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ABSTRACT
Multivalent particles, i.e., microscopic constructs having multiple ligands, can be used to target surfaces selectively depending on their recep-
tor density. Typically, there is a sharp onset of multivalent binding as the receptor density exceeds a given threshold. However, the opposite
case, selectively binding to surfaces with a receptor density below a given threshold, is much harder. Here, we present a simple strategy for
selectively targeting a surface with a low density of receptors, within a system also having a surface with a higher density of the same recep-
tors. Our strategy exploits competitive adsorption of two species. The first species, called “guards,” are receptor-sized monovalent particles
designed to occupy the high-density surface at equilibrium, while the second multivalent “attacker” species outcompetes the guards for bind-
ing onto the low-density surface. Surprisingly, the recipe for attackers and guards yields more selective binding with stronger ligand-receptor
association constants, in contrast to standard multivalency. We derive explicit expressions for the attacker and guard molecular design param-
eters and concentrations, optimized within bounds of what is experimentally accessible, thereby facilitating implementation of the proposed
approach.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5086277

I. INTRODUCTION

Multivalency is a microscopic design strategy for targeting par-
ticles with two or more binding units (“ligands”) to a target, such
as a surface, having complementary binding units (“receptors”).1–8

Nature has exploited multivalency to define interaction paradigms
at and between cell surfaces1–3,9–22 and in the design of bacteria,
viruses, and biomolecules themselves.23–26 As a result, a large body
of research to date has been dedicated to targeting surfaces of cells,
cancerous tumors, and other microscopic objects via bio-inspired
multivalent interactions.14,15,25–44 Multivalency is also employed to
design eloquent self-assembly pathways for synthetic ligand-coated
nano- and colloidal particles, often utilizing DNA as their bind-
ing moities due to their tunable hybridization free energy.6,7,36,45–68

Due to the fact that multiple ligand-receptor bonds are involved in

multivalent interactions, their binding kinetics are nontrivial and
can complicate the road to reaching equilibrium.18,31,59,62,69,70

The binding affinity of a multivalent particle depends strongly
on the number of ligands it has and the receptor density of the tar-
get surface.5,6,71 This is because the binding free energy between the
two entities contains a nontrivial entropy term, whose magnitude
depends on the number of ligands and receptors. One result of this
is superselectivity, where the logarithm of the number of surface-
bound particles increases super-linearly with the log of the surface
receptor concentration.5 The selectivity becomes larger for particles
with more ligands and when the per-ligand binding energy becomes
smaller. Therefore, high-valence particles with weak-binding ligands
exhibit sharper surface binding transitions than low-valence parti-
cles with strong-binding ligands. This can be used to design multi-
valent particles that strongly bind to surfaces with many receptors,
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while having little affinity for surfaces with even a slightly lower
density of the same receptors.

A single species of multivalent particles cannot address the
opposite scenario, namely, targeting a low-receptor-density surface
but not one with a higher receptor density. This is because the
entropy of binding—the contribution arising from ligand-receptor
bonding permutations—always becomes more favorable for a mul-
tivalent particle as the surface receptor density increases. Therefore,
particles that bind to a surface with few receptors will necessarily
bind to one with many. To selectively target only a low receptor
density surface, a different approach is needed.

By separately tuning the entropy and energy of binding, mix-
tures of different kinds of multivalent particles can exhibit “switch-
like” surface binding.72 For example, an equimolar mixture of low-
valence nanoparticles with strong-binding ligands can compete with
a high-valence weak-ligand species. Both nanoparticle species have
the same core size and exclude the same area when bound to the
surface. When the surface receptor density is low, the low-valence
species selectively binds to the surface. Upon increasing the recep-
tor concentration, there is a switch-point, after which the surface
becomes occupied by the high-valence species. The surface recep-
tor density thus acts to shift the balance between the entropic and
energetic terms in the free energy of binding for the two species.
The binding free energy of the low-valence strong-binding species
is dominated by the energetic term; on the other hand, the high-
valence weak-binding species has a substantial entropy of binding.

The present work takes this as inspiration and devises an
“attacker and guard” strategy for selectively targeting a surface with
low receptor density within a system that also has a surface with a
higher density of the same receptors. This might be, for example,
two populations of cells in a suspension, with one population hav-
ing a high membrane concentration of a particular receptor and the
other having a low concentration of the same receptors.

The strategy we propose entails using one species of particles,
called “guards,” to occupy the receptors on the high-density surface.
These particles have a size on the order of a single receptor. A sec-
ond larger species of particles, called “attackers,” are then designed
to out-compete the guards for binding on the low-receptor-density
surface at equilibrium but not on the high-density surface. Experi-
mental accessibility and robustness are emphasized in devising this
recipe. The strategy may prove useful for selectively imaging cell sur-
faces in vitro that have globally or locally low receptor density, e.g.,
by making the attackers fluorescently active and the guards not via
a DNA Points Accumulation for Imaging in Nanoscale Topogra-
phy (DNA-PAINT) approach.73 This approach may also have use
in selective sequestration or aggregation of microscopic entities with
a low receptor density, in which the attackers act as the aggregating
agents.

II. TUNING MULTIVALENT BINDING BY MICROSCOPIC
CONSTRUCTION

To begin, we briefly review how the binding free energy of a
multivalent particle dictates its affinity to binding to a surface, as
a function of the target surface’s receptor density. This is impor-
tant for understanding how to manipulate the binding affinity of
two competing species for the more complex case of targeting a
low-receptor-density surface.

The binding free energy of a multivalent particle is given by
the standard relation βG(NR) = −ln Q(NR) − ln z, where Q is the
partition function for the particle when it is adjacent to the receptor
surface, and z is the fugacity of the particles in solution above the
receptor surface. The quantity NR is the number of receptors that
are accessible to the particle when it is adjacent to the surface. This is
defined as NR = σRa2, where σR is the number of receptors per unit
area on the surface (the “receptor density”) and a is the diameter of
the multivalent particle and its ligands. We refer to one a2-sized area
element of the receptor surface as a surface “lattice site.”

Multivalent particles at low concentration can be assumed to
follow ideal gas statistics, in which the fugacity z is related to the
molar concentration “[C]” of the particles in solution by

[C] =
z

NAvex
. (1)

Here, NA is Avogadro’s number, and vex is the excluded volume (or
“localization volume”) for one multivalent particle. Note that vex
must be in units of decimeters3 in order for the concentration [C]
to be in the appropriate units of moles/liter.

When a multivalent particle is adjacent to a binding surface, it
can have one or more additional “nonspecific” (i.e., nonmultivalent)
interaction free energy contributions. Collecting all of these addi-
tional contributions into the quantity “GNS,” then the total binding
free energy of the multivalent particle is

βG(NR) = − ln Q(NR) − ln z + βGNS. (2)

Written this way, the partition function Q(NR) explicitly contains
only the “multivalent” ligand/receptor bonding contributions to the
binding free energy. Unless otherwise noted, we henceforth set βGNS
to zero and focus attention on the multivalent binding contributions
in Q(NR).

When receptors are immobile and uniformly placed on the sur-
face at a density of σR, the partition function Q(NR) for a lattice site
when occupied by a multivalent particle is well described5,19 by

Q(NR) =
N∗

∑
λ=0

(
NR

λ
)(

NL

λ
)λ!e−βλf , (3)

where f is the free energy for forming a single ligand-receptor bond,
NL is the effective number of ligands on the multivalent particle that
can access the surface for receptor binding at any given time, and
N∗ = min(NR, NL). This expression effectively treats the receptors
and ligands as an ideal gas within the surface lattice site, while cru-
cially enforcing that they each may only have zero or one binding
partner in any given microstate. Note that the effective valence NL is
almost always less than the total number of ligands on the particle.
This is because not all ligands can simultaneously reach the recep-
tor surface for binding, depending on how the multivalent particle is
oriented. For multivalent constructs, it is the “effective” valence that
dictates binding behaviour, and this is what the quantity NL signifies
throughout our discussion.

