

An efficient algorithm for the 1D total visibility-index problem
and its parallelization
Citation for published version (APA):
Afshani, P., de Berg, M., Casanova, H., Karsin, B., Lambrechts, C., Sitchinava, N., & Tsirogiannis, C. (2018). An
efficient algorithm for the 1D total visibility-index problem and its parallelization. Journal on Experimental
Algorithmics, 23(2), Article 2.3. https://doi.org/10.1145/3209685

Document license:
TAVERNE

DOI:
10.1145/3209685

Document status and date:
Published: 01/08/2018

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1145/3209685
https://doi.org/10.1145/3209685
https://research.tue.nl/en/publications/093fe128-5c73-4758-b0ad-a3fd73e5f224

An Efficient Algorithm for the 1D Total Visibility-Index

Problem and Its Parallelization

PEYMAN AFSHANI, MADALGO, Aarhus University

MARK DE BERG, TU Eindhoven

HENRI CASANOVA and BEN KARSIN, University of Hawaii at Manoa

COLIN LAMBRECHTS, TU Eindhoven

NODARI SITCHINAVA, University of Hawaii at Manoa

CONSTANTINOS TSIROGIANNIS, MADALGO, Aarhus University

Let T be a terrain and P be a set of points on its surface. An important problem in Geographic Information
Science (GIS) is computing the visibility index of a point p on P , that is, the number of points in P that are
visible from p. The total visibility-index problem asks for the visibility index of every point in P .

We present the first subquadratic-time algorithm to solve the one-dimensional total-visibility-index prob-
lem. Our algorithm uses a geometric dualization technique to reduce the problem to a set of instances of
the red–blue line segment intersection counting problem, allowing us to find the total visibility-index in
O (n log2 n) time. We implement a naive O (n2) approach and four variations of our algorithm: one that uses
an existing red–blue line segment intersection counting algorithm and three new approaches that leverage
features specific to our problem. Two of our implementations allow for parallel execution, requiringO (log2 n)
time and O (n log2 n) work in the CREW PRAM model.

We present experimental results for both serial and parallel implementations on synthetic and real-world
datasets using two hardware platforms. Results show that all variants of our algorithm outperform the naive
approach by several orders of magnitude. Furthermore, we show that our special-case red–blue line segment
intersection counting implementations out-perform the existing general-case solution by up to a factor 10.
Our fastest parallel implementation is able to process a terrain of more than 100 million vertices in under 3
minutes, achieving up to 85% parallel efficiency using 16 cores.

CCS Concepts: • Theory of computation → Computational geometry; Data structures design and anal-

ysis; Parallel algorithms; Divide and conquer ;

Additional Key Words and Phrases: Terrain visibility, computational geometry, parallel algorithms, persistent
data structures

ACM Reference format:

Peyman Afshani, Mark de Berg, Henri Casanova, Ben Karsin, Colin Lambrechts, Nodari Sitchinava, and
Constantinos Tsirogiannis. 2018. An Efficient Algorithm for the 1D Total Visibility-Index Problem and Its
Parallelization. J. Exp. Algorithmics 23, 2, Article 2.3 (July 2018), 23 pages.
https://doi.org/10.1145/3209685

Authors’ addresses: P. Afshani and C. Tsirogiannis, Aarhus Universitet, Åbogade 34, 8200 Aarhus, Denmark; emails:
{peyman, constant}@cs.au.dk; M. de Berg and C. Lambrechts, Department of Computer Science, TU Eindhoven, PO Box 513,
5600 MB Eindhoven, The Netherlands; emails: {M.T.d.Berg, c.lambrechts}@tue.nl; H. Casanova, B. Karsin, and N. Sitchinava,
University of Hawaii, POST 317, 1680 East-West Road, Honolulu, HI 96822, USA; emails: {henric, karsin, nodari}@
hawaii.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 ACM 1084-6654/2018/07-ART2.3 $15.00
https://doi.org/10.1145/3209685

ACM Journal of Experimental Algorithmics, Vol. 23, No. 2, Article 2.3. Publication date: July 2018.

https://doi.org/10.1145/3209685
mailto:permissions@acm.org
https://doi.org/10.1145/3209685

2.3:2 P. Afshani et al.

1 INTRODUCTION

Analyzing terrains to determine locations with special properties is a common objective in Geo-
graphic Information Science (GIS). One such property is visibility. In particular, one often wants
to find points on a terrain that are highly visible or, conversely, points that are hardly visible. Ex-
ample applications include the placement of telecommunication towers, placement of fire guard
towers, surveying archaeological sites, military logistics, or surveying building sites. Thus, in re-
cent years there has been a fair amount of work in the GIS literature dedicated to visibility analysis
and the computations it entails (see the survey by Floriani and Magillo [12]), with many proposed
algorithms [10, 11, 13, 17, 24, 26] as well as publicly available implementations [1, 2].

To automate terrain analysis, real-world terrains are approximated by digital models, with one
of the most popular models being the digital elevation model (DEM). A DEM is a grid of square
cells, where each cell is assigned an elevation (which typically corresponds to the elevation of the
point on the terrain that appears at the center of the cell).

Let terrain T be a grid with N = n2 total cells. Given two cells c and c ′ with (x,y)-coordinates
(cx , cy) and (c ′x , c

′
y) and assuming that cx < c ′x , the cells are visible to each other if the line segment

cc ′ that connects their center-points does not cross on the xy-domain any other cell д such that
cд has slope greater than cc ′ (that is, if (дy − cy)/(дx − cx) > (c ′y − cy)/(c ′x − cx), where (дx ,дy)
are the (x,y)-coordinates of cell д). We define the visibility index of cell c ∈ T to be the number
of cells in T that are visible from c . The total visibility-index problem (also known as cumulative
viewshed [27]) consists of finding the visibility index for every c ∈ T . One way to solve the total
visibility-index problem on T is to compute the viewshed of each cell c of T , that is, to explic-
itly compute for each cell c which other cells of T are visible from c . With the algorithm of Van
Kreveld [26] this takes O (N logN) time per cell, leading to a total running time of O (N 2 logN).
Even for moderately sized DEMs, this is infeasible in practice, let alone for modern DEM datasets,
which can consist of hundreds of millions of cells. One solution is to use a heuristic that approxi-
mates the visibility [11, 24]. Another is to observe that computing the viewsheds of different cells
can be done independently and to solve a large number of single-viewshed computations in par-
allel [5, 9, 20, 21, 28]. Still, such approaches are not suitable for large DEMs. The fundamental
problem is that one cannot afford to explicitly compute all visible cells for each cell c of T , as this
may produce an output of size Ω(N 2). Note that the total visibility index problem does not require
us to explicitly compute the viewshed of each cell in T; it only requires us to compute the number
of cells that are visible from each cell, and therefore the output size for this problem is Θ(N).

So far, finding a subquadratic algorithm to solve the 1D total visibility-index problem remains an
open problem. Surprisingly, no efficient algorithm has been proposed even for the one-dimensional
(1D) version of the problem. In the 1D problem, the terrain T is an x-monotone polyline with n
vertices. Similarly to the 2D problem, the goal in the one-dimensional version is to compute for
each vertex v in the polyline the number of vertices visible from v . We call this problem the 1D

total visibility-index problem. Note that on a 1D terrain T with n vertices, the visibility-index of
a single vertex v can be computed in Θ(n) time; this could be done by moving away from v one
vertex at a time and maintaining two rays that define the horizon to the left and right of v . Using
this method to compute the visibility-index for each vertex independently, we can compute the
total visibility-index of T in O (n2) time. We refer to this simple algorithm as Naive. Despite its
simplicity and disappointing quadratic performance, to the best of our knowledge, this is the best
known solution for this problem to date.

The 1.5D terrain-guarding problem (TGP), which is highly related to the 1D total visibility-index
problem, has been extensively studied [14, 15, 18, 22]. The terrain-guarding problem involves find-
ing the minimum number of points needed to view an entire one-dimensional set of vertices.
While TGP is related to the total visibility-index and involves visibility, solving it is known to be

ACM Journal of Experimental Algorithmics, Vol. 23, No. 2, Article 2.3. Publication date: July 2018.

An Efficient Algorithm for the 1D Total Visibility-Index Problem and Its Parallelization 2.3:3

NP-hard. Thus, previous results that solve TGP provide approximate solutions [14, 15, 22]. Hurtado
et al. [18] present a solution to a variant of TGP by considering the viewshed (list of visible points)
of m viewpoints (or guards). By sweeping a one-dimensional terrain (an x-monotone polyline of
vertices) and maintaining a list of vertices that are dominated, they find the viewshed ofm points in
O (n +m logm) time. While Hurtado et al. [18] find the list of points visible fromm viewpoints, we
are concerned with finding the number of points on the terrain visible for each point. Therefore, it
is not clear how their techniques can be used to solve the total visibility-index problem efficiently.

