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Abstract

Bayesian learning techniques have recently garnered significant attention in the system identification community. Originally
introduced for low variance estimation of linear impulse response models, the concept has since been extended to the nonlinear
setting for Volterra series estimation in the time domain. In this paper, we approach the estimation of nonlinear systems
from a frequency domain perspective, where the Volterra series has a representation comprised of Generalized Frequency
Response Functions (GFRFs). Inspired by techniques developed for the linear frequency domain case, the GFRFs are modeled
as real/complex Gaussian processes with prior covariances related to the time domain characteristics of the corresponding
Volterra series. A Gaussian process regression method is developed for the case of periodic excitations, and numerical examples
demonstrate the efficacy of the proposed method, as well as its advantage over time domain methods in the case of band-limited
excitations.
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1 Introduction

For the identification of nonlinear systems, the Volterra
series can be useful as a nonparametric model structure
capable of representing any fading-memory system [15].
In the time domain, the truncated Volterra series can
be viewed as a generalization of the linear finite im-

? This paper was not presented at any IFAC meeting. Cor-
responding author J. Stoddard.

Email addresses: Jeremy.Stoddard@uon.edu.au (Jeremy
Stoddard), georgios.birpoutsoukis@uclouvain.be
(Georgios Birpoutsoukis), Johan.Schoukens@vub.ac.be
(Johan Schoukens), james.welsh@newcastle.edu.au
(James Welsh).

pulse response (FIR) model, consisting of a set of multi-
dimensional impulse responses or ‘Volterra kernels’. The
series can also be expressed in a frequency domain con-
text, where several competing representations can be
found in the literature [14]. The most natural represen-
tation, and the one considered in this paper, is the gen-
eralized frequency response functions (GFRFs), which
are defined as the multidimensional Fourier transforms
of the corresponding Volterra kernels in the time do-
main series [8]. This representation leads to a series of
complex-valued frequency domain functions of increas-
ing dimension.

The estimation of GFRFs has been addressed previ-
ously in the literature. An interpolation method for sec-



ond order kernels was developed in [11], which requires
multiple input realizations to give an overdetermined
problem. Other studies utilized excitations with spe-
cially placed harmonics, but such methods become pro-
hibitively complex for high nonlinear orders, and there
is a limit to the number of GFRF elements which can
be estimated [3],[6]. Alternatively, full GFRF estimates
can be obtained from arbitrary excitation by first iden-
tifying the time domain Volterra kernels and then trans-
forming the latter into the frequency domain. In the case
where a limited frequency band is of interest, however,
identification directly in the frequency domain is more
beneficial with respect to the number of estimated pa-
rameters, as will be highlighted in this paper.

Gaussian process regression (GPR) was originally con-
sidered for the identification of linear FIR systems in the
time domain [12], where the impulse response is modeled
as a zero mean Gaussian process with a prior covariance
designed to impose smoothness and exponential decay
on the estimated coefficients. For the problem of Volterra
series estimation, an extension to the method was pro-
posed in [2] and [1]. The extension relies on the design
of new prior covariance structures which are capable of
imposing smoothness and decay along the entire (hy-
per)surface of the Volterra kernels. Earlier related work
can also be found in [7].

In the frequency domain, only the linear theory has
been fully developed for GPR. Bayesian estimation of
transfer functions and their corresponding transients
was achieved in [10], by modeling both processes as
real/complex Gaussian variables. The prior covariance
of the transfer function was constructed by transforming
common covariance structures already used in the time
domain for impulse response estimation. For the special
case of parallel Hammerstein systems, an extension to
the linear theory has also been proposed in [16].

The contribution of this paper is to develop a frequency
domain Volterra series identification method using
GPR, and thus expand the capabilities of nonpara-
metric Bayesian identification. By drawing on concepts
introduced in [2] and [10], regularized GFRF estimates
can be obtained up to an arbitrary order using a single
multisine input excitation, even though the estimation
problem is severely rank deficient. For cases where only
a limited frequency band is of interest, the proposed
method presents a clear advantage over indirect time
domain GPR, much like the linear case in [10].