Adding in Poisson fluctuations to the number of receptors in
each lattice site considerably simplifies Eq. (3). With a Poisson dis-
tribution centered around a mean value of NR receptors per lat-
tice site, the probability the multivalent particle “sees” j receptors
within area a2 follows P(j; NR) = e−NR N j

R/j!. In this case, Eq. (3)
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simplifies to19

Q(NR) = (1 + NRe−βf
)

NL
. (4)

Strictly speaking, this form is only exact when the coverage of bound
multivalent particles on the receptor surface is low, such that each
bound particle can independently sample the Poisson distribution
of receptors. For higher surface coverage, the adsorption statistics
become multi-Langmuir, and this must be calculated numerically
(see Ref. 74 for a mathematical and experimental discussion of this
regime). To proceed analytically for the present discussion, we adopt
Eq. (4) and then remark on potential discrepancies compared to
the more exact multi-Langmuir adsorption later on in the discus-
sion. Note that Eq. (4) is also exact when the receptors are mobile
on the surface, nondepletable (i.e., coming from a grand canonical

reservoir), and at an average concentration of NR per lattice site.
However, for the present study, we assume that the receptors are
immobile over the time scale of multivalent particle binding and
equilibration.

Given Q(NR) in Eq. (4), the binding free energy for a multiva-
lent particle is

βG(NR) = −NL ln (1 + NRe−βf
) − ln z + βGNS. (5)

The probability that a surface lattice site is occupied by a multivalent
particle is then

Pb(NR) =
e−βG(NR)

1 + e−βG(NR) . (6)

FIG. 1. Multivalent binding probability [Eq. (6)] (upper panels) and binding free energy (lower panels) as a function of the number of receptors NR per surface lattice site of
size a2. In (a), the ligand-receptor binding free energy βf = −2 and number of ligands NL = 8 are kept fixed, while the fugacity of the particles is set to ln z = −32, −29, and
−23 (purple, yellow, and red). Vertical dashed lines indicate inflection points for each adsorption profile. In (b), the particle ligand-receptor binding free energy is also fixed at
βf = −2, while the number of ligands on the particle is set to NL = 5, 8, and 12 (purple, yellow, and red). In each case, the fugacity is adjusted such that the binding transition
occurs at NR = 5.
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When βG(NR) is greater than zero (i.e., an unfavorable binding free
energy change), then Pb(NR) goes to zero. Similarly, when βG(NR) is
less than zero, corresponding to a favorable free energy of binding,
then Pb(NR) goes to unity. Thus, βG(NR) = 0 corresponds to the
binding transition, and the derivative of βG(NR) with respect to NR
at βG(NR) = 0 reflects the sharpness of the transition.

Equation (5) shows us how the multivalent binding free energy
changes with NR, f, NL, z, and βGNS. The fugacity z (∝ concentration
[C]) shifts the binding free energy βG(NR) up or down by a constant.
It therefore provides a convenient handle for adjusting the receptor
density σR at which the adsorption transition occurs. This is illus-
trated in Fig. 1(a). As the fugacity grows smaller, then the overall
binding free energy shifts higher (more unfavorable). The receptor
density σR where the adsorption transition occurs correspondingly
increases, and the sharpness of the transition decreases [as the local
derivative of βG(NR) for increasing NR gets smaller].

The sharpness of the binding transition can be tuned by adjust-
ing the molecular construction of the multivalent particle, via its
valence NL and ligand-receptor binding strength f. Figure 1(b) shows
examples of tuning the adsorption sharpness by changing NL. In
each case, the fugacity has been tuned so that the adsorption tran-
sition is centered at NR = 5. Making NL larger causes the gradient
of βG(NR) with NR to be steeper and more negative, leading to a
sharper binding transition.

The free energy curves in Figs. 1(a) and 1(b) can also be verti-
cally shifted by altering the “nonspecific” binding free energy βGNS.
The quoted values of ln z in those examples can, for example, be
equivalently interpreted as “effective” fugacities given by ln ztrue −

βGNS, where the former is the true solution fugacity determined
by the multivalent particle concentration. Since βGNS can also be
tuned by the chemical design, in principle, then it is an additional
adjustment knob for uniformly shifting the multivalent binding free
energy if tuning the particle concentration proves to be impracti-
cal. (An example would be a particular target receptor surface that
requires a vanishingly small or infeasibly large bulk solution concen-
tration of multivalent particles in order to reach a desired binding
equilibrium.)

III. TARGETING A LOW-RECEPTOR-DENSITY SURFACE
WITH TWO COMPETING SPECIES

The binding free energy of a multivalent particle, βG(NR), can
be completely tailored by the parameters f, NL, and z. This can be
used to design a multivalent species that binds strongly to a sur-
face with a high receptor density while not binding to one with
a lower density. However, it is impossible to achieve the opposite
case with just one multivalent binder. As is apparent in Figs. 1(a)
and 1(b), the binding free energy cannot be manipulated in such a
way that the multivalent particle only binds at low surface receptor
concentration.

To solve this problem, we can introduce a second particle
species that competes for surface binding with the original species.
The goal is to define the second species such that it blocks the
first from binding to the high-receptor-density surface but not the
low-density surface. We call this second species the “guards,” and
the original species the “attackers.” The forthcoming “Attacker and
Guard” strategy is graphically depicted in Fig. 2, showing the molec-
ular ingredients, salient mathematical parameters, and intended

equilibrium distribution of attackers and guards on the two receptor
surfaces.

To start, the guards are defined to be a roughly receptor-sized
monovalent species. The free energy of binding for a monovalent
species is independent of the surface receptor density. Each receptor
has a partition function of the form

qreceptor = 1 + zguarde−βfguard , (7)

where f guard is the free energy for forming a guard-receptor bond and
zguard is the guard fugacity. The first term in qreceptor is the weight
for when the receptor is not bound to anything, and the second is
for when it is bound to a guard particle. The free energy of a single
receptor is then just −ln(qreceptor).

However, to compare the guard binding free energy to the
attackers, we must consider the total free energy of guard binding
over the full area a2 occupied by an attacker. This quantity depends
linearly on the number NR of receptors within a2

βGguard(NR) = − ln (qNR
receptor) = −NR ln (1 + zguarde−βfguard)

= −NRCguard. (8)

Here, the combined tunable guard parameter

Cguard ≡ ln (1 + zguarde−βfguard) (9)

has been defined for notational clarity in subsequent equations.
On the other hand, the free energy of the lattice site when occu-

pied by an attacker depends logarithmically on NR in the lattice site,
via Eq. (5),

βGattacker(NR) = −NL ln (1 + NRe−βfattacker) − ln zattacker, (10)

assuming no nonspecific binding free energy contribution βGNS.
Importantly, we assume that when an attacker is bound, it excludes
all receptors over the area a2 from binding to any guards. This
assumption is most likely to hold when the attacker is a solid
structure like, e.g., a ligand-coated nanoparticle, vesicle, or virus.
The implications of this assumption breaking down are examined
later.

