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Abstract 

The solid-state spherical diffusion equation with flux boundary conditions is a standard 

problem in lithium-ion battery simulations. If finite difference schemes are applied, many 

nodes across a discretized battery electrode become necessary, in order to reach a good 

approximation of solution. Such a grid-based approach be appropriately avoided by 

implementing analytical methods which reduce the computational load. The pseudo-steady-

state (PSS) method is an exact analytical solution method, which provides accurate solid-state 

concentrations at all current densities. The popularization of the PSS method, in the existing 

form of expression, is however constrained by a solution convergence problem. In this short 

communication, a modified PSS (MPSS) expression is presented which provides uniformly 

convergent solutions at all times. To minimize computational runtime, a fast MPPS (FMPPS) 

expression is further developed, which is shown to have a constant time complexity. Using 

the FMPSS method, uniformly convergent exact solutions are obtained for the solid-state 

diffusion problem in spherical active particles. 

Keywords: Pseudo-steady state, Analytical methods, Spherical diffusion, Porous electrodes, 
Batteries   
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1 Introduction 

Efforts to understand internal battery dynamics and to optimize battery designs, rely on fast, 

accurate, physics-based simulation models. Battery electrodes such as found in nickel metal 

hydride and lithium-ion batteries are typically porous. These electrodes are contain a set of 

solid active particles and electron conductive filler materials. The morphology of a porous 

battery electrode is illustrated in Figure 1a, where a Li metal anode is separated from a Cu 

current collector by a porous cathodic electrode and a separator. The porous electrode is thus 

composed of carbon conductive filler (black circles) and active particles (grey circles) while, 

the voids created by the solid particles are occupied by a suitable electrolyte. For simplicity, 

the polymer binder is not shown. 

Electrochemical models of the multi-scale and multi-physics phenomena inherent to 

a typical porous electrode, combine thermodynamics, transport phenomena and reaction 

kinetics at the surface of the active particles.[1] Following Newman’s porous electrode theory, 

a 1D battery model considers the electrolyte and solid particles as two, super-imposed 

continua.[2,3] Such a model description requires the introduction of a pseudo-2D (P2D) 

domain, where the diffusion transport processes, occurring within the active particles at a 

microscopic length scale, are modelled.[2,4,5] Within such a macro-homogeneous, P2D 

domain, representing discrete particles at different spatial positions across the porous 

electrode, time dependent concentration profiles of intercalating species are simultaneously 

resolved. Figure 1b illustrates a P2D layout of a 1D battery model.  
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Figure 1. (a) Schematic view of Li-ion battery. (b) Layout of 1D model of a porous electrode 
showing the active particles in a P2D simulation domain. 

 

P2D porous electrode modelling using numerical methods of finite difference (FDM), 

finite element (FEM) and finite volume (FVM) is however computationally demanding. [3,6,7]  

First, by introducing the pseudo radial dimension, the number of mesh nodes in a fully 

discretized battery model, unavoidably increases. Second, applying explicit finite difference 

schemes imposes fine time-stepping for numerical stability. Note, however that only the 

average and surface concentrations are needed to determine the thermodynamic and kinetic 

properties of the active particles, the rest of concentration profile is not important. This brings 

about the question whether it is truly necessary to calculate the full concentration profile, if 

a numerical way to derive these two variables is available. The ‘extra’ pseudo dimension 

would therefore be discarded thus reducing the size and computational runtime while 

maintaining the fidelity of the models. 

Several analytical methods have been developed to solve the boundary value problem 

of spherical diffusion.[8–10] These can be classified as either exact solution methods or 
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approximate solution methods. Exact solution methods involve a convergent summation of 

an infinite series of terms which consider the profile history, while approximate solution 

methods involve empirical approximations and frequently, do not consider the history of the 

concentration profile. Zhang et al.[8] provided a comprehensive review of the different 

analytical methods relevant to battery simulations. It is therein concluded that the pseudo-

steady state (PSS) method and the high-order polynomial method are the leading analytical 

methods, based on computation speed and accuracy. Incidentally, the former is an exact 

solution method while the latter is an approximate solution method. 