Our Contributions. In this article, we present an algorithm that solves the 1D total visibility-index
problem for a terrain of n vertices in O (n log2 n) time. Our algorithm uses a geometric dualization
technique, which transforms the visibility problem into a set of instances of the 2D red–blue line

segment intersection-counting problem. In fact, we show that the instances of red–blue line seg-
ments that we have to process have characteristics that allow us to develop a simpler algorithm
for counting intersections. This new intersection counting algorithm performs faster in practice
than existing algorithms that solve the general red–blue line segment intersecting problem [23].
We also show how to parallelize our algorithm while keeping the overall work (total operations)
the same. In particular, we present an adaptation of our algorithm in the CREW PRAM model [19],
which requires O (log2 n) time and O (n log2 n) work. We implement the Naive O (n2) algorithm,
as well as four variations of our algorithm: RedBlue employs an existing red–blue segment inter-
section counting algorithm [23], while Sweep, ParAoT, and LinPar implement three versions of
our new intersection counting technique. Both ParAoT and LinPar allow for parallel execution
to improve performance. LinPar employs a space-efficient data structure to reduce the O (n logn)
memory required by the simpler ParAoT.

We evaluate the performance of our implementations on large synthetic datasets, as well as
datasets generated from real-world terrain maps, showing that all four implementations of our al-
gorithm outperform the naive solution by several orders of magnitude. Additionally, we show that
implementations employing our new intersection counting algorithm are able to reduce execution
time by up to 18.69× over the existing general-case solution on our two hardware platforms (de-
tailed in Section 5.1). We provide a detailed analysis of the performance of our two parallel imple-
mentations on two hardware platforms. Results indicate that our space-efficient solution, LinPar,
provides the highest peak performance and is capable of processing over 100 million vertices in
under 3 minutes, achieving up to 85% parallel efficiency.

2 PRELIMINARIES

LetT [1..n] be a one-dimensional terrain defined by an array of elevation values inR1. ElementT [i]
stores the elevation hi of the ith cell of the terrain. The array T defines an x-monotone polyline
obtained by connecting the vertices pi := (i,hi) for i = 1, . . . ,n in order. Let P = (p1,p2, . . . ,pn)
denote the sequence of these vertices ordered by their x-coordinates, and let P[l : r] denote the
subset of vertices (pl , . . . ,pr). We say that a vertex pj is visible from pi (pi sees pj), if all vertices
pk between pi and pj lie strictly below the segment pipj . Based on this definition, we conclude
that a vertex is visible from itself, and if vertex pj is visible from vertex pi , then pi is also visible

from pj . We define the visibility ray from pi to pj , denoted −−→pipj , as the ray that starts at pi and

passes through pj . We define the visibility ray −−→pipi as the vertical ray that crosses pi and points
downwards. Let νvert (pi) denote the ray that starts at pi and points vertically up. We define the

angle of the visibility ray −−→pipj as the smallest angle between −−→pipj and νvert (pi). We use α (−−→pipj) to
denote this angle.

One of the key concepts that we use in our analysis is that of the critical ray. Let l , i , and r
be three positive integers such that l ≤ i ≤ r ≤ n. The left critical ray of point pi with respect

ACM Journal of Experimental Algorithmics, Vol. 23, No. 2, Article 2.3. Publication date: July 2018.

2.3:4 P. Afshani et al.

Fig. 1. Illustration of an one-dimensional terrain, together with the critical rays from vertex pi .

Fig. 2. Illustration of the intuition behind Lemma 2.1. Left: Example where both points are above critical

rays. Right: Example where a point is below a critical ray.

to P[l : r], is the visibility ray −−−→pips with the smallest α (−−−→pips) among all rays −−−→pipk with l ≤ k ≤ i .
We denote this ray by cleft (pi , P[l : r]). If i = l , then cleft (pi , P[l : r]) is defined as the ray pointing
vertically down from pi . The right critical ray, denoted cright (pi , P[l : r]), of pi is the visibility ray
−−→pipt (i ≤ t ≤ r) with the smallest α (−−→pipt) (or pointing vertically down from pi if i = r). See Figure 1
for an illustration of these rays. We can use critical rays to determine visibility between two points,
as the following lemma shows.

Lemma 2.1. Two points pi ∈ P[l : k] and pj ∈ P[k + 1 : r] are visible from each other if and only

if pi is above cleft (pj , P[k + 1 : r]) and pj is above cright (pi , P[l : k]).

Proof. Let cright := cright (pi , P[l : k]) be the right critical ray of pi and let cleft := cleft (pj ,
P[k + 1 : r]) be the left critical ray of pj . Consider the line segment pipj . Assume that pi is above
cleft and that pj is above cright. Then all points P[i : k] are below pipj , since by definition they lie
below or on cright.

Symmetrically, all points P[k + 1 : j] are below pipj , due to cleft. Hence, pi and pj are visible
from each other. Now assume that pi and pj are visible from each other. That means that all points
P[i + 1 : j − 1] are below pipj . All points that can possibly determine cright and cleft are therefore
also below pipj . Hence pi is above cleft and pj is above cright. �

Figure 2 illustrates the intuition behind the previous lemma. Note that, while we use the re-
striction that visibility requires points to be above critical rays, this is just a matter of definition.
Changing our visibility definition to include equality would not change the overall algorithm de-
sign or performance.

ACM Journal of Experimental Algorithmics, Vol. 23, No. 2, Article 2.3. Publication date: July 2018.

An Efficient Algorithm for the 1D Total Visibility-Index Problem and Its Parallelization 2.3:5

3 DESCRIPTION OF THE ALGORITHM

LetT be a one-dimensional terrain and let P be the set of its vertices. To compute the total visibility-
index onT , we consider the following divide-and-conquer approach: First, we split the input poly-
line P into two subsets of equal size, and we recursively continue this process. After computing
the total visibility-index for each trivial base case, we move up in the hierarchy of recursive calls.
At each step, we combine the results that we computed for two consecutive subsets P[l : k] and
P[k + 1 : r] to produce the total visibility-index for subset P[l : r]. For each subset that we process,
together with computing the visibility-index for each vertex p in the subset, we also construct the
left and right critical ray of p with respect to this subset. At any point during this recursive execu-
tion, we use an array VisIndex such that VisIndex[i] stores the total visibility-index of pi computed
in all previous levels of recursion. Suppose that, at some point during this recursion, we have al-
ready calculated the total visibility-index for two subsets P[l : k] and P[k + 1 : r], and we need to
produce the result for their union P[l : r]. To do this, we need to compute for each pi ∈ P[l : k] the
number of vertices of P[k + 1 : r] that are visible topi and add this number to VisIndex[i]; similarly,
for each pj ∈ P[k + 1 : r] we need to compute the number of points of P[l : k] that are visible from
pj and add this to VisIndex[j]. We define Bipartite Visibility as this problem of finding the number
of visible vertices only between elements of two distinct subsets. To reduce each recursive step
of our divide-and-conquer algorithm to an instance of Bipartite Visibility, we define the following
invariants that must be satisfied for each pi ∈ P[l : k], respectively, pj ∈ P[k + 1 : r]:

• VisIndex[i] and VisIndex[j] have been computed within P[l : k] and P[k + 1, r], respectively,
• cright (pi , P[l : k]) and cleft (pi , P[l : k]) correspond to the maximum and minimum slope rays,

respectively, between pi and any pl ∈ P[l : k],
• symmetrically, cright (pj , P[k + 1 : r]) and cleft (pj , P[k + 1 : r]) correspond to the maximum

and minimum slope rays, respectively, between pj and any pm ∈ P[k + 1 : r].
• the upper convex hulls of the vertices of P[l : k] and P[k + 1 : r] have been computed from

the previous recursive step. These are needed to update the critical rays for the next recur-
sive step (this process is detailed in Section 3.3).

With the above invariants satisfied, we solve an instance of Bipartite Visibility to compute
the number of visible vertices between the two distinct subsets P[l : k] and P[k + 1 : r]. We de-
note the entire divide-and-conquer algorithm that computes the total visibility-index of P as
1DVisibilityIndex. The runtime of 1DVisibilityIndex on P is given by the recurrence τ (n) =
2τ (n/2) + f (n), where f (n) is the time it takes to solve Bipartite Visibility for P[1 : n/2] and
P[n/2 + 1 : n]. Therefore, the algorithmic performance of this divide-and-conquer approach de-
pends on an efficient solution for Bipartite Visibility. This section focuses on describing an algo-
rithm that solves Bipartite Visibility in O (n logn) time and O (n) space by reducing it to red–blue
line segment intersection counting and using the work of Palazzi and Snoeyink [23] to solve it,
leading to:

Theorem 3.1. LetT be an 1D terrain that consists of n vertices. We can compute the total visibility-

index of T in O (n log2 n) time, using O (n) space.

Let P[l : k] and P[k + 1 : r] be two parts of the terrain for which we want to solve Bipartite
Visibility. Recall that for all vertices in P[l : k] we have already computed the right critical rays
with respect to P[l : k], and for all vertices in P[k + 1 : r] we have computed the left critical rays
with respect to P[k + 1 : r]. Let pi be a vertex in P[l : k], and let pj be a vertex in P[k + 1 : r]. Recall
that, according to Lemma 2.1, vertices pi and pj are visible to each other if both pj lies above the
right critical ray of pi , and pi lies above the left critical ray of pj . Therefore, to compute the number
of vertices in P[k + 1 : r] that are visible from pi , we could explicitly check if this condition holds

ACM Journal of Experimental Algorithmics, Vol. 23, No. 2, Article 2.3. Publication date: July 2018.