The different scaling of the attacker and guard binding free
energies (per lattice site) with NR can be exploited, as shown
in Fig. 3(a). In this example, we suppose that the low-density
surface has NR = 4 ≡ N′

R, and the high-density surface has
NR = 10 ≡ N′′

R . The blue curve in Fig. 3(a) plots βGguard(NR)
as a function of NR. The slope of the line is controlled by the
guard fugacity zguard and binding strength f guard. The red curve in
Fig. 3(a) displays βGattacker(NR). The weaker logarithmic dependence
of βGattacker(NR) on NR has been exploited to tune the attacker’s
design (via NL, f attacker, zattacker) such that: at N′

R, βGattacker(N′
R)

< βGguard(N′
R); while at N′′

R , βGguard(N′′
R ) < βGattacker(N′′

R ).
The resulting binding behavior of the attackers and guards is

displayed in Fig. 3(b). The probability that a surface site is occupied
by an attacker is

Pattacker
b (NR) =

e−β∆G(NR)

1 + e−β∆G(NR) , (11)

where
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FIG. 2. Graphical depiction of the “Attacker and Guard” targeting strategy, showing key ingredients, mathematical parameters, and sought-after equilibrium binding distribution
of particles. Upper half of image shows attackers, guards, and a receptor surface, along with relevant mathematical parameters (described in main text). Lower half of image
shows attackers and guards in a hypothetical solution containing a low- and high-receptor-density surface. On the left, attackers and guards have just been added, while on
the right, equilibrium has been reached.

FIG. 3. Binding free energy [(a), via Eqs. (8) and (10)] and surface adsorption probability [(b), via Eqs. (11) and (13)] for attackers (red curves) and guards (blue curves) as a
function of the average number of receptors per surface lattice site of area a2. Green vertical lines indicate the low-receptor-density and high-receptor-density surfaces, with
N′

R = 4 and N′′
R = 10, respectively. In (b), solid lines are for when attackers and guards coexist in the same system, while dashed lines are for when they are separately

in the system. Multivalent attacker parameters are NL = 4, βf attacker = −3, and ln zattacker = −4.53, while monovalent guard parameters are βf guard = −4 and ln zguard = −2.
Attacker fugacity zattacker has been chosen such that β∆G(N′

R) = −β∆G(N′′
R ), indicated as β∆G∗ in (a) here.
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β∆G(NR) ≡ βGattacker(NR) − βGguard(NR). (12)

For comparison, we also plot the probability that a single receptor is
attached to a guard

Pguard
b (NR) =

⎛

⎝

zguarde−βfguard

1 + zguarde−βfguard

⎞

⎠
(1 − Pattacker

b (NR)). (13)

These are derived in Appendix A.
In Fig. 3, the guard and attacker fugacities have been set to ln

zguard = −2 and ln zattacker = −4.53. Using Eq. (1), a rough feasibil-
ity check can be made for the molar concentrations these fugacities
correspond to assuming that there is no nonspecific binding free
energy (βGNS) contribution. For example, considering “receptor-
sized” guards of length 10 nm (≈1 hemagglutinin unit on the exte-
rior of an influenza virus particle), and attackers of size 100 nm,
then these fugacities correspond to guard and attacker concentra-
tions of around [Gu] ≈ 200 µM and [At] ≈ 18 nM. These con-
centrations, along with the choices of βf guard = −4, NL = 4, and
βf attacker = −3 in that figure, are well within accessible experimental
range.

At N′
R, the attackers are strongly bound, while at N′′

R , the
guards outcompete the attackers for binding. The value of NR where
βGguard(NR) = βGattacker(NR) defines the “switch point” between the
two species. Combining both species into the same system is essen-
tial, as alone, one or the other species would strongly bind to both
the low- and high-density surfaces [dashed blue and red lines in
Fig. 3(a)].

The effectiveness of the targeting recipe is assessed by the dif-
ference in attacker binding probabilities at N′

R and N′′
R , defined

as
Effectiveness ≡ � ≡ Pattacker

b (N′
R) − Pattacker

b (N′′
R ). (14)

Values of � near unity are optimal, 0 means that the attackers bind
equally well to N′

R and N′′
R , while negative values (approaching −1)

mean that the attackers favor binding to N′′
R rather than N′

R.
In order to achieve an effectiveness � of unity, the

attacker/guard binding free energy difference β∆G(NR) must go to
negative infinity at N′

R and positive infinity at N′′
R . Therefore, to pro-

ceed further, we seek the attacker and guard design parameters that
lead to a given chosen effectiveness �.

By inspection of Fig. 3(a), the maximum possible effectiveness
of an attacker+guard design is set by the slope of the guard free
energy (blue line) as a function of NR. The larger and more nega-
tive the slope, the larger the free energy difference between N′

R and
N′′

R . The connection between a desired � and the necessary Cguard is
developed in Sec. IV.

The remaining task is to find an optimal attacker design, i.e.,
NL, zattacker, and f attacker. The best attacker design is one in which
their free energy of binding (red curve) as a function of NR is
nearly constant between N′

R and N′′
R so as to bisect the blue guard

curve in this interval in Fig. 3(a). Doing so obtains the most nega-
tive β∆G(N′

R) and most positive β∆G(N′′
R ). Based on Eq. (10), this

occurs when the attacker has few strong-binding ligands.
The number of ligands NL and ligand/receptor bonding

strength f attacker of the attackers are set by the chemical design.
Supposing these are predefined for the time being, we then seek
the attacker fugacity (concentration) zattacker that maximizes the

targeting effectiveness �. Attackers can be readily titrated into a sys-
tem so that the level of control over zattacker is very high compared
to the molecular design. It is therefore a convenient experimental
control parameter to optimize over for the attackers.

The attacker fugacity zattacker that maximizes the targeting effec-
tiveness is where

d�
d ln zattacker

= 0. (15)

This is carried out in Appendix B, where we find that the largest
effectiveness is obtained by choosing zattacker such that

β∆G(N′
R) = −β∆G(N′′

R ). (16)

We call this optimum “β∆G∗”: A free energy “gap” that is directly
tuned by the design of the guards and attackers. Inserting the
condition in Eq. (16) into Eq. (14) yields

Optimal Effectiveness ≡ �∗ =
e−β∆G∗

− 1
e−β∆G∗ + 1

. (17)

Tuning of the attacker fugacity to satisfy this optimum condition
has been carried out in Fig. 3(a), and the symmetric free energy
gap β∆G∗ is indicated. The “tolerance” of the targeting design is
quantified by the width of the optimum in targeting effectiveness at
β∆G(N′

R) = −β∆G(N′′
R ) = β∆G∗,

Design Tolerance for �∗ ≡ −(
d2�

[d ln zattacker]
2 )

−1

≈
1
2

e−β∆G∗ . (18)

Equations (17) and (18) indicate that the most effective and most tol-
erant targeting design is obtained when the free energy gap β∆G∗ is
large and negative.

IV. OPTIMAL DESIGN OF ATTACKERS AND GUARDS
The quantity β∆G∗ is directly tuned by the molecular

design of the attackers and guards. The necessary β∆G∗ in
order to achieve a given effectiveness �∗ is obtained by invert-
ing Eq. (17), yielding β∆G∗

needed = − ln (
1+�∗
1−�∗ ). The free energy

gap in terms of the attacker and guard binding free energies is
β∆G∗

= βGattacker(N′
R) − βGguard(N′

R), subject to the constraint
βGattacker(N′

R) − βGguard(N′
R) = βGguard(N′′

R ) − βGattacker(N′′
R ) given

by Eq. (16).
These three relations, applied to the guard and attacker bind-

ing free energies [Eqs. (8) and (10)], result in closed-form expres-
sions for the necessary attacker and guard solution concentrations
[At]∗ and [Gu]∗ to achieve a desired targeting effectiveness �∗. The
derivation is carried out in Appendix C, resulting in

[At]∗ =
1

NAhbinda2

⎡
⎢
⎢
⎢
⎢
⎣

(
qL(c′′R)
qL(c′R)

)

NL
2

(
1 + �∗

1 − �∗
)

⎤
⎥
⎥
⎥
⎥
⎦

c′′R +c′R
c′′R −c′R

[qL(c′R)qL(c′′R)]
NL
2

, (19)

[Gu]∗ =
1

Kguard
eq

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎣

(
qL(c′′R)
qL(c′R)

)

NL
2

(
1 + �∗

1 − �∗
)

⎤
⎥
⎥
⎥
⎥
⎦

2
NAa2(c′′R −c′R)

− 1

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

, (20)
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where qL(c′R) and qL(c′′R) are dimensionless quantities calculated by

qL(cR) =
⎛

⎝
1 +

cRKattacker
eq

hbind

⎞

⎠
. (21)

The expressions are presented here in the chemical equilibrium
form, to facilitate experimental implementation. Appendix C details
the mathematical transformations involved to translate the statistical
mechanical theory into the form shown here.