While approximate solution methods generally have speed advantage over either 

exact solution or numerical methods (i.e. FDM, FEM, FVM), they lack the adequate solution 

accuracy in transient battery simulations; since they do not converge to the exact 

solution.[11] Existing approximate solution methods include, the low order polynomial 

method,[12] the high order polynomial method,[12] the diffusion length method [13,14] and 

the penetration depth method.[15] On the other hand, exact solution methods offer high 

accuracy, yet invoke considerable computation effort at short times and whenever the 

concentration profile undergoes abrupt changes. Exact solution methods have a long and 

established history, the interested reader is here referred to the seminal works of Carslaw 

and Jaeger on conduction of heat in solids.[16] Newman’s model famously applied Duhamel’s 

superposition integral in the porous electrode theory,[2,4,5] while Ölçer’s PSS approach, 

based on the finite integral transform, is rapidly gaining recognition.[17,18] 

The seemingly antagonistic requirements of speed and accuracy have been resolved 

by the PSS method, as demonstrated by Liu on a conceptual spherical particle.[19] The PSS 

method was later applied to a porous electrode model in a benchmarking review by Zhang et 
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al.[8] Therein, the computational runtime of the PSS emerged of the same order of magnitude 

as approximate solution methods. However, it has been reported that the PSS method is 

unstable when the number of summation terms increases.[20] This instability introduces 

numerical difficulties for control-oriented battery programming,[21,22] resulting in few 

adoptions of the PSS method. In this work, the origins of the numerical problems associated 

with the PSS method are investigated and addressed resulting in a numerically efficient and 

stable modified PSS method (MPSS). Furthermore, a programmable and computationally 

efficient, fast modified PSS (FMPSS) method is presented for the first time which enables rapid 

and accurate porous electrode modelling.  

2 Model 

Assuming a constant diffusion coefficient, the diffusion controlled transport of intercalated 

species in a spherical electrode particle is given by the following partial differential equation 

(PDE) 

  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝐷𝐷𝑠𝑠
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝜕𝜕 �

𝑟𝑟2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕�

, ( 1 ) 

where 𝑐𝑐 = 𝑐𝑐(𝑟𝑟, 𝑡𝑡) is the concentration of the intercalated species in the solid particle 

[mol m−3], 𝐷𝐷𝑠𝑠 the diffusion coefficient [m2 s−1], 𝑟𝑟 the radial distance from the center of the 

particle [m] and 𝑡𝑡 is time [s]. Figure 2 illustrates the diffusion problem in a spherical particle. 

The following Neumann boundary conditions are applied at the surface and center of 

the spherical particle, respectively: 

 −𝐷𝐷𝑠𝑠
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝒋𝒋(𝑡𝑡),   𝑎𝑎𝑎𝑎  𝑟𝑟 = 𝑅𝑅0,   𝑡𝑡 > 0, ( 2 ) 
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 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0,   𝑎𝑎𝑎𝑎  𝑟𝑟 = 0,   𝑓𝑓𝑓𝑓𝑓𝑓  ∀𝑡𝑡, ( 3 ) 

where, 𝒋𝒋(𝑡𝑡) is the flux of species at the surface of the particle [mol m−2 s−1] and 𝑅𝑅0 is the 

radius of the particles [m]. The initial value for the problem of Eq. ( 1 ) assumes a constant 

concentration profile at time 𝑡𝑡 = 0, i.e. 𝑐𝑐(𝑟𝑟, 0) = 𝑐𝑐0, where 𝑐𝑐0 is a positive real number.  

To solve the set of equations Eq. ( 1 ) – ( 3 ), finite difference numerical methods can 

be applied. However, this fundamentally increases the simulation load due to spatial 

discretization in the particles. Alternatively, one can resort to the PSS analytical method  

which finds the exact solution, based on established solutions for second order PDEs with flux 

boundary conditions.[17–19]  

The PSS analytical expression for  Eq. ( 1 ) – ( 3 ) is 

 