2.3:6 P. Afshani et al.

for each pj in P[k + 1 : r]. This method, however, is inefficient as it requires that we check all
possible pairs of vertices pi , pj s.t. pi ∈ P[l : k] and pj ∈ P[k + 1 : r].

We improve on this naive solution by using geometric duality [7]. Instead of handling the actual
critical rays of the input points, we dualize these rays: we construct exactly one dual half-line for
the right critical ray of each vertex in P[l : k], and one dual half-line for the left critical ray of each
vertex in P[k + 1 : r]. We refer to the duals of the right critical rays as the red half-lines and denote
them by ρ, and the duals of the left critical rays as the blue half-lines and denote them by β . We
detail the construction of these dual half-lines in Section 3.1. As we will show with Lemma 3.2,
we can construct the dual half-lines in such a way that the following property holds; a vertex
pi in P[l : k] and a vertex pj in P[k + 1 : r] are visible if and only if the duals of their critical rays
intersect. Hence, to compute the number of vertices in P[k + 1 : r] that are visible frompi , it suffices
to count the number of blue half-lines that intersect with the dual of cright (pi , P[l : r]) (which is a
red half-line). Thus, to solve this instance of Bipartite Visibility, we need to count, for each red and
each blue dual half-line, the number of intersections that it induces with half-lines of the opposite
color. In Section 3.1 we describe how we can do this efficiently in O (n logn) time.

In addition to computing Bipartite Visibility, at each recursive step of 1DVisibilityIndex, the
critical rays of each vertex must be updated with respect to the new subset that will contain it (e.g.,
P[l : r]). Therefore, after computing Bipartite Visibility between P[l : k] and P[k + 1 : r], we must
update the critical rays of each vertex with respect to P[l : k] ∪ P[k + 1 : r]. We detail the process
of updating critical rays in Section 3.3. The remainder of the current section details the steps of
1DVisibilityIndex, with the pseudocode of the overall algorithm presented in Algorithm 1.

The approach that we describe for Bipartite Visibility is similar to the method used by
Ben-Moshe et al. [4] for computing the visibility graph between a set of points inside a poly-
gon. However, since their goal is to construct the actual visibility graph (which can have quadratic

ALGORITHM 1: 1DVisibilityIndex (P, l, r, VisIndex, CriticalRays)

Input: array P of n points pi with elevations and two indices l and r (1 ≤ l ≤ r ≤ n).
Input: VisIndex[1..n], where VisIndex[i] denotes the visibility index of vertex pi before the call.
Output: VisIndex[i] = number of visible vertices in P[l : r]for vertex pi with l ≤ i ≤ r .
Output: CriticalRays[i].le f t = cleft (pi , P[l : r]) for l ≤ i ≤ r .
Output: CriticalRays[i].riдht = cright (pi , P[l : r]) for l ≤ i ≤ r .

1 if l = r then

2 Set VisIndex[l] = 1

3 Set CriticalRays[l].le f t and CriticalRays[l].riдht to be rays pointing downward

4 return

end

5 k ← � r−l
2 	 + l

6 1DVisibilityIndex (T , l ,k,VisIndex ,CriticalRays)

7 1DVisibilityIndex (T ,k + 1, r ,VisIndex ,CriticalRays)

8 R ← {ρ (pi , P[l : k]) : l ≤ i ≤ k }, B ← {β (pi , P[k + 1 : r]) : k + 1 ≤ i ≤ r }
9 Count (for each half-line) the intersections between R and B using RedBlueIntersectionCount

(R,B,VisIndex)
10 Update VisIndex with intersection counts

11 Update CriticalRays[i].riдht for every l ≤ i ≤ k

12 Update CriticalRays[i].le f t for every k + 1 ≤ i ≤ r

13 return

ACM Journal of Experimental Algorithmics, Vol. 23, No. 2, Article 2.3. Publication date: July 2018.

An Efficient Algorithm for the 1D Total Visibility-Index Problem and Its Parallelization 2.3:7

Fig. 3. An example of a terrain, its critical rays and their corresponding dual half-lines.

size with respect to the input), they use an output-sensitive approach that is much slower than the
methods that we describe for counting red–blue line segment intersections.

3.1 Constructing Dual Rays and Counting Red–Blue Intersections

In this section we describe how we utilize duality to reduce the Bipartite Visibility problem to
the red–blue line segment intersection counting problem. We can thereby solve it using existing
methods.

The dual of a point pi : (i,hi) is defined as the line p∗i : y = ix − hi , and the dual of a line l : y =
ax + b as the point l∗ : (a,−b). Let P[l : k] be a subset of consecutive vertices in the input terrain.
Consider vertexpi ∈ P[l : k] with the critical rays cright (pi , P[l : k]) and cleft (pi , P[l : k]) lying along
the linesy = arx + br andy = alx + bl , respectively. Let ρ (pi , P[l : k]) be the dual of the set of lines
that pass throughpi and have slopes strictly larger than ar . Since each line passes through the point
pi , in the dual space each line becomes a point that falls on the line corresponding to the dual of
pi . Thus, ρ (pi , P[l : k]) is an open half-line with endpoint c∗right = (ar ,−br), extending to +∞, and

supported by the liney = ix − hi . Similarly, let β (pi , P[l : k]) be the dual of the set of lines that pass
through pi and with slopes strictly smaller than al . Thus, β (pi , P[l : k]) is an open half-line that is
collinear with ρ (pi , P[l : k]) and and extends from c∗left = (al ,−bl) to −∞. Note that ρ (pi , P[l : k])
and β (pi , P[l : k]) are open half-lines and they therefore do not contain their endpoints c∗right and

c∗left, respectively. For simplicity, we refer to open half-lines simply as half-lines for the remainder
of this article. Refer to Figure 3 for an example.

Lemma 3.2. Consider two points pi ∈ P[l : k] and pj ∈ P[k + 1 : r] and the critical rays

cright (pi , P[l : k]) and cleft (pj , P[k + 1 : r]), then pi and pj are visible from each other if and only

if there is an intersection between dual half-lines ρ (pi , P[l : k]) and β (pj , P[k + 1 : r]).

Proof. Suppose pi and pj are visible from each other. Consider the line l that passes through pi

and pj . The dual of l is a point l∗. By Lemma 2.1, pi must be above cleft (pj , P[k + 1 : r]). There-
fore, the slope of l must be smaller than the slope of cleft (pj , P[k + 1 : r]) and, consequently,
l∗ ∈ β (pj , P[k + 1 : r]). Similarly, by Lemma 2.1, pj must be above cright (pi , P[l : k]). Therefore, the
slope of l must be larger than the slope of cright (pi , P[l : k]) and, consequently, l∗ ∈ ρ (pi , P[l : k]).
Since dual point l∗ belongs to both dual half-lines, they must be intersecting at l∗.

ACM Journal of Experimental Algorithmics, Vol. 23, No. 2, Article 2.3. Publication date: July 2018.

2.3:8 P. Afshani et al.

Suppose β (pj , P[k + 1 : r]) and ρ (pi , P[l : k]) intersect at the dual point q∗. The dual point q∗

corresponds to a line q that goes through both pi and pj . Since q∗ ∈ ρ (pi , P[l : k]), the slope of q
must be larger than the slope of cright (pi , P[l : k]), i.e. pj must be above cright (pi , P[l : k]). Similarly,
since q∗ ∈ β (pj , P[k + 1 : r]), the slope of q must be smaller than the slope of cleft (pj , P[k + 1 : r]),
i.e., pi must be above cleft (pj , P[k + 1 : r]). Therefore, by Lemma 2.1, pi and pj are visible from each
other. �

Lemma 3.2 allows us to solve the Bipartite Visibility problem by computing for each dual half-
line β (pj , P[k + 1 : r]), how many half-lines ρ (pi , P[l : k]) it intersects, and vice versa. The next
lemma is important for finding an efficient intersection counting algorithm.

Lemma 3.3. Let pi and pj , i � j, be two points in P[l : k]. Then the dual half-lines ρ (pi , P[l : k])
and ρ (pj , P[l : k]) do not intersect. Similarly, β (pi , P[l : k]) and β (pj , P[l : k]) do not intersect.

Proof. Suppose for the sake of contradiction that ρ (pi , P[l : k]) and ρ (pj , P[l : k]) do inter-
sect, which means that there is a visibility line pipj between the pi and pj (in the primal plane).

It also means that both cright (pi , P[l : k]) and cright (pj , P[l : k]) fall below pipj (i.e., α (−−→pipj) <

α (cright (pi , P[l : k])) and α (−−→pipj) < α (cright (pj , P[l : k]))). By the definition of the critical ray, no
visibility ray between two points in P[l : k] can have a smaller angle α than the critical ray. Hence
the angle must be equal to that of the critical ray and therefore the visibility line is the critical ray.
This means that the intersection is at the starting point of the dual half-line. Since ρ (pi , P[l : k])
and ρjlk are open half-lines, the starting points are not part of them and, therefore, they do not
intersect. The proof for β (pi , P[l : k]) and β (pj , P[l : k]) is symmetric. �

Palazzi and Snoeyink [23] present an algorithm that computes, inO (n logn) time, the total num-
ber of intersections between a set of non-self-intersecting (red) line segments and another set of
non-self-intersecting (blue) segments. Half-lines are a special case of line segments, where one
endpoint is at∞ (or −∞). Thus, to use the general intersection counting algorithm of Palazzi and
Snoeyink [23], we replace the unbounded side of each half-line with an endpoint with very large
x-coordinate, which is sufficient to capture any intersections that occur with our datasets. We
note that the algorithm by Palazzi and Snoeyink produces only the total number of red–blue in-
tersections (i.e., a single number), while we require intersection counts for each half-line. However,
we can modify their algorithm to produce the desired result without impacting asymptotic per-
formance by simply keeping a tally of intersections for each segment during the algorithm. Any
further differences between our problem and general red–blue segment intersection counting only
serve to restrict the the problem, which we use to develop a more efficient solution in the following
section.

