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Direct Numerical Simulations have been performed to study the droplet spreading behaviour on a spherical
surface. A coupled immersed boundary and volume of fluidmethod is used to represent the gas-liquid-solid
interactions. The contact area of the droplet on the surface is recorded in order to fit the initial spreading
with a power-law representation, using the contact-angle and interface curvature as fitting parameters.
Small viscous droplets are used to reduce interfacial oscillations as well as low drop velocities to reduce im-
pact forces. A decrease of spreading area with increasing curvature is observed. Moreover, the model shows
good agreement compared to equilibrium states. A strong contact-angle dependence is found for the pre-
factor of the power law, which is expected, and a linear decrease was found in the exponent for increasing
curvature of the surface.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Fundamental understanding of droplet-solid interactions is rele-
vant for many industrial processes, from spray coating to condensed
mode polymerization. In these processes, the liquid is used for spe-
cies deposition but also for effective heat removal. To determine
the efficiency of these processes, proper droplet spreading is essen-
tial. For example in spray coating, the spreading behaviour is respon-
sible for the deposition of the material. In this process, controlling
the spreading will result in controlling the quality of the final prod-
uct. In condensed mode polymerization, the contacting and evapora-
tion of the liquid defines the efficiency of the cooling process, which
ultimately controls the production capacity of the reactor. De Gennes,
Rein and Bonn have published comprehensive reviews on the details
of these phenomena [1–3].

Drop spreading on flat-plate geometries have been studied exten-
sively in the past, experimentally [4–15] as well as theoretically
[16–20]. Many of these studies focussed on the spreading behaviour of
droplets impinging on solid surfaces, through simplification of this com-
plex system by reducing the surface tension to viscosity ratio and/or re-
ducing the impact velocity.
n).

. This is an open access article under
The impact velocity greatly influences the final equilibrium state
of the droplet, these states have been classified in six regimes and
are clearly explained by Rioboo et al. [15]. In this work, we will
focus on the deposition regime with low droplet impact velocities.
The spreading behaviour in the deposition regime has been classi-
fied in four separate regimes and detailed as well by Rioboo et al.
[15].

A general relation for the temporal spreading width has been intro-
duced by Tanner et al. [4], which was used for the complete wetting of
silicone oil droplets on glass. The introduction of the power law S ∼
Cτn to fit spreading data has beenwidely used to characterize spreading
behaviour on a flat plate and associated contact angle dynamics in good
agreement with experiments [10,18,21–23]. However in the condensed
mode polymerization process and many other applications, droplets
spread on particles, which can not be considered flat. The geometry of
the substrate influences the spreading behaviour and in order to extend
the knowledge to other geometries, we will study spherical substrates
in this work.

To gain more information on the subject, two methods can be used
to obtain information about the system. Experimental work allows for
highly accurate data because the system studied provides the real
world physics. However, certain aspects like detailed flow patterns are
difficult to capture experimentally and therefore Computational Fluid
Dynamics (CFD) provides a powerful tool to obtain such detailed infor-
mation. In this study a fully resolved model will be used to study the
droplet spreading process.

A lot of work has already been done and hasmainly been focused on
very specific aspects of droplet spreading on a spherical surface.
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.powtec.2019.05.064&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.powtec.2019.05.064
m.w.baltussen@tue.nl
Journal logo
https://doi.org/10.1016/j.powtec.2019.05.064
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/powtec


12 E. Milacic et al. / Powder Technology 354 (2019) 11–18
Iwamatsu used an energy balance approach to theoretically describe
the equilibrium state of droplets on smooth spheres [24,25]. Pawar
et al. looked into droplet-particle collision in free fall [26]. Bakshi
et al. looked at the film-thickness of a droplet on a sphere [27].
Mitra et al. studied collision velocities, influence of heat transfer, par-
ticle deflection, film-thickness and spreading area [28–30]. Liu et al.
studied symmetry breakage in collisions [31]. Eral et al. used electro
wetting to study the effect of voltage on the contact angle [32].
Hardalupas et al. looked at droplet-particle collisions and the out-
comes of these encounters [33]. Malgarinos et al. numerically studied
the collisional regimes on spherical particles [34]. Banitabaei et al.
studied experimentally and numerically the effects collision velocity
and wettabillity on the collision outcome of a large droplet with a
smaller particle. A comprehensive map is also presented with an
overview of the work done based on impact velocity [35]. Liang
et al. looked into the spreading behaviour on wetted spheres and
varied the collisional velocity and curvature ratio [36]. Zhang et al.
investigated numerically, with a lattice-Boltzmann model, the maxi-
mum spreading diameter, film-thickness and influence of curvature
ratios [37]. Maheshwari et al. looked into the line tension and wetta-
bility of nano drops [38]. In this work, the focus lies in understanding
the effect of the curvature on the spreading behaviour of a droplet.
This behaviour is best studied by using a low velocity and a small La-
place number.