The molar equilibrium association constants Kattacker
eq and Kguard

eq
are for, respectively, binding between a free receptor and a single
free ligand on the attacker and between a free receptor and a guard
particle in solution. The quantities c′R and c′′R are “surface receptor
molarities” (in units of moles of receptors per unit surface area) on
the low- and high-density surfaces, respectively, and a is the diam-
eter of the attacker (including its ligand corona). These are related
to the previously employed surface densities σR by cR = σR/NA. The
quantity hbind is the equilibrium binding height of the attacker; its
precise definition depends on the type of construct the attacker is
to be discussed shortly. Finally, NL is the number of ligands on the
attacker species.

Equations (19) and (20) provide physical insight. As the desired
effectiveness �∗ is increased to unity, then the required attacker
and guard concentrations (or association constants) grow very large.
Therefore, the low-receptor density surface can be targeted more effec-
tively when the attackers and guards have a larger overall binding
affinity. This is the opposite to standard one-component multivalent
targeting of high-density surfaces, in which weak ligand-receptor
bonds yield higher selectivity.

The remainder of this section takes a closer look at the guard
and attacker parameters in Eqs. (19) and (20). The kinetics involved
to reach binding equilibrium between the two competing adsorbers
are illustrated, and a suggested “recipe” for adding attackers and
guards that circumnavigates potential kinetic barriers is outlined. To
finish, factors that enhance the tolerance of the design are discussed,
while also remarking on effects not considered in our theory which
might reduce the targeting effectiveness.

A. Equilibrium constants and attacker binding height
in the context of experiment

The binding constant Kattacker
eq for the attacker ligands includes

the enthalpic contribution to the ligand/receptor bond, as well as the
extra (entropic) free energy cost ∆Glig, cnf for bond formation. Usu-
ally in the experiment, the ligand/receptor binding constant is only
measured for the case where the receptor and ligand structures are
free in solution and untethered to any host surfaces. This reference
ligand/receptor binding constant, “K○,attacker

eq ,” is mapped to the bind-
ing constant for the ligands when attached to the attacker particle
by

Kattacker
eq = K○,attacker

eq e−β∆Glig, cnf . (22)

Detailed discussions and models for approximating the extra
entropic free energy penalty ∆Glig, cnf for ligand/receptor binding are
given in Refs. 6 and 8.

The quantity hbind is a binding distance parameter. It controls
the receptor “effective molarity” that the ligands on an attacker “see”

when the attacker is surface-bound.19 Appendix C describes this in
greater mathematical detail.

The choice of how to precisely define hbind depends on the type
of construct that the attacker is, as illustrated in Fig. 4. For example,
if the attacker is a star polymer or dendrimer construct,31 then hbind
should be taken to be the distance between the receptor surface and
the center of the star. If the attacker is a solid particle-type construct
like a DNA-coated nanoparticle or a surface-functionalized vesicle,
then hbind should be defined as the equilibrium distance between the
outer surface of the attacker and the receptor surface.

In the latter case, whether or not hbind should include the
lengths of the receptors or ligands depends on how densely packed
they are on their respective surfaces. For example, if the attacker has
a dense packing of binding ligands (like, e.g., the influenza virus),

FIG. 4. Possible definitions for the equilibrium binding height parameter hbind ,
depending on the multivalent attacker structure. Top image depicts a multiva-
lent particle with a solid core and flexible ligands, interacting with a surface of
short/inflexible receptors. Middle image is a star polymerlike structure or den-
drimerlike structure interacting with short/inflexible receptors. Finally, the bottom
image is a spherical structure with densely packed short/inflexbile ligands (e.g.,
like an influenza virus) interacting with flexible receptors.
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then one could argue that hbind should be measured from the exte-
rior of the ligand corona to the receptor substrate. However, if the
ligands are long and flexible or at a relatively low surface density,
then hbind is better defined as going all the way to the solid exterior
of the attacker.

For purpose of demonstration, Fig. 5 shows experimentally
relevant examples of how the optimal attacker and guard concen-
trations given by Eqs. (19) and (20) vary with choice of binding
constants. The diameter of an attacker is set to a = 50 nm, with an
equilibrium binding height hbind = 15 nm. The low-receptor-density
surface is chosen to have σ′Ra2

= 5 receptors per attacker “footprint”
and the high-density surface σ′′R a2

= 10. The attacker particles are
defined to have NL = 4 ligands. Results have been calculated for three
choices of desired targeting effectiveness �∗.

In Eq. (20), we immediately see that the optimal guard concen-
tration always scales with the binding constant Kguard

eq as

[Gu]∗ ∝
1

Kguard
eq

.

The attackers behave in a more complex way. However, when the
attacker ligands are strong-binding, then the ratio (qL(c′′R)/qL(c′R))
→ (c′′R /c′R) in Eqs. (19) and (20). In this limit, the optimal attacker

concentration scales as

[At]∗ ∝ (
1

Kattacker
eq

)

NL

.

This scaling relation is noted in the upper panel of Fig. 5 when the
attacker ligands are strong-binding. The logarithm of [At]∗ varies
nearly linearly with the logarithm of the reciprocal ligand/receptor
binding constant (i.e., the dissociation constant Kattacker

d ) when
Kattacker

d is small. For relatively strong-binding ligands, where Kattacker
d

is around 1 µM, then the optimal solution concentration of attack-
ers is in the micromolar to nanomolar range. Weakening the lig-
and/receptor Kattacker

d brings [At]∗ to higher concentrations. Choos-
ing a larger targeting effectiveness �∗ also acts to increase the
optimal [At]∗ range.

The story for the guards is similar in the lower panel of Fig. 5.
The scaling of [Gu]∗ ∝ 1

Kguard
eq

is clear, although it is less steep
than for the attackers, due to the lack of the exponent NL on
the (monovalent) guards. When the guard dissociation constant is
around 1 µM, the optimal concentration is also in the micromolar
range. Increasing the dissociation constant into the millimolar range
accordingly brings the optimal guard concentration into that range
as well.

FIG. 5. Logarithm of the optimal attacker
(upper panel) and guard (lower panel)
concentrations as a function of recip-
rocal binding constants 1/Kattacker

eq and

1/Kguard
eq (in units of micromolar). Results

are calculated using Eqs. (19) and (20).
Attackers are defined to have NL = 4 lig-
ands, a diameter of a = 50 nm, and an
equilibrium binding height hbind = 15 nm.
The low- and high-receptor-density sur-
faces have σ′Ra2 = 5 and σ′′R a2 = 10
receptors per attacker footprint a2,
respectively. Calculations are displayed
for three choices of targeting effective-
ness �∗ = 0.95, 0.8, and 0.5 (red,
green, and blue). For guard calculations,
attacker ligand/receptor binding constant
is set to 1/Kattacker

eq = 10 µM.

J. Chem. Phys. 150, 184907 (2019); doi: 10.1063/1.5086277 150, 184907-8

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

B. Kinetics on the road to equilibrium and suggested
sequence of ingredients

Strong-binding attackers and guards have the limitation of long
equilibration times since both species will have strong affinity for
both receptor surfaces. The desired equilibrium binding distribu-
tion of attackers and guards shown in Fig. 3(b) may therefore take
a very long time to achieve, as the unbinding rates of the attackers
and guards on either surface decreases exponentially as the binding
free energy grows larger and more negative (favourable).