3.2 A Practical Algorithm for Red-Blue Intersection Counting

While using the (modified) red–blue segment intersection algorithm of Palazzi and Snoeyink [23]
provides an O (n logn) solution to Bipartite Visibility, it works for any red–blue line segments. As
a result, it is more complex than it has to be for our problem. Instead, in this subsection we present
a simple plane sweep algorithm to count the intersections between duals of right and left critical
rays. This plane sweep algorithm exploits some features of the dual half-lines of critical rays.

Let R = {ρ (pi , P[l : k])} and B = {β (pj , P[k + 1 : r])} be the set of red and blue self-non-
intersecting open half-lines (i.e., no half-lines intersect others of the same color). To describe our
algorithm, we need to introduce additional notation. We denote the x- andy-coordinate of a vertex
p by px and py , respectively. Given any half-line λ, we denote its endpoint by λx,y and the x- and
y-coordinates of the endpoint by λx and λy , respectively, i.e., λx,y = (λx , λy). The y-coordinate of
λ evaluated at x is denoted by λ(x). That is, if λ is defined at x then vertex px,λ (x) = (x , λ(x)) ∈ λ.

ACM Journal of Experimental Algorithmics, Vol. 23, No. 2, Article 2.3. Publication date: July 2018.

An Efficient Algorithm for the 1D Total Visibility-Index Problem and Its Parallelization 2.3:9

Fig. 4. An illustration of B (ρ) and B (ρ). Fig. 5. Illustration of π ′(ρ) and π (β) for several

half-lines.

If λ is not defined at x , then we say λ(x) is undefined. Finally, we say a vertex q is above (respec-
tively, below) a half-line λ, if λ(qx) is defined and qy > λ(qx) (respectively, qy < λ(qx)). If λ(qx) is
undefined, then the above–below relationship between q and λ is undefined.

The following lemma is the key for developing a simple plane sweep algorithm for our red–blue
half-line intersection counting problem.

Lemma 3.4. Any two half-lines ρ ∈ R and β ∈ B intersect if and only if the endpoint ρx,y is above

β and the endpoint βx,y is above ρ.

Proof. Suppose ρx,y is above β and βx,y is above ρ. There must be a point q with ρx < qx < βx

s.t. ρ (qx) = β (qx). Since ρ is continuous for all x > ρx and β is continuous for all x < βx , ρ and β
intersect at qx . This can be seen in the example in Figure 5.

In the primal space, all points from the left merge set have smaller x-coordinates than any point
from the right set. Therefore, all ρ ∈ R have a smaller slope than all β ∈ B. It follows that, if ρ
and β intersect at q, then ρ (a) > β (a) and β (b) > ρ (b) for all a < qx < b. Since ρx has the smallest
x-coordinate for which ρ is defined, then ρx < qx . Therefore, ρx,y is above β . Conversely, βx is the
largest x-coordinate of β , so βx > qx . Thus, βx,y is also above ρ. �

To compute the number of blue half-lines inB that each ρ ∈ R intersects, consider the following
subsets of blue half-lines (see Figure 4):

• B (ρ): blue half-lines β ∈ B with endpoints that are above ρ (i.e., βy > ρ (βx))
• B (ρ): blue half-lines β ∈ B that are below ρx,y (i.e., β (ρx) < ρy)

By Lemma 3.4, the set of blue half-lines that intersect ρ is B (ρ) ∩ B (ρ) and by the inclusion-

exclusion principle, its cardinality is |B (ρ) | + |B (ρ) | − |B (ρ) ∪ B (ρ) |. Note that B (ρ) ∪ B (ρ) is

the set of all blue half-lines withx-ranges that overlap with ρ, i.e.,B (ρ) ∪ B (ρ) = {β ∈ B:βx > ρx }.
Figure 4 shows an example for a single red half-line and four blue half-lines.

Similarly, we define R (β) and R (β) and the number of red half-lines that intersect β is equal to

|R (β) | + |R (β) | − |R (β) ∪ R (β) |. Thus, it remains to compute each of these quantities.

3.2.1 Computing |B (ρ) |, |R (β) |, |B (ρ) ∪ B (ρ) |, and |R (β) ∪ R (β) |. To compute |B (ρ) |, we
sweep the dual plane from right to left with a sweep line � that is perpendicular to the x-axis.

ACM Journal of Experimental Algorithmics, Vol. 23, No. 2, Article 2.3. Publication date: July 2018.

2.3:10 P. Afshani et al.

During the sweep, we maintain a balanced binary search tree (BST) T that stores all blue half-
lines β that intersect �, ordered by their slopes. Since blue half-lines do not intersect each other
and continue to −∞, this order remains consistent throughout the entire sweep. Thus, every time
the sweep line encounters a blue half-line endpoint βx,y , we insert β to T . Whenever the sweep
line encounters the endpoint ρx,y of a red half-line, the number of blue half-lines below ρ is equal
to the number of blue half-lines β with y-coordinate β (ρx) smaller than ρy . And since all blue
half-lines in T are defined at the time of the sweep, the above–below relationship between the
endpoint ρx,y and all blue half-lines in T is well defined. Thus, we can compute |B (ρ) | by per-
forming a search in T , comparing ρy to β (ρx). The result of this search is the rank of ρy in the set
of blue half-lines in T , where rank (x) is defined as the number of elements in a sorted list with
key value less than x . The rank of ρy in the set of blue half-lines in T gives us |B (ρ) |—the number
of blue half-lines below ρ.

To implement this plane sweep, we start by sorting B and R by the x-coordinates of their end-
points. Each insertion of a blue half-line in T takesO (logn) time. We can compute the rank of ρy

in T in O (logn) time by augmenting each node v of T with the size of the subtree rooted at v .
Thus, the total computation of |B (ρ) | for all ρ ∈ R takes O (n logn) time.

Note that the size of T when the sweep line encounters ρx,y is |B (ρ) ∪ B (ρ) |—the number of
blue half-lines whose x-ranges overlap with ρ. During the computation we also record for each
red half-line ρ the blue half-line π ′(ρ) that is immediately below ρ (the predecessor of ρy in the
T). Refer to Figure 5 for an illustration.

Computation of |R (β) | is symmetric, with the sweep being performed from left to right. During

the computation, we also record |R (β) ∪ R (β) | and π (β)—the red half-line that is immediately

below the endpoint of β . The concepts of π (β) and π ′(ρ) will be used for computing |B (ρ) | and

|R (β) |, respectively.

3.2.2 Computing |B (ρ) | and |R (β) |. The following description focuses on the computation of

values |B (ρ) |; the computation of |R (β) | is symmetric. Since computing |B (ρ) | and |R (β) | entails
counting half-lines below each given endpoint, the above–below relationship is well defined at
the time the sweep line hits the endpoint in question. Here, instead, we are counting the number
of points above a half-line, which must be counted for every half-line. To accomplish this effi-
ciently, we assume that we have already computed π (β) for each blue half-line β as described in
Section 3.2.1.

To compute |B (ρ) |, we sweep a vertical line from right to left (refer to Figure 6 for an illustra-
tion). During the sweep we maintain a balanced binary search tree (BST) T on the slopes of π (β).
That is, when the sweep line encounters an endpoint of a blue half-line β and π (β) is defined,
we insert the slope of π (β) into T . If π (β) is undefined, then there is no red half-line below the
endpoint of β and since each red half-line ρ is defined for all x ≥ ρx , the endpoint of β does not
lie above any red half-line and can be safely ignored.

At time ρx of the sweep, that is, when the sweep line encounters a red half-line endpoint ρx,y ,
the number of entries in T that are greater than or equal to the slope of ρ is equal to the number
of blue half-line endpoints above ρ. To see this, observe that when ρx is encountered, tree T
contains all blue half-line endpoints that have a well-defined above–below relationship with ρ.
Since the red half-lines do not intersect other red half-lines, the ordering of the slopes of the red
half-lines is equivalent to the above–below relationship among the red half-lines that are defined
at ρx . The above–below relationship between red half-lines and blue half-line endpoints defines
a partial order, which means that if βx,y is above ρ1, then both ρ1 and ρ2 are defined at βx and
ρ1 (βx) > ρ2 (βx), then βx,y is also above ρ2. Consequently, the set of endpoints of blue half-lines

ACM Journal of Experimental Algorithmics, Vol. 23, No. 2, Article 2.3. Publication date: July 2018.