The paper is organized as follows. Section 2 provides
the preliminary definitions necessary to formulate the
estimation problem. In Section 3, the GPR method is
developed. Some numerical examples are presented in
Section 4 before the paper is concluded.

2 Preliminaries and Problem Formulation

A brief summary of the relevant concepts from Volterra
theory and real/complex Gaussian processes is presented
here, followed by a formulation of the identification prob-
lem to be considered in this paper.

2.1 Volterra series and GFRFs

We consider the nonlinear systems whose output can be
described by the discrete time Volterra series given by,

y0(t) =

M∑
m=1

[
nm−1∑
τ1=0

. . .

nm−1∑
τm=0

hm(τ1, . . . , τm)

τm∏
τ=τ1

u(t−τ)

]
,

(1)
where y0 is the Volterra output, u is the applied input,
hm(τ1, . . . , τm) is the mth order Volterra kernel, nm is
the memory length of hm, and τj is the jth lag variable
for the kernel. The subscript m gives the dimension of
the kernels up to the maximum degree, M .

The representation can be expressed in the frequency
domain via Discrete Fourier Transforms (DFTs). ForN -

sample time domain signals {u(t)}N−1
t=0 and {y0(t)}N−1

t=0 ,
the corresponding N -point input and output DFT spec-
tra are labelled U(k) and Y 0(k) respectively, and their
relationship in steady state is described by [8],

Y 0(k) =

M∑
m=1

Ym(k),

Ym(k) =
∑

k1+...+km=k

Hm(k1, . . . , km)

m∏
i=1

U(ki), (2)

where Hm(k1, . . . , km) is labelled the mth order GFRF,
given by a multidimensional DFT of the mth order time
domain kernel, hm, i.e.

Hm(k1, . . . , km) =

nm−1∑
τ1=0

. . .

nm−1∑
τm=0

hm(τ1, . . . , τm)

× e
−j2πk1τ1

N · · · e
−j2πkmτm

N .

(3)

2.2 Real/complex normal distributions

In order to express the distribution of Gaussian random
vectors that contain both real and complex entries, the
complex normal distribution is not sufficient, since the
associated augmented covariance matrix will be singu-
lar [10]. Consequently, a hybrid real/complex Gaussian
(RCG) distribution framework was developed in [10],
where the reader is directed for a thorough treatment of
RCG vectors and their properties. The purpose of this
section is to define the notation adopted in this paper.
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Definition 1 (RCG vector) A random vector

X =
[
XRT XCT ]T , XR ∈ Rnr , XC ∈ Cnc (4)

is said to be a RCG vector if [XRT RXCT IXCT ] is
Gaussian distributed, where T denotes the transpose op-
erator, and R and I give the real and imaginary parts
respectively.

Notation 2 (Augmented vector) For a RCG vector,
X, the augmented vector is defined as

X̃ = [XRT XCT XCH ]T , (5)

where H denotes the Hermitian transpose.

Notation 3 (Augmented mean and covariance)
A RCG vector X has a real/complex normal distribution
denoted by

X ∼ RCN (µ,Σ),

where µ = E{X̃} is the augmented mean, and Σ =

E{(X̃ − µ)(X̃ − µ)H} is the augmented covariance. The
latter can be decomposed using covariance functions R,
Q, K, and relation function C, as

Σ =


R Q Q

QH K C

QH CH K

 (6)

where R = E{(XR −E{XR})(XR −E{XR})T },
Q = E{(XR −E{XR})(XC −E{XC})H},
K = E{(XC −E{XC})(XC −E{XC})H},
C = E{(XC −E{XC})(XC −E{XC})T }.

2.3 Problem formulation

The nonlinear system identification problem is formu-
lated in the frequency domain under steady-state condi-
tions, using the following assumptions and notation:

Assumption 4 The measured output, {y(t)}N−1
t=0 , is a

Volterra output corrupted by white noise, i.e.

y(t) = y0(t) + v(t); v(t) ∼ N (0, σ2
v), (7)

where y0(t) is the noise-free Volterra output from (1).

Assumption 5 (Steady-state) The measured input

{u(t)}N−1
t=0 is one period of an N-periodic sequence which

has been applied to the system for sufficiently long such
that the system is in steady-state with a corresponding
N-periodic output response, {y0(t)}N−1

t=0 , whose spectrum
can be given by (2).