In order to obtain detailed information on the spreading behaviour
of droplets on spherical substrates, fully resolved simulations based on
an combined. Immersed Boundary (IB) and Volume of Fluid (VOF)
method have been conducted. The motivation for this choice is that
the implementation of the contact-line dynamics can be done with rel-
ative ease. In additionmass conservation is guaranteed in this model. In
Table 1 an overview is presented of several numerical techniques for
complex free surface computations together with their advantages
and disadvantages.

In the next section, the numerical model will be explained followed
by the details of the simulations and the data analysis. The analysis itself
will focus on the effects of contact angle, curvature ratio and size on the
spreading behaviour of a single droplet.
Table 1
Overview of available numerical techniques for multi-phase systemswith advantages and
disadvantages.

Advantages Disadvantages References

Front Tracking &
Immersed
Boundary

- Direct inter-
face tracking

- Resolved
particles

- No break-up
and coalescence

- Not mass con-
servative

- No contact line
implementation

Deen et al. [48]
Baltussen et al.
[62,63]

Level-set &
Immersed
Boundary

- Break-up and
coalescence

- Resolved
particles

- Contact line
implemented

- Not mass con-
servative

- Numerical
coalescence

Ge and Fan [64]
Suh and Son [65]

Volume of Fluid
& Immersed
Boundary

- Mass conser-
vative

- Break-up and
coalescence

- Contact line
implemented

- Resolved
particle

- Numerical coa-
lescence

- Indirect tracking
of the gas-liquid
interface

Washino et al. [66]
Jain et al. [67]
Karagadde et al.
[68]
Sun and Sakai [69]
Baltussen et al.
[39,70]
Patel et al. [47]
Tang et al. [71]
2. Model description

2.1. Governing equations

The current method is based on the VOF-IB method presented by
Baltussen et al. [39]. It is suitable for simulating three-phase systems
and involving fluid and solid interfaces.

In thismodel it is assumed that the fluids are Newtonian and incom-
pressible, where one set of mass and momentum conservation equa-
tions is used (one-fluid formulation):

∇ � u ¼ 0 ð1Þ

ρ
∂u
∂t

þ ρ∇ � uuð Þ ¼ −∇pþ ∇ � τ þ ρgþ Fσ ð2Þ

where τ= μ[∇u+(∇u)T] is thefluid stress tensor and Fσ is a volumetric
source term to include the effects of surface tension (σ) acting on
curved fluid interfaces. For the density ρ and viscosity μ, linear and har-
monic averaging are used, respectively [40]. To compute Fσ, the
Contiunum Surface Tension (CSF) method of Brackbill et al. [41] is
used as shown in Eq. (3), where density scaling is applied to reduce par-
asitic currents and improve the numerical stability for high density ratio
systems. This scaling distributes the acceleration due to surface tension
symmetrically over the interface, conserving the total surface tension
force [42].

Fσ ¼ ρ
ρh iσκn̂ ð3Þ

In the CSFmethod, κ is the curvature of the surface and n̂ is the inter-
face normal vector. In order to capture the dynamics of the fluid-
interface, a VOF method is used. In this method the two fluids are
tracked with a color function F, which represents the local fluid phase
fraction. The evolution of the interface is captured by advecting F with
the local fluid velocity as given by Eq. (4).

∂F
∂t

þ u � ∇F ¼ 0 ð4Þ

To solve Eq. (4) a geometrical advection scheme based on Piecewise
Linear Interface Calculation (PLIC) [43] is used. The integration of the
hyperbolic F-advection equation, Eq. (4), is the crucial part of the VOF
method and is based on a pseudo-Lagrangian geometric advection
scheme, which minimizes numerical diffusion. This method provides a
high degree of mass conservation and a detailed explanation can be
found by Van Sint Annaland et al. [44].

