

Feasibility study and benchmarking of embedded MPC for
vehicle platoons
Citation for published version (APA):
Soroa, I. M., Ibrahim, A., Goswami, D., & Li, H. (2019). Feasibility study and benchmarking of embedded MPC
for vehicle platoons. In S. Saidi, R. Ernst, & D. Ziegenbein (Eds.), Workshop on Autonomous Systems Design
(ASD 2019) Article 2 (OpenAccess Series in Informatics; Vol. 68). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik. https://doi.org/10.4230/OASIcs.ASD.2019.2

DOI:
10.4230/OASIcs.ASD.2019.2

Document status and date:
Published: 01/03/2019

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.4230/OASIcs.ASD.2019.2
https://doi.org/10.4230/OASIcs.ASD.2019.2
https://research.tue.nl/en/publications/71d56436-b305-40b2-abb8-6e50c35869ca

Feasibility Study and Benchmarking of Embedded
MPC for Vehicle Platoons
Iñaki Martín Soroa
Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
i.martin.soroa@studenten.tue.nl

Amr Ibrahim
Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
a.ibrahim@tue.nl

Dip Goswami
Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
d.goswami@tue.nl

Hong Li
Car Infotainment and Driving Assistance, NXP Semiconductor, Eindhoven, The Netherlands
Hong.r.li@nxp.nl

Abstract
This paper performs a feasibility analysis of deploying Model Predictive Control (MPC) for vehicle
platooning on an On-Board Unit (OBU) and performance benchmarking considering interference
from other (system) tasks running on an OBU. MPC is a control strategy that solves an implicit
(on-line) or explicit (off-line) optimisation problem for computing the control input in every sample.
OBUs have limited computational resources. The challenge is to implement an MPC algorithm on
such automotive Electronic Control Units (ECUs) with an acceptable timing behavior. Moreover,
we should be able to stop the execution if necessary at the cost of performance.

We measured the computational capability of a unit developed by Cohda Wireless and NXP
under the influence of its Operating System (OS). Next, we analysed the computational requirements
of different state-of-the-art MPC algorithms by estimating their execution times. We use off-the-shelf
and free automatic code generators for MPC to run a number of relevant MPC algorithms on the
platform. From the results, we conclude that it is feasible to implement MPC on automotive ECUs
for vehicle platooning and we further benchmark their performance in terms of MPC parameters
such as prediction horizon and system dimension.

2012 ACM Subject Classification Applied computing → Command and control; Computer systems
organization → Embedded systems

Keywords and phrases Model predictive control, vehicle platoon, embedded implementation, code
generation

Digital Object Identifier 10.4230/OASIcs.ASD.2019.2

Funding This work is partially supported by the H2020 projects I-MECH (GA no. 737453) and
oCPS (GA no. 674875).

1 Introduction

Vehicle platooning is an application based on Cooperative Adaptive Cruise Control (CACC)
technology, which is an extension of Adaptive Cruise Control (ACC). In ACC, the vehicle
senses the position of the preceding vehicle and adapts the speed to avoid a collision. CACC
introduces V2V messages between different vehicles. These messages have much richer
information including position, speed, acceleration or road intersection status among others.
The richer information allows the vehicles to react faster to sudden changes in the preceding

© Iñaki Martín Soroa, Amr Ibrahim, Dip Goswami, and Hong Li;
licensed under Creative Commons License CC-BY

Workshop on Autonomous Systems Design (ASD 2019).
Editors: Selma Saidi, Rolf Ernst, and Dirk Ziegenbein; Article No. 2; pp. 2:1–2:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:i.martin.soroa@studenten.tue.nl
mailto:a.ibrahim@tue.nl
mailto:d.goswami@tue.nl
mailto:Hong.r.li@nxp.nl
https://doi.org/10.4230/OASIcs.ASD.2019.2
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

2:2 Feasibility Study and Benchmarking of Embedded MPC for Vehicle Platoons

vehicles and therefore, the distance between the vehicles can be reduced which enables to
achieve better fuel efficiency and road capacity [21].

Model Predictive Control (MPC) is an optimal control strategy capable of satisfying
constraints on the states of the system (plant) and the control input. The main challenge
of MPC is its high computational requirements since it requires to solve an optimisation
problem at every time step (sample) [7]. The MPC technology is extensively used in the
chemical industry where the dynamics is generally slower. With the advent of powerful
computing abilities of modern processors, MPC is making its way into other sectors such as
the automotive industry [10]. One of the applications of MPC in the automotive industry is
vehicle platooning. MPC has already been applied to vehicle platooning without explicitly
considering constraints on the computational resources and the V2V communication time
that is present in a real implementation [6]. In a real implementation, the ECU of a vehicle,
which is an embedded device with limited resources, needs to solve the MPC optimization
fast enough to meet the timing requirements imposed by the V2V communication.

MPC has already been implemented on embedded platforms successfully for different
applications. In [31] the authors use a simple embedded device with an ARM processor
running at 48MHz with 64kB of RAM memory. They control a system consisting of 8 states,
2 inputs and a control horizon of length 20 achieving a sampling period of 4ms. In [31], Fast
Gradient Method algorithm (FGM) was used with fixed point operations and a tuned level
of sub-optimality specific for the plant. When using floating point operations and decreasing
the control horizon length to 15, it achieves a sampling time of 8ms. In [9], the authors
achieved a sampling frequency in the kHz range using a processor with a clock frequency of
1GHz with a dedicated floating point unit. When controlling a larger system they manage to
reach a sampling time of 13ms.

A number of works approached the embedded MPC problem using hardware accelerators
[5] [28] [25] [17] [14] [22] usually on a Field Programmable Gate Array (FPGA). These works
attempt to achieve sampling rates in the kHz range or control very large systems, while the
vehicle platooning problem does not require very short sampling times nor large predictive
models.

