarizes the obtained results for the different research questions. It is
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discussed that a smart choice and combination of simple techniques can lead
to high-quality results, which even outperform more expensive and complex
techniques.
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2

Technology overview

2.1 Introduction

Smart surveillance systems should be able to at least detect and track moving
objects, classify these objects and interpret their activities. A large number
of surveillance systems have been proposed in recent years. These systems
still need improvement in terms of reliability and robustness with respect
to event interpretation and a real semantic understanding of scenes. Scene
understanding methods proposed in the literature are mostly based on con-
sidering objects in isolation from the surrounding scene. Some studies have
focused on the concept of scene understanding based on contextual informa-
tion present in the scene. Here, we review various types and levels of the
context as well as feature extraction techniques for contextual information,
and provide a summary of different types of context into meaningful cate-
gories.

2.1.1 Surveillance objects, background and understanding

Improvement in surveillance systems can be realized by adding additional
information about objects and/or scenes, so that a better classification and
semantic understanding is achieved. This extra information is typically the
context of the behavior of objects or specific information captured from the
scene. This thesis aims at exploiting contextual information in two ways: (1)
to help to better interpret events based on object behavior with higher reli-
ability and robustness, (2) obtaining a higher semantic level of scene under-
standing by adding contextual information about the scene itself.
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Although it is present in scenes, the automated interpretation of the events
and associated object detection in a monitored space is typically completely
based on object detection and recognition, while the contextual information
e.g. about the surroundings of the objects is overlooked. For example, a car
detected on a parking place is a normal situation, whereas a car standing on
tramway rails is a reason to raise an alarm (see Figure 2.1).

Figure 2.1: Using context to interpret the scene (the key aspect here is the entering
location of the car on the public road).

In this example, the rails are static object information from the surround-
ings acting as contextual information. The benefit is that a higher level of
understanding about the crossing car is obtained. In this case, a better under-
standing of the surrounding elements is achieved in addition to the object de-
tection of the car, jointly leading to an improved scene understanding. When
generalizing the previously discussed case for general objects, this discussion
results into a schematic diagram as presented in Figure 2.2. The key of this
figure is that besides to object detection a structural approach is existing to
look to the surrounding information leading to semantic understanding and
automatic decision making.

2.1.2 Different levels of understanding

It is important to acknowledge that scene understanding can be applied at
several levels. The natural and basic level of scene understanding is at pixel
level, such as motion. Just by analyzing the motion, an understanding of the
scene is obtained, such as distinguishing between a static background and a
moving foreground.
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Figure 2.2: Schematic view of context-based surveillance image and video analysis.

Furthermore, by analyzing different image features, background informa-
tion can be detected which may lead to a higher level of scene understanding.
This background information can consist of regions and/or objects and they
are further analyzed to understand the scene. Example of this level of scene
understanding is the work of Hazelhoff et al. [3]. They proposed an automatic
traffic sign detection for improving the traffic scene understanding because a
traffic sign supplies important information about the scene. For example, a
parked car which is detected together with a forbidden parking sign leads to
detecting an illegal situation. Alternative to object detections like traffic signs,
we can also perform region analysis of the background, which aims at find-
ing arbitrary or specific regions. For example, a parked car which is detected
together with a detected road and building regions lead to the understand-
ing that the car is outside of the public domain. Region analysis for extracting
background information is one of the main focus of the areas of this thesis [4].

A higher level of scene understanding can be obtained by including con-
textual information from the object surroundings in the scene. The work
of Creusen and Hazelhoff [5] combined the use of traffic signs at the object
level and road markings at the background level, to improve the reliability
of the traffic scene understanding. In this thesis the different levels of back-
ground information are exploited. This background information can be used
in stand-alone fashion such as classifying an input scene by labeling each re-
gion. An alternative case with object-of-interest detection where the classified
scene and other background information can be used as context for the object
detection. Since context is one the key aspects in this thesis to understand
surveillance scenes, different levels of contextual information are exploited
and will be further discussed.

The highest level of scene understanding can be reached by event analysis
which includes not only the objects but also their behaviour. In such a case,
by definition we have the objects of interest and our background can contain
additional objects and also regions at the same time. This general case may
lead to a very intelligent behavioral understanding of the scene. In fact, this
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highest level can involve several types of objects and also one or more regions
to indicate where the specific behaviour is taking place. For example, in or-
der to judge if a crossing group over a street indicates a dangerous situation,
we need to detect the street (at region level), the group of people (object of
interest) and an approaching a car as our contextual information. Thus, for
scene understanding it is not strictly defined how much analysis is needed,
as this depends on the application. This level is also further discussed in this
thesis [6].

Table 2.1 illustrates different levels of surveillance scene understanding
for embedded systems which are considered in this thesis. The table shows
the levels of scene understanding, the focus of this thesis based on its in-
volved chapter and an example. In fact, this illustrates that depending on the
application and the purpose of the understanding, we need to extract differ-
ent information. For example, as we discussed above in order to distinguish
static background and moving foreground, we need to extract the informa-
tion at the pixel level which in this case is motion information.

In general, finding several objects or/and regions leads to understand-
ing the actions of the object of interest or the events in the specific area of
the scene. Therefore, object or/and region detection approaches are needed.
Then, to detect an arbitrary region or object of interest, specific feature infor-
mation needs to be analyzed. Finally, a learning method may be exploited to
detect these objects and identifying behaviour. Figure 2.3 shows the general
steps of scene understanding which can be applied in any layer of the scene
understanding. For example, to understand group behaviour in a scene, first
a moving group should be detected, which can be based on motion or shape
properties of the moving blobs. Then, a zebra crossing region as well as traffic
sign can be classified to determine if the group is moving legally across the
road.

Understanding
levels Description Chapter of thesis Examples

Level 1 Pixel - Motion
Level 2 Object/Region 3, 4 Labeled regions
Level 3 Context 3, 4 Labeled regions
Level 4 Event 6 Street crossing of a group

Table 2.1: Levels of surveillance scene understanding for embedded systems.

It is important to note that contextual information for scene understand-
ing can be extracted at different levels of surveillance scenes. This notion
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Figure 2.3: Schematic view of finding an object for scene understanding.

leads to the following contextual information types corresponding to the ob-
ject of interest:

• Feature information at the pixel level, such as color, texture, edge, mo-
tion, etc.,

• Properties at region level, such as salient regions and semantically la-
beled regions,

• Information at the level of scene understanding such as semantically
meaningful information, specific objects or behavior, etc.

The scene understanding research is mostly based on considering objects in
isolation from the surrounding scene. Examples of publications are the work
by Efros et al. [7], Minnen et al. [8] and Parameswaran and Chellappa [9].
These references are not suitable for our application because they do not take
any contextual information into account. While understanding events in a
video is certainly interesting, without using contextual information it can be
difficult or even impossible to interpret if a situation needs operator atten-
tion. Another interesting research topic for surveillance is group tracking.
The work of both Lanz [10] and Bazzani et al. [11] showed methods of track-
ing groups of people in surveillance applications. Again we can comment
that without contextual information it is difficult to automatically recognize
potentially dangerous or suspicious activities. The work of Bao et al. [12]
introduced a robust approach to detect moving ships by jointly using seman-
tic and motion context. Finally, the work of Marques et al. [1] introduced a
method that uses contextual information to improve the detection and under-
standing of the rest of the scene. While certainly interesting, the application
in this work is different from ours, because we aim at exploiting contextual
information not only to improve the detection and recognition of the scene,
but also to interpret human behavior.

The first part of this chapter is dedicated to various types and levels of the
context as well as feature extraction techniques for contextual information.
Later, we will not concentrate on any specific region as context anymore, but
we will focus on any information such as labelled or salient region so that
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the combination can lead to scene understanding. There are several areas of
considerations in this thesis. The area of generic use of context information
is considered in the first part of the chapter. The second area is detecting ar-
bitrary regions such as salient and semantic regions. An application for this
area can be natural scene understanding. The second area is discussed at the
end of this chapter.

The next section will continue with a summary of different types of con-
text into meaningful categories available in the literature. Section 2.3 will re-
view the latest research developments for extracting visual features as contex-
tual information at the pixel-level. Furthermore, Section 2.4 will address the
contextual information extraction at the region level, i.e. extraction of salient
and semantic labeled region properties. The extraction of contextual informa-
tion at the third level, i.e. the level of scene, will be described in Chapter 6
of this thesis where the applications are presented. Semantic region labeling
approach are further discussed in details in Section 2.5. Section 6.7 concludes
the chapter and contains a discussion.

2.2 Types of context information

This section commences with two main types of contextual information that
can be exploited in computer vision solutions. These two types are as fol-
lows: (1) semantic, spatial, and scale, (2) broader generic view of context. The
section will continue with the context information levels, i.e pixel, region and
the level of scene understanding.

In this section we present a summary of different approaches to organize
the interpretations and types of context into meaningful groups and cate-
gories available in the literature. There is no universal agreement on this
topic. What follows are some representative examples of classification of
types of context and associated contextual modeling techniques.

2.2.1 Semantic, spatial, and scale

Galleguillos and Belongie [13] referred to the following three main types of
contextual information that can be exploited in computer vision solutions.

• Probability (occurrence): refers to the likelihood of an object being found
in some scenes but not in others. From the point of view of modeling,
the semantic context of an object can be expressed in terms of its prob-
ability of co-occurrence with other objects and its probability of occur-
rence in certain scenes. For example, a tennis racket is more likely to
co-occur with a tennis ball than with a lemon.
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• Position (spatial): corresponds to the likelihood of finding an object in
some positions and not others with respect to other objects in the scene.
For example, the sky occurs above the sea and a road is likely to be
appearing below a building.

• Size (scale): exploits the fact that objects have a limited set of size rela-
tions with other objects in the scene. For example, scale context (size)
corrects the segment labeled as plant assigning the label of tree, since
plants are relatively smaller than trees and the rest of the objects in the
scene.

From the computational modeling viewpoint, Galleguillos and Belongie [13]
observed that scale context may be the hardest relation to define, because it
requires a more detailed information about the objects in the scene, consisting
of the identification of at least one other object in the setting as well as the
processing of spatial and depth relations between the target object and other
object(s). They also claim that semantic context is implicitly present in the
other two types of context — spatial context and scale context — although it
can be obtained from a wide variety of other sources, such as strongly labeled
training data and external knowledge bases.

It is important to acknowledge that for surveillance applications among
the above-mentioned types of context, position is very important in this thesis
because most of its applications lie in the video surveillance domain, which
is typically based on natural scenes. We will use the position as a feature to
detect an object or region of interest. Afterwards using that object/region of
interest, we can improve the level of scene understanding.

2.2.2 Broader view of context

Divvala et al. [14] started from the definition of context as “any and all in-
formation that may influence the way a scene and the objects within it are
perceived”. They compile a list of the many different sources of context that
have been discussed in the literature, and add some of their own, resulting in
a broader and longer list, as follows.

• Spatial and time-domain information such as pixel, 2D scene gist and tem-
poral. Image pixels/patches around the region of interest carry useful
information [14]. Examples of pixel context include: image segmen-
tation, object boundary extraction, and several object shape/contour
models. 2D scene gist refers to models that use global statistics of an
image to capture the “gist” of a scene (e.g., [15]). Temporal context cap-
tures temporally proximal information, such as time of capture, nearby
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frames of a video (optical flow), images captured right before/after the
given image, or video data from similar scenes [14].

• Natural information such as 3D geometry and geography. 3D geomet-
ric context corresponds to models that attempt to capture the coarse 3D
geometric structure of a scene, or its “surface layout” (e.g., [16]), which
can then be used to reason about supporting surfaces, occlusions, and
contact points. Geographic context refers to information about the ac-
tual location of the image (e.g., GPS coordinates), or more generic in-
formation such as terrain type (e.g., tundra, desert, ocean), land use
category (e.g., urban, agricultural), elevation, and population density,
among others.

• Scene condition such as illumination and weather. Illumination cap-
tures various parameters of scene illumination, such as sun direction,
cloud cover, and shadow contrast [14]. Weather describes meteorologi-
cal conditions such as current/recent precipitation, temperature, season
as well as conditions of fog and haze [14].

The list above includes contextual aspects that can be captured from other
sources which reaches far beyond what can be captured from visual input
alone.

2.3 Pixel-level visual features

At the pixel level of an image and/or video, we can characterize its content
by color, texture, etc. These visual features can be divided into spatial and
transformed-based domains and they can also be presented in the temporal
domain. These features and methods for their extraction are further discussed
in this section.

2.3.1 Spatial domain

The spatial features can be classified into color, edge and texture descriptors.
These features and techniques for their extraction are further described here.

A. Color

Color is one of the most straightforward features utilized by humans for vi-
sual recognition and discrimination [17]. Colors can be defined in different
color spaces. A color space is a specific organization of colors. A number
of color spaces have been used in literature such as RGB, LUV, HSV and
CIELAB [18]. A number of important color descriptors have been proposed
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in the literature, including color histogram [19], color moments (CM) [20],
color coherence vector (CCV) [21], color correlogram [22], etc. MPEG-7 also
standardizes a number of color features including dominant color descriptor
(DCD), color layout descriptor (CLD), color structure descriptor (CSD), and
scalable color descriptor (SCD) [18]. Table 2.2 provides a summary of differ-
ent color descriptor methods and their properties.

Color descriptor
methods Advantages Disadvantages

Histogram Simple to compute,
intuitive

High dimensionality,
no spatial info, sensitive to noise

CM Compact, robust limited coverage of
color range, no spatial info

CCV Spatial info High dimensionality,
high computational cost

Correlogram Spatial info Very high computational cost,
sensitive to noise

DCD Compact, robust,
perceptual meaning

Need post-processing
for spatial info

CSD Spatial info Sensitive to noise,
rotation and scale

SCD Compact, scalable No spatial info,
less accurate if compact

Table 2.2: Overview of color descriptors and a summary of their (dis-) ad-
vantages.

B. Edge

Edge is another visual feature at the pixel level. An edge is a boundary or
contour at which a significant change occurs in some physical aspect of an
image, such as the surface reflectance, illumination or the distances of the
visible surfaces from the viewer. Over the past decades, several edge detec-
tion techniques have been developed. The Sobel operators are among the
most well-known examples of edge detectors. Sobel operator detects edges
by calculating partial derivatives in a neighborhood of 3×3 pixels. The Sobel
operator is insensitive to noise and it is executed with relatively small aper-
ture compared to other operators, such Laplacian.

Marr and Hildreth [23] proposed the Laplacian of Gaussian (LOG) opera-
tor for edge detection. The Laplacian of an image highlights regions of rapid
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intensity change and is therefore often used for edge detection. The Laplacian
is often applied to an image that has first been smoothed with a Gaussian fil-
ter in order to reduce its sensitivity to noise.

Canny presented an optimal edge detector. The Canny operator can give
the edge information of both intensity and direction [24]. The detectors men-
tioned above can be fast but may lead to missing some edges because of op-
erating at the pixel level.

Subpixel-level methods can solve the problem of detection precision. One
of the earliest techniques for subpixel edge detection was proposed by Hueckel
[25]. He determined edge parameters by fitting image data to a Hibert space
of nine parameters. In this technique, a point is declared as an edge point if
the computed edge parameter values for that point are sufficiently close to
the ideal edge model. A disadvantage of this technique is that it is difficult to
detect isolated points [25].

To summarize, it has been shown that under noisy conditions, Canny, LoG
and Sobel detectors exhibit better performances compared to other methods.
It has been observed that Canny’s edge detection algorithm is computation-
ally more expensive compared to LoG and Sobel operators [26].

C. Texture

Texture is another important image feature at the pixel level. While color is
usually a pixel-level property, texture can only be measured from a group of
pixels. Texture can be defined as spatial arrangements of intensity in image
pixels. For example, a tree leaf has a higher degree of texture than sky. Due to
their strong discriminative capability, texture features are widely used in se-
mantic learning techniques. Texture has been well studied in image process-
ing and computer vision [27]. A number of techniques have been proposed to
extract texture features. Based on the domain from which the texture feature
is extracted, they can be broadly classified into spatial texture feature extrac-
tion methods and transform-based texture feature extraction methods. In this
section, we describe several spatial texture feature extraction methods. De-
tails of transformed-based texture feature extraction methods are addressed
in Section 2.3.2. The spatial texture feature extraction techniques can be clas-
sified into structural, statistical and model-based approaches [18].

Structural techniques describe textures using a set of texture primitives
(textons or texture elements) and their placement rules [28]. In these tech-
niques, textons are organized into a string descriptor, while syntactical pat-
tern recognition techniques are used to find similarity of two descriptors.

Statistical texture feature extraction methods characterize texture as a mea-
sure of low-level statistics of grey-level images. The common spatial domain
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statistical features are moments [28] [29], Tamura texture features [30] [31]
and features derived from grey level co-occurrence matrix [29]. Statistical fea-
ture extraction methods are compact and robust. However, they are not suf-
ficient to describe the large variety of textures present in surveillance videos.

In model-based techniques, texture is interpreted using stochastic (ran-
dom) or generative models. Model parameters characterize the underlying
texture property of the image. The widely used texture models are Markov
random field, simultaneous auto-regressive model, fractal dimension, etc. [18].
Model-based techniques involve optimization to derive model parameters
and therefore they are usually computationally expensive [18]. As such, model-
based techniques are not suitable for (near) real-time implementation for em-
bedded systems which is one of the main purposes of this thesis. Texture de-
scriptors in transformed domain can be very informative as they contain in-
formation on the frequency components of the present textures, and transformed-
based descriptors can be extracted in real-time 2.5.2. These transformed-
based feature extraction methods are analyzed in the next Section 2.3.2.

2.3.2 Transform-based

Transform-based texture feature extraction techniques involve mapping the
image intensity data into a given transform domain [32]. The basic idea of
these techniques is to take into account transform coefficients for extracting
features. The common transform-based feature extraction techniques include
Discrete Cosine Transform (DCT), Fast Fourier Transform (FFT), Gabor filter
and Hough Transform. Here, we briefly describe these methods.

DCT can be chosen to extract features from an image because of its high
capability of energy compression and availability of fast computational algo-
rithm [33]. The DCT can be applied to the entire image or to sub-image of
various sizes. Here, we specify the 2D DCT on each pixel of a sub-image of
N ×N pixels by:

F (u, v) =
2

N
C(u)C(v)

N−1∑
x=0

N−1∑
y=0

cos
[
(2x+ 1)

πu

2N

]
cos

[
(2y + 1)

πv

2N

]
f(x, y),

(2.1)

where u, v = 0, .., N − 1, C(u) and C(v) are 1/
√
2 for u, v = 0 and otherwise

unity, f(x, y) is the intensity of the pixel in the input image in row x and col-
umn y and F (u, v) is the DC coefficient in row u and column v of the DCT
matrix [34].

The FFT can alternatively be applied on an image in order to extract image
features. The FFT produces a complex-number valued output image which
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can be displayed with two images, either with the real and imaginary part
or with magnitude and phase. More often, only the magnitude of the FFT is
exploited in image processing since it contains the most of the information of
the geometric structure of the spatial domain [35].

Gabor wavelet decomposition is another transform-based feature extrac-
tion technique. In image processing, the most attractive and active applica-
tion area for Gabor wavelet decomposition filters has been texture segmen-
tation. Besides texture, Gabor filters have been used in edge detection, line
segmentation, and shape recognition [36]. A Gabor filter basically analyzes
whether there are any specific frequency content in the image in specific di-
rections in a localized region around a pixel or region of analysis. In the
spatial domain, a 2D Gabor filter is a Gaussian kernel function modulated
by a sinusoidal plane wave. Gabor filters are defined by the Gaussian kernel
scales (sometimes referred as kernel size) and the orientation of the sinusoidal
plane. Fogel and Sagi described the basics of 2D Gabor filter [37]. Despite the
success of Gabor feature extraction methods, the costs of Gabor transforma-
tions in these methods are also rather high, including both the computational
cost and the storage space. For example, for 5-scale and 8-orientation Gabor
filters in a single image, 80 convolutions are required to generate the features.
The many convolutions make Gabor filter- based feature extraction a complex
process, preventing its wide acceptance in practical applications [38]. An al-
ternative to the Gabor filter is the Log-Gabor filter proposed by Field [39]. He
suggested that natural images are better coded by filters that have Gaussian
transfer functions when viewed on the logarithmic frequency scale. The pro-
posed Log-Gabor filter provides an efficient implementation by constructing
a filter in the frequency domain. In this method, the convolution is advanta-
geously replaced by multiplying this frequency domain filter by the FFT of
the image and taking the inverse FFT. This leads to a more efficient feature
extraction technique. Figure 2.4 depicts the efficient implementation of con-
volution of Log-Gabor filters in the frequency domain [39].

Figure 2.4: Efficient implementation of convolution of Log-Gabor filters in the fre-
quency domain [39] for 1 scale and 8 orientations.
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Another transform-based technique to extract features is the Hough trans-
form. The well-known Hough transform is a method for the detection of
straight lines in an image. The Hough transform is a line-to-point transfor-
mation from the Cartesian space to the polar coordinate space [40]. A line in
the Cartesian coordinate space can be described by:

ρ = x ∗ cosθ + y ∗ sinθ, (2.2)

where (x, y) denotes a pair from a set of image coordinates, which are lying
on a straight line. The transform is quantizing the Hough parameter space
into accumulator cells. As the algorithm proceeds, each (x, y) is transformed
into a discretized (ρ, θ) curve and the accumulator cells which lie along this
curve are incremented. Resulting peaks in the accumulator array represent
strong evidence that a corresponding straight line exists in the image [41].

2.3.3 Temporal

When a video of a scene is available temporal features can be extracted to
describe content and context of the scene. These features are called temporal
features. Motion is a very important visual feature in temporal domain which
is discussed in this section.

A. Motion

Motion features are very important in surveillance systems. Motion-based
segmentation helps detecting regions corresponding to moving objects such
as vehicles and humans. Detecting moving regions provides a focus of atten-
tion for performing tracking and behavior analysis because only these regions
need to be considered.

Conventional approaches for motion segmentation include block match-
ing, image differencing, background subtraction and optical flow [42]. The
performance of the block matching approach is largely affected by the choice
of the block size, therefore this approach is not currently common for motion
segmentation. Image differencing or background subtraction techniques are
often used to find moving blobs in consecutive frames[43][44][45][46]. The
drawback of these methods is that they are sensitive to sudden changes in
the background, e.g. illumination changes. Optical flow-based methods can
detect moving objects even in the presence of camera motion [42]. There-
fore, optical flow-based methods are widely used in the surveillance research
for extracting moving objects [47][48]. Optical flow-based motion estimation
uses characteristics of flow vectors of moving objects over time to detect mov-
ing regions in an image sequence, relating each image to the next. Each vector
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represents the apparent displacement of each pixel from image to image [49].
The Lucas–Kanade method [50] is widely used to implement an optical flow
approach. The Lucas-Kanade optical flow algorithm is a simple technique
which can provide an estimate of the movement of pixels in successive im-
ages of a scene [51].

2.4 Region-level features

This section discusses two main types of approaches for detection of region
properties, i.e. salient region detection and semantic region labeling. The
detection of region properties can have two general applications: (1) to detect
an arbitrary region in an image for general purposes, or (2) to be used as a side
or contextual information when it is inserted as a processing block in another
larger algorithm or another application. This section is dedicated to salient
region detection techniques: (1) feature-based and (2) model-based saliency.
The semantic region labeling technique will be introduced in the model-based
saliency approach and it is further discussed in more detail in Section 2.5.

2.4.1 Salient region detection

For dynamic scene analysis, automatic detection of informative regions such
as salient region is a challenging task for surveillance applications due to the
large variations of the scene material. Studies in psychology and cognition
have found that, when looking at an image, our visual system would first
quickly focus on one or several “interesting” regions of the image prior to
further exploring the image contents. These regions are often called salient
regions. If such a region is detected, a further advanced video analysis can
be applied later exclusively to that region. By providing a salient region to a
security officer, without further in-depth analysis, the time for the first-stage
visual analysis of the scene is reduced significantly, so that the officer can im-
mediately respond to alarming situations. It can also reduce both bandwidth
needed for sending the information and memory needed for storage.

Salient region detection techniques can be divided into two broad fami-
lies of approaches: feature-based and model-based saliency. In the following
subsections, we describe the advantages and disadvantages of each family of
salient region detection approaches.

A. Feature-based saliency

In the literature, three spatial features are often used for feature-based detec-
tion: color, intensity (or intensity contrast, or luminance contrast) and orienta-
tion. Intensity is usually implemented as the average of three color channels.
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Orientation is obtained by a convolution with directional Gabor filters or by
the application of oriented masks [52]. The features can also be combined.
This, however, does not lead to better saliency detection and it only increases
the complexity of the approach.

The motion in video introduces another important feature for the human
attention system. The most common technique for motion-based saliency is
using optical flow. Optical flow-based motion detection technique was dis-
cussed in Section 2.3.3 - A.

Features can be found not only in the spatial and temporal domains, but
also in the frequency domain. Most common frequency-domain features such
as DCT were addressed in Section 2.3.2.

The feature-based approach is scene dependent. Only the visual input
is of importance. Other inputs such as tasks or object indicators are of no
concern in this approach. Feature-based techniques are fast and therefore
suitable for surveillance applications. In this thesis, we will apply different
feature-based approaches in Chapter 3 and evaluate their influence on the
performance of the salient region detection approaches.

In salient region detection, it is important to decide which feature should
be chosen. Figure 2.5 is an example which demonstrates an image of a leaf
on a high textured fence. In this example, the fence is detected when taking
the texture feature into account. However, the leaf can also be detected if
the color is taken into account. This example indicates that the choice of the
most relevant features for saliency detection is difficult and scene-dependent.
However, a different example can be found in the security application area.
If a person with dark clothes is positioned in shadows or in a dark area, he
will not be noticed with most visual feature extraction techniques, because
this person does not stand out with respect to its surroundings. Therefore,
considering only visual features may not help to detect informative regions
for security applications. In such cases, high-level features such as a re-
gion and/or object should be taken into account in model-based saliency ap-
proaches, which are described below.