For example, monovalent binders with a binding free energy of
f (corresponding to an equilibrium association constant of Keq) have
an unbinding time scale that goes as the Arrhenius form

τmono
off
τ0 = e−βf

∝ Keq, (23)

where τ0 is a characteristic time scale. (This form assumes that
there is no appreciable activation barrier to unbinding.) The unbind-
ing time scale τmono

off grows longer for strong-binding (e.g., larger
negative βf and larger Keq) particles. For multivalent binders with
ligand/receptor bonds of strength f LR, the unbinding time scale
increases exponentially with the average number m̄ of bonds31

τmulti
off (m̄)

τ0
LR

=
e−βGNS

m̄
e−βm̄fLR ∝ (KLR

eq )
m̄

, (24)

where τ0
LR is the time scale (reciprocal rate) of ligand/receptor asso-

ciation when both entities are free in solution at 1M reference con-
centration, and βGNS contains all of the nonspecific interaction free
energy contributions between the multivalent particle and the target
surface as noted earlier in Eq. (2).

When the ligands on the attackers are strong-binding, as the
present strategy calls for, then τmulti

off (m̄) can potentially grow very
long compared to τmono

off for the guards. To pre-emptively circumvent
this kinetic barrier, we can envision the recipe depicted in Fig. 6 for
reaching an attacker and guard binding equilibrium:

1. Add monovalent guards.
2. Equilibrate.
3. Add multivalent attackers.
4. Equilibrate again.

By this route, the only exchange necessary is on the low-
receptor-density surface, where monovalent guards must unbind in
order to allow the more favorably binding multivalent attackers to
attach (Fig. 6, lower right). In the experimental design, the guard
Kguard

eq can be chosen to be a strong-binding yet kinetically reasonable
value, and then the concentration [Gu]∗ can be chosen via Eq. (20).
The guard binding constant will therefore set the time scale τoff that
must be waited for the final equilibrium to be reached.

C. Making a more tolerant design
In Eq. (18), we found that the tolerance of the Attacker and

Guard strategy grows exponentially larger by designing a larger
(more negative) free energy gap β∆G∗. Let us now examine in detail
how β∆G∗ depends on the attacker and guard parameters, assuming
that we always choose the optimal concentrations given by Eqs. (19)
and (20).

Equations (8) and (10) can be used to write two equivalent
equations for β∆G∗ by invoking the optimization condition found

in Eq. (16). These are (β∆G∗
)1 = βGattacker(N′

R) − βGguard(N′
R) and

(β∆G∗
)2 = βGguard(N′′

R ) − βGattacker(N′′
R ). Given that [(β∆G∗

)1 +
(β∆G∗

)2]/2 = β∆G∗ by definition, then we arrive at

β∆G∗
=

NL

2
ln(

qL(c′′R)
qL(c′R)

) − C∗guard(
NAa2

(c′′R − c′R)
2

). (25)

The factor of Avogadro’s number NA is necessary in the second
term, in order to properly convert the surface receptor molarities
c′R and c′′R into particle counts. In terms of experimental units, the
guard design parameter Cguard = ln (1 + [Gu]Kguard

eq ); this is numer-
ically identical to the statistical-mechanical definition in Eq. (9). For
further discussion on this equivalence, refer back to Eq. (C14) in
Appendix C.

Equation (25) has two distinct terms. The first is a positive
(unfavorable) contribution that depends on the attacker design
parameters Kattacker

eq [in the qL(cR) factors] and NL (in the prefactor).
The second term is a negative (favorable) contribution that depends
on the guard design Cguard.

These two terms can be analyzed in the context of Fig. 3(a).
Clearly, the only way to increase the size of the free energy gap β∆G∗

is to make the slope of the blue (guard) free energy curve more
negative. This corresponds to choosing a larger Cguard (by choos-
ing either a larger guard concentration or larger binding constant
Kguard

eq ). Doing so increases the potential effectiveness � of the recipe
in Eq. (17) and also the tolerance to attacker concentration variations
around the optimum value.

The attackers, on the other hand, have a less obvious influence
on the size of the gap. For extremely weak-binding ligands, then
the ratio qL(c′′R)/qL(c′R) in Eq. (25) approaches unity, causing that
term to vanish to zero so that β∆G∗ is more negative. However,
this limit is not experimentally realistic. On the other hand, making
the ligands stronger-binding saturates the ratio (qL(c′′R)/qL(c′R)) →
(c′′R /c′R) as noted previously. It is then the number of ligands NL
on the attacker that serves to multiply the logarithm of this ratio in
Eq. (25), suggesting that attackers with more ligands lead to a poten-
tially less effective and less tolerant design. We return to this point
shortly in more quantitative terms.

A beneficial side-effect of Eq. (25) is that the targeting effective-
ness � is not particularly sensitive to attacker concentration varia-
tions around the optimal value given by Eq. (19). This can be seen
in the numerical examples in Fig. 5 (upper panel). The attacker
concentration only shifts the binding free energy of the attackers
by a constant logarithmic factor ln[At] [appearing as ln zattacker in
Eq. (10)]. For example, shifting the attacker binding free energy
(red) curve in Fig. 3(a) downward by, say, 2kT, corresponds to
increasing the attacker particle concentration by a large factor of
e2

≈ 7.4. However, this will have little impact on the effectiveness
� since increasing β∆G(N′

R) by −2kT and β∆G(N′
R) by 2kT leads

both to still be very near β∆G∗ (assuming that β∆G∗ is already
somewhat large and negative). Results in the upper panel of Fig. 5
illustrate this point nicely. Varying the attacker molar concentra-
tion by a factor of 102 (i.e., from the red to the green dataset
in that figure) only corresponds to a change in effectiveness from
�∗ = 0.95 to 0.8.

J. Chem. Phys. 150, 184907 (2019); doi: 10.1063/1.5086277 150, 184907-9

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 6. Graphical depiction of a kinetically facile approach to reaching Attacker and Guard equilibrium in a hypothetical solution containing a low- and high-receptor-density
surface. Adding guards (upper left) to the solution and then equilibrating leads guards to bind to receptors on both surfaces (upper right). Attackers are then titrated into the
solution (lower right), and they outcompete for binding on the low-density surface due to their more favorable binding free energy at that receptor density (lower left).

By contrast, the targeting effectiveness is more sensitive to vari-
ations in guard concentration [Gu] as this factor goes into the slope
of the guard binding free energy in Fig. 3(a) (blue curve) as zguard in
Eq. (8). For example, in the lower panel of Fig. 5, changing the guard
concentration only by a factor of two (i.e., going from the red curve
to the green curve) corresponds to the same change in effectiveness
from�∗ = 0.95 to 0.8 enacted by changing the attacker concentration
by a factor of 100.

The number of receptors N′
R and N′′

R per lattice site on the two
surfaces also plays a role in β∆G∗. In particular, as the disparity
between N′

R and N′′
R grows larger, an attacker design with weaker

binding or lower concentration can be employed in order to obtain
a given targeting effectiveness �∗. Numerical examples of this are
given in Fig. 7, showing how [At]∗ varies as the receptor concen-
tration σ′R on the low-density surface grows closer to that on the
high-density surface (having σ′′R a2

= 10).

A qualitatively similar trend is observed for the selections of
ligand/receptor binding constant Kattacker

eq and targeting effectiveness
�∗ = 0.95 and 0.5. As σ′R grows closer to σ′′R , the attacker and guard
recipe demands a larger attacker binding constant or bulk concen-
tration. When lower targeting effectiveness is sought, then lower
values for these two parameters are called for. Figure 7 also shows
how the optimal guard concentration [Gu]∗ varies comparatively lit-
tle with σ′R at fixed σ′′R , assuming a moderate-binding 1/Kguard

eq = 10
µM.