An Efficient Algorithm for the 1D Total Visibility-Index Problem and Its Parallelization 2.3:11

Fig. 6. Example of the plane sweep algorithm used to find |B (ρ) |. The vertical sweep line moves from right

to left and, when a blue endpoint βx,y is encountered, π (β) is added to the search tree T . When the sweep

line encounters a red endpoint ρx,y , the tree is queried by the slope of ρ. The number of leaves in the search

tree that have slopes greater than or equal to the slope of ρ is equal to |B (ρ) |.

above ρ is equal to the set of blue half-lines β with slopes of π (β) greater than the slope of ρ.
See Figure 6 for an illustration of this plane sweep.

Given the above, whenever the sweep line encounters an endpoint of a red half-line ρ, we
perform predecessor/successor query on T using the slope of ρ to find the number of points
above ρ. Maintaining and querying T takes O (logn) time per blue half-line endpoint (insertion)

or red half-line endpoint (query), resulting in O (n logn) time overall to compute |B (ρ) | for each
half-line ρ.

3.3 Maintaining Critical Rays

Our overall divide-and-conquer algorithm relies on the knowledge of the critical rays at the be-
ginning of each recursive call. At the base case, subset P[l : r] contains only one point. Therefore,
both left and right critical rays of that point are directed vertically downward. Thereafter, at the
end of each recursive call, we update these rays by recomputing only the right critical ray for each
point in P[l : k] and the left critical ray for each point in P[k + 1 : r]. To do this, we need the next
lemma.

Lemma 3.5. The tangent from pi ∈ P[l : k] to the upper convex hull of all vertices in P[k + 1 : r] is

the critical ray cright (pi , P[l : r]) if and only if the vertex pt on the hull that the tangent goes through

is visible to pi . Symmetrically, the tangent pj ∈ P[k + 1 : r] to the upper hull of vertices in P[l : k] is

the critical ray cleft (pj , P[l : r]) if and only if the tangent point pt ′ on the hull is visible to pj .

Proof. We first prove that only points on the upper hull of P[k + 1 : r] can be candidates for
defining cr iдht (pi , P[l : r]). Suppose thatpt is the point in P[k + 1 : r] that defines cr iдht (pi , P[l : r])
and that pt does not fall on the upper convex hull of P[k + 1 : r]. By definition, no point in
P[k + 1 : r] can fall outside the upper hull of the same point set, and therefore pt must fall in-
side the hull. In that case, the ray that starts from pi and goes through pt intersects the upper hull
of P[k + 1 : r]. Let p ′ be this intersection point, and let p ′′ be the vertex of the upper hull that
is exactly to the right of p ′. Then p ′′ is visible from pi , which contradicts the assumption that pt

defines cr iдht (pi , P[l : r]).

ACM Journal of Experimental Algorithmics, Vol. 23, No. 2, Article 2.3. Publication date: July 2018.

2.3:12 P. Afshani et al.

Let pt be the point on the upper hull, such that the tangent goes through pt . If pt is not visible

to pi , then there is a point pm s.t. i < m < t that is above the visibility ray −−→pipt . Since the tangent
from pi to the upper hull goes through pt , pm must not be in the set encompassed by the upper
hull. Therefore, pm is in the set included with pi and the previous critical ray of pi has a larger
slope than the tangent, so the tangent is not cright (pi , P[l : r]).

If, however, pt is visible to pi , then cright (pi , P[l : k]) falls below pt . Furthermore, the visibility
ray from pi to other points on the upper hull are below the tangent (by property of tangents) and
therefore the tangent is the only visibility line that is not below any other point of the upper hull.
Hence the tangent is cright (pi , P[l : r]). The proof involving cleft (pj , P[l : r]) is symmetric. �

Thus, to update cleft (pi , P[l : r]) and cright (pi , P[l : r]) we utilize the upper convex hulls of P[l : k]
and P[k + 1 : r] (computed in the previous recursive step), and for every point in these two subsets
we construct the tangent to the hull of the opposite subset. To construct the upper convex hull of
P[l : r] for the next recursive step, we simply merge our two upper hulls inO (n) time. Computing
tangents is equivalent to binary searches, which takes O (logn) time per tangent for a total of
O (n logn) time. Combining this with the rest of the analysis presented in Section 3, we conclude
that we can solve each recursive level of 1DVisibilityIndex in O (n logn) time. Hence, the total
running time of algorithm 1DVisibilityIndex is O (n log2 n).

4 PARALLEL EXTENSION

In Section 3.2 we present a plane sweep-based solution to the red–blue line segment intersection
problem, that we perform at each stage of Bipartite Visibility. This solution operates by maintain-
ing a tree structure while sweeping across all points. In the example in Figure 6, the tree contains
all blue rays that intersect the sweep line and, when a red endpoint is encountered, it is queried
into the tree. Since the tree structure varies as the sweep line moves through the set of points, this
approach is highly sequential. However, if we can construct a structure that contains all versions
of the tree, we can perform all queries in parallel. We note that this is performed at each stage of
Bipartite Visibility and, since critical rays are updated, we do not re-use structures.

Persistence [8] is a technique for efficiently maintaining all past versions of a dynamic structure
for future queries. A persistent binary search tree (BST) supports all standard update operations
and maintains information about previous versions of the search tree, allowing queries to be per-
formed on any past version (as though subsequent updates had not been performed. In this work,
we consider the offline construction of persistent BSTs, where we assume that all updates are pro-
vided up-front, allowing us to build a static search tree. Given an ordered set O of queries and
updates, we construct a persistent BST, incorporating all updates U ⊂ O into the data structure.
We can then perform each query, q ∈ O , on the version of the BST corresponding to all updates
that precede q in the setO . Each q ∈ O can be performed independently once the persistent BST is
constructed. Thus, if we construct a balanced persistent BST, n queries can be answered in parallel
in O (logn) time using n processors, i.e., in O (n logn) work in the CREW PRAM model. Offline
persistent BSTs can be used to parallelize algorithms that rely on plane sweep algorithms. In this
section we detail the two offline persistent BST data structures that we use to solve our red–blue
line segment intersection problem (and thus solve Bipartite Visibility). Note that, for each plane
sweep operation performed, we first sort endpoints of half-lines by their x-coordinate (inO (logn)
time andO (n logn) work), which is required for both the plane sweep algorithm and construction
of a persistent search tree. Furthermore, all other operations performed by our divide-and-conquer
algorithm (described in Section 3) can be easily parallelized: all n critical rays can be updated con-
currently in O (logn) time and, using these critical rays, we can merge upper convex hulls in O (1)
time and O (n) work.

ACM Journal of Experimental Algorithmics, Vol. 23, No. 2, Article 2.3. Publication date: July 2018.

An Efficient Algorithm for the 1D Total Visibility-Index Problem and Its Parallelization 2.3:13

If we can implement the search tree used in the plane sweep of Section 3 as an offline persistent
BST, then we can perform the sweep in O (logn) time and O (n logn) work. Thus, the parallel
runtime and work of the overall algorithm can be defined by the recurrences Φ(n) = Φ(n/2) +
O (logn) = O (log2 n) andW (n) = 2W (n/2) +O (n logn) = O (n log2 n), respectively. This yields the
following theorem.

Theorem 4.1. The 1D total visibility-index problem can be solved inO (log2 n) time andO (n log2 n)
work in the CREW PRAM model.

The work complexity of the parallel algorithm matches our sequential algorithm runtime, which
is the best we can hope for from a parallel algorithm.

We identify two offline persistent BST data structures that we can use to solve Bipartite Visibility
in parallel. In Section 4.1 we present an overview of these data structures and in Section 4.2 we
describe some relevant details of our implementations that use these persistent data structures.

4.1 Overview of Persistent BST Structures

In this subsection, we provide overviews of two offline parallel BST data structures that we employ:
the array-of-trees [3] and the linear-space persistent BST [6]. Here we present an overview of these
two data structures and we refer interested readers to References [3] and [6] for further details.

Array-of-trees. Atallah et al. [3] describe a data structure that they call array-of-trees, which
implements a persistent search tree and can be built in the CREW PRAM model in O (logn) time
andO (n logn) work. Hence, we can use an array-of-trees to implement the tree that is maintained
during the plane sweep described in Section 3.2. Thus enables us to perform the plane sweep
operation in O (logn) parallel time and O (n logn) work.

Our first parallel implementation replaces each plane sweep operation described in Section 3.1
with the construction and querying of an array-of-trees (AoT). AoTs are constructed by starting
with the input data as a set of elements (keyk , time t pairs), sorted byk . This initial dataset becomes
the leaf level of the AoT, with each element corresponding to a node. The AoT is constructed
bottom-up by merging pairs of nodes to create parent nodes. Each non-leaf node contains a list of
elements contained in its children, sorted by t (e.g., the root contains the input data sorted by t).
For each element, each node also maintains a pointer to the element in each child node with largest
tchild , s.t., tchild ≤ t . Thus, we can consider any element e = (ek , et) as a node in a BST that can
be searched by key k , but only contains the elements with t ≤ et .

Querying the AoT involves two steps: (1) finding the correct element in the root (by t) and
(2) querying the corresponding BST (by k). Given a query q = (qk ,qt), the correct root element
is found by performing a binary search using qt . The corresponding element in the root acts as
the root of a BST that we then search by qk (by following pointers down the AoT). Each of these
two steps requires O (logn) work per query and replacing a plane sweep operation requires O (n)
such queries. Thus, an AoT can be used in place of a plane sweep and requires O (logn) time and
O (n logn) work in the CREW PRAM model.