B. Model-based saliency

Model-based saliency approaches are top-down methods which are deter-
mined by high-level features like objects and/or regions [52]. These methods
involve training in order to learn the appearances of a specific salient region
before the system can look for it. The basis of many salient detection methods
dates back to Treisman and Gelade’s [53] “Feature Integration Theory,” where
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Figure 2.5: Leaf on a fence. It is not evident which feature should be chosen for
saliency detection.

they stated which visual features are important and how they are combined to
direct human attention. Koch and Ullman [54] then proposed a feed-forward
model to combine these features and introduced the concept of a saliency
map, which is a topographic map that represents conspicuousness of scene
locations. They also introduced a neural network that selects the most salient
location and employs a mechanism to allow the focus of attention to shift to
the next most salient location [52].

One attractive application for model-based saliency is to obtain labeled re-
gions with semantically meaningful labels (e.g., road, sky, etc.). These meth-
ods can be advantageously used to classify pictures in a large database. In
another application, these methods can be exploited to improve the analysis
of events or contribute to more reliable object detection for surveillance ap-
plications. In fact, saliency detection is an important area which can be used
as a side-processing block in another larger algorithm or an application. For
example, a salient region detection algorithm can be inserted in a certain ap-
plication that is called semantic region labeling algorithm. Semantic region
labeling is an important area that we will consider in this thesis. Therefore,
in the following section, we review the details of common steps for region
labeling algorithms.

2.5 Semantic region labeling algorithm steps

Existing approaches in region labeling often produce a set of textual semantic
labels as “words”, describing the image content without linking these words
to particular segments of the image. One of the challenging aspects of auto-
matically labelling image regions is to take into account the contextual infor-
mation which is present in a scene. The annotation of regions ignoring their
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context and focusing only on the information within the object boundaries
(such as color and texture information) is often an impossible task [55]. Kluck-
ner et al. [56] proposed a labeling approach by integrating additional contex-
tual constraints, such as class co-occurrences into a randomized forest clas-
sification framework. Ladicky et al. [57] incorporate object co-occurrence in
Conditional Random Fields (CRF). The co-occurrence model, however, tends
to require large numbers of training samples to estimate the correct probabil-
ity.

The first step in semantic region labeling is to efficiently extract descrip-
tive visual features from an image. The features can be extracted at pixel or
at region level. Region-based feature extraction needs prior image segmenta-
tion, while pixel-based features are directly extracted from each image pixel
independently. Although extraction of features at both pixel and region lev-
els is used in the existing region labeling techniques, the trend is towards ex-
tracting features at the region level. Region-based labeling techniques involve
three steps: image segmentation, feature extraction and classification [18]. In
this section, we address common region-based labeling algorithm steps.

2.5.1 Step 1: Image segmentation

Image segmentation is usually the first step to extract region-based image
representation. The segmentation algorithm divides the image into different
components based on feature homogeneity. A number of segmentation ap-
proaches is described in the literature, where theses approaches are based on
grids, clustering, contours, graph, and region growing methods. For a com-
prehensive segmentation review, readers are referred to [58].
Because automatic image segmentation is a difficult task, many techniques
simplify this task using grid-based approaches to roughly segment images
into blocks [58]. Visual features are then extracted from these blocks. The ad-
vantage of a block-based approach is the low computational costs. However,
this simple technique does not describe the semantic components in images
well.

Clustering algorithms, like K-means, are used to cluster pixels into dif-
ferent groups [58], with each group identifying a region. In most cases, an
image is first partitioned into blocks of size 4 × 4 pixels. Color and/or tex-
ture features are extracted for each block. Then, K-means is applied to cluster
the block’s feature vectors. A region is formed with the pixels belonging to
blocks of the same cluster. The major issue with this approach is that it needs
to predefine the number of segments based on heuristics. An inappropriate
choice of the number of clusters yields poor results. The other issue is that
the algorithm assumes data are in spherical clusters, so that the mean values

29



2. TECHNOLOGY OVERVIEW

are near the cluster centers. This assumption, however, is usually not valid.
Another segmentation approach is contour-based segmentation. The main

idea of contour-based segmentation is to evolve a curve around an object. The
evolution stops when the curve coincides with the boundary of an object.
Unlike the cluster-based segmentation algorithm, contour-based segmenta-
tion algorithms do not need the prior assumption for the number of clusters
[68–70].

An alternative approach is graph-based segmentation technique. Shi and
Malik [59] proposed a graph-based segmentation algorithm known as nor-
malized cut (NCut). The NCut method represents an image as a graph where
vertices are image pixels and the edge weights represent the feature similar-
ities between pixels. Image segmentation then becomes a graph-partitioning
problem (see Figure 2.6). The idea is to partition the vertices of the graph into
disjoint sets so that the total similarity between different sets is minimized.
Each set is regarded as region. As the number of pixels in an image is large,
there are exponential numbers of possible partitions of the graph. As a re-
sult, it is computationally expensive to find the optimal partition. Tao et al.
[77] improves the NCut by pre-segmenting images using the mean shift algo-
rithm. Instead of using pixels, the regions of the initial segmentation are used
as vertices in the NCut algorithm. Hence, the computational cost is reduced,
and the performance is more robust. The basic NCut exploited on color fea-
tures only. Malik et al.dey2010review] extend it to incorporate texture fea-
tures. Another important concept in graph theory is pixel connectivity. The
notation of pixel connectivity describes a relation between two or more pix-
els. For two pixels to be connected, they should fulfill certain conditions on
the pixel brightness and spatial adjacency. First, in order for two pixels to
be considered connected, their pixel values must both be from the same set
of values V . For a grayscale image, V might be any range of grayscale, e.g.
V = 22, 23, ...40. To formulate the adjacency criterion for connectivity, first
the notation of neighborhood is introduced. For a pixel p with the coordi-
nates (x, y) the set of 4 neighboring pixels is given by:

N4(p) = {(x+ 1, y), (x− 1, y), (x, y + 1), (x, y − 1)} , (2.3)

An alternative is to consider 8 neighboring pixels. In this case the set is de-
fined as:

N8(p) = N4(p) ∪ (x+ 1, y + 1), (x+ 1, y − 1), (x− 1, y + 1), (x− 1, y − 1),
(2.4)
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Figure 2.6: Establishing a flow network from a 2D image as required by graph-cuts
[22].

An alternative approach for segmentation is region growing. This ap-
proach groups pixels or smaller regions into larger regions. At first, pixel
colors of the image are quantized into a number of classes. Then, pixels in the
image are replaced with the color-class labels. A class map is subsequently
formed and region growing is followed on the class map. Pixels with more
homogeneous neighbors are assumed to be interior pixels of possible regions.
These pixels are selected as candidate seed points and regions are grown
around these seed areas. As this method looks for both color and texture
homogeneity, the segmented regions have highly homogeneous characteris-
tics [18]. When the segmentation is performed, the following step for region
labeling is the feature extraction step.

2.5.2 Step 2: Feature extraction

Color and texture features carry descriptive information on the image con-
tent. Various feature extraction techniques are discussed in Section 2.3.

Color may be described in an intuitive way using the HSV (or HSL, or
HSB) space, which is widely used in computer graphics. The three color
components are hue, saturation and value (or lightness, brightness). The hue
is invariant to the changes in illumination and camera direction and hence
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more suited for object retrieval. RGB coordinates can be easily translated to
the HSV (or HSL, or HSB) coordinates by a simple formula [29].

Texture is another important property of images. Various texture extrac-
tion techniques are discussed in Section 2.3, among which log-Gabor filters,
as proposed by Field [39], which are most robust. Log-Gabor provides an ef-
ficient implementation of convolution in the frequency domain.

In this thesis, the HSV color space together with a group of log-Gabor
filters and spatial information in the vertical direction are extracted for this
step.

2.5.3 Step 3: Classification

Once images are represented with low-level features, the features are fed di-
rectly into a classification method to learn from image samples. Depending
on the whether there is prior knowledge of the classes, the classification meth-
ods are divided into two groups, supervised and unsupervised classification
techniques. Once the classifier is trained, the algorithm can be used to an-
notate new image samples. There are generally three types of supervised
annotation approaches. The first approach is the single-labeling annotation
using conventional classification methods. The second approach is the multi-
labeling annotation, which annotates an image with multiple concepts using
the Bayesian methods. The third approach is the web-based image annota-
tion which uses metadata to annotate images [18].

In the following, we discuss the single-labeling annotation using conven-
tional classification methods in detail because it is most relevant to this thesis.

In the single-labeling approach, low-level features are extracted from im-
age content, and the features are fed directly into a conventional binary clas-
sifier which gives a “yes” or “no” vote for each particular region in an image.
The common single-labeling approaches include [18]: (1) Deep Learning in
Neural Networks (NNs), (2) Decision Tree (DT) and (3) Support Vector Ma-
chines (SVM). We briefly explain each of them in the following sections.

A. Deep Learning in Neural Networks

A standard neural network (NN) consists of many simple, connected proces-
sors called neurons, each producing a sequence of real-valued activations. In-
put neurons get activated through sensors perceiving the environment, other
neurons get activated through weighted connections from previously active
neurons. Some neurons may influence the environment by triggering actions.
Learning, or credit assignment, is about finding weights that make the NN
exhibit desired behavior [60]. Figure 2.7 shows an example of how an exam-
ple of a neural network that classifies an image region into one of the three
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broad categories such as sky, water, and earth. Depending on the problem
and how the neurons are connected, such behavior may require long causal
chains of computational stages, where each stage transforms (often in a non-
linear way) the aggregate activation of the network. Deep Learning is about
accurately assigning credit across many such stages. An efficient gradient
descent method for training NNs called backpropagation was developed in
the 1960s and 1970s, and applied to NNs in 1981. Backpropagation-based
training of deep NNs with many layers, however, was found to be difficult
in practice. In fact, since 2009, supervised deep NNs have won many official
international pattern recognition competitions, achieving the first superhu-
man visual pattern recognition results in limited domains [60]. Recent CNN
models solve semantic segmentation jointly, and removes the suboptimal sep-
aration in multiple stages.

In the past years, multiple network architectures have been proposed each
optimized for its accuracy, speed or size. Important architectures for pixel-to-
pixel classification include Resnet [61], Unet [62], Segnet [63], fully convo-
lutional networks [64] and Deeplab [65]. Some networks have been specif-
ically designed to minimize memory usage and inference time, while main-
taining accuracy. Such networks are VGG16 [66], Mobilenet [67], Darknet [68]
and Squeezenet [69]. Unfortunately, computational complexity and execution
time of these networks, are generally not discussed in detail. It is noted that,
with growing hardware performance in GPUs and tailoring such computing
cores to convolutional neural network (CNN) structure, the required compu-
tation power for a neural net is becoming more broadly available. These de-
velopments enable that CNN-based solutions are gradually growing into the
embedded system area. Although computational complexity of deep NNs
has become more feasible, NNs also require massive amounts of data to train
the classifier. Most of the aforementioned issues have improved significantly
in past 3-4 years, when our research of this thesis was already completed.
However, for the sake of completeness, we will make a performance compar-
ison at the end of the thesis in Chapter 6.

B. Decision Tree and Random Forest

A decision tree is a multi-stage decision making, or classification, tool. De-
pending on the number of decisions made at each internal node of the tree,
a decision tree can be called binary or n-ary tree. Different from other clas-
sification models whose input–output relationships are difficult to describe,
the input–output relationship in a decision tree can be expressed using un-
derstandable rules, e.g., if–then rules [18]. Figure 2.8 shows this process.
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Figure 2.7: Classifying a region using NN [18].

Combining the ideas of decision trees and ensemble methods gave rise to
decision forests, that is, ensembles of randomly trained decision trees. The
idea of constructing and using ensembles of trees with randomly generated
node tests, i.e., random forest, was introduced for the first time in the work
of Amit and Geman [70] [71] for handwritten digit recognition. In that work,
the authors also propose using the mean of the tree probabilities as output of
the tree ensemble.

C. Support vector machines

SVM is a supervised classifier. It has been shown that SVM has high effective-
ness in high-dimensional data classifications, even when the training dataset
is small [58]. SVM can classify both linear and non-linear data due to the
use of kernel mapping. The advantage of SVM over other classifiers is that
it achieves optimal class boundaries by finding the maximum distance be-
tween classes. It has been successfully applied to a number of classification
problems, such as text classification, object recognition and image annotation
[58]].

SVM algorithms use a set of mathematical functions that are defined as
the kernel. The function of kernel is to take data as input and transform it
into the required form. Different SVM algorithms use different types of ker-
nel functions. These functions can be different types such as: (1) Polynomial
kernel which is popular in image processing, (2) Gaussian radial basis func-
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Figure 2.8: Decision tree. (a) A tree is a set of nodes and edges organized in a hier-
archical fashion. A tree is a graph with no loops, where internal nodes are denoted
with circles and terminal nodes with squares. (b) A decision tree is a tree where each
internal node stores a split (or test) function to be applied to the incoming data. Each
leaf stores the final answer (predictor). An illustrative decision tree used to figure out
whether a photo represents an indoor or outdoor scene [72].

tion (RBF) is a general-purpose kernel; used when there is no prior knowl-
edge about the data, and (3) Linear splines kernel in one-dimension is useful
when dealing with large sparse data vectors. It is often used in text catego-
rization. The splines kernel also performs well in regression problems. In this
thesis, we use RBF. RBF’s equation and further details of SVM approach can
be found in Chapter 5 and [73].

An SVM classifier works by finding a hyperplane from a training set of
samples to separate them. Each training sample is represented with a feature
vector and a class label. The hyperplane is learned in such a way that it can
separate the largest portion of samples of the same class from all other sam-
ples. An SVM is a binary classifier. However, automatic image classification
and annotation needs a multiclass classifier. The most common approach is
to train a separate SVM for each concept with each SVM generating a prob-
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ability value. During the testing phase, the decisions from all classifiers are
fused to get the final class label of a test image. Figure 2.9 shows this process.
As such, the complete classifier is a two-level process. The base level consists
of multiple binary classifiers and the second level fuses the decisions from the
base level classifiers.

Chapelle et al. [74] applied the above-mentioned basic framework to train
14 SVM classifiers for 14 image-level concepts. In their approach, images are
represented with 4096-dimensional HSV histograms. To train an SVM for a
particular concept, training images belonging to that concept are regarded as
positive samples while the others are regarded as negative samples. There-
fore, each trained classifier can be regarded as a “one-versus-all” classifier.
During testing, each classifier generates a probabilistic decision. The class
with maximum probability is selected as the concept of the test image. Fig-
ure 2.9 illustrates multiple SVM (“one vs. all”) classifiers. Each SVM inde-
pendently classifies an input image, while the final decision is fused from the
decisions of all SVMs.

Most of the findings show that there is empirical evidence to support the
theoretical formulation and motivation behind SVMs. The most important
characteristic is the ability of SVM to generalize well from a limited amount
and/or quality of training data. Compared to alternative methods such as
NNs, SVMs can yield a comparable accuracy using a much smaller training
sample size. This is in line with the “support vector” concept that relies only
on a few data points to define the classifier’s hyperplane [75]. Watanachatu-
raporn et al. [76] found that SVM methods outperformed NNs and decision
trees. Therefore, in this thesis multiple SVM (“one vs. all”) is applied to as-
sign multiple semantic labels to image segments.

Figure 2.9: Multi-class classifier using multiple binary SVM classifiers.
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2.6 Conclusions and discussion

In this chapter we have presented an introductory overview of techniques for
the image/video scene understanding. We have introduced several levels of
scene understanding, i.e., pixel, region/object, context and scene levels. It
was discussed that contextual information can also be exploited at different
levels:

• pixel-level information such as color, texture, edge, motion, DCT and
Hough-based transform,

• region-level, such as salient and semantic-labeled regions as background
information,

• at the level of scene understanding such as semantically meaningful
information for specific objects or behavior, etc.

We have reviewed the state-of-the-art approaches to extract pixel-level infor-
mation in spatial, transform-based and temporal domains. Regarding region-
level information, we divide salient region detection techniques into two fam-
ilies of approaches: feature-based and model-based saliency detection ap-
proaches. We consider semantic region labeling approach as a form of model-
based saliency detection. We have reviewed common region-based labeling
algorithm steps, i.e. image segmentation, feature extraction and classifica-
tion.

At pixel-level we will consider color, texture, edge, motion, DCT and
Hough-based transform since they are most common features in spatial, tem-
poral and transform-based domains. At region-level we will consider meth-
ods to detect salient and semantically labelled regions. These methods can
provide a platform for fast retrieval of important regions in (near) real-time
for embedded surveillance systems.

In Chapter 3 we will consider a number of simple, fast saliency detec-
tion techniques based on various features, such as the entropy of DCT coef-
ficients, sum of the edge pixels, number of connected components and the
number of straight lines found by the Hough transform. Our hypothesis is
that, in surveillance application, by providing a salient region, the time for
the first-stage visual analysis of the scene can be reduced significantly, so that
the officer can immediately respond to alarming situations.

The region labeling approach will be further addressed in Chapter 4. We
will develop a general framework for performing automatic semantic label-
ing of video scenes by combining the local features and spatial contextual
cues.
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Another challenging aspect of automated surveillance scene understand-
ing systems is to analyze the computational complexity of such systems. In
Chapter 5 we will discuss a known metric for estimating the computational
complexity based on Mega Operations per Frame (MOPF) or per second (MOPS)
[77]. This metric is based on counting native Digital signal processing (DSP)
operations, like multiplications, additions, data storing and loading.

Regarding the scene-level contextual information, several traffic surveil-

Figure 2.10: Schematic representation of the steps needed for developing a surveil-
lance video analysis system using context information. Such system should have high
accuracy and low computational complexity.

lance use cases will be addressed later in Chapter 6. We will illustrate four
traffic surveillance use cases which are briefly summarized below.

• Moving ship detection in harbor surveillance, the semantic region la-
beling is combined with motion information.

• Traffic action recognition based on semantic region labeling where also
automatic traffic sign information is exploited.

• Moving car detection in traffic surveillance, the semantic region label-
ing and salient region detection are both applied and combined with
motion information.

• Fast abnormal event detection which is a novel block-based approach to
detect abnormal situations by analyzing the pixel-wise motion context,
as an alternative for the conventional object-based approach.

The above contextual information types and levels give a structured overview
of the fundamental elements that are used in this thesis. However, the list is
not exhaustive, but merely acts as a framework for the design of the video
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analysis systems. In each chapter, specific additional aspects will come to the
foreground that will be addressed in that chapter.
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Fast salient region detection

3.1 Introduction

Chapter 2 has described several algorithmic components for the construction
of surveillance image and video analysis applications. It presented an intro-
ductory overview of techniques for the image/video scene understanding.
To this end, we have introduced several levels of scene understanding, i.e.,
pixel, region/object, context and scene. We have also identified three differ-
ent levels at which context information can be obtained: at the pixel, region,
and scene levels. It was discussed that region analysis can be applied in two
ways: (1) to detect an arbitrary region in an image for general purposes, or
(2) to be used as a side or contextual information when it is inserted as a pro-
cessing block in another larger algorithm or an application. This chapter is
dedicated to our first approach for extracting information at the region level,
i.e. salient region detection approach. The second approach, i.e. semantic
region labeling will be discussed in Chapter 4.

Studies in psychology and cognition have found that, when looking at
an image, our visual system will first quickly focus on one or several “inter-
esting” regions of the image prior to further exploring the image contents.
These regions are often called salient regions. For selecting salient regions,
several different methods were reviewed in Chapter 2. As opposed to the
feature-based saliency detection algorithms which are fast and driven by low-
level features, model-based saliency detection algorithms are slow and task-
driven. This chapter focuses on feature-based saliency detection which aims
at answering at the following question: how can we accurately detect salient
regions without any background information [78]. We concentrate on sim-
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ple and fast methods suitable for real-time applications. It should be noted
that the majority of the saliency detection approaches in literature result in
saliency maps which are widely employed for unsupervised object segmen-
tation. In our surveillance application, instead of providing saliency maps,
where each pixel is assigned its saliency level, we aim at providing the seg-
mentation of salient regions in an input image. This segmentation results in
a binary image where the salient region pixels have one value, and the rest
has another. By providing the segmented salient regions to a security officer,
without further in-depth analysis, the time for the first-stage visual analysis
of the scene is reduced significantly, so that the officer can faster respond to
alarming situations. It can also reduce both bandwidth needed for sending
the information and memory needed for storage.

This chapter is organized as follows. Section 3.2 will review common
salient region detection techniques. In Section 3.3 we will introduce and com-
pare a number of simple, fast detection techniques based on various features,
i.e., sum of edge pixels using a Sobel edge detector, number of connected
components based on the intensity values of neighboring pixels, the num-
ber of straight lines found by the Hough transform and the entropy of the
frequency-domain features of a DCT. Section 3.4 presents our results. Con-
clusions and discussion are provided in Section 3.5.

3.2 Related work

In this section we focus on relevant literature targeting fast feature-based
saliency region detection methods. Saliency of a region mainly depends on
the contrast between an object or region and its surroundings. As such, feature-
based saliency region detection methods utilize low-level processing [79].
Low-level saliency methods use local contrast of image regions with their
surroundings using one or more of the features of color, intensity, and ori-
entation in the spatial domain. Also the features in temporal and spectral
domains can been applied.

Itti et al. [80] introduced a saliency model which was biologically inspired.
Specifically, they proposed the use of a set of features which are intensity,
color, and orientation in spatial domain. The features were normalized and
then linearly combined to generate the overall saliency map. In addition to
the spatial domain, Itti et al. [80] also utilized motion information in the tem-
poral domain in their model. Even though the proposed model was shown
to be successful, still many parameters have to be tuned manually [80].

An alternative approach for detecting saliency is based on line finders [81].
The Hough transform is known as an algorithm which can extract lines effec-
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tively in the spectral domain [4]. However, this transform generally requires
a large storage and a high computational capacity [82].

Feature-based saliency region detection methods can also use the contrast
of image regions with respect to the entire image. Zhai and Shah [83] define
pixel-level saliency based on a pixel’s contrast to all other pixels. However,
for efficiency they use only luminance information, thereby ignoring impor-
tant clues in other channels [79].

In an alternative approach several models were proposed based on infor-
mation in frequency domain. Recently, a simple algorithm, called the Spec-
trum Residual (SR), was proposed based on the Fourier Transform [84]. It
was argued that the spectrum residual corresponds to image saliency. In an-
other work, the Phase spectrum of the Fourier Transform (PFT) was intro-
duced, which achieved nearly the same performance as the SR [84]. Based on
PFT, PQFT [84] was also proposed by combining more features and using the
quaternion Fourier Transform. These approaches fail to detect some salient
pixels, since they do not incorporate local saliency [84] [85].

Although the techniques described above are interesting because of their
algorithmic robustness, they require high computational cost because of their
algorithmic complexity. In this thesis, we aim at simple and fast methods
suitable for real-time operation as required by surveillance applications. In
the next section we will present our salient region detection approaches.

3.3 Salient region detection approaches

In this section we present four detection techniques based on various features:
(1) sum of edge pixels using a Sobel edge detector, (2) number of connected
components based on the intensity values of neighboring pixels, (3) number
of straight lines found by the Hough transform and (4) the entropy of the
frequency-domain features of a DCT. We also discuss the parameter choices
for each technique. Our hypothesis is that regions including human-made
objects such as cars or suitcases are potentially more suspicious. Such regions
include high amount of lines, edges or any other high-frequency information.

Figure 3.1 illustrates a schematic view of our salient detection techniques.
In the first three approaches, the pre-processing stage transforms an input
frame from an RGB format to a gray-scale format. After this, an edge detec-
tor is applied. The pre-processing stage for the DCT-based approach consists
of extracting the color channels from the input video frame because further
processing will be performed per channel. The second block in the flow chart
of Figure 3.1 refers to finding salient regions based on various features de-
pending on the corresponding approach. Finally, the post-processing step
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consists of a temporal filtering to make sure that the salient regions are not
switching on and off between consecutive frames, so that flickering in the
video output is prevented. The applied temporal filtering method considers
a sliding 10-frame interval. If the region appears salient for six out of ten
frames, then it becomes salient region for all ten frames. It should be noted
that while the first stage is applied to the whole image, the second and third
stages are block-based processing stages.

Figure 3.1: Schematic view of our salient region detection techniques.

3.3.1 Edge-based detection

This approach is based on local-contrast methods for a gray-level image. In
this approach, the sum of edge pixels is used to detect a salient region. Edge
detection is based on the Sobel edge detector, since it has been shown that
under noisy conditions Sobel exhibits promising performance and is compu-
tationally inexpensive [79].

The Sobel operator can detect edges by calculating partial derivatives in a
3×3 neighborhood. The details about this algorithm are presented in [86]. In
this approach after smoothing an image by a Gaussian filter to reduce noise,
the Sobel operator calculates the partial derivatives. The partial derivatives
Sx, Sy in horizontal, x, and vertical, y, directions are given as [86]:

Sx = f(x+ 1, y − 1) + 2f(x+ 1, y) + f(x+ 1, y + 1)−
f(x− 1, y − 1) + 2f(x− 1, y) + f(x− 1, y + 1),

(3.1)

Sy = f(x− 1, y + 1) + 2f(x, y + 1) + f(x+ 1, y + 1)−
f(x− 1, y − 1) + 2f(x, y − 1) + f(x+ 1, y − 1),

(3.2)

where f(x, y) is the intensity of the pixel in the input channel in row x and
column y. Then, the gradient of each pixel is g(x, y) =

√
(Sx)2 + (Sy)2. Sub-

sequently, a threshold value tgrad is selected. If g(x, y) > tgrad, the current
pixel is regarded as an edge pixel This thresholding results in a binarized im-
age.
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Let us describe our method in more detail. After the pre-processing stage,
consisting of RGB to gray-scale transform, a Sobel edge detector is applied on
an input frame. Then, we divide each resulting frame into number of blocks.
For deciding whether a block is salient or not, the algorithm compares the
number of edge pixels in each block with a threshold. If this number is above
the threshold (TB), the current block is considered as a salient region. The
threshold TB is calculated empirically by:

TB = (1/(0.8×Nblocks))×Nedg, (3.3)

whereNblocks is the number of blocks in the current frame andNedg is the total
number of edge pixels in the frame.
The major disadvantage of this method is that a region including small-sized
edges, may be selected as a candidate for a salient region. For example, fine
foliage trees which include a lot of small edges are not good candidates for
salient regions. This issue can be solved using the connected components
algorithm, which will be discussed bellow.