A somewhat counter-intuitive observation in Eq. (25) is that
increasing the number of ligands NL on the attackers actually leads
to a smaller free energy gap. Looking at Fig. 3(a), a larger β∆G∗

is obtained when the attacker free energy (red curve) approaches
behaving like a horizontal line between N′

R and N′′
R . However,

increasing NL causes the attacker free energy to exhibit a more neg-
ative gradient for larger values of NR, as demonstrated in Fig. 1(b).
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FIG. 7. Logarithm of the optimal attacker concentration [At]∗ as a function of the number of receptors per attacker footprint, σ′Ra2, on the low-density surface. The high-density
surface is fixed at σ′′R a2 = 10. Attackers have NL = 4 ligands, diameter a = 50 nm, and an equilibrium binding height hbind = 15 nm. Results for three choices of ligand/receptor
dissociation constants 1/Kattacker

eq in the micromolar range are given (blue, green, and red). Black curves are the logarithm of the optimal guard concentration [Gu]∗ vs σ′Ra2

when their dissociation constant is 1/Kguard
eq = 10 µM and when attackers also have 1/Kattacker

eq = 10 µM. For all datasets, solid lines are for targeting effectiveness
�∗ = 0.95, and dashed lines are for 0.5.

Larger attacker valence therefore limits the targeting effectiveness of
the attacker/guard recipe, again in contrast to standard multivalent
reasoning. On the other hand, choosing small NL has kinetic conse-
quences as attackers with fewer ligands will exhibit a slower rate of
surface adsorption.

Figure 8 presents numerical results for how the optimal con-
centrations [At]∗ and [Gu]∗ vary with NL. Examining Eq. (19) and

taking the strong-ligand limit where (qL(c′′R)/qL(c′R)) → (c′′R /c′R)
yields a scaling of

ln [At]∗ ∝ −NL ln
⎛

⎝

Kattacker
eq

√
c′Rc′′R

hbind

⎞

⎠
+

NL

2
(

c′′R + c′R
c′′R − c′R

) ln(
c′′R
c′R

).

(26)

FIG. 8. Logarithm of the optimal attacker
(top panel) and guard (bottom panel)
concentrations as a function of the num-
ber of ligands NL on the attackers.
Attackers have diameter a = 50 nm
and an equilibrium binding height hbind
= 15 nm. The low- and high-receptor-
density surfaces have σ′Ra2 = 5 and
σ′′R a2 = 10 receptors per attacker foot-
print a2, respectively. Results are pre-
sented for three choices of micromolar-
range dissociation constants 1/Kattacker

eq

and 1/Kguard
eq (red, green, and blue) and

for two choices of targeting effective-
ness �∗: 0.95 (solid) and 0.5 (dashed).
For guard calculations in lower panel,
1/Kattacker

eq = 10 µM.
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The first term in this expression tends to dominate in Fig. 8 (upper
panel), giving rise to the linear trends. As intuition would suggest,
adding more ligands with the same binding strength Kattacker

eq to
the attackers leads to a lower optimal solution concentration [At]∗.
Increasing the intended targeting effectiveness �∗ just causes a uni-
form upward shift in the optimal concentration [At]∗. However,
the optimal guard concentration [Gu]∗ changes little with NL in
Fig. 8 (lower panel). In the strong-ligand limit for the attackers, the
optimal guard concentration in Eq. (20) scales as

ln [Gu]∗ ∝
NL

a2(c′′R − c′R)
ln(

c′′R
c′R

). (27)

This lacks the strong binding constant dependence like the attack-
ers.

D. Complications to effective targeting
and to the present theory

It has been assumed that the attackers are large enough when
bound so as to sterically exclude all receptors in their surface “foot-
print” of area a2 from binding to any guard particles. This might
be difficult to achieve in the experiment; guard particles might
slip beneath the bound attackers to occupy some of the receptors,
thereby reducing the statistical average number of attackers bound
on the target low-density surface. The quantitative result in Fig. 3(b)
would be a lowering of the red curve and a raising of the blue curve
in the low-receptor range (i.e., on the surface(s) where attackers
dominate). The overall targeting effectiveness � by Eq. (14)] will be
accordingly reduced. In general, the more easily that guards can pen-
etrate beneath bound attackers, the lower the resulting effectiveness
of the strategy will be. One possibility is to add bulky groups to the
guards so that they are less likely to invade attacker-occupied surface
territory.

In addition to ligand-receptor interactions, it was noted in
Eq. (2) that multivalent particles can also have a nonspecific interac-
tion free energy βGNS with their target surface. However, as demon-
strated in Eq. (5), any such contribution just becomes an additive
factor in the multivalent binding free energy. Therefore, the only
influence of βGNS is to shift the attacker binding free energy [e.g.,
red curve, Fig. 3(a)] by a constant factor. This will quantitatively shift
the predicted [At]∗ upward if βGNS is positive or downward if βGNS
is negative. However, it will not affect the possibility of selectively
targeting the low-density surface.

Early in our discussion, we made the approximation that the
attacker binding free energy follows the form of Eq. (5) so that we
could proceed analytically. This expression over-estimates the bind-
ing free energy for a multivalent particle/surface interaction in which
the number of receptors within binding range of the particle is near
or less than the number of ligands on the particle, particularly if
the ligands are strong-binding. However, the molecular recipe aris-
ing out of our discussion is more selective when the multivalent
attackers have few ligands (as opposed to many). In cases where
the number of receptors within the binding range of the attacker
is small relative to the number of ligands on the particle, then the
true binding free energy will be less favorable (less negative) than
predicted by Eq. (5). The predicted optimal attacker concentration
[At]∗ will therefore be underestimated by Eq. (19) for the system at

hand. This quantitative difference does not prevent selective target-
ing of the low-receptor-density surface nor does it qualitatively alter
the targeting recipe presented here.

V. CONCLUSIONS AND EXPERIMENTAL
IMPLEMENTATION

Multivalent particles cannot, on their own, selectively bind
to a surface with a low density of receptors while not binding to
one with a higher density of the same receptors in the same sys-
tem. To address this challenge, we have defined a strategy using
competitive binding of two particle species. The first species, called
“guards,” are monovalent particles that bind equally well to any
receptor on any surface. A second species, called “attackers,” is mul-
tivalent particles designed to outcompete the guards for binding on
the low-receptor-density surface but not on the surface with higher
receptor density. At equilibrium, therefore, the attackers occupy
the low-density surface, while the guards occupy the high-density
surface.

An optimal targeting recipe and several guidelines have been
derived and deduced in our discussion that can be directly employed
in the experiment. These are now summarized as follows:

● The guards are small (receptor-sized) monovalent particles,
with a receptor association constant of Kguard

eq and a solution
concentration of [Gu]. These particles are added first in the
system and allowed to bind and equilibrate on both receptor
surfaces.

● The attackers are larger multivalent particles at a solution
concentration of [At], each having NL ligands that can reach
multiple receptors when the host multivalent particle is at
a given fixed surface position. Their ligand-receptor associ-
ation constant is Kattacker

eq . These particles are added second
into the system. The attackers will, by design, outcompete
the guards for binding on the low-receptor-density surface
but not the high-receptor-density surface.

● Equations (19) and (20) define the optimal attacker and
guard solution concentrations, given their chosen individ-
ual ligand-receptor binding constants Kattacker

eq and Kguard
eq ,

the attacker valence NL, and the surface receptor molarities
c′R and c′′R on the low- and high-receptor-density surfaces,
respectively. These equations are employed by inputting a
desired “targeting effectiveness” parameter �∗ between 1
(perfect attacker binding selectivity for the low-receptor-
density surface) and 0 (no binding selectivity).