𝑐𝑐(𝑟𝑟, 𝑡𝑡) = 𝑐𝑐0 −
3
𝑅𝑅0

 �𝒋𝒋(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑡𝑡

0

+  
𝑅𝑅0
2𝐷𝐷

𝒋𝒋(𝑡𝑡) �
3
5
− �

𝑟𝑟
𝑅𝑅0
�
2
�

+
2𝑅𝑅0
𝐷𝐷

 �
�1 + 𝜆𝜆𝑚𝑚2

𝜆𝜆𝑚𝑚3
 
sin �𝜆𝜆𝑚𝑚𝑟𝑟𝑅𝑅0

�
𝑟𝑟
𝑅𝑅0

 
∞

𝑚𝑚=1

× 𝑒𝑒
− 𝜆𝜆𝑚𝑚

2 𝐷𝐷𝐷𝐷
𝑅𝑅02 �𝑒𝑒

𝜆𝜆𝑚𝑚2 𝐷𝐷𝐷𝐷
𝑅𝑅02 𝒋𝒋(𝑡𝑡)  −

𝜆𝜆𝑚𝑚2 𝐷𝐷
𝑅𝑅02

�𝑒𝑒
𝜆𝜆𝑚𝑚2 𝐷𝐷𝐷𝐷
𝑅𝑅02 𝒋𝒋(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑡𝑡

0

�, 

( 4 ) 

where 𝜆𝜆𝑚𝑚 are the non-zero positive real roots of equation 𝑡𝑡𝑡𝑡𝑡𝑡(𝜆𝜆𝑚𝑚) = 𝜆𝜆𝑚𝑚.[19] The infinite 

summation series in Eq. ( 4 ) is truncated when the desired accuracy is obtained.  

However, Eq. ( 4 ) does not generate stable results at long times irrespective of the 

number of summation terms. This has been described by Ramadesigan et al. as a blow-up of 

coefficients when summation terms increase.[20] The reason for this instability, is the 

occurrence of an exponential time function outside the integral term, which results in 
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oscillatory and non-convergent solutions. As 𝑡𝑡 becomes large, these oscillations become 

severe, resulting in assured numerical difficulties.   

To address this problem, both terms inside the square brackets in Eq. ( 4 ) are 

multiplied by the 𝑒𝑒
− 𝜆𝜆𝑚𝑚

2 𝐷𝐷𝐷𝐷
𝑅𝑅0
2  term, resulting in the following MPSS expression 

 

𝑐𝑐(𝑟𝑟, 𝑡𝑡) = 𝑐𝑐0 −
3
𝑅𝑅0

 �𝒋𝒋(𝜏𝜏)𝑑𝑑𝑑𝑑
𝑡𝑡

0

+ 
𝑅𝑅0
2𝐷𝐷

𝒋𝒋(𝑡𝑡) �
3
5
− �

𝑟𝑟
𝑅𝑅0
�
2
�

+
2𝑅𝑅0
𝐷𝐷

 �
�1 + 𝜆𝜆𝑚𝑚2

𝜆𝜆𝑚𝑚3
 
sin �𝜆𝜆𝑚𝑚𝑟𝑟𝑅𝑅0

�
𝑟𝑟
𝑅𝑅0

 
∞

𝑚𝑚=1

× �𝒋𝒋(𝑡𝑡)  −
𝜆𝜆𝑚𝑚2 𝐷𝐷
𝑅𝑅02

�𝑒𝑒
− 𝜆𝜆𝑚𝑚

2 𝐷𝐷
𝑅𝑅02

 (𝑡𝑡−𝜏𝜏)
𝒋𝒋(𝜏𝜏)𝑑𝑑𝑑𝑑

𝑡𝑡

0

�. 

 

( 5 ) 

Note that separate time symbols 𝑡𝑡 and 𝜏𝜏 are here introduced. The time at which the solution 

is calculated is denoted as 𝑡𝑡, while 𝜏𝜏 denotes the integration time variable. Thus, in expression 

𝒋𝒋(𝜏𝜏), variable 𝜏𝜏 runs across whole time span of modeling, i.e. from 0 to 𝑡𝑡. 

When Eq. ( 5 ) instead of Eq. ( 4 ) is used to determine the surface concentration, stable 

and uniformly convergent solutions are obtained for MPSS. A corresponding test case 

comparing the PSS and the MPSS is illustrated in Figure 3 when a constant surface flux of 

𝒋𝒋(𝑡𝑡) = −10−3 mol m−2 s−1 is applied. Here, the negative sign indicates that the flux is 

directed towards the center of the particle. Whereas, the PSS has a blow-up of solutions when 

the number of summation terms goes to infinity, the MPSS method uniformly converges, with 

greater accuracy at all times. It can therefore be concluded that MPSS represents a stable and 

accurate implementation of the PSS method.  
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The MPSS method is however computationally demanding for the long time intervals 

encountered in porous electrode simulations. As time 𝑡𝑡 increases, a longer time-span has to 

be integrated. For an efficient programming implementation of Eq. ( 5 ), we thus decompose 

time 𝑡𝑡 to 

 𝑡𝑡 = 𝑡𝑡′ + ∆ 𝑡𝑡, ( 6 ) 

where 𝑡𝑡′ is the previous moment of time and ∆ 𝑡𝑡 is the time step. This relieves the redundancy 

of integration over previous time steps, whose results are already known. Eq. ( 5 ) is thus 

becomes 

 

𝑐𝑐(𝑟𝑟, 𝑡𝑡) = 𝑐𝑐0 −
3
𝑅𝑅0

� 𝒋𝒋(𝜏𝜏)𝑑𝑑𝑑𝑑
𝑡𝑡′+∆𝑡𝑡

0

+  
𝑅𝑅0
2𝐷𝐷

𝒋𝒋(𝑡𝑡) �
3
5
− �

𝑟𝑟
𝑅𝑅0
�
2
�

+
2𝑅𝑅0
𝐷𝐷

 �
�1 + 𝜆𝜆𝑚𝑚2

𝜆𝜆𝑚𝑚3
 
sin �𝜆𝜆𝑚𝑚𝑟𝑟𝑅𝑅0

�
𝑟𝑟
𝑅𝑅0

 
∞

𝑚𝑚=1

× �𝒋𝒋(𝑡𝑡)  −
𝜆𝜆𝑚𝑚2 𝐷𝐷
𝑅𝑅02

� 𝑒𝑒
− 𝜆𝜆𝑚𝑚

2 𝐷𝐷
𝑅𝑅02

 �𝑡𝑡′+∆𝑡𝑡−𝜏𝜏�
𝒋𝒋(𝜏𝜏)𝑑𝑑𝑑𝑑

𝑡𝑡′+∆𝑡𝑡

0

� . 

( 7 ) 

Now, it is necessary to simplify the two integral terms in Eq. ( 7 ) and further avoid integration 

over the whole time span, in order to obtain faster solutions. Denote the convolution integral 

as a function of roots 𝜆𝜆𝑚𝑚 and time 𝑡𝑡 as  𝜒𝜒(𝜆𝜆𝑚𝑚, 𝑡𝑡), this leads to 

 

𝜒𝜒(𝜆𝜆𝑚𝑚, 𝑡𝑡) = �𝑒𝑒
− 𝜆𝜆𝑚𝑚

2 𝐷𝐷
𝑅𝑅02

 (𝜏𝜏)
𝒋𝒋(𝜏𝜏)𝑑𝑑𝑑𝑑

𝑡𝑡

0

= � 𝑒𝑒
− 𝜆𝜆𝑚𝑚

2 𝐷𝐷
𝑅𝑅02

 �𝑡𝑡′+∆𝑡𝑡−𝜏𝜏�
𝒋𝒋(𝜏𝜏)𝑑𝑑𝑑𝑑 =

𝑡𝑡′+∆𝑡𝑡

0

 

� 𝑒𝑒
− 𝜆𝜆𝑚𝑚

2 𝐷𝐷
𝑅𝑅02

 �𝑡𝑡′+∆𝑡𝑡−𝜏𝜏�
𝒋𝒋(𝜏𝜏)𝑑𝑑𝑑𝑑

𝑡𝑡′

0

+ � 𝑒𝑒
− 𝜆𝜆𝑚𝑚

2 𝐷𝐷
𝑅𝑅02

 �𝑡𝑡′+∆𝑡𝑡−𝜏𝜏�
𝒋𝒋(𝜏𝜏)𝑑𝑑𝑑𝑑

𝑡𝑡′+∆𝑡𝑡

𝑡𝑡′

= 

 

 

( 8 ) 
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𝜒𝜒(𝜆𝜆𝑚𝑚, 𝑡𝑡′) + � 𝑒𝑒
− 𝜆𝜆𝑚𝑚

2 𝐷𝐷
𝑅𝑅02

 �𝑡𝑡′+∆𝑡𝑡−𝜏𝜏�
𝒋𝒋(𝜏𝜏)𝑑𝑑𝑑𝑑

𝑡𝑡′+∆𝑡𝑡

𝑡𝑡′

. 

The remaining integral on the interval from 𝑡𝑡′ to 𝑡𝑡 can then be evaluated numerically. 

Applying trapezoidal integration yields 

 � 𝑒𝑒
− 𝜆𝜆𝑚𝑚

2 𝐷𝐷
𝑅𝑅02

 �𝑡𝑡′+∆𝑡𝑡−𝜏𝜏�
𝒋𝒋(𝜏𝜏)𝑑𝑑𝑑𝑑

𝑡𝑡′+∆𝑡𝑡

𝑡𝑡′

≈
∆𝑡𝑡
2 �𝑒𝑒

− 𝜆𝜆𝑚𝑚
2 𝐷𝐷
𝑅𝑅02

 ∆𝑡𝑡
𝒋𝒋(𝑡𝑡′) + 𝒋𝒋(𝑡𝑡)�, ( 9 ) 

where integration error tends to zero when time-step ∆ 𝑡𝑡 reduces. Substituting Eq. ( 9 ) into 

Eq. ( 8 ) produces  

 𝜒𝜒(𝜆𝜆𝑚𝑚, 𝑡𝑡) = 𝜒𝜒(𝜆𝜆𝑚𝑚, 𝑡𝑡′) +
∆𝑡𝑡
2 �𝑒𝑒

− 𝜆𝜆𝑚𝑚
2 𝐷𝐷
𝑅𝑅02

 ∆𝑡𝑡
𝒋𝒋(𝑡𝑡′) + 𝒋𝒋(𝑡𝑡)�. ( 10 ) 

Indeed, 𝜒𝜒(𝜆𝜆𝑚𝑚, 𝑡𝑡′) represents known values from the previous time step while the second term 

corresponds to the integrand evaluated over time-step ∆𝑡𝑡.  

Now, note that  

 𝜒𝜒(0, 𝑡𝑡) = �𝒋𝒋(𝜏𝜏)𝑑𝑑𝑑𝑑
𝑡𝑡

0

,   ( 11 ) 

i.e. 𝜒𝜒(0, 𝑡𝑡) is the time-integrated cumulative flux. Therefore, as particular case of Eq. ( 10 ) 

one obtains 

 𝜒𝜒(0, 𝑡𝑡) = 𝜒𝜒(0, 𝑡𝑡′) +
∆𝑡𝑡
2
�𝒋𝒋(𝑡𝑡′) + 𝒋𝒋(𝑡𝑡)�. ( 12 ) 

This represents an efficient way to calculate the cumulative flux which also enables a rapid 

determination of the average concentration. From the forgoing derivations, an expression for 

FMPSS method is finally obtained 
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𝑐𝑐(𝑟𝑟, 𝑡𝑡) = 𝑐𝑐0 +
𝑅𝑅0
2𝐷𝐷

𝒋𝒋(𝑡𝑡) �
3
5
− �

𝑟𝑟
𝑅𝑅0
�
2
� −

3
𝑅𝑅0
𝜒𝜒(0, 𝑡𝑡)

+
2𝑅𝑅0
𝐷𝐷

 �
�1 + 𝜆𝜆𝑚𝑚2

𝜆𝜆𝑚𝑚3
 
sin �𝜆𝜆𝑚𝑚𝑟𝑟𝑅𝑅0

�
𝑟𝑟
𝑅𝑅0

 �𝒋𝒋(𝑡𝑡) −  
𝜆𝜆𝑚𝑚2 𝐷𝐷
𝑅𝑅02

𝜒𝜒(𝜆𝜆𝑚𝑚, 𝑡𝑡)�
∞

𝑚𝑚=1

.  

( 13 ) 

Eq. ( 13 ), together with iterative relation Eq. ( 10 ), represent the FMPSS time-stepping 

algorithm. 

3 Simulation results 

 

Figure 2. Spherical particle of radius 𝑅𝑅𝟎𝟎 is used to calculate the analytical surface 
concentration. 𝒋𝒋 is the boundary value flux and a color gradient is used to illustrate the 
concentration profile. 

 

A test case of diffusion in a spherical particle is herein used to compare the PSS and MPSS 

behavior. Figure 2 shows a particle undergoing lithiation at a flux 𝒋𝒋, while Table 1 lists the 

parameters used for this calculation, same parameters were used by Liu.[19] 
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Table 1. Parameters used in comparing the various analytical expressions. 

Parameter Value Description 

𝑹𝑹𝟎𝟎 3.5 ∙ 10−6  [𝑚𝑚] Radius of the particle 

𝑫𝑫 2.6 ∙ 10−10 [𝑚𝑚2𝑠𝑠−1] Diffusion coefficient 

∆ 𝒕𝒕 5 ∙ 10−6  [𝑠𝑠] Time step 

𝒋𝒋(𝒕𝒕) − 1 ∙ 10−3 [𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚−2 𝑠𝑠−1] Interfacial boundary flux 

𝒄𝒄𝟎𝟎 0 [𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚−3] Initial particle concentration 

 

Figure 3 illustrates the behavior of the PSS (solid lines) and MPSS (symbols) at four 

different simulation times (𝑡𝑡 = 5, 50, 250 and 500 µ𝑠𝑠) as a function of M, the number of 

summation terms. Although Eq. ( 4 ) and Eq. ( 5 ) are both expected to produce identical 

results, it is evident that the PSS method does not converge to a constant value as time (𝑡𝑡) 

increases. However, this is not the case with the MPSS expression, which requires less terms 

to reach the solution and is uniformly convergent at all times. The modifications introduced 

in Eq. ( 5 ) therefore allow a stable implementation of the PSS method.  
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Figure 3. Convergence of the MPSS and PSS methods as a function of 𝑀𝑀, the number of terms 
in summation. PSS solutions become oscillatory as time increases while the MPSS method 
gives uniform convergent solutions at all times.  

 

Nevertheless, the MPSS method is not an efficient way to calculate the surface 

concentration. As stored data becomes large at long time intervals, integrals from 𝑡𝑡 = 0 

become cumbersome. Therefore, Eq. ( 10 ) and Eq. ( 13 ) are programmed as FMPSS. While 

similar solutions are obtained using either MPSS or FMPSS, significant speed gains are 

achieved in the latter method. Figure 4 illustrates the comparative speed performance 

between the two methods, as a function of the simulation time. Based on these results we 

observe that the computational runtime per time-step using the FMPSS remains constant 
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while it evolves linearly for the MPSS method. This implies that the per-step complexity of 

MPSS is linear with respect to time, i.e. 𝑂𝑂(𝑡𝑡), while that of the FMPSS method is constant, i.e. 

𝑂𝑂(1). After a simulation time span of 0.05 𝑠𝑠, the FMPSS method is shown to be approximately 

three orders of magnitude faster than MPSS and therefore, a fast and uniformly convergent 

semi-analytical method.  

 

Figure 4. Comparison of computation time using MPSS and FMPSS using parameters listed in 
Table 1. The results correspond to M = 40. Inset showing semi-logarithmic plot of 
computation time. Approximately three orders of magnitude speed improvement is achieved 
by the FMPSS method.  
 
 
 

4 Conclusions 

In the present paper, expedient modifications to overcome solution convergence problems 

in the pseudo-steady state (PSS) method are elaborated. These modifications result in 
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uniformly convergent and computationally efficient exact analytical solutions to the time 

dependent diffusion problem in spherical active particles. The modified PSS (MPPS) 

expression, herein shown for the first time, produces stable solid-state concentration results 

at all times. However, the MPSS has a linear time complexity, meaning the computation 

runtime per time-step increases linearly as the simulation proceeds. Therefore, a fast MPSS 

(FMPSS) method is introduced which has a constant computation time complexity.  Compared 

to the MPSS, the FMPSS  is faster by approximately three orders of magnitude which is ideal 

for real-time battery modelling application. The final objective is to implement the FMPSS in 

Li-ion battery porous electrode simulations and this will be shown in future work. The FMPSS 

method will enhance the speed and accuracy of physics-based porous electrode battery 

simulations at high applied currents. Because of the accuracy, computational efficiency and 

solution stability of the FMPSS as demonstrated in this work, this approach should be the 

leading analytical method for porous electrode simulations. 
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