While the AoT structure can be constructed simply and allows for easy parallelization, its pri-
mary drawback is the space requirement. At each level of the structure, O (n) elements are stored,
so the total structure requiresO (n logn) space. When using an AoT to replace plane sweep opera-
tions on a large dataset, the memory requirement may become detrimental to overall performance.

Linear-space Persistent BST. To avoid the O (n logn) space requirement of the array-of-trees,
we consider a more complex data structure. Chazelle and Edelsbrunner [6] present a technique to
solve some types of range queries using only O (n) space in the word-RAM model [16]. Recall that
the AoT data structure, described above, allows querying at any time t by storing O (n) key values
(and pointers) at each level. The linear-space persistent BST (LPBST) presented in Reference [6],

ACM Journal of Experimental Algorithmics, Vol. 23, No. 2, Article 2.3. Publication date: July 2018.

2.3:14 P. Afshani et al.

Fig. 7. Illustration of how a LPBST is constructed.

however, stores only O (n) bits at each level, resulting in a total space requirement of O (
n log n

w
),

where w is the number of bits that fit in a machine word. If we assume a constant number of
duplicate values, then w = Θ(logn). Thus, a LPBST structure requires only O (n) space.

The process of constructing a LPBST is similar to that of an array-of-trees. An input of pairs
(key k , time t), sorted by key (k) is provided as input. As with an AoT, the LPBST structure can be
built bottom-up by merging pairs of elements, resulting in sublists sorted by t . However, unlike
AoTs, we do not store copies of k and t values at each node: “nodes” of a LPBST store only a single
bit per merged element to identify which child list the element came from. A 0 (respectively, 1) bit
is stored if the element was merged from the left,(respectively, right) list. Thus, to construct the
LPBST, we merge pairs of nodes (as we do when constructing the AoT); however, we store only
bits in the LPBST structure and delete the intermediate k and t values that were used to perform
the merge. This merging process is repeated until allO (logn) levels are merged. At the final (root)
level, we do not delete the k and t merge values and maintain the final list sorted by t . As illustrated
in Figure 7, the final LPBST contains a sorted list of t values at the root, O (n logn) bits, and the
initial (k, t) pairs as leaf nodes. Note that since each bit within a node represents which subtree
(left or right) a particular value came from, the total number of 0 or 1 bits represents the sizes of
a nodes’ left and right subtrees, respectively.

Given a query (qk ,qt), we can use the LPBST to find the number of elements that have time
t ≤ qt and key k ≤ qk . Querying involves first finding the number of elements with t ≤ qt by
finding rank (qt): the index of qt in the sorted list of t values at the root. Any entry in the root node
with index i > rank (qt) has time greater than qt . Thus, we query the LPBST structure, concerned
only with bits of index i ≤ rank (qt). We determine the number of elements in the left and right
subtrees, subL and subR , by counting the number of 0s and 1s in the array of bits at the root (with
index i ≤ rank (qt)). Since the LPBST is a BST on keys, the query process simply traverses the
tree while counting bits to determine subL and subR at each node. These subtree sizes are used to
count the total number of query matches. Figure 8 provides an example illustrating how a query
is performed on a linear-space persistent BST.

Computing subL and subR for a given node is accomplished by performing a prefix sums oper-
ation on the bits contained in the node. While scanning a node may take O (n) time, Chazelle and
Edelsbrunner [6] reduce the time to compute prefix sums on the list of bits in a node by storing
the partial prefix sums every logn bits. This only requires an additional O (n) space and, using a
lookup table to count bits within a word of logn bits, allows queries to be performed in O (logn)

ACM Journal of Experimental Algorithmics, Vol. 23, No. 2, Article 2.3. Publication date: July 2018.

An Efficient Algorithm for the 1D Total Visibility-Index Problem and Its Parallelization 2.3:15

Fig. 8. Example of a query being performed on a LPBST.

time. Thus, the LPBST can be used in place of some plane sweep operations and requires O (logn)
time, O (n logn) work, and O (n) additional space.

4.2 Implementation Details

Aside from our implementation of the Naive algorithm, all of our implementations employ the
divide-and-conquer approach described in Section 3. At each recursive level, we perform a total
of O (n logn) work. However, the size of each independent task depends on the recursive level
(e.g., at the lowest level, we determine visibility between pairs of vertices). Therefore, at low levels
of recursion, our parallel implementations are able to concurrently perform each task without
requiring parallelization. At the top level of recursion, however, we have a single task that must be
executed in parallel. Thus, our parallel implementations attempt to avoid parallelization overhead
by dynamically parallelizing tasks only when necessary at the top levels of recursion.

Both the construction and querying of AoTs and linear-space persistent BSTs are similar in
many ways. Therefore, our implementations of these structures use many of the same methods.
We construct both structures bottom-up by merging pairs of sublists while storing resulting values
(or bits). To perform this merging in parallel, we employ the techniques outlined in Reference [19]
to merge two lists in O (logn) time and O (n) work. However, when constructing LPBSTs, effi-
ciently storing bits requires careful consideration. On modern CPUs, the smallest addressable unit
of memory is a byte (8 bits). Thus, if we define each bit independently (e.g., as a Boolean datatype),
each bit will require 8 bits of storage space. To avoid wasting space, we use bitwise operations to
manually pack bits of data into words of w bits each. We leave w as a parameter and empirically
measure the ideal configuration for our hardware platforms.

While the querying process of these two structures is also similar, querying a LPBST requires
computing the prefix sums of bits at each node. For our implementation, we store partial prefix
sums everyw elements. However, while Chazelle and Edelsbrunner [6] use lookup tables to count
bits within words of logn bits, we employ the popcount hardware operation. popcount is available
on our hardware platforms (described in Section 5.1) and returns the number of 1 bits in a word.
Since variations of popcount are available for words of 8, 16, 32, and 64 bits, our choice of w is
limited to these options.

Since our implementation stores a total of n
w

partial prefix sum values, our choice of w dictates
our space requirement. Furthermore, depending on the details of the popcount operation, w may

ACM Journal of Experimental Algorithmics, Vol. 23, No. 2, Article 2.3. Publication date: July 2018.

2.3:16 P. Afshani et al.

Fig. 9. Average runtime to construct a LPBST and perform 220 queries. The dark shaded portion of each bar

indicates construction time, while the remaining time is spent querying.

impact query performance. To determine the ideal w value for our hardware platforms, we mea-
sure the relative query and construction performance while varying w on a range of synthetic,
random datasets (see Section 5.2 for details on dataset construction). Figure 9 contains the average
runtime to build a LPBST and perform 220 queries on it on the Algoparc platform (detailed in
Section 5.1). Results indicate that w = 64 provides the best performance for our hardware. This
is not surprising, since smaller w values require that we store more partial prefix sums. We use
w = 64 for all experiments hereafter unless otherwise noted. We note that larger w values may
further improve performance, but popcount is not available for larger word sizes and lookup tables
would be far too large to be practical.

5 EXPERIMENTAL RESULTS

In this section we present an empirical evaluation of the performance of our algorithms on
synthetic and real-world datasets. We develop five implementations: Naive, RedBlue, Sweep,
ParAoT, and LinPar. Naive implements the O (n2) algorithm described in Section 3 and is used
as baseline. RedBlue, Sweep, ParAoT, and LinPar all use the divide-and-conquer approach pre-
sented in Section 3 but they differ in the implementation of the half-line intersection counting
step: RedBlue implements the Palazzi and Snoeyink [23] algorithm for red–blue line segment in-
tersection counting, Sweep implements the algorithm presented in Section 3 using plane sweep,
ParAoT employs the array-of-trees data structure described in Section 4, and LinPar uses the
linear-space structure, which is also described in Section 4. Asymptotically, all four algorithms
achieve O (n log2 n) sequential running time. However, RedBlue is more complex than our other
implementations and has the poorest performance in practice among our non-naive implementa-
tions. While all five implementations run sequentially, ParAoT and LinPar can also run in par-
allel mode, using multiple threads to improve performance. Though they are both amenable to
parallelization, ParAoT requires more memory, while LinPar is more complex and relies on the
hardware-specific popcount operation.

5.1 Methodology

All algorithms are implemented in C++ and compiled with gcc 4.8.5 using the -Ofast optimiza-
tion flag. Parallel execution is performed using the openMP library that is included with the gcc

ACM Journal of Experimental Algorithmics, Vol. 23, No. 2, Article 2.3. Publication date: July 2018.

An Efficient Algorithm for the 1D Total Visibility-Index Problem and Its Parallelization 2.3:17

Fig. 10. Examples of elevation profiles from 216-point slices of the Earth dataset (note the different scales).

compiler. All geometric structures, predicates, and primitives used by all of our algorithms are
custom implementations.1

We use two hardware platforms for our evaluation. The 4-core Algoparc platform is comprised
of an Intel Xeon E5-1620 processor (4-core, 3.6GHz) and 16GiB of RAM, running the Ubuntu 16.04
operating system. Algoparc has hyperthreading enabled, providing 8 virtual cores. The 20-core
Uhhpc platform is comprised of two Intel Xeon E5-2680 processors (10-core, 2.80GHz), 128GiB of
RAM, and runs the Red Hat Server 6.5 operating system. Note that Uhhpc has 2 CPU sockets, each
with four memory channels to RAM and an independent L3 cache. All experimental results are
averaged over 10 iterations with error bars shown when significant.

5.2 Datasets

We evaluate our algorithm implementations on three synthetic datasets. We consider a flat dataset
in which all points’ elevations are set to hi = 1, so that each point can only see its (at most two)
neighboring points. For this dataset, RedBlue, Sweep, ParAoT, and LinPar compute few inter-
sections at each level of recursion, and thus provides a simple correctness case and a performance
baseline. We consider a parabolic dataset in which each point’s elevation is set to hi = i

2, so that
every point can see every other point. For this dataset, our four recursive implementations com-
pute many intersections at each level of recursion. Finally, we consider Random datasets in which
point elevations are uniformly sampled from the range [1,106].

We also perform evaluations on datasets generated from real-world terrain maps. The CGIAR-
CSI Global-Aridity and Global-PET Database [29, 30] consists of elevation data for the entire Earth
with 90m resolution. We extract one-dimensional slices from four different regions: Europe, Asia,
Africa, and North America. Each slice consists of 216 points (spanning ∼5000km). For each of the
four regions, we extract 10 East–West slices at 1km North–South intervals to provide a diverse set
of datasets based on real-world terrains. While the different slices taken from a single region vary
only slightly, the different regions lead to diverse elevation maps, as seen in Figure 10.

5.3 Sequential Performance Results

We evaluate our sequential implementations and sequential execution of ParAoT and LinPar (i.e.,
using 1 thread) on the Algoparc platform. Figure 11 shows average runtime vs. dataset size (n)
for synthetic random datasets. As expected, the quadratic complexity of Naive results in much
sharper runtime growth as we increase n, compared to the O (n log2 n) algorithms. Additionally,

1For simplicity, our implementations use 64-bit double-precision floating point variables, ignoring potential inaccuracies
arising from round-off errors. If necessary, such inaccuracies can be avoided via exact arithmetic, e.g., as implemented in
the CGAL library [25].

ACM Journal of Experimental Algorithmics, Vol. 23, No. 2, Article 2.3. Publication date: July 2018.

2.3:18 P. Afshani et al.

Fig. 11. Results with all five implementations for the Random dataset.

Fig. 12. Sequential Performance of our five implementations.

we see that the simplified half-line intersection counting algorithm described in Section 3.1 gives
Sweep, ParAoT, and LinPar a significant practical performance advantage over RedBlue. Note
that, to compare sequential performance, we run ParAoT and LinPar using only one thread.

Figure 12(a) shows average runtimes of our four sub-quadratic implementations for our three
classes of synthetic datasets of n = 220 vertices (we omit Naive results, since its runtime is prohib-
itive for such a large n). These results confirm that Sweep, ParAoT, and LinPar are consistently
faster than RedBlue, with an average decrease in runtime (across all synthetic inputs) of 5.56×,
6.51×, and 12.70×, respectively. Figure 12(a) further reveals that Sweep has a significant variance
in execution time across different synthetic datasets, indicating that the overhead of maintaining
and balancing a large BST during the plane sweep has a major impact on algorithm performance.
The performance of ParAoT and LinPar, however, are not as dependent on the dataset, and they
therefore outperform Sweep on all but the flat synthetic datasets. LinPar is our fastest implemen-
tation on all synthetic datasets, decreasing runtime over ParAoT by 1.79×, 1.99×, and 2.11× on
flat, parabolic, and random inputs, respectively.

ACM Journal of Experimental Algorithmics, Vol. 23, No. 2, Article 2.3. Publication date: July 2018.

An Efficient Algorithm for the 1D Total Visibility-Index Problem and Its Parallelization 2.3:19

Fig. 13. Parallel performance of the ParAoT implementation on real-world datasets for varying number of

compute threads on each of our two hardware platforms.

Figure 12(b) shows runtimes for each algorithm when applied to data from each region of our
real-world dataset, averaged over all 10 slices. As with synthetic datasets, Sweep, ParAoT, and
LinPar greatly outperform RedBlue with an average decrease in runtime of 5.72×, 8.25×, and
18.69×, respectively. We conclude that our simplified half-line intersection algorithm provides a
significant performance improvement over the general red–blue line segment intersection count-
ing algorithm [23] used by RedBlue. Furthermore, even sequentially, ParAoT and LinPar are
faster and more consistent that Sweep, indicating that the AoT and LPBST data structures provide
an effective alternative to plane sweep for this problem. Additionally, LinPar has a significant per-
formance advantage over all of our other implementations, indicating that the reduced memory
usage of LinPar provides practical performance gains.

5.4 Parallel Performance Results

In addition to providing the performance benefits seen in the results above, the AoT and LPBST
data structures are amenable to parallelization. In this section, we evaluate the performance of our
parallel implementations of ParAoT and LinPar.

To assess parallel performance from a practical standpoint, we present results obtained using
our real-world datasets. Figure 13 and Figure 14 show the average runtime of ParAoT and LinPar,
respectively, using our real-world datasets for various numbers of threads on our two hardware
platforms. While parallelization provides some performance improvement, the speedup is far from
the peak, especially as the number of threads increases. On the four-core (8 virtual cores due to
hyperthreading) Algoparc platform, ParAoT and LinPar achieve a maximum speedup of 2.92 and
4.24, respectively, with 8 threads. On the Uhhpc platform, however, ParAoT and LinPar achieve a
maximum parallel speedup of 3.86 and 7.39, respectively. Furthermore, while LinPar achieves its
maximum speedup with 16 threads, ParAoT achieves its maximum parallel speedup with only 8
threads and slows down when using 16 threads. We note that our real-world datasets contain only
216 data points. On such small datasets, the affect of the cache system may significantly impact
parallel performance. Both of our hardware platforms have L3 caches that can store more than 216

elements (Algoparc and Uhhpc have L3 caches of 10MB and 25MB, respectively). This results in
very fast sequential execution, limiting the achievable parallel speedup and increasing the rela-
tive cost of parallel overhead (e.g., spawning new threads). We speculate that the large memory

ACM Journal of Experimental Algorithmics, Vol. 23, No. 2, Article 2.3. Publication date: July 2018.

2.3:20 P. Afshani et al.

Fig. 14. Parallel performance of the LinPar implementation on real-world datasets for varying number of

compute threads on each of our two hardware platforms.

Fig. 15. Average runtime of our parallel implementations on synthetic datasets (n = 220) on each of our

platforms. Number of threads used shown in parenthesis.

requirement of the AoT data structure further increases the impact of the cache systems on parallel
speedup, resulting in the decrease in performance when using 16 threads on the Uhhpc platform.

To better understand the cause of the limited parallel performance on real-world datasets, we
perform a series of experiments on synthetic random datasets (for which we can vary the size)
using the (empirically) best number of threads for each hardware platform. Figure 15 plots the av-
erage sequential and parallel execution time of ParAoT and LinPar on varying synthetic datasets,
for each of our hardware platforms. Note that these datasets are the same used in our sequen-
tial experiments (Figure 12(a)). Figure 16 shows the average parallel speedup vs. dataset size on
each hardware platform for ParAoT and LinPar. For n = 216 vertices, parallel performance results
are similar to our real-world results. As the dataset size increases, however, parallel speedup in-
creases for both implementations, on both hardware platforms. At the largest input size ParAoT
can process (due to memory requirements), we see a maximum speedup of 3.51 and 7.25 on
Algoparc and Uhhpc, respectively. ParAoT’s parallel speedup remains well below expected

ACM Journal of Experimental Algorithmics, Vol. 23, No. 2, Article 2.3. Publication date: July 2018.

An Efficient Algorithm for the 1D Total Visibility-Index Problem and Its Parallelization 2.3:21

Fig. 16. Average parallel speedup obtained on random inputs of varying size. Note that axis scales differ.

parallel performance, especially for Uhhpc, where we would expect a speedup nearing 16 for
16 threads. LinPar, however, achieves significantly higher parallel speedup, with a maximum of
5.46 and 13.60 on Algoparc and Uhhpc, respectively. We note that the performance drop seen in
Figure 16(b) when n = 227 on Algoparc is due to limited memory, causing the system to begin
swapping to disk. On Uhhpc, however, we have much more available memory, and we see that
LinPar continues to gain additional parallel speedup as we increase the input size.

As discussed in Section 4, the array-of-trees data structure requires O (n logn) memory, while
LPBST requires only O (n) additional space. The results in Figure 16 suggest that this memory
requirement may be causing ParAoT to be memory bound, resulting in a memory bandwidth bot-
tleneck that limits parallel speedup. This is supported by the fact that the parallel speedup obtained
by ParAoT on each hardware platform corresponds to the number of available memory channels.
Algoparc, while running 8 hardware threads, is limited by four memory channels and achieves
a maximum speedup of 3.51. Uhhpc has eight memory channels (four per socket) and achieves a
maximum speedup of 7.25, despite using 16 hardware threads. We speculate that LinPar, requir-
ing only linear additional space, does not suffer from this memory bottleneck and is therefore able
to achieve much higher parallel speedup. We conclude that LinPar is our fastest implementation,
both sequentially and in parallel.

6 CONCLUSIONS

In this work, we presented an O (n log2 n) algorithm to solve the 1D total visibility-index problem.
Our divide-and-conquer approach uses dualization to reduce the problem to a series of instances
the red–blue line segment intersection counting problem. To the best of our knowledge, this is the
first subquadratic-time algorithm to solve this problem.

We implemented four versions of this algorithm and evaluated their performance on two distinct
hardware platforms. Each of our implementations solves the red–blue line segment intersection
counting problem differently: RedBlue relies on an existing general-case solution, Sweep uses
a plane sweep algorithm, and ParAoT and LinPar employ persistent search tree data structures.
While all four implementations have O (n log2 n) asymptotic runtime and are at least an order of
magnitude faster than the naive O (n2) solution, their relative performance differs greatly. Empir-
ical results show that RedBlue is, on average, at least 5 times slower than our other three imple-
mentations, indicating that our special-case red–blue line segment intersection counting technique

ACM Journal of Experimental Algorithmics, Vol. 23, No. 2, Article 2.3. Publication date: July 2018.

2.3:22 P. Afshani et al.

provides significant performance gains. Furthermore, our two implementations that rely on per-
sistent data structures out-perform our plane sweep implementation on most synthetic and all
real-world datasets.

In addition to sequential performance gains over other implementations, ParAoT and LinPar
can leverage multiple threads to further improve performance. While both implementations
achieve parallel speedup on both of our hardware platforms, ParAoT’s performance gains are
limited due to its large memory requirement. LinPar, however, requires only O (n) space and,
therefore, achieves up to 85% parallel efficiency on large synthetic datasets. Our fastest implemen-
tation finds the 1D total visibility-index of over 100 million vertices in under 3 minutes using 16
threads.

An interesting open problem is to determine whether the dualization used in our solution can
be applied to the 2D total visibility-index computation to achieve a subquadratic solution on two-
dimensional terrains. Another interesting avenue for future research is to see if our solution can be
applied for faster approximate solutions to the 2D total visibility-index problem by computing total
visibility-index on a number of 1D slices of the 2D terrain and then using interpolation to approx-
imate visibility indices to all points in the 2D terrain. Finally, this work indicates that persistent
data structures can be used as an alternative to plane sweep approaches to achieve performance
gains in practice. Furthermore, persistent data structures are easily parallelizable, further improv-
ing performance. A practical direction for future research is to apply these persistent structures to
improve the performance of the many existing algorithms that use plane sweep approaches.

ACKNOWLEDGMENTS

This work is supported by the National Science Foundation under Grant No. 1533823.

REFERENCES

[1] ArcGIS. 2016. Retrieved from http://www.esri.com/software/arcgis.
[2] .GRASS (Geographic Resources Analysis Support System). 2016. Retrieved from https://grass.osgeo.org.
[3] M. J. Atallah, M. T. Goodrich, and S. R. Kosaraju. 1994. Parallel algorithms for evaluating sequences of set-

manipulation operations. J. ACM 41, 6 (1994), 1049–1088.
[4] B. Ben-Moshe, O. Hall-Holt, M. J. Katz, and J. S. B. Mitchell. 2004. Computing the visibility graph of points within a

polygon. In Proceedings of the 20th Annual Symposium on Computational Geometry (SCG’04). 27–35.
[5] F. Chao, Y. Chongjun, C. Zhuo, Y. Xiaojing, and G. Hantao. 2011. Parallel algorithm for viewshed analysis on a modern

GPU. Int. J. Digital Earth 4, 6 (2011), 471–486.
[6] B. Chazelle and H. Edelsbrunner. 1987. Linear space data structures for two types of range search. Discr. Comput.

Geom. 2, 2 (Jun. 1987), 113–126.
[7] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. 2008. Computational Geometry: Algorithms and Applications

(3rd ed.). Springer-Verlag.
[8] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. 1986. Making data structures persistent. In Proceedings of the

18th Annual ACM Symposium on Theory of Computing (STOC’86). 109–121.
[9] C. Ferreira, M. V. Andrade, S. V. Magalhaes, W. R. Franklin, and G. C. Pena. 2013. A parallel sweep line algorithm for

visibility computation. In Proceedings of the Symposium on GeoInformatics (GeoInfo’13). 85–96.
[10] C. R. Ferreira, S. V. G. Magalhaes, M. V. A. Andrade, W. R. Franklin, and A. M. Pompermayer. 2012. More efficient

terrain viewshed computation on massive datasets using external memory. In Proceedings of the 20th International

Conference on Advances in Geographic Information System. 494–497.
[11] J. Fishman, H. Haverkort, and L. Toma. 2009. Improved visibility computation on massive grid terrains. In Proceediings

of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. 121–130.
[12] L. De Floriani and P. Magillo. 2003. Algorithms for visibility computation on terrains: A survey. Environ. Plan. B: Plan.

Des. 30, 5 (2003), 709–728.
[13] W. R. Franklin and C. K. Ray. 1994. Higher isn’t necessarily better: Visibility algorithms and experiments. In Proceed-

ings of Advances in GIS Research: 6th International Symposium on Spatial Data Handling. 751–770.
[14] S. Friedrichs, M. Hemmer, J. King, and C. Schmidt. 2016. The continuous 1.5D terrain guarding problem: Descretiza-

tion, optimal solutions, and PTAS. J. Comput. Geom. 7, 1 (2016), 256–284.

ACM Journal of Experimental Algorithmics, Vol. 23, No. 2, Article 2.3. Publication date: July 2018.

http://www.esri.com/software/arcgis
https://grass.osgeo.org

An Efficient Algorithm for the 1D Total Visibility-Index Problem and Its Parallelization 2.3:23

[15] A. Haas and M. Hemmer. 2015. Efficient algorithms and implementations for visibility in 1.5D terrains. In Proceedings

of the 31st European Workshop on Computational Geometry. 216–219.
[16] T. Hagerup. 1998. Sorting and searching on the word RAM. In Proceedinsg of the 15th Symposium on Theoretical Aspects

of Computer Science. 366–398.
[17] H. Haverkort, L. Toma, and Y. Zhuang. 2009. Computing visibility on terrains in external memory. J. Exp. Algor. 13

(2009), 5:1.5–5:1.23.
[18] F. Hurtado, M. Löffler, I. Matos, V. Sacristán, M. Saumell, R. Silveira, and F. Staals. 2014. Terrain visibility with multiple

viewpoints. Int. J. Comput. Geom. App. 24, 04 (Dec. 2014).
[19] J. JáJá. 1992. An Introduction to Parallel Algorithms (1st ed.). Addison Wesley.
[20] D. B. Kidner, P. J. Rallings, and J. A. Ware. 1996. Parallel processing for terrain analysis in GIS: Visibility as a case

study. GeoInformatica 1, 2 (1996), 183–207.
[21] M. Llobera, D. Wheatley, J. Steele, S. Cox, and O. Parchment. 2004. Calculating the inherent visual structure of a

landscape (inherent viewshed) using high-throughput computing. In Proceedings of Beyond the Artifact: Digital Inter-

pretation of the Past: The 32nd Computer Applications and Quantitative Methods in Archaeology Conference (CAA’04).
146–151.

[22] M. Löffler, M. Saumell, and R. I. Silveira. 2014. A faster algorithm to compute the visibility map of a 1.5 D terrain. In
Proceedingsf of the 30th European Workshop on Computational Geometry.

[23] L. Palazzi and J. Snoeyink. 1994. Counting and reporting red/blue segment intersections. CVGIP 56, 4 (1994), 304–310.
[24] S. Tabik, A. Cervilla, E. Zapata, and L. Romero. 2014. Efficient data structure and highly scalable algorithm for total-

viewshed computation. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 8, 1 (2014), 1–7.
[25] The CGAL Project. 2017. CGAL User and Reference Manual (4.11 ed.). CGAL Editorial Board. Retrieved from http://

doc.cgal.org/4.11/Manual/packages.html
[26] M. van Kreveld. 1996. Variations on sweep algorithms: Efficient computation of extended viewsheds and class inter-

vals. In Proceedings of the 7th International Symposium on Spatial Data Handling. 13–15.
[27] D. Wheatley. 1995. Cumulative Viewshed Analysis: A GIS-based Method for Investigating Intervisibility and Its Archae-

ological Application. Routlege, London.
[28] Y. Zhao, A. Padmanabhan, and S. Wang. 2013. A parallel computing approach to viewshed analysis of large terrain

data using graphics processing units. Int. J. Geogr. Inf. Sci. 27, 2 (2013), 363–384.
[29] R. J. Zomer, D. A. Bossio, A. Trabucco, L. Yuanjie, D. C. Gupta, and V. P. Singh. 2007. Trees and Water: Smallholder

Agroforestry on Irrigated Lands in Northern India. Technical Report 122. International Water Management Institute,
Colombo, Sri Lanka. 45 pages.

[30] R. J. Zomer, A. Trabucco, D. A. Bossio, O. van Straaten, and L. V. Verchot. 2008. Climate change mitigation: A spatial
analysis of global land sustainability for clean development mechanism afforestation and reforestation. Agric. Ecosyst.

Environ. 126 (2008), 67–80.

Received May 2017; revised February 2018; accepted April 2018

ACM Journal of Experimental Algorithmics, Vol. 23, No. 2, Article 2.3. Publication date: July 2018.

http://penalty -@M doc.cgal.org/4.11/Manual/packages.html