In order to solve the MPC optimisation problem an algorithm needs to be used. There
are mainly two categories of MPC algorithms – explicit and implicit. In explicit MPC the
solution is computed off-line and given to the controller as a look up table which usually
requires large memory capacity. In implicit MPC the solution is computed on-line at each
sampling period [1]. In this paper we focus on implicit MPC. Implicit MPC is the most
commonly used method and there are a number well-developed state-of-the-art algorithms.
Almost all of them can be classified in one of the following categories – Inner Point Method
(IPM) [16], Active Set Method (ASM) [8], and (Fast) Gradient Method ((F)GM) [17] [3]. We
analysed the feasibility of these algorithms with a special focus on FGM.

In order to determine if it is feasible to implement MPC for vehicle platooning on an
embedded device, timing constraints must be met. The MPC algorithm needs to be able to
compute the solution fast enough for a problem with similar dimensions and constraints as
in vehicle platooning, described below (Section 4.2). The time available for the execution
of the MPC task depends on the message rate (or sampling rate) supported by the V2V
communication and the execution time of the other tasks running on the device. Ideally the
execution time would be deterministic or bounded, which can be achieved for some of the
state-of-the-art algorithms.

We also analyse the trade-off that needs to be made to balance the control performance
and the execution time of the MPC task. We investigate the impact of the length of the
control horizon (used in the MPC optimization) on the execution time, the effect of the
algorithm choice and provide a number of guidelines for choosing the processor.

I. Martín Soroa, A. Ibrahim, D. Goswami, and H. Li 2:3

The rest of the paper is organised as follows. We describe the problem of vehicle platooning
in Section 2. In Section 3, we analyse the characteristics and the performance of a platform
suitable for being used for vehicle platooning. Next, we describe a possible implementation
for vehicle platooning and we measure the overhead introduced by the other tasks that need
to run on the selected platform in Section 4. We investigate a number of automatic C code
generation tools available for MPC in Section 5. We analyse the computational requirements
of different MPC algorithms in Section 6. Using the computational requirements of different
algorithms and the performance of the platform, we provide an analytical estimation of the
execution time on the selected platform in Section 7.1. We use the code generation tools to
run a number of template MPC algorithms on the V2V wireless node in Section 7.2. Using
the experimental and the analytical execution times we estimate the possible delays and
sampling periods that can be achieved using MPC and the trade-offs that can be made, in
Section 7.3. Finally we conclude in Section 8.

2 Vehicle platoons

2.1 V2V Communication and topology
The vehicle-to-vehicle communication (V2V) is performed following the standards of each
country, most notably the standard of the EU, ETSI-ITS, and the standard of the USA,
1609 WAVE. Both standards are based on the IEEE 802.11p protocol stack. Under IEEE
802.11p, we can reach up to 10Hz message rate when the network usage is below 70%. The
message rate can get as low as 1Hz under heavy traffic of vehicles with V2V communication
devices [13].

In this paper we consider the Predecessor-Follower (PF) topology, where each vehicle
receives messages from its predecessor (Fig. 1). Other topologies exist, such as Two-
Predecessor-Follower (TPF) [30] and Leader-Predecessor-Follower (LPF) [30].

In Fig. 1,mi is the message from the vehicle i including its speed, position and acceleration,
and ∆di is the error in distance (desired gap - actual gap) between the vehicles i and i− 1.

Δdi-1
i-2 i-1 i i+1

Δdi Δdi+1

mi-2 mi-1 mi mi+1mi-3

Figure 1 Predecessor-Follower topology.

2.2 Platoon model
The platoon model is distributed, each vehicle has a model of itself (vehicle model) and its
relation with its predecessor (inter-vehicle dynamics).

The model of the vehicle i is obtained combining a simplified model of the longitudinal
dynamics of the vehicle with the dynamics of a DC motor [27, 26], and it is given by:

ẋiv = Aivx
i
v +Bivu

i
v (1)

where Aiv and Biv are the state and input matrices respectively, uiv is the duty cycle of
the input of the motor and xiv = [ai ȧi]T is the state vector. Where ai and ȧi are the
acceleration and the rate of change of the acceleration of the vehicle i, respectively. Moreover,

ASD 2019

2:4 Feasibility Study and Benchmarking of Embedded MPC for Vehicle Platoons

the state matrix Aiv and the input vector Biv of vehicle i are defined as:

Aiv =
(

0 1
−1
τ iτ i

a

−(τ i+τ i
a)

τ iτ i
a

)
∈ R2×2, Biv =

(
0

KiKi
a

τ iτ i
a

)
∈ R2×1.

where τ i, τ ia, Ki, Ki
a are model parameters of the vehicle i.

To obtain the platoon model under the PF topology, the inter-vehicle dynamics relate
the vehicle i to the vehicle i− 1. This is done by adding two new states, ∆vi and ∆di, which
represent the speed difference and the gap error between the vehicles, respectively. They are
defined as ∆di = di − dides and ∆vi = vi−1 − vi, where ∆di is the error between the actual
gap (di) and the desired inter-vehicle gap (dides) between the vehicle i and the vehicle i− 1.
∆vi is the velocity error between the vehicle i and the vehicle i− 1, where vi denote for the
velocity of the vehicle i. di and dides are defined as dides = d0 + τhv

i and di = qi−1 − qi − Li,
where d0 is the gap between vehicles at standstill, τh is the constant headway time (the time
the vehicle i needs to reach the position of the vehicle i − 1 when d0 = 0). Li, qi are the
length and position of the vehicle i, respectively.