Notation 6 The set of DFT indices, k, for which the
input spectrum, {U(k) : k ∈ Z, 0 ≤ k ≤ N/2}, is non-
zero is denoted by ku. Likewise, the set of indices for
which the output spectrum, {Y (k) : k ∈ Z, 0 ≤ k ≤
N/2}, is non-zero (due to input excitation) is denoted by
ky (see [9] for the precise definition of this set for a given
U(k) and M).

Notation 7 The frequencies of interest for estimation
are given by the set ke = −ku ∪ ku.

Given Assumptions 4-5, the goal is to estimate the
GFRF elements, Hm(k1, . . . , km) ∀k1, . . . , km ∈ ke and
m = 1, . . . ,M .

3 Gaussian Process Regression for GFRFs

Given the assumptions and problem formulation de-
scribed in Section 2.3, a GPR method is developed here.

3.1 GFRFs as RCG vectors

Definition 8 The m-dimensional array containing
Hm(k1, . . . , km), ∀k1, . . . , km ∈ ke has a real/complex
vectorized form (shown in (4)) which will be denoted by

HVm =
[
HR
m

T
HC
m

T ]T
, (8)

where HR
m contains the strictly real components.

Unlike in [10], where the linear frequency functions are
strictly real only at 0 frequency, higher order GFRFs
originating from symmetric Volterra kernels present a
larger set of real components. Since we are required to
express the vectorized GFRFs in the form dictated by
(8), it is important to identify the location of all strictly
real elements, as addressed in the following theorem.

Theorem 9 Consider a symmetric mth order Volterra
kernel, hm(τ1, . . . , τm), as defined in (1), and its corre-
sponding GFRF, Hm(k1, . . . , km), as defined in (3). The
strictly real components of Hm are defined by the set of
DFT indices,

kR
m = {k1, . . . , km ∈ Z : (9)∑
I∈Sm(X)

sin

(
2π

N
(k1τi1 + . . .+ kmτim)

)
= 0 ∀τi ∈ N},

where I = [i1, . . . , im], and Sm(X) denotes the set of all
permutations of the vector X = [1, 2, . . . ,m].

PROOF. Taking the imaginary part of (3),

I{Hm(k1, . . . , km)} =

nm−1∑
τ1=0

. . .

nm−1∑
τm=0

hm(τ1, . . . , τm)·

3



sin(
2π

N
(k1τ1 + . . .+ kmτm)). (10)

For a symmetric kernel hm, the DFT transformation is
independent of the ordering of the lags, τ1, . . . , τm, so

I{Hm(k1, . . . , km)}

=
1

m!

∑
I∈Sm(X)

[
nm−1∑
τ1=0

. . .

nm−1∑
τm=0

hm(τi1 , . . . , τim)

sin

(
2π

N
(k1τi1 + . . .+ kmτim)

)]

=
1

m!

nm−1∑
τ1=0

. . .

nm−1∑
τm=0

hm(τ1, . . . , τm)

∑
I∈Sm(X)

sin

(
2π

N
(k1τi1 + . . .+ kmτim)

)
.

Thus, for an arbitrary symmetric hm, the strictly real
elements of Hm will occur when

∑
I∈Sm(X)

sin(
2π

N
(k1τi1 + . . .+ kmτim)) = 0 ∀τi ∈ N 2

To explicitly locate the strictly real elements within the
estimation set, ke, the result in Theorem 9 can be elab-
orated using the antisymmetry of sin(), as shown below
for the first two nonlinear orders.

kR
1 ={k1 ∈ ke : k1 = 0}, (11)

kR
2 ={k1, k2 ∈ ke : k1 = −k2}. (12)

3.2 The Gaussian assumption

The following assumptions, which are consistent with
the assumptions made in [2] and [10], are placed on the
vectorized GFRF quantities,HVm, and will be used in the
sequel to derive the output spectrum distribution and
define the GPR procedure for GFRF estimation.

Assumption 10 HVm is real/complex normally dis-
tributed with zero mean and augmented covariance Σm,
i.e.