● More effective targeting (�∗ approaching 1) requires
stronger-binding attackers and guards, at larger solution
concentrations. This is contrary to standard multivalent
targeting. However, stronger-binding guards also lead to
longer equilibration time on the low-density surface when
the attackers are added. The larger the difference between
the receptor densities on the two surfaces, the weaker the
attacker, and guard binding strengths/concentrations can be
in order to achieve a given targeting effectiveness.

● More effective targeting occurs when the number of ligands
on the attackers is small. However, multivalent particles with
fewer ligands will have a longer time scale for forming bonds
with surface receptors.
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The best approach is therefore to use strong-binding guards that
still have a reasonable unbinding time scale, and comparably strong-
binding attackers that have several ligands. The best design can
be identified by exploring a range of targeting effectiveness values
�∗ in Eqs. (19) and (20) to find arrive at a guard/attacker motif
that is kinetically and thermodynamically suitable. After putting
the guards into the system at a concentration of [Gu]∗ based on
Eq. (20), attackers can be titrated in until they are near a concen-
tration of [At]∗ given by Eq. (19). Values of [At] > [At]∗ may work
equally well, in order to overcome additional nonspecific binding
free energy contributions between the attackers and the target sur-
face; the effectiveness of targeting does not depend strongly on [At]
above [At]∗.

A prime application for this targeting strategy is to selectively
image cell surfaces, or regions of cell surfaces, with locally low recep-
tor density compared to other cell surfaces in the same system in
vitro. This could be done by attaching a fluorescent probe to the
attackers, but not the guards. Examples of promising structures that
could act as attackers include ligand-coated nanoparticles, function-
alized vesicles, DNA origami/dendrimer constructs, star polymers,
or modified viruses. The binding equilibrium constants of the guards
and attackers could be tuned by a DNA approach, e.g., like in DNA-
PAINT.73 The attacker and guard recipe could also be used to selec-
tively sequester or aggregate a population of nanoscopic entities in
solution with a low receptor density, with attackers acting as the
aggregation/sequestration agent.
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APPENDIX A: MULTIVALENT ATTACKER AND
MONOVALENT GUARD BINDING PROBABILITIES

The partition function for a surface lattice site is given, based
on Eqs. (8) and (10), as

Q(NR) = (1 + zguarde−βfguard)
NR

+ zattacker(1 + NRe−βfattacker)
NL

= Qguard(NR) + Qattacker(NR). (A1)

The first term in Q(NR) represents all possible guard binding states,
and the second term is for all attacker binding states. The state
in which the lattice site has neither an attacker nor any guards
bound, having a weight of unity, is included in the first term of
Q(NR). This partition function also includes the state in which an
attacker is within the surface lattice site but has no ligands bound to
receptors.

The probability that a surface lattice site is occupied by an
attacker is just the ratio of Qattacker(NR) to Q(NR) for a given number
of receptors NR in the lattice site

Pattacker
b (NR) =

Qattacker(NR)

Qattacker(NR) + Qguard(NR)

=
e−βGattacker(NR)

e−βGattacker(NR) + e−βGguard(NR) . (A2)

By defining the quantity

β∆G(NR) = βGattacker(NR) − βGguard(NR), (A3)

then Pattacker
b (NR) reduces to the simple form

Pattacker
b (NR) =

e−β∆G(NR)

1 + e−β∆G(NR) , (A4)

as shown in Eq. (11).
The probability that a single receptor on the surface is occupied

by a monovalent guard is found by

Pguard
b (NR) =

1
NR

d ln Q(NR)

dβµguard
, (A5)

where βµguard = ln zguard is the chemical potential of the guards in
solution. This leads to

Pguard
b (NR) =

⎛

⎝

zguarde−βfguard

1 + zguarde−βfguard

⎞

⎠
(1 − Pattacker

b (NR)), (A6)

shown as Eq. (13) in the main text.

APPENDIX B: OPTIMAL TARGETING EFFECTIVENESS
AND TOLERANCE

The targeting effectiveness is defined as

� ≡ Pattacker
b (N′

R) − Pattacker
b (N′′

R ), (B1)

where

Pattacker
b (NR) =

e−β∆G(NR)

1 + e−β∆G(NR) . (B2)

The free energy difference β∆G(NR) is

β∆G(NR) = βGattacker(NR) − βGguard(NR)

= −NL ln [qL(NR)] − ln zattacker + NRCguard, (B3)

where
qL(NR) = (1 + NRe−βfattacker) (B4)

is the partition function for one ligand on the attacker given NR
possible receptors to attach to nearby.

Choosing the parameter Cguard effectively sets the guard bind-
ing free energy and fugacity in solution. In the experiment, it is
also reasonable to assert that the number of ligands NL and lig-
and/receptor binding free energy f attacker have been set based on
the chemical design of the attackers. Thus, the remaining free
variable to optimize is the attacker fugacity zattacker—that is, the
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solution concentration [At] of attackers that maximizes the targeting
effectiveness �.

The attacker fugacity yielding the largest possible effectiveness
� is obtained where

d�
d ln zattacker

=
d(β∆G(N′′

R ))

d ln zattacker

e−β∆G(N′′
R )

(1 + e−β∆G(N′′
R ))2

−
d(β∆G(N′

R))

d ln zattacker

e−β∆G(N′
R)

(1 + e−β∆G(N′
R))2 = 0. (B5)

Inspecting Eq. (B3), the two derivatives of β∆G(NR) with respect to
ln zattacker are identical and independent of NR. Thus, Eq. (B5) is zero
when either β∆G(N′

R) = β∆G(N′′
R ) or β∆G(N′

R) = −β∆G(N′′
R ). The

first solution yields an effectiveness of zero via Eq. (B1), which is
obviously not the solution we want. The second solution,

β∆G(N′
R) = −β∆G(N′′

R ) ≡ β∆G∗, (B6)

inserted into Eq. (B1) yields the optimal effectiveness

�∗ ≡
e−β∆G∗

− 1
e−β∆G∗ + 1

. (B7)

This is given as Eq. (17) in the main text.
To ensure that β∆G(N′

R) = −β∆G(N′′
R ) corresponds to a max-

imum in Eq. (B1), we check the sign of the second derivative of the
function � with respect to ln zattacker at β∆G(N′

R) = −β∆G(N′′
R )

= β∆G∗,

d2�
[d ln zattacker]

2 = 2e−β∆G∗
⎡
⎢
⎢
⎢
⎣

1 − e−β∆G∗

(1 + e−β∆G∗)
3

⎤
⎥
⎥
⎥
⎦

. (B8)

The second derivative is always negative, and therefore the condition
β∆G(N′

R) = −β∆G(N′′
R ) always corresponds to a maximum, as long

as β∆G∗
< 0. This is true for any design which selectively targets

the attackers to the low-receptor-density surface. When β∆G∗
≪ 0,

then

− (
d2�

[d ln zattacker]
2 )

−1

≈
1
2

e−β∆G∗
≡ Design Tolerance. (B9)

This illustrates how designing the attackers and guards to have a
more negative β∆G∗ causes the design to be more robust/tolerant
to variations in molecular construction and concentration.