For the curvature calculations, the normals of the interface are calcu-
lated with the smoothed phase fraction using the smoothing polyno-
mial proposed by Deen et al. [45].

Application of the smoothing method close to the solid interface
gives non-physical values for the phase fractions, which can be over-
come by extending the F-field into the solid region using a method pro-
posed by Sussman et al. [46]. The simulations reported in this paper use
an extension up to 4 grid-cells into the solid region. More information
on this procedure can be found in Patel et al. [47].

In order to represent the fluid-solid interaction, an implicit
second-order accurate IBM is used to apply no-slip boundary condi-
tions for fluid-solid interaction in the staggered Cartesian grid
[48,49]. Here the cells are flagged according to the position of their
centers: cells inside a solid body are flagged “solid-cells” and other-
wise are flagged “fluid-cells”. The velocity values near the boundary
are expressed using an uni-directional quadratic interpolation poly-
nomial in order to incorporate the no-slip boundary at the solid sur-
face. More details of the method can be found in Deen et al. and Das
et al. [48,50].



Table 2
Simulation parameters.

Parameters Value Unit

ρl 804 kg.m−3

μl 3.4 ⋅ 10−2 Pa s
ρg 1.2 kg m−3

μg 2.0 ⋅ 10−5 Pa s
σ 3.2 ⋅ 10−2 N m−1

Θ 90°, 60°, 30° degrees
Rd 0.05, 0.5 mm
La 2.2, 22 (−)
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In three-phase flows, the contact line dynamics define the behav-
iour of the system in terms of wetting and de-wetting phenomena.
To couple the VOF and IBM, a contact angle is applied as a boundary
condition of the triple contact line in the CSF model. The boundary
condition is applied by modifying the fluid-interface normals at the
contact line. The interest of this work lies in the lower Reynolds
range and allows us to use a model developed by Voinov and Cox
[51,52]. A thorough explanation of this method can be found in
Patel et al. [47].

2.2. Numerical method

In order to solve the conservation Eq. (1), (2) the finite vol-
ume method on a staggered Cartesian grid is used. The diffusion
term is calculated implicitly, except for the mixed derivatives.
For the spacial discretization of the convection terms in the mo-
mentum equations, a second order flux delimited Barton-scheme
is used, while a second order central differencing scheme is used
for the spacial discretization of the diffusion term. The momen-
tum equation is solved using a fractional step method for the
pressure-velocity coupling. The first step involves the calculation
of an intermediate velocity from the momentum equation ex-
cluding the pressure gradient. In the second step, the Poisson
equation, Eq. (5), is solved to compute the pressure correction
which finally is used to compute the advanced time level veloc-
ity, Eq. (6).

∇ � Δt
ρ

∇ δpð Þ
� �

¼ ∇ � u� ð5Þ

ukþ1 ¼ u�−
Δt
ρ

∇ δpð Þ ð6Þ
Fig. 1. a. Equilibrium spreading radius per curvature ratio for Θ = 30°, 60° and 90°. The lines
simulations. b. Parity plot showing the spreading error margin between the simulation results
2.3. Verification and validation

The implementation of the IBM has thoroughly been verified and
validated by Deen et al. [48,53] using existing data from literature. The
VOF method was extensively verified and validated by Van Sint
Annaland et al. and Baltussen et al. [44,54]. The coupling of the IBM
and VOF was verified and validated by Patel et al. [47]. Because this
study will use the same methods and code implementations, the
model will not be verified and validated again.

3. Simulations and data analysis

In our simulations a droplet is deposited onto a spherical surface
with a low velocity (We = 1 ⋅ 10−5) under the influence of gravity.
The drop and particle are classified according to the ratio of their surface
area, F = Rd

2/Rp2. To reduce interface oscillations, the simulated liquid is
squalene oil, which has been widely used in experimental studies on
droplet spreading [5,18,21,47,55,56]. Table 2 shows the properties and
details used in the simulations. The diameter of the droplet is either
0.1 or 1 with 50 computational cells per diameter, which was
established on basis of a grid convergence study.