HVm ∼ RCN (0,Σm), (13)

where Σm is constructed from the covariance and relation
functions Rm, Qm, Km and Cm as in (6).

Assumption 11 Two (real/complex vectorized) Gaus-
sian GFRFs of different orders are independent, i.e. HVi
and HVj are independent for i 6= j.

3.3 Prior covariance design

For multidimensional Volterra kernels, covariance func-
tions have already been constructed in the time domain
[2], [1], by applying a diagonal/correlated (DC) struc-
ture [5] along multiple perpendicular regularizing direc-
tions. The resulting covariance matrices are guaranteed
to be valid and produce stable kernel realizations. Tak-
ing a similar approach to [10], we note that there exists a
linear transformation between the vectorized kernel hVm
and its frequency domain counterpart, HVm, which will
be denoted Fm, i.e.

HVm =

[
HR
m

HC
m

]
=

[
FR
m

FC
m

]
hVm = Fmh

V
m, (14)

where FR
m produces HR

m and FC
m produces HC

m. While
it is clear from (3) that Fm should contain appropriate
products of exponentials, obtaining the explicit form for
Fm and its submatrices requires the following theorem.

Theorem 12 Consider the m-dimensional array
wm ∈ RN×...×N , and its m-dimensional DFT, Wm ∈
CN×...×N . Consider also their vectorized forms,
wVm ∈ RNm and WVm ∈ CNm , where vectorization is
performed such that

wVm =
[
wm(1, 1, . . . , 1), wm(2, 1, . . . , 1), . . . ,

wm(N, 1, . . . , 1), wm(1, 2, . . . , 1), . . . , wm(N,N, . . . , N)
]
,

and likewise for WVm. The vectorized arrays are related
by,

WVm = Ψmw
V
m, (15)

where Ψm can be obtained from the recursive definition,

Ψp = Ψp−1 ⊗Ψ1, p = 2, 3, . . . ,m (16)

and where Ψ1 is the N ×N DFT matrix.

PROOF. For m = 1, by definition we have:

WV1 = Ψ1w
V
1 (17)

For m = 2, the DFT is applied in each dimension:

W2 = Ψ1w2ΨT
1 (18)

= [Ψ1 ⊗Ψ1]︸ ︷︷ ︸
Ψ2

wV2 , (19)

by the well known property of kronecker products. The
proof for m > 2 exploits the same property, but requires
the use of repeated tensor matricizations on wm. 2
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Assuming hVm is vectorized as described in Theorem 12,
we can form Fm by first computing the matrix Ψm, then
rearranging and removing rows to correspond to a de-
sired vectorization of HVm which satisfies the required
form in (8).

The transformation can now be used to convert time
domain covariance functions to the frequency domain,

Rm = E{HR
mH

R
m

T } = FR
mE{hVmhVm

T }FR
m

T
= FR

mPmF
R
m

T

Qm = E{HR
mH

C
m

H} = FR
mE{hVmhVm

T }FC
m

H
= FR

mPmF
C
m

H

Km = E{HC
mH

C
m

H} = FC
mE{hVmhVm

T }FC
m

H
= FC

mPmF
C
m

H

Cm = E{HC
mH

C
m

T } = FC
mE{hVmhVm

T }FC
m

T
= FC

mPmF
C
m

T

(20)

where Pm = E{hVmhVm
T } denotes the tunable DC-based

covariance structure designed in [2] and [1].

Remark 13 In practice, symmetry must be enforced in
both the time and frequency domain kernels to guarantee
a unique Volterra series representation [15]. Thus, we
are required to modify the transformation matrices, Fm,
by removing the columns which correspond to redundant
time domain parameters, and removing rows that corre-
spond to redundant frequency domain parameters. As an
example, the symmetry axes for second order kernels are
given in Figure 1, which are used to dictate the location
of unique and redundant parameters in those kernels.

3.4 The output spectrum

The output spectrum of Y (ky) can be derived in a sim-
ilar fashion to the linear case. However, we must first
restructure the model equation (2) as follows,

Y (ky) = [φ1 . . . φM ][HV1
T
. . . HVM

T
]T + V (ky)

= φH + V, (21)

where φm is an appropriate regressor containing the in-
put spectrum products corresponding to HVm. Note that
symmetry should also be enforced in the GFRFs here,
which should be reflected in the design of the regressors.

Y (ky) will also be a real/complex vector in the case
where 0 ∈ ky. Thus, we extend (21) to the augmented
output case, resulting in

Ỹ (ky) = [φ̃1 . . . φ̃M ][H̃V1
T

. . . H̃VM
T

]T + Ṽ (ky)

= φ̃H̃ + Ṽ . (22)

Remark 14 When φ is built from a single input/output
realization as in (21), the associated linear regression
problem will be severely rank deficient forM > 1. While it

is possible to make the problem overdetermined by ‘stack-
ing’ a sufficient number of unique input/output realiza-
tions, we will focus on the rank deficient case in this paper
to highlight the flexibility of GPR.

From (22), we can now derive the distribution of the
output spectrum.

Theorem 15 For a system whose output is given by
(7), with Gaussian HVm ∼ RCN (0,Σm) as described in
(13), the output spectrum Y (ky) is complex normally dis-
tributed as follows,

Y (ky) ∼ RCN (0,ΣY ),

where ΣY = φ̃Σtotφ̃
H + σ2

vI

and Σtot =


Σ1 0

. . .

0 ΣM


(23)

PROOF. Follows from (22), Assumptions 4, 10-11, and
the properties of real/complex normal distributions. 2

3.5 MAP estimates of the GFRFs

Maximum a posteriori (MAP) estimates for the GFRFs
can be obtained from the joint distribution of Y and H,
by computing the mean of the conditional distribution
H|Y . The result is provided in the following theorem.

Theorem 16 The MAP estimate of H̃ in (22) is

ˆ̃
HMAP = Σtotφ̃

HΣ−1
Y Ỹ (24)

PROOF. Follows from the properties of real/complex
distributions [10]. 2

3.6 Hyperparameter tuning

We must optimize the hyperparameters, η, describing
each covariance function Pm(η) from [2], which are in
turn used to construct Σm. As in [2] and [10], this is
performed via a marginal likelihood maximization, i.e.

η̂ = arg min
η
Ỹ (ky)HΣ−1

Y (η)Ỹ (ky) + log det ΣY (η).

(25)
Note that the optimization problem is non-convex in
general [13], and can be computationally intensive to
solve. Numerical techniques have been developed to re-
duce the computational burden in the case of long data
records [4] or high nonlinear orders [17].
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Fig. 1. Parameters requiring estimation in second order
band-limited example

3.7 Comparison with time domain approach

There is another viable approach for estimating GFRFs
under rank deficient conditions, which is to first com-
pute regularized Volterra kernel estimates in the time
domain with memory length nm = N , and subsequently
transform them using (3). One advantage of this indi-
rect approach is the freedom to use input/output mea-
surements of arbitrary length which are not necessarily
at steady-state, whereas the method proposed here re-
quires such constraints.

If we are only interested in GFRF estimation for a spe-
cific frequency band, then the time domain approach has
a severe disadvantage when compared to the frequency
domain method proposed here. With an indirect time
domain approach, we are required to estimate the full set
of kernel parameters regardless of frequency band, since
each frequency domain parameter depends on the entire
time domain set (see (3)). In direct frequency domain
estimation, the limited frequency band directly reduces
the set of parameters to be estimated, and the magni-
tude of reduction grows rapidly with increasing GFRF
order, m, since the band is limited along every dimen-
sion of the GFRFs.

An example of this parameter reduction concept is vi-
sualized in Figure 1 for a second order example with
N = n2 = 21. We excite a discrete set of frequencies,
ku = [3, 4, 5, 6, 7], and compare the number of parame-
ters requiring estimation in each domain. It is clear that
limiting the excited frequency band in two dimensions
significantly reduces the parameter set for H2 to 55 pa-
rameters (5 real, 25 complex), while for h2 the full set of
unique Volterra coefficients (231 real) is still required.

4 Simulation Examples

Two simulation studies are presented here in order to
demonstrate the performance of the proposed method
and compare with the equivalent time domain approach.

G1

G2 (.)2

Fig. 2. System structure used for data generation in the rank
deficient noise-free case
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4.1 Rank deficient noise-free case

A Volterra system output was generated using the block
structure in Figure 2, where the linear filters are defined
in the z-domain as

G1(z) =
3z

z2 − 1.8z + 0.84
, G2(z) = 0.25G1(z).

The input, u(t), is given by a periodic multisine with pe-
riod N = 80 and ku = {0, 1, 2, . . . , 19}, which is applied
for 10 periods before taking the final period of measure-
ments for estimation purposes, so that all transient ef-
fects are negligible.

We consider identification of the system’s GFRFs, H1

and H2, assuming memory lengths n1 = n2 = N . The
resulting estimation problem is severely rank deficient,
with 780 unique parameters requiring estimation, and
only 77 corresponding output spectrum measurements.
Applying the proposed GPR method, the GFRF esti-
mates are given in Figure 3 alongside the true GFRFs,
which can be obtained analytically from the system
structure [18]. Despite severe rank deficiency, a reason-
able result is achieved at both GFRF orders.

4.2 Limited frequency band with measurement noise

To highlight the advantage of the proposed method over
an indirect time domain approach, a Monte Carlo (MC)
study was performed. The noise-free outputs were gen-
erated using the structure in Figure 4, with linear filters,

G1(z) =
z − 1

z
, G2(z) =

1.07z

z2 − 1.72z + 0.77
.

The input is a multisine with period N = 55 and a
limited band of excited frequencies, ku = {4, 5, . . . , 12}.
The output, y, is disturbed by white measurement noise.

6



G1 (.)2 G2

Fig. 4. Wiener-Hammerstein structure used to generate ker-
nel h2 in the MC study

Note that the system structure can be represented using
a single GFRF, H2 [18], and we will assume n2 = N .

For the MC study three different noise levels, and for
each noise level 100 input/output realizations, are con-
sidered. For each realization, transient-free estimation
data was obtained in the same manner as in Section 4.1,
and estimation of the H2 parameters within the excited
band was performed using two separate methods:

(1) GPR-FD - GPR in the frequency domain as de-
veloped in this paper (i.e. using (24) and (25)).

(2) GPR-TD - GPR in the time domain as presented
in [2],[1] and using periodicity to define initial con-
ditions, followed by a DFT transformation using
(3), and elimination of parameters not relevant to
the frequency band of interest.

The noise, v(t), was added in each realization to achieve
a Signal-to-Noise Ratio (SNR) of 5dB, 10dB or 20dB.

Estimation errors for each method and realization
are quantified using a normalised mean square error
(NMSE) metric, given by

eNMSE =
1
n

∑n
i=1 |ĤV2 (i)−HV2 (i)|2
1
n

∑n
i=1 |HV2 (i)|2

, (26)

where n is the number of GFRF parameters requiring es-
timation inside the excited frequency band, ĤV2 (i) is the
ith element of the GFRF estimate, and HV2 (i) contains
the true GFRF elements within the frequency band of
interest.

The errors resulting from each noise level and method
are presented as boxplots in Figure 5. The GPR-FD ac-
curacy is seen to improve with increasing SNR as ex-
pected, however it is also clear that for the case of a lim-
ited excitation frequency band, the proposed frequency
domain regression method performs better than an in-
direct time domain approach on the same dataset, for
the reasons discussed in Section 3.7. More specifically,
the number of unique parameters requiring estimation
for GPR-TD is 1540 (all real), while for GPR-FD it is
only 378 (14 real, 182 complex).

5 Conclusions

In this paper, a GPR method was presented for the esti-
mation of generalized frequency response functions. The
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Fig. 5. NMSEs for the limited frequency band MC study

method employs a hybrid real/complex Gaussian frame-
work originally developed for the linear case, and trans-
lates the properties of previously designed time domain
prior covariances to the frequency domain via vector-
ized DFT transformations. Numerical examples demon-
strated the ability of the method to produce reasonable
estimates under rank deficient conditions, and the pro-
posed method clearly outperforms the indirect time do-
main estimation approach in the case of a limited fre-
quency band of interest.
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