Combining the vehicle model with the inter-vehicle dynamics we obtain the platoon
model:

ẋip = Aipx
i
p +Bipu

i
p +Gipa

i−1 (2)

where xip = [ai ȧi ∆di ∆vi] is the state vector, ai−1 is the acceleration of the preceding
vehicle and Aip is the state matrix. The predictive model used for MPC will be obtained
based on the platoon model in Eq.(2) (see Section 4.2).

3 Embedded platform: Cohda Wireless MK5 OBU

The Cohda Wireless MK5 is a platform developed by Cohda Wireless in partnership with
NXP. It has been developed as a prototyping platform for V2V applications, such as CACC,
and other Vehicle to Everything (V2X) applications.

3.1 Hardware
The platform has one main processor, NXP i.MX6 Dual Lite @ 800MHz (dual-core processor),
paired with a communications co-processor, NXP MARS. It is equipped with 1GB of volatile
memory. With a large volatile memory, memory is not a bottleneck and we are interested
only in the computational power.

The platform has several ports and connectivity options. It can be connected to two
5.9GHz antennas, a GNSS antenna, µSD card, Ethernet port, CAN bus port and audio jack.
On top of that it has a DC power connection.

3.2 Software
The platform uses an Ubuntu distribution of Linux as its Operating System (OS). It is not a
Real-Time OS (RTOS). There are system applications available on the platform. The most
relevant are the communication stacks of the EU and the USA standards.

We also use the evaluation platform reported in [30] and available in [29], which allows to
quickly measure the string stability of the platoon and takes care of all the tasks required to
execute CACC in a modular approach. The structure of this evaluation platform is further
detailed in Section 4.

I. Martín Soroa, A. Ibrahim, D. Goswami, and H. Li 2:5

3.3 Performance evaluation

The performance is measured in millions of floating point operations per second (Mflop/s) and
millions of fixed point operations per second (Mop/s). We evaluate the average performance
and its distribution in percentiles.

The type of operations measured are fixed point and floating point additions, and fixed
point and floating point multiplications. Most MPC algorithms use only these operations.
In Table 1, the performance of the platform is shown.

Table 1 Performance of the Cohda Wireless MK5 platform.

Fixed point
addition

Fixed point
multiplication

Floating point
addition

Floating point
multiplication

Fastest 230.1 Mop/s 214.0 Mop/s 113.0 Mflop/s 88.2 Mflop/s
95th percentile* 214.0 Mop/s 200.0 Mop/s 113.0 Mflop/s 88.2 Mflop/s
Average 174.0 Mop/s 156.0 Mop/s 112.0 Mflop/s 60.0 Mflop/s
5th percentile* 200.0 Mop/s 150.0 Mop/s 103.0 Mflop/s 78.9 Mflop/s
1st percentile* 107.0 Mop/s 88.2 Mop/s 50.8 Mflop/s 47.6 Mflop/s
*The kth percentile is the number larger than k% of the measurements.

We use an internal timer for the measurement which runs at a frequency of 1MHz, while
the processor runs at 800MHz. Therefore the accuracy of our measurement is within 800
clock cycles. The first test uses a large number of operations in a loop. We used 8 × 109,
4 × 109 and 2 × 109 operations for each of the measured types. The different number of
operations allows us to confirm that the execution time is linear to the number of operations.
These measurements give us a notion of the average performance of the system.

As our system does not use a RTOS, during the time that the test executes (over 4
minutes in some cases) there are other tasks preempting the test. In order to measure the
variability of the performance we designed a second test. In this test we measure the time
needed to perform 3000 operations, and the measurement is repeated for 1 million times.
We search for the fastest iteration and the 1st, 5th and 95th percentile. If performance
requirement is higher, the device can be overclocked to reach 1GHz, and some secondary OS
tasks such as Bluetooth can be shut down to remove their influence.

4 Overall architecture

In the Fig. 2 we can see a diagram showing how the system works. We use the platform in
[30], with the MPC design in [15]. As we will use the PF strategy for the communication,
the leader sends its state to the first vehicle, and the vehicle i sends its state to the vehicle
i+ 1. In a real environment, the leader vehicle would be driven by a human driver, and the
commands control the real vehicle. In a simulation we create a profile for the acceleration
commands and actuate the model of the vehicle.

The vehicle i receives the state from the vehicle i− 1 and uses ai−1 and xip as inputs for
the MPC controller (the upper layer), which computes the desired acceleration. The desired
acceleration is used by the lower layer as reference value and outputs the duty cycle of the
input to the motor, which controls the vehicle. The state of the vehicle (sensed or simulated)
is given as an input to the two controllers and it is also sent to the next vehicle.

ASD 2019

2:6 Feasibility Study and Benchmarking of Embedded MPC for Vehicle Platoons

Leader vehicle 1st vehicle

Upper layer
MPC

Lower layer

Desired
acceleration

State of
preceding
vehicle
(Leader)

Vehicle/
Vehicle model

Motor duty
cycle

Current
vehicle
statesLower layer

Vehicle/
Vehicle model

Current
vehicle
states

Motor duty
cycle

ith vehicle

Upper layer
MPC

Lower layer

Desired
acceleration

State of
preceding
vehicle (i-1)

Vehicle/
Vehicle model

Motor duty
cycle

Current
vehicle
states

...

Communication Communication

Human driver/
Given profile

Desired
acceleration

Communication

Figure 2 Overall architecture of the system.

4.1 Lower layer controller
The lower layer controller is a state-feedback controller and it runs at a faster rate than the
upper layer with a sampling rate of 2ms [15]. The output of this controller is the motor duty
cycle which controls the vehicle.

4.2 MPC: Upper layer controller
In MPC we solve an optimisation problem by defining the following quadratic cost function
subject to specific constraints on inputs and states:

J = xiN+k|k
T
PxiN+k|k +

N−1∑
j=0

(xij+k|k
T
Qxij+k|k + uij+k|k

T
Ruij+k|k)

subject to xij+k+1|k = Φixij+k|k + Γiuij+k|k + Ψiai−1
j+k|k, j = 0, ..., N − 1

xmin ≤ xij+k|k ≤ xmax, j = 1, ..., N
umin ≤ uij+k|k ≤ umax, j = 1, ..., N (3)

where J is the cost function, N is the length of the control horizon, xij+k|k is the predicted
state vector of vehicle i after j steps computed at time k, where xik|k is the sensed state of
vehicle i. uij+k|k is the computed input vector for the vehicle i for the j step, and Q, R and
P are the weight matrices. It should be noted that a quadratic cost function is chosen so
that the problem is convex and a global minimum can be found.

In order to use MPC we must discretize the platoon model in Eq. (2) using Zero-Order
Hold (ZOH). After the discretization, the predictive model for vehicle i becomes:

xij+k+1|k = Φixij+k|k + Γiuij+k|k + Ψiai−1
j+k|k, j = 0, ..., N − 1 (4)

where xij+k|k = [aij+k|k δaij+k|k ∆dij+k|k ∆vij+k|k] represent the predicted states. uij+k|k
is the desired acceleration (the optimal control inputs that must be computed). ai−1

j+k|k is
the predicted acceleration of the preceding vehicle. We consider that the future evolution
of the acceleration of the preceding vehicle is constant. Therefore, it does not affect the
optimisation process. The predictive model has 4 states and 1 input variable. Each of the
states and the desired acceleration (ui) have an upper and a lower bound. Therefore we have
10 constraints.

I. Martín Soroa, A. Ibrahim, D. Goswami, and H. Li 2:7

The upper layer uses MPC. It receives the current state of the vehicle and the state of
the preceding vehicle, and gives the lower layer a new acceleration reference. The upper layer
runs with a sampling time of 100ms since the maximum message rate is 10Hz. At every
sample in which a new message has been received, the MPC controller computes an optimal
series of future N inputs (N is the horizon length). When the message rate is lower than the
sampling rate, the MPC controller automatically updates the desired acceleration using the
next value of the optimal series of inputs that were computed in the last sample in which a
message had been received. As the message rate can drop to 1Hz, we need the length of the
control horizon to be at least 10 while a higher N could improve the quality of the control.
We consider 10 ≤ N ≤ 20.

4.3 Execution time budget for MPC
In this section, we compute the maximum available execution time for the MPC algorithm
considering a message rate of 10Hz. That is, the time available to execute the MPC algorithm
after performing all the other system tasks – see Fig. 3. The platform needs to send and
receive messages (communication task), and compute the result of the lower layer and upper
layer controllers. The upper layer also has some overhead besides the MPC algorithm such
as updating the value of some pointers and variables like the desired acceleration. Fig. 5
shows the tasks performed by each piece of hardware. The MARS co-processor sends and
receives packages. The main processor creates the packages that need to be sent, processes
the received packages, and executes the upper and lower layer controllers.

Communication
tasks

Lower
layer (x50)

Overhead
(upper layer)

100 ms

MPC
(upper layer)

Figure 3 Execution time requirement when running on a single core.

In order to measure the contribution of each task to the total execution time, we use the
platform developed in [29] which uses a PID controller for the upper layer and a state-feedback
controller for the lower layer. We removed the logging functions and the PID controller, so
that we get a minimal version of the platform, and added time stamps to analyse the latency
of each task. Furthermore, we have modified the platform so that the tasks in the main
processor are scheduled using POSIX threads with a Fixed-Priority Preemptive Scheduler
(FPPS). For tasks with equal priority it follows a First In, First Out (FIFO) schedule. The

Upper layer
(Overhead + MPC)

Communication
tasks

Lower layer

delay

τComm τComm

τOvh+τMPC

τLL τLL τLL τLL τLL

Core 1

Core 0

Figure 4 Typical execution without OS tasks. Figure 5 Task distribution and data
flow on hardware.

ASD 2019

2:8 Feasibility Study and Benchmarking of Embedded MPC for Vehicle Platoons

OS has the highest priority, the lower layer and the (de)packetizing tasks are given an
equal medium priority, while the upper layer has the lowest priority. The processor has two
cores, making it possible to process two different tasks (threads) simultaneously. The kernel
distributes the different tasks (including the OS tasks) between the 2 cores dynamically.

In Fig. 4 we can observe the expected execution of the tasks in the absence of OS tasks.
The lower layer is represented at a lower frequency that the frequency implemented.

The results are shown in Table 2. We are mainly concerned about the tasks shown in
Fig. 3. We present the measured maximum and average latencies after 100 runs and the
execution frequency, i.e. how often does that task have to execute.

Table 2 Latency of other tasks that run on the platform.

Maximum latency Average latency Execution frequency
Lower layer controller 0.045ms 0.0151ms 500Hz
Upper layer controller
overhead 0.059ms 0.0126ms 10Hz

Communication tasks 1.063ms 0.3611ms ≤ 10Hz

With the results in Table 2 we can obtain the execution time budget for the MPC task.
In 100ms we need to perform the lower layer controller task 50 times

(500Hz
10Hz

)
, and the

communication and the upper layer controller tasks only once. We used the worst case
latencies to compute the execution time available for the MPC algorithm in the worst case.
The worst case latencies will occur when the OS tasks are running on both cores of the
processor, therefore for the worst case analysis we assume that there is only one core available
for all the tasks. eMPC , eComm, eOvh and eLL denote the maximum latency of the MPC
task, the communications tasks, the overhead of the high level controller and the low level
controller respectively.

eMPC ≤ 100ms− (eComm + eOvh + 50eLL) = 96.628ms (5)

From the above experiments, we conclude that the effects of other tasks are almost
negligible and we obtained an upper bound for the execution time. How to respect this
requirement is analysed in Section 6. The quality of the control is affected by the sensor-to-
actuator delay. Therefore, the execution time should be as short as possible.

5 Automatic C code generation for MPC

In order to facilitate implementing MPC algorithms on embedded platforms, automatic C
code generators are developed. These tools take a description of the desired MPC problem
and generate the necessary C code to solve it with a given optimisation algorithm.

Code generators are used academically and in the industry [4]. There are many tools
available. Some of them are commercial (paid) tools, e.g., ODYS [24] or FORCES [11] while
others (e.g., µAO-MPC[32], CVXGEN [20], FiOrdOs [12], jMPC [2]) are free. We used
CVXGEN, µAO-MPC and FiOrdOs in this paper since they are free and they allow to stop
executions providing a sub-optimal solution.

CVXGEN has been developed in the University of Stanford. It allows to describe an
optimisation problem in general terms, the problem description includes the dimensions of
the different matrices and vectors, and some properties such as being positively definite, or
diagonal. It does not need the exact values of each entry of the matrices. The algorithm
used is based on CVX, a solver for MATLAB. The tool is online based and free for
academic use [20].

I. Martín Soroa, A. Ibrahim, D. Goswami, and H. Li 2:9

Figure 6 Number of iterations as a function of the number of variables (nv) and constraints
(mc), reproduced from [19].

µAO-MPC has been developed in the Otto von Guericke University of Magdeburg. This
tool is a very similar to CVXGEN in its usage and flexibility. It uses a FGM algorithm for
obtaining the solution. The tool can be downloaded for free and it works using Python,
which is also a free tool [32].
FiOrdOs has been developed in ETH Zurich. This tool requires a full description of the
problem, with all the entries of the matrices before it can generate the code. It uses a
FGM algorithm. The tool is a free toolbox for MATLAB [12].

6 MPC algorithms and computational requirements

In order to estimate the execution time of different algorithms, we need to know their
complexity. The number of computations per iteration is deterministic in most algorithms,
but the number of iterations depends on the convergence speed of the problem and the initial
conditions making the total execution time unpredictable.1

IPM reaches the solution in steps towards solving the Karush-Kuhn-Tucker equations,
making few but computationally heavy iterations [19]. For IPM we used the estimate of
the number of flops shown in [19] which is also shown in Table 3. We use the Gauss-Jordan
elimination with pivoting method for solving the linear systems using the estimate given
in [19]. We assumed that division operations are equivalent to 10 multiplications. For
the number of iterations, we took an approximate value based on Fig. 6, reproduced
from [19], with 13 iterations.
ASM tries to guess the constraints that are active in the solution (Active Set) and does
it by adding the constraints one by one on every iteration [19]. For ASM we use the
estimate of the number of flops found in [19]. We made the same choices as for IPM. For
the number of iterations, we can find a direct linear relationship between the number of
decision variables, nv, and the number of iterations when looking at Fig. 6, see Table 3.
GM computes the gradient of the cost function in the current point and next, it moves
one step in that direction. It repeats the process until it finds the minimum. In the fast
variants, FGM, a sub-optimal solution is accepted as a trade-off for a faster computation
time. An important advantage of FGM is that it can give an output at any point in time,
making it possible to bound the execution time. These methods require the cost function
to be quadratic [17] [3].

1 In [23] an upper bound for the number of iterations of some algorithms is found. However, it requires
knowledge of the exact values of the predictive model and the bound is significantly larger than the
observed number of iterations [31].

ASD 2019

2:10 Feasibility Study and Benchmarking of Embedded MPC for Vehicle Platoons

For FGM we use the estimations provided in [18], which analyses several different FGM
algorithms. It analyses Bemporad’s and Richter’s algorithms, each of them with 2
alternative formulations, which give different computational requirements. The equations
used can be seen in Table 3. These estimates don’t specify the type of operations. We
assume that 50 iterations are needed, based on the experiments performed in [18], but
those values are based on a different problem than the one used in [19], therefore they
might not be comparable.

Table 3 Formulas used to compute the number of flops [8] [19] [18].

Algorithm Flops per iteration Number of
iterations

IPM 2n2
v(nc + 1) + nv(7nc + 2) + 14nc + 1+

Ma(nv) +Mm(nv) + 10(3nc + 1 +Md(nv)) 13

ASM 2n2
v + 2nv(2nc + 1)− nc +Ma(nv + 0.5nc)+

Mm(0.5nc + nv) + 10(nc +Md(nv + 0.5nc)) 2.5× nv

Bemporad’s FGM
u-formulation N2nu(2nu + 3ny + 3nc) 50

Bemporad’s FGM
xu-formulation

N(4n2
x + 6nxnu) + 6N(Nc + ny)(nx + nu)+

4Nnu(nx + nu) 50

Richter’s FGM
uy-formulation 2N2(n2

y + nuny) 50

Richter’s FGM
xuy-formulation 2N(ny + nx)(5nx + 2nu + ny) 50

In Table 3 the new variables have the following meaning:
nx: Number of states of the plant model, in this case 4.
ny: Number of outputs of the plant model, in this case 1.
nu: Number of inputs of the plant model, in this case 1.
nc: Number of inequality constraints, in this case 10.
nt: Parameter computed as nt = nu + ny + nx
nv: Parameter computed as nv = N · nu
Ma(x): Number of additions needed to solve the linear system of equations, computed
as Ma(x) = 0.5(x− 1)x(x+ 1) when using Gauss-Jordan elimination.
Mm(x): Number of multiplications needed to solve the linear system of equations,
computed as Mm(x) = 0.5x2(x+ 1) when using Gauss-Jordan elimination.
Md(x): Number of divisions needed to solve the linear system of equations, computed as
Md(x) = x when using Gauss-Jordan elimination.

The effect of varying the control horizon length for a system with 4 states, 1 input, 1 output
and 10 inequality constraints can be seen in Fig. 7. We can observe that the complexity
of some algorithms grows exponentially while in others it grows linearly. Depending on the
control horizon chosen for the application, different algorithms are recommendable.

7 Performance analysis

7.1 Estimated execution time
Using the specifications of the predictive model and the constraints in Section 4.2, taking
N = 15, and the formulas given in Table 3, we can obtain the number of operations needed
to solve MPC for vehicle platooning. Combining them with the performance of the device
(Table 1) we can estimate the execution time for each algorithm.

I. Martín Soroa, A. Ibrahim, D. Goswami, and H. Li 2:11

Figure 7 Effect of varying the length of the control horizon-Total number of flops

Table 4 Execution time estimation for different algorithms for the model described in Section
4.2 and N = 15.

Per iteration Total

Flops Time [ms]
(multiplications1)

Time [ms]
(mixed2) Flops Time [ms]

(multiplications1)
Time [ms]
(mixed2)

ASM 9.56×103 0.1593 0.1112 35.85×104 5.9750 4.1686
Bemporad’s FGM
u-formulation 9.9×103 0.1650 0.1151 49.5×104 8.2500 5.7558

Bemporad’s FGM
xu-formulation 7.92×103 0.1320 0.0921 39.6×104 6.6000 4.6047

IPM 10.11×103 0.1685 0.1176 13.14×104 2.1907 1.5284
Richter’s FGM
uy-formulation 9×103 0.1500 0.1047 45×104 7.5000 5.2326

Richter’s FGM
xuy-formulation 6.24×103 0.1040 0.0726 31.2×104 5.2000 3.6279
1 This measurement assumes that all the operations are multiplications.
2 This measurement assumes that half of the operations are additions and the other half multiplications.

In Table 4 we show the number of operations and execution time in total and per
iteration for all the considered algorithms. Two different execution times are given, one under
the assumption that all the operations are multiplications and the other assuming mixed
operations, i.e. half of the operations are additions and the other half are multiplications.

7.2 Code generation experiments
The theoretical estimations can be too optimistic, as they assume that the data is always
available, which is equivalent to having a infinitely fast memory. Using the code generation
tools described in Section 5 we run an experiment (Appendix A) on the Cohda platform,
obtaining a real execution time. The three algorithms are considered. We use approaches
based on several iterations and sub-optimality levels. Each algorithm converges to the
solution at a different speed. Therefore they need a different number of iterations. We
determined the number of iterations as the minimum necessary to reach a value within 0.001
units of the solution for a very large number of iterations, which is assumed to be the optimal
solution. This is equivalent to an error smaller that 1% in the problem used (Appendix A).

For CVXGEN the number of iterations varied with the control horizon length, being 63
for N=10, 56 for N=15 and 59 for N=20. µAO-MPC and FiOrdOs use a dual approach, with
an inner and outer loop. For µAO-MPC we needed 30 iterations for the inner loop and 30
for the outer loop. For FiOrdOs the number of iterations of the inner loop is 1, and 125 for

ASD 2019

2:12 Feasibility Study and Benchmarking of Embedded MPC for Vehicle Platoons

the outer loop for all the horizons. The time displayed in Table 5 is the average between 100
solutions. We expect that the number of iterations needed to solve the vehicle platooning
problem will be comparable to the number of iterations used in this problem.

Table 5 Execution time of different automatic code generation tools for different control horizon
lengths.

Horizon length CVXGEN µAO-MPC FiOrdOs
N=10 15.52 ms 106.150 ms 32.286 ms
N=15 26.02 ms 211.526 ms 73.632 ms
N=20 45.35 ms 358.030 ms 125.968 ms

7.3 Feasibility analysis
Following the execution diagram in Fig. 4, the delay from the sampling instant until the
new control input is computed, depends on the execution times of the upper layer and the
communication tasks. The execution time is variable due to the OS, making it impossible to
obtain an exact value. We approximate it as:

delay ≈ τMPC + τComm + τOvh (6)

where τMPC , τComm and τOvh are the average execution time of the MPC task, the commu-
nication task and the overhead of the upper layer, respectively.

Under the selected communication protocol, there is no use on having a faster sampling
rate than 10Hz, but other communication protocols could be used. Therefore we will compute
the maximum achievable sampling rate as the inverse of the delay. We consider that it is
feasible to use an algorithm if its execution time is below the budget computed in Section 4.3.

Looking at the theoretical estimates, the execution time of IPM is the shortest, while
the shortest FGM algorithm is Richter’s algorithm using the xuy-formulation. For the FGM
algorithms we don’t know the type of operations. Therefore, we use the estimate in the
case that all the operations are multiplications. For IPM the number of multiplications
and additions are very similar [19] and we use the mixed estimation. When considering the
experimental execution times, the best results are for CVXGEN for all the tested horizon
lengths. In Table 6 we present the results for the selected algorithms allowing us to make
the following observations. First, there is a significant difference in the execution time when
using different algorithms or different control horizon lengths. Second, the delay is almost
equal to the execution time of the MPC algorithm. Finally, all the selected algorithms are
feasible to be used for this problem.

7.4 Trade-off analysis
From the complexity of the different algorithms (Section 6) we observe that the size of the
predictive model and the length of the control horizon have a big impact on the complexity
of the algorithm. Generally a longer control horizon length and a more accurate predictive
model (which usually results in a larger model) give a better control performance, but
the improvement might not be sufficient to overcome the negative effects of increasing the
sensor-to-actuator delay and reducing the sampling rate.

When choosing hardware for MPC applications, the variability in the execution time must
be taken into account. In all the implicit MPC algorithms the number of iterations varies
depending on the initial conditions (making the total execution time vary), therefore it is not

I. Martín Soroa, A. Ibrahim, D. Goswami, and H. Li 2:13

Table 6 Feasibility analysis, execution time, delay and the maximum sampling period for the
selected algorithms.

Execution
time (ms) Delay (ms) Maximum sampling

period (Hz) Feasible

IPM N = 15 1.5284 1.9021 526 Yes
Richter’s FGM
xuy-formulation
N = 15

5.2000 5.5737 179 Yes

CVXGEN N = 10 15.5200 15.8937 63 Yes
CVXGEN N = 15 26.0200 26.6368 38 Yes
CVXGEN N = 20 45.3500 46.1027 22 Yes

enough to select a processor capable of meeting the timing constraints for the average case.
The processor depends on the requirements of the application, i.e. the MPC algorithm must
be guaranteed to execute within the timing constraints 90% of the times. To provide such
guarantees, it is required to perform multiple experiments under different initial conditions
and obtain a probabilistic distribution of the execution time.

Finally, the MPC task can be parallelized when running on a multi-core processor. This
can improve the execution time of MPC but it must be done ensuring that the task in charge
of receiving new messages is able to run. Every received message needs to be processed and
it must be recalled that every vehicle broadcasts several messages per second, making it
possible to receive several hundreds of messages per second when there is traffic.

8 Conclusion

In this paper we analysed the feasibility of employing embedded MPC for vehicle platooning
and provided an overview of the trade-offs that can be done. We obtained a bound for the
maximum execution time admissible when taking into consideration the other system tasks
that run on the platform. We have shown that it is feasible in two different ways. First,
we analysed the computational complexity of different MPC algorithms and compared it
to the performance of the device, obtaining a theoretical execution time. Second, we used
automatic C code generation tools to measure the real execution time of MPC algorithms
for different control horizon lengths. We compared the execution times to the execution time
bounds, showing that it is feasible to use embedded MPC for vehicle platooning. In this
process, we have benchmarked the performance of various MPC algorithms with respect to
parameters such as the horizon length and the number of the states.

References
1 Alessandro Alessio and Alberto Bemporad. A Survey on Explicit Model Predictive Control.

In Nonlinear Model Predictive Control, LNCIS 384, pages 345–369. Springer-Verlag, Berlin
Heidelberg, 2009.

2 Auckland University of Technology. jMPC Toolbox. URL: http://www.i2c2.aut.ac.nz/
Resources/Software/jMPCToolbox.html.

3 Alberto Bemporad and Panagiotis Patrinos. Simple and Certifiable Quadratic Programming
Algorithms for Embedded Linear Model Predictive Control. IFAC Proceedings Volumes,
45(17):14–20, 2012.

4 Daniele Bernardini. ODYS and GM bring online MPC to production! | ODYS. URL:
http://www.odys.it/odys-and-gm-bring-online-mpc-to-production/.

ASD 2019

http://www.i2c2.aut.ac.nz/Resources/Software/jMPCToolbox.html
http://www.i2c2.aut.ac.nz/Resources/Software/jMPCToolbox.html
http://www.odys.it/odys-and-gm-bring-online-mpc-to-production/

2:14 Feasibility Study and Benchmarking of Embedded MPC for Vehicle Platoons

5 L.G. Bleris, P.D. Vouzis, M.G. Arnold, and M.V. Kothare. A co-processor FPGA platform for
the implementation of real-time model predictive control. In American Control Conference
(ACC), pages 1912–1917, 2006.

6 Catalin Braescu, Razvan C. Rafaila, Alexandru Tiganasu, Anca Maxim, and Constantin F.
Caruntu. Distributed model predictive control algorithm for vehicle platooning. International
Conference on System Theory, Control and Computing (ICSTCC), pages 657–662, 2016.

7 Eduardo F. Camacho and Carlos Bordons Alba. Model Predictive Control. Springer-Verlag
London, London, 2007.

8 Gionata Cimini and Alberto Bemporad. Exact Complexity Certification of Active-Set Methods
for Quadratic Programming. IEEE Transactions on Automatic Control, 62(12):6094–6109,
2017.

9 J Currie, A Prince-Pike, and D I Wilson. Auto-code generation for fast embedded Model
Predictive Controllers. International Conference on Mechatronics and Machine Vision in
Practice (M2VIP), pages 116–122, 2012.

10 Alexander Domahidi, Hans Joachim Ferreau, Stefan Almer, Helfried Peyrl, and Juan Luis
Jerez. Survey of industrial applications of embedded model predictive control. European
Control Conference (ECC), pages 601–601, 2016.

11 Embotech. FORCES Pro code generator. URL: https://www.embotech.com/forces-pro.
12 ETH Zurich. FiOrdOs - Code Generation for First-Order Methods. URL: http://fiordos.

ethz.ch/dokuwiki/doku.php.
13 European Telecommunications Standards Institute. Intelligent Transport Systems (ITS);

Harmonized Channel Specifications for Intelligent Transport Systems operating in the 5 GHz
frequency band, 2012.

14 S. Gopi, V. M. Vaidyan, and M. V. Vaidyan. Implementation of FPGA based model predictive
control for MIMO systems. In IEEE Conference on Systems, Process Control (ICSPC), pages
21–24, 2013.

15 Amr Ibrahim, Chetan Belagal Math, Dip Goswami, Twan Basten, and Hong Li. Co-simulation
Framework for Control, Communication and Traffic for Vehicle Platoons. Euromicro Conference
on Digital System Design (DSD), pages 352–356, August 2018.

16 Stephen J. Wright. Applying new optimization algorithms to model predictive control.
International Conference on Chemical Process Control – CPC V, pages 147–155, 1996.

17 Juan L Jerez, Paul J Goulart, Stefan Richter, George A Constantinides, Eric C Kerrigan, and
Manfred Morari. Embedded Predictive Control on an FPGA using the Fast Gradient Method.
European Control Conference (ECC), pages 3614–3620, 2013.

18 Dimitris Kouzoupis. Complexity of First-Order Methods for Fast Embedded Model Predictive
Control. Master’s thesis, ETH Zurich, 2014.

19 Mark S. K. Lau, S. P. Yue, K. V. Ling, and J. M. Maciejkowski. A comparison of interior point
and active set methods for FPGA implementation of Model Predictive Control. Proceedings
of the European Control Conference, pages 3–8, 2009.

20 Jacob Mattingley and Stephen Boyd. CVXGEN: A code generator for embedded convex optim-
ization. Optimization and Engineering, 13(1):1–27, 2012. doi:10.1007/s11081-011-9176-9.

21 V. Milanés, S. E. Shladover, J. Spring, C. Nowakowski, H. Kawazoe, and M. Nakamura.
Cooperative Adaptive Cruise Control in Real Traffic Situations. IEEE Transactions on
Intelligent Transportation Systems, 15(1):296–305, 2014.

22 Khalil Mohamed, Ahmed El Mahdy, and Mohamed Refai. Model Predictive Control Using
FPGA. International Journal of Control Theory and Computer Modeling, 5(2), 2015.

23 Yurii Nesterov. Introductory Lectures on Convex Optimization, volume 87 of Applied Optimiz-
ation. Springer US, 2004.

24 ODYS. ODYS QP solver, 2018. URL: http://www.odys.it/qp/.
25 Yasser Shoukry, M. Watheq El-Kharashi, and Sherif Hammad. MPC-On-chip: An embedded

GPC coprocessor for automotive active suspension systems. IEEE Embedded Systems Letters,
2(2):31–34, 2010.

https://www.embotech.com/forces-pro
http://fiordos.ethz.ch/dokuwiki/doku.php
http://fiordos.ethz.ch/dokuwiki/doku.php
http://dx.doi.org/10.1007/s11081-011-9176-9
http://www.odys.it/qp/

I. Martín Soroa, A. Ibrahim, D. Goswami, and H. Li 2:15

26 M Tsujii, H Takeuchi, K Oda, and M Ohba. Application of self-tuning to automotive cruise
control. In American Control Conference, 1990, pages 1843–1848. IEEE, 1990.

27 A Galip Ulsoy, Huei Peng, and Melih Çakmakci. Automotive control systems. Cambridge
University Press, 2012.

28 Adrian G Wills, Geoff Knagge, and Brett Ninness. Fast Linear Model Predictive Control Via
Custom Integrated Circuit Architecture. IEEE Transactions on control systems technology,
20(1):59–71, 2012.

29 Sijie Zhu. NXP Platoon Control Algorithm Evaluation Platform. URL: https://github.com/
sijiezhu/NXP-Platoon-Control-Algorithm-Evaluation-Platform.

30 Sijie Zhu. Model-in-the-loop Experiments and Analysis of Platoon Control Algorithms. Master’s
thesis, Technische Universiteit Eindhoven, 2018. URL: https://research.tue.nl/en/student
Theses/model-in-the-loop-experiments-and-analysis-of-platoon-control-alg.

31 P. Zometa, M. Kogel, T. Faulwasser, and R. Findeisen. On Time versus Space and Related
Problems. In American Control Conference (ACC), pages 57–64, 2012.

32 P Zometa, M Kögel, and R Findeisen. µAO-MPC Documentation. Technical report, Otto von
Guericke Univertität Magdeburg, 2016. URL: http://ifatwww.et.uni-magdeburg.de/syst/
research/muAO-MPC/doc/muaompc-1.0.pdf.

A Parameters used in experimental analysis

Q =

[1.89 0 0 0
0 1.90 0 0
0 0 1.13 0
0 0 0 1.21

]
Γ =

[1.75
1.90
0.69
1.61

]
x0 =

[0.20
0.83
−0.84
0.04

]
xmax =

[0.61
0.23
−0.55
−1.10

]

P =

[1.44 0 0 0
0 1.03 0 0
0 0 1.46 0
0 0 0 1.65

]
Φ =

[−0.88 0.71 0.36 −1.90
0.24 −0.96 −0.34 −0.87
0.77 −0.24 −1.37 0.18
1.12 −0.77 −1.11 −0.45

]
xmin =

[−1.63
−100
−100
−100

]

R = 1.05 umax = 1.38 umin = −0.49 Ψ = [0 0 0 0]

ASD 2019

https://github.com/sijiezhu/NXP-Platoon-Control-Algorithm-Evaluation-Platform
https://github.com/sijiezhu/NXP-Platoon-Control-Algorithm-Evaluation-Platform
https://research.tue.nl/en/studentTheses/model-in-the-loop-experiments-and-analysis-of-platoon-control-alg
https://research.tue.nl/en/studentTheses/model-in-the-loop-experiments-and-analysis-of-platoon-control-alg
http://ifatwww.et.uni-magdeburg.de/syst/research/muAO-MPC/doc/muaompc-1.0.pdf
http://ifatwww.et.uni-magdeburg.de/syst/research/muAO-MPC/doc/muaompc-1.0.pdf

	Introduction
	Vehicle platoons
	V2V Communication and topology
	Platoon model

	Embedded platform: Cohda Wireless MK5 OBU
	Hardware
	Software
	Performance evaluation

	Overall architecture
	Lower layer controller
	MPC: Upper layer controller
	Execution time budget for MPC

	Automatic C code generation for MPC
	MPC algorithms and computational requirements
	Performance analysis
	Estimated execution time
	Code generation experiments
	Feasibility analysis
	Trade-off analysis

	Conclusion
	Parameters used in experimental analysis