3.3.2 Connected components

In the connected components approach, we compute the number of con-
nected components to find a salient region in an image. After the pre-processing
stage (Figure 3.1), we apply a Sobel edge detector on an input frame. In this
approach, we use a 8-connected neighborhood (see Figure 3.2) to find con-
nected components in the resulting frame. The connected components are
found based on the flood field approach [87]. Finally, we obtain a labeled
map. Each group of connected components has its own label. For each con-
nected component, if the number of pixels it contains is lower than a prede-
termined threshold, this component is discarded. This allows to avoid small
edges that cannot be removed in the sum of edge pixels approach presented
in Section 3.3.1. Then, we divide the frame into blocks. For each block, the
algorithm checks whether it contains any labels or not. The block is consid-
ered as a salient region if it contains at least one label. This approach is more
reliable compared to using only an edge detector, as it avoids small connected
components that are mostly irrelevant for semantic analysis.

3.3.3 Hough lines

To detect straight lines in an image, we first apply the 3 × 3 Sobel edge de-
tector. Then, we divide a frame into number of blocks. Later, we apply the
Hough transform on each block. For deciding whether each block is salient
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Figure 3.2: 8-Connected neighborhood of a pixel. Variables x, y indicate the row and
column of center pixel in a 3× 3 neighborhood.

region or not, the number of straight lines for each block is compared to a
predetermined threshold. If this number exceeds the threshold, the block is
considered as a salient region.

The Hough-based technique has some inherent limitations such as large
computing time, massive memory requirements and its incapability in pre-
serving edge pixel connectivity [88]. Therefore, in the following section we
will employ a DCT-based approach since it provides a compact represen-
tation of the signal energy and the computation can be performed at low
cost [4].

3.3.4 Discrete Cosine Transform (DCT)

In this approach, we analyze the information content of the image in the fre-
quency domain by computing the entropy of the involved DCT coefficients.
The DCT provides a compact representation of the signal energy. We apply
the 2D DCT on each block. The 2D DCT transforms the input frame to a coef-
ficient matrix where each coefficient represents the degree of which a certain
cosine function is present in the input frame. If each block has a high peak
only at low frequency and no other significant values, it is not an interesting
block. Since the DCT value on location (0,0) in the coefficient matrix is quite
different from the other coefficients, we remove this peak to concentrate on
the rest of the coefficients. To avoid small values at higher frequencies due
to little intensity changes we define a threshold. To this end, we compute
the entropy of the DCT coefficients for each block to measure the information
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content. The entropy E is defined as [28]:

E = −
N−1∑
x=0

N−1∑
y=0

P (x, y) logP (x, y), (3.4)

where N is the size of an image and P is the probability of the intensity value
at a certain pixel location (row x and column y). The number of bins in the
histogram is specified by the image type. In our case, the input frame is con-
verted to a gray-scale image and we use 256 bins which correspond to the
number of gray-scale levels.
For deciding whether each block is a salient region or not, we compare DCT
coefficients of the current block with the entropy of this block. If at least one
DCT coefficient of each block is above 40% of the entropy of this block, then
this block is considered as a salient region. We repeat this procedure for each
color component from an RGB signal in each frame. Our DCT-based salient
region detection approach is illustrated in Figure 3.3.

Figure 3.3: Proposed DCT-based salient region detection on the red component from
an RGB signal.

3.4 Experimental results

This section starts with describing the datasets: the Caltech Pedestrian De-
tection Benchmark [89] and our highway video sequence. Then it proceeds
with describing the tools and parameters that we have used for our salient re-
gion detection approaches in Section 3.4.2. Finally, our results are evaluated
qualitatively and quantitatively in Section 3.4.3.
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3.4.1 Description of the datasets

For evaluating our salient region detection methods, we apply them on two
datasets of videos: the Caltech Pedestrian Detection Benchmark [89] and
our highway sequence. The Caltech Pedestrian Detection Benchmark [89]
dataset is created for pedestrian detection benchmarking and it is available
online [89]. The dataset contains man-made objects, like houses, cars, etc. It
consists of approximately 10 hours video taken from a vehicle driving through
regular traffic in an urban environment. Frames have the resolution of 640×
480 pixels and were computed at 30 frames per second (fps). We have ran-
domly chosen a video fragment containing 1818 frames (about one minute)
from the Caltech Pedestrian Detection dataset for visual assessment of the re-
sults of the all approaches. Figure 3.4 shows one sample frame of the Caltech
Pedestrian Detection Benchmark sequence [89]. We validate our approaches
in terms of precision and recall on 30 images from this benchmark sequence.
Each frame has to be manually annotated for evaluating the results, that is
why we limit the amount of frames for the experiments. We acknowledge
that the manual frame annotation may be subjective, as each person will de-
note a different region of interest. However, it is a promising approach to val-
idate the output of the proposed algorithms. We define empirical thresholds
for each technique after extensive experimentation to optimize their perfor-
mance.

For further analysis of the DCT-based approach, we have also evaluated
it on our highway video sequence. This sequence consists of 40 frames with a
resolution of 1280×960 pixels and a frame rate of 25 fps. Figure 3.5 illustrates
a sample frame of our surveillance highway video sequence.

3.4.2 Settings

The edge-based method is, as mentioned before, based on the 3×3 Sobel edge
detection filter. Based on empirical evaluations a threshold for binarizing the
sobel detector output is set to 300. As shown in Equation (3.3), the thresh-
old for saliency detection is related to the number of blocks. The number of
blocks used for this and connected component is 1000. Based on our experi-
ments this number gives a certain block size which results in enough features
to make a decision on saliency.

The Hough-based method transforms each block from the edge map to
the Hough space. The edge map is divided into 64 blocks. This is done to
ensure that the size of the blocks is large enough to find consistent line seg-
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Figure 3.4: Sample frame from the Caltech Pedestrian Detection Benchmark se-
quence [89].

ments which are also small enough for the output not to be too coarse. The
maximum number of lines per block is set to 9. The threshold for the Hough
peaks is 30% of the maximum value of the Hough space. Based on empiri-
cal evaluations, the number of lines per block should be at least 5 so that the
block is chosen as a salient region.

For the DCT method, the 2D DCT is applied to each signal component of
the RGB video. Here, each frame is split into 16× 16 blocks.

In all the approaches, we use 10-frame sliding intervals for temporal fil-
tering to avoid flickering in the output due to small temporal changes and
noise.

3.4.3 Evaluation of the results

All results presented here are obtained with Matlab and its image processing
toolbox. Figure 3.6 shows the results of applying the proposed salient region
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Figure 3.5: Frame from our surveillance highway video sequence.

detection techniques on a sample frame of the Caltech Pedestrian Detection
Benchmark sequence [89]. It should be noted that due to the fact that the
number of blocks of the Hough-based method is smaller than other methods,
the resulting image is more coarse for this method. As shown in Figure 3.6,
compared to the ground truth in Figure 3.6 (b), all methods perform similarly
well. However, it appears that the false negatives produced by the Hough-
and DCT-based methods are the lowest. Figure 3.7 illustrates the results of
applying the proposed salient region detection techniques on another sample
frame from the Caltech Pedestrian Detection Benchmark sequence [89]. This
frame contains a different scenery so that we can better assess the quality of
the results.

Table 3.1 presents the average precision and recall rates of the salient
region detection approaches on 30 images of Caltech Pedestrian Detection
Benchmark [89]. It is indicated that the edge and connected component-based
methods have the lowest recall of 50% and 57%, respectively. It can be also
observed that that the results of the salient region detection obtained from the
DCT-based approach with precision of 61% and recall of 79%, are similar to
the results of the Hough-based technique (with precision of 61% and recall of
80%). However, as it will be shown in Chapter 5, the Hough-based method is
the slowest algorithm in executation. Therefore, we conclude that the DCT-
based approach performs better compared to the other approaches. Conse-
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quently, for further analysis of the DCT-based approach, we also evaluate it
on our surveillance highway video sequence. For this video sequence we ob-
tain precision and recall of 39% and 75%, respectively. The average precision
and recall rates of the DCT-based approach for 70 images of both the Caltech
Pedestrian Detection Benchmark [89] and our dataset are 50% and 77%, re-
spectively. For our surveillance application, we consider the recall rate to be
more important than precision because we aim at extracting as many salient
regions as possible from the image. For surveillance applications, it is impor-
tant to present to the security officer all salient regions that are present in a
given frame, so that no important information is missed.

Approach Recall (%) Precision (%)
Edge-based 50 62
Connected component-based 57 60
Hough-based 80 61
DCT-based 79 61

Table 3.1: Recall and precision rates for the salient region detection algo-
rithms on 30 frames from the Caltech Pedestrian Detection Benchmark [89].

In order to benchmark our approach, we compare our DCT-based salient
region detection approach with Rahtu et al. [90]. The proposed saliency mea-
sure approach by Rahtu et al. [90] is formulated using a statistical framework
and local feature contrast in illumination, color, and motion information. The
resulting saliency map is then used in a Random Forest model to define a
segmentation approach that is based on an energy minimization technique
aiming at recovering salient objects. The method is efficiently implemented
by using the integral histogram approach and graph cut techniques. The
method of Rahtu et al. is applied here on still images. It should be noted
that the Rahtu approach aims at segmenting a single salient object per frame.
The aiming at a single object per frame is common in the saliency detection
area, where we assume that a frame can contain a number of salient objects.
Therefore, to make Rahtu’s approach suitable for our application, we applied
this approach per block and the results reported here are according to their
best outcomes.

Figure 3.8 shows the results of applying our DCT-based approach and
the approach proposed by Rahtu et al. [90] on a sample frame of our surveil-
lance highway video sequence. Table 3.2 presents the results of applying the
DCT-based approach, compared to Rahtu’s algorithm on 70 images of our
dataset. It can be observe that by using the DCT-based approach, the recall is
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increased from 25% to 36% and the precision is increased from 63% to 85%,
as compared to Rahtu’s approach. Evidently, our DCT-based approach out-
performs the algorithm of Rahtu et al.

Approach Recall (%) Precision (%)
Rahtu et al. [90] 63 25
Our DCT-based 85 36

Table 3.2: Recall and Precision rates for the salient region detection methods.

3.5 Conclusions and discussion

In this chapter, we have presented our research on detecting salient regions
for outdoor surveillance video. We have introduced four salient region detec-
tion techniques which are based on sum of edge pixels, number of connected
components, the number of straight lines found by the Hough transform and
the entropy of DCT coefficients. It has been shown that the Hough- and DCT-
based methods are better than edge and connected component-based meth-
ods in terms of recall and precision. It has further been indicated that the re-
sults of the salient region detection obtained from the DCT-based approach,
are similar to the results of the Hough-based technique. However, it will be
shown in Chapter 5 that, the Hough-based method is the slowest algorithm.
Therefore, we have concluded that the DCT-based approach performs better
compared to the other approaches. The DCT concentrates the signal energy
to lower frequencies, so that explicit high-frequency energy in a block indi-
cates saliency in that block. Furthermore, with a better image quality we
may improve the performance of the approach besides considering other fea-
tures such as motion. In order to benchmark our DCT-based approach, we
have compared it with the algorithm of Rahtu et al. [90]. The experimental
results have shown that our DCT-based approach outperforms the approach
of Rahtu et al. with approximately 44% in precision and 35% in recall. We can
explain this difference in performance by the fact that our algorithm design
aims at multiple salient regions per frame, instead of a single region, so that
our approaches can directly be applied to surveillance application.

The computational complexity of the DCT-based approach will be ad-
dressed in Chapter 5. Furthermore, to measure the potential efficiency gain,
we cascade our DCT-based salient region detection with a typical object de-
tector [91] as used in surveillance cases. Our hypothesis is that detection of
salient regions provides a significant gain in efficiency in terms of the number
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of pixels needed to be explored, compared to analyzing the complete scene.
The evaluation of our hypothesis will be addressed in Chapter 6. However,
prior to discussing complexity and the related use cases of our DCT-based
saliency detector, in the next chapter another aspect of region analysis, i.e.
semantic region labeling approach, is presented.
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(a) Caltech Pedestrian Detection
Benchmark sequence [89]

(b) Ground truth for this frame

(c) Edge-based method (d) Connected components-based
method

(e) Hough-based method (f) DCT-based method

Figure 3.6: Results obtained with the proposed salient region detection techniques on
a sample frame, compared to other methods.
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(a) Caltech Pedestrian Detection
Benchmark sequence [89]

(b) Ground truth for this frame

(c) Edge-based method (d) Connected components-based
method

(e) Hough-based method (f) DCT-based method

Figure 3.7: Results obtained with the proposed salient region detection techniques on
a sample frame, compared to other methods.
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3. FAST SALIENT REGION DETECTION

(a) Our highway video sequence

(b) Ground truth for this frame

(c) Our DCT-based salient region detection approach

(d) Approach of Rahtu et al. [90]

Figure 3.8: Results obtained with different salient region detection techniques on a
sample frame on our highway video sequence.
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Semantic region labeling

4.1 Introduction

Chapter 3, has addressed the problem of salient region detection. We have
introduced and compared the four salient region detection techniques, which
are based on the Sobel edge detector, connected components, Hough trans-
form and the DCT. After salient region detection, the next research question is
the semantic labeling of the region, which is essential for automated surveil-
lance scene analysis.

This chapter is dedicated to the region level of the scene understanding,
i.e. semantic region labeling. Semantically labeled regions are helpful for two
general applications: (1) to detect an arbitrary region in an image for general
purposes, or (2) to improve the detection of an object-of-interest in a scene.
The latter type of detection improvement is because the location of the object
can be linked to a semantic region that is likely to contain that specific object.
For example, in port surveillance, the detection of the water region can help
to detect ships, as ships can only travel within the water region.

This chapter, considers the semantic region labeling approach in two im-
portant ways, i.e. (1) labeling of each individual specific region, e.g., separate
approaches to label sky, water and road regions, and (2) trying to develop
developing a general framework for performing automatic semantic labeling
task, e.g. labeling an input scene with multiple semantic labels such as sky,
road and vegetation at the same time.

This chapter starts with Section 4.2 which reviews the related work for
the first case for specific semantic labeling of a region. Section 4.3 presents
detection algorithms for three specific regions which are most often present
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in an outdoor scene, i.e. sky, water and road regions. For sky detection, in
Section 4.3.1 we adopt a detection algorithm from Zafarifar et al. [92], based
on a probability map that jointly uses a color model, texture properties at
multi-resolution scale and the vertical position. For water detection, in Sec-
tion 4.3.2 we consider a detection algorithm from Liu et al. [93] where color
is analyzed, and SVM is used to classify the regions, using the RGB pixel
values. For road detection, in Section 4.3.3 we introduce a motion-based ap-
proach to annotate roads and to restrict the computationally heavy search for
moving objects to the areas where the motion is detected. Section 4.4 presents
our results for the specific semantic region labeling approaches. Conclusions
and discussion related to the specific semantic region labeling approaches are
provided in Section 4.5. Section 4.6 continues this chapter by focusing on the
second case, where we introduce the details of our generic semantic labeling
approach which is based on combining the local features and spatial contex-
tual cues. Experimental results related to the generic semantic region labeling
approaches are provided in Section 4.7. Conclusions and discussion related
to the second case are provided in Section 4.8.

4.2 Overview of semantic labeling approaches for specific
regions

This section reviews the related work for detecting three specific regions that
frequently occur in an outdoor scene, i.e. sky, water and road. The challenge
here is to determine which features are needed to distinguish between the
specific regions and their surrounding areas.

Sky detection provides the context information for further image analy-
sis, while it helps to extract information about e.g. weather and illumination
conditions. Due to sky variations, systems that restrict themselves to blue sky
detection, have limited practical value [94]. Previous work on sky detection
includes a system [95], based on calculating an initial ”sky belief map” using
color values and a neural network, followed by connected-area extraction.
Such a system is not suitable for the requirements of video surveillance ap-
plications concerning spatial consistency. For example, due to connected-area
extraction, patches of sky may be rejected when their size is reduced during a
camera zoom-out. A second system proposed in [96] is based on the assump-
tion that sky regions are smooth and are normally found at the top of the im-
age. Using predefined settings, an initial sky probability is calculated based
on color, texture and vertical position, after which the settings are adapted to
regions with higher initial sky probability. This system is suitable for video
applications. However, due to its simple color modeling, this method often
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leads to false detections, such as classifying non-sky blue objects as sky, and
false rejections, like a partial rejection of sky regions when they cover a large
range in the color space.

Water detection is another research direction for outdoor scene analysis.
This analysis involves several influencing factors, like day/night time, reflec-
tion at the water surface, relative size of the water region, wave state and
possible occurrence of objects at the water surface [94]. Matthies et al. [97]
developed a color image classifier based on a mixture of Gaussians, to exploit
means and standard deviations of brightness and saturation. The authors
trained this classifier on water regions in the RGB color space. In [98], active
learning and mean-shift based image segmentation were combined to classify
water regions. Rankin et al. [99] used color image classification to recognize
water by its reflection of the sky. However, when still water reflects other ob-
jects, such as trees, hills or buildings, the performance of the algorithm may
deteriorate.

Another frequently occurring region in outdoor video scenes is the road
region. The detection of road regions is essential for increasing the safety of
pedestrians within overall traffic by e.g. abnormal behavior detection and
traffic analysis. In the past decades, several approaches for road detection
have been proposed. According to [100] road detection algorithms can be
categorized into three main classes: model-based, region-based, and feature-
based techniques. Model-based techniques are quite robust. However, most
model-based techniques are established on some critical and strict geomet-
rical assumptions. An example of the model-based approach is based on a
Markov framework to detect road lanes in video sequence [101]. This ap-
proach allows to find a traffic lane of a road, but not the whole road, which
may be composed of multiple lanes. Region-based techniques use learning
algorithms. In this case, it is important and yet challenging to define a small
set of good features to be extracted from images and to compose an opti-
mal training set. Generally speaking, a feature-based approach is more pre-
cise than other techniques. However, this requires that the road has well-
painted markings in order to be detected [100]. Usually, two particular fea-
tures, namely color and texture, are used to extract the road region. The color
and texture in various roads are normally not different. It should be noted
that due to the uncontrolled illumination conditions, the color of a road varies
with time [102]. Mezaris et al. [103] proposed an algorithm for road detection
that is based on exploiting the color and motion information of the MPEG-2
macroblocks. Currently, combining spatial and temporal features (i.e. mo-
tion) is one of the most attractive new technologies [102].

The next section presents our detection algorithm choices for recognizing
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sky, water and road regions.

4.3 Semantic labeling of specific regions

This section starts with describing our sky detection algorithm. Then, Sec-
tion 4.3.2 presents our water detection approach and Section 4.3.3 introduces
our road detection technique.

4.3.1 Sky detection

For sky detection we have adopted an algorithm from Zafarifar et al. [92]. We
evaluate the results of this algorithm on two different datasets, i.e. the dataset
of Schmitt [104] and the WaterVisie dataset. We also compare its results with
a similar approach proposed by Schmitt [104]. Let us briefly address the sky
detection approach proposed by Zafarifar.

This sky detection algorithm assumes that sky regions are smooth and
are located at the top of the image. An initial sky probability map is calcu-
lated based on color, texture and the vertical position of pixels, after which the
features from high-probability areas are used to compute a final sky probabil-
ity. This algorithm considerably improves false detection/rejection rates. The
improvements are primarily due to an extensive multi-scale texture analysis,
adaptive thresholds and a spatially-adaptive color model. Next to position
and color features, the key assumption of the system is that sky has a smooth
texture and shows limited luminance and chrominance gradients, which are
different in the horizontal and vertical directions. Using predefined settings
for the color, vertical position, texture, and horizontal and vertical gradients,
an initial sky probability is calculated for each image pixel [105] by the fol-
lowing expression:

Psky = Pcolor × Pposition × Ptexture ×Qsky, (4.1)

where the color probability Pcolor is computed by a three-dimensional Gaus-
sian function in the YUV color space, having a fixed variance and is centered
at a predetermined color. The parameter for the position probability Pposition
is defined by a function that emphasizes the upper parts of the image. For
the texture probability Ptexture, a multi-scale analysis is performed on the im-
age, using an analysis window of 5×5 pixels. The initial sky probability map
needs to be segmented by a threshold in order to create a map of regions with
high sky probability. Simple measures for threshold determination, such as
using the maximum of the sky-probability map can cause false detection. For
example, small objects at the top of the image with color and texture similar
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to sky regions (i.e. with high sky probablity value) can be detected as sky
regions. In order to avoid this problem, Zafarifar et al. [92] propose a ro-
bust method that takes both the size and the probability of sky regions into
account, by computing an adaptive threshold and a global sky confidence-
metric Qsky.

4.3.2 Water detection

For water detection we have adopted an approach from Liu et al. [93] which
consists of three stages: (1) segmentation, (2) visual feature extraction and (3)
classification. We now briefly discuss these stages of the water detection al-
gorithm.

Stage 1 of water detection: segmentation. In this stage, each image is seg-
mented in terms of the color uniformity of a region by applying a graph-based
segmentation method. The usage of the normalized color space and also an
additional parameter measuring the intensity difference of two neighboring
pixels are introduced to a graph-based segmentation, in order to adapt the al-
gorithm to our application. The graph-based segmentation method was cho-
sen because it was proven by Liu et al. [93] to be suited for real-time process-
ing and has sufficient accuracy. By carrying out the segmentation stage, we
aim at increasing the robustness of detection and decreasing the calculation
complexity in region recognition. The details of this stage will be presented
in Section 4.6.1, where we introduce our generic region labeling.

Stage 2 of water detection: visual feature extraction. In this stage, visual fea-
tures of each region, i.e. the intensity values (RGB), are extracted to be used
in the third stage.

Stage 3 of water detection: classification. In the third processing stage of wa-
ter detection, a Support Vector Machine (SVM) classifier is applied to detect
water regions. The classifier is trained off-line, based on the image samples
captured at a harbor in different weather conditions.

We have evaluated this algorithm on the WaterVisie dataset which is pre-
sented in Section 4.4. It should be noted that the basic components of this
approach are used in our generic semantic region labeling approach which is
discussed in more detail in Section 4.6.

4.3.3 Road detection

In our road detection approach, we aim at developing a novel real-time ap-
proach to detect roads in video sequences, using a combination of two main
features of a road: the motion of objects on the road and the straight lines
indicating the boarders of the road. Our algorithm contains three stages: (1)
heat-map-based motion analysis, (2) straight-line detection and (3) combina-
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tion of features.
Stage 1 of road detection: motion analysis. To analyze and visualize motion in

a scene, we apply the concept of a heat-map. A heat-map is a 2D histogram
indicating main regions of motion activity [106]. The motion heat-map rep-
resents “hot” and “cold” areas on the basis of motion intensities. The hot
areas are the zones of the scene where the motion is large. The cold areas are
regions of the scene where the motion is small. This map can be designed
from the accumulation of binary blobs of moving objects, which are extracted
following the background subtraction method [106]. We subtract the back-
ground by thresholding absolute differences between frames. The obtained
heat-map can be used as a mask to define regions of interest. The use of the
heat-map image improves the quality of the results and reduces processing
time, which is an important factor for real-time applications.

Besides the motion analysis based on generating the heat-map, we also
identify the direction of the movement in the scene using the optical flow [106]
approach. By applying the optical flow technique, we track a moving object
over succeeding frames. For this tracking, we employ the Kanade-Lucas-
Tomasi (KLT) feature tracker [106]. After matching an object between frames,
the result is a set of vectors that indicate the direction of the moving object.

Stage 2 of road detection: straight-line detection. Real-world roads contain
many segmented lines or boundary lines. The Hough transform is known as
an algorithm that can extract lines efficiently [4]. We have used a standard
Hough transform and the details of this method were discussed in Chapter 2.

Stage 3 of road detection: combination of features. In this stage of the road de-
tection approach, we combine motion and straight-line features. To do this,
we consider all pairwise combinations of the lines found by the straight-line
detector. For each pair of lines, we sum the heat-map values of the pixels that
lie between these lines. If the obtained value is above a preset threshold, it
means that the selected pixels are inside the “hot” area. We classify all pixels
between those two lines as part of a road. The steps of our road detection
approach are summarized in Algorithm 1.

4.4 Experimental results for semantic labeling of specific
regions

To measure the performance of our approaches, we use the Coverability Rate
(CR), which indicates how much of the specific region, i.e. sky, water or road,
is detected by the algorithm [104]. This rate is computed by Equation ( 4.2)
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Algorithm 1 Road detection
for The whole video sequence do

Measure pixel-based motion related to previous frame to extract binary blobs
Accumulate binary blobs of moving objects to define “hot” and “cold” areas

end
for each frame do

Apply Sobel operator
Apply Hough transformation
Sum the heat-map values between each pair of lines
if The heat-map values exceed the threshold then

classify the pixels between the lines as a road region.

end
end

as:

CR(O,GT ) =
|O ∩GT |
|GT |

, (4.2)

where Ground Truth (GT ) is manually annotated water, sky or road region,
and O is the area detected as sky, water or road. It should be noted that other
metrics such as error rate have also been used in the literature [104]. How-
ever, for our application, we consider the accuracy or CR (recall) to be more
important than error rate (precision), since we aim at extracting ROI regions
for further analysis of the regions. For surveillance applications, it is impor-
tant to provide all ROI regions that are present in a given frame so that no
important information is missed.

Let us first discuss the sky detection results. In order to analyze the per-
formance of the sky detection algorithm, we have compared its results with
two datasets: the WaterVisie dataset and the dataset of Schmitt [104]. The Wa-
terVisie dataset presents mostly outdoor surveillance scenes that contain veg-
etation, water and ships. The dataset of Schmitt is composed of urban scenes
where we observe buildings, pavements and little vegetation. We briefly
summarize an alternative approach from literature introduced by Schmitt
[104] for the sake of performance comparison. The algorithm is based on the
analysis of color, position and shape properties of homogeneously colored,
spatially connected regions. In the first steps of the algorithm, the input im-
age is smoothed and segmented by a region growing segmentation technique.
Each segment is analyzed individually regarding its average color, and a sky
probability is attached. In a final step, spatial information typical for urban
scenes is added to the probability map and all segments are classified into sky
and non-sky.

For quality evaluation of our sky detection, we manually annotate sky on
17 images of the WaterVisie dataset and 179 images of the dataset of Schmitt
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[104]. Then, the images of Schmitt’s dataset are divided into 100 images for
training and 79 images for testing. All WaterVisie images are only used for
testing. Afterwards, our sky detection algorithm [105] is trained and tested.
Figure 4.1(a) shows the original image of the WaterVisie dataset, which is one
frame extracted from a video sequence. As can be observed, this dataset does
not provide sufficient information in terms of color. Figure 4.1(c) visualizes
the corresponding probability map of the sky region of that image, which is
obtained by applying our sky detection algorithm to the original image, and
Figure 4.1(d) shows the result of applying a threshold to the probability map.

Figure 4.2(a) shows an original image of the dataset of Schmitt. It can be

(a) Original image (b) Manually annotated sky region

(c) Probability of the sky region (d) Result of the sky detection after thresh-
olding

Figure 4.1: Example of sky detection algorithm on the WaterVisie dataset (white color
indicates sky).
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seen that this image does not provide sufficient information in terms of blue
color, due to clouds. Figure 4.2(c) visualizes the probability map of the sky re-
gion which is achieved by our sky detection algorithm on the original image,
and Figure 4.2(d) shows the result of applying a threshold to the computed
probabilities. The CR for this image is 99%. Table 4.1 shows our sky detection
results for the WaterVisie dataset and the Schmitt’s dataset. The performance
of our algorithm is comparable to Schmitt algorithm and sometimes slightly
better. Schmitt et al. [104] have reported that in 80% of all images lead to a CR
that is above 90%.

Regarding water detection, we evaluate our approach on the WaterVisie

(a) Original image, (b) Manually annotated sky region

(c) Probability map of the sky region (d) Thresholded map of the sky region

Figure 4.2: Example of Sky detection result on the Schmitt dataset [104] (white color
indicates sky).

dataset. We manually annotate water on 40 images of the WaterVisie dataset
and we use 20 images for training the classifier and 20 images for testing pur-
pose. Figure 4.3 shows the original image and the obtained detection results.
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Figure 4.4 shows an alternative case, where a ship is entering the scene. In
both cases the water region is correctly found and the obtained average of the
CR for water detection in all annotated images is about 96.6% (see Table 4.1).

Regarding our road detection approach, the video sequence used for ex-

(a) Original image (b) Manually annotated water region

(c) Result of water detection algorithm

Figure 4.3: Example of the proposed Water detection algorithm on the WaterVisie
dataset (blue colors indicate the water region).

periments contains a straight road with two lanes and some vegetation at
each side of the road with a resolution of 720 × 576 pixels. We can observe
two neighboring roads that appear in the upper corners of the scene (Fig-
ure 4.5(a)). Figure 4.5(b) shows the corresponding heat-map obtained for this
video sequence. This heat-map was obtained using 100 consecutive frames
of the sequence. We expect to obtain a similar heat-map while using much
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(a) Original WaterVisie image with ship (b) Manually annotated water region

(c) Result of water detection algorithm

Figure 4.4: Example of the proposed Water detection algorithm on the WaterVisie
dataset (blue colors indicate the water region).

less frames. In our experiment, we consider first 3 peaks of the accumulator
array with Hough transformation results, to calculate three lines which are
the optimal choice for our scene. Figure 4.5(c) presents the result of applying
a Hough transform to the selected frame, where the result contains an unde-
sired straight line. To remove this line, we consider the heat-map with “hot”
and “cold” areas, which illustrates the value of activity in each pixel. We ap-
ply a background subtraction technique on our video sequence to compute
a heat-map. The threshold that we impose on the gray-scale values during
background subtraction is 120. Figure 4.5(d) shows the final result of the pro-
posed method when the heat-map and the detected straight lines are com-
bined by accumulating the motion values in between the straight lines in the
whole potential road area. If the accumulated value is above an empirical
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threshold, that area between the straight lines is classified as road. The re-
sults of the road detection algorithm are promising with 97% in this single
highway video sequence (see Table 4.1).

Figure 4.6(b) shows the resulting heat-map on the WaterVisie dataset.

(a) Original image (b) Heat-map of the road

(c) Hough transform (d) The obtained road detection

Figure 4.5: Exmple of Hough-based road detection results on our highway video se-
quence.

There is a circular red area in the middle of the image which is caused by
water movement and another red area at the bottom of the scene where the
motion is mainly caused by vegetation movements in these areas. We apply
the KLT technique to pairs of smoothed neighboring frames of our dataset,
after which velocity vectors of each pixel are computed. If velocity vectors
are zero, we ignore them to achieve better visualization. The result of the mo-
tion detection is shown in Figure 4.6(c). Figure 4.6(d) shows the direction of
the moving object.
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(a) Frame with a ship (b) Heat-map on video of a moving ship
(the red color indicates regions with the most
movement)

(c) Optical flow KLT on a moving ship,
arrow shows the direction of ship’s
movement

(d) Magnified arrow for the direction of the
ship’s movement

Figure 4.6: Example of using optical flow KLT on a video including a moving ship.

4.5 Discussion and conclusions for semantic labeling of
specific regions

We have presented our research on detecting three specific regions which oc-
cur most frequently in an outdoor scene, i.e. sky, water and road.

For sky detection, we have adopted a model-based detection algorithm
from earlier work, based on a probability map that jointly uses a color model,
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Approach Dataset Coverability Rates (%)
Sky detection WaterVisie 98
Sky detection Schmitt [104] > 90
Water detection WaterVisie 96.6
Road detection highway sequence 97

Table 4.1: Average of the obtained Coverability Rates (%) for three specific
region labeling approaches on different datasets.

texture properties at a multi-resolution scale and the vertical position of po-
tential sky pixels [105]. To evaluate the results, the average CR values have
been calculated for two different datasets: the WaterVisie dataset and the
dataset of Schmitt [104]. It has been shown that the algorithm of Zafari-
far [105] performs well for both datasets, showing a CR of 98%. It has further
been indicated that this algorithm performs equally well as the algorithm of
Schmitt, while being more flexible, because it uses adaptive thresholds and
does not limit itself to a particular type of scene. We have concluded that the
adaptive model-based technique [105] is more reliable for detection of vari-
ous types of sky.

Regarding water detection, we have also evaluated the dedicated algo-
rithm in which segmentation and region recognition are combined. The ob-
tained CR average for water detection is about 97% for the WaterVisie dataset.
The basic components of this approach are used in our generic semantic re-
gion labeling algorithm which will be discussed in more detail in the next
section.

Regarding road detection, we have designed a novel approach by com-
bining two reliable features which are based on motion and straight-line de-
tection. It has been indicated that our results obtained with this algorithm
yield a CR of 97%.

Since we have exploited various features in each detection algorithm to
classify sky, water and road regions, we conclude that developing specific
algorithms for each specific region is not adaptive to new semantic region
types and we need to re-design a new approach for each new region type.
Therefore, our research study for semantic region labeling has been led into
developing a general framework for performing automatic semantic labeling
task. To this end, we use common features for several natural outdoor regions
to design the framework.

The chapter continues by introducing the details of the generic semantic
labeling approach, which is based on combining both the local features and
spatial contextual cues. Section 4.7 presents the experimental results of the
generic labeling approach on three datasets: our own dataset, LabelMe [107]
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and WaterVisie [108]. The general approach which contains 5 classes (sky,
vegetation, road, water, construction) plus the class “unknown”. Our method
is also compared quantitatively and qualitatively with two state-of-the-art
approaches [109][110]. Conclusions and discussion related to the generic se-
mantic region labeling are provided in Section 4.8.

4.6 Generic semantic region labeling

The related research for semantic region labeling approaches as well as their
processing stages have been reviewed in detail in Chapter 2. We note here
that one of the challenging aspects of automatically labeling image regions is
taking the contextual information into account which is not often considered
in prior research. The context provides a rich source of information that can
help to improve a scene analysis performance and reduce ambiguities of very
local scene information [1]. Although local features like color and texture for
regions such as sky and water are instrumental for understanding, they are
typically not uniquely determining the semantic meaning of these regions.
For a reliable semantic labeling of regions, the labeling task should account
for the contextual information at both local and global scene levels. Therefore,
we propose a reliable generic region labeling approach where information at
both global and local scene levels is incorporated for. Our generic seman-
tic region labeling algorithm involves three stages, as depicted in Figures 4.7
and 4.8, which are discussed here.

Stage 1 of generic semantic region labeling: uniform regions. In this stage,
the image is divided into several regions with uniform color using the graph-
based segmentation method.

Stage 2 of generic semantic region labeling: feature extraction. A global con-
textual information as well as pixel-based features (HSV color space and a
group of Log-Gabor features) of each segmented region are extracted. Re-
garding global feature extraction, two methods are proposed based on: (1)
Spatial Context (SC) in which the normalized vertical position for each pixel
is calculated; (2) Global Region Statistics (GRS) in which intervals for mean
and standard deviation of vertical positions of each specific region are ob-
tained.

Stage 3 of generic semantic region labeling: classification. For this stage, our
algorithm employs two concepts in a sequential order.

• Multiple-SVM (one vs. all). For each region class, an off-line separately
trained SVM is used to classify that region. Given the feature analysis of
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Figure 4.7: Proposed gravity-based region labeling approach.

the previous stage, color, texture and SC (normalized vertical position)
are used for learning each region class separately. We call the exten-
sive use of vertical information a gravity-based model. However, this is
not sufficient for region classification. Therefore, the stage of Assigning
labels is also included.

• Assigning labels. For each particular class, we measure the percentage of
pixels classified as belonging to that class in a given region. We assign
a specific label to a region when the percentage of positively classified
pixels in this region is above a threshold.

Figures 4.7 and 4.8 depict the two instantiations of our generic region labeling
approach. In Figure 4.7 the first method is depicted in which SC is added in
the form of the gravity-based model to the feature extraction stage. Figure 4.8
depicts the second method in which GRS is used in the classification stage.

In the gravity-based model an SVM is trained on HSV color space, a group
of Log-Gabor features and the SC information. However, in the GRS-based
method, only the HSV color space and a group of Log-Gabor features are used
for training the SVM and SC information is avoided for the training. Subse-
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Figure 4.8: Our GRS-based region labeling approach.

quently, the intervals for mean and standard deviation of vertical positions
are used in the Stage 3 for classification. This is a way to include position in-
formation at a region level without using the local gravity-based model. Sec-
tion 4.6.3 - B describes the GRS-based region labeling approach (Figure 4.8)
in more detail.

4.6.1 Stage 1 of generic semantic region labeling: uniform regions

We adopt an efficient graph-based segmentation from [111] as pre-processing
in our region labeling to achieve two objectives: (a) oversegmenting an im-
age so that we can group the segments into semantically meaningful regions,
and (b) performing fast segmentation to support a real-time application in
surveillance systems [108]. The basic idea of the graph-based method is that
pixels within one region are closer in color space than pixels from different
regions. We now define the segmentation stage more formally [111]. The im-
age is first blurred using a Gaussian filter with the standard deviation σ. In
this method, for each pair of neighboring pixels i and j, there is an edge with
an Euclidean weight wi,j which is specified by:

wi,j =
√

(Ri −Rj)2 + (Gi −Gj)2 + (Bi −Bj)2, (4.3)

where Ri, Gi, Bi are the RGB color values of the pixel i.
For the proper operation of the algorithm, two weights are defined. First,

intra-region weight (WA) of regionA is defined as the maximum edge weight
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within the region. Initially, each pixel is regarded as a region, and the initial
threshold τ for each region is set to τA = κ/|A|, where |A| is the number of
pixels in the regionA. Note that |A| = 1 if regionA contains one pixel and κ is
a constant parameter controlling the merging, such that a larger value results
in larger segments. The second weight is inter-region weight Wm−inter(A,B)
of a pair of regions A andB, which is defined as the minimum of intra-region
weights of the involved regions A and B. This weight now becomes:

Wm-inter(A,B) = min(WA + τA,WB + τB). (4.4)

RegionsA andB are merged into a new region if they satisfy the following
condition:

Wm-inter(A,B) < Wm-intra(A,B). (4.5)

If the merging takes place, it is evident that the weight for the merged re-
gion (A ∪ B) becomes then identical to W(A∪B) = Wm−inter(A,B) + τ(A∪B).
Note that very small regions are merged based on the minimum region size
(Smin), even if the merging criterion is not satisfied. The merging stops when
all regions are checked. This segmentation approach is described by Algo-
rithm 2.

Algorithm 2 Our graph-based segmentation approach in pseudo-language.
Initialization: regard each node as a region and sort edges in a non-decreasing order of weights
w
for each region do

Extract the two neighboring nodes A and B
if A and B are different regions then

compute Wm-intra(A,B) as in Eqn. (4.4)
if Wm-inter(A,B) ≤ Wm-intra(A,B) then

Join A and B as a new region
Update the weight of the new region

end
end

end

4.6.2 Stage 2 of generic semantic region labeling: feature
extraction

To train a reliable and robust SVM classifier, in some cases it may be sufficient
to use only local features such as color and texture. However, when classes
have similar characteristics, complications arise. Adding spatial context in
the analysis can be used to tackle such complications. For example, water
and sky may have similar color and texture. However, these regions can be
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often distinguished based on vertical positions, i.e. the sky tends to be at the
top of the image and the water at the bottom. Summarizing, we combine
the locally calculated pixel-based features and the region-based features to
achieve a more reliable region labeling approach.

A. Pixel-based features

Color can be an informative feature for describing a region. In our research
we consider three color spaces as candidates for the best representation: HSV,
RGB and CIELUV (proposed by Benedek and Szirnyi [112] as the most effi-
cient color space). Besides color, texture features lead to a better classification
by analyzing the local neighborhood variation [113]. In this thesis we use the
Log-Gabor function proposed by Field [39]. As we depicted in Figure 2.4 in
Chapter 2, the filters are constructed in terms of two components: (1) the ra-
dial component, which controls the frequency band that the filter responds
to, and (2) the angular component, which controls the orientation that the fil-
ter responds to. The two components are multiplied together to construct the
overall filter. More details of the approach can be found in [35].

B. Spatial Context

When a vertical position is used as feature, the Spatial Context (SC) becomes
specific for the region. Our gravity-based model exploits SC to overcome
the ambiguities caused by using only color and texture [114]. For each pixel
(x, y), we calculate its normalized vertical position SCxy = x/n, where x is
the row number, y the column number and n is the number of rows belonging
to the region.

4.6.3 Stage 3 of generic semantic region labeling: classification

After segmenting the image and extracting the features, we proceed to ob-
tain the labeling results. The labeling is performed by a classification system
based on an off-line trained SVM. Here, we present two approaches for region
classification, as depicted in Figures 4.7 and 4.8.

A. Classification using the gravity-based model

In this approach, color, texture and SC are used to train the SVM for each
region class individually, to achieve unitary-category classification (i.e. an
individual SVM is trained for each region type). Later, we randomly sam-
ple 100 pixels from a segmented region. The previously trained SVM for the
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considered class assigns labels to each pixel as positive or negative, depend-
ing on the classification results. We calculate the percentage of positive sam-
ples in that region. Then, we label the region as belonging to the considered
class (e.g. we find the segment depicted by sky), if this percentage of positive
samples is higher than an empirically defined threshold. Our fast unitary-
category classification is described in the inner part of Algorithm 3.

For multi-category labeling, we assign to each segment one of the 5 la-
bels: sky, vegetation, construction, road, water plus the class “unknown”. To
this end, we classify each segment by 5 SVMs using our unitary classification
(Algorithm 3) and obtain 5 numbers, indicating the percentages of positive
pixels for each SVM. Finally, a segment is assigned to a particular class if its
percentage is higher than the empirical threshold, which we call Te from now
on. Algorithm 3 illustrates our multi-category classification approach with
the unitary algorithm embedded into it. The empirical threshold Te for each
region is set to 50%.

Algorithm 3 Our fast multi-category classification
for 5 classes do

Define the next class type
for a segmented region do

Randomly choose 100 samples in this region and use the SVM classifier to label the
samples
Calculate the percentage of positive samples in this region
if the percentage of positive samples is higher than Te then

Set this region is positive
end
Compare results to threshold Te

Label the current region
end

end

B. Classification using the GRS-based model

We define the Global Region Statistics (GRS) as the standard deviation and
mean of the region positions. Let us assume that we have M regions of a
particular type, for example sky, in the training set of images. For each region,
we calculate the mean values µk (k = 1, ...,M) of the vertical positions of its
pixels, where M is the number of pixels in the region k. We also calculate the
standard deviation σk of the vertical pixel positions for each region. Then we
take minimum and maximum values for all means and standard deviations
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for this region type:

µmin = min(µ1, .., µN ),

µmax = max(µ1, .., µN ),

σmin = min(σ1, .., σN ),

σmax = max(σ1, .., σN ).

(4.6)

where N is the number of samples for each region type. In this way, we ob-
tain intervals for mean and standard deviation for the region position. We
assume that the mean value of the vertical pixel positions lies in the interval
(µmin, µmax) and standard deviation within (σmin, σmax). We compute these
intervals for each of the 5 region types described in this study. For a cor-
rectly labeled region, the region borders are in the typical interval values for
mean and standard deviation of the vertical positions. Therefore, for assign-
ing a label to a region, we check that both following conditions are satis-
fied: (1) the percentage of positively classified pixels exceeds the threshold
Te; (2) the mean and standard deviation of the vertical positions of the pixels
lie in the intervals as discussed above.

The next section will illustrate the experimental results on three datasets:
our own dataset, LabelMe [107] and WaterVisie [108]. We also compare our
method quantitatively and qualitatively with two state-of-the-art approaches
[110][109].

4.7 Experimental results of generic region labeling

Our own dataset consists of a broad range of images from multiple Internet
datasets and a personal archive. The images contain 5 region classes (sky,
vegetation, road, water, construction) plus the class “unknown”. The dataset
consists of 255 images: 121 images for training, 134 for testing. All images
for training are manually annotated, so that the regions corresponding to the
above-described classes are manually delineated. The parameters for graph-
based segmentation are as follows. For our applications, σ = 1.4, κ = 2 and
the minimum region size (Smin) equal to 300, are a good choice for complex
images. It should be noted that for this approach the accuracy is used for eval-
uating the results. Regarding the texture extraction in the feature extraction
stage, we apply a group of Log-Gabor filters with 1 scale and 8 orientations.
For our GRS-based approach, the means and standard deviations are calcu-
lated based on 121 images from the training set.

In order to benchmark our approach, we compare our gravity-based model
with two state-of-the-art approaches: Bao et al. [110] and Millet et al. [109].
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We have extended the unitary-category classification of Bao et al. [110] into
multi-category classification and applied contextual information as an addi-
tional feature. The rule-based approach proposed by Millet et al. [109] relies
on preknowledge on the relative spatial positions between regions. More de-
tails of the approach proposed by Millet et al. [109] can be found in Chapter 5.

We start with a qualitative comparison between our approaches and the
approaches proposed by Bao et al. [110] and Millet et al. [109]. Figure 4.9
illustrates a challenging image from our own dataset along with the com-
parison results of our gravity-based region labeling with two state-of-the-art
approaches, to highlight the differences between the algorithms. This image
contains several regions of interest and the color information is quite poor
with only small color differences between neighboring regions. Figure 4.9(b)
shows the result of our gravity-based region labeling which is similar to the
ground truth in Figure 4.9(f). However, our GRS-based approach is success-
ful in labeling the construction region at the bottom of the image, as is shown
in Figure 4.9(c). Furthermore, in contrast to our gravity-based results Fig-
ure 4.9(d) shows that the approach of Bao et al. [110] has labeled part of the
construction in the bottom of the image as sky. We can also see that the ap-
proach of Millet et al. [109] has mistakenly labeled water in the upper part of
the vegetation in the image, as is shown in Figure 4.9(e).

To further evaluate the performance of the region labeling algorithms
quantitatively, we use the accuracy, which measures how much of the true
region is detected by the algorithm [115]. Table 4.2 shows the accuracy com-
parison for our gravity-based model in three color spaces on 134 images of
our dataset. We can observe that the gravity-model in HSV color space re-
sults in the highest accuracy. Table 4.3 shows the accuracy comparison for our
gravity-based model in HSV color space and GRS-based model approaches,
with to Bao’s and Millet’s algorithms on 134 images of our dataset. We can
observe that the gravity-model approach results in a higher accuracy. Our
gravity-based approach outperforms the algorithm of Bao et al. and our GRS-
based model with approximately 2%. Our gravity-based approach also sur-
passes Millet et al. [109] by 3%, while avoiding preset rules which reduce the
flexibility of the method. Unlike Millet, our approach does not need to re-
build its status where a new region is added.

We have further benchmarked our gravity-based approach on the La-
belMe [107] and the WaterVisie [108] datasets. We have randomly selected
142 images from LabelMe and divided them into 102 training and 40 test im-
ages. We have also trained our gravity-based model on 111 frames and tested
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Region Gravity-CIELUV-based Gravity-RGB-based Gravity-HSV-based
Sky 93 92 96
Construction 80 87 88
Water 86 89 93
Road 87 88 92
Vegetation 89 87 90
Unknown 94 92 95
Average 87 90 93

Table 4.2: Accuracy (%) comparison for several color spaces.

Region Millet et al. [109] Bao et al. [110] GRS-based Gravity-HSV-based
Sky 94 95 96 96
Construction 84 87 88 88
Water 89 89 91 93
Road 89 92 92 92
Vegetation 87 85 85 90
Unknown 99 97 96 95
Average 90 91 91 93

Table 4.3: Accuracy (%) comparison for several semantic labeling algorithms.

it on 16 videos of WaterVisie dataset. Figure 4.10 shows the original images of
the datasets and the corresponding results of the gravity-based model. Fig-
ures 4.10(b), 4.10(d) and 4.10(f) visualize the results of the gravity model on
our own, LabelMe and WaterVisie datasets.

Table 4.4 demonstrates the average of the obtained accuracies for the
three studied datasets. The average accuracy over six region classes for the
gravity-based labeling approach is 93% for our dataset, 94% for LabelMe and
96% for the WaterVisie dataset. This shows a significant improvement on the
LabelMe dataset compared to the 59% reported by Jain et al. [116]. We note
though that Jain et al. [116] aimed at a clearly higher number of semantic re-
gion types, which is more difficult.

Approach Dataset Coverability Rates (%)
Our dataset 93

Gravity-based LabelMe 94
WaterVisie 96

Table 4.4: Average of accuracy (%) for three datasets.

79



4. SEMANTIC REGION LABELING

4.7.1 Complexity-reduced feature selection in generic region
labeling approach

In our classification stage of the gravity-based approach each region is clas-
sified by taking 100 randomly sampled pixels in that region and calculating
features for each of those pixels. Calculating the HSV and Log-Gabor features
takes negligible time compared to the SVM classification. Taking 100 ran-
domly sampled pixels in each region leads to 500 SVM classifications in total
for that region. Such number of classifications result in a high computational
complexity and may not be optimal for real-time applications. Therefore, in a
cooperative work [117] we aimed at improving the computational complex-
ity of our gravity-based region labeling approach. We proposed a different
approach which calculates regional features taking the average color and av-
erage texture over the complete region. To classify more accurately, next to
the averages, also the standard deviations of each of the regional features are
taken into account. This means that the previously needed 500 classifications
shrink to just 5 for one region. In the next chapter we will investigate the de-
tails of computational complexity calculations of the generic region labeling
approach.

4.8 Conclusions and discussion

In this chapter, we have presented our research on region labeling for outdoor
surveillance applications. Besides our specific region labeling which was dis-
cussed in Section 4.3, we have introduced a generic region labeling approach.
Our major contribution is introducing a generic framework based on spatial
context (in our case vertical position information) for labeling regions. We
have introduced two models for generic framework: (1) gravity-based and
(2) Global Region Statistics (GRS)-based models. In our gravity-based sys-
tem, following a segmentation stage, color, texture as well as the vertical po-
sition are exploited. For pixel-based features, the HSV color space has been
used and a group of Log-Gabor filters have been applied to obtain texture fea-
tures. These features together with vertical position have been used to train
a multiple-SVM classifier. As an alternative, we have presented a system
without the gravity-based approach, but with a novel Global Region Statis-
tics (GRS) based model. This model involves the computation of mean and
standard deviation of the vertical region positions. The experimental results
show that our gravity-based model gives the best results and outperforms our
GRS-based approach, the algorithms of Bao et al. and Millet et al. [109] with
2%, 2% and 3%, respectively. Our gravity-based approach is highly adaptive
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to new semantic region types because it avoids preset rules which can reduce
flexibility. The proposed framework is generic and does not depend on the
type of a scene.

Up to now we have considered five semantic region types, but this num-
ber can be extended, so that more semantic region types are explored. We
expect that such extended approach will be more suitable in this case com-
pared to the specific region labeling.

We conclude that our gravity-based generic region labeling approach is
more promising compared to our semantic labeling of specific regions be-
cause it doesn’t need to re-design for each new region type as with specific
region labeling. It also outperforms our GRS-based semantic region label-
ing. Therefore, we will discuss our gravity-based approach in the following
chapters for further analysis and evaluation. The computational complex-
ity analysis of the proposed gravity-based region labeling approach will be
addressed in Chapter 5 to show that the algorithm also has a low computa-
tional complexity. In Chapter 6 we apply our gravity-based region labeling
approach to complex surveillance use cases.
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(a) Image from our dataset (b) Our gravity-based region labeling

(c) Proposed GRS-based region labeling (d) Region labeling from Bao et al. [110]

(e) Region labeling from Millet et al. [109]

(f) Ground truth of (a)

Figure 4.9: Visual comparison of region labeling approaches.

82



4.8. Conclusions and discussion

(a) Image from our dataset, (b) Gravity-based region labeling of (a)

(c) Image from LabelMe [107] (d) Gravity-based region labeling of (c)

(e) Image from WaterVisie [108] (f) Gravity-based region labeling of (e)

Figure 4.10: Visual illustration of the gravity model. Light blue, darker blue and green
indicate “sky”, “water” and “vegetation”, respectively.
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5

Complexity analysis

5.1 Introduction

Chapter 3 has addressed the problem of scene understanding at the region
level, i.e. salient region detection. It was shown that the results from our
DCT-based approach are better compared to other salient region detection
techniques which are based on edge, connected components, Hough trans-
form as well as a prior art approach which is based on color. We have indi-
cated that the DCT-based approach is well-suited for real-time image analy-
sis because it allows parallel processing, since the DCT can be performed for
each image block independently and therefore at the same time.

Chapter 4 has discussed the problem of semantic region labeling. In par-
ticular, a general framework was introduced which is developed based on
color, texture as well as vertical position information as spatial context for
performing an automatic semantic labeling task. It was shown that our gen-
eral framework provides both qualitative and quantitative gains.

In the previous chapters we have noted that our main goal is to develop
methods that can be applicable in (near) real-time for embedded surveillance
systems. Therefore, the techniques should support both high accuracy and
low complexity.

Complexity analysis is designed to estimate computational complexity of an
algorithm and therefore allows to compare two algorithms in terms of com-
putational costs. Computational complexity involves of three aspects: (1)
time complexity which is defined by execution time, (2) storage space com-
plexity defined by the amount of memory used by an algorithm [118], and
(3) memory bandwidth required between computing section and the back-
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ground memory [77]. A simple way to analyze the complexity of an algo-
rithm is generally calculated by using Big-O notation [119]. A limitation of
using Big-O notation, however, is that only the computationally heavy part
of the algorithm under analysis is taken into account and it is a very coarse
estimate. Thus, this analysis provides insufficient insight into the complex-
ity of different steps of the algorithm under analysis and it is not suited for
drawing detailed conclusions. Albers et al. [77] introduce an approach that
takes into account the three aspects mentioned above, i.e. time, space as well
as required bandwidth, with the aim to gain more insight in the dynamic and
runtime complexity. Their complexity analysis method is based on counting
native Digital signal processing (DSP) operations with a basic RISC CPU as a
reference model. Furthermore, Albers et al. [77] assume a processor architec-
ture in the reference model, i.e. a processor core connected to a background
memory. In this thesis we adopt an algorithm from Albers et al. [77] since it
provides sufficient insight into the complexity of different steps of the algo-
rithm under analysis.

In this chapter, we provide the computational complexity analysis of our
proposed approaches for salient region detection and generic semantic region
labeling which were addressed in Chapter 3 and Chapter 4, respectively. By
analyzing the computational complexity of our approaches and comparing
them with the prior art algorithms, we address the question whether or not
our approaches are suitable for (near) real-time applications.

The structure of this chapter is as follows. Section 5.2 reviews the sys-
tem that we are going to analyze with respect to complexity. Section 5.3
provides an introduction to the method we use for analyzing computational
complexity of algorithms. Section 5.4 presents complexity analysis of our
salient region detection approach. Section 5.5 provides complexity analysis
of our generic semantic region labeling technique. Discussion and conclu-
sions related to the computational complexity of the proposed approaches
are presented in Section 5.6.

5.2 Context-based system

In video surveillance systems, videos acquired by cameras are commonly
stored in large databases for later retrieval. Scene information which is ex-
tracted by video analysis algorithms is stored along with the video data as
metadata. Large video databases should facilitate user-friendly access and
browsing. So far in this thesis, we have discussed that it is important for
surveillance systems to exploit analysis at different semantic levels. For ex-
ample, such analysis can assist in quickly classifying the images into out-
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door and indoor images. In another example, it can be used in querying
databases, e.g., for finding greenery or salient regions. Analysis at semantic
levels requires that the differences between the pixel, object and scene levels
are bridged in a joint analysis tool. Besides these aspects which address the
accuracy of the systems, the ideal video analysis system should provide high
processing efficiency, achieving (near) real-time operation.

Figure 5.1 illustrates a schematic view of our surveillance video analy-
sis algorithms with high accuracy and low computational complexity. Our
surveillance video analysis system consists of two main components: (1) the
DCT-based salient region detection technique presented in Chapter 3 and (2)
our semantic region labeling algorithm proposed in Chapter 4. In addition
to the key functions for computations for each component, which we have
discussed in Chapters 4 and 3, also memory storage is required. The memory
storage requirements can be allocated for current input pixels, Look-Up-Table
(LUT) buffers and outputs. In the following sections, we study the computa-
tional complexity of our proposed approaches.

Figure 5.1: Schematic view of context-based surveillance image and video analysis
algorithms with high accuracy and low computational complexity.
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5.3 Computational complexity estimation method

A direct way to define the complexity of an algorithm can be the analysis of
the amount of time and memory the algorithm needs for execution and pro-
viding the result for storing [120]. Here, we adopt a computational complex-
ity estimation method from Albers et al. [77]. In this method the following
three elements are addressed for analyzing computational complexity of an
algorithm: (1) execution time, (2) storage and (3) memory bandwidth.

A known metric for estimating the computational complexity is Opera-
tions Per Frame (OPF), Mega Operations Per Frame (MOPF) or Per second
(MOPS) [77]. These metrics are based on the following aspects:

• Native DSP computations

• Memory storage and bandwidth

• Processing model

Native DSP computations. In this metric only native operations like multipli-
cations, additions, etc. are considered. For example, consider a simple linear
equation, y = ax + bz where a, b are constants and x, y and z are data. This
requires 4 data loads, 2 multiplications, 1 add, 1 data storage, thus 8 opera-
tions.

Memory storage and bandwidth. By incorporating data storing and loads,
also an indication of the memory usage and bandwidth is obtained. In this
model, address computations are omitted (this is existing parallelism in pro-
cessor hardware). Furthermore, the data traffic from cache to memory is omit-
ted (cache hierarchy is present and working properly). In [77], caching was
incorporated, but skipped here for simplicity.

Processing model. Here, a simple RISC CPU processor is assumed with suf-
ficient background memory for video data storage, but with a limited set of
registers. RISC processors only use simple instructions that can be executed
within one clock cycle. Processors consist of two parts, the arithmetic/logic
unit (ALU) and the control unit. The former performs arithmetic and logi-
cal operations, the latter controls the flow of operations. In addition to the
processor there is memory. The core of the data processing unit consisting of
ALU and registers is shown in Figure 5.2. Evidently, data cycle from registers
into the ALU, where an operation is performed, and the result is transferred
back into the background memory.
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Figure 5.2: Processor with the RISC core, ALU and registers.

5.4 Complexity analysis of salient region detection
approaches

This section discusses the execution time for our DCT-based technique as
well as for different salient region detection approaches which are based on
edge, connected components, and the Hough transform. Furthermore, details
of computational complexity calculations of our DCT-based salient region
detection approach are discussed. Additionally, we provide computational
complexity calculations of the approach proposed by Rahtu et al. [90].

5.4.1 Execution time

In previous studies, e.g. in [77], it has been demonstrated that the computa-
tional complexity greatly impacts the execution time. Therefore, higher com-
putational complexity of algorithms implicitly indicates a higher execution
time. It is however noted that the execution time also depends on the im-
plementation of the algorithms. For example, a MATLAB implementation
of different salient region detection approaches which we have discussed in
Chapter 3 produces the profile shown in Table 5.1. These results are taken on
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a system comprised of CPU core i7 2.4-3.4 GHz Quad core processor support-
ing hyperthreading, 8 GB DDR RAM running at 1600 MHz on Windows 8.1
Pro 64-bit. Table 5.1 shows that the Edge-based approach has a lower execu-
tion time and Hough-based technique is the most time consuming approach.

In Table 5.1 we note that the DCT-based approach executes faster than the

Approach Execution time
(milliseconds)

Edge-based 63
Connected

component-based 105

DCT-based 150
Hough-based 225

Table 5.1: Average computational time of salient region detection methods
per frame, calculated over 5454 frames of the Caltech Pedestrian Detection
Benchmark [89].

Hough-based and is slower than the edge-based and connected component-
based techniques. However, from Chapter 3 we know that the DCT-based
approach outperforms the edge-based and connected component-based tech-
niques in terms of precision and recall rates. Therefore, our DCT-based salient
region detection approach is adopted as the candidate for computational com-
plexity analysis.

5.4.2 Complexity estimation of our DCT-based salient region
detection

Here we explain the details of the complexity calculation of the proposed
DCT-based salient region detection illustrated in Figure 5.3. Based on our
calculations which will be presented later in this section, the most compu-
tationally heavy step of our approach is applying a 2D DCT to each RGB
channel. To reduce computations, we consider an efficient and fast forward
2D DCT algorithm proposed by Wang et al. [121]. Figure 5.4 shows a signal
flow graph proposed by Wang et al. forN = 16. Inputs are 16 pixels, and they
are processed with 9-stage butterfly operations. A butterfly is the transform
of 2 samples (a, b) 7→ (a+ b, a− b) [122].

The amount of reads, adds and storages required by our 9-stage butterfly
operations is depicted in Table 5.2. In this table we can see that the complexity
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Figure 5.3: Proposed DCT-based salient region detection on the red component from
an RGB image.

requirements of our fast forward 2D DCT algorithm per block are 273 oper-
ations. Therefore, we need 266 × 4, 800 or 1.276 MOPF (4,800 is the total
number of blocks per channel). The entropy of the DCT coefficients of each
16 × 16 block requires 16 reads for probability distribution of each DCT coef-
ficient, which we have saved in a lookup table off-line. Additionally, 16 reads
for the logarithm of the probability, 16 multiply accumulations and 1 data
storage in the memory are needed.

Table 5.3 illustrates the influence of the block size on computational com-

Algorithm stages Operations/Frame
1 16R + 16A + 16W
2 8R + 8A+ 8W
3 5R + 4A + 4W
4 12R + 8A + 8W
5 14E + 14A + 14W
6 20R + 8A +8W
7 8R + 8A +8W
8 20R + 8A + 8W
9 16M + 16W
Total (OPF) 273

Table 5.2: Computational complexity of salient region detection (R, A and W
refer to Read, Add and Write).

plexity calculations of our salient region detection using a typical highway
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Figure 5.4: Butterfly diagram proposed by Wang et al. [121] (stg. refers to stage).

video sequence. From Table 5.3 we can observe that although the computa-
tional complexity of our salient region detection approach for 8 × 8 blocks
requires less computations per block compared to 16 × 16 block size, the
increased number of blocks from 4,800 to 19,200 increases the total number of
computations. Table 5.3 shows that the total operation count for all 4 stages
on 16 × 16 block size is 5.22 MOPF. This sequence consists of 40 frames with
a resolution of 1, 280 × 960 pixels. For applications requiring full-HD res-
olution video, the herein presented calculations should be multiplied by 16
(16 × 5.22 = 83.52 MOPF).
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Algorithm steps MOP of 8x8 MOP of 16x16
2D DCT 5.8752 3.369
Entropy 2.016 0.9648
Thresholding 1.83 0.45
Temporal filtering 0.00576 0.00144
Total 9.72 5.22

Table 5.3: DCT-based salient region detection complexity analysis per frame
on the highway dataset (frame size is 1, 280 × 960 pixels).

5.4.3 Complexity estimation of Rahtu’s saliency detector

This section provides the details of the complexity calculation of the saliency
detection approach proposed by Rahtu et al. [90]. Table 5.4 illustrates the com-
plexity analysis of salient region detection by Rahtu et al. [90] for each step of
the algorithm.

This algorithm is based on searching image segments whose intensity

Algorithm steps MOPF
Convert RGB to Lab color space 50
Integral histogram 3.69
Gaussian filter 0.028
Maximum of histogram per window 2.48
Total 56.19

Table 5.4: Complexity analysis of salient region detection by Rahtu et al. [90]
on the highway dataset (frame size is 1, 280 × 960 pixels).

values are described by the intensity distribution of the object, compared to
the distribution of the surrounding area. The algorithm of Rahtu consists of
the four following steps, as depicted in Table 5.4: convert RGB color space
to Lab color space, integral histogram, Gaussian filter, and maximum of his-
togram for each window. The most computationally heavy stage of Rahtu’s
approach is the RGB-to-Lab conversion step. This conversion step involves
another two steps of RGB2CIE∗XY Z and CIE∗XY Z2Lab [123]. Here, we
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explain the step of RGB2CIE∗XY Z which can be derived using:XY
Z

 =

0.4125 0.3576 0.1804
0.2127 0.7152 0.0722
0.0193 0.1192 0.9502

 ·
RG
B

 , (5.1)

where X , Y and Z are color components in XYZ space and R, G and B are
color components in RGB space. This conversion requires 3 reads for R, G
and B, 9 multiplies, 6 adds and 3 data stores of X , Y and Z in the memory.
Therefore, the conversion involves 21 operations/sample and these opera-
tions are applied to every pixel. Complexity calculations for the other stages
of this approach are obtained in a similar way.

The computational complexity of the salient region detection approach of
Rahtu et al. [90] equals 56.19 MOPF (see Table 5.4). Table 5.3 shows that the to-
tal operation count for all 4 stages of our salient region detection is 5.22 MOPF
when we choose 16 × 16 block size for processing. This comparison shows
that our approach outperforms Rahtu’s algorithm with 10 times lower com-
plexity, while it has been earlier reported in Chapter 3 that the accuracy of
our salient region detection is 22% higher than that of Rahtu et al. [90].

5.5 Complexity analysis of semantic region labeling
approaches

This section begins with the computational complexity estimation of our gravity-
based semantic region labeling approach. Furthermore, the execution time
for different stages of our approach is discussed. Additionally, we provide
computational complexity calculations of a similar approach proposed by
Millet et al. [109].

5.5.1 Complexity estimation of gravity-based semantic region
labeling

In this section, the details of the complexity calculations of the region seg-
mentation stage are presented. These details are provided because this stage
involves more complicated calculations compared to the other stages. Com-
putational complexity estimation of the feature extraction and classification
stages have been obtained in the same way and reported in this section as
well.

In the region segmentation stage, a graph-based segmentation approach is
applied, which is motivated by the concept that pixels within one region are
closer in color space than pixels from other regions. Based on this, a threshold
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is defined depending on the size of the region, where it is assumed that larger
regions should have larger tolerances for color deviations.

The algorithm steps of our graph-based segmentation approach (see Chap-
ter 4) are summarized in the left column of Table 5.5. Our graph-based seg-
mentation stage has five steps: 1) Gaussian filter, 2) finding different regions,
3) weight calculation, 4) merging comparison, 5) weight updating, as indi-
cated in the left column of Table 5.5. Let us discuss the computational com-
plexity estimation of these steps.

Step1: Gaussian filtering. In the graph-based segmentation, the input im-
age is first filtered with a Gaussian kernel. It is proven that an efficient way to
convolve an image with a 2D Gaussian kernel is to choose a separable filter
and then split the 2D Gaussian kernel into concatenation of two 1D kernels.
The 1D convolution is then specified by (I ∗K)(x, y) =

∑
j=1K(j) · I(x, y −

j + 1), where I(x, y) denotes the intensity of the current pixel (x, y) and K(j)
is the 1D kernel. Since the kernel size is 1 × 2, the filter requires 2 coefficient
reads for the 1D kernel K(j), 2 additions for y− j+1, 2 image pixel reads for
I(x, y − j + 1), 2 multiply accumulations for K(j) · I(x, y − j + 1) and 1 data
store for moving the result in the memory. Later, this computation is repeated
vertically and further for each color component per pixel.

After smoothing the input image with a Gaussian kernel, the segmenta-
tion algorithm requires the steps of finding regions, weight calculation, merg-
ing comparison and updating of the weight (left column of Table 5.5).

Step 2: Finding regions. The step of finding regions (ifRegionA 6= RegionB),
involves 2 reads for RegionA and RegionB and 1 comparison. This computa-
tion is pixel-based.

Step 3: Weight calculation. The step of weight calculation WA involves
1 data read of inter-region weight WA from a look-up table. It should be
noted that the edge weights according to Eqn. (4.3) in Chapter 4 and the max-
imum edge weights for each pixel are calculated and saved in a lookup table
in an off-line calculation and they are updated later depending on the out-
come of the condition. Prior to updating, a merging step is first investigated.

Step 4: Merging comparison. The step of merging comparison, involves cal-
culating Wm−inter(A,B) = WA,B , where the subscripts “A,B” denote taking
regions A and B together. Weight WA,B requires 2 reads for WA and WB ,
1 comparison to achieve the maximum of WA and WB and 1 data store of
WA,B in the memory. In addition, this step according to Eqn. (4.4) requires
2 reads for |A| and |B|, 1 read for κ, 2 multiplications for κ/|A| and κ/|B|,
2 adds and finally 1 comparison. If the criterion is satisfied, then the graph-
based segmentation algorithm continues to the next step, which is “Updating
the weight of the new region” as depicted in Algorithm 2 in Chapter 4.
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Step 5: Updating weight. Finally, we return to updating the weights. This
stage is based on the merging comparison result. IfWm−inter(A,B) is smaller
than or equal to Wm−intra(A,B), then the two regions A and B are merged
and WA,B is updated for two regions.

Except for the Gaussian filter (a pre-processing step), all above-mentioned
steps of the region labeling are repeated by the height of the graph, which
equals n × log(n), where n denotes the number of pixels covering the height.

Table 5.5 shows the estimation results of the computational complexity of
the semantic region labeling on the “LableMe” dataset [107] with the frame
size of 256 × 256 pixels. In this study, this public dataset has been se-
lected for scientific reference only. For applications requiring full-HD reso-
lution video, the herein presented calculations should be multiplied by about
32(14, 933, 248 × NR + 267,911,648) and the frame rate, so that MOPF counts
become GOPS with nearly the same numbers, proving that region labelling is
feasible for real practical systems.

Table 5.5 shows that the total operation count for all 3 stages is 466, 664 ×
NR+ 8,372,239 OPF (NR is the number of randomly selected pixels).

A. Execution time

As mentioned above, a higher computational complexity of algorithms im-
plicitly indicates a higher execution time. The execution time also depends
on the platform and programming environment on which the algorithms are
implemented. For example, an implementation of our generic semantic re-
gion labeling approach in C++ using the OpenCV library produces the profile
as shown in Table 5.6. This profile was composed with the Visual Studio pro-
filing tool and is therefore not platform independent, but gives nevertheless
insight in the bottlenecks of the code.

All results shown in Table 5.6 are taken on a system comprised of CPU
core i7 2.4-3.4GHz Quad core processor supporting hyperthreading, 8 GB
DDR RAM running at 1600 MHz on Windows 8.1 Pro 64-bit.

From Table 5.6 it is observed that the CPU time required for the classifi-
cation stage, 78.4%, is completely out of proportion. The reason for this high
cost in CPU-time is that the SVMs classify 100 pixels for each region. Each
pixel is in practice classified by 5 SVMs because we have 5 region types. This
amounts to 500 SVMs classifications for 5 regions. The segmentation of the
image also takes 15.6% of the total CPU time and together both stages account
for over 90% of the total CPU time. Given these high CPU time percentages
for segmentation and classification stages, we hypothesized that reducing the
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number of pixels increases the efficiency of the approach in terms of CPU
time. To test this hypothesis, as described in Chapter 4, in a cooperative work
[117] we took into account the average and the standard deviations of each of
the regional features. This means that the previous 500 classifications lower to
just 5. Table 5.7 shows that the execution time is reduced with the improved
implementation. This improvement provides a clear step forward towards
(near) real-time implementation. It is noted that all execution-time experi-
ments provided here are conducted on the 481 × 321 images of our dataset
and it is known that the execution time of segmentation and Gabor filtering
are heavily relying on the image dimensions, so that a lower resolution input
will result in faster classification.

In addition to the analysis of the execution time provided above, it is fur-
ther noted that the execution time can be improved using the OpenMP (Open
Multi-Processing) interface. For example, in [117] we showed that when us-
ing OpenMP the execution time of 272 ms described in Table 5.7 is reduced to
125 ms (i.e., a 54% decrease in the execution time). Furthermore, it should be
noted that the execution time also depends on the hardware specifications of
the platform on which the algorithm is executed.

5.5.2 Complexity estimation of Millet’s approach

In order to benchmark our approach, we compare our semantic region label-
ing with a similar approach proposed by Millet et al. [109]. It is noted that at
global level, the rule-based algorithm proposed by Millet et al. [109] is similar
to our approach and it also involves 3 stages: segmentation, feature extrac-
tion and classification. However, there are several differences. The major
difference between the two approaches is that in Millet’s approach, the SVM
classifier is not trained for spatial context. Instead, in order to obtain the rel-
ative spatial positions between regions, the following steps are defined: 1)
angle computation, 2) normalized histogram, 3) confidence function and 4)
consistency function. Our approach further differs from Millet et al. [109] in
the classification stage. Figure 5.5 depicts the different stages of Millet’s ap-
proach. It should be noted that for the common stages between our approach
and Millet’s work, we use the same techniques to establish a fair comparison.

We now discuss in detail the computational complexity estimations of
spatial context extraction proposed by Millet et al. [109].

Step 1: angle computation. The first step of spatial context extraction, i.e.
computing an angle between each two regions calculated by inverse tangent
(atan2) , atan2((Y2−Y1), (X2−X1)) × 180/π (where (X1, Y1) and (X2, Y2) de-
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Figure 5.5: Semantic region labeling approach of Millet et al. [109].

note two pairs from image coordinates for Region1 and Region2). The term
atan2 stands for the arctangent function. This step involves 4 reads for the
pixel position, 2 additions to obtain (Y2 − Y1) and (X2 −X1), 1 read for atan
(which is saved in a lookup table in an off-line calculation), atan × 180/π
requires 2 multiplications and finally 1 data store in the memory. It should be
noted that the histogram is also saved in a lookup table in an off-line calcula-
tion.

Step 2: histogram normalization. The next step, normalized histogram, in-
volves 1 read from a lookup table, then 1 multiplication to obtain normalized
value and 1 data store in the memory. The steps of angle computations and
normalized histogram repeat the operations for 500 pixels and 12 times for
each segment.

Step 3: confidence function calculation. The next step is calculating the con-
fidence function between each two regions. For example, if h is the angle his-
togram “Region2 is right of Region1” is verified with the confidenceRright de-
fined by: Rright =

∑θ=+90
θ=−90 h(θ) cos

2(θ). This gives the relation of Region2 re-
garding Region1; an angle of 0 radian means that Region2 is right of Region1,
and that Region1 is left of Region2. This step involves 180 reads to achieve θ,
180 reads for histogram, 180 operations to obtain cos2(θ) which is also saved
in a lookup table. Furthermore, the step requires 180 multiply accumulations
and 1 data store in the memory. The overall step repeats 4 times for each spa-
tial relationship (right, left, above and below).

fand result: consistency function calculation. The next step is consistency
function calculation. GivenN regions Regioni in the image that may be back-
grounds according to the SVMs, a consistency formula is calculated for each
possible case. Parameter Bi is a background attributed to the Regioni. An ex-
ample case can be: B1 = sky, B2 = unknown,B3 = water, meaning that “Region1
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is sky, Region2 is not a background, and Region3 is water”. Millet et al. [109]
propose using the following formula:

C(Ri(Bi), Rj(Bj)) = P (Bi) × P (Bj) × (Ri<Rj) × Eval(Ri<Rj), (5.2)

where P (Bi) is the probability of detection of the background Bi for the
region Ri returned by the SVM. Symbol < denotes a spatial relationship be-
tween two backgrounds. This consistency function calculation step involves
2 reads for P (Bi) and P (Bj), 3 reads and 1 data store of (Ri<Rj) in the mem-
ory. Here, the operation < is a spatial relationship between two backgrounds,
where (Ri<Rj) is the degree of confidence for the spatial relationship < be-
tween the regionsRi andRj . If for example regionRi is 80% above regionRj ,
10% below and 10% right of it, then (Ri aboveRj) = 0.8. A knowledge-based
function is defined as Eval(Bi<Bj). It returns a value representing whether
a relation (Bi<Bj) between two backgrounds is in agreement with the rules
(+1), in contradiction with them (-1), or not represented by them (0). This
step further requires 1 read for Eval(Ri<Rj), 3 multiplications to calculate
C(Ri(Bi), Rj(Bj)) = P (Bi) × P (Bj) × (Ri<Rj) × Eval(Ri<Rj) and 1 data
store in the memory. The step repeats 4 times for each label. The step of the
maximum consistency function requires 1 read for the consistency function,
3 comparisons to obtain the maximum value over 3 values and 1 data store in
the memory. The resulting numbers can be read from Table complexityMillet.

As we discussed earlier, our approach further differs from Millet et al. [109]
which will be addressed in the following. The left column of Table 5.8 illus-
trates the steps of the differences between our approach and Millet et al. Since
in Millet’s approach the SVM is not trained by the spatial context, the number
of support vectors becomes larger, as the number of support vectors relies on
the number of features used to train SVM. In our approach, the average num-
ber of support vectors over 5 regions is 25,923 while for Millet this number
equals to 33,182. In the kernel function K(Xs, z) = e−||Xs−z||2/2σ2

, the dis-
tance function ||Xs − z||2 represents the squared Euclidean distance between
the support vectors, i.e. Xs and feature vectors, i.e. z. We save the complexity
calculations of the kernel function in a lookup table in an off-line operation for
our approach as well as for Millet’s approach. Thus, the kernel function in-
volves 2 reads for Xs, z and 1 read for K(Xs, z) from the lookup table, which
is repeated over the number of support vectors (SV ), i.e. 3 × 25, 923 (in our
approach).

The kernel function stage,
∑
i∈SV αi ·K(Xs, z) + b, is repeated for each of

the NR randomly selected pixels, within each segment for each region type.
Therefore, the total number of calculations for the kernel stage in our ap-
proach becomes 3 × 25, 923 × NR × 12 × 5 + 4 × NR + 15 which
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amounts to 4,666,144 × NR+15 OPF while Millet’s approach requires 3 ×
33,182 × NR × 12 × 5 +108, resulting into 5,972,760 × NR+108 OPF.

The computational complexity of the semantic region labeling approach
of Millet et al. [109] for all the stages together equals 5, 972, 760 × NR +
8, 467, 471 OPF. Table 5.5 shows that the total operation count for all 3 stages
is 466,664 × NR + 8,372,239 OPF. This comparison shows that our approach
outperforms Millet’s algorithm with a 24% lower complexity (for NR = 100),
while it is reported in Chapter 4 that the region labelling accuracy of our al-
gorithm is at the same time higher than that of Millet et al. [109] (93% vs.
90%).

5.6 Discussion and conclusions

In this chapter, we have discussed a context-based surveillance image and
video analysis system, which consists of two main components: (1) our DCT-
based salient region detection technique presented in Chapter 3 and (2) our
semantic region labeling algorithm discussed in Chapter 4. We have pre-
sented and analyzed the computational complexity of these main compo-
nents. In our analysis, we have estimated the complexity of the developed
algorithms, to prove that our algorithms are not only offering accurate re-
gion analysis, but also execute with low complexity, to support application
in (near) real-time and embedded systems. The applied complexity analysis
method is based on counting native DSP operations and memory storage ac-
tions with a basic RISC CPU as a reference model.

We have evaluated our salient region detection techniques based on vari-
ous features, i.e., sum of edge pixels using a Sobel edge detector, number of
connected components based on the intensity values of neighboring pixels,
the number of straight lines found by the Hough transform and the entropy
of the frequency-domain features of a DCT, in terms of execution time. The
execution time analysis and the results from Chapters 3 we conclude that our
DCT-based approach is an efficient technique, while it maintains a high ac-
curacy compared to the other approaches we have proposed. The computa-
tional complexity analysis shows that our DCT-based salient region detection
outperforms Rahtu’s algorithm with about 10 times lower complexity. The
complexity analysis shows that in Rahtu’s algorithm, the step of converting
RGB-to-Lab color space has the highest contribution (88%) in the total com-
plexity calculation (56.19 MOPF) of the approach. We realize that the conver-
sion RGB-to-Lab color space can be implemented in an FPGA-based process-
ing platform and thereby it can be eliminated from the analysis processing.
However, even in this case, the complexity of the remaining algorithm steps
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is 6.198 MOPF which is still 18% higher than the total complexity calculations
of our approach.

Furthermore, we have estimated the computational complexity calcula-
tions of each step of our gravity-based region labeling approach. We have
compared the computational complexity calculations of our gravity-based
region labeling approach with the approach proposed by Millet et al. [109]
which is similar to our approach and involves combining color, texture and
spatial context as feature information in a learning-based fashion, using trained
SVMs. Compared to the Millet’s approach, in our algorithm we train the se-
mantic region labeling algorithm with normalized positions while Millet’s
approach relies on pre-knowledge on the relative spatial positions between
regions. The rule-based approach increases the number of features used to
train SVM classification and thereby increases the number of support vec-
tors, which in turn increases the complexity of SVM classification. In our
approach the average number of support vectors is 28% lower than that of
Millet’s approach and consequently, the complexity of our classification stage
is decreased by 1, 306, 616 × NR + 93 OPF. Furthermore, in addition to the
classification stage, the thresholding stage of Millet’s approach requires extra
processing steps: computing angle, normalize histogram, confidence func-
tion, consistency function. These extra steps add additional operation calcu-
lations of 0.065 MOPF (for NR = 100) compared to our step.

In summary, it can be concluded that both approaches presented and dis-
cussed in this study are suitable for real-world applications in surveillance
videos. Fortunately, the application of the presented algorithms goes beyond
surveillance and may also be employed in advanced video systems to per-
form real-time content-dependent quality optimization. Initial attempts of
such an approach can already be found in newly presented high-quality TV
displays.
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5.6. Discussion and conclusions

Algorithm stage CPU time (%)
SVM classification 78.4
Image segmentation 15.6
Gabor filter bank 1.0
Post processing results 0.1
Miscellaneous code 4.9
Total execution time 4,400 ms

Table 5.6: Profile statistics for our generic semantic region labeling on 49 im-
ages of our dataset with 481× 321 resolution.

Approach Execution time
(milliseconds)

Gravity model 4,400
Faster feature selection [117] 272

Table 5.7: Execution time comparison on 49 images of our dataset with a
resolution of 481× 321 pixels.
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6

Applications

6.1 Introduction

At the start of this thesis Chapter 2, has introduced several levels of scene
understanding, i.e., pixel, region/object, context and scene. It has been also
acknowledged that region analysis can have two general applications: (1) to
detect an arbitrary region in an image for general purposes, or (2) to serve
as contextual information when it is inserted as a processing block in an-
other larger algorithm or an application. Chapters 3, 4 and 5 have shown
that the proposed approaches for extracting information at the region level,
i.e. salient region detection and semantic region labeling approaches quan-
titatively and qualitatively outperform other approaches in accuracy, while
operating at several times lower complexity.

The aim of this chapter is to present several use cases where the tech-
niques developed in this thesis were used to improve and assist in a better
semantic interpretation of events occurring in a monitored space. In particu-
lar, this chapter intends to show that using contextual information in traffic
surveillance applications increases the reliability of the detection of objects
(e.g. ships in harbor and cars in street surveillance videos) which helps to
achieve a high level of surveillance scene understanding. Furthermore, this
chapter attempts to motivate that using contextual information enables the
automated analysis of complicated traffic surveillance scenarios (e.g. abnor-
mal traffic actions) that were previously not possible using conventional ob-
ject classification techniques. We validate these ideas by presenting four traf-
fic surveillance use cases, in which the contextual information is exploited for
surveillance scene understanding, as follows.
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• Detection of moving ship in harbor surveillance: in this use case, our seman-
tic region labeling approach introduced in Chapter 4 is combined with
motion context information to detect moving ships in port surveillance
videos.

• Recognition of traffic action: in this use case, our semantic region labeling
algorithm proposed in Chapter 4 and automatic traffic-sign information
[3] are combined to recognize actions in traffic surveillance video.

• Detection of moving cars in traffic surveillance: in this scenario, two use
cases are presented to detect moving cars in traffic surveillance videos.

– In the first use case, our semantic region labeling algorithm intro-
duced in Chapter 4 is again combined with motion information.

– Additionally, our DCT-based salient region detection technique from
Chapter 3 is again combined with motion information.

• Fast abnormal event detection: in this use case, a novel block-based ap-
proach is developed based on analyzing the pixel-based motion context,
as an alternative for the conventional object-based approach.

The first use case addresses an automatic video-based ship detection, which
is an important research area for security control in port regions. The ap-
proach automatically detects moving ships in port surveillance videos with
robustness for occlusions. This work was published in the Journal of Electronic
Imaging (2013) [108], in Emerging Research on Networked Multimedia Communi-
cation Systems (2015) [6], in Netherlands Conference on Computer Vision [124] and
also in [125].

The second use case focuses on crowd monitoring which is important for
public street safety. This use case was part of the European iTEA ViCoMo
(Visual Context Modeling) project, where contextual information was used to
improve scene understanding. The work presented in this use case was published
in the Journal of Electronic Imaging (2013) [126] and also in Emerging Research on
Networked Multimedia Communication Systems (2015) [6].

The third use case addresses the use of contextual information to im-
prove the detection of moving cars which are important objects in public road
surveillance scenes. This work was published in the IEEE Int. Conf. on Advanced
Video and Signal Based Surveillance (AVSS)(2014) [91] and in the Proc. of the
4th Joint WIC/IEEE Symp. on Inform. Theory and Signal Proc. in the Benelux
(2014) [4].

The last use case addresses the detection of alarming situations both in

106



6.2. Use case 1: Motion context and region labeling for moving ship
detection in port surveillance

private and public environments by analyzing the pixel-based motion con-
text, as an alternative for the conventional object-based approach. This work
was published in the Proc. of the Int. Conf. on Image Proc., Computer Vision, and
Pattern Recognition (IPCV)(2012) [127].

At the end of this chapter, we will compare our gravity-based region label-
ing approach with a recently developed deep learning-based system in order
to provide insight into how our approach performs compared to emerging
deep learning technology. This chapter will present the details of the surveil-
lance use cases in the order as indicated above.

6.2 Use case 1: Motion context and region labeling for
moving ship detection in port surveillance

In port areas, various hazardous scenarios may occur caused by heavy traffic
conditions and the mixing of large sea ships with local smaller vessels. In par-
ticular, dangerous situations can happen when small ships travel in the radar
“shadow” of large ships, so that they become invisible for the radar system
and the harbor management. Evidently, supplementary visual surveillance
is a possibility but because of the large diversity of ship functionalities and
shapes, human visual inspection is highly laborious and error-prone. Auto-
matic ship detection is an attractive research topic in the field of port surveil-
lance, which can nurture various applications, such as vessel traffic monitor-
ing, ship identity management and smuggling prevention. We propose an
approach to detect moving ships by jointly using the spatial (position) con-
text, i.e. our semantic region labeling approach introduced in Chapter 4 and
motion context [108]. This approach is a cooperative work of our semantic
region labeling and the work of Bao et al. [108]. We now briefly explain our
ship detection approach.

The approach is based on the following two observations in the scenario of
port surveillance: (1) ships can only travel within the water region, (2) each
ship has a spesific motion, which distinguishes itself from other ships and
from the surroundings. Concerning the motion characteristics of ships, we
note that each ship has its own motion pattern and its motion is more sig-
nificant than the motion within the local background. The flowchart of our
moving ship detection involves a sequence of processing steps, as depicted
in Figure 6.1.

Let us briefly describe each processing step, as depicted in Figure 6.1.
First, a graph-based segmentation [111] is employed to divide a video frame
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Figure 6.1: Schematic representation of context-based surveillance image and video
analysis for detecting moving ships.

into segments. Then, our semantic region labeling approach introduced in
Chapter 4 is employed to classify those segments into three classes: water,
vegetation and “unknown”. The labeled segments are then used to analyze
the motion similarity. Adjacent segments with the same labels and statis-
tically similar motion are merged into semantic regions, through which oc-
cluded regions are also separated from each other. These regions are analyzed
based on semantic, spatial and scale constraints to provide knowledge of lo-
cations of candidate ships. Based on the common understanding that ships
should have significant motion, the regions with salient motion are detected
as moving ships. In this scenario, salient motion is defined based on a set
of criteria to distinguish it from other types of motion, such as the scintilla-
tion/ripples of the water surface and the wind-based motion of vegetation.
For more details about the proposed motion saliency we refer to the work of
Bao et al. [108]. We start with the performance evaluation of the ship detec-
tion approach.

To evaluate the performance of the proposed ship detection approach, the
algorithm is tested on real-life video sequences recorded in the harbor of Rot-
terdam, the Netherlands. All the videos were captured with a PTZ (Pan-Tilt-
Zoom) camera with an SD resolution of 720 × 576 pixels. In those videos,
the ships are of various types, including container ships, speed boats, tanker
ships, fishing boats and sailing boats. All videos were made in the frame-
work of the WaterVisie project, which will be called “WaterVisie dataset” in
this section.

For the experiments, we employ 16 different video sequences. These se-
quences contain a significant amount of visual variation and are categorized
into three scenarios: (S1) single/multiple ship without occlusion; (S2) ships
present with occlusions between different ships and/or clutter caused by veg-
etation; (S3) ships during sunrise or sunset moment (highly flickering water).

Figure 6.2 visualizes the result of our gravity-based region labeling ap-
proach on frames from WaterVisie video sequences. This dataset includes
3 different categories such as water, vegetation and possible ships which is
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labeled as “unknown” in our approach. As depicted earlier in this section,
these semantically labeled regions as well as segmented regions are exploited
as contextual information. Despite the lack of color information, it is obvious
that the gravity model performs promising.

Since the ship detection system is based on a pan-tilt-zoom (PTZ) cam-

(a) Sample frame of WaterVisie video se-
quence

(b) Manually annotated regions

(c) Result of graph-based segmentation (d) Our gravity-based labeling results

Figure 6.2: Region labeling results for WaterVisie dataset. From left column to right
column: Frames from WaterVisie dataset; Ground-truth of corresponding frames; In-
termediate results of graph-based segmentation. The colors are randomly chosen and
are not related to semantic class labels; Region labeling results using gravity model
(Green=Vegetation, Blue=Water and Black=Unknown).

era, it is hard to benchmark this system, because existing systems are mainly
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based on a static camera. Furthermore, there is no benchmark dataset to eval-
uate ship detection systems in general. Therefore, the performances of dif-
ferent ship detection techniques are difficult to compare. As such, to analyze
the proposed approach, we compare it with the “Existing” [12] and “Cabin
detector” [128] approaches.

Figure 6.3 presents a visual comparison among “Cabin detector”, “Exist-
ing” method and the proposed ship detection. The “Cabin detector” pro-
posed by Wijnhoven et al. [128] utilizes local descriptors for representative
parts of ships instead of modeling the complete ship appearances. They build
a cabin detector based on HOG (Histogram of Oriented Gradients) [129] and
classify the resulting patterns. However, the simplified local descriptors are
hardly distinctive from other highly textured patches in the image, such as
vegetation. Moreover, the algorithm fails on ships without cabins. “Existing”
method is the algorithm that exploits only water regions as contextual infor-
mation and then applies the motion saliency detection technique. The “Exist-
ing” approach is a basis of the proposed ship detection algorithm which will
be called the “Improved” approach in this section. The “Improved” approach
uses not only water regions, but also vegetation area as contextual informa-
tion and then applies the motion saliency detection. Therefore, it can handle
occlusions between ships as well as clutters between ships and vegetation.
The first row shows the results for the “Improved” ship detection approach,
the second and third rows are the corresponding results of the “Existing”
and “Cabin detector” approaches, respectively. The four presented frames
demonstrate the categorized scenarios from left to right: (S1) a long vessel
without occlusion; (S2) a ship cluttered by vegetation; (S2) two ships occlud-
ing each other; (S3) a sailing ship during sunrise moment.

For all scenarios, the “Improved” approach can successfully find the
whole ship with a bounding box indicating the delineation of the ship’s body.
In contrast, the “Cabin detector” can only mark the cabin parts of the ship
(Figure 6.3 (j)) or it generates several detections along the ship body (Fig-
ure 6.3 (i)). For small ships moving in the flickering water region, the “Cabin
detector” misses the target (Figure 6.3 (l)), while the “Improved” method can
still find the ship with a boundary indication (Figure 6.3 (d)). Figure 6.3 (f)
shows an example where a ship is cluttered by vegetation. In Figure 6.3 (g),
the detection fails because the two ships traveling in opposite directions are
regarded as one ship, which makes the motion of the object not salient com-
pared to the surroundings.

Table 6.1 shows a quantitative evaluation of the detection results for the
three ship detection algorithms. In this evaluation, only the “miss or hit”
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6.3: Visual comparison among our “Improved” ship detection approach, Ex-
isting method and Cabin detector. The first row shows the results for our Improved
ship detection approach; the second and third rows are the corresponding results of
the Existing method and Cabin detector. The 4 typical frames demonstrate the cat-
egorized 3 scenarios from left to right: a long vessel without occlusion(S1); a ship
cluttered by vegetation(S2); two ships occlude each other(S2); a sailing ship during
sunrise moment(S3).

is considered, which means that the detection is successful even if the de-
tected ship contains a certain portion of non-ship objects. In Scenario 1, the
proposed ship detection approach using context information successfully de-
tects 1,413 ships out of 1,593 ships, with a total precision of 94.5% and a recall
of 88.7%. It gains approximately 2% in both precision and recall compared to
the “Existing” method, directly benefiting from the more advanced context
model. The “Cabin detector” system obtains similar recall (87.2%) at the cost
of a low precision (65.1%). This is caused by the fact that the developed ap-
pearance model in the “Cabin detector” approach is simplified, but not dis-
tinctive enough for other non-ship textured objects in the scene. Therefore,
it tends to generate false detections in vegetation or redundant detections
along long ships. In Scenario 2, the “Improved method” provides signifi-
cantly higher recall (92.7%) compared to the “Existing” (70.3%) and “Cabin
detector” (41.8%) approaches. The precision of the three approaches is sim-
ilar in this scenario. In Scenario 3, the “Improved method” provides higher
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precision (96.3%) and recall (75%) compared to “Existing” (precision of 93.8%
and recall of 71.8%) and ‘Cabin detector” (precision of 84.3% and recall of
56.1%) methods.

In summary, the above results show that the “Improved method” outper-
forms the “Cabin detector” when a flickering background affects the ship ap-
pearance severely (e.g. sunrise in Figure 6.3 (b) and Figure 6.3 (j)). Since the
“Improved method” avoids using the detector which is trained for finding
ship appearances (“Cabin detector”), it still performs well when the target
ship differs from the training samples. However, the “Cabin detector” relies
on frame-based features, so that the performance significantly deteriorates,
which is caused by the water flickering. Comparing between the “Improved
method” and the “Existing” method, the higher values in both precision and
recall obtained by the “Improved method” demonstrate the advantage of the
fully-modeled context-based approach.

Test Videos Methods TP+FN TP+FP TP Precision (%) Recall (%)

S1
a. Improved method 1593 1496 1413 94.5 88.7

b. Existing 1593 1491 1374 92.1 86.3
c. Cabin detector 1593 2135 1389 65.1 87.2

S2
a. Improved method 455 433 422 97.5 92.7

b. Existing 455 325 320 98.5 70.3
c. Cabin detector 455 207 190 91.8 41.8

S3
a. Improved method 173 135 130 96.3 75.0

b. Existing 173 130 122 93.8 71.8
c. Cabin detector 173 115 97 84.3 56.1

Table 6.1: Ship detection results. TP + FN = manually marked ships, TP +
FP = detected ships, TP = correctly detected ships.

The next section shows how reliable contextual aspects, such as semantic
labeled regions and traffic sign contexts, lead to semantic understanding of a
scene.

6.3 Use case 2: Automatic traffic sign detection and region
labeling for traffic action recognition

In traffic surveillance video scenes, not only harbor monitoring, but also street
traffic is of high importance. This involves the monitoring of large groups
and crowds of people and associated behavioral analysis. Many algorithms
exist to detect and track single persons, but analyzing group behavior is a
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relatively unexplored area of research. The work presented in this section is
part the European iTEA ViCoMo (Visual Context Modeling) project. One of
the central goals of the ViCoMo project was using contextual information to
improve scene understanding, and this section describes the result from the
collaboration between several ViCoMo partners.

Figure 6.6 illustrates the result of our gravity model for our surveillance
application. This dataset includes four different categories such as road, veg-
etation, construction and zebra crossing regions. As indicated earlier in this
section, these semantically labeled regions are exploited as contextual infor-
mation.

We propose a system for automatically analyzing group behavior using

(a) Sample frame of our video sequence (b) Manually annotated semantic regions

(c) Our gravity-based labeling results

Figure 6.4: Our gravity-based region labeling results on the video sequence (Green =
Vegetation, white = zebra crossing, light gray = road and dark gray = construction).

contextual clues to interpret and classify the actions of the group of people.
Our hypothesis is that traffic signs together with semantically labeled regions
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(e.g. zebra crossing in this case) provide contextual information for surveil-
lance applications and help to interpret the actions of traffic participants, as
well as to detect illegal or dangerous traffic situations automatically. Evi-
dently, this list of contextual clues, i.e. traffic signs together with semantic
labeled regions, is not exhaustive, but for this system we limit ourselves to
these aspects.

Our system contains three components: (1) the group analysis algorithm
[126], to track the movement and any splits/merges of groups of people, (2)
our semantic region labeling approach introduced in Chapter 4, and (3) the
traffic sign detector [3]. Finally, an event-level decision engine interprets the
output of these algorithms and decides when an alarm needs to be initiated,
see Figure 6.5 for an overview of the system. We now briefly describe each
processing step, as depicted in Figure 6.5.

Figure 6.5: System overview of the group behavior analysis system.

The group analysis algorithm [126] rests on a motion-based, rather than
object detection-based framework that localizes groups. The group analysis
approach also has the ability to detect pixel/motion-based group events, such
as merges and splits of groups of people. The motion estimation algorithm
is based on the Lucas–Kanade optical flow algorithm. In order to classify
group events, the consistency of behaviour is assessed by finding spatial blob
matches between frames and checking whether the matching record is con-
tinuous over a substantial number of frame intervals. For more details about
the group analysis algorithm, the reader is referred to [126].

The proposed traffic sign detector is summarized as follows. First, traffic
signs are detected in the images using independent detectors for all sign ap-
pearance classes (i.e. red circular signs), using a multi-scale sliding window
approach. This leads to a detection bounding box and a sign class. Next, the
detected signs are classified to determine the exact type of traffic sign, using
the extracted bounding boxes. The detection algorithm locates traffic signs in
the images. Multiple detectors are used to find broad classes of traffic signs.
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For example, all red circular signs are detected using a single detector, but a
different detector is used for red triangular signs. For more details, the reader
is referred to [3].

The system is tested with the recorded video in an outdoor setting, con-
taining several acted scenarios. We present an example case to demonstrate a
situation where traffic signs help in the understanding of surveillance footage.
In Figure 6.6, the security camera footage shows several scenes of actors in
two scenarios, and the actors and traffic signs in the scene are automatically
detected. The detected actors and signs are analyzed by a decision engine,
which decides if the situation requires operator’s attention. In the first sce-
nario (Figure 6.6 (a) and 6.6 (b)), a zebra crossing and a traffic sign are first
detected. This detection provides information to identify whether people are
crossing the road in an illegal location (Figure 6.6 (b)), which may lead to a
dangerous traffic situation. In the second scenario, two contrasting scenes
are shown (Figure 6.6 (c) and (d)). First, a crowd gathers near a bus stop
and waits for a bus to arrive, which is a perfectly normal situation and can
be identified as such through the bus-stop sign (Figure 6.6 (c)). In the sec-
ond scene, a crowd gathers to watch a fight, which is not a normal situation
and requires security operator attention (Figure 6.6 (d)). Screenshots from the
first two scenarios are visualized in Figure 6.6. In order to enable a fair
comparison of our work to already published research, we have evaluated
the performance of our system using publicly available datasets. Since these
datasets are not fully suitable to test our system, we can only report the per-
formance of a subset of the complete functionality of our system. We focus
on motion-based group event detection, tracking groups and detecting splits,
merges and slide-by (occluding groups passing each other without merging)
events. For this evaluation, we have used the publicly available PETS 2004
and 2009 datasets. Because these datasets only contain a limited amount of
relevant group events, we have opted to add some of our own test sequences
to the dataset, to increase the statistical significance of the comparison exper-
iment.

We report two precision-recall scores, one for the detection of basic crowd
behavior events and one for the detection combined with a correct classifica-
tion of the event type (split, merge or slide-by). We consider repeated detec-
tions of the same event to be false positives. The dataset contains 89 events
with 33 merges, 31 splits and 25 slide-by events, from 33 video sequences.
The system exhibits a detection recall of 83% with a corresponding precision
of 37%. The scores for combined detection and subsequent correct classifi-
cation are 71% and 32% for recall and precision, respectively. The low value
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(a) (b)

(c) (d)

Figure 6.6: Screenshots from the zebra-crossing scenario ((a) and (b)), and the bus-
stop/fight scenario ((c) and (d)).

for precision can be largely explained by the repeated detections, shadows,
motion of limbs within the group and stationary objects that appear in the
foreground (between group and camera).

In literature, there are a few systems that also report performance figures
on PETS data sets. Garate et al. [130] have tested their crowd event recogni-
tion system on the PETS 2009 data set, and have reported a recall of 79% for
splitting, and 60% for merging events. Chan et al. [131] have reported error
rates of 23% and 32% for classifying splitting and merging events, respec-
tively. These scores are all relatively close to our results, indicating that our
performance is comparable to the state-of-the-art systems discussed in recent
literature.

It should be noted that the traffic action-recognition scenarios are com-
plex. As such, the dataset had to be partially captured by a group of volun-
teers and the number of experiments at the scenario level is limited. Given
this constraint, it has been found that the proposed traffic action-recognition
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system evaluations prove to be well working for the dataset at hand. This
positive result is due to the considerable testing of the individual components
and the relative simplicity of the decision engines for the scenario content.

In traffic surveillance video scenes, a moving object such as a car should
be detected to provide semantic information and semantic image regions of
interest are road and vegetation. The next section shows how reliable contex-
tual aspects, such as automatically labeled regions and detected moving cars,
lead to semantic understanding of a scene.

6.4 Use case 3: Detection of moving cars in traffic
surveillance

In this section, two systems are introduced which refer to automatic mov-
ing car detection in traffic surveillance videos. In the first system, our se-
mantic region labeling algorithm presented in Chapter 4 is combined with
motion information. In the second system, our DCT-based salient region de-
tection technique introduced in Chapters 3 is combined with a car detection
approach.

6.4.1 Motion context and region labeling for car detection in traffic
surveillance

In video-based traffic surveillance systems, the detection of moving objects of
interest is an important research topic in computer vision for traffic surveil-
lance. This importance is motivated by that the properties, the number and
locations of moving objects are fundamental to semantic interpretation of
traffic information. Such objects of interest can be defined depending on the
scenario of surveillance, e.g. vehicles in road surveillance or vessels in port
surveillance. In the past decades, significant research concentrated on ob-
ject detection in the domain of traffic surveillance. The object detection algo-
rithms discussed in this research are mostly designed and implemented in a
dedicated form for a particular traffic scenario: for example, they focus either
on road surveillance or on port surveillance. Therefore, these dedicated algo-
rithms lack generic characteristics, which hampers their re-use for object of
interest detection, independently of the domain. In this section, we propose
a context-based generic framework combining scene understanding and de-
tection of objects of interest for a traffic surveillance system. The framework
is inspired by the improved ship detection algorithm presented in Section
6.2 and conceptually further developed for completeness and generalization.
Figure 6.7 illustrates the proposed framework. The proposed framework con-
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sists of five stages as depicted in Figure 6.7, which are discussed here.
First, our semantic region labeling algorithm proposed in Chapter 4 is

Figure 6.7: Schematic representation of context-based surveillance image and video
analysis for detecting cars.

performed to divide the video frame into labeled segments, such as road,
vegetation, etc. Those segments are then grouped into regions according to
spatial and motion similarities. Therefore, the scene is depicted as a set of
semantic regions and the first group of candidate objects is located simulta-
neously.

Meanwhile, as a second stage, a simple appearance-based detector is trained
off-line and applied to the same frame to locate the second group of regions
possibly containing objects of interest. Haar-like features are used in our
framework because they are more easily computed than HOG features. The
boosted classifier is used for training the detector, considering this weak clas-
sifier is faster, compared to SVM.

The third stage is extracting spatial context. In a specific traffic surveil-
lance scene, an object of interest is supposed to travel inside the traffic region,
e.g. vehicles travel in/on a road region and ships travel inside the water re-
gion. Therefore, we assume that regions containing candidate objects should
be surrounded by traffic regions or at least have common borders with them.

In the fourth stage, we verify whether the motion of the obtained candi-
dates is salient compared to their local surroundings. Using the pixel-based
motion obtained by optical flow, we calculate the region-level motion, based
on the average motion in each region. Then, we remove/filter false positives
whose motion contrast with the surroundings is not significant (e.g. traf-
fic signs). In the second criterion, we remove false detections (e.g. swaying
flags) with small distracting motion in a static background region.

Finally, the detection results are merged and a temporal filter is applied
to increase the robustness of the detection results. The temporal filtering is
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based on the assumption that a moving object cannot disappear suddenly
from the scene. For each detection in the previous frame, we search a pre-
defined neighboring area for detections in the current frame. If no detection
is found in the search area, the previous detection is propagated to the cur-
rent frame.

To validate our context-based traffic surveillance analysis framework, we
consider a road traffic scene and on-road vehicles as an example. All videos
have a resolution of 1280 × 960 pixels and are captured during daytime, in-
cluding sunny and cloudy weather. For training the vehicle detector, we
choose 100 images from the “cars 2001(Rear), Caltech” dataset. The training
set is intentionally chosen to be limited to a single view with small number of
training images, in order to evaluate the system performance when an imper-
fect vehicle detector is applied. The semantic region labeling from Chapter 4
aims at annotating 2 classes (vegetation, road) plus the class “unknown”. Fig-
ure 6.8 visually demonstrates a sample input frame (Figure 6.8(a)), semantic
labeled regions (Figure 6.8(b)) and the output of our vehicle detector.

To evaluate the performance of our vehicle detector, we compare our
approach with another algorithm proposed by Wijnhoven et al. [132]. The ap-
proach of Wijnhoven et al. [132] is based on the HOG (Histogram of Oriented
Gradients) and the SVM classifier. Figure 6.9 provides a visual comparison of
our approach and the approach of Wijnhoven et al. [132]. In this figure, the im-
ages at the left column show the results of our system, and the images at the
right column illustrate the results of Wijnhoven’s approach. In contrast to our
approach, the Wijnhoven’s work erroneously detects several traffic signs as
vehicles (Figure 6.9(a)). Furthermore, the turning cars (Figures 6.9(b)) and oc-
cluded cars (Figure 6.9(c)) are missed in the Wijnhoven’s results. In contrast,
our approach shows successful detections in all three scenarios. In the
next section, we cascade our DCT-based salient region detection technique
from Chapters 3 with the Haar-based car detector presented in this section to
measure the potential efficiency gain.

6.5 Motion context and salient regions for detecting moving
cars in traffic surveillance

To measure the potential efficiency gain when applying salient region de-
tection in video surveillance applications, we cascade our DCT-based salient
region detection technique from Chapters 3 with an object detector [133], as
depicted in Figure 6.10. Here, the cascaded detection framework is again
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(a) Sample frame of our video sequence (b) Semantic labeled regions

(c) Car detection results indicated by yellow
bounding boxes

Figure 6.8: Our proposed car detector.

evaluated for car detection task and is inspired by the car detection algorithm
presented in Section 6.4.1 and conceptually updated for achieving the poten-
tial efficiency gain.

The proposed framework consists of two stages as depicted in Figure 6.10,
which are discussed here. First, we apply our DCT-based salient region de-
tection technique introduced in Chapters 3 to provide informative regions
for our car detector. Then, we apply our car detector on each salient region,
instead of analyzing the complete scene. Our car detector is the same as pre-
sented in Section 6.4.1 which is trained using Haar-like features combined
with Adaboost algorithms.

To train the car detector, we choose 100 images from the “cars 2001(Rear),
Caltech” dataset [134] as training set. To test our detection framework, we
choose 50 frames from our highway video sequence which was introduced in
Section 6.4.1.
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(a) Multiple vehicles approaching the crossing

(b) Vehicle is turning (views are changing)

(c) Vehicle is occluded by light

Figure 6.9: Detection results of two approaches in different scenarios, where left col-
umn shows results of our “Context-Generic” and right column shows “SVM-HOG”.

We consider the size of the car in the test set to be in the range of 20× 20 pix-
els and 120× 120 pixels. We use a sliding window with the size of 120× 120 pix-
els to scan the image. The scanning step is 10 pixels in both vertical and hori-
zontal directions. If the number of pixels in the sliding window that are also
within the detected salient region is below 50 %, we expect no car inside the
image patch and therefore we do not apply the car detector. Otherwise, we
apply the car detector for the image patch.

Figure 6.11(b) shows the result of the DCT-based salient region detection
approach with 8 × 8 block size on one sample frame of our highway video
sequence ( 6.11(a)). Figure 6.11(c) presents the detected cars in that frame us-
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Figure 6.10: Framework of the cascaded object detection approach.

ing the DCT-based salient region detector.
To evaluate our proposed approach, we compare the detection results of

(a) Sample frame of our video sequence (b) DCT-based salient region selection

(c) Our context-based car detector using
salient region detection

Figure 6.11: Proposed cascaded car detector (yellow bounding boxes represent the
results of the car detector).

our cascaded framework with the results obtained using only the Haar-like
object detector. On average, for 50 frames of our test set without using the
detected salient regions, the car detector is applied to 9,744 image patches;
while applying the detector only on salient regions, only 943 image patches
are checked by the car detector. Figure 6.12 illustrates the visual comparison
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of a Haar-like car detector approach with (Figure 6.12(c)) and without (Fig-
ure 6.12(d)) DCT-based salient region detector (Figure 6.12(b)) on one sample
frame of our highway video sequence ((Figure 6.12(a)). The proposed cas-
caded detection framework using DCT-based salient region detection tech-
nique leads to applying the car detector, which is a computationally expen-
sive algorithm, to only 9.7 % of the total amount of image pixels. The average
detection rates of car detection with and without using salient regions are
80 % and 90 %, respectively.

In the surveillance domain one of the interesting challenges is the de-

(a) Sample frame of our video sequence (b) DCT-based salient region selection

(c) Our context-based car detector without us-
ing salient region detection

(d) Haar-based car detector using salient re-
gion detection

Figure 6.12: Our cascaded car detector.

tection of abnormal-events. In the next section, our research is presented on
exploiting motion information in a fast abnormal event detection system.
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6.5.1 Use case 4: Fast abnormal-event detection from video
surveillance

This section presents a novel block-based approach to detect abnormal situ-
ations by analyzing the pixel-based motion context, as an alternative for the
conventional object-based approach. We proceed directly with event charac-
terization at the pixel level, based on motion estimation techniques. Optical
flow is used to extract information such as density and velocity of the motion.
The proposed approach identifies abnormal motion variations in regions of
motion activity, based on the entropy of DCT coefficients. We aim at a simple
block-based approach to support a real-time implementation. In this use case
successful results are reported on the detection of abnormal events in surveil-
lance videos captured at an airport. We now briefly describe our approach.

Our abnormal event detection is based on motion features extracted with
a motion estimation technique. We base our features on pixel-based optical
flow, since this is the most natural technique for capturing motion indepen-
dent of appearance [127]. We use optical flow at each frame using the Lucas-
Kanade algorithm [115]. Optical-flow-based motion estimation uses charac-
teristics of flow vectors of moving objects over time to detect moving regions
in an image sequence, relating each image to the next. Each vector represents
the apparent displacement of each pixel from frame to frame [49]. The result
of optical flow is the value of the displacement of each pixel in both vertical
and horizontal direction. We combine this displacement to obtain a motion
magnitude vector. To process these motion vectors, we substitute pixel values
for the estimated motion (called motion image) and we divide each motion
image into blocks.

We expect that during abnormal events the motion patterns and therefore
the energy of the images containing motion vectors, change compared to the
normal behavior. We apply a DCT to each block of the motion image, since
it provides a better representation of the motion pattern. Then we compute
the entropy of the DCT coefficients to measure the information content of the
DCT coefficients [135]. The details of the entropy calculation is described in
Chapter 2. In our case, the motion magnitude per pixel forms a gray-scale
image and we use 256 bins which correspond to the number of gray levels.

For deciding whether the event is normal or abnormal, we compare the
entropy value with thresholds which we learn per block in the beginning of
the video sequence. The threshold is based on a median value of the entropies
which we estimate during the first 500 frames of the video. Obviously, we
assume that abnormalities will not occur during the first 500 frames of the
surveillance sequence. In general, this median computation of the threshold
can be done continuously through the video because the abnormalities will be
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filtered out by taking a median value. We limit the median filtering over time
for controlling the total complexity of the calculations. An abnormal event is
indicated when the value of the entropy for the current block is higher than
the threshold defined for that block. In our implementation, we divide each
frame into 4 blocks for simplicity, but this can be easily changed. Based on
experimentations and evaluations, the threshold for the median entropy to
classify an abnormal event is empirically set to 3 times the median value. The
abnormality indicator for the whole frame is raised if abnormality is detected
in any of the blocks. Figure 6.13 illustrates our block-based processing frame-
work in dynamic scenes.

Figure 6.14 illustrates the result of our system in a normal situation where

Figure 6.13: Block-based processing framework for detecting an abnormality.

people are waiting in a queue. Figure 6.14 (a) shows a frame of the normal
situation and in Figure 6.14 (b) we indicate the presence of the alarm in an
analysis window. Since the situation is a normal behaviour in the airport, the
analysis window does not show any alarm.

Figure 6.15 illustrates the result of our system in an abnormal situation
where people are moving in a circle. The original frame of the airport video
sequence ( 6.15 (a)) shows the abnormal situation where people are moving in
a circle and the analysis window (Figure 6.15 (b)) shows a clear warning with
the 4 bars on all 4 blocks. From this video sequence, our approach detected 5
out of 6 abnormal events, without producing false alarms.

For comparison, we use an alternative approach proposed by Ihaddadene
and Djeraba [106]. In this approach, a statistic measure is defined which de-
scribes how much the optical flow vectors are organized or cluttered in each
frame. This alternative algorithm uses a metric which is the scalar product
of the normalized values of the following factors: direction variance, motion
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(a) (b)

Figure 6.14: Result of our system in a normal situation.

(a) (b)

Figure 6.15: Original frame with a result of our system in an abnormal situation. Each
bar indicates an alarming situation in the corresponding block (block numbering is
column-wise, starting at the top left).

magnitude variance and direction histogram peaks. This metric is then com-
pared to a threshold which is manually set at a constant value. We have ap-
plied the approach of Ihaddadene and Djeraba [106] to our video sequences.
It is noted that in airports, people normally move in any desired direction,
therefore we do not consider their movement direction as a suitable feature
which has been used in [106]. After experimenting with the original approach
of these authors [106], we have tried to improve their results by consider-
ing only the motion variance per frame. We have experimented with several
threshold values for this approach and the best obtained results are illustrated
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in Figure 6.16 (c). We can observe that this method produces false alarms in
normal situations and it has missed 3 abnormal events.

(a) (b) (c)

Figure 6.16: (a) Ground-truth results in block number 3 for the complete surveillance
video, (b) warnings based on our detection corresponding to those events (bars show
alarm in block number 3 at the current frame and the first two bars correspond to one
event) and (c) warning for comparison corresponding to the system of [106].

6.6 Comparison between our gravity-based and a deep
learning-based region labeling system

In this section, we compare our gravity-based region labeling with a recently
developed region labeling system [2] which is based on emerging deep learn-
ing technology. We apply both our region labeling approach and the deep
learning-based approach to a new dataset which is called Cityscapes [2]. Fur-
thermore, the deep learning-based approach of Meletis et al. is applied to the
LableMe dataset that we used in our previous chapters. Prior to presenting
present the results, first we provide a brief description of the deep learning
approach.

The proposed region labeling system by Meletis et al. [2] first selects a
dataset (primary dataset) with fine (sufficiently annotated), per-pixel annota-
tions, that contains the high-level classes, e.g. vehicles, humans, traffic signs.
Then, a collection of datasets (auxiliary datasets) is selected, with no limita-
tions on annotation type, that contain lower level (sub)classes, e.g. vehicle or
traffic sign types, of the primary or another auxiliary dataset. The next step
is to construct the semantic tree of the label spaces from the selected datasets.
At the tree root, the label space of the primary dataset must be placed. The
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label spaces of the auxiliary datasets are placed one-by-one below their corre-
sponding higher-level class of an already added dataset. Figure 6.17, depicts
an example of a two-level hierarchy including 5 datasets with various annota-
tion types. The hierarchy of the datasets label spaces induces the correspond-
ing hierarchy of classifiers. Each classifier is associated with its respective
label space and the created tree of classifiers is trained, in an end-to-end, fully
convolutional manner, over a shared feature representation.

The proposed network architecture consists of a fully convolutional fea-

Figure 6.17: Application of Meletis et al. method [2] to a two-level hierarchy containing
high-level street scene classes and traffic sign subclasses.

ture extractor for computing a dense, shared representation, and the inter-
connected classifiers that correspond to every label space of the semantic hi-
erarchy, as shown in Figure 6.18. Each classifier is preceded by a shallow sub-
network, which adapts the common representation, its depth, and receptive
field to the needs of the classifier and the corresponding dataset’s character-
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istics. For example, discriminating between e.g. traffic signs is easier [2], as
less feature layers are needed, compared to high-level classes, like road vs.
sidewalk and bushes vs. trees [2].

The feature extractor in Figure 6.18 consists of the feature layers of the

Figure 6.18: Conceptual illustration of the method proposed by Meletis et al. that ex-
tends the number recognizable classes on the primary dataset using heterogeneous
auxiliary datasets. The selected datasets are placed in a semantic hierarchy and the
corresponding hierarchy of classifiers is constructed. Each classifier adapts a common
fully convolutional feature representation and outputs per-pixel decisions, which are
combined according to the hierarchy to provide the final result.

ResNet-50 architecture [2]. The stride on the input is reduced from 32 to 8, us-
ing dilated convolutions. The shared representation has a depth of 2,048, spa-
tial dimensions 1/8 of the input, and is shared among two classifier branches.
Then a 1x1 convolution layer (with ReLU and Batch Normalization) follows,
to decrease feature dimensions to 256, a common technique also followed in
[136] (150 and 100 feature dimensions, respectively). At the end of the two
branches, two softmax classifiers are attached, each of which include a 1 × 1
convolutional layer (without nonlinearity) for producing the logits and the
hybrid upsampling. The feature dimensions and the field-of-view of the per-
classifier adaptation subnetworks are set to be the same for the two branches.
Based on experiments of the number of layers for the best performance , a hy-
brid upsampling is proposed. This hybrid upsampling consists of one learn-
able fractional strided convolution layer (deconvolution), for doubling the
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resolution, followed by bilinear upsampling to reach input dimensions.
In this chapter our gravity-based and the deep learning-based approaches

have been applied on two datasets: Cityscapes [2] and “LabelMe” [107] with
the frame size of 256 × 256 pixels. Figure 6.19 and Figure 6.20 illustrate
the results of our gravity-based and deep learning-based semantic region
labeling approaches on the datasets. As it can be seen in Figure 6.19, the
deep learning-based approach shows a slightly better result in detecting traf-
fic signs as construction, compared to the results of our gravity-based ap-
proach. Figure 6.20 displays slightly better results for recognizing “sky” and
“road” regions compared to the results of the deep learning-based approach.

Table 6.2 demonstrates the accuracy of deep learning-based [2] and our
gravity-based semantic region labeling approaches on the Cityscapes dataset
over four region classes. Both approaches show comparable results. The
deep learning-based approach performs better over vegetation, construction
and road classes. Table 6.3 demonstrates the accuracy of deep learning-

Region labeling approaches Sky Vegetation Construction Road
Deep learning-based 99 98 98 99
Our gravity-based 99 93 95 97

Table 6.2: Accuracy (%) comparison for the semantic labeling algorithms on
Cityscape dataset (14 images).

based [2] and our gravity-based semantic region labeling approaches on the
Cityscapes dataset over four region classes. Both approaches show compa-
rable results. Our gravity-based approach presents slightly better results
compared to the deep learning-based method over road class and the deep
learning-based approach performs slightly better compared to our gravity-
based approach over construction class.

Region labeling approaches Sky Vegetation Construction Road
Deep learning-based

(Over 20 images) 98 97 95 97

Our gravity-based
(Over 40 images) 98 97 93 98

Table 6.3: Accuracy (%) comparison for the semantic labeling algorithms on
LabelMe dataset.

130



6.7. Summary and Conclusions

(a) Image from Cityscapes (b) Manually annotated regions

(c) Deep learning-based region labeling of
(a)

(d) Our gravity-based region labeling of (a)

Figure 6.19: Region labeling approaches on Cityscapes dataset. (blue, light gray,
darker gray, green and black indicate “sky”, “road”, “construction”, “vegetation” and
“unknown”, respectively.)

6.7 Summary and Conclusions

In this section, we review four traffic surveillance use cases in which contex-
tual information at several levels of a scene enables the automated analysis
of the complicated scenarios that was previously not possible using conven-
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(a) Image from LabelMe [107] (b) Manually annotated regions

(c) The deep learning-based region labeling
of (a)

(d) Our gravity-based region labeling of (a)

Figure 6.20: Region labeling approaches on the LabelMe dataset.

tional object classification techniques. Furthermore, we discuss the compari-
son between our gravity-based and a learning-based semantic region labeling
approaches.
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6.7.1 Summary

For smart surveillance systems, it is important to achieve a reliable scene un-
derstanding and, based on this, event detection and interpretation. This high
level of understanding is enabled by incorporating context information from
several levels of the scene, i.e., pixel, region/object, context and scene. The
key objectives of this chapter are on applying the proposed contextual infor-
mation extraction techniques from pixel and region levels, for a higher level
of scene understanding or better object detection in video-based surveillance
system. This chapter has demonstrated that context information is essential
for decision making about the semantic understanding in surveillance video.
For this purpose, several use cases were presented, such as moving ship de-
tection in port surveillance, traffic action recognition, moving car detection
from traffic surveillance videos and fast abnormal event detection.

In the ship detection use case, we have shown that combining motion con-
textual information with the semantic region labeling as a spatial contextual
information improves the precision and recall of the proposed moving ship
detection approach in comparison with the “Existing” [12] and “Cabin detec-
tor” [128] [110] approaches in harbor surveillance applications.

In the traffic action recognition use case, we have presented an approach
which combines our semantic region labeling and automatic traffic sign in-
formation as semantic contextual information. We have shown that this com-
bination improves the automatic decision making for detecting legal versus
illegal traffic actions, such as crossing the road by pedestrians in dedicated
zebra-crossing areas versus non-dedicated areas.

In the moving car detection use case, the semantic region labeling and
salient region detection are both applied and combined with motion infor-
mation. We have shown that this combination improves the accuracy and effi-
ciency of the proposed approaches in comparison with another approach [132]
as well as an approach where contextual information is not used [91].

In the last use case, a block-based approach is proposed to detect abnor-
mal situations by analyzing the pixel-based motion context, as an alterna-
tive for the conventional object-based approach. We have shown that our
proposed approach performs better compared to the approach proposed by
Ihaddadene and Djeraba [106].

At the end of this chapter, we have compared our gravity-based region
labeling approach with a recently developed deep learning-based system in
order to provide insight into how our approach performs compared to emerg-
ing deep learning technology. The comparison results show that our gravity-
based region labeling performs comparable or slightly lower to a deep learning-
based region labeling system. By way of this comparison, we have demon-
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strated that our approach remains valuable even with the emerging of re-
cently developed deep learning technologies, since it has a clearly lower com-
plexity than a deep learning system.

6.7.2 Conclusion and discussion

In this chapter, we have shown that using contextual information enables the
automated analysis of complicated scenarios that was previously not possi-
ble using conventional object classification techniques. Another conclusion
is that context information is not complicated to extract from a surveillance
video, while it adds significant value to the automated surveillance analysis.

The presented concepts of using context information at different levels for
better automated scenario analysis are mostly novel, since they offer a higher
level of understanding or a better robustness. This brings surveillance analy-
sis generally at a higher level of quality, while improving the reliability of the
video analysis at the scenario level. The frameworks are generic and do not
depend on the type of scene, while the fast algorithms allow real-time execu-
tion. From the use-case studies, it can be concluded that context information
is an important source for improving automated video surveillance analysis,
as it not only improves the reliability of moving object detection (e.g. ships
and cars), but also enables scene understanding that is far beyond object un-
derstanding (e.g. traffic scenarios). The experiments of this chapter prove this
by demonstrating several surveillance scenarios where the semantic meaning
of the events can only be detected due to the availability of the context. How-
ever, this conclusion is drawn with prudence. Unfortunately, the experiments
based on scenarios with intelligent or advanced behavior of people/objects
are based on a rather limited number of experiments, since such data is typi-
cally not available in shared datasets on the Internet. In some cases, such sce-
narios were generated by the research group with student actors. Therefore,
although the experimental results are convincing, the related conclusions are
only indicative and need a larger number of experiments, such that a real
scoring percentage can be achieved after testing. It is estimated that with the
growth of surveillance databases on the Internet, this large-scale testing of
advanced behavioral analysis will soon be possible.
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Conclusions

The concluding chapter of this thesis summarizes the contributions and con-
clusions of each individual chapter and provides answers to the research
questions posed in Chapter 1. This chapter ends with an overall discussion
on open issues and outlook on context-based surveillance video analysis.

7.1 Conclusions of the individual chapters

Chapter 2 has reviewed techniques for the image/video scene understand-
ing. We found that the scene understanding research is mostly based on con-
sidering objects in isolation from the surrounding scene and contextual infor-
mation is often not taken into account. Our review indicated that surveillance
images/videos can be analyzed at different levels, i.e., pixel, region/object,
context and scene level, for the purpose of scene understanding and event
interpretation. We found that color, texture and motion are the most common
features at the pixel level for image/video analysis. One of the most com-
monly used learning techniques is SVM which has been proven to be reliable
and efficient. Moreover, our review indicated that features can be extracted
in not only spatial and temporal domain but also in a given transformed do-
main. The common transform-based feature extraction techniques include
DCT, FFT and Gabor filter.

Chapter 3 has introduced a number of simple, fast salient region detection
techniques based on various features, such as sum of edge pixels, number
of connected components, the number of straight lines found by the Hough
transform and the entropy of DCT coefficients. Our experiments have shown
that our DCT-based salient region detection approach provides better results
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compared to the other salient region detection techniques. We have compared
our DCT-based salient region detection with Rahtu et al. [90]. The experimen-
tal results have shown that our DCT-based approach outperforms the recently
published approach of Rahtu et al. with approximately 22%.

Chapter 4 has presented our research on region labeling for outdoor surveil-
lance applications. Instead of making region-specific solutions, our research
for semantic region labeling has resulted in developing a general framework
for performing automatic semantic labeling task. Our generic region labeling
framework is based on using spatial context for labeling regions. We have in-
troduced two models for generic framework: (1) gravity-based and (2) Global
Region Statistics (GRS)-based models. In our gravity-based system, following
a segmentation stage, color, texture as well as the vertical position have been
used to train a multiple-SVM classifier. In the GRS-based model the mean
and standard deviation of the vertical region positions are exploited.

Experimental results have shown that our gravity-based model gives the
best results and outperforms our GRS-based approach, the algorithms of Bao
et al. and Millet et al. [109] with 2%, 2% and 3%, respectively. Our gravity-
based approach is highly adaptive to new semantic region types because it
avoids preset rules which can reduce flexibility. As a conclusion, our gravity-
based generic region labeling approach does not need to re-design for each
new region type as with specific region labeling.

Chapter 5 has analyzed the computational complexity calculations of our
DCT-based salient region detection and gravity-based semantic region label-
ing approaches. It is proven that the algorithms execute with low complexity,
to support real-time and embedded systems. The applied complexity analy-
sis method has been based on counting intrinsic/native DSP operations, like
Mega Operations per Frame (MOPF) or per second (MOPS). Regarding our
DCT-based salient region detection approach, our complexity analysis has
shown that it outperforms Rahtu’s algorithm with 10 times lower complexity.
We have shown that in Rahtu’s algorithm the step of converting RGB-to-Lab
color space has the highest contribution (88%) in the total complexity calcu-
lation (1404.75 MOPS for frame rate of 25 Hz) of the approach.

Our gravity-based labeling approach has been compared with a rule-based
approach proposed by Millet et al. Our complexity analysis has shown that
it outperforms Millet’s algorithm with 24% lower complexity. This reduc-
tion in complexity is mainly because in our approach, the average number
of support vectors has been 28% lower than that of Millet’s approach and
consequently, the complexity of the classification stage in our approach is de-
creased by 5.65 MOPF.

Chapter 6 has shown that using contextual information enables the au-
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tomated analysis of complicated scenarios that was previously not possible
using conventional object classification techniques.

In the ship detection scenario, the contextual information is provided by
motion information, and our region labeling algorithm. Large advantages are
that it detects the entire ship instead of only a part of the ship. Furthermore,
the approach is able to handle occlusions between different ships and is ro-
bust to clutter caused by vegetation. The system is compared to two recent
ship detection algorithms and shows robustness and good accuracy for real-
life surveillance videos.

In the traffic action recognition scenario, the contextual information is pro-
vided by traffic sign detection classification system, and a region labeling al-
gorithm. Using the contextual clues, the system is able to distinguish between
people crossing a street at a zebra crossing and people crossing the street at
a potentially dangerous location. It has been proven that the proposed traf-
fic action recognition system evaluations works well for the dataset at hand
due to the considerable testing of the individual components and the relative
simplicity of the decision engines for the scenario content.

In the car detection scenario, in the first system, our gravity-based seman-
tic region labeling algorithm is combined with motion information. We have
shown that our approach performs better than the approach proposed by Wi-
jnhoven et al. [132]. In contrast to our approach, the Wijnhoven’s work er-
roneously detects several traffic signs as vehicles and misses occluded cars.
In the second system, our DCT-based salient region detection technique is
combined with a car detection approach. We have shown that although the
detection rate is reduced, the proposed framework leads to applying the car
detector, which is a computationally expensive algorithm, to only 9.7% of the
total amount of image pixels. Therefore, the approach becomes more efficient.

In fast abnormal event detection scenario, we have developed a motion-
context-based algorithm to detect abnormal events in surveillance videos of
a public place. Our major contribution is introducing informative features
based on motion and using an automatically updated threshold to detect ab-
normal events. We have discovered that the entropy of the DCT-transformed
motion magnitude is a reliable measure for classifying whether the current
activity in the video is normal or not. Our framework is generic and does not
depend on the type of scene.

At the end of Chapter 6, we have compared our gravity-based region
labeling with a recently developed region labeling system by Meletis et al.
[2] which is based on emerging Deep Learning technology, tested on the
Cityscapes and LabelMe datasets. We have found that on the Cityscapes
dataset, both approaches show comparable results. The Deep Learning-based
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approach performs slightly higher for vegetation, construction and road classes.
Using the LabelMe dataset, both approaches show comparable results. Our
gravity-based approach presents slightly better results than the Deep Learning-
based method for the road class, while the Deep Learning-based approach
performs slightly higher than our gravity-based approach for the construc-
tion class. We conclude that the proposed algorithms perform on the average
slightly lower than Deep Learning, albeit with a clearly lower computational
complexity.

7.2 Discussion on research questions

We will now evaluate our proposed approaches with respect to each of the
posed research questions in Section 1.3.

RQ1: How do we define and categorize contextual information for outdoor surveil-
lance video applications?

Chapter 2 has described levels at which information can be exploited.
These levels include pixel, region/object, context and scene levels. We have
discussed that contextual information can be categorized at (1) pixel-level
such as color, texture, edge, motion, DCT and Hough-based transform, (2)
region-level, such as salient and semantic-labeled regions as background in-
formation, and (3) at the level of scene understanding such as semantically
meaningful information for specific objects or behavior, etc. Furthermore,
we have foound that in outdoor surveillance applications contextual infor-
mation can be exploited from static background (road, sky, etc) and moving
background (water). Additionally, information at multiple layers of regions
are taken into account as side context. For example, zebra crossings and traf-
fic signs are accounted for as layers of road regions.

RQ2a : How salient regions detection and semantic region labeling can be used
for surveillance applications?

Chapter 3 and 4 have discussed that region analysis can be applied in two
ways: (1) to detect an arbitrary region in an image for general purposes, or
(2) to be used as a side or contextual information when it is inserted as a pro-
cessing block in another larger algorithm or an application.

Chapter 3 has discussed that regions including human-made objects such
as cars or suitcases are more informative. This is because objects that are of-
ten involved in dangerous situations are made by human and therefore are
potentially more suspicious for outdoor video surveillance applications. Re-
gions consisting human-made objects include of high amount of lines, edges
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or any other high frequency information. Techniques such as Sobel edge
detection, Hough-based line detection and DCT-based feature extraction ap-
proaches can be used to identify such salient regions. Therefore, it is feasible
to analyze scenes explicitly within salient regions for surveillance applica-
tions.

Chapter 4 has aimed at developing a general framework for performing
automatic semantic region labeling task. We have introduced a generic grav-
itational framework based on spatial context (in our case vertical position
information) for labeling regions. This model is based on the observation
that each region is more likely to be found at a specific vertical position. We
have found that this gravitational model is attractive because it allows distin-
guishing between regions with similar color and texture, which are the most
common features, based on their vertical positions. For example, sky region
which has similar color and texture as water region, often occurs at a higher
vertical position compared to water regions.

RQ2b : Which approaches perform better in terms of accuracy for salient region
detection and for semantic region labeling?

Chapter 3 has shown that the Hough- and DCT-based methods performs
similarly and are better than both edge and connected component-based meth-
ods in terms of recall and precision. However, the Hough-based method is
the slowest algorithm. Therefore, we have concluded that the DCT-based ap-
proach performs better compared to the other approaches.

Chapter 4 has shown that our gravity-based model gives the best results
and outperforms other approaches. The gravity-based generic region label-
ing approach has shown more promising results compared to our semantic
labeling of specific regions because it does not need to be redesigned for each
new region type as for specific region labeling. It also outperforms our GRS-
based semantic region labeling.

RQ3a : How computational complexity of algorithms is estimated?
Chapter 5 has discussed a metric for estimating the computational com-

plexity based on Operations Per Frame (OPF), Mega Operations Per Frame
(MOPF) or Per second (MOPS). These metrics are based on counting native
DSP operations, like multiplications, additions, data storing and loading. By
incorporating data storing and loads, also an indication of the memory usage
and bandwidth is obtained. We do not rely on execution time because it also
depends on the platform and programming environment on which the algo-
rithms are implemented.
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RQ3b : Are salient region detection and semantic region labeling methods fea-
sible for (near) real-time applications with respect to complexity and do they differ
from available methods in the literature in terms of computational complexity?

Chapter 5 has shown that our DCT-based salient region detection and
gravity-based region labeling techniques have lower computational complex-
ity compared to available methods in the literature. The computational com-
plexity analysis also indicates lower memory usage and bandwidth. There-
fore, our approaches are more feasible compared to the studied approaches
for (near) real-time applications.

RQ4a : Are detecting salient regions and labeling of regions with semantically
meaningful labels feasible for practical surveillance applications?

Chapter 6 has shown that using contextual information in traffic surveil-
lance applications increases the reliability of the detection of objects (e.g. ships
in harbor and cars in street surveillance videos), which helps to achieve high
level of surveillance scene understanding. Furthermore, this chapter has dis-
cussed that using contextual information enables the automated analysis of
complicated traffic surveillance scenarios (e.g. abnormal traffic actions) that
was previously not possible using conventional object classification techniques.
The work does open new possibilities for more intelligent surveillance appli-
cations.

RQ4b : In which cases and scenarios using contextual information contributes
to obtain more reliable and robust surveillance systems in practice?

We have studied different applications in Chapter 6 in which the contex-
tual information have contributed for obtaining a more reliable and robust
surveillance scene understanding. Two examples of such case are: (1) Detec-
tion of moving ship in harbor surveillance: where, our semantic region labeling
approach introduced in Chapter 4 is combined with motion context informa-
tion to detect moving ships in port surveillance videos, and (2) Recognition
of traffic action: where, our semantic region labeling algorithm proposed in
Chapter 4 and automatic traffic sign information [3] are combined to recog-
nize actions in traffic surveillance videos. In the first scenario, the detection
of the water region as semantic region can help detecting ships, because ships
can only travel within the water region with a salient motion. The concept of
the salient motion is based on the common understanding that ships should
have significant motion. In the traffic action recognition scenario, various
traffic actions are more completely understood by the system when using
contextual clues. Using traffic signs and zebra crossing regions as the contex-
tual clues, the system is able to distinguish between people crossing a street
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normally and in a dangerous fashion.

7.3 Overall discussion and outlook

This thesis has presented context-based automatic video surveillance sys-
tems. Automatic video understanding has a demanding but essential applica-
tions in the video surveillance domain. We have argued that by adding con-
textual information about objects and/or scenes, a better classification and
understanding is achieved. We have shown that contextual information is
not complicated to extract from a surveillance video, while it adds significant
value to the automated surveillance analysis. Using contextual information
enables the automated analysis of complicated scenarios that was previously
not possible using conventional object classification techniques. The pre-
sented concepts of using context information at different levels for better au-
tomated scenario analysis are mostly novel and offer a higher level of under-
standing or a better robustness. This brings surveillance analysis generally at
a higher level of quality, while improving the reliability of the video analysis
at the scenario level. The proposed algorithms are designed to be embedded
as a processing block in another larger algorithm or another application (e.g.
labelled water region as context to be used in an advanced ship detection al-
gorithm). Moreover, the discussed algorithms and techniques are not limited
to static cameras, and enable their use also on moving cameras. Although
the individual components of the presented complex scenarios were broadly
tested for multiple datasets, the number of experiments at the scenario level
were rather limited. This is mainly due to the lack of test material relevant
to our video surveillance applications. When more relevant test data become
available, which is now rapidly developing due to the growth of sharing data
for Deep Learning experiments, future studies can be based on more elabo-
rate experiments on advanced behavioral analysis.

An element of discussion here is whether higher scores for reliable object
detection should be based on the explicit use of context information. With the
current growth of Deep Learning solutions and learning-based techniques,
already a significant performance improvement has been realized, solely by
employing these new techniques and the involved large-scale learning of ob-
ject instances. Nevertheless, we consider the concept of context information
to remain valuable for specific cases, especially for advanced semantic event
analysis.

Here, we have taken steps to provide a generic frameworks that can han-
dle variations in a given scene and do not depend on the type of scene. In
our research for semantic region labeling, we have considered five semantic
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region types, but this number can be extended so that more semantic region
types are explored. Furthermore, in our research for DCT-based salient region
detection algorithm we have considered frequency features which can be af-
fected by the compression algorithm and signal-to-noise ratio. Therefore, by
adding additional features that are not affected by noise this limitation can be
overcome.

In addition to satisfying accuracy, efficient automated video surveillance
systems are required. As such, improvements are needed in terms of pro-
viding algorithms with lower computational complexity for (near) real-time
image analysis, or very efficient computing architectures, or a combination
of both. In this thesis, we have discussed an approach for calculating com-
putational complexity that is based on counting native DSP operations and
memory storage actions with a basic RISC CPU as a reference model. We
have shown that this complexity estimation technique applies to the field of
video surveillance and explicitly provides useful insights into computational
complexity.

However, with the strong developments of convolutional neural networks
(CNNs), such complexity analysis has to be performed on e.g. the scaling and
filtering layers of the network and the fully connected layers. It is interesting
to see that some of the recent novel architectures for CNNs like Darknet and
Squeezenet are emerging for low-cost applications. Besides this, computing
cores like GPUs and programmable device makers now also develop partly
dedicated small-sized and low-power solutions, specifically intended for em-
bedded systems. Therefore, it is only a matter of time before CNN-based
analysis systems will enter the surveillance domain and may even grow into
surveillance cameras in the near future. We consider that some of the con-
cepts can translate into these new rapidly evolving Deep Learning-based sys-
tems.

Similar fast technology developments take place for visual sensing, where
e.g. infrared (thermal) sensing can be used for better context extraction and
content analysis and thereby improve automated video surveillance systems
in better decision making. Comparable reasoning holds for multispectral
sensing, which could also contribute to safer surveillance systems. In all such
cases, Deep Learning technology can be successfully applied, however, the
surveillance market itself will again impose its cost and complexity limita-
tions on such advanced sensing solutions. Perhaps the largest need at present
for surveillance and automotive video systems is that the efficiency of CNN-
based and learning-based systems is more carefully considered than has been
done up to this point, to facilitate and sustain the broad use of high-efficiency
CNN-based video analysis systems for the next generation smart camera and
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surveillance systems.
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[153] Sylvain Fischer, Filip Šroubek, Laurent Perrinet, et al. “Self-invertible
2D log-Gabor wavelets”. In: International Journal of Computer Vision
75.2 (2007), pp. 231–246.

[154] Andrew Kirillov. “Motion detection algorithms”. In: The Code Project.
Mar (2007).

158



Complete Bibliography

[155] Mohd Osman, Abdullah Zawawi Talib, Kian Lam Tan, et al. “Vehi-
cle Monitoring System Using Motion Detection Algorithms For USM
Campus.” In: (2007).

[156] Nam Nguyen and Yunsong Guo. “Comparisons of sequence labeling
algorithms and extensions”. In: Proceedings of the 24th international con-
ference on Machine learning. ACM. 2007, pp. 681–688.

[157] John L Barron and Neil A Thacker. “Tutorial: Computing 2D and 3D
optical flow”. In: Imaging Science and Biomedical Engineering Division,
Medical School, University of Manchester (2005).

[158] Wai Kin Kong, David Zhang, and Wenxin Li. “Palmprint feature ex-
traction using 2-D Gabor filters”. In: Pattern recognition 36.10 (2003),
pp. 2339–2347.

[159] Claude L Fennema and William B Thompson. “Velocity determination
in scenes containing several moving objects”. In: Computer graphics and
image processing 9.4 (1979), pp. 301–315.

[160] Simon Tong and Daphne Koller. “Support vector machine active learn-
ing with applications to text classification”. In: Journal of machine learn-
ing research 2.Nov (2001), pp. 45–66.

159





Acknowledgements

I would like to express my sincere thanks and appreciation to all the people
who helped and supported me during my PhD study. A special thank goes to
my first promoter, Prof. Peter de With, for his guidance over the period that
I was doing research at Video Coding and Architectures (VCA) group and
thereafter when I was completing my thesis while working in the industry.
He spent many late evenings to help improving my research output, includ-
ing this thesis. I would also like to warmly thank my co-promoter Dr. Sveta
Zinger for her supports during my PhD studies.

I am grateful to all the members of the promotion committee, for their time
and effort in reading this thesis and their valuable feedback. I would like to
thank prof.dr. Th. Gevers from University of Amsterdam, Prof. prof.dr.ir.
R.N.J. Veldhuis from University of Twente, and Prof. prof.dr.ir. G. de Haan
from Eindhoven University of Technology and dr.ir. R.G.J. Wijnhoven from
ViNotion BV. I would like to particularly thank Dr. Wijnhoven for his detailed
review and comments. I would also like to thank the chairman of my defense
prof.dr.ir. A.M.J. Koonen.

I am also thankful of the support I received from my colleagues in VCA
lab. Special thanks go to Anja and Marieke for all their supports and for
bringing their positive energy into the group. Also, I acknowledge Panagio-
tis Meletis for collaborating in the analysis of Cityscapes dataSet, Martin A.R.
Pieck for his contribution in real-time semantic region labeling and Bahman
Zafarifar for his cotribution in this thesis.

It’s my fortune to gratefully acknowledge the support of my friends with
whom I had great time and enjoyable social life during my stay in the Nether-
lands/Europe; Gregory & Ifigenia, Sara, Davis, Francesco & Pein, Vale &

161



ACKNOWLEDGEMENTS

Manu, Marc and Lieke. I also appreciate all the kindness of my Persian
friends together with them I never felt lonely and distanced from home; Ali
& Niloofar, Hamid & Azar, Hossein & Samaneh, Ellaheh & Pooyan, Erfaneh
& Ali, Raheleh & Adam, Elnaz & Arash, Shohreh, Leila & Salman, Nima &
Judith, Hamed & Negar, etc.

I acknowledge the people who mean a lot to me, my parents, for showing
faith in me and giving me liberty to choose what I desired. I salute you all
for the selfless love, care, pain and sacrifice you did to shape my life. You
were always willing to support any decision I made. I would never be able
to pay back the love and affection showered upon by you. I am grateful to
my sisters, Mozhgan and Sanaz for always being there for me. I am thankful
for my beautiful nieces Paarmiss and Melody because they’ve shown me the
innocence in the world.

I owe thanks to a very special person, my husband, Pooya for his con-
tinued and unfailing love, support and understanding during my pursuit of
Ph.D degree that made the completion of thesis possible. You were always
around at times I thought that it is impossible to continue, you helped me to
keep things in perspective. I greatly value his contribution and deeply appre-
ciate his belief in me. And on top of these are all the love I have for my little
angle Lily-Rose. When I began writing this thesis you had not come to this
world yet and I had not realized that babies grow quicker than books. I love
you right up to the moon and back.

162



Curriculum vitae

Solmaz Javanbakhti was born in Tehran, Iran in
1981. She received her MSc degree in computer
engineering in 2010 from Shahid Beheshti Univer-
sity, Tehran, Iran. Solmaz did her master thesis on
shape modeling, skeletonization and segmentation
of MR images at the Department of Biomedical En-

gineering at Eindhoven University of Technology. Following her master stud-
ies, Solmaz joined Video Coding and Architectures research group (VCA) at
Eindhoven University of Technology, as a PhD researcher. Her research inter-
ests include video/image context analysis and region labeling for semantic
understanding of scenes. Since 2014 Solmaz has been working in industry as
a computer vision specialist in companies such as Bosch Security Systems in
the Netherland as well as KLD Labs and ASML in the United States.

163





List of publications

The following conference and journal papers have been published based on
the research presented in this thesis.

[1] Javanbakhti, S., Zinger, S. & De With, P.H.N. (2017). Fast scene analy-
sis for surveillance video databases. IEEE Transactions on Consumer
Electronics, 63(3), 325-333. This paper won a Chester Sall Best Paper
Award which is annuel given for the best IEEE Transactions CE pa-
pers after a careful review- and selection procedure.

[2] Javanbakhti, S., Zinger, S. & De With, P.H.N. (2017). Fast semantic re-
gion analysis for surveillance & video databases. IEEE International
Conference on Consumer Electronics (ICCE), 8-10 January, Las Vegas,
USA.

[3] Javanbakhti, S., Bao, X., Creusen, I. M., Hazelhoff, L., Sanberg, W. P.,
Van de Wouw, D. W. J. M., Dubbelman, G., Zinger, S. & De With, P.H.N.
(2015). Adding Context Information to Video Analysis for Surveillance
Applications. Emerging Research on Networked Multimedia Commu-
nication Systems, 159.

[4] Javanbakhti, S., Zinger, S. & De With, P.H.N. (2014). Context-based re-
gion labeling for event detection in surveillance video. In Information
Science, Electronics and Electrical Engineering (ISEEE), International
Conference on (Vol. 1, pp. 94-98). IEEE.

[5] Javanbakhti, S., Bao, X., Zinger, S. & De With, P.H.N. (2014). Auto-
matic generic Region-Of-Interest selection for video surveillance appli-

165



LIST OF PUBLICATIONS

cations. Proceedings of the 35th WIC Symposium on Information The-
ory in the Benelux and the 4th joint WIC/IEEE Symposium on Infor-
mation Theory and Signal Processing in the Benelux, May 2-13 2014,
Eindhoven, The Netherlands (pp. 97-104). Eindhoven: Technische Uni-
versiteit Eindhoven.

[6] Bao, X., Javanbakhti, S., Zinger, S., Wijnhoven, R.G.J. & De With, P.H.N.
(2014). Context-based object-of-interest detection for a generic traffic
surveillance analysis system. Proceedings of the 2014 11th IEEE Inter-
national Conference on Advanced Video and Signal Based Surveillance
(AVSS), 26-29 August 2014, Seoul, South Korea (pp. 136-141).

[7] Javanbakhti, S., Zinger, S. & De With, P.H.N. (2014). Region labeling
for surveillance video: techniques and application. Netherlands Con-
ference on Computer Vision (NCCV). Boekelo. Netherlands.

[8] Bao, X., Javanbakhti, S., Zinger, S. & De With, P.H.N. (2014). Moving
ship detection based on context modeling and motion analysis. Nether-
lands Conference on Computer Vision (NCCV). Boekelo. Netherlands.

[9] Bao, X., Javanbakhti, S., Zinger, S., Wijnhoven, R. & De With, P.H.N.
(2013). Context modeling combined with motion analysis for moving
ship detection in port surveillance. Journal of Electronic Imaging, 22(4),
041114-041114.

[10] Creusen, I. M., Javanbakhti, S., Loomans, M. J., Hazelhoff, L. B., Roubtsova,
N., Zinger, S. & De With, P.H.N. (2013). ViCoMo: visual context model-
ing for scene understanding in video surveillance. Journal of Electronic
Imaging, 22(4), 041117-041117.

[11] Javanbakhti, S., Zinger, S. & De With, P.H.N. (2012). Fast abnormal
event detection from video surveillance. In Proceedings of the Inter-
national Conference on Image Processing, Computer Vision, and Pat-
tern Recognition (IPCV) (p. 1). The Steering Committee of The World
Congress in Computer Science, Computer Engineering and Applied
Computing (WorldComp).

[12] Javanbakhti, S., Zinger, S. & De With, P.H.N. (2012). Fast sky and road
detection for video context analysis. Oral : Proceedings of the 33rd WIC
Symposium on Information Theory in the Benelux joint with the 2nd
WIC/IEEE SP Symposium on Information Theory and Signal Process-
ing in the Benelux, 24-25 May 2012, Boekeloo, The Netherlands, (pp.
210-218).

166



List of publications

[13] Javanbakhti, S., Zinger, S. & De With, P.H.N. (2011). Context analysis
: sky, water and motion. Proceedings of the 32nd WIC Symposium on
Information Theory in the Benelux, May 10-11, 2011, Brussels, Belgium.

[14] Javanbakhti, S., Zinger, S. & De With, P.H.N. (2011). Context analysis:
sky, water and motion. International Workshop on Computer Vision
Applications (CVA), (pp. 115-116). Netherlands.

[15] Javanbakhti, S., Moghadam, M.E., Hosseini, S.M. & Donkelaar, C.C. van
(2010). Quantification of cartilage geometry using a skeletonization ap-
proach. Conference Paper : Proceedings of the 6th World Congress of
Biomechanics (WCB 2010) 1-6 August 2010, Singapore, Singapore, (pp.
SPKA00253-00433).

167


	Summary
	Contents
	Introduction
	Potential of embedded context-based automatic image and video analysis
	Key aspects of embedded context-based automatic surveillance image and video analysis
	General challenges in context-based image and video analysis
	Research Scope of the present thesis

	Specific problem statement
	Contributions
	Outline and scientific background

	Technology overview
	Introduction
	Surveillance objects, background and understanding
	Different levels of understanding

	Types of context information
	Semantic, spatial, and scale
	Broader view of context

	Pixel-level visual features
	Spatial domain
	Transform-based
	Temporal

	Region-level features
	Salient region detection

	Semantic region labeling algorithm steps
	Step 1: Image segmentation
	Step 2: Feature extraction
	Step 3: Classification

	Conclusions and discussion

	Fast salient region detection
	Introduction
	Related work
	Salient region detection approaches
	Edge-based detection
	Connected components
	Hough lines
	Discrete Cosine Transform (DCT)

	Experimental results
	Description of the datasets
	Settings
	Evaluation of the results

	Conclusions and discussion

	Semantic region labeling
	Introduction
	Overview of semantic labeling approaches for specific regions
	Semantic labeling of specific regions
	Sky detection
	Water detection
	Road detection

	Experimental results for semantic labeling of specific regions
	Discussion and conclusions for semantic labeling of specific regions
	Generic semantic region labeling
	Stage 1 of generic semantic region labeling: uniform regions
	Stage 2 of generic semantic region labeling: feature extraction
	Stage 3 of generic semantic region labeling: classification

	Experimental results of generic region labeling
	Complexity-reduced feature selection in generic region labeling approach

	Conclusions and discussion

	Complexity analysis
	Introduction
	Context-based system
	Computational complexity estimation method
	Complexity analysis of salient region detection approaches
	Execution time
	Complexity estimation of our DCT-based salient region detection
	Complexity estimation of Rahtu's saliency detector

	Complexity analysis of semantic region labeling approaches
	Complexity estimation of gravity-based semantic region labeling
	Complexity estimation of Millet's approach

	Discussion and conclusions

	Applications
	Introduction
	Use case 1: Motion context and region labeling for moving ship detection in port surveillance
	Use case 2: Automatic traffic sign detection and region labeling for traffic action recognition
	Use case 3: Detection of moving cars in traffic surveillance
	Motion context and region labeling for car detection in traffic surveillance

	Motion context and salient regions for detecting moving cars in traffic surveillance
	Use case 4: Fast abnormal-event detection from video surveillance

	Comparison between our gravity-based and a deep learning-based region labeling system
	Summary and Conclusions
	Summary
	Conclusion and discussion


	Conclusions
	Conclusions of the individual chapters
	Discussion on research questions
	Overall discussion and outlook

	Complete Bibliography
	Acknowledgements
	Curriculum Vitae
	List of publications