In Fig. 1a the simulated equilibrium spreading radius is compared
with the analytical counterpart revealing very good agreement. There
is an increased deviation for Θ = 30° at lower curvatures, which is
due to the viscous spreading. These simulations were not continued as
the focus in this work lies on the dynamics of the spreading behaviour.
Fig. 1b shows a parity plot with an error margin of 5%, revealing that the
simulated results are within this margin. The equilibrium spreading
width for a droplet on a flat plate was predicted with an error of 0.01%
for Θ = 90°, 0.85% for Θ = 60° and 2.92% for Θ = 30°. The increase in
error for lower contact angles is due to the thickness of the spreading
layer, which thins out for larger spreading areas. This results in a
lower resolution in the film layer.

To facilitate efficient comparison of the results obtained from the ex-
tensive simulations, the non-dimensional time τ defined by Eq. (7) is in-
troduced. A complete description and reasoning for this particular
choice can be found in Appendix B.

τ ¼ tffiffiffiffiffiffiffiffi
ρR3

d

σ

s ð7Þ

When spreading on a flat plate is considered, the equivalent spreading
radius is calculated [18] or measured [11] but when a droplet is
represent the analytical equilibrium values and the points represent the results from the
and the theoretical values. The dashed lines represent the 5% error margin.
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Fig. 2. Schematic representation of the spreading curvature estimation.
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spreading over a sphere, the curvature is not always considered. As the
spreading dynamics are dependent on the surface area of the substrate,
the 2D equivalent spreading radius does not properly represent the ge-
ometry. Especially for droplets that spread over the equatorial plane of
the spherical substrate, the spreading curvature is a better measure.
This quantity can be estimated using the contact area, see Fig. 2, assum-
ing that axi-symmetrical wetting prevails. To obtain the angle α, Eq. (8)
is used, from which the dimensionless spreading curve is calculated
using Eq. (9).

α ¼ cos−1 1−
Awet

2πR2
p

 !
ð8Þ
Fig. 3. Time evolution of a spreading drop with Θ = 30° and particle curvature F = 1.00. The fi
images show the inertial and the viscous spreading phase.
Rs ¼ αRp

R0
ð9Þ

When Tanner introduced the power law as a tool to represent the
spreading behaviour of droplets, the focus lied on the viscous spreading
phase but the relation has also been used for the kinematic spreading
and inertial spreading [4,57]. Legendre et al. considers the balancing of
the capillary and inertial pressure to obtain Eq. (10) for the inertial-
capillary spreading regime [18]. When scaling this equation with the
non-dimensional time from Eq. (7), the pre-factor reduces to ∼1 and re-
sults in Eq. (11).

Rs tð Þ∼ σR0

ρ

� �1=4

t1=2 ð10Þ

Rs τð Þ∼Cτn ð11Þ

Often, the focus lies on the exponent of the power law and is esti-
mated by plotting the spreading radius on a logarithmic scale and fit
the linear part with Eq. (11) [11,18]. The intricacy of fitting the pre-
factor of the afore mentioned power law has been attempted as well
but proved difficult due to interface oscillations [23,56]. In this work,
the pre-factor C and the exponent n of Eq. (11) are fitted to the spread-
ing radius (Rs) defined in Fig. 2.

4. Results and discussion

In Fig. 3, the time evolution of a spreading drop with Θ = 30° is
shown. It shows the initial state, the kinematic spreading phase, the in-
ertial spreading phase and the viscous spreading phase. The velocity in-
side the spreading drop is shown, revealing a complex flow pattern.
When looking only at the shape of the droplet, these regimes are diffi-
cult to identify and often smoothly transition into one another.
rst three images show the initial state and the kinematic spreading phase. The last three



Fig. 6. Spreading rates for the flat-plate geometry. The exponent of the power law
approximates n ∼ 2/3 for the spreading of a low Laplace droplet.

Fig. 4. Schematic representation of the change in direction of the initial momentum.
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In the kinematic spreading phase, liquid needed for spreading is
provided by the sides of the droplet. It starts to lose its spherical
shape and becomes more elliptical. It can be noted that the height
of the droplet remains almost unaffected. For the inertial phase,
the surface tension pulls the bulk of the droplet towards the surface
to provide more fluid for spreading. During this phase the height de-
creases significantly and almost reaches its final value. For higher
contact angles Θ N 30°, the fluid inertia often results in a maximum
spreading diameter, which is generally larger than the equilibrium
spreading diameter. After reaching its maximum the fluid retracts.
For low contact angles, the next regime is the viscous spreading re-
gime. This regime is governed by the viscous forces and its time
Fig. 5. Spreading behaviour for a droplet onmultiple curvatures. 1.0mm results in La=22 and 0
with Θ = 60°. c. Droplet of size 0.1 mmwith Θ = 90°. d. Droplet of size 1.0 mm with Θ = 90°
scale is much larger than the time scale of the previous regimes
combined.

The curvature of the surface affects the flowing patterns inside the
droplet as schematically depicted in Fig. 4.With an increasing curvature
.1 mm results in La= 2.2 a. Droplet of size 0.1mmwithΘ=30°. b. Droplet of size 0.1mm
.



Fig. 7. Parameters of the power law fitted for Θ = 30°, 60° and 90° over the surface curvature F. a. Exponent n. b. Pre-factor F.
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of the particle, the change in direction from the initial momentum is re-
duced. An increased angle of direction change also increases the mo-
mentum dissipation in the bulk of the droplet. Therefore, more
oscillations are expected for surfaces with a higher curvature.

When examining the spreading data presented in Fig. 5, the increase
in amplitude of the initial oscillation with decreasing particle size is in-
deed observed. This effect is more pronounced at higher contact angles
and higher Laplace numbers. For the low contact angleΘ=30° (Fig. 5a)
the initial oscillation is smoothed out due to the increased spreading
force. For less curved surfaces, the viscous spreading regime is more
pronounced. An increase in curvature inhibits the viscous spreading
phase, since more area has been covered by the initial spreading. For
flat plate geometries the initial oscillations are quickly dampened out.
For larger curvatures, the dampening takes more time as the initial am-
plitude is larger. Also, the energy dissipation in the bulk of the fluid is
less pronounced due to the reduced equilibrium spreading radius for in-
creased curvatures.

A less noticeable effect is the temporal displacement of the maxi-
mum spreading radius, i.e. it takes slightly more time to reach the max-
imum spreading radius when the curvature of the surface is increased.
This is explained by the increased distance between the bulk and the
contact-line. This combinedwith the reduced dissipation in the bulk re-
sults in the decrease of the oscillation frequency, which can be observed
best in Fig. 5d.
Fig. 8. Spreading radius for water droplets of three different size
One of the most obvious effects is the reduction in equilibrium
spreading radius for increasing curvature. This is expected and can be
predicted mathematically. The simulated equilibrium spreading radius
matches within 5% error margin. Iwamatsu also predicted this with an
energy balance approach [25].

Fitting the spreading data with the power law becomes increasingly
challenging with the increase in curvature. This is due to the bend that
appears around τ = 2.5. Note that this behaviour is also visible for a
flat-plate geometry for the larger Laplace number case in Fig. 5d.

This bend in the spreading radius indicates that the spreading be-
haviour is governed by at least two phenomena which have been iden-
tified as the kinematic and inertial regime. The kinematic regime is
governed by the capillary forces at the contact line and the inertial re-
gime is governed by the inertia of the bulk in motion. For a high Laplace
number systemwith a small contact angle, the upper part of the droplet
can be detached in the form of a satellite drop ejected from the roof of
the parent drop, this effect has been observed by Ding et al. [58] and
modelled by Das et al. [56].

For a flat-plate geometry, the kinematic regime seems to transition
smoothly into the inertial regime. Fig. 6 shows the spreading radii for
multiple contact angles and sizes, on a flat plate. Using the log scale on
both axes, the initial spreading regime is visible as a straight line. The
slope of this line represents the exponent of Eq. (11) and as shown in
s. a. scaled with τ ¼ t=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρR3=σ

q
. b. scaled with τ = tσ/μV1/3.
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thefigure, n≈ 2/3. This value has been reported for low Laplace number
droplets in multiple publications [18,59,60].

For a surface with increased curvature, the separation between the
two phenomena seems to be more pronounced. This complicates the
fitting of the initial spreading curve and a choice has to be made
which of the two phenomena should be considered in the fit. Due to
the static contact angle approach taken in the model, the amplitude
of the initial oscillation is over estimated as it should be partially com-
pensated by the advancing contact angle. For this reason the kinematic
spreading phase was chosen for the fitting of the power law to the
spreading data.

In Fig. 7a and b the exponent and the pre-factor of the power law are
plotted over F. The exponent n of the power law shows a linear decrease
over the increase in curvature with a contact-angle dependence. This
hints at a stronger deceleration of the contact line. Similar trends have
been observed for increasing Laplace number by [18] and for increasing
surface porosity by [56]. A linear decline is found for the pre-factor C,
which shows a similar trend as the decrease in equilibrium spreading
radius for increasing curvature. As expected there is a strong depen-
dence on contact angle in the pre-factor.

5. Conclusions

The numerical results of this study show a change in spreading be-
haviour for spherical surfaces compared to flat surfaces. Through a sys-
tematic variation of curvature, its influence on different aspects of the
spreading behaviour has been quantified through fully resolved simula-
tions. At increased curvature, two spreading regimes exist during the
initial spreading of low Laplace number droplets and consequently
fittingwith a single power lawover the initial spreading phase becomes
impossible.

Moreover, the spreading dynamics of the system changes when
the curvature is increased, reducing the oscillation frequency, increasing
the amplitude of the initial oscillation and reducing the damping of the
oscillation.

When the power law is fitted over the kinematic spreading phase, a
strong influence of curvature is seen in the exponent through a linear
decline and a contact angle dependence. For the pre-exponent, the de-
crease is linear and strongly dependent on the contact angle as ex-
pected. The linear decline can be attributed to the reduction in
equilibrium spreading radius for surfaces with a larger curvature.

Nomenclature
α Surface wetted angle (degrees)
Θ Contact angle (degrees)
κ Curvature (m−1)
μ Viscosity (Pa s)
ρ Density (kgm−3)
σ Surface tension (Nm−1)τ Shear stress term (Nm−3)
τ Dimensionless time (−)
Awet Droplet contact area (m2)
C power law pre-factor (−)
F Phase fraction (−)
Fσ Surface tension source term (Nm−3)
g Gravitational acceleration (ms−2)
n̂ Surface normals(s)
n power law exponent (−)
p Pressure (Pa)
R0 Initial droplet radius (m)
Rd Droplet radius (m)
Rp Particle radius (m)
Rs Droplet spreading width (−)
S Spreading diameter (−)
t time (s)
u Velocity (ms−1)
u ∗ Initial velocity estimation (ms−1)
La ¼ σρL

μ2 Laplace number(−)
We ¼ ρv2L

σ Weber number (−)
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Appendix A. Wet surface calculation

To be able to calculate the spreading area for each time-step, an algo-
rithm was developed that estimates accurately the intersection area of
the solid sphere through the grid-cell and multiplies the area times
the phase fraction. This method works very well once the fluid has
contacted the particle due to the extension of the phase-fraction into
the solid surface. There is however a drawback, if the interface of the
droplet is not contacting the solid surface but is present in the same
grid-cell as the solid interface, this area will be considered and is
added to the sum of the wetted area. This is incorrect and only occurs
in the initial state before contacting the solid surface.

Appendix B. Time scaling comparison

In order to non-dimensionalise the time scale, multiple possibilities
are available. Rioboo et al. uses the drop impact velocity and the initial
diameter as t ∗ = tvdrop/D0 for inertia driven impacts [15], some use
the viscosity, surface tension and volume of the droplet τ = tσ/μV1/3

[1,4,6,8,12,61] and some use τ ¼ t=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρR3

d=σ
q

which is the capillary iner-

tial time [18,56]. This is an effort to be able to compare the impinging
dynamics of systems with different fluid properties and dimensions.

In this work, two sizes of droplets are used. As can be seen in Fig. 8a
and b, one scaling method is better at comparing droplets of different
sizes. In this work the fluid viscosity, density and surface tension are
not altered, there is no need to compensate for them in the time scaling.
Furthermore the first scalingmethod has low values that seems to coin-
cide with different aspects of the spreading behaviour, a more detailed
analysis has been done by Das et al. [56].
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