APPENDIX C: OPTIMAL ATTACKER AND GUARD
DESIGN PARAMETERS

The binding free energies for guards [βGguard(NR)] and attack-
ers [βGattacker(NR)] are given by Eqs. (8) and (10), respectively.
Guards are defined by the choice of the parameter Cguard, and attack-
ers are given a predefined valence NL and ligand/receptor binding
free energy f attacker. In Appendix B, we showed that the choice of
attacker fugacity zattacker that maximizes the effectiveness � cor-
responds to when βGattacker(N′

R) − βGguard(N′
R) = βGguard(N′′

R )

− βGattacker(N′′
R ). With Eqs. (8) and (10), this condition yields the

equation

ln zattacker =
(N′

R + N′′
R )

2
Cguard −

NL

2
ln [qL(N′

R)qL(N′′
R )], (C1)

where qL(NR) is given by Eq. (B4). Next, the relation β∆G∗

= − ln (
1+�∗
1−�∗ ) = βGattacker(N′

R) − βGguard(N′
R) from Eq. (17) allows

us to write another equation with Eqs. (8) and (10),

− ln(
1 + �∗

1 − �∗
) = −NL ln [qL(N′

R)] − ln zattacker + N′
RCguard. (C2)

Isolating ln zattacker in this equation and then putting it back into
Eq. (C1) allows us to solve for the optimal Cguard given a choice of
targeting effectiveness �∗,

C∗guard = (
2

N′′
R −N′

R
) ln

⎡
⎢
⎢
⎢
⎢
⎣

(
qL(N′′

R )

qL(N′
R)

)

NL
2

(
1 + �∗

1 − �∗
)

⎤
⎥
⎥
⎥
⎥
⎦

. (C3)

Putting this back into Eq. (C1) then yields

ln z∗attacker = (
N′′

R + N′
R

N′′
R −N′

R
) ln

⎡
⎢
⎢
⎢
⎢
⎣

(
qL(N′′

R )

qL(N′
R)

)

NL
2

(
1 + �∗

1 − �∗
)

⎤
⎥
⎥
⎥
⎥
⎦

−
NL

2
ln (qL(N′

R)qL(N′′
R )). (C4)

Equations (C3) and (C4) can be readily converted into a chem-
ical equilibrium notation. First, all instances of N′

R and N′′
R can be

identically expressed in terms of average surface receptor densities
σ′R and σ′′R . (Recall that the receptor density σR is related to NR by
NR = a2σR; the length a is the diameter of one attacker particle, and
a2 therefore measures the area over which the particle can bind to
receptors on the surface.) This substitution leads to

C∗guard =
⎡
⎢
⎢
⎢
⎣

2
a2(σ′′R − σ′R)

⎤
⎥
⎥
⎥
⎦

ln
⎡
⎢
⎢
⎢
⎢
⎣

(
qL(σ′′R)
qL(σ′R)

)

NL
2

(
1 + �∗

1 − �∗
)

⎤
⎥
⎥
⎥
⎥
⎦

,

(C5)

ln z∗attacker = (
σ′′R + σ′R
σ′′R − σ′R

) ln
⎡
⎢
⎢
⎢
⎢
⎣

(
qL(σ′′R)
qL(σ′R)

)

NL
2

(
1 + �∗

1 − �∗
)

⎤
⎥
⎥
⎥
⎥
⎦

−
NL

2
ln (qL(σ′R)qL(σ′′R)), (C6)

where
qL(σR) = (1 + a2σRe−βfattacker). (C7)

The remaining challenge is to express the following quantities in
terms of the receptor binding constant Kattacker

eq for ligands on the
attacker, the guard binding constant Kguard

eq , and guard/attacker
molar concentrations [Gu] and [At],

C∗guard = ln (1 + zguarde−βfguard)
∗

, (C8)

ln z∗attacker (C9)

qL(σR) = (1 + a2σRe−βfattacker). (C10)

This process is now described in detail.
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Recall that the equilibrium constant Keq for two binding entities
“B” and “R,” in a hypothetical solution, is defined as

Keq =
[BR]
[B][R]

. (C11)

Here, [BR] is the equilibrium concentration of B bound to R, while
[B] and [R] are the equilibrium concentrations of unbound B and R.
Let us suppose that species R are receptors on a surface, while species
B are binders in solution above the surface. If we go to the grand-
canonical limit where the number of B particles is far in excess of
the number of R particles, then [B] ≈ [B]○, where [B]○ is the (fixed)
solution concentration of B regardless of how many are bound to R.
This leads to

Keq =
1

[B]○
(
[BR]
[R]

) =
1

[B]○
(

NR,bound

NR,free
), (C12)

where NR ,bound and NR ,free are the number of receptors that are
bound to B and unbound, respectively. The number of unbound
receptors at equilibrium is given by NR ,free = NR − NR ,bound, where
NR is the total number of receptors on the surface. This is directly
related to the equilibrium binding free energy βf of B to R by the
statistical mechanical relationship

(
NR,bound

NR −NR,bound
) = z([B]○)e−βf , (C13)

where z([B]○) is the fugacity corresponding to the solution con-
centration [B]○. Bringing the concentration factor [B]○ onto the
left-hand side of Eq. (C12) yields

Keq[B]○ = z([B]○)e−βf . (C14)

This is the direct relationship between the experimental quantity
Keq[B]○ and the statistical thermodynamic quantity z([B]○)e−βf .

Using Eq. (C14), we can immediately convert zguarde−βfguard in
Eq. (C8) into experimental units for the guards

zguarde−βfguard = [Gu]Kguard
eq , (C15)

where [Gu] is the molar solution concentration of the guards.
Next, the fugacity zattacker of the attackers is related to their

molar solution concentration [At] via Eq. (1)

zattacker = [At]NAhbinda2, (C16)

where hbinda2 is the “localization volume” for placing the ligands of
the particle in contact with the surface receptors.

Turning lastly to qL(σR), the quantity σRa2 acts as a two-
dimensional receptor fugacity and exp (−βfattacker) is the bind-
ing strength term. Thus, we can again invoke Eq. (C14) to write
Eq. (C10) as

qL([R]eff) = (1 + [R]effe−βfattacker), (C17)

where [R]eff is the effective molarity of receptors on the surface, as
seen by ligands on bound attackers. The effective molarities on the
low- and high-density surfaces are related to the surface (number)

densities σ′R and σ′′R via the equilibrium binding distance hbind of the
attacker

[R]′eff =
σ′R

NAhbind
=

c′R
hbind

, (C18)

[R]′′eff =
σ′′R

NAhbind
=

c′′R
hbind

. (C19)

For notational clarity, the molar surface receptor density cR = σR/NA
has been defined, having dimensions of moles of receptors per unit
surface area. Re-expressing Eq. (C17) in terms of cR and hbind yields

qL(cR) =
⎛

⎝
1 +

cRKattacker
eq

hbind

⎞

⎠
. (C20)

These transformations enable us to write the expressions for the
optimal guard design C∗guard [Eq. (C5)] and attacker fugacity z∗attacker
[Eq. (C6)] in terms of experimental quantities

ln [At]∗ =(
c′′R + c′R
c′′R − c′R

) ln
⎡
⎢
⎢
⎢
⎢
⎣

(
qL(c′′R)
qL(c′R)

)

NL
2

(
1 + �∗

1 − �∗
)

⎤
⎥
⎥
⎥
⎥
⎦

−
NL

2
ln (qL(c′R)qL(c′′R)) − ln (NAhbinda2

), (C21)

ln (1 + [Gu]∗Kguard
eq ) =

⎡
⎢
⎢
⎢
⎣

2
NAa2(c′′R − c′R)

⎤
⎥
⎥
⎥
⎦

× ln
⎡
⎢
⎢
⎢
⎢
⎣

(
qL(c′′R)
qL(c′R)

)

NL
2

(
1 + �∗

1 − �∗
)

⎤
⎥
⎥
⎥
⎥
⎦

, (C22)

where qL(cR) is calculated by Eq. (C20).
In this form, we have assumed that the ligand/receptor binding

constants Kguard
eq and Kattacker

eq , as well as the number of ligands NL
on the attackers, are set based on the chemical construction of the
attackers and guards. Achieving the optimum targeting effectiveness
is thus left to tuning of the attacker and guard solution concentra-
tions to the optimal values [At]∗ and [Gu]∗. The explicit equations
for these two quantities are obtained by isolating [At]∗ and [Gu]∗ in
Eqs. (C21) and (C22). This is done to yield Eqs. (19) and (20) in the
main text.
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