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Summary

Automation of ultrasound image acquisition and interpretation for dose
guidance in prostate cancer radiotherapy workflows

Radiotherapy (RT) is one of the possible curative treatment options for prostate
cancer. It aims at irradiating tumor tissue, while at the same time sparing normal
tissue as much as possible. Frequent imaging during the course of the RT treatment
can be used to guide radiation dose and so increase delivery to the tumor tissue
and decrease toxicity.

Ultrasound (US) imaging allows real-time volumetric imaging in the RT
environment. In addition, this image modality facilitates relatively fast image
acquisition, it does not deliver any potentially harmful radiation to the patient
and it is cost-effective. Despite these advantages, the use of US imaging for
guidance in prostate cancer RT workflows is presently not widespread. This can
be partially attributed to the need for a trained operator who needs to interpret
the US images during manual image acquisition in order to verify if the correct
anatomical structures are visualized with sufficient image quality. In addition,
electron density information from a CT scan is currently still necessary to
calculate radiation dose. This implies that a CT scan has to be acquired to
understand if re-planning of a RT treatment plan could be beneficial.

The aim of this PhD work was to optimize the US guided RT workflow of prostate
cancer patients by automating steps of this workflow and to explore if US imaging
can help to understand whether RT treatment plan adaptation is necessary. This
could make the use of US imaging more appealing and allow prostate cancer
patients to fully benefit from the unique characteristics of this imaging modality.

In the first part of this thesis, a brief introduction is given on US imaging and
RT treatment in general (Chapter 1) and a more in-depth review is provided on
the use of US imaging in external beam RT workflows of prostate cancer patients
(Chapter 2).

The second part comprises the work related to automation of US image
acquisition and interpretation. Chapter 3 details a proof-of-concept study, which
was performed on a male pelvic phantom. In this study, an algorithm is
introduced that uses anatomical information derived from a CT scan, to
automatically propose an US probe setup to the operator. This probe setup
should allow visualization of the relevant anatomical structures. For evaluation
purposes, several proposed probe setups were reproduced using a robotic arm
and US volumes of the phantom were acquired. Quantitative evaluation and
visual inspection of these volumes showed that the algorithm was able to
propose probe setups that fulfill the clinical requirements. In addition, the
experience was gained that the currently used robotic arm was not suitable for
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US probe positioning on the body of a patient, due to the occurrence of
unexpected arm movements.

In Chapter 4, the phantom work was used as a basis to create an algorithm that can
propose a prostate cancer patient-specific transperineal US (TPUS) probe setup.
This algorithm also performs the pre-processing by first identifying the perineal
skin area of the patient, which is accessible for TPUS probe placement in clinical
practice, using a simulation CT scan. Subsequently, it proposes several possible
probe setups on this skin area and selects the optimal setup using anatomical
structure delineations corresponding to the CT scan. In order to test the algorithm,
patient-specific probe setups for three prostate cancer patients were proposed.
These setups were then compared to the setups used by radiation oncologists
during actual TPUS image acquisitions of these patients using a mechanical arm,
instead of a robotic arm. This comparison revealed that the algorithm seems able
to propose setups that allow visualization of 94% of the anatomical structures
that were also visualized by the radiation oncologist. In addition, the algorithm-
proposed setups allowed visualization of 100% of the anatomical structures that
are of interest for US guided RT.

Chapter 5 introduces the first step towards fully automatic interpretation of US
images. To allow for US image acquisition during a treatment fraction, the US
probe would need to be positioned on the body of the patient prior to the
treatment commencement using, for example, a mechanical arm, as the operator
cannot be present in the room during radiation dose delivery. Changes in
anatomical structures or small motion of the patient during the treatment
delivery can compromise US image quality, which requires identification. This
chapter details a prototype deep learning algorithm that can automatically assign
a quality score to 2D TPUS images of the male pelvic region. This quality score
gives information on the usability of the specific image in the US guided RT
workflow. The promising results show that the algorithm can achieve an accuracy
of 94% which is comparable with the three experts (accuracy range: 92% - 97%)
who were consulted in this study.

In the third part of this thesis, the work related to obtaining CT electron density
information without actually acquiring a CT scan is described. Chapter 6
proposes a new concept workflow where deformable image registration between
two transabdominal US (TAUS) volumes, acquired at simulation stage and prior
to a treatment fraction, is performed. The deformation field so obtained is then
applied to the simulation CT scan, resulting in the creation of a pseudo-CT scan.
This workflow has been applied to image data of three prostate cancer patients,
who had images acquired during several time points. Comparison of the created
pseudo-CT scans and available ground truth CT scans showed improvements up
to 11.2% in gamma failure for dose in the prostate and up to 20.5% improvement
in gamma failure for Hounsfield units in anus and rectum. These results seem to
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confirm the hypothesis that the pseudo-CT scan represents the anatomy of the
patient at treatment stage better than the simulation CT scan does.

In Chapter 6 the deformation field between the two US volumes was created using
only deformable image registration, while varying the registration parameters
up to a limited extend. These parameters, such as, the number of iterations can
impact the performance of the registration algorithm significantly. For this reason,
in Chapter 7 a larger part of the registration parameter space were explored. In
addition, six additional approaches to create the pseudo-CT scans were used.
These approaches did not only include deformable registration, but also only
rigid registration or a combination of both. This parameter space exploration and
application of additional approaches was tested on image data from one prostate
cancer patient, who had images available at five different time points. It was
shown that at least four out of eight approaches resulted in more representative
pseudo-CT scans with an average Dice similarity coefficient improvement of 40.1%
(range: 4.3% - 126.5%) in comparison with the corresponding simulation CT scans.

Finally, in Chapter 8 the results presented in this thesis are thoroughly discussed
and a vision is given for the future use of US imaging for guidance in prostate
cancer RT workflows, as well as its use for guidance during other medical
procedures.
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Samenvatting

Automatisering van acquisitie en interpretatie van echobeelden voor
dosisgestuurde radiotherapie behandeling van prostaatkanker

Radiotherapie (RT) is één van de behandelmethodes voor gelokaliseerde
prostaatkanker die potentieel tot genezing kunnen leiden. Het doel van deze
behandelmethode is om tumorweefsel te bestralen, terwijl tegelijkertijd normaal
weefsel zo veel mogelijk wordt gespaard. Medische beelden die gedurende het
RT-behandeltraject worden gemaakt, kunnen gebruikt worden om de
stralingsdosis te sturen. Dit kan de stralingsafgifte aan de tumor verhogen en de
radiotoxiciteit van het omliggende weefsel verlagen.

Echografie maakt het mogelijk om real-time volumetrische beelden te maken in
een RT-omgeving. Daarnaast faciliteert deze beeldmodaliteit een relatief snelle
beeldvorming, maakt het geen gebruik van straling die potentieel schadelijk is
voor de patiënt en is het kosteneffectief. Ondanks deze voordelen is het gebruik
van echografie voor sturing van stralingsdosis gedurende RT-procedures voor
prostaatkanker niet gangbaar. Dit kan deels worden toegeschreven aan het feit
dat een getrainde operator de echobeelden gedurende de handmatige acquisitie
moet interpreteren om te verifiëren dat de juiste anatomische structuren in beeld
zijn gebracht en dat de beeldkwaliteit voldoende is. Daarbij is, op dit moment, de
elektronendichtheidsinformatie van een CT-scan nog steeds nodig om
stralingsdosisberekeningen te kunnen uitvoeren. Dit impliceert dat een CT-scan
gemaakt moet worden om te achterhalen of een patiënt baat zal hebben bij het
herplannen van een RT-behandelplan.

Het doel van dit promotie-onderzoek was het optimaliseren van echogestuurde
RT-procedures voor prostaatkankerpatiënten. Hiervoor zijn verschillende stappen
in deze RT-procedures geautomatiseerd en is er onderzocht of echografie gebruikt
kan worden om te beslissen of het herplannen van een RT-behandelplan nodig
is. Beide aspecten zouden het gebruik van echografie aantrekkelijker kunnen
maken en prostaatkankerpatiënten de mogelijkheid bieden om te profiteren van
de unieke karakteristieken van deze beeldmodaliteit.

In het eerste deel van dit proefschrift wordt een introductie gegeven over
echografie en RT-behandelingen in het algemeen (Hoofdstuk 1). In Hoofdstuk 2
is een gedetailleerder overzicht te vinden van het huidige gebruik van echografie
gedurende uitwendige RT-procedures van prostaatkankerpatiënten.

Het automatiseren van de acquisitie en interpretatie van echobeelden is
beschreven in het tweede deel van dit proefschrift. In Hoofdstuk 3 is een
conceptstudie beschreven, die is uitgevoerd op een fantoom van de mannelijke
pelvis. In deze studie wordt een algoritme geïntroduceerd dat gebruik maakt van
de anatomische informatie verkregen van een CT-scan om automatisch een
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geschikte echoprobe-opstelling aan de operator te suggereren. Deze
probe-opstelling moet het visualiseren van de relevante anatomische structuren
mogelijk maken. Ter evaluatie is een robotarm gebruikt om verschillende
probe-opstellingen te reproduceren en zijn er vervolgens echovolumes van het
fantoom gemaakt. Kwantitatieve evaluatie en visuele inspectie van deze volumes
laten zien dat het algoritme in staat is om probe-opstellingen te suggereren die
voldoen aan de klinische eisen. Daarbij kon worden geconcludeerd dat de
gebruikte robotarm niet geschikt is om de echoprobe te positioneren op het
lichaam van de patiënt, vanwege het feit dat de arm af en toe ongecontroleerd
beweegt.

In Hoofdstuk 4 is het fantoomwerk gebruikt als basis om een algoritme te
ontwerpen dat een transperineale echoprobe-opstelling voor een specifieke
prostaakankerpatiënt kan suggereren. Dit algoritme identificeert allereerst het
perineale huidoppervlak van de patiënt dat toegankelijk is voor plaatsing van de
transperineale echoprobe in een klinische setting. Vervolgens suggereert het
algoritme verscheidene probe-opstellingen op dit huidoppervlak en selecteert het
de optimale opstelling, waarbij gebruik wordt gemaakt van segmentaties van de
anatomische structuren van de bijbehorende CT-scan. Er zijn patiëntspecifieke
probe-opstellingen gesuggereerd voor drie prostaatkankerpatiënten om het
algoritme te testen. Deze opstellingen zijn vervolgens vergeleken met de
opstellingen die daadwerkelijk zijn gebruikt door radiotherapeut-oncologen
gedurende het maken van transperineale echobeelden van deze patiënten.
Hierbij is gebruik gemaakt van een mechanische arm in plaats van een robotische
arm. De vergelijkingen laten zien dat het algoritme in staat is om een opstelling te
suggereren die het potentieel mogelijk maakt om 94% van de anatomische
structureren, die ook door de radiotherapeut-oncoloog in beeld zijn gebracht, te
visualiseren. Daarnaast lijkt de opstelling die is gevonden door het algoritme
visualisatie van 100% van de anatomische structuren, die relevant zijn voor echo
gestuurde RT, mogelijk te maken.

De eerste stap in de richting van volledig geautomatiseerde interpretatie van
echobeelden is omschreven in Hoofdstuk 5. Teneinde echobeelden gedurende de
bestraling te maken, is het noodzakelijk dat de echoprobe voor de start van de
behandeling op het lichaam van de patiënt wordt gepositioneerd met behulp van
bijvoorbeeld een mechanische arm. Dit is vereist omdat de operator niet in de
behandelkamer kan blijven gedurende de bestraling. Veranderingen van de
anatomische structuren of kleine bewegingen van de patiënt gedurende de
bestraling kunnen de echobeeldkwaliteit verslechteren. Het is belangrijk om deze
kwaliteitsverslechtering tijdig te identificeren. In dit hoofdstuk wordt een
prototype van een deep learning algoritme beschreven dat automatisch een
kwaliteitsscore kan toeschrijven aan 2D echobeelden van de mannelijke pelvis.
De hoogte van deze kwaliteitsscore geeft inzicht in de bruikbaarheid van het
desbetreffende beeld in de echogestuurde RT procedure. De veelbelovende
resultaten laten zien dat het algoritme een nauwkeurigheid kan behalen van 94%
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welke vergelijkbaar is met de drie experts (nauwkeurigheidsbereik: 92% - 97%)
die in deze studie geconsulteerd zijn.

Het derde deel van dit proefschrift omvat de studies waarin
CT-elektronendichtheid, noodzakelijk voor dosisberekeningen, wordt verkregen
zonder daadwerkelijk een CT-scan te maken. In Hoofdstuk 6 wordt een
workflow geïntroduceerd waarin elastische registratie van twee echobeelden, die
gemaakt zijn gedurende de simulatiefase van de behandeling en voor een
behandelfractie wordt uitgevoerd. Het deformatieveld dat op deze manier is
verkregen wordt vervolgens toegepast op de simulatie CT-scan, waarbij een
pseudo CT-scan wordt gecreëerd. Deze workflow is toegepast op data van drie
prostaatkankerpatiënten waarvan beelden beschikbaar waren op verschillende
tijdspunten. De vergelijking van de gecreëerde pseudo CT-scans en de gouden
standaard CT-scan liet verbeteringen tot 11.2% in gammafalen voor dosis in de
prostaat en verbeteringen tot 20.5% in gammafalen voor Hounsfield units in anus
en rectum zien. Dit lijkt de hypothese, dat de pseudo CT-scan de anatomie van de
patiënt gedurende de behandelfase beter representeert dan de simulatie CT-scan,
te bevestigen.

In Hoofdstuk 6 wordt gebruik gemaakt van elastische registratie om het
deformatieveld tussen de twee echovolumes te creëren, waarbij er slechts gebruik
wordt gemaakt van een gelimiteerd aantal parameters. Deze parameters, zoals
het aantal iteraties, kunnen significante invloed hebben op de prestatie van het
registratie-algoritme. Daarom is in Hoofdstuk 7 een groter deel van de
registratieparameter-ruimte verkend. Ook zijn er zes extra strategieën
toegevoegd om de pseudo CT-scans mee te creëren. Hierbij werd niet alleen
gebruik gemaakt van elastische registratie, maar ook van rigide registratie of een
combinatie van beide. Het verkennen van de parameterruimte en het gebruik van
extra strategieën is getest op beelddata van één prostaatkankerpatiënt, die
beelden beschikbaar had op vijf verschillende tijdspunten. De resultaten lieten
zien dat minimaal vier van de in totaal acht onderzochte strategieën tot
representatievere pseudo CT-scans leiden met een gemiddelde Dice similarity
coefficient verbetering van 40.1% (bereik: 4.3% - 126.5%) in vergelijking met de
bijhorende simulatie CT-scans.

Als laatste worden in Hoofdstuk 8 de resultaten die in dit proefschrift
gepresenteerd zijn bediscussieerd en wordt er een visie gegeven voor zowel het
toekomstig gebruik van echografie voor dosisgestuurde RT voor
prostaatkankerbehandeling als voor het gebruik van echografie voor sturing
gedurende andere medische procedures.
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1.1 Prostate cancer
Prostate cancer is the most frequently diagnosed cancer in men worldwide. The
risk that a man develops prostate cancer over a lifetime is 1 in 6 [1]. In 2015, more
than 1.6 million men worldwide were diagnosed with this type of cancer, which
often arises in the gland cells of the prostate (adenocarcinoma) [2]. It tends to
develop in elderly men and progress slowly. Therefore it is not unlikely that the
cancer will never cause serious illness, as the patient may die of other causes
before the cancer grows to problematic proportions. For this reason, one of the
treatment options for localized prostate cancer is active surveillance. This
approach involves close monitoring of the cancer by regular testing, for example,
by using a Prostate-Specific Antigen (PSA) blood test. Maurice et al. [3] used data
from the US National Cancer Base (2010-2011) to examine the use of active
surveillance among 189,768 prostate cancer patients. Depending on the chosen
guidelines, 10.7% - 39.8% of these patients were eligible for active surveillance.
However, the majority of these patients, as well as the patients that were not
eligible for active surveillance, received a different type of treatment. This could
be, for example, a surgery during which the prostate together with surrounding
tissues is resected from the body (radical prostatectomy). This is a highly invasive
treatment option with potential side-effects as infections, damage to nearby
organs and bleedings. A recent study has shown that treating prostate cancer
with radiotherapy (RT) yields similar outcomes as with the radical prostatectomy,
but without the occurrence of severe side-effects [4].

1.2 Radiotherapy treatment
The aim of RT treatment is to irradiate tumor tissue with ionizing radiation, while
sparing the surrounding normal tissue as much as possible. The RT treatment plan
is typically designed based on a computed tomography (CT) scan of the patient.
During the design process, radiation dose prescriptions and delineations of the
treatment target and the organs at risk are also taken into account. Subsequently,
the radiation can be delivered to prostate cancer patients using two approaches.

In brachytherapy radioactive sources or seeds are implanted inside the treatment
target. This allows for RT treatment from the inside out. In low-dose rate (LDR)
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brachytherapy of the prostate, these radioactive sources are permanently
implanted into the prostate tissue, while in high-dose rate (HDR) brachytherapy
the sources are only temporarily placed into the prostate using implanted
needles [5]. In external beam RT (EBRT) the treatment target is irradiated from
the outside using ionizing radiation generated by a linear accelerator (Linac). The
gantry of this Linac usually rotates around the patient, while collimators inside
the gantry shape the radiation beam. Both intensity-modulated RT (IMRT) and
volumetric-modulated arc therapy (VMAT) allow radiation delivery from several
different angles, resulting in a more favorable dose distribution in comparison
with the more traditional 3D conformal RT (3D-CRT) [6].

Which RT treatment option or combination of options is chosen for a patient is
based on the risk classification of this patient. There are a number of guidelines
available (e.g. [7]) that allow this classification of a prostate cancer patient in low,
intermediate or high risk groups based on pretreatment factors including PSA
level, biopsy Gleason score and clinical tumor staging. Grimm et al. [8] evaluated
studies published from 2000 to 2011 in which biochemical (PSA) free progression
of prostate cancer patients, who were treated with a variety of treatment options
or a combination of these options. The findings of this evaluation suggest that
brachytherapy approaches (LDR or HDR) provide a superior outcome for low-
risk patients in comparison with other treatment options. For intermediate-risk
patients, both brachytherapy alone or in combination with EBRT seems to be
superior to the use of EBRT alone and to the use of other treatment options. Finally,
for high-risk patients a combination of EBRT and brachytherapy appears superior
to these localized treatment options alone.

In the remainder of this thesis, the focus will lie on EBRT treatment of prostate
cancer and it will be referred to as RT treatment. In RT treatment, the radiation
dose is often delivered to the patient in multiple treatment fractions, to allow
normal tissue to recover in between the fractions. A daily dose of 1.8 to 2.0 Gy
for 39-45 fractions [9] is used in standard RT, which implies that the patients will
receive radiation for several weeks in a row.

Figure 1.1: Typical RT workflow that includes CT scan acquisition for treatment plan design
and delivery of the radiation dose during several treatment fractions.
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A crucial aspect of a RT workflow is the patient positioning. Prior to each treatment
fraction, the patient should be positioned the same way as he was during the CT
scan acquisition, as this is the position that the treatment plan was prepared on.
Currently, several solutions are clinically available to assist during the correct
positioning of prostate cancer patients, such as skin markers on the body of the
patient [10] and cone-beam CT imaging [11] with or without the use of implanted
fiducial markers [12].

The available solutions might not be suited to fully identify soft tissue
deformations, such as prostate shape and position changes that can occur due to
a different bladder or rectal filling [13]. In addition, the solutions are primarily
useful for patient positioning in between treatment fractions (inter-fraction),
while also during a treatment fraction (intra-fraction) tissue distributions can
change. Ballhausen et al. [14] have shown that the intra-fraction motion of the
prostate can be considered a time-dependent random walk. According to the
authors, the prostate tends to move away from the treatment isocenter and this
drift increases over time. This seems to be confirmed by other studies [15], [16],
including a more recent work of Ballhausen et al. [17]. In this work, the prostate
remained within 1 mm of the setup position in 58% of the treatment time during
IMRT (relatively long treatment time) and in 72% of the treatment time during
VMAT (relatively short treatment time). The prostate remained within 2 mm of
the setup position in 79% or 92% of the time, respectively.

If these changes would not be taken into account and the patient would be treated
using the initially designed treatment plan, this could result in a suboptimal dose
deposition in the target and extra undesired dose delivery to the surrounding
organs at risk. According to the recent paper of Ballhausen et al. [17] future work
is required to calculate the dosimetric consequences for the prostate and the organs
at risk due to position and shape changes of these anatomical structures.

In the past, Li et al. [18] used the electromagnetic beacons of the Calypso system
(Calypso Medical Technologies, Inc., Seattle, WA, USA) to show that the dose
effects of intra-fraction prostate motion on individual treatment fractions, during
which large motion occurs, are substantial. In the end, these effects become
insignificant over the course of the whole treatment. However, with the beacons
it is not possible to identify motion of the organs at risk and deformation of both
prostate and the organs at risk. In addition, it has been suggested that using a
hypo-fractionation scheme in the RT treatment could result in the same or better
outcomes for the prostate cancer patients [19]. In such a scheme, a higher
radiation dose per fraction is delivered in less treatment fractions. This would
most probably lead to longer treatment times per fraction, which could result in
more motion of the anatomical structures and so different dose consequences.
This implies that, in order to understand the dosimetric consequences of the
intra-fractional tissue distribution changes, another solution is desired, which
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allows for soft tissue deformation identification, preferably using prolonged
real-time imaging during the fraction.

1.3 Ultrasound imaging
Ultrasound (US) imaging is mostly known by the general public as the imaging
modality that is used to image a fetus in the uterus of its mother. However, also
for several other medical examinations of, for example, heart and liver, this image
modality is a widely used diagnostic tool of choice. During US image acquisition
the operator positions a probe equipped with piezoelectric elements on the body
of the patient. These elements create high-frequency (1 - 18 MHz is clinically
available) sound waves which are transmitted into the body. On their way through
the body, the US waves encounter tissues which vary in physical properties, such
as density. As acoustic impedance is defined as Z = ρ cwith ρ is the physical mass
density and c is the speed of sound (SOS) in the tissue, also the acoustic impedance
varies. This difference in acoustic impedance results in a partial reflection of the
US waves when they encounter an interface between tissues. The echo times (or
time of flight [TOF]) and amplitudes of these reflected waves are subsequently
received and recorded by the US probe. Under the assumption of a fixed SOS
(typically 1540 m/s [20]), it is then possible to convert the TOFs into depths. In
the end, the echo amplitudes are plotted as a function of these depths, resulting in
the reconstruction of the US image (see Fig. 1.2 for two examples). More in depth
physics theory on US imaging can be found in literature (e.g. [21] and [22]).

(A) (B)

Figure 1.2: Examples of US images. (A) Apical four chamber view of the heart.
(B) Transperineal US image of the male pelvic region.

US imaging has a unique combination of characteristics which makes it a
potentially powerful imaging modality. It allows for real-time volumetric
imaging without delivery of additional radiation dose to the patient. Therefore,
frequent or prolonged image acquisition will not cause any harm to the patient.
In addition, it allows for relatively fast and cheap image acquisition and most US
imaging systems are positioned on an easily portable cart. Finally, US imaging
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allows for acquisition of images with a good soft tissue contrast, potentially
visualizing anatomical structures which cannot be identified on, for example, CT
scans. However, also several challenges are associated with US imaging in
general. For example, anatomical structures that are shielded by air or bone
usually cannot be imaged with sufficient image quality and the imaging target
needs to be within the US imaging depth range.

1.4 US guided RT and its challenges
Currently, US imaging is not solely used as a diagnostic tool anymore, but
increasingly also as a tool for guidance during various medical procedures. One
could think of using US guidance during, for example, catheter placement [23],
but also during a RT workflow [24], [25]. Over the years, a small number of
systems have been made commercially available that allowed intra- and/or
inter-fraction motion monitoring of the prostate during a RT workflow using
either transabdominal US (TAUS) or transperineal US (TPUS) imaging. To the
best of my knowledge, the Clarity system (TAUS) and the Autoscan system
(TPUS) from Elekta (Stockholm, Sweden) are currently still available on the
market and are used mostly in recent publications.

In addition to the general challenges, which were described in the previous section,
there are some other challenges that are less problematic during diagnostic US
imaging, but become more serious when US imaging is used for guidance. For
example, establishing a good acoustic coupling between the probe and the skin
of the patient is crucial to allow the sound waves to penetrate into the body. US
gel is often used as a medium to establish this coupling. However, US gel might
be partially absorbed by the skin or spread out too much during prolonged use
(which is more likely during guidance), causing a change in characteristics and so
a potential decrease of coupling ability.

Also, a trained operator is needed during the US image acquisition to verify if
the correct anatomical structures are visualized with sufficient image quality. This
implies that either a trained operator needs to be present in addition to the clinician
who performs the procedure, or the clinician has to undergo the training with a
steep learning curve himself. For RT specifically, this implies that the technicians
who usually are present during the dose delivery, would need to be trained how
to acquire and use the US images during the course of the treatment.

Finally, US images cannot provide electron density information which is still
necessary for radiation dose calculations and so for RT treatment plan adaptation.
Nowadays, this density information can only be provided by a CT scan. This
implies that the US images should be somehow registered to a CT scan, to be of
real use during a RT workflow.
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1.5 Problem statement and objective of this thesis
The use of US imaging for guidance during prostate cancer RT workflows is
presently not widespread. This can be partially attributed to the need for a trained
operator and the fact that electron density information from a CT scan is still
necessary to understand if RT treatment plan re-planning could be beneficial. The
aim of this PhD work was to optimize the US guided RT workflow of prostate
cancer patients by automating steps of this workflow and to explore if US imaging
can help to understand if RT treatment plan adaptation is necessary. This could
make the use of US imaging more appealing and allow prostate cancer patients to
fully benefit from the unique characteristics of this imaging modality.

In this thesis, three aspects of the US guided RT workflow of prostate cancer
patients have been investigated:

US image acquisition
Can a prostate cancer patient-specific US probe setup be proposed prior to US image
acquisition, which would allow visualization of the clinically required anatomical
structures?

US image interpretation
Can a deep learning algorithm be trained to automatically assign a score to US images
based on their quality or, in other words, on their usability during the US guided RT
workflow?

Electron density information retrieval
Can US images be used to derive electron density information, necessary for radiation
dose calculations at treatment stage, without the acquisition of an additional CT scan?

To investigate the aspect of US image acquisition, a phantom study and a patient
study were performed (detailed in Chapter 3 and Chapter 4 of this thesis). In
these studies, algorithms were developed and tested, which propose a
patient-specific US probe setup based on the simulation CT scan of that specific
patient. The second aspect, related to US image interpretation, is covered in
Chapter 5. In the described study, a deep learning algorithm was implemented
and trained to automatically assign a quality score to 2D TPUS images. For
evaluation purposes, the scoring performance of the algorithm was then
compared with the scoring performance of three experts. The final aspect,
involving retrieval of electron density information, was investigated in two
studies (see Chapter 6 and Chapter 7). In both studies, (deformable) image
registration of pairs of US volumes was used to create a pseudo-CT scan. In the
end, an assessment showed if the pseudo-CT scan did represent the anatomy of
the patient well. This was done to understand if the scan could be used to derive
the necessary electron density information. A more detailed outline of this PhD
thesis can be found in the next section.

6



1.6. Outline of the thesis

1.6 Outline of the thesis
In this first chapter (Chapter 1) a brief introduction is given on prostate cancer, US
imaging and RT workflows, as well as a problem statement and a thesis outline. In
Chapter 2 a more in-depth review on the use of US imaging in external beam RT
workflows of prostate cancer patients is given. After the two introductory chapters,
the second part of the thesis comprises the work that is related to automation of
US image acquisition and interpretation.

Chapter 3 details a proof-of-concept study, which was performed on a male
pelvic phantom. In this study, an algorithm is introduced that uses anatomical
information derived from a CT scan to automatically propose an US probe setup
to the operator. This probe setup should allow visualization of the relevant
anatomical structures. For evaluation purposes, several proposed probe setups
have been reproduced using a robotic arm and US volumes of the phantom have
been acquired. Quantitative evaluation and visual inspection of these volumes
showed that the algorithm was able to propose probe setups that fulfill the
clinical requirements. In addition, the experience was gained that the currently
used robotic arm was not suitable for US probe positioning on the body of a
patient, due to the occurrence of unexpected arm movements.

In Chapter 4, the phantom work was used as a basis to create an algorithm that
can propose a prostate cancer patient-specific TPUS probe setup. This algorithm
also takes care of the pre-processing by identifying the perineal skin area of the
patient, which is accessible for TPUS probe placement in clinical practice, using a
simulation CT scan. Subsequently, it proposes several possible probe setups on
this skin area and selects the optimal setup using anatomical structure delineations
corresponding to the CT scan. In order to test the algorithm, patient-specific probe
setups for three prostate cancer patients were proposed. These setups were then
compared to the setups used by radiation oncologists during actual TPUS image
acquisitions of these patients using a mechanical arm, instead of a robotic arm.
This comparison revealed that the algorithm seems to be able to propose setups
that could allow the visualization of all anatomical structures that are of interest
for US guided RT.

Chapter 5 introduces the first step towards fully automatic interpretation of US
images. To allow for US image acquisition during a treatment fraction, the US
probe would need to be positioned on the body of the patient prior to the treatment
commencement using e.g. a mechanical arm, as the operator cannot be present
in the room during radiation dose delivery. Changes in anatomical structures or
small motion of the patient during the treatment delivery can compromise US
image quality, which requires identification. This chapter details a prototype deep
learning algorithm that can automatically assign a quality score to 2D US images
of the male pelvic region. This quality score gives information on the usability of
the specific image in the US guided RT workflow. The obtained promising results
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show that the algorithm can achieve an accuracy which is comparable with three
experts who were consulted in this study.

In the third part of this thesis, the work related to obtaining CT electron density
information, which is necessary for dose calculations, without actually acquiring
a CT scan is described. Chapter 6 introduces a new concept workflow where
deformable image registration between two US volumes, acquired at simulation
stage and prior to a treatment fraction, is performed. The deformation field so
obtained is then applied to the simulation CT scan, resulting in the creation of a
pseudo-CT scan. This workflow has been applied to image data of three prostate
cancer patients who had images acquired during several time points. Comparison
of the created pseudo-CT scans and available ground truth CT scans seemed to
confirm the hypothesis that the pseudo-CT scan represents the patient’s anatomy
at treatment stage better, than the simulation CT scan does.

In Chapter 6 the deformation field between the two US volumes was created
using only deformable image registration, while exploring a limited number of
parameters. These parameters, such as number of iterations can impact the
performance of the registration algorithm significantly. For this reason, in
Chapter 7 a larger part of the registration parameter space has been explored. In
addition, six additional approaches to create the pseudo-CT scans were used.
These approaches did not only include deformable registration, but also only
rigid registration or a combination of both. This parameter space exploration and
application of additional approaches was tested on image data from one prostate
cancer patient, who had images available at five different time points. It was
shown that at least four out of eight approaches resulted in more representative
pseudo-CT scans.

Finally, in Chapter 8 the results presented in this thesis are thoroughly discussed
and a vision is given for the future use of US imaging for guidance in prostate
cancer RT workflows as well as its use for guidance during other medical
procedures.
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external beam radiotherapy

Abstract
External beam radiotherapy (EBRT) is one of the curative treatment options for
prostate cancer patients. The aim of this treatment option is to irradiate tumor
tissue, while sparing normal tissue as much as possible. Frequent imaging during
the course of the treatment (image guided radiotherapy) allows for determination
of the location and shape of the prostate (target) and of the organs at risk. This
information is used to increase accuracy in radiation dose delivery resulting in
better tumor control and lower toxicity.

Ultrasound imaging is harmless for the patient, it is cost-effective and it allows
for real-time volumetric organ tracking. For these reasons, it is an ideal technique
for image guidance during EBRT workflows. Review papers have been published
in which the use of ultrasound imaging in EBRT workflows for different cancer
sites (prostate, breast, etc.) was extensively covered. This new review paper aims
at providing the readers with an update on the current status for prostate cancer
ultrasound guided EBRT treatments.

This chapter has been published as: S.M. Camps, D. Fontanarosa, P.H.N. de With, F. Verhaegen, B.G.L.
Vanneste, "The use of ultrasound imaging in the external beam radiotherapy workflow of prostate
cancer patients." BioMed Research International, vol. 2018.
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2.1 Introduction
Prostate cancer is the most frequently diagnosed cancer in men worldwide. It
accounted for 1.6 million new diagnoses and 366,000 deaths in 2015 [1]. In the
next decades, the incidence of prostate cancer might increase due to the possible
linkage of this cancer with risk factors associated with economic development
(e.g. excess body weight and physical inactivity) [2] and the aging population [3].

One of the curative treatment modalities for prostate cancer is external beam
radiotherapy (EBRT) [3]. The aim of this modality is to irradiate tumor tissue
using ionizing radiation generated by an X-ray source (e.g. linear accelerator).
At the same time, normal tissue must be spared as much as possible to avoid
excessive toxicity. EBRT is one of the most common forms of RT treatment and
therefore it is often denoted as just radiotherapy (RT) in literature (as will be done
in the remainder of this chapter).

Prior research using kV radiography has shown [4], [5] that frequent imaging of
the patient’s anatomical structures of interest during the course of the prostate RT
treatment (image guided RT, IGRT) can improve radiation targeting and tumor
control. This improved targeting could allow reduction of safety margins, with
consequently decreased toxicity. Next to kV radiographs also other imaging
modalities have been used for IGRT, such as cone beam CT (CBCT) in
combination with fiducial markers [6], magnetic resonance imaging (MRI) [7],
implantation of electromagnetic transponders [8] and ultrasound (US)
imaging [9].

In this review paper the focus solely lies on the use of US imaging during the
IGRT workflow of prostate cancer patients. US imaging typically provides good
soft tissue contrast and therefore it is a modality that allows contouring of
structures such as the prostate [10]. It is also a real-time image modality, because
the images are reconstructed and visualized directly during the acquisition. Some
of the currently available US systems potentially even allow real-time volumetric
imaging and soft-tissue tracking, using a matrix probe (e.g. X6-1 xMatrix array
probe, center frequency: 3.2 MHz, Philips Healthcare, Bothell, WA, United States),
or a mechanically swept probe (e.g. Clarity Autoscan probe, m4DC7-3/40, center
frequency: 5 MHz, Sonix Series; Ultrasonix Medical Corporation, Richmond, BC,
Canada).

Some of the limitations and challenges associated with US imaging include the
inaccessibility of tissue shielded by bone or air, the proneness for imaging artifacts
and the user dependency [11], due to its mostly manual operation. However, in
comparison with other imaging modalities US is cost-effective and it does not
deliver ionizing radiation to the patient. The combination of these characteristics
with the real-time volumetric tracking ability makes US imaging a suitable image
modality for inter- and intra-fraction organ motion monitoring during the course
of a prostate RT treatment [12]. US imaging could then be used either as standalone
system or possibly in combination with other imaging modalities.
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In 2015 and 2016 two review articles [13], [14] were published in which the use of
US for IGRT of different cancer sites (e.g. prostate, breast and liver) was extensively
covered. The current review article updates this work for prostate cancer. After
an introductory summary on US techniques and US systems that can potentially
be used during the RT prostate cancer patient workflow, a comprehensive update
on the latest developments in this field is presented.

2.2 EBRT workflow and US imaging
2.2.1 EBRT workflow
The typical RT workflow of prostate cancer patients consists of several steps,
either belonging to the simulation stage (preparatory phase) or the treatment
stage (radiation dose delivery phase) (Fig. 2.1). The first step involves the
invasive implantation of fiducial markers in the prostate gland. These markers
are considered a surrogate for the target and are currently used to monitor its
motion between different treatment fractions using X-ray imaging.

Skin
marks

Delineation
target

Fiducials
(CBCT)

Bones
(CBCT)

Treatment
plan

design

Fiducial
markers

Patient
setup

Dose
delivery Etc.

Fraction 1 Fraction 2

Patient
setup

Dose
delivery

Imaging
patient

anatomy

CT scan

Delineation
OARMRI scan

Dose
calculation

Simulation stage Treatment stage

Figure 2.1: Typical RT workflow for prostate cancer patients. During the simulation stage,
fiducial markers are implanted in the prostate, images of the patient’s anatomy are acquired
and a treatment plan is designed. Subsequently, the dose is delivered to the patient in
several treatment fractions, while ensuring that the patient is setup as accurately as possible.

Subsequently, a computed tomography (CT) scan, and increasingly more often
an MRI scan, are acquired. The CT scan provides electron-density information
allowing for treatment plan preparation, based on prescribed radiation dose and
delineations of the anatomical structures of interest (target and organs at risk
[OARs]). In case also an MRI is acquired, it is registered with the CT scan based on
the fiducial markers [15], which can be visualized with both imaging modalities.
Then, the prostate (target) is delineated on the MRI instead of on the CT scan. As
the volumes are registered, the delineation can be transferred to the CT scan and
used during the treatment plan preparation. MRI-based delineation is preferred
as MRI usually allows for a more accurate delineation of the prostate than the
CT [16]–[18].

After finalizing the treatment plan design, the radiation dose will be delivered to
the patient in multiple daily treatment fractions (up to 45) during 1-2 months [3].
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The setup of the patient prior to each of these treatment fractions is an important
step in the RT workflow. This procedure must be as accurate as possible to
reproduce the setup at simulation stage, on which the treatment plan was
designed.

Nowadays, setting up the patient is typically assisted by the use of skin marks
on the patient’s body [19], the previously mentioned fiducial markers [20] and
CBCT [21]. However, even if the patient seems to be correctly aligned, internal
soft-tissue deformations may still occur. The position and shape of the prostate
can change, due to a different filling of the bladder and rectum [22]. To account for
these deviations from the simulation CT, a safety margin is usually added to the
treatment target [23]. Unfortunately, this leads to a larger volume being irradiated,
potentially including larger portions of OARs.

Monitoring the position and shape of the prostate during the course of the RT
treatment could potentially improve the accuracy of the radiation dose delivery
and, in the end, potentially even allow for a margin reduction. In the ideal case,
this prostate monitoring would not only include monitoring between different
fractions (inter-fraction), but also during a treatment fraction (intra-fraction) [14].
As noted before, US imaging could be a suitable imaging modality for this
purpose.

2.2.2 US imaging in RT workflow
US imaging makes use of a probe equipped with piezoelectric elements to create
high-frequency sound waves and transmit these into the body. On their way
through the body, these waves encounter interfaces between different tissues
and scattering objects. Due to the differences in acoustic impedance between the
tissues at each side of this interface, and between the scattering objects and the
surrounding tissue, a part of the US waves is reflected, while the remaining waves
keep penetrating deeper into the body. The reflected waves are received by the
probe, processed and combined to generate an image.

As air reflects US waves very strongly, the presence of air between the probe and
the body of the patient will prevent sufficient penetration of the waves into the
body, which significantly degrades the image quality. It is therefore crucial to
establish sufficient acoustic coupling between the probe and the body. For this
purpose, a coupling medium, such as US gel or water is typically used.

Several US probes with different shapes and characteristics are commercially
available for the different procedures possible with this technology. To image the
prostate and OARs during the RT workflow, three US imaging techniques are
presently used in clinical practice. These techniques and how they can potentially
improve the accuracy of radiation dose delivery are described in the next sections.
We refer to the literature (e.g. [24], [25]) for more general details on the physics
theory and technology of US imaging.
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A. Transrectal US imaging
Transrectal US (TRUS) imaging requires positioning of the probe through the anus
inside the rectum (Fig. 2.2A) and is therefore a low invasive imaging procedure.
As the prostate is located in close proximity of the rectum, TRUS allows imaging
of the prostate with a good image quality (Fig. 2.3A) [26]. Challenges that can
occur while making use of TRUS imaging are rectal filling, which can be removed
using an enema [27] and the potential presence of air in the rectum, which results
in a poor acoustic coupling between the probe and the body of the patient.

In the EBRT workflow, TRUS imaging is currently used to guide the fiducial
marker placement during the simulation stage (Fig. 2.4) [28]. The invasive
character of this US modality makes it less suitable for frequent imaging during
the course of the treatment. In addition, the presence of the probe inside the
rectum being potentially in the path of the radiation treatment beam (Fig. 2.2A),
raises issues as well. For this reason, no research seems to have been conducted
on the use of TRUS for inter- and intra-fraction organ motion monitoring during
prostate EBRT.

Radiation beam

(A)

Radiation beam

(B)
Radiation beam

(C)

Figure 2.2: US probe setup using three US imaging techniques. (A) TRUS, (B) TAUS and
(C) TPUS with the yellow beam indicating a possible location of a radiation beam during a
treatment fraction.

B. Transabdominal US imaging
Transabdominal US (TAUS) imaging involves the positioning of the US probe on
the abdomen (Fig. 2.2B) and it is therefore a non-invasive imaging modality. It is
capable of measuring the same prostate volumes as TRUS imaging (considered
the standard) [29] and it makes use of the acoustic window of the bladder for
prostate visualization (Fig. 2.3B). For this reason, TAUS requires a reasonably full
bladder, which can lead to discomfort for the patients. However, a filled bladder is
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often requested during the RT treatment to prevent the whole bladder wall from
being irradiated and to push the intestines away from the high dose regions.

During TAUS imaging, the probe is located relatively far from the prostate, which
might influence the quality of the acquired images. Especially the acquisition of
TAUS images of obese patients is a challenge [30]. Adipose tissue attenuates the US
waves and increases the possibility for imaging artifacts, which can significantly
degrade the image quality. Unfortunately, it is a challenge to predict the degree
of adipose attenuation and the associated image quality degradation, due to the
dependence on patient-specific characteristics, such as fat distribution [31].

The probe setup on the body of the patient during TAUS imaging, makes this
imaging modality suitable for inter-fraction monitoring. However, it is more
challenging to use TAUS imaging for intra-fraction monitoring (Fig. 2.4), as the
probe is potentially located in the path of the radiation beam, especially for
rotational therapy (Fig. 2.2B). Ways to overcome this challenge are currently not
available in clinical practice, although they are being investigated. In Section 2.6
of this paper, the recent developments in this field will be discussed.

a c

(A)

a

b

(B)

a

b

c

(C)

Figure 2.3: Three US techniques suitable for prostate and OARs imaging (A) TRUS,
(B) TAUS and (C) TPUS with (a) prostate and with (b) bladder and (c) rectum which
can partially be seen.

In the past 20 years, three systems were commercially available that allowed
inter-fraction monitoring of the prostate during the RT workflow by means of
TAUS imaging: SonArray system (Varian Medical Systems, Palo Alto, CA, USA), B-
mode Acquisition and Targeting (BAT) system (Best Nomos, Pittsburgh, PA, USA)
and the Clarity system (Elekta, Stockholm, Sweden, formerly called Restitu and
commercialized by Resonant Medical, Montreal, QC, Canada). To our knowledge,
only the Clarity system is still available on the market and as there have been
papers published on this system in the last years, it will be covered in this chapter.

The BAT system was only used in one study [32] since the publication of the
previously mentioned review papers [13], [14]. In this study a comparison was
made between the Clarity system and the BAT system, resulting in a good
agreement between both. As the BAT system was extensively covered in the
previous review papers, it will not be discussed further in this work.
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In the RT workflow, a freehand sweep using a 2D TAUS probe (C5-2/60, center
frequency: 3.5 MHz, Sonix Series; Ultrasonix Medical Corporation, Richmond, BC,
Canada) can be acquired by the Clarity system during the simulation stage. Due
to the use of a probe localization system, it is possible to reconstruct the sweeps
such that a 3D TAUS volume is created. The same procedure is repeated prior
to each treatment fraction. The requirement for manual sweep acquisition makes
the Clarity system inherently sensitive to uncertainties associated with operator
variability and probe pressure. These issues will be covered in more detail in
Section 2.5.

Comparison of the US volumes acquired at treatment stage and the reference US
volume acquired at simulation stage, allows the calculation and correction of inter-
fractional prostate motion [12]. Besides the fact that the US probe is potentially
located in the path of the radiation beam, the need of an operator performing the
manual sweep for the 3D TAUS volume reconstruction, makes this system not
suitable for intra-fraction monitoring.

Treatment
plan

design

Fiducial
markers

Patient
setup

Dose
delivery Etc.

Patient
setup

Dose
delivery

Imaging
patient

anatomy

TAUSrefTRUS TPUS TPUS

TPUSTPUS

TAUS TAUS

TPUSref

Fraction 1 Fraction 2

Simulation stage Treatment stage

Figure 2.4: RT workflow of prostate cancer patients with US imaging implemented at
several steps. The fiducial marker implantation is currently performed under TRUS
guidance. The acquisition of the reference TAUS or TPUS images at simulation stage
and also the acquisition of TAUS and TPUS prior to dose delivery, can provide valuable
information for inter-fraction prostate motion correction. Finally, during dose delivery
TPUS imaging could provide information on intra-fraction prostate motion.

C. Transperineal US imaging
Transperineal US (TPUS) imaging is a non-invasive imaging modality, as it
involves the positioning of the US probe on the perineum of the patient
(Fig. 2.2C). Also this imaging modality is capable of measuring the same prostate
volumes as TRUS imaging [33]. TPUS imaging does not exploit the acoustic
window of the bladder to obtain images of the prostate (Fig. 2.3C) and therefore it
requires a less strict bladder filling protocol. A semi-filled bladder is still
beneficial since it yields good imaging contrast distal to the prostate. In addition,
as the distance between the prostate and the perineum is smaller, a relatively
good image quality can potentially be achieved. However, just like with TAUS
imaging, the body composition of the patient can affect the image quality. Finally,
due to the fact that the probe setup does not interfere with the radiation beam
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(Fig. 2.2C), TPUS imaging can potentially be used also for intra-fraction
monitoring of the prostate (Fig. 2.4).

Currently there is only one commercial system available that enables the inter-
and intra-fraction prostate motion monitoring during the RT workflow using
TPUS imaging: Clarity Autoscan (Elekta, Stockholm, Sweden) [12]. This system is
an extension of the Clarity system as described above. Like the Clarity system it
employs a 2D probe (m4DC7-3/40, center frequency: 5 MHz, Sonix Series;
Ultrasonix Medical Corporation, Richmond, BC, Canada). However, the
Autoscan probe is mounted in a housing which also comprises a motorized
control of the sweeping motion. This automation of the sweeping motion makes a
manual sweep superfluous.

The Autoscan probe which can be localized in the room by a probe tracking
system, is attached to a baseplate on the CT or on the linear accelerator (Linac)
couch during the procedure (Fig. 2.5), allowing positioning and locking of the
probe for TPUS imaging. The use of the baseplate and the automatically
performed sweeping motion potentially reduce the operator dependence. The
operator dependence will be covered in more detail in Section 2.5.

a

b

Figure 2.5: Clarity Autoscan system setup with (a) probe and (b) baseplate.

The Clarity Autoscan system follows the TPUS workflow, as represented in Fig. 2.4.
First, a 3D TPUS volume is acquired at simulation stage. Then, prior to the dose
delivery, a full sweep is acquired and reconstructed. Comparison of this full sweep
with the image acquired at simulation allows the calculation of a required couch
shift to account for inter-fraction prostate motion.

During the radiation dose delivery, continuous volumetric imaging using the US
probe is performed. This allows position monitoring of the prostate in 3D. The
therapist can interrupt the treatment and perform a couch correction, in case the
motion in a certain Cartesian direction is exceeded for a certain amount of time.
These motion direction and time thresholds can be set by the operator prior to the
first treatment delivery [12].
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2.3 Inter-fraction monitoring
2.3.1 Fiducial markers
As already introduced in Section 2.2, currently 3-4 fiducial markers are implanted
inside the prostate prior to the start of the treatment. The most frequently used
markers are made of gold and provide a surrogate for the prostate position. The
markers are visible using kV imaging modalities (such as CBCT or 2D X-ray
radiographs), but can also cause metal-induced image artifacts [20].

The implantation procedure is often performed under TRUS guidance and
involves invasively positioning the markers in the prostate through the perineum
or the rectum [34]. The procedure can be considered as well tolerated by the
majority of patients [28], [35], but it is definitely not without risks. One study [36]
even suggests that the risk associated with the implantation of the markers
through the rectum is still underestimated. An overall rate of symptomatic
infection with the fiducial marker implantation was reported to be 7.7% with one
third requiring hospital admission.

The use of fiducial markers during the RT workflow is based on the assumption
that the marker position inside the prostate will not change during the whole
course of the treatment, from the simulation stage until the final treatment fraction.
Changes in anatomy and physiology, however, can potentially cause or mimic
marker migration [37]. Moreover, studies have shown that the presence of fiducial
markers in the prostate can affect the dose deposition [38] and that imaging the
fiducial markers using CBCT adds a non-negligible dose to the patient [39].

Therefore, inter-fraction motion monitoring should be ideally performed with a
non-invasive image modality that does not require the presence of these fiducial
markers inside the prostate. In this regard, US imaging is an excellent candidate.
In the next section studies are discussed which used TAUS or TPUS imaging for
inter-fraction motion monitoring of the prostate.

2.3.2 TAUS and TPUS imaging
In Table 2.1 the studies are reported that compared the use of TAUS (Clarity
system) or TPUS (Clarity Autoscan system) with other imaging modalities for
inter-fraction prostate monitoring. As the work of Tas et al. [40] only includes data
from one prostate cancer patient, it is excluded from this table. The studies
indicated with an asterisk (*) were included in the previously mentioned review
papers [13], [14]. However, they have been added to this work to provide a
complete overview.

The older studies primarily focused on TAUS imaging. In these studies, 2D
techniques [11], [41], [42] and volumetric imaging techniques [43]–[46] were used
for comparison with the TAUS imaging. One study [47] also compared the results
of a surface imaging system (AlignRT, VisionRT, London, UK) with TAUS
imaging. The four most recent studies [48]–[51] examined the use of TPUS
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imaging in comparison with volumetric imaging only, such as CBCT and an
additionally acquired planning CT.

All studies (TAUS and TPUS) reported the differences (using mean ± standard
deviation (SD) or error notation including mean, systematic and random
error [23]) between the US imaging technique and another image modality. The
reported mean differences for the anterior-posterior (AP), left-right (LR) and
superior-inferior (SI) directions were in 9 out of 11 studies in the absolute range
of 0-3 mm. Some studies also reported the Bland-Altman 95% limits of agreement
(LoA) [52] and/or the ranges of the measured differences. For the studies that did
not report the LoA, the ranges are detailed in the final column of Table 2.1. The
largest range difference was reported by Robinson et al. [44], ranging between 1.3
mm and 61.4 mm.

The Bland-Altman LoAs are detailed in the final column of Table 2.1 and were
reported by 5 out of 12 studies. The LoA (bias ± 1.96·SD) are a measure for the
inter-changeability of two methods or systems. If the limits are smaller than or
equal to an a-priori defined tolerance, one method can be used inter-changeably
with the other. The TPUS studies (min LoA: 3.2 mm; max LoA: 9.4 mm) tend to
report slightly lower LoA values than the TAUS studies (min LoA: 5.3 mm; max
LoA: 11.7 mm). Considering that the prostate safety margins currently used in
clinical practice (using fiducial markers) range from 3 to 10 mm [53], neither TAUS
nor TPUS could be considered inter-changeable with the imaging techniques they
have been compared with. However, this does not automatically imply that the US
techniques perform worse than the comparison technique, simply because there
is no recognized ground truth. Therefore, potential inaccuracies in the imaging
modality that the US is compared with can influence the results and associated
conclusions.

The absence of ground truth is also reflected in conflicting conclusions regarding
the potential performance of US imaging in the RT workflow. For example,
Li et al. [45] concluded that it is feasible to use TAUS imaging for image guidance
during the prostate RT workflow and that this image modality appears
comparable to CBCT when used for the same purpose. On the other hand,
Fargier-Voiron et al. [46] concluded that TAUS imaging cannot replace CBCT
without increasing treatment margins. These conclusions seem to differ
significantly, while the reported mean differences between the reference imaging
modality and TAUS imaging are comparable.

In general, it seems that the studies investigating the use of TPUS imaging are more
optimistic about the accuracy, inter-changeability and usability in comparison to
the TAUS imaging studies. For example, Trivedi et al. [50], conclude that TPUS
imaging provides excellent imaging of the prostate and comparable localization
results. Also Li et al. [51] conclude that TPUS is a feasible image modality for IGRT
and has a good accuracy.
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In conclusion, different opinions exist in the literature regarding the comparability
between US (TAUS and TPUS) and other imaging modalities used for image
guidance during the RT workflow. For this reason, more research is necessary
before final conclusions can be drawn about the usability of US imaging in the
prostate IGRT workflow. Also, it is very important that US imaging is standardized
to reduce the operator dependency (see Section 2.5).

2.4 Intra-fraction monitoring
As discussed in the introduction section, the position and shape of the prostate
can change, due to e.g. different bladder or rectum fillings. This phenomenon can
occur not only between treatment fractions, but potentially also during a treatment
slot. Intra-fractional prostate motion has been investigated in several studies
using, e.g. the Calypso localization system (Calypso Medical Technologies, Inc.,
Seattle, WA, USA) (e.g. [8] and [54]). This system is based on the electromagnetic
detection of beacon transponders which need to be implanted in the prostate.
Calypso provides continuous, real-time localization of the prostate surrogates and
it has been shown to have a sub-millimeter accuracy in a phantom [55].

These transponders need to be implanted in the prostate and, in addition, can
cause image artifacts on MRI that could be used for treatment response assessment.
In addition, an antenna which is necessary for the localization of the beacons is
present in the path of the radiation beam. Finally, assumptions are needed to
determine a relation between the position of the transponders and the shape and
location of the prostate, making the Calypso system not a real volumetric tracking
system.

As the Clarity Autoscan system (TPUS) does not involve implantation of
transponders in the prostate, it allows for real volumetric tracking of the prostate.
In addition, during the procedure no equipment is present in the beam path,
which potentially makes it a more favorable solution for intra-fraction prostate
motion tracking in comparison to the Calypso system. Abramowitz et al. [56]
found a good agreement between the Clarity Autoscan system and the Calypso
system, while examining the ability of both systems to track a prostate-like
sphere in a phantom.

The accuracy and precision of the Clarity Autoscan system have been evaluated
in a study using a male pelvic phantom [57]. In this study, a latency of 223 ± 45.2
milliseconds was reported between the motion of the phantom and the US
tracking. In addition, a mean position error of 0.23 mm (LR) and 0.45 mm (SI)
was reported. These positional and timing accuracies were found to be acceptable
under the simulated treatment conditions examining, among others, the
performance of the system while the radiation beam was on and while the image
quality was degraded by the introduction of an air gap between the probe and
the surface of the phantom. This was done to assess tracking performance under
worse image quality conditions.
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In the literature, three papers [58]–[60] and one abstract [61] are available in which
intra-fraction prostate monitoring was clinically investigated using the Clarity
Autoscan system. The authors of these publications reported different metrics.
For example, Richardson et al. [60] reported the total frequency of intrafraction
prostate displacements per direction for different thresholds, while Baker et al. [59]
reported the percentage of fractions with displacements larger than 2 mm. These
differences make it difficult to compare the results directly.

Ballhausen et al. [58] investigated data from 6 prostate cancer patients. This data
was used to verify their hypothesis that the intra-fraction motion of the prostate
can be modeled as a time-dependent ’random walk’ [62]. It was shown that the
prostate tends to move away from the treatment iso-center during a fraction
and that this drift away from the iso-center increases over time. These findings
imply that a shorter dose delivery time could be favorable. Such a reduction
of the treatment time can be achieved by using e.g. volumetric modulated arc
therapy (VMAT) or RapidArc Radiotherapy Technology (see [3] for more details
on radiation techniques).

Table 2.2: Studies reporting on the use of TPUS imaging with the Clarity Autoscan system
for intra-fraction prostate motion monitoring. The first column details the first author and
publication year. The second column details the used system, while the third and fourth
column indicate the number of patients and scans examined, respectively. The fifth column
contains the examined time intervals in seconds, while the final column details some results
and conclusions.

First System # pts # US Time [sec] Results and conclusions
author scans

Baker
(2016) [59] TPUS 10 51 120-150

– Largest displacement (2.8
mm) in posterior direction

– Displacement insignificant
during treatment time

– Displacement increases over
time

Richardson
(2017) [60] TPUS 20 526 385

– Posterior motion seems most
common

– 35% of patients displacement
> 10 mm

– Duration of displacement
varies considerably between
patients

Guillet
(2017) [61] TPUS 10 330 140 (+ 120 setup)

290 (+ 120 setup)

– Largest movement in AP
direction

– Dosimetric impact increases
with treatment time duration
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Baker et al. [59] investigated the prostate intra-fraction motion during a time
interval corresponding to a beam-on time for RapidArc (120-150 seconds) (see
Table 2.2). A tolerance of 2 mm was considered, as this value is perceived to be
clinically irrelevant according to the British Ionization Radiation Medical
Exposure Regulations 2000 (IRMER 2000). In the study, maximal intra-fractional
displacements of -0.2 ± 1.1 mm (AP), -0.2 ± 0.8 mm (LR) and +0.2 ± 0.9 mm (SI)
were found. The largest displacement of 2.8 mm was measured in the posterior
direction.

Also, displacements larger than 2 mm were measured for 10% (AP), 2% (LR) and
4% (SI) of the examined fractions. The authors concluded that the displacement
of the prostate is insignificant during the measured time interval. However, the
conclusion was also drawn that the displacement increases over time, which is
line with the findings of Ballhausen et al. [58].

Richardson et al. [60] instead used the Clarity Autoscan system to assess the intra-
fraction prostate motion during intensity-modulated radiotherapy (IMRT) with
static beams from different angles, which consequently has a longer treatment
time (reported mean of 385 seconds). In this case, the authors considered three
different thresholds; 3 mm (fine tolerance), 7 mm (future planning target volume)
and 10 mm (current planning target volume). In addition to a technical overview,
also the first clinical experiences of the physicians were captured in a letter [63]
and article [64].

Also in this study, the motion of the prostate in the posterior direction seems to be
the most common (Table 2.2). All patients experienced at least one displacement
larger than 3 mm and 35% of the patients experienced one displacement larger
than 10 mm. These higher rates of motion in comparison with [59] can potentially
be explained by the fact that the evaluated time interval was much longer (385
seconds versus 120-150 seconds). In the study of Richardson et al. [60] also the
duration of the intra-fraction prostate displacement was calculated as a proportion
of the total treatment time. This duration varied considerably between patients.
For example, for motion larger than 3 mm in the posterior direction, durations
from 2% of the treatment time up to 92% of the treatment time were observed for
individual patients.

Finally, also one abstract was published by Guillet et al. [61] in which the
dosimetric impact of the intra-fraction motion was investigated and in which also
some prostate movement results were reported. Also in this work, the largest
movements were reported in the AP direction (Table 2.2), with 18% of the short
treatment sessions (140 seconds) and 31% of the longer treatment sessions (290
seconds) displaying motions larger than 3 mm. In addition, in this work it was
also shown that the dosimetric impact of the intra-fractional motion increases
with the treatment time duration.
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2.5 Operator dependece
Currently, the operator who acquires the US images in the clinic (not only in the
RT environment) may need to (manually) place the US probe on the body of
the patient, interpret the live images and then decide if the correct anatomical
structures are visualized with sufficient image quality. This makes US imaging
operator-dependent and this dependence may cause significant variability in the
quality of the acquired US images and thus influence the ability to locate and
track the prostate and OARs. Section 2.5.1 discusses the studies that investigated
prostate displacement induced by probe pressure in both TAUS and TPUS. Inter-
and intra-operator variability is detailed in Section 2.5.2.

2.5.1 Probe pressure effects
As introduced previously, the Clarity system requires the acquisition of a manual
sweep along the abdomen of the patient using the TAUS probe prior to dose
delivery. The acquired image can then be used for inter-fraction motion correction.
Subsequently, the probe is removed from the body of the patient and the patient is
irradiated. In case the prostate is displaced due to probe pressure, it might move to
a different position when the probe is removed from the body. This displacement
after the probe removal is not accounted for in the inter-fraction motion correction,
which can lead to a suboptimal radiation dose delivery.

Table 2.3 details studies that investigated prostate displacement due to probe
pressure. Two out of three TAUS studies used a relative method to assess the
prostate displacement. For example, Van der Meer et al. [11] acquired images at no
pressure (reference situation - probe touching the skin) and subsequently acquired
images at low pressure, intermediate pressure and high pressure. To determine
the displacement due to probe pressure the location of the prostate was compared
to the reference situation.

Baker et al. [65] assessed the effect of TAUS probe positioning using TPUS imaging.
In this work, a reference image was acquired using just a TPUS probe without
the TAUS probe actually being in place on the body of the patient. The average
displacement vector of the prostate found by Baker et al. [65] was significantly
lower than the displacement found in the other studies (1.3 mm versus 2.5 mm
and 3.0 mm). The studies concluded that even though the prostate displacements
are small, a minimal pressure should be used in order to make the probe setup
more reproducible.

The effect of probe pressure during TPUS imaging were reported in two studies.
Mantel et al. [66] investigated the shift of the penile bulb after positioning the TPUS
probe against the perineum. A superior shift of the penile bulb could bring it closer
to the prostate and therefore closer to the high dose region. This could lead to an
increase of dose delivered to the penile bulb, which has been correlated earlier
(e.g. [67]) with the incidence of erectile dysfunction. The authors studied datasets
from 10 patients and reported that the penile bulb had a significant median shift
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of 6.2 mm in the superior direction. In addition, no relevant volume changes of
the prostate and planning target volume due to probe pressure were observed
and just minor motion of these structures were reported, mainly in the superior
direction. No quantitative results on this prostate and planning target volume
motion were reported in the paper.

Table 2.3: Studies reporting on prostate displacement induced by probe pressure. The
first column details the first author and publication year. The ∆ indicates that the specific
study was mentioned in the previous review paper [13], but these specific results were not
discussed. The second column details the used system, while the third column provides the
imaging modality with which the prostate displacement was assessed. The fourth and fifth
column specify the number of examined patients and the assessed scans, respectively. The
prostate displacement in all directions are listed in column 6 with the a indicating results
per 1-mm probe shift and in the final column the displacement vector can be found.

First System Assessed # pts # US Prosate displacement Displacement
author with scans mean ± SD mean ± SD

[mm] [mm]

AP LR SI

Van der Meer∆

(2013) [11] TAUS Relative
TAUS 13 376 0.7 -0.5 0.0 3.0

Fargier-Voiron∆

(2014) [68] TAUS Relative
TAUS 8 24 - - - 2.5 ± 1.2

Baker
(2015) [65] TAUS TPUS 9 42 -0.1 ± 1.0 0.2 ± 0.7 -0.1 ± 0.8 1.3 ± 0.7

Li
(2017) [69] TPUS Relative

TPUS 10 16
series 0.07 ± 0.11a 0.04 ± 0.11a 0.42 ± 0.09a 2 - 4

In another study [69] the pressure applied by a TPUS probe was found to have a
quantitatively similar impact on prostate displacement as the TAUS probe
(Table 2.3). Since this conclusion contradicts the conclusion of Mantel et al. [66], it
implies that more research is necessary to understand the impact of TPUS probe
pressure on the displacement of the prostate and OARs. Li et al. [69] also detected
a systematic intra-fraction drift of the prostate. They hypothesized that this drift
was caused by the relaxation of the compressed tissue of the perineal area present
between the prostate and the probe. As intra-fraction motion monitoring is
possible using TPUS imaging, this drift can be monitored and, when needed,
potentially compensated for.

With TPUS imaging the probe does not need to be removed prior to dose delivery.
Therefore, no displacement of the prostate and organs at risk due to probe removal
is expected. As long as the pressure is not so high that it produces a shift of the
OARs into high dose regions (as reported e.g. for the penile bulb in the previous
paragraph) and it is reproducible, the consequences of the pressure in the US
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guided RT workflow should be minimal. For TAUS imaging, it was reported that
it is difficult to reproduce the pressure [68], however, for TPUS imaging results on
this issue are currently not available. If future studies prove that it is feasible to
position the TPUS probe with a reproducible probe pressure, it would add another
advantage to this imaging modality in comparison to TAUS imaging.

2.5.2 US image interpretation
The variation in US probe pressure applied by different operators may influence
the displacement of the prostate and thus result in US image variation. However,
also during interpretation of the images inter- and intra-operator variability can
occur. This variability seems to be more present in operators with limited US
imaging experience. For this reason, the importance of training has been
emphasized by the American Association of Physicist in Medicine [70].

The inter- and intra-operator variability for different levels of expertise has been
investigated in a few studies (Table 2.4). In these studies, the operators were
asked to match a reference contour of the prostate to a newly acquired US image
to determine the required setup shift during inter-fraction motion monitoring.
Subsequently, differences in the performed matches were statistically examined.

The results reported by Fiandra et al. [71] show that the inter-user variability
decreases with growing TAUS imaging experience. The same holds for the intra-
user variability during TPUS imaging, as reported by Pang et al. [72]. The operators
that matched the images in the study of van der Meer et al. [11] received thorough
training and scanning instructions. These operators seem to perform similarly to
the operators with more than one year experience of Fiandra et al. [71].

In Table 2.1, the results reported by Robinson et al. [44] regarding the differences
in prostate localization between TAUS imaging and CT are listed. These results
seem to confirm as well that more experience (clinical operator versus
manufacturer representative) results in better agreement between the CT and
TAUS based prostate locations.

In addition to providing training to the operators, making the system less prone
to operator dependence could potentially reduce both inter- and intra-operator
variability. In comparison with the Clarity system, the Clarity Autoscan system
has already implemented several improvements to potentially reduce operator
dependence. In particular, the mechanically swept probe could be attractive, since
it minimizes the disadvantages of a manual sweep acquisition, such as the variance
in probe pressure and sweeping motion. In addition, the probe is attached to a
baseplate avoiding the need to hold it by hand and the operator is assisted to
reproduce the earlier used probe pressure and setup by means of visual feedback.

29



2 . U S I N P R O S TAT E C A N C E R E B RT

Table
2.4:Studies

reporting
on

the
inter-and

intra-operator
variability

ofthe
C

larity
system

(TA
U

S)or
the

C
larity

A
utoscan

system
(TPU

S).
T

he
fi

rstcolum
n

d
etails

the
fi

rstauthor
and

publication
year.T

he
*

ind
icates

thatthe
d

etailed
results

w
ere

d
iscussed

in
the

review
paper

[13]as
w

ell,w
hile

the
∆

highlights
thatthese

specifi
c

results
w

ere
notd

iscussed
,butthe

paper
w

as
includ

ed
in

the
previous

review
.T

he
second

colum
n

specifies
the

used
system

,w
hile

the
third

and
fourth

colum
n

provide
the

num
berofcom

pared
operators

and
theirexperience,

respectively.In
the

fifth
colum

n
the

num
ber

ofexam
ined

patients
is

specified,w
hile

in
the

sixth
colum

n
the

num
ber

ofm
atches

m
ade

by
the

operators
is

detailed.The
seventh

colum
n

explains
the

m
etric

thatw
as

used
to

quantify
the

intra-operator
variability

(colum
n

eight)and
the

inter-operator
variability

(colum
n

nine).

Firstauthor
System

#
operators

Experience
#

pts
#

m
atches

M
etric

Intra
Inter

A
P

LR
SI

A
P

LR
SI

V
an

der
M

eer*
(2013)[11]

TA
U

S
2

(intra)
3

(inter)
-

13
817

SD
(m

m
)

0.7
0.8

1.0
1.4

1.3
1.8

Fiandra
∆

(2014)[71]
TA

U
S

2
Expert

(>
5

years)
10

60
m

ean
±

SD
of

operator
∆

(m
m

)
-

-
-

-0.1
±

1.4
-0.4
±

1.2
0.1
±

1.3

5
>

1
year

10
150

rootm
ean

square
error

w
ith

respectto
expert(m

m
)

-
-

-
2.1
±

2.1
1.3
±

1.7
1.7
±

1.7

4
<

1
year

10
120

-
-

-
3.1±

2.7
2.7
±

2.7
3.2
±

3.2

Pang
(2017)[72]

TPU
S

7
A

ll
operators

10
70

∆
betw

een
operator

and
totalgroup

m
edian

(m
m

)in
alldirections

≤
2

in
93.3%

ofthe
tim

e
≤

2
in

93.8%
ofthe

tim
e

5
9

-16
m

onths
10

50
≤

2
in

96.7%
ofthe

tim
e

-

2
4

-9
m

onths
10

20
≤

2
in

60%
and

80%
ofthe

tim
e

-

30



2.6. Challenges

Another approach to reduce operator dependence and potentially even allow less
trained operators to acquire good-quality images was proposed by
Camps et al. [73], [74]. In this work, the simulation CT scan of prostate cancer
patients (currently almost always available for treatment planning purposes) was
used to optimize the patient-specific US probe setup that would allow
visualization of all the required anatomical structures with sufficient image
quality. This helps to reduce the need for image interpretation during the
acquisition and the operator variability in probe positioning.

2.6 Challenges
Some challenges associated with the use of US imaging in the RT workflow have
already been described in the previous sections, such as the inter- and
intra-operator variability and the displacement of anatomical structures due to
probe pressure. In this section, a number of other challenges associated with the
implementation of US imaging in the prostate RT workflow are discussed.

2.6.1 Intra-fraction US imaging
The presence of the US probe in the radiation beam during the treatment can
potentially cause dose delivery errors, which might influence the treatment
outcome for the patient. Three possible solutions have been proposed in the
literature for this problem. One option is to design the treatment plan in such a
way that the US probe is completely avoided during the treatment [75]. Second,
the radiation can be delivered through the probe, but it requires that the possible
dose deviations are taken into account during the treatment planning process, as
investigated by e.g. by Bazalova-Carter et al. [76]. As a third solution,
Schlosser et al. [77] designed a 4D radiolucent US probe with significantly less
metal components close to the imaging field. This probe should produce a
minimal interference with the radiation beam.

Martyn et al. [78] also investigated the effect of an US probe on the surface dose
delivered to a phantom using a Monte Carlo study. In this study, a phantom was
imaged using an Elekta Autoscan probe parallel to the radiation beam to mimic
TAUS imaging, or perpendicular to the beam, to mimic TPUS imaging. It was
shown that the presence of the probe in the TPUS configuration produces dose
perturbations near the surface of the phantom, when there is overlap between the
probe and the radiation field. However, the dose increase was of a similar order of
magnitude as the one resulting from inter-fraction motion. In case no probe-field
overlap occurred, the measured dosimetric effect was minimal. In the TAUS probe
setup, instead, a dose increase near the surface of the phantom was measured and
reported to be smaller than 5%.

Several studies (e.g. [75], [79]–[81]) also looked into the possibility of replacing a
human operator handling the probe at the bedside with a robot.
Schlosser et al. [75], for example, built a patient-safe robotic manipulator which

31



2 . U S I N P R O S TAT E C A N C E R E B RT

could be used to control the pitch and pressure of a TAUS probe. To safely control
the robot remotely from outside the Linac room, a haptic device was added to the
design. During the treatment delivery, the beam angles were restricted to prevent
collision with the robotic hardware or the probe. The authors showed that the
robotic system was able to image the prostate remotely. In addition, both the
tracking ability of the US probe and the robot performance were not degraded
during radiation beam operation. The use of such a robotic system could not only
enable intra-fraction TAUS imaging, but also potentially allow for an easier probe
pressure and position reproduction using both TAUS and TPUS imaging.

2.6.2 Speed of sound and refraction effects
Most clinical US systems work in pulse-echo mode, where the time of flight of the
US pulses is used to infer the depth of the structures in the scanned tissues. This
time of flight is calculated with the speed of sound (SOS) of the tissues traversed
by the pulse. Different tissues have a different SOS. For example, adipose tissue
typically has an SOS around 1450 m/s, while for connective tissue it is around
1600 m/s [82].

However, the US systems usually assume a fixed average SOS value of 1540 m/s
for all human soft tissues [83]. This assumption may produce wrong quantitative
estimates of organ boundary positions up to several millimeters. Fontanarosa et al.
published multiple studies ([84]–[87]) in which CT scans were used to create SOS
maps for correcting these aberrations. These corrections are essential to restore
quantitative comparability with the reference simulation CT scan.

The usability of US imaging in the RT workflow does not only rely on the
acquisition and interpretation of the US images. Also, the precision of the
calibration procedure of the localization system and associated with that, the
precision that can be achieved while localizing the US probe in absolute
coordinates in the simulation or treatment room, is of importance. How well the
US probe is localized influences the co-registration between e.g. the simulation
CT scan and the reference US image, or two US images acquired at different time
points.

The phantoms used in a calibration procedure are typically made of homogeneous
tissue equivalents to avoid the SOS effects. In addition, refractions inside the
phantom should not affect the calibration procedure. However, in the work of
Ballhausen et al. [88] it has been shown that the calibration of a 3D US system can
be affected by refraction of the sound waves at the phantom surface. Especially
when the probe was tilted during the calibration procedure this could result in a
position difference of more than 0.5 mm.

Van der Meer et al. [89] simulated five different scenarios mimicking the errors that
could occur when using the Clarity system for TAUS image guidance. These errors
could be due to e.g. the above-mentioned inaccurate calibration, but also due to
laser offsets or patient motion between the simulation CT and simulation US
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image acquisition. It has been shown that it is important to take SOS aberrations
into account and to assess the matching of US and CT images. In case these images
do not match, a manual correction could be performed, potentially introducing
operator variability. In such a case, the authors recommend to rescan the patient
to avoid problems during the dose delivery procedure.

Summarizing, it is important to take SOS aberrations into account while
registering US images to another image modality. In addition, caution should be
used while performing calibration and image acquisition, to avoid image
matching issues.

2.6.3 Hypo-fractionation and adaptive radiotherapy
In current clinical practice, it is common to deliver the radiation dose to prostate
cancer patients in multiple treatment fractions (even up to 45). It has been
suggested that hypo-fractionation could result in the same or better outcomes for
the prostate patients [90]. In a hypo-fractionation scheme, a higher dose per
fraction is delivered to the patient in less treatment fractions. The treatment is
then delivered over a shorter amount of time and with a total lower dose.

As the dose delivered per treatment fraction is higher and there are fewer
fractions to potentially perform corrections or compensate for errors originating
from the previous fractions, it is even more crucial to deliver the radiation
correctly. Ricardi et al. [91] used the Clarity system in the treatment of
intermediate risk prostate cancer patients treated with a hypo-fractionated
schedule. It was shown that the hypo-fractionated schedule under US guidance
was a safe and effective treatment approach with consistent biochemical control
and a mild toxicity profile.

Patient immobilization during the treatment fraction is also an important aspect
of the RT workflow. For this reason, a wide range of immobilization devices is
available on the market, ranging from a simple leg immobilizer (Civco Medical
Solutions, IA, USA) to vacuum cushions (e.g. Vac-Lok, Civco Medical Solutions,
IA, USA) that can adapt to the body composition of the patient. Pang et al. [92]
investigated the inter-fraction setup differences, patient satisfaction and radiation
therapist satisfaction regarding two immobilization devices: the traditionally used
leg immobilizer and the Clarity Autoscan immobilization device. The results
showed that the setup errors were smaller with the Clarity device and the patients
were satisfied with the new device. The radiation therapist, though, had some
issues with the weight and bulkiness of the new device.

Adaptive RT (ART) aims at reducing or compensating for the effects of
patient-specific treatment variation measured during the course of a radiotherapy
treatment [93], [94] by adaptively modifying the treatment plan of the patient.
This approach could be used to further improve the accuracy of radiation dose
delivery. However, in current clinical practice, typically CT scans provide the
electron-density information necessary for treatment planning and dose
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calculation. So, in case re-planning proves necessary, one or multiple additional
CT scans during the course of the treatment must be acquired. This does not only
result in extra radiation dose delivery to the patient, but also high costs are
associated with the rather complex CT acquisition procedure.

Van der Meer et al. [95] and Camps et al. [96] have investigated the feasibility of
creating pseudo-CT scans of the pelvic region, based on combinations of rigid and
deformable image registrations of TAUS images. These TAUS images, acquired at
simulation stage and during treatment stage, were used to create a deformation
field that represented the changes that occurred in tissue distribution between
these time points. The subsequent application of this deformation field on the
simulation CT, resulted in the creation of a pseudo-CT scan.

It was shown that this pseudo-CT scan represents the anatomy of the patient at
treatment stage better than the simulation CT. These results are promising and
may, lead to the ability to re-plan based on a pseudo-CT scan, instead of on a
regular CT scan.

2.7 Conclusion
In this work, the recent relevant studies regarding the use of US imaging for
guidance during the prostate EBRT workflow have been discussed. Several US
based guidance systems have been introduced to the market in the last 15 years
with varying success. TPUS imaging seems to overcome some of the issues
associated with the limitations of TAUS imaging during intra-fraction organ
motion monitoring, such as displacement of the organs due to probe pressure
and the interference with the radiation beam.

The studies that investigated TPUS imaging show promising results and, for this
reason, we recommend the use of TPUS imaging during the US guided EBRT
workflow of prostate cancer patients. However, there are still several challenges
to be addressed, which are associated with inter- and intra-operator variability
during the acquisition of the images and the interpretation of these images. In
addition, technical aspects of the US image modality, such as SOS aberrations
and refractions should be investigated further to understand if these cause issues
while using TPUS imaging for both inter- and intra-fraction monitoring.

If a decrease in user variability and an increase of usability of the US guided EBRT
systems can be achieved, this would potentially make the use of this approach
more appealing to physicians and medical experts, in the end, resulting in smaller
margins with less toxicities for prostate cancer patients undergoing EBRT.
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Abstract
Image interpretation is crucial during ultrasound image acquisition. A skilled
operator is typically needed to verify if the correct anatomical structures are all
visualized and with sufficient quality. The need for this operator is one of the major
reasons why presently ultrasound is not widely used in radiotherapy workflows.

To solve this issue, we introduce an algorithm that uses anatomical information
derived from a CT scan to automatically provide the operator with a
patient-specific ultrasound probe setup. The first application we investigated, for
its relevance to radiotherapy, is 4D transperineal ultrasound image acquisition for
prostate cancer patients.

As initial test, the algorithm was applied on a CIRS multi-modality pelvic
phantom. Probe setups were calculated in order to allow visualization of the
prostate and adjacent edges of bladder and rectum, as clinically required. Five of
the proposed setups were reproduced using a precision robotic arm and
ultrasound volumes were acquired. A gel-filled probe cover was used to ensure
proper acoustic coupling, while taking into account possible tilted positions of
the probe with respect to the flat phantom surface.

Visual inspection of the acquired volumes revealed that clinical requirements
were fulfilled. Preliminary quantitative evaluation was also performed. The mean
absolute distance (MAD) was calculated between actual anatomical structure
positions and positions predicted by the CT-based algorithm. This resulted in a
MAD of 2.8 ± 0.4 mm for prostate, 2.5 ± 0.6 mm for bladder and 2.8 ± 0.6 mm
for rectum. These results show that no large systemic errors due to e.g. probe
misplacement were introduced.

This chapter has been published as: S.M. Camps, F. Verhaegen, G.P. Fonseca, P.H.N. de With, and
D. Fontanarosa. "Automatic transperineal ultrasound probe positioning based on CT scan for image
guided radiotherapy". In: Proc. SPIE medical imaging. Orlando, USA, 2017.
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3.1 Introduction
Radiotherapy (RT) is one of the available treatment modalities for various types
of cancer. The aim of RT is to deliver a high radiation dose to the tumor tissue,
while sparing normal tissue as much as possible. Prior to treatment delivery (at
the simulation stage), usually a computed tomography (CT) scan of the patient
is acquired, which is then used for treatment plan preparation. The treatment
typically involves multiple irradiation fractions, prior to each of which the patient
is positioned as accurately as possible to reproduce the position at simulation. A
positioning accuracy of a few millimeters is desirable.

Even when the patient seems correctly aligned externally, internal tissue
distributions may have changed. For example, in case of prostate cancer, a
different filling of the bladder or the rectum can cause a shift of the prostate [1]. If
the initial treatment plan is still delivered, this could result in a suboptimal dose
deposition in the tumor and/or in extra unwanted irradiation of the normal
tissue, possibly producing excessive toxicity.

It is now recognized (see, for example, Zelefsky et al. [2] or Yorke et al. [3]) that
frequent imaging of the patients’ anatomical structures of interest during the
course of the RT treatment (image guided RT, IGRT) can improve the biochemical
tumor control and decrease toxicity. It was shown by Zelefsky et al. [2] that
correction of the inter-fraction motion of the prostate using kilovoltage imaging
of implanted fiducial markers, significantly improved the outcome of the patients.
In comparison with kilovoltage imaging of fiducial markers, ultrasound (US)
imaging has many advantages, such as: no extra radiation dose delivery,
non-invasiveness and a superior soft tissue contrast. In addition, it is presently
the only volumetric imaging modality that allows for real-time anatomical
structure tracking. For this reason, US imaging could be used not only for
inter-fraction motion corrections, but also for intra-fraction monitoring [4], [5].

However, in current clinical practice, image interpretation during US image
acquisition in the RT workflow is still crucial. Typically, a skilled operator needs
to verify if the correct anatomical structures are visualized and if the image
quality is sufficient. This makes the process heavily dependent on this operator.
Introducing a certain degree of automation into the US-guided RT workflow can
decrease operator dependence and improve the usability for unskilled operators.
In addition, the patients could fully benefit from the unique characteristics of US
imaging, potentially resulting in higher treatment quality and therefore in better
outcomes.

In this proof-of-concept study, we introduce an algorithm that uses anatomical
information derived from a CT scan to automatically provide the operator with
a patient-specific US probe setup. These proposed probe setups should allow
good anatomical structure visualization based on clinical requirements. As far
as we know, this was never reported in literature before. We present the first
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results achieved using a pelvic phantom, in order to mimic the acquisition of 4D
transperineal US images of prostate cancers patients.

3.2 Materials and methods
In Section 3.2.1 both the acquisition of the phantom images as well as the required
preprocessing steps are detailed. After these preprocessing steps, suitable US
probe setups are proposed by the algorithm. More insight into the workflow of
this algorithm is given in Section 3.2.2. The procedure followed to reproduce the
proposed probe setups in the experimental setting is detailed in Section 3.2.3.
Finally, in Section 3.2.4 the evaluation methods are described.

3.2.1 Image acquisition and preprocessing
Since, we focused on prostate cancer patients as first application, a multi-modality
male pelvic phantom (CIRS, model 048, Norfolk, USA) was used. A CT scan of
this phantom was acquired (Fig. 3.1A) using a SOMATOM Sensation Open CT
scanner (Syngo CT 2006A, Siemens Healthcare GMBH, Germany; voxel size: 0.5
mm x 0.5 mm x 1 mm). The first preprocessing step involved resampling of the
voxel size to 1 mm x 1 mm x 1 mm in order to make further processing steps
easier. Subsequently, the anatomical structures were segmented using the Eclipse
treatment planning system (Varian Medical System, Palo Alto, CA, USA).

(A) (B) (C) (D)

Figure 3.1: Image acquisition and preprocessing workflow for the pelvic phantom. (A) CT
scan of the phantom with voxels resampled to 1 mm x 1 mm x 1 mm. (B) CT scan with
superimposed the target in green, the organs at risk in orange and the blocking structures
in red. (C) Required structures in the FOV in blue, optional structures in yellow. (D) 3D
FOV model of the used matrix probe with the blue dot representing the apex of the FOV.

The scanning area of the cubic pelvic phantom was a 16 cm x 16 cm square
on one of the faces of the phantom cube. On this scanning area the US probe
should be positioned. The anatomical structures located inside the phantom were
classified: the prostate was the target, bladder and rectum were considered organs
at risk and the bones were identified as US blocking structures (Fig. 3.1B). Clinical
requirements provided by an experienced radiation oncologist demanded that the
whole prostate be visualized, as well as the adjacent edges of bladder and rectum.
To ensure that the required anatomical structures were not too close to the edges of
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the field of view (FOV), a margin of 2 mm in all directions was added. The required
structures with added margin will be referred to as "expanded structures" from
here on. The parts of the bladder and rectum that were not required in the FOV
were classified as optional (Fig. 3.1C). Due to the addition of the margin, there
was partial overlap between the expanded structures and the optional structures.

The final preprocessing step was the construction of a 3D model of the FOV of
the matrix probe, which we used for image acquisition (X6-1 matrix probe in
combination with an EpiQ7 US system, Philips Medical Systems, Andover, MA,
USA), (Fig. 3.1D).

3.2.2 Probe setup calculation
In Fig. 3.2A the setup of the pelvic phantom with the corresponding coordinate
system is shown. The orange surface represents the available scanning area on
which the US probe can be positioned. The setup of a virtual patient in the same
coordinate system is detailed in Fig. 3.2B. For the patient, the area on which the
US probe could be positioned is the perineum.

In this study only four degrees of freedom were allowed to position the US probe
on the phantom: translation along Z (up and down), translation along X (left
and right) and rotation around these same axes. The position on the Y-axis was
considered fixed, as in a clinical situation the probe is positioned against the
patient’s skin. The rotation around the Y-axis should be evaluated for clinical
relevance and may be included in future research.

X
Y

Z

(A)

X
Y

Z

(B)

Figure 3.2: Phantom and patient setup in the same coordinate system. (A) Sketch of
the phantom configuration with the orange rectangle representing the scanning area.
(B) Possible setup of the patient in supine position.

As previously mentioned, the probe setup proposed by the algorithm should
allow visualization of the whole prostate as well as the adjacent edges of bladder
and rectum. In Fig. 3.3A these required structures are visualized, together with
the 2 mm margin added in the preprocessing steps. The red dot located inside the
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required structures represents the centroid of the combination of the expanded
structures.

In order to propose suitable probe setups to the operator, the algorithm first
determined an initial setup. As the setup of the US probe is directly connected
to the position of its FOV, the constructed FOV model (Fig. 3.3B) was used to
determine this initial setup via three steps.

In the first step, the FOV model was translated along the Y-axis until the
Y-coordinate of the origin was at the same Y-coordinate value as the available
scanning area of the phantom. The assumption was made that the gel layer
needed for proper US scanning was infinitely thin, so the probe could be
positioned directly on the surface. At this stage, the algorithm assumed that there
was no pressure applied while positioning the probe and consequently that the
probe position along the Y-axis was fixed.

Z

YX

(A)

X Y

Z

(B)

Y

Z

(C1)

Y

X

(C2)

Z

X Y

(D)

Figure 3.3: Workflow for initial probe setup determination. (A) The darker blue voxels
indicate the required structures, while the lighter blue indicates the added margin of 2 mm.
The red dot corresponds to the centroid of the expanded structures. (B) 3D FOV model of
the X6-1 probe. (C1) Alignment of the apex of the FOV (blue dot) with the centroid of the
expanded structures (red) in the YZ-plane. (C2) Alignment of the apex and the centroid in
the XY-plane. (D) Final result of the initial probe setup determination.

In the second step, the FOV model was translated along the Z-axis until the Z-
value of the position of the apex of the FOV (blue dot in Fig. 3.3C1) was aligned
with the corresponding coordinate of the centroid of the expanded structures (red
dot in Fig. 3.3C1) on the YZ-plane. The same procedure was repeated in the third
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step, translating the FOV along the X-axis until alignment of the X-coordinates
was established on the XY-plane (Fig. 3.3C2).

In Fig. 3.3D the results of this initial setup determination are displayed. Since the
centroid of the expanded structures was positioned in the FOV, this procedure
was such that the initial FOV position would most likely also result in at least
a part of the expanded structures being automatically included in the FOV. In
this specific case, the clinical requirements were completely met, as already all
expanded structures were in the FOV.

The following iterative steps were optional and based on the outcome of the initial
process. If the expanded structures could not be visualized using the initial setup,
a procedure was performed to enforce the inclusion of these structures in the FOV.
If another procedure was followed instead, because the structures were already
included, a further optimization of the position of the FOV aiming at including a
larger fraction of the optional structures was performed, but never at the expense
of the expanded structures.

The flow chart of the procedure that involves several iterations is plotted in Fig. 3.4.
All the voxels of the expanded structures located outside the FOV determined
with the initial setup were marked and their centroid was determined. Moreover,
also the centroid of the FOV itself was calculated (Column 3.4A).

Subsequently, the flow was split in two arms: procedures on the XY- or on the
YZ-plane. For each plane, the angle φ between two vectors (marked I and II in
Fig. 3.4B) was calculated. These calculated angles will be referred to as XYφ and
YZφ from here on. If the absolute value of XYφ and/or YZφ was larger than
37.5 degrees (half of the FOV viewing angle of 75 degrees), the FOV position
and orientation were adjusted. The position of the FOV could be adjusted by
translating the US probe along the X- or Z-axis using steps of 1 mm. The sign
of the previously calculated angles XYφ and YZφ determined if this translation
occurred in positive or negative direction. A positive XYφ resulted in translation
along the negative X-axis, while a negative XYφ resulted in translation along the
positive X-axis. On the other hand, a positive YZφ resulted in translation along the
positive Z-axis, while a negative YZφ resulted in translation along the negative Z-
axis (Column 3.4C). If only translation was taken into account, two different new
probe setups were proposed, resulting from translation along X-axis or Z-axis.

As mentioned before, also the orientation of the FOV could be adjusted. This
could be done by performing rotation around the X- or Z-axis in clockwise or
counterclockwise direction. Also in this case, the sign of the angles XYφ and YZφ

determined in which direction the rotation was performed. The procedure to
determine this direction was similar to the procedure as used in the translation
and it is detailed in Column 3.4C. If only rotation was taken into account, two
additional new probe setups were proposed, resulting from rotation around X- or
Z-axis. The rotation angles depended on the absolute values of the calculated
angles XYφ and YZφ and the viewing angle of the FOV (75 degrees).
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In addition, the angle of rotation could not exceed a certain set maximum. This
maximum was set to 5 degrees in order to ensure that the acoustic coupling
between the probe and the scanning area of the phantom would not be lost. More
research in the future is necessary to verify the exact magnitude of this maximum
angle. In order to calculate the angle of rotation supposing that YZφ is 39 degrees,
the difference between the absolute angle (39 degrees) and half of the viewing
angle (37.5 degrees) was calculated, resulting in 1.5 degrees. As this rotation angle
is smaller than the set maximum of 5 degrees, the FOV should be rotated over 1.5
degrees in clockwise direction as indicated by the last box of Column 3.4C.

Also a combination of translation and rotation is among the possibilities, as can be
seen in Column 3.4D of the flow chart. This results in eight possible probe setups
in total. Subsequently, one or multiple probe setups must be chosen to feed back
into the flow chart to continue the iterative process. For this reason, the cost of
each of the eight proposed probe setups was calculated. This cost was defined as
the number of expaned voxels still located outside of the FOV. The setups could
then be ranked based on their cost.

(A) (B) (C) (D) (E)

Figure 3.4: Flow chart of the steps necessary to iteratively determine suitable US probe
setups. (Column A) Initial setup of the FOV with the red dot representing the centroid of
the expanded structures that are located outside of this FOV (outside structures) and the
black dot representing the centroid of the FOV itself. (Column B) Calculation of the angles
(φ) between two vectors (FOV apex - FOV centroid [I] and FOV apex - outside structures
centroid [II]) in both YZ and XY-plane. (Column C) Possible actions for the FOV depending
on the sign and magnitude of the angles XYφ and YZφ. (Column D) All possible probe
setup options. (Column E) Check to ensure that no blocking occurs by US wave blocking
structures. Finally, the best setup (with the lowest cost) among the probe setup options is
selected and used as initial setup. This workflow is repeated until the solution converges.
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Some anatomical structures (in particular bones, which have an acoustic
impedance significantly different from soft tissues) can reflect a substantial
percentage of the US wave intensity. Therefore, a check for all eight possible
probe setups was performed to ensure that no blockage occurred (Column 3.4E).
In case blockage occurred, the corresponding probe setup was removed from the
list with possible setups.

Finally, among the list with possible setups, the setup with the lowest cost was
selected. This setup was used as the new initial probe setup and the flow was
repeated. This was done until no better probe setup could be found and the
solution converged. In case two setups had the exact same cost, both solutions
were used as initial probe setup and basically the flow was extended with two
extra arms.

In case all expanded structures were already inside the FOV using the initial
setup, the procedure is slightly different. Instead of determining the centroid of
the expanded structures outside of the FOV, the centroid of the optional structures
outside the FOV needs to be determined. This means that Column 3.4A of the flow
chart is different. The Columns 3.4B - 3.4E are then identical and an additional
column must be added at the end. Before the best setup is chosen, first it needs to
be determined if the expanded structures are still fully in the FOV with the newly
proposed probe setups. If this is not the case, the corresponding probe setups are
removed from the list with possibilities and the best setup is chosen subsequently.
Also in this case, this procedure was repeated until the solution converged.

3.2.3 Probe setup reproduction
After calculation of suitable probe setups, these configurations need to be
reproduced in the experimental setting. For this purpose, the US probe was
attached to a robotic arm (R17 5-axis, ST Robotics, Cambridge, UK) and the robot
(Fig. 3.5A) was used to position the probe according to the calculated setups.

It was important to ensure sufficient airless coupling between the US probe and
the scanning area of the phantom. For this purpose a lubricated condom without
a reservoir tip (World’s Best, Denmark) was partially filled with US gel. This gel-
filled cover was then placed on top of the US probe (Fig. 3.5B and Fig. 3.5C). As
the gel-filled cover was constructed of flexible material, it allowed deformation
when the probe was pressed against the scanning area of the phantom. However,
the gel could not escape from the cover, so sufficient coupling was ensured at all
times.

Subsequently, a calibration procedure for the robotic arm was performed to ensure
alignment of the origin and coordinate systems between the algorithm and the
robot. In this way, the translations and rotations provided by the algorithm could
be directly input to the software of the robot.
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(A)

(B)

a

b
(C)

Figure 3.5: Materials necessary during the reproduction of the US probe setup in the
experimental setting. (A) Robotic arm which was used to reproduce the calculated US
probe setups in the room. (B) Schematic representation of the gel-filled probe cover which
was placed on top of the US probe. (C) The X6-1 matrix probe used for image acquisition
with (a) indicating the condom placed on top of the US probe and (b) pointing towards
the blue US gel with which this condom was partially filled to ensure sufficient acoustic
coupling.

3.2.4 Evaluation
In order to evaluate the whole workflow, five of the algorithm-proposed probe
setups were reproduced using the robotic arm and US volumes of the phantom
were acquired. These setups did not necessarily allow visualization of most of
the optional anatomical structures. The best probe setups were located very close
together (1 mm or 1 degree apart), and therefore they were hard to distinguish.
For this reason, the five setups were randomly chosen from the list with proposed
probe setups, provided that the individual setups were at least 2 mm or 2 degrees
apart. In addition, three of the picked setups only involved translation of the
probe, while the other two setups also included the rotation parameters.

All the US volumes acquired with the proposed US probe setups were then
resampled to 1 mm x 1 mm x 1 mm and the prostate, bladder and rectum were
segmented by a trained operator using Eclipse. A visual inspection of the
acquired US volumes was performed to determine if the prostate as well as
adjacent edges of the bladder and rectum were clearly visualized. In addition, the
mean absolute distance (MAD) [6] was calculated between the
algorithm-predicted positions of the different anatomical structures and the
actual positions in the US volumes. The MAD calculation was performed on
sub-volumes, consisting of fifteen consecutive slices on which the structures were
easily recognizable.
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3.3 Results
Fig. 3.6A displays a slice of one of the acquired 3D US phantom volumes with
the corresponding segmentations of the anatomical structures, superimposed in
green. Visual inspection reveals that this volume fulfills all clinical requirements.
Inspection of the other acquired volumes resulted in the same conclusion.

a

b

c

(A) (B)

Figure 3.6: (A) Slice of an acquired 3D US volume with the corresponding segmentations
of the prostate (a), bladder (b) and rectum (c), superimposed in green. The magenta lines
indicate the positions of the same anatomical structures based on the FOV model and the
CT scan of the pelvic phantom. (B) Resulting MAD for each anatomical structure displayed
per acquired US volume. During the acquisition of the volumes represented in blue, only
translation of the US probe was performed, while during acquisition of the red volumes
also rotation was included.

The magenta lines in Fig. 3.6A indicate the positions and orientations of the
anatomical structures, based on the FOV model and the CT scan of the pelvic
phantom, i.e. the algorithm-proposed contours. As described before, the MAD
between the green and magenta contours was calculated and these results are
displayed in Fig. 3.6B. Each bar in this figure corresponds to one of the picked
setups and therefore to one of the acquired US volumes.

The blue bars represent the setups with only translation and the red bars also
include rotation of the US probe. The average results over all the acquired volumes
resulted in an MAD of 2.8± 0.4 mm for the prostate, 2.59± 0.6 mm for the bladder
and 2.8 ± 0.6 mm for the rectum. The overall MAD average of the setups in which
only translation was performed is 2.5 ± 0.4 mm, while the average of the setups
in which also rotation was included is 3.0 ± 0.4 mm.

3.4 Discussion
The aim of the proposed algorithm was to provide the operator with a patient-
specific US probe setup that would allow visualization of the required structures.
In this paper, the probe setup on which the algorithm converged could be a local
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minimum of the cost function. However, the intention of the algorithm was to
find possible probe setups, not necessarily find the optimal probe setup for the
phantom. As the whole scanning area of the phantom (16 cm x 16 cm) was used
as a possible location for the probe, brute force calculation was not an option. On
the other hand, as the available space for positioning a US probe on a patient will
probably be smaller, not much effort was put into the optimization of the process
yet. In the end, the aim of the algorithm will be to find an optimal solution for
the patient. So in case more optimization turns out to be necessary to achieve this
goal, the probe setup selection process might be (partly) changed and an algorithm
could be designed.

At this point in time, four degrees of freedom for the US probe were allowed: both
translation and rotation along/around the X- and Z-axis. Translation along the
Y-axis was not possible, due to the fact that the US probe should be positioned
against the skin of the patient. On the other hand, the rotation around the Y-axis
should be evaluated for its clinical relevance. The expectation is that the rotation
around the Y-axis will not significantly improve the amount of structures that
could be visualized. In addition, as the space between the legs of the patient is
very limited, rotation around this axis might be impossible in clinical practice. In
any case, more research is necessary to confirm this.

In this study, the MAD between the anatomical structure contours as predicted by
the algorithm and the actual position of these structures was used as quantitative
measure. The MAD is a typical local metric in comparison with, for example, the
Dice similarity coefficient [7], [8], which allows global evaluation. Both the location
of the algorithm-predicted contours as well as the actual contours (and therefore
also the MAD) depend on several factors. The overall MAD measured in this study
was 2.7 mm, which corresponds to about 3 voxels. This can be considered a good
result, especially taking into account that the MAD depends on the segmentation
accuracy.

Another factor that must be taken into account is the reproduction of the calculated
probe-setup. As discussed before, five of the proposed setups were reproduced
in the room using a robotic arm. The accuracy of this arm in all directions is not
reported by the manufacturer, however, the sag with a partly extended arm at a
nominal payload is reported [9] to be 1.0 mm. So potentially, the robotic arm did
not position the US probe exactly at the position it was instructed to. In addition,
not only translations of the US probe were required, but also rotations. If the axes
of the probe were not exactly aligned with the axes of rotation of the robotic arm,
rotating the probe around these axes might also have induced a small translation.
Finally, the gripper of the robotic arm was not intended to hold an US probe. The
US probe was fixed to the arm as rigidly as possible, but some small movements
with respect to the robotic arm might still have been possible. Hence all the points
mentioned above might have affected the exact positioning of the US probe on
the phantom, in this way affecting the actual position contours and so the MAD.
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To obtain a good overview of the accuracy of the robotic arm and therefore also of
the accuracy of the probe setup reproduction at this point in time, an extensive
study on the robotic arm itself should be performed. However, as the used
robotic arm does not move around smoothly and it tends to sometimes respond
unexpectedly, it is not completely suitable to be used for US probe positioning on
a patient. So for the reproduction of the setup on a patient another solution
should be found. A possible solution could be the use of a high-precision surgery
robot or the use of a mechanical arm with encoders on the joints instead of
electrical components. These encoders should then be set by the operator. Finally,
also options like wearable US probes that can be glued to the skin of the patient
instead of held by a robotic arm, could be among the possibilities. More research
is necessary to explore the possibilities and define the best solution for this
particular purpose.

3.5 Conclusion
We introduced an algorithm that uses anatomical information derived from a
simulation CT scan to automatically provide the operator with a patient-specific
US probe setup for US based IGRT. Visual inspection and quantitative evaluation
show that this algorithm is able to propose probe setups that fulfill all clinical
requirements.

The average MAD obtained for all organs is 2.7 mm. As mentioned before, two
potential error sources for this remaining MAD error were identified:
segmentation mistakes and probe setup errors. In future steps, it is important to
investigate and preferably quantify the typical magnitude of the errors made
while segmenting US or CT volumes. In addition, another solution for the
reproduction of the setup should be found, because the robotic arm used in this
study is not completely suitable for US probe positioning on a patient.

References
[1] J. Roeske, J. Forman, C. Mesina, T. He, C. Pelizzari, E. Fontenla,

S. Vijayakumar, and G. Chen. “Evaluation of changes in the size and
location of the prostate, seminal vesicles, bladder, and rectum during a
course of external beam radiation therapy”. In: International Journal of
Radiation Oncology Biology Physics 33.5 (1995), pp. 1321–1329.

[2] M. Zelefsky, M. Kollmeier, B. Cox, A. Fidaleo, D. Sperling, X. Pei,
B. Carver, J. Coleman, M. Lovelock, and M. Hunt. “Improved clinical
outcomes with high-dose image guided radiotherapy compared with
non-IGRT for the treatment of clinically localized prostate cancer”. In:
International Journal of Radiation Oncology* Biology* Physics 84.1 (2012),
pp. 125–129.

56



References

[3] E. Yorke, P. Keall, and F. Verhaegen. “Anniversary paper: role of medical
physicists and the AAPM in improving geometric aspects of treatment
accuracy and precision”. In: Medical physics 35.3 (2008), pp. 828–839.

[4] D. Fontanarosa, S. Van der Meer, J. Bamber, E. Harris, T. O’Shea, and
F. Verhaegen. “Review of ultrasound image guidance in external beam
radiotherapy: I. Treatment planning and inter-fraction motion
management”. In: Physics in Medicine & Biology 60.3 (2015).

[5] T. O’Shea, J. Bamber, D. Fontanarosa, S. van der Meer, F. Verhaegen, and
E. Harris. “Review of ultrasound image guidance in external beam
radiotherapy part II: intra-fraction motion management and novel
applications”. In: Physics in Medicine & Biology 61.8 (2016).

[6] G. Gerig, M. Jomier, and M. Chakos. “Valmet: A new validation tool
for assessing and improving 3D object segmentation”. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention.
2001, pp. 516–523.

[7] T. Sørensen. “A method of establishing groups of equal amplitude in plant
sociology based on similarity of species and its application to analyses of
the vegetation on Danish commons”. In: Biol. Skr. 5 (1948), pp. 1–34.

[8] L. Dice. “Measures of the amount of ecologic association between
species”. In: Ecology 26.3 (1945), pp. 297–302.

[9] ST Robotics - R17 5/6-axis robot arm. U R L : http://www.strobotics.
com/articulated-robot-arm.htm.

57

http://www.strobotics.com/articulated-robot-arm.htm
http://www.strobotics.com/articulated-robot-arm.htm




C
ha

pt
er 4 Patient-specific transperineal

ultrasound probe setups

Abstract
The use of ultrasound imaging is not widespread in prostate cancer radiotherapy
workflows, despite several advantages (e.g. allowing real-time volumetric organ
tracking). This can be partially attributed to the need for a trained operator
during acquisition and interpretation of the images. We introduce and evaluate
an algorithm that can propose a patient-specific transperineal ultrasound probe
setup, based on a CT scan and anatomical structure delineations. The use of this
setup during the simulation and treatment stage could improve usability of
ultrasound imaging for relatively untrained operators (radiotherapists with less
than one year experience with ultrasound).

The internal perineum boundaries of three prostate cancer patients were identified
based on bone masks extracted from their CT scans. After projection of these
boundaries to the skin and exclusion of specific areas, this resulted in a skin
area accessible for transperineal ultrasound probe placement in clinical practice.
Several possible probe setups on this area were proposed by the algorithm and
the optimal setup was automatically selected. In the end, this optimal setup was
evaluated based on a comparison with a corresponding transperineal ultrasound
volume acquired by a radiation oncologist.

The algorithm-proposed setups allowed visualization of 100% of the clinically
required anatomical structures, including the whole prostate and seminal
vesicles, as well as the adjacent edges of the bladder and rectum. In addition,
these setups allowed visualization of 94% of the anatomical structures, which
were also visualized by the physician during the acquisition of an actual
ultrasound volume.

Provided that the ultrasound probe setup proposed by the algorithm, is properly
reproduced on the patient, it allows visualization of all clinically required
structures for image guided radiotherapy purposes. Future work should validate
these results on a patient population and optimize the workflow to enable a
relatively untrained operator to perform the procedure.

This chapter has been published as: S.M. Camps, F. Verhaegen, B.G.L. Vanneste, P.H.N. de With and D.
Fontanarosa, "Automated patient-specific transperineal ultrasound probe setups for prostate cancer
patients undergoing radiotherapy." Med. Phys., 45 3185-3195 (2018).
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4.1 Introduction
Radiotherapy (RT) is one of the curative treatment options for prostate cancer.
It aims at irradiating tumor tissue while sparing organs at risk (e.g. rectum and
bladder) as much as possible. A treatment plan is usually prepared based on
a computed tomography (CT) scan of the pelvic region, after which different
radiation techniques [1] (e.g. volumetric modulated arc therapy [VMAT]) can be
used to deliver the prescribed radiation dose to the patient in multiple treatment
fractions.

Correct patient positioning prior to each of these fractions is crucial to ensure
correct dose delivery. Several solutions are available to assist in this inter-fraction
positioning procedure, such as skin marks [2], implanted fiducial markers [3]
and cone-beam CT [4] (CBCT). However, these solutions might not fully identify
soft tissue deformations, such as prostate shape and position changes due to a
different bladder or rectal filling [5]. In addition, during the treatment fraction
(intra-fraction) tissue distributions might also change [6]. In both cases, delivery
of the initial treatment plan could result in a suboptimal dose deposition in the
tumor and additional undesired dose delivery to the organs at risk.

Frequent soft tissue imaging during the course of the treatment (image guided
RT, IGRT [7]) could potentially be used to guide dose and increase delivery to the
tumor tissue and decrease toxicity. If images would be acquired prior to and
during each treatment fraction, patients will have to undergo imaging up to
40 times during a time span of one to two months [8]. Therefore, the use of an
image modality that is non-invasive and that also does not involve ionizing
radiation is preferred. However, if an image modality provides images with
significantly higher quality or images that are better suited for the purpose, this
might outweigh the discomfort of an invasive procedure and the potential risk of
radiation use. In addition, the image modality of choice should enable real-time
volumetric tracking of anatomical structures in the RT environment as well.

Magnetic Resonance (MR) imaging is one of the promising imaging modalities for
IGRT. However, to include MR imaging in the RT workflow, the linear accelerators
currently available in the hospitals would have to be replaced by a new MRI-
Linac system [9] which is a costly procedure. An image modality that does not
require the replacement of the available linear accelerators is ultrasound (US)
imaging. This image modality was already suggested by Fontanarosa et al. [10]
and O’Shea et al. [11] to be suitable for IGRT, as it also meets the previously
described requirements and it is the only clinically available modality that allows
real-time volumetric imaging in RT.

Despite the many advantages, the use of US imaging is presently not widespread
in RT workflows. This can be attributed to the need for a trained operator who
needs to interpret the images during the acquisition, in order to verify if the
correct anatomical structures are visualized with sufficient image quality. Other
challenges that are associated with US imaging include that a good acoustic
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coupling between the probe and patient’s skin needs to be established and that
structures shielded by air or bone are inaccessible [10], [11]. In addition, the
imaging target needs to be within the US imaging depth range and a high
inter-operator variability [12], [13] was occasionally reported.

In a previously published proof-of-concept study [14], we introduced the
preliminary version of an algorithm that uses anatomical information derived
from a CT scan to provide the operator automatically with a US probe setup. The
algorithm was evaluated using a pelvic phantom, in order to mimic the
acquisition of 4D transperineal US (TPUS) images of prostate cancer patients.

In this study, the phantom algorithm was used as a basis to create an algorithm
that can propose a prostate cancer patient-specific TPUS probe setup, based on a
simulation CT scan and corresponding delineations of anatomical structures.
Subsequently, the proposed setup was compared with the setup used by a
radiation oncologist (RTO) during an actual TPUS image acquisition, to assess if
the same anatomical structures could be visualized. In addition, an assessment
was performed to understand if the clinically required structures could be
visualized.

The algorithm-proposed setup is intended to be used during both the simulation
and treatment stage. During the simulation stage, the US volume would need to
be acquired after the CT scan, as the anatomical information from the CT scan
is necessary to calculate the setup. The probe should then be positioned on the
body of the patient according to this calculated setup, after which a reference US
volume would be acquired.

Then, prior to each treatment fraction, the US probe should again be positioned
according to the calculated setup. This would allow the acquisition of a US volume
that could be used for inter-fraction motion compensation, by comparing it to the
reference US volume acquired at simulation stage. Leaving the probe in place
during the radiation treatment, would finally also allow intra-fraction monitoring
of the anatomical structures of interest.

4.2 Materials and methods
4.2.1 Patient image acquisition
CT scans of the pelvic region of three patients (Table 4.1) with localized prostate
cancer were acquired using a SOMATOM Sensation Open CT scanner (Syngo
CT 2006A, Siemens, Erlangen, Germany; voxels: 1 mm x 1 mm x 3 mm). During
the scan, the patients were positioned in a supine position with the skin markers
aligned to the isocenter lasers of the scanner (Fig. 4.1). The knees and feet of the
patients were supported by a KneefixTM 2 and a FeetfixTM 2 (CombifixTM 2, CIVCO
Medical Solutions, Coralville, IA, USA).
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Table 4.1: Summary of the available patient data in this study. Three RTOs acquired the
US volumes (see second column), while only one performed all the registrations (third
column). In column four all the available delineations for each patient are detailed.

Patient RTO RTO Delineations
acquisition registration

1 A C
Prostate, Seminal vesicles, Bladder,
Rectum, Anal canal

2 B C Prostate, Bladder, Rectum, Anal canal

3 C C
Prostate, Seminal vesicles, Bladder,
Rectum, Anal canal

Right after the CT scan acquisition (within about two minutes), a 3D TPUS
volume of each patient was acquired using an X6-1 xMatrix array probe (Philips
Healthcare, Bothell, WA, USA) in combination with an EpiQ7 US system (Philips
Medical Systems, Andover, MA, USA).

The US probe was attached to a custom-made mechanical arm (item f in Fig. 4.1)
and it was positioned by a RTO at the desired location and orientation, based on
the live US images provided on the EpiQ7 monitor. Subsequently, the probe setup
was fixed using a rotary knob on the arm and the TPUS volume was acquired.
During the whole procedure, the patients were instructed to restrict motion as
much as possible.

Figure 4.1: Volunteer mimicking the patient setup for CT and US volume acquisition:
(a) CT scanner (b) Skin markers on the volunteer’s body for isocenter laser alignment.
(c) KneefixTM2 (d) FeetfixTM2 (e) EpiQ7 US system monitor (f) Mechanical arm with rotary
knob for US probe fixation.

It has been reported that application of probe pressure during US volume
acquisition can result in a displacement of the anatomical structures [15]. In this
work, US volumes were only acquired at the simulation stage, so potentially
induced displacements would not be reproduced at treatment stage. For this
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reason, the CT scan was acquired without the probe in place. In addition, the
interference with the current clinical workflow was minimized by acquiring the
US volumes after the CT scan.

4.2.2 Image pre-processing
For each patient, the TPUS volume was registered to the corresponding simulation
CT scan by one RTO. The Eclipse treatment planning system (Varian Medical
Systems, Palo Alto, CA, USA) offers this registration procedure, which comprises
an initial manual registration, potentially followed by an automatic point-match
registration based on the fiducial markers in the prostate.

Subsequently, the CT table was removed from the scan, using a similar approach as
proposed by Zhu et al. [16] and the body outline of the patient was identified using
a thresholding approach (threshold: -250 HU), as proposed by Huang et al. [17]
This allowed the removal of image artifacts present outside the patient’s body.

Finally, the voxels of the CT scan, corresponding structure contours (Table 4.1)
and the US volume were resampled to 1 mm x 1 mm x 1 mm using MeVisLab
(Version 2.8, MeVis Medical Solutions AG, Bremen, Germany) to make the
subsequent calculations easier. After resampling, the image dimensions of all
datasets were (500 x 500 x 507/582/456) voxels. However, not all slices in the
cranial-caudal direction contained useful anatomical information. As the
processing of these slices would only prolong the calculation time without any
additional benefit, the data sets were, after visual inspection, cut to (500 x 500 x
275/350/225) voxels.

4.2.3 Bone mask extraction
Bones and soft tissue have a significantly different acoustic impedance, causing
bones to reflect a substantial part of the US wave intensity producing shadows
in the US images. For this reason, it was crucial to take the pelvic bones into
account during probe-setup calculation. A 3D binary bone mask was extracted
from the patient’s CT scan using a segmentation tool, which was developed in
MATLAB (Version 9.0.0 (R2016a), The Mathworks Inc. Natick, MA, USA). Voxels
corresponding to bone tissue have higher Hounsfield Unit (HU) values assigned
than soft tissue. Therefore, thresholding (see Appenidx A.1) was used to outline
the bones, resulting in a bone mask as shown in Fig. 4.2A.

4.2.4 Localization of the internal perineum boundaries
The perineal area on the skin surface of the patient was identified to determine
possible setups of the US probe. According to literature, the definition of the
internal perineum is based on several points on the skeleton of the patient. The
posterior boundary of the perineum is defined by the tip of the coccyx, the anterior
boundary of perineum by the inferior margin of the pubic symphysis and the two
lateral boundaries by the ischial tuberosities [18].
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A. Localization of the tip of the coccyx
The localization of the tip of the coccyx was performed in three automatic steps.
In the first step, the binary bone mask (Fig. 4.2A), was projected on the XZ-plane
(Fig. 4.2B) and subsequently, the space between the femurs (Fig. 4.2B) could be
identified. After identifying the interface between the top of the inter-femur space
and the pelvic bone, local maxima on this interface were found (Fig. 4.2B). Finally,
the two outer local maxima were used to remove the femurs and other parts of
the skeleton that certainly did not belong to the spine (Fig. 4.2C).
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Figure 4.2: Workflow for localization of the tip of the coccyx based on image data of
Patient 1. (A) Binary bone mask extracted from the patient’s CT scan. (B) Projection of
the mask in the XZ-plane with the light blue area highlighting to the inter-femur space,
and the blue diamonds indicating the local maxima of the interface between this space
and the bone mask. The magenta, dashed lines indicate the cut-off lines. (C) Bone mask
without femurs resulting after cut application as displayed in (B). (D) Projection of the
remaining bone mask in the YZ-plane with the cyan line referring to the perimeter and the
blue diamond (pointed out by the arrow) indicating the global minimum. The magenta,
dashed line indicates the cut-off line. (E) Bone mask with a transparent pelvic bone and a
non-transparent spine with the blue diamond indicating the tip of the coccyx.

In the second step, the remaining mask was projected onto the YZ-plane and the
perimeter on the coccyx side of the mask was automatically constructed
(Fig. 4.2D). The global minimum in the negative Y-direction (Fig. 4.2D) was used
as a custom cut-off point between the pelvic bone and the spine. Finally, the
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connected components were again labeled and an area based threshold value T1
was automatically calculated using the basic global thresholding method of
Gonzalez and Woods [19]. Connected components with an area ≥ T1 were
assigned to the pelvic bone, while connected components with an area < T1 were
assigned to the spine, see Fig. 4.2E for the resulting bone mask.

The third and final step, involved the actual localization of the tip of the coccyx.
This tip was found by identifying the spine voxel with the smallest Z coordinate
(blue diamond in Fig. 4.2E).

B. Localization of the pubic symphysis
The pelvic bone (Fig. 4.2C) was the starting point for the pubic symphysis
localization performed in three automatic steps. First, the pelvic bone was
projected on the XY-plane and the obturator foramina were identified (Fig. 4.3A).
As the pubic symphysis lies between the two obturator foramen, the other areas
could be excluded from further evaluation.
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Figure 4.3: Workflow for pubic symphysis localization based on image data of Patient 1.
(A) Projection of the pelvic bone mask in XY-plane with the dashed magenta lines
representing the edges of the region of interest, the light blue areas being the obturator
foramina and the blue and cyan diamond being the voxels with maximum Y-coordinate
in the region between the dashed lines. (B) Projection of the mask in XY-plane with
the blue and cyan search paths resulting in overlapping red diamonds. (C) Projection
of the mask in XZ-plane with the blue and cyan search paths resulting in overlapping
red diamonds. (D) 3D representation of the pelvic bone with the location of the pubic
symphysis represented by the blue diamond.
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C. Localization of the ischial tuberosities
For the localization of the ischial tuberosities, the pelvic bone (Fig. 4.2C) was used
in combination with the established cutting lines (dashed magenta lines in Fig.
4.3A). This allowed the division of the pelvic bone in three parts, see Fig. 4.4A.
Next, the total pelvic bone mask was projected on the YZ-plane and the pixels
with the lowest Z-value were found (Fig. 4.4B).

Subsequently, in both the left and right part of the pelvic bone, the voxels with a
Z-value as close as possible, were identified. Finally, from these voxels the most
posterior voxels were identified as the perineum boundary points on the ischial
tuberosities (blue diamonds in Fig. 4.4C).

X Y

Z

(A)

Y
Z

(B)
X Y

Z

(C)

Figure 4.4: Workflow for ischial tuberosities localization based on image data of Patient 1.
(A) Binary pelvic bone mask with cyan representing the left part, black representing the
middle part and the magenta representing the right part. (B) Pelvic bone projection in
the YZ-plane with the blue diamonds indicating the voxels with the lowest Z-coordinate.
(C) Pelvic bone mask with the blue diamonds representing the ischial tuberosities.

D. Total perineal skin area
Even though the perineum boundary points were not located in one plane
(Fig. 4.5A), they were connected by straight lines resulting in a diamond-shaped
perineal area while looking from the caudal direction (Fig. 4.5B). Subsequently, all
points in this diamond-shaped area were projected, using parallel lines along the
Z-axis, onto the skin between the legs resulting in a situation as displayed in
Fig. 4.5C.

4.2.5 Identification of accessible perineal skin
In Fig. 4.5C it can be seen that part of the skin area that was identified as perineal
skin was obstructed by the legs, or was covered by part of the scrotum, or too close
to the anus. Therefore, first, the blue perineum voxels belonging to the legs instead
of to the perineal skin area (Fig. 4.6A) were removed from the perineum projection
using a binary leg mask, created using the workflow described in Appendix A.2.
Then, the actually accessible skin area on which the probe could be positioned
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in clinical practice was determined using two automatic post-processing steps
described in the next two sections.
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Figure 4.5: Projection of the internal perineum to the skin based on image data of Patient 1.
(A) Binary bone mask with the blue diamonds representing the boundary points of the
perineum. (B) Binary bone mask with the surface between these diamonds represented by
the large blue diamond. (C) Body outline of the patient with the perineal area projected to
the skin. The arrow indicates the scrotum located inside the perineal skin area.

A. Scrotum identification and exclusion
It is typical for male patients in the supine position that the scrotum partially
covers the defined perineal skin area. To make the skin underneath the scrotum
accessible for TPUS probe placement, the patient is usually asked to support the
scrotum with his hands. So to define an accessible perineal skin area, the skin area
underneath the scrotum was estimated.
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Figure 4.6: Identification of the skin area underneath the scrotum based on image data of
Patient 1. (A) Projection of the perineal skin area in blue on the body outline of the patient.
(B) Projection of the remaining perineal points in the YZ-plane with the magenta line being
a fitted two-term exponential. (C) Representation of the perineal skin area after the leg
removal in blue and the perineal skin area after the identification of the skin underneath
the scrotum in cyan.

The perineum points remaining after leg exclusion were projected on the YZ-plane
(Fig. 4.6B) showing clearly where the perineum/buttocks of the patient are located
and where the scrotum starts. The assumption was made that the skin underneath
the scrotum follows roughly the same curve as the skin in front of it. For this
reason, a two-term exponential was fitted to the first 20-40 data points of this
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skin (magenta line in Fig. 4.6B). Subsequently, all the perineal skin points located
underneath this curve, thus with a lower Z-coordinate, were mapped to this curve.
During this mapping procedure, the X- and Y-coordinate of each perineal skin
point were kept constant. The Z-coordinate was changed into a value as proposed
by the curve for the corresponding Y-coordinate resulting in an estimated perineal
skin (Fig. 4.6C).

B. Anus exclusion
In clinical practice it is not desirable to position the US probe on top of the anus.
For this reason, the exact position of the anus needed to be identified and used
to exclude an area from the accessible perineal skin area. For this purpose, the
anal canal delineation (Table 4.1) was used, see Fig. 4.7A. The assumption was
made that the most caudal axial slice of this canal was the anus. By assessing the
boundaries of the anus, an accessible perineum edge could be identified (Fig. 4.7B).
Finally, the usable perineal skin area was restricted using this edge (Fig. 4.7C).
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Figure 4.7: Anus exclusion from usable perineal skin area based on image data of Patient 1.
(A) Body outline of the patient with the anal canal shown in black. (B) Body outline
of the patient in the XY-plane with the anus shown in black and the blue dashed line
representing the cut-off line. (C) Body outline in the XY-plane with the red part of the
diamond representing the perineal skin area that is not accessible and the blue part
indicating the accessible skin area.

C. Final identification of accessible perineal area
Combining Section 4.2.5.A and Section 4.2.5.B resulted in a perineal skin area that
was accessible in clinical practice for TPUS probe positioning (Fig. 4.8A). During
US image acquisition, operators tend to apply pressure on the probe to improve
the acoustic coupling, which results in significant perineal skin displacement.

To mimic this displacement, the perineal skin area was moved 35 mm parallel
to the longitudinal axis of the patient in the cranial direction (Fig. 4.8B). This
displacement was estimated under the assumption that the scanning head of the
probe was flat and the used US gel layer was infinitely thin. CT scans of prostate
cancer patients who had a TPUS probe in place during the scan acquisition were
used for this estimation. These scans were available in our research group.
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Figure 4.8: Identification of the final accessible perineal area based on image data of
Patient 1. (A) Resulting accessible perineal skin area (blue). (B) Original position of the
accessible skin area in blue and the shifted skin area to compensate for probe pressure in
cyan.

4.2.6 Identify probe setups
In this section the workflow used to determine possible US probe setups will be
described. First the possible positions of the US probe on the XY-plane projection of
the perineal skin area were identified (Fig. 4.9A). To this end, the virtual probe was
positioned on the edges of the accessible perineal skin (see item a in Fig. 4.9A) and
translated along the X- and Y-axes using steps of 1 mm until the whole perineum
was covered, resulting in NXY possible probe setups.
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Figure 4.9: Workflow to determine the possible US probe setups based on image data of
Patient 1. (A) Projection of the perineal skin area on the XY-plane with a and b indicating
possible probe setups. (B) Projection of the skin area on YZ-plane with a possible probe
position in Y-direction highlighted in blue. The dashed magenta line corresponds to the
first-order polynomial fit. The center of the fit determines the translation in Z-direction
(arrow) and αX identifies the angle of rotation around the X-axis. (C) Projection of the skin
area on XY-plane with c indicating a possible setup with insufficient coverage with the
perineal skin area.
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As the US probe needs to be positioned on the patient’s skin, the Z-position of
the probe depends on the shape of the perineum. In Fig. 4.9B, a projection of
the perineum on the YZ-plane is shown in cyan, with the highest possible probe
position along the Y-direction highlighted in blue. A 2D first-order polynomial was
fitted to this projection of the probe position (dashed magenta line in Fig. 4.9B), in
order to mimic the placement of a flat probe. Subsequently, the required translation
along the Z-direction could be determined, based on the Z-coordinate of the center
of this polynomial fit (Fig. 4.9B).

As can be seen in Fig. 4.9B, the dashed magenta line representing the probe is
positioned under an angle. This implies that in addition to a translation in Z-
direction, also a rotation around the X-axis was required, in order to position the
virtual probe against the perineum. Calculating the inverse tangent of the slope of
the first-order polynomial fit provided the angle αx over which the probe should
be rotated around the X-axis (Fig. 4.9B). Combining translation in Z-direction with
rotation around the X-axis resulted in NZ possible setups and NSetups = NXY · NZ

setups in total.

For all NSetups also the orientation of the probe could be varied by adding
rotations around the different axes. For the X-axis, these rotations varied from -15
to +15 degrees in steps of 3 degrees (11 options), while for the Y- and Z-axes these
rotations varied from -3 to +3 degrees in steps of 1 degree (7 options). In the end,
this resulted in NTotal = NXY · NZ · 11 · 7 · 7 setups in total.

By covering the whole perineal skin area with virtual probe setups, also a setup as
indicated by item c in Fig. 4.9C could be identified. In this case, a large part of the
probe is located outside of the perineal skin area. Positioning the probe according
to this setup would involve enforcing skin from, for example, the legs aside. At
this point in time, the decision was made to exclude the setups that did not have
a 100% coverage with the perineal skin area (in XY-plane) from the possibilities.
After exclusion of these setups, NFinal possible probe setups could be examined in
the next steps.

4.2.7 Pre-processing anatomical structures
As noted before, the aim of this study was to propose a probe setup that would
allow the visualization of the same structures that the physician was able to
visualize. In this process, the CT contours (Table 4.1) created during the treatment
plan design (Fig. 4.10A - 4.10B) could be used, as the assumption was made that
the structures did not move between the acquisition of the CT scan and the US
volume.

The structures visualized by the physician during the actual acquisition of the US
volume were considered the preferred structures (blue in Fig. 4.10C). So,
preferably it should be possible to visualize these structures using the setup
proposed by the algorithm. The remaining structures were considered extra
(yellow in Fig. 4.10C) and the more of these structures could be visualized, the
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better. However, this could not be achieved at the expense of the preferred
structures.
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Figure 4.10: Pre-processing of the anatomical structure based on image data of Patient 1
(A) 3D representation of anatomical structures with prostate (red), seminal vesicles (black),
rectum (green) and bladder (cyan). (B) Anatomical structures without the body outline.
(C) The preferred structures are blue, while the extra structures are yellow.

4.2.8 Ranking of probe setups
The probe setups were ranked based on the presence of the different anatomical
structures in the field of view (FOV) of the US probe. During this ranking, we
assumed that the probe would be setup on the body of the patient according to the
calculated setup and that all acquired US images would be of sufficient quality.

First, a 3D model of the FOV of the US probe was created. A customized pre-set for
TPUS imaging of the prostate was available on the EpiQ7 system, which was used
for image acquisition during this study. The variables present in this pre-set, such
as penetration depth (120 mm), azimuthal angle (70 degrees) and elevation angle
(65 degrees), were used as input for the model construction. Since the position of
the FOV with respect to the active surface of the probe was known, the location of
the FOV inside the body of the patient could be determined for each setup.

Subsequently, the fraction of the preferred and extra structures that would be
located inside the FOV of the probe, was calculated based on the contours of these
structures for each probe setup. As the number of structure voxels in the FOV
should be maximized, the setup with the largest preferred structure fraction was
considered optimal. However, if two setups had an identical preferred structure
fraction, the setup with the larger fraction of extra structures was prioritized. This
provided the initial ranking of the probe setups.

Then, the top 25 setups were selected and possible bone shadowing was checked
using the binary bone mask (Section 4.2.3). First, the bones located outside the
FOV were removed. Subsequently, lines were drawn from the origin of the FOV
towards all boundary voxels of the preferred structures. If the drawn lines
intersected with a bone, the corresponding setup potentially could cause
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shadowing effects. In this work, preventing shadowing effects while visualizing
the extra structures was not part of the requirements. The final result was a
ranked list of possible probe setups, which potentially would allow imaging of all
preferred structures.

4.2.9 Evaluation of probe setups
As noted before, co-registered US and CT volumes of the patients were available.
This data was used to determine if the algorithm-proposed optimal probe setup
was similar to the setup used by the physician. To this end, several comparisons
were made.

First, the overlap of both US volumes was quantified using the Dice Similarity
Coefficient (DSC) [20], [21]. In this case, these volume samples did not contain any
anatomical information, but were purely based on the shape and location of the US
sectors (see e.g. the cyan and yellow sectors in Fig. 4.11). A DSC=1 indicates perfect
overlap, whereas a value of DSC=0 means no overlap at all. Subsequently, the
visualization of the different anatomical structures was quantified by calculating
the fraction of the structures that was in the FOV of the US probe in the proposed
setup and in the setup actually used by the physician.

Clinical requirements provided by an experienced RTO demanded that at least
the whole prostate and seminal vesicles, as well as the adjacent edges of the
bladder and rectum should be visualized, in order to make the US volume usable
for IGRT during prostate cancer treatments. For this reason, two additional sets of
anatomical structure voxels were defined. The required structures included all
voxels of the prostate and seminal vesicles. In addition, the voxels of the bladder
and rectum that were not further than 20 mm away from the borders of the
prostate, were included as well. All the remaining structure voxels were
considered optional. The preferred structures introduced earlier included all
required structures and a substantial part of the optional structures (Table 4.2).
Finally, also the fractions of the required and optional structures present in the
FOVs were calculated.

4.3 Results
On average 46,088 possible probe setups (range: 14,736 - 86,401) were proposed
for the examined patients. The top 25 setups (after ranking) underwent a check for
bone shadowing. For Patients 1 and 2 for none of the top 25 setups bone blockage
occurred, while for Patient 3 bone blockage also occurred in the TPUS volume
acquired by the physician. The identification of the accessible perineal skin area,
the ranking and evaluation of the possible probe setups took on average 24 hours
on a standard PC (i5 CPU, 2.5 GHz, 4 GB RAM).
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During the manual registration of the US and CT volumes performed by one
RTO, three out of four fiducial markers were distinguishable in the US volumes
of Patients 1 and 2, and two out of four in the volume of Patient 3.

The overlap between the US volume as acquired by the physician and the
algorithm-proposed volume was, on average, DSC = 0.76 (Table 4.2). However,
the algorithm-proposed setups only allowed visualization of up to 98% of the
structure voxels that the physician was able to visualize (preferred structures).
The not-visualized voxels were located further than 20 mm away from the
prostate edges.

The first setup of each patient was considered the optimal setup and therefore
assessed further. In Fig. 4.11, the center slices of the CT scan of Patient 1 in sagittal
and coronal direction are shown with the relevant anatomical structures in white.
In addition, the outlines of the US sector scanned by the physician (cyan) and
as proposed by the algorithm (yellow), are superimposed. As can be seen, the
algorithm-proposed setup seems to have a slightly different sector size than the
setup used by the physician.
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Figure 4.11: Center slices of the CT scan of Patient 1 in both sagittal (A) and coronal direction
(B). The US volume as setup by the physician is superimposed in cyan, while the US volume
as proposed by the algorithm is superimposed in yellow. In addition, the contours of the
relevant anatomical structures are superimposed in white: (a) prostate, (b) bladder, (c)
rectum and (d) seminal vesicles.

For both the physician-proposed setup and the algorithm-proposed setup, the
visualization using these setups was quantified. These results are detailed in
Table 4.2 and in this section the average results over all patients are reported.
The algorithm-proposed setup visualized 100% of the required structures and
94% (range: 88% - 98%) of the preferred structures. In addition, the algorithm-
proposed setup allowed visualization of 65% of the bladder in comparison to
70% achieved by the physician. The physician was able to visualize 61% of the
rectum, while the algorithm-proposed setup was able to visualize 59%. The lower
visualization abilities of the bladder and the rectum by the algorithm-proposed
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setup automatically results in a lower ability to visualize the optional structures
(51% versus 56%).

Table 4.2: Results of the probe setup evaluation. In the first column all the relevant
(combinations of) anatomical structures and the DSC are detailed. In the remaining
columns, for each patient the visualization of the structures using the physician’s probe
setup is expressed in percentages of the whole volume of the corresponding structure(s) in
the left column. The visualization using the algorithm-proposed optimal setup is detailed
in the right column. The asterisk (*) indicates that the fraction of the preferred structures
was 100% by definition.

Patient 1 Patient 2 Patient 3

Physician Algorithm Phys. Alg. Phys. Alg.

[%] [%] [%] [%] [%] [%]

Required structures 100 100 100 100 100 100
Preferred structures *100* 88 *100* 98 *100* 96
Optional structures 76 57 19 22 72 73

Prostate 100 100 100 100 100 100
Seminal vesicles 100 100 - - 100 100
Bladder 84 73 26 28 100 95
Rectum 83 65 41 45 58 66

DSC 0.8 0.8 0.7

4.4 Discussion
In this work, an algorithm was introduced, that proposed a patient-specific TPUS
probe setup for imaging of the pelvic region of a prostate cancer patient. The input
for this algorithm was a simulation CT scan and contours of several, manually
delineated, anatomical structures. The subsequent steps that were performed to
determine the optimal setup were fully automatic. As far as we know, the use of
a 3D image modality (in this case a CT scan) to determine a US probe setup was
never reported earlier by other research groups.

The evaluation of the algorithm-proposed setup was based on manually
co-registered CT and US data. During this registration procedure, two or three
out of four fiducial markers in the prostate could be identified. Unfortunately, not
for all patients these markers are distinguishable in the US volumes. In addition,
due to the lack of ground truth, it was not possible to verify how accurate this
registration was. In the ideal case, this evaluation should be repeated in the
future using datasets which are, for example, co-registered in absolute
coordinates using localization hardware, such as a tracking system (e.g. Polaris,
NDI, Waterloo, Ontario, Canada).
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The binary bone mask used to identify the internal perineum boundaries was
extracted from the patient’s CT scan using primarily a thresholding approach,
which gave a reasonable outline of the bones. Though the algorithm tended to
overestimate the edges of the bones in the lower pelvic area. However,
overestimation was in this case preferred over underestimation, as the bones
potentially might block the US waves. In the upper part of the skeleton, the
thresholding algorithm had more problems identifying the bone edges, as the
corresponding HU were less distinct with respect to the surrounding structures.
This led to some underestimation and has influenced the localization of the tip of
the coccyx primarily in the Z-direction. See Appendix A.3 for a figure to support
the explanation.

However, the coccyx is one of the vertices of the diamond-shaped perineum and
it is located behind the anus, see Fig. 4.7C. After excluding the area behind the
anus from the accessible skin area, the perineum is more triangular-shaped. The
basis of this triangle seems to be approximately located on the straight line
between the ischial tuberosities. Therefore, identifying both ischial tuberosity
points and the point on the pubic symphysis could potentially be sufficient to
identify the accessible perineal skin. The whole algorithm should be tested on a
patient population to evaluate a larger range of anatomical variability, while
paying special attention to this hypothesis.

A limitation of this work is that only the potential bone shadowing of the
preferred structures was taken into account, even though also shadowing of the
extra structures could affect the ranking of the setups. Another limitation is the
need for manually delineated structure contours, such as the prostate and the
anal canal. In the current situation, the US volume acquisition would have to be
postponed until these delineations are available. However, automatic
interpretation of the CT images using machine learning strategies could
potentially allow the automatic delineation of these structures (e.g. [22]).

As noted before, during the acquisition of the simulation CT scan the scrotum
was partially covering the perineal skin. Therefore, the skin area underneath the
scrotum had to be estimated to add that part to the skin accessible for TPUS
probe placement. In the ideal case, the scrotum would be already lifted during
the CT scan acquisition, in order to mimic the procedure necessary for probe
placement. However, lifting the scrotum would interfere with the current clinical
workflow. For the short term, more research is recommended regarding the ability
to distinguish the scrotum skin from the perineal skin on the CT scan.

For this work, the perineal skin displacement was preliminarily estimated based
on CT scans with the US probe in place, which were acquired for a different study.
However, for these patients no scan was acquired without the probe. A possible
experimental setup to allow displacement calculation instead of estimation could
be the acquisition of two MR scans of the patient. These scans include one scan
without a probe and one scan with an MR-compatible probe (unfortunately the
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X6-1 matrix probe was not MR-compatible), to be able to quantitatively assess the
displacement of the perineal skin due to the probe placement.

In this study, all setups that did not have a 100% coverage with the underlying
perineal skin area were excluded from further evaluation. However, potentially
even better setups can be found if some skin displacement is allowed. The
discomfort experienced by the patient, while positioning the US probe involving
pushing some skin aside from, e.g., the legs, could be examined in the same
experimental setup.

Finally, the identification of the accessible perineal skin area and the subsequent
ranking and evaluation of the possible probe setups took on average about
24 hours on a standard PC. This long calculation time makes the algorithm not
yet suitable for implementation in the simulation stage of the RT workflow.
Ideally the US volume would be acquired right after the CT scan, so a 24-hour
waiting time to calculate the optimal probe setup is not acceptable. However, the
hypothesis is that the use of an optimization method to identify the optimal setup
instead of evaluating the usability of all setups using a full-search approach could
dramatically decrease the calculation time. For this reason, optimization
approaches will be explored in the future.

4.5 Conclusion
The algorithm introduced in this work was able to propose a patient-specific probe
setup for each examined patient, which allowed visualization of all anatomical
structures that are of interest for US guided RT.
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Abstract
Ultrasound guidance is not widespread in prostate cancer radiotherapy
workflows. This can be partially attributed to the need for image interpretation
by a trained operator during ultrasound image acquisition. In this work, a
one-class regressor, based on DenseNet and Gaussian processes, was
implemented to automatically assess the quality of transperineal ultrasound
images of the male pelvic region. The implemented deep learning approach
achieved a scoring accuracy of 94%, a specificity of 95% and a sensitivity of 92%
with respect to the majority vote of three experts, which was comparable with the
results of these experts. This is the first step towards a fully automatic workflow,
which could potentially remove the need for ultrasound image interpretation and
make real-time volumetric organ tracking in the RT environment using
ultrasound more appealing.

This chapter has been submitted to Ultrasound in Medicine and Biology as: S.M. Camps, T. Houben,
C. Edwards, M. Antico, M. Dunnhofer, E.G.H.J. Martens, J.A. Baeza, B.G.L. Vanneste, E.J. van
Limbergen, P.H.N. de With, F. Verhaegen, G. Carneiro, D. Fontanarosa, "Automatic quality assessment
of transperineal ultrasound images of the male pelvic region using deep learning."
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5.1 Introduction
One of the curative treatment modalities for prostate cancer is radiotherapy (RT).
This modality aims to irradiate tumor tissue in the prostate (sometimes including
the seminal vesicles), while sparing the surrounding organs at risk (e.g. bladder
and rectum) as much as possible. The radiation dose is typically delivered to
the patient in multiple treatment fractions, in accordance with a treatment plan
designed based on a computed tomography (CT) scan.

It has been shown that shape and position of the prostate might differ between
treatment fractions (inter-fraction), due to changes in bladder and/or rectal
filling [1]. Also during a treatment fraction (intra-fraction), the tissue
distributions might change [2]. If the original treatment plan was delivered on the
changed tissue configuration, this could result in a suboptimal dose deposition in
the tumor and the organs at risk could receive extra undesired dose [3].

For this reason, several solutions have been proposed to identify the position and
shape differences of the anatomical structures during the treatment course with
respect to the treatment plan. This information can be used to potentially improve
the precision of dose delivery. Most of the proposed solutions require frequent
imaging during the course of the RT treatment (image guided RT, IGRT) with or
without implanted fiducial markers [4] using X-ray, magnetic resonance imaging
(MRI) [5], [6], or ultrasound (US) imaging [7]–[9].

In this work, we focused on the use of US imaging for intra-fraction guidance
during RT. US imaging allows real-time volumetric organ tracking in the RT
environment and, in addition, it is cost-effective and harmless for the patient.
Despite these advantages, its use is not yet widespread. This can be partly
attributed to the need for a trained operator during manual image acquisition to
verify if the correct anatomical structures are visualized with sufficient quality.

To allow for intra-fraction monitoring of anatomical structures, the operator
needs to position the US probe prior to treatment fraction commencement. As the
operator cannot stay in the treatment room during radiation delivery, the probe
would need to be fixed using either a mechanical or a robotic arm. During the
treatment fraction, small motion of the patient or changes in anatomical
structures can compromise image quality due to, for example, a loss of acoustic
coupling and/or a sudden appearance of shadowing artifacts. The operator
would therefore need to be present in the control room to promptly identify this
quality loss and, if necessary, take appropriate action.

The aim of this study was to develop a prototype deep learning algorithm to
automatically score 2D US images out of a 3D volume of the male pelvic region
based on their quality or, in other words, on their usability during the US guided
RT (USgRT) workflow. In particular, we developed a novel one-class regressor,
based on DenseNet [10] and Gaussian processes (GPs) [11]. This is the first step
towards a fully automated workflow that would eventually remove the need for
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a trained operator and therefore potentially make the use of US imaging more
appealing for hospitals.

Machine learning has been used earlier in the assessment of US image quality,
primarily in the obstetrics field (e.g. [12], [13]). In these studies, the assessment was
based on initial segmentations, or on the presence of specific anatomical structures
in the image. In the work of Schwaab et al. [14] the quality of 3D US images of the
breast was automatically assessed; however, this work made use of handcrafted
features, such as, the total 2D physical area of the breast. Instead, we aimed to
perform the quality assessment using solely automatically learned deep features
from the image without relying on any initial segmentations or specific anatomical
structure detection.

5.2 Materials and methods
5.2.1 Image data acquisition
In this work, datasets from three different studies conducted after local
institutional review board or medical ethics committee approval at the
MAASTRO Clinic (Maastricht, the Netherlands) were combined (Table 5.1) The
36 male subjects were either healthy volunteers or patients with localized
prostate cancer and all signed an informed consent.

Table 5.1: Summary of the available datasets in this study in total comprising 11,148 TPUS
volumes from 36 male subjects.

Study Subject type # subjects Age mean [range] Total # volumes

Study 1 Volunteers 6 35 (range: 26 - 52) 840
Study 2 Patients 21 74 (range: 58 - 85) 1,269
Study 3 Volunteers 9 51 (range: 31 - 73) 9,039

Total - 36 - 11,148

For each subject, several 3D and 4D transperineal US (TPUS) volumes of the pelvic
region were acquired using an X6-1 xMatrix array probe (Philips Healthcare,
Bothell, WA, USA) and an EpiQ7 US system (Philips Medical Systems, Andover,
MA, USA). The datasets show a significant variability in image characteristics due
to, for example:

1. different volume dimensions and voxel sizes, due to a requirement to achieve
an acceptable frame rate in the 4D sequences;

2. varying body composition, age and medical history of the subjects;
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3. possible anatomical structure displacements, which were artificially
introduced by instructing the subjects to consciously contract muscles in the
pelvic area or to cough;

4. the exact settings on the US system such as imaging depth and focus, which
could vary between the different studies and between the different subjects
(this also affected the voxel sizes and dimensions of the volumes);

5. the involvement of four radiation oncologists in the acquisition of the
volumes, each of them with their own approach to TPUS image acquisition.

5.2.2 Initial image data pre-processing
Three initial pre-processing steps were necessary to prepare the datasets for deep
learning algorithm processing. These steps were all performed using MATLAB
(Version 9.3.0 (R2017b), The Mathworks Inc. Natick, MA, USA). First, the volumes
were resampled to identical voxel sizes, which allowed easy volume comparisons
and batch processing of the data in the next steps. Second, the TPUS volumes
were sliced to 2D images along the sagittal direction, as this was the direction
with the highest resolution. Visual inspection of these images then revealed that
the anatomical structures of interest were most often located at the center of each
volume. For this reason, only the central 16 sagittal 2D images from each volume
were selected for further processing, which also reduced the total computational
cost. Then all 2D images were symmetrically padded with black pixels to ensure
that all images had the same dimensions as the largest 2D image (namely 216x180
pixels) in the entire dataset. Finally, a fixed region of interest was defined by
automatically cropping the images, while preserving the crucial information of all
anatomical structures. This resulted in 178,368 2D TPUS images overall composed
of 116x100 pixels, originating from 11,148 TPUS volumes.

5.2.3 2D US image classification
The crucial anatomical structures for prostate RT treatments are: prostate, seminal
vesicles, bladder and rectum. Prostate is the target of the treatment and should
therefore be always completely visible on an acquired US volume. In the ideal
case, also the edges of the bladder and rectum adjacent to the prostate should be
visible to potentially spare these organs at risk from excessive radiation exposure.
Since it was not possible to identify the seminal vesicles with sufficient certainty
on the acquired US volumes, these were not evaluated in this study.

Based on the above-mentioned criteria, three image categories were defined which
are detailed in Table 5.2. An example of each category is displayed in Fig. 5.1.
Category 1 involves images that have insufficient quality to be used clinically for
USgRT. The quality of Category 2 and 3 images was considered sufficient as the
target was visualized and could potentially be tracked.
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Table 5.2: Definition of three image criteria used to classify 2D TPUS images based on their
quality.

Category Critera

Category 1 Prostate could not be identified

Category 2 Prostate alone or in combination with either a part of the
bladder or the rectum could be identified

Category 3
Prostate could be identified, as well as a part of the bladder
and the rectum

In order to provide the deep learning algorithm with labeled training, validation
and test samples, a subset of the available 2D TPUS images was manually and
independently scored by four members of our research team, as the experts
involved in this study had very limited time available. The central 16 2D images
(see Section 5.2.2) of each volume were presented to each team member. They
could then scroll through the images of each volume and assign a score between 1
and 3, corresponding to Categories 1 to 3, respectively, to each image.

Some of the 2D images were horizontally flipped, due to the fact that the probe
was sometimes held upside down. This resulted in a flipped anatomical structure
configuration. During the scoring process, the orientation of these images was
manually corrected, to ensure that the bladder was located on the left side and
the rectum on the right. The team members were instructed to only assign a score
to an image if they were highly confident, so it was also possible to leave images
unscored. Following this procedure, 1000 randomly selected volumes were scored
by each team member.

b

(A)

p

b

(B)

p
b

r

(C)

Figure 5.1: Example 2D TPUS image of each quality category. (A) Category 1 with only
bladder (b) identifiable. (B) Category 2 with bladder (b) and prostate (p). (C) Category 3
with bladder (b), prostate (p) and rectum (r).
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The images that received a consistent score from at least three out of four team
members were included in a database (Database_NonBinary) with the majority
vote of the scores given by the team members assumed to be their ground-truth
annotations. Subsequently, the scores of each team member were binarized, with
binary score 1 = 0 (poor quality) and binary score 2 or 3 = 1 (good quality). Then,
the same procedure of including images in the database that at least three out
of four team members scored consistently was followed, resulting in a binary
database (Database_Binary).

The research team evaluated overall 16,000 2D TPUS images distributed over
1,000 volumes. In total 13,463 of these images (from 34 out of 36 subjects) received
a consistent score from three out of four team members and were therefore
included in Database_Binary. Subsequently, the data were split into training (60%
= 20 subjects), validation (20% = 7 subjects) and test (20% = 7 subjects) sets. For
each subject, the number of classified images varied. In addition, not for all
subjects images of all categories (Category 1-3) were available. For this reason,
the split was not just done randomly, but performed using an optimization
approach based on simulated annealing [15].

As mentioned in the previous section, the quality of Category 2 and 3 images
was considered sufficient for use in clinical practice. Therefore, Database_Binary
was used to train and test the algorithm; however, the subject split into training,
validation and test sets was performed based on Database_NonBinary. This was
done to ensure a balance between good (Category 2) and very good (Category 3)
images in the positive binary group.

First, the data were split into a test and train set by randomly assigning the
subjects to one of the groups, while not exceeding the defined sizes of each group.
Subsequently, in each iteration, a random subject from the test set was swapped
with a random subject from the training set. The aim was to obtain similar ratios
between the number of images of a certain category (1-3) in each group (test or
train) with respect to the total size of that group. So, for example, if 20% of the
training images were from Category 1, also about 20% of the test images should
be from Category 1. In total 1000 iterations were executed, in which more weight
was assigned to the ratios of Category 2 and 3 images. The ratios of the Category
2 and 3 images were more important, due to the fact that a one-class approach
was implemented. This is explained further in Section 5.2.5. The same process
was repeated to extract the validation set from the training set. In the end, this
resulted in a distribution of poor-quality images (binary score 0) and
good-quality images (binary score 1) over the train, validation and test set, as
shown in Fig. 5.2A. In Fig. 5.2B the distributions of the binary score 0 and 1
images per subject and per group are detailed. In the remainder of this chapter,
this subject distribution will be referred to as Distr0.
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(A) (B)

Figure 5.2: Distribution of the image data in Distr0 per binary score (A) and per subject (B)
in the training, validation and test set.

To allow for cross-validation of the hyper-parameters of the deep learning
algorithm, nine additional subject distributions were created (Distr1 - Distr9).
These distributions were also created using the approach based on simulated
annealing, as described above. However, since the hyper-parameters were
optimized based only on the validation set of Distr0, it was not necessary to
perform the second step in which the training set is again split into a training set
and a validation set. In addition, the distributions were chosen in such a way that
each of the 34 subjects appeared at least once in the test set of a distribution.
Fig. 5.3 shows the number of test and training images in each distribution
(including Distr0) and the subjects indicated by their numbers appearing in the
test set are detailed in Table 5.3.

Figure 5.3: Number of training (purple) and test (yellow) images per subject distribution.
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Table 5.3: Subjects in the test set of each distribution.

Test subject numbers

Distr0 4 8 12 19 22 32 33
Distr1 7 9 13 15 18 25 31
Distr2 5 13 17 24 25 26 32
Distr3 7 13 14 22 23 28 33
Distr4 1 2 5 18 20 24 30
Distr5 3 4 5 12 20 29 34
Distr6 2 15 16 17 26 28 33
Distr7 5 11 21 22 26 29 31
Distr8 4 5 12 13 17 22 27
Distr9 10 12 14 17 19 23 29

5.2.4 Quality score validation
Quality score validation was performed by an accredited medical sonographer
and by two of the radiation oncologists involved in the acquisition of the images.
These experts were each presented with the same 300 2D TPUS images, which
were randomly selected from the test set of Distr0, and asked to score these images
between 1 and 3. The inter-expert agreement, the test data agreement and the
performance of the algorithm were then compared to the majority vote of the
experts using Fleiss’ kappa [16], accuracy, sensitivity and specificity metrics.

5.2.5 Deep learning algorithm selection
Several different aspects of the image acquisition procedure as well as the subject
body composition affect US image quality. Quality deterioration can be caused by
many factors including insufficient acoustic coupling between the US probe and
the skin, bones causing shadowing artifacts on critical anatomical structures and
insufficient penetration due to (fat) tissue distributions. This makes describing
features for classification challenging.

For this reason, we approached this problem as a one-class classification (OCC)
problem. This approach involves the definition of a single class that should
contain all images with "good" (according to clinical requirements) quality, while
considering the images with "poor" (according to clinical requirements) quality as
outliers. One-class support vector machines (OCSVM) can construct a
hyper-sphere with a minimum radius, which contains all positive data points in
the multi-dimensional feature space [17]. However, even though this technique is
widely used, it does not perform well on noisy data [18].

In this work, the use of Gaussian processes (GPs) instead of conventional SVM
was explored for OCC of US image quality. In line with Kemmler et al. [11], GPs
were used for regression acting as a one-class classifier. In contrast to SVMs, GPs
deliver probabilistic predictions and are able to automatically learn regularization
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and kernel parameters as well as feature importance. However, GPs lack
characterization power for complex data [19]. For this reason, a combination of
two techniques was considered: a convolutional neural network (CNN) was used
as an autonomous feature descriptor. Then its output was supplied to the GP for
OCC.

5.2.6 Architecture and implementation
In this work, DenseNet [10] was used for feature description. This CNN provides
a robust architecture which reduces the chance to over-fit and for vanishing
gradients, while giving state-of-the-art results on fundamental datasets, like
ImageNet [10]. A wide-sense variant with 2 dense blocks, 18 layers per block and
a growth rate k of 12 (see Table 5.4) was used and no bottleneck layers were
included. Prior to the first dense block, a convolutional operation with a 7x7 filter
was performed, followed by a max pooling operation. Finally, the last fully
connected layer was removed and replaced by a GP regressor (see Fig. 5.4).

Score
predictionCNN GP

Figure 5.4: Deep learning approach. Selection of 2D images from the center of a TPUS
volume, followed by processing using a CNN and a GP, resulting in a quality score
prediction.

This regressor was implemented using GPflow [20]. A major advantage of GPflow
is that it supports sparse GPs [21], which reduces computation time and memory
usage (one of the main drawbacks of GPs). The regressor used a radial basis kernel
function (RBF) with an initial variance of 0.1 to fit the data (see Table 5.4). The
number of points used during the GP calculations was 150, which was 75% of
the outputs from the CNN. As the GPflow library is built on TensorFlow [22],
the DenseNet was also implemented in TensorFlow to make end-to-end training
possible.

Prior to providing the deep learning algorithm with the image datasets, two final
processing steps needed to be performed on the data. First, all pixel values were
normalized by setting the total mean to zero and the standard deviation to one,
to ensure that the training backpropagation algorithm of the CNN would work
efficiently. Second, the training data was randomly permuted and then split in
mini-batches to ensure subject balance in the mini-batches.
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Table 5.4: Algorithm parameters per implementation step with the asterisks indicating the
optimized hyper-parameters.

CNN + GP (one class)

Parameter Value

DenseNet Number of blocks* 2
Number of layers* 18
Growth rate k* 12
Outputs* 200

GPflow Model Sparse GP Regression (SGPR)
Kernel Radial Basis Function (RBF)
Initial kernel variance* 0.1
Inducing points* 150

Training Batch size* 200
Epochs* 75
Optimizer Adam
Learning rate* 1e-8
Drop-out rate* 0.05

All training and testing was performed on a Linux Cluster with an NVIDIA Tesla
K40 GPU (NVIDIA, Santa Clara, CA, USA). During training (200 images per
batch), the one-class classifier algorithm was only provided with images with
good quality (binary score 1). The optimization was done using the Adam
optimizer [23] and a learning rate of 1e-8 (see Table 5.4). After the deep learning
hyper-parameters were optimized (indicated with an asterisk in Table 5.4) using
the validation set of Distr0, the training and validation sets were combined into
the final training set of Distr0.

5.2.7 Comparison with other deep learning algorithms
In addition to the one-class approach in which a CNN was combined with GPs,
two additional deep learning approaches were implemented for comparison
purposes. The first approach also consists of a CNN in combination with GPs, but
instead of only training on the positive data (one-class), the network was trained
on both the negative and positive classes. This was possible in this study as
sufficient negative class data was available. The parameters used in this
implementation are detailed in Table B.1 of Appendix B and again the asterisks
indicate the optimized parameters based on the validation set of Distr0.

The second deep learning approach consisted of a DenseNet implementation
with a softmax classifier attached to it, as described in the paper by
Huang et al. [10]. With this approach a binary classification was performed, again
with the hyper-parameters optimized using the validation set of Distr0 (see
Table B.1 of Appendix B).
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5.3 Results
In Table 5.5 the cross-validation results are reported as per the implemented deep
learning approach. These results are based on the full test sets and not just on
the expert validated test subset. As the training of the CNN + Softmax based on
Distr9 with the corresponding hyper-parameters ran out of GPU memory, only
the results of Distr0 - Distr8 were averaged. The CNN + Softmax approach had
the worst accuracy and sensitivity in comparison with the CNN + GP approaches.
Both CNN + GP approaches performed comparably and the hyper-parameters
seem to be able to generalize.

Table 5.5: Cross-validation results per deep learning approach reporting the mean and σ
of the accuracy, sensitivity and specificity calculated over Distr0 - Distr8.

Accuracy Sensitivity Specificity
[mean ± σ] [mean ± σ] [mean ± σ]

CNN + GP (One class) 92 ± 1.7 % 89 ± 5.8 % 93 ± 2.6 %
CNN + GP (Two class) 92 ± 1.5 % 90 ± 6.1 % 93 ± 2.2 %
CNN + Softmax 90 ± 1.3 % 79 ± 7.6 % 95 ± 2.5 %

The Fleiss’ kappa among the three experts, calculated based on the subset of
300 images randomly picked from the test set of Distr0, was equal to 0.80. The
kappa among the three experts and the test subset was equal to 0.79. The accuracy,
sensitivity and specificity results with respect to the majority vote of the experts are
detailed in Table 5.6. The accuracy of the test subset with respect to the majority
vote was 91%, while the accuracy from the experts ranged within 92% - 97%.
The test subset had the lowest sensitivity (80% compared to 90% - 99%), but a
specificity of 99%.

Table 5.6: Accuracy, sensitivity and specificity (1-false positive rate) results for the
algorithms, test subset and three experts calculated with respect to the majority vote of the
three experts.

GP GP Softmax Test Expert 1 Expert 2 Expert 3
One class Two class subset

Accuracy 94% 93% 92% 91% 96% 97% 92%
Sensitivity 92% 96% 87% 80% 99% 95% 90%
Specificity 95% 91% 96% 99% 93% 99% 94%

All algorithms achieved an accuracy, which was equal to or higher than the
accuracy of the worst expert (Expert 3) with respect to the majority votes of the
experts. The CNN + GP approaches achieved a better accuracy than the CNN +
Softmax, while the one-class approach achieved a better accuracy and specificity
in comparison with the two-class approach.
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In Fig. 5.5 the receiver operating characteristics (ROC) curves of the one-class
CNN + GP approach is plotted, again with respect to the majority vote of the
experts.

Figure 5.5: ROC-curve of the one-class CNN + GP algorithm with respect to the majority
vote of the experts, where the red, blue and cyan diamonds are indicating the performance
of the experts, the cyan diamond gives the performance of the test subset and the green
diamond gives the performance of the algorithm.

The green diamond indicates the highest accuracy of the algorithm (94%), which
corresponded to a sensitivity of 92% and a specificity of 95% (see Table 5.6). The
red, blue and magenta diamonds indicate the performance of the experts, while
the cyan diamond corresponds to the test subset. The Fleiss’ kappa for the experts
and the algorithm was equal to 0.82.

5.4 Discussion
In this work, a one-class deep learning approach was proposed that could be used
to automatically assess the quality of TPUS images of the male pelvic region. For
comparison purposes, two additional approaches were also implemented. The
CNN + Softmax was not able to train on Distr9 as it ran out of memory. This can
potentially be explained by the size of the test set of Distr9 and by the network
depth of the CNN + Softmax network in comparison with the network depth
of the CNN + GP approaches. In addition, both the cross-validation results and
the validation by experts showed that better accuracy and sensitivity results was
achieved using the CNN + GP approaches. It has to be noted that during the
optimization of the hyper-parameters, the hyper-parameter space has only been
explored up to a certain extend. However, the current results seem to justify the
use of GPs instead of softmax for classification.

90



5.4. Discussion

The cross-validation results show a comparable performance of both the one-class
and binary classification using CNN + GP, while the expert validation shows a
better performance of the one-class approach (accuracy and specificity). So, the
one-class regressor seems to be able to identify the not-usable 2D TPUS images
well, even though it was only trained on the usable images (i.e. images belonging
to Categories 2 and 3, which consists of 32% of the training images). This is a
very promising result in cases where there is a lack of available not-usable images
or where it is difficult to capture the whole range of appearances of not-usable
images for training purposes.

All the algorithms were trained based on a subset of a larger database and the
labels used for training were generated by a small research team. The team
members were asked to only assign a score when they were highly confident of
their results. In addition, only images to which at least three out of four team
members assigned a consistent score were included in the database. This was
done to partly eliminate the inter-user variability from the database. In the ideal
case, the labels would be generated by experts, but this was not feasible due to
time constraints. However, the kappa values (0.80 vs. 0.79) showed a good
agreement between the scores of the team-members and the experts. This
agreement also shows that, even if the four team members were not fully
independent, the resulting database was in agreement with the experts. The
accuracy of the test subset was 91%, which is lower than the accuracy of the
experts (range: 92% - 97%), but still comparable.

The initial aim was to achieve an accuracy equal to the performance of the worst
performing expert (92%). In Fig. 5.5 it can be observed that the algorithm is able
to achieve a sensitivity and specificity that are comparable with the experts,
which resulted in an overall accuracy of 94%. Calculating the Fleiss’ kappa of the
experts and the algorithm resulted in 0.82, which seems to imply that there is
almost perfect agreement between the experts and the algorithm (according to
the interpretation of Fleiss’ kappa from Landis and Koch [24]). The current
performance evaluation was performed with a subset of the test set, due to
limited availability of the experts. In future research, this subset will be expanded
and the algorithm parameters will be optimized further in order to achieve a 96%
accuracy goal, which is the performance of the second to best expert.

The scores assigned to the 2D images were binarized, as currently the quality of
Category 1 was considered insufficient for use in clinical practice, while the quality
of Categories 2 and 3 were considered sufficient. In Category 2 images, none or
just one of the organs at risk (bladder and rectum) is visualized. As the organs at
risk should be spared from radiation as much as possible, in the future not only the
position of the prostate should be monitored, but also the position of these organs.
This would introduce the need to also make a distinction between Category 2
and Category 3 images. In addition, a single poor-quality 2D image does not
necessarily imply that the whole volume is not able to provide useful clinical
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information. Therefore, the next steps should move towards the interpretation of
a whole volume, for example, using recurrent neural networks which can take
into account inter-slice context (e.g. [25]).

The potential of the database that was available in this work has not been fully
exploited, as only 16,000 2D images of the 178,368 images were examined by
the team, resulting in 13,463 images with labels. Potentially, the performance
of the algorithm can be improved by using more images for training. Also, the
orientation of the images that had a flipped anatomical structure configuration
were manually corrected during the scoring process. However, during the actual
image acquisition the probe might be held upside down as well, so the algorithm
should be robust for any image orientation changes. This robustness will also be
examined in future research.

The focus in this work was on the use of US imaging during a prostate cancer RT
workflows. However, a similar approach could be adapted for use in other medical
procedures in which US imaging may be beneficial for anatomical localization,
but where it is not yet feasible and/or desirable to have a trained operator present
at the time. These procedures could be, for example, USgRT workflows of other
cancer sites (e.g. liver, bladder of cervical cancer) or US guided surgeries.

5.5 Conclusion
The purpose of this work was to propose a deep learning approach that could
automatically assess the quality of TPUS images of the male pelvic region. This
could potentially remove the need for quality interpretation by a trained operator.
The performance of the implemented one-class GP regressor was compared with
three experts and the results showed that the algorithm is comparable with these
experts in a binary scoring scenario. Future work will involve exploring the non-
binary scoring scenario, including adding additional data into the database and
assessing the overall quality of the TPUS volume instead of judging individual
2D images.
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Abstract
Imaging of patient anatomy during treatment is a necessity for position
verification, and for adaptive radiotherapy based on daily dose recalculation.
Ultrasound (US) image guided radiotherapy systems are currently available to
collect US images at the simulation stage (USsim), co-registered with the
simulation computed tomography (CT), and during all treatment fractions. We
hypothesize that a deformation field derived from US-based deformable image
registration can be used to create a daily pseudo-CT image (CTps) that is more
representative of the patient’s geometry during treatment than the CT acquired at
simulation stage (CTsim).

The three prostate patients, considered to evaluate this hypothesis, had
co-registered CT and US scans on various days. In particular, two patients had
two US-CT datasets each and the third one had five US-CT datasets. Deformation
fields were computed between pairs of US images of the same patient and then
applied to the corresponding CTsim scan to yield a new deformed CTps scan. The
original treatment plans were used to recalculate dose distributions in the
simulation, deformed and ground truth CT (CTGT) images to compare Dice
similarity coefficients, maximum absolute distance, and mean absolute distance
on CT delineations and gamma index (γ) evaluations on both the Hounsfield
units (HU) and the dose.

In the majority, deformation did improve the results for all three evaluation
methods. The change in gamma failure for dose (γDose, 3%, 3 millimeter) ranged
from an improvement of 11.2% in the prostate volume to a deterioration of 1.3%
in the prostate and bladder. The change in gamma failure for the CT images
(γCT, 50 HU, 3 millimeter) ranged from an improvement of 20.5% in the anus and
rectum to a deterioration of 3.2% in the prostate.

This new technique may generate CTps images that are more representative of the
actual patient anatomy than the CTsim scan.

This chapter has been published as: S. van der Meer*, S.M. Camps*, W.J.C. van Elmpt, M. Podesta,
P. Gomes Sanches, B.G.L. Vanneste, D. Fontanarosa, F. Verhaegen, "Simulation of pseudo-CT images
based on deformable image registration of ultrasound images: a proof of concept for transabdominal
ultrasound imaging of the prostate during radiotherapy." Med. Phys. 43(4), 1913 (2016).
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6.1 Introduction
Image guidance has become an essential part of radiotherapy (RT) treatment
to allow for safe delivery of radiation doses. Image guided RT (IGRT) is often
performed for several or all treatment fractions to position the patient correctly.
Beyond the aim of image guidance, the availability of daily imaging also allows
for the possibility of adaptive RT (ART) [1], [2]. The goal of ART is to improve
RT treatment by systematically monitoring dose discrepancies and incorporating
them to re-optimize the treatment plan. Normally, only the planning computed
tomography (CT) image, acquired at simulation stage, is available for the dose
calculation, but both inter- and intra-fraction patient anatomy motion and changes
(like tumor shrinkage, nodal volume changes and weight loss) may alter the dose
distribution [3]–[6]. In ART, the anatomy from the planning CT is updated by the
anatomy from the daily imaging, acquired during the IGRT workflow to monitor
dose distribution and if necessary adapt the treatment plan.

CT scanners are usually not available in the treatment room. Instead, cone-beam
computed tomography (CBCT) can be used for dose calculations either
directly [7]–[10], or indirectly with deformable image registration (DIR) [11], [12],
even though they offer a lower image quality when compared to CT scanners. In
some studies, using the CBCT directly for dose calculations, the inaccuracies in
the Hounsfield units (HU) are large enough to result in clinically relevant dose
errors [13]–[15].

In this chapter a workflow is introduced to produce pseudo-CT images based on
deformable registration of ultrasound (US) volumes. A 3D US IGRT system can
acquire volumetric, high-contrast soft-tissue images non-invasively on a daily
basis without using ionizing radiation (Fig. 6.1). Subsequently, deformable
registration of these volumes can reveal changes in tissue distribution that
occurred over time.

Figure 6.1: Workflow of acquisition of CTsim, USsim and UStx images (Clarity US system;
Elekta). (Figure adapted from Elekta with their permission)
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Relatively few papers on US to US deformable registration can be found in the
literature and as far as we could find, there are presently no papers involving
deformable registration of pelvic or abdominal US volumes in RT. In other medical
fields, however, some publications are available. For example, Shekhar et al. [16]
proposed a non-rigid method based on mutual information to register cardiac US
images in different phases throughout the complete cardiac cycle.

A similar workflow as proposed in this study was presented for brain surgery
applications by Pennec et al. [17]. In this study, pre-operative magnetic resonance
(MR) images and US images were acquired. Subsequently, intra-operative US
images were used to create pseudo-MR images of the brain. This resulted in
acceptable representations of the brain anatomy during surgery.

As these results were promising, we used a similar approach to create pseudo-CT
images (CTps). We hypothesize that a pseudo-CT image can be created based on
CTsim using a deformation field calculated between USsim and UStx. We expect
that the CTps so created gives a better representation of the patient’s anatomy
during treatment delivery than the planning CTsim.

6.2 Materials and methods
6.2.1 The concept
In the proposed workflow (Fig. 6.2) for CTps image creation, DIR has to be
performed to calculate a deformation field between USsim and UStx. Subsequently,
this deformation field has to be applied to CTsim which results in the creation of
CTps.

Figure 6.2: Deformable image registration (DIR) is computed between the two US images
(USsim & UStx) and then applied to CTsim resulting in a new pseudo CTps. The question is
whether this CTps is indeed representative for the patient anatomy during treatment.
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6.2.2 Patient scans
Clinical examples with multiple co-registered US-CT combinations at the
simulation stage (instead of the treatment stage), were used to validate the
concept. In this study three prostate cancer patients from a previous study [18]
were used. Due to clinical reasons, these patients underwent additional US and
CT imaging next to USsim and CTsim acquisition. In the normal clinical workflow,
these extra CT and US images are not acquired. The extra CT scans were used as
ground truth scans (CTGT) to which the derived CTps scans could be compared in
this proof of concept study. In Table 6.1, the method used to calculate and
evaluate the result from the deformations is described.

Table 6.1: Overview of the US-CT combinations used to calculate and evaluate US-based
deformable image registration. Patient 3 sets A-D differ in the second US-CT pair that was
used to test the method.

Patient Set Used as USsim Used as UStx Used as CTsim Used as CTtx

1 US1 US2 CT1 CT2
2 US1 US2 CT1 CT2
3 A US1 US2 CT1 CT2
3 B US1 US3 CT1 CT3
3 C US1 US4 CT1 CT4
3 D US1 US5 CT1 CT5

The co-registered CT-US images were acquired at two time points for Patients 1
and 2 (3 and 1 weeks apart, respectively). Acquisitions for Patient 3 were made for
five time points where the first two were 2 weeks apart and the following three
time points were one week apart.

All co-registered US-CT combinations were acquired in the CT room with the
patient’s external skin markers positioned along the room lasers. The 3D US
scans (Clarity system; Elekta, Stockholm, Sweden, voxels: 1 x 1 mm2 x 3 mm
slice thickness; US probe type C5-2/60, center frequency 3.5 MHz, Sonix Series;
Ultrasonix Medical Corporation, Richmond, BC, Canada) were performed trans-
abdominally immediately before or after the CT-scan. The number of voxels of the
US images varied between [512, 512, 90] and [512, 512, 131]. For each patient, the
images were resampled to match the dimensions of the first acquired US volume
(USsim).

The CT scans were acquired using a SOMATOM Sensation Open (Syngo CT
2006A, Siemens, Germany; voxels: 1 x 1 mm2 x 3 mm slice thickness). Both scans
were performed in the same supine patient position, stabilized with knee fix and
foot support (Combifix, Civco Medical Solutions, Kalona, Iowa, USA), resulting
in a correct automatic fusion of the US and CT images [19].
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In all US images, the prostate was delineated. All CT images had delineations
of the body contour, prostate, seminal vesiculae (SV, except for Patient 3), anus,
rectum and bladder (except for Patient 1).

6.2.3 Deformation
For each US-CT combination (as detailed in Table 6.1) deformation fields were
calculated using a DIR algorithm (B-spline method from ElastiX; Utrecht, the
Netherlands) [20], [21]. Prior to the deformation field calculation, all volumes were
resampled to the same image dimensions per patient. In addition, segmentation of
the CTsim images resulted in a binary mask of the bones and the region of interest
(ROI) was defined as the overlapping parts of the US images (ROI: USsim ∩ UStx).
All these preprocessing steps were performed with the Matlab (MathWorks Inc.,
Natick, MA) software.

During the acquisition of the different US-CT combinations, the patients were in
the same position with the body markers aligned to the lasers. For this reason,
no rigid transformation was performed prior to the deformable registration, in
particular to prevent erroneous full body shifts based on internal shifts of the
prostate [22].

As mentioned before, the deformable registration was performed using the ElastiX
software. This software package requires three inputs: fixed image (UStx), moving
image (USsim) and a parameter file. The parameter file contains all the parameters
that determine the characteristics of the registration. In Appendix C.1 an example
of such a parameter file is detailed.

In this study the deformable registration was performed either on the overlapping
parts of the US images or on binary masks of the delineated prostate volumes only.
In total five different parameter sets (Parameters A-E in Table 6.2) were defined
for this purpose using the file in Appendix C.1 as a basis.

Table 6.2: Five different parameter sets (A-E) were used during the deformable registration.
This registration could be based on the whole US volume or on the binary mask of the
delineated prostate volume only (reported in the columns: Fixed image and Moving image).
In addition, both the metric (normalized-correlation [NC] or mean-squares [MS]) and
iterations were varied among the different sets.

Parameter set Fixed image Moving image Metric Iterations

A UStx USsim NC 10
B UStx USsim NC 50
C UStx USsim NC 100
D Prostate mask UStx Prostate mask USsim MS 100
E Prostate mask UStx Prostate mask USsim MS 300

The deformation field calculations were based on the overlapping parts of the
US images, but were propagated further through the image (Fig. 6.3). Also bones

99



6 . I N I T I A L P S E U D O - C T S C A N C R E AT I O N

were sometimes present in these overlapping parts. As bones are in principle rigid
structures, they are not expected to undergo deformations. Therefore, the binary
bone mask defined during preprocessing was input in the rigidity penalty [23] of
ElastiX to prevent bones from deforming.

(A)

(C) (B1) (B2)

Figure 6.3: Example of overlap between CT (grey) and US (color) (A), and between two US
images (B) of Patient 1. US based DIR can only be performed on the area where both CT and
US information (of both USsim and UStx) is available. In this example only the prostate and
its surrounding tissue, e.g. a part of the bladder, are present in both US images. In panel (C)
only the overlapping area of both US images (yellow contour) contains information where
the deformation field (2D representation with red arrows) is based on. The field propagates
further beyond this border.

6.2.4 Evaluation of the deformation
The created CTps and the deformed CT delineations were then compared to the
ground truth, i.e. the corresponding CTGT and its delineations. The contours were
evaluated using the Dice similarity coefficient [DSC = (2|X ∩ Y |)/(|X|+ |Y |)]. A
DSC ratio of 1 indicates complete overlap, while 0 indicates no overlap.

In addition the prostate contours were also evaluated using both the maximum
absolute distance (MAX) and mean absolute distance (MAD) [24]. The MAX
defines the largest difference between two contours, e.g., prostate contour A and
prostate contour B. For each point a on prostate contour A, the minimal distance
to all points on prostate contour B was calculated. The same was repeated for each
point b on prostate contour B with respect to prostate contour A. This resulted
in a set of minimal distances and the maximum of this set is referred to as MAX.
Calculating the mean of this set gave the MAD.
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The CTsim and CTps images were compared to CTGT using a gamma (γ) index
evaluation [25], [26]. The γ index is commonly used for dose evaluations. Prior
to the index calculation, two acceptance criteria need to be set: voxel-by-voxel
numerical dose difference and distance-to-agreement (DTA: distance between a
voxel of one volume and the nearest voxel in the other volume that has the same
dose). The resulting index gives information on a voxel scale, while taking the
voxels in the vicinity into account as well.

In this case not only dose was evaluated with the γ index, but also HU (γCT). The
γ values were calculated using an in-house developed method [27], [28] using
Matlab and C++. The used method allows the sign of the γ value to indicate
whether an overdose (γ > 0) or underdose (γ < 0) is found for each voxel [28]. In
this case, because we evaluate HU, a γ > 0 means that the HU is relatively higher
than the reference and γ < 0 means that the HU is relatively lower. A value |γ| >1
in a voxel indicates that the voxel fails to meet the acceptance criteria, in this case
a 50 HU voxel intensity difference and a 3 mm distance to agreement. (The 50
HU is a conservative measure based on that for typical radiotherapy beams; to
produce a 1% error in dosimetry would require errors of over 8% in bone electron
density [29] and hence HU. The 3 mm distance to agreement is a commonly used
criterion in dosimetry [26]).

The percentages of the volume with a |γCT|>1 within the contours ’intersection
body contours’, ’prostate’, ’anus & rectum’, and ’bladder’ were reported. The
percentages of gamma failure and DSC evaluations are reported using the
contours of the CTGT, except for the ’intersection body contours’ which is the
overlapping part of the body contours of both CTsim and CTGT.

6.2.5 Dose calculation and evaluation
Dose distributions were obtained by recalculating the original treatment plans
(5-beam IMRT plans; XiO CMS 4.51, Elekta, Stockholm, Sweden) designed on the
planning CTsim, on the CTsim, CTps and CTGT scans. For this, an in-house
developed software package was used, based on Monte Carlo simulation using
the XVMC code [30], [31]. Dose distributions on the CTsim and CTps images were
compared to the dose on CTGT using a γ evaluation (γDose) [25], with acceptance
criteria of 3% dose difference and 3 mm distance to agreement. Again the
percentage of the volume with a |γDose|>1 within the contours ’intersection body
contours’, ’prostate’, ’anus & rectum’, and ’bladder’ was reported.

6.3 Results
In most cases, deformation did improve the results according to all evaluation
methods, although these improvements were in some cases very small or even
negligible. Only for Patient 1 there was a large improvement (more than 10%
decrease in the volume with |γDose|>1) in the dose of the prostate when the
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intensity-based normalized-correlation metric with 100 iterations
(parameter set C) was used (Table 6.3).

In Fig. 6.4, an example is given for Patient 1 using parameter set C. In the second
column the overlap of the prostate and anus & rectum contours is shown. DSC
increased by 0.3 when the deformations were used. The third and fourth column
show the γCT and γDose values. In the overlapping body contours, the percentage
of γCT failure decreased by 1.7% in volume. For the prostate and anus & rectum
contours, there was a γCT failure decrease of 9% and 8.4%, respectively. For the
dose, the volume percentage of γDose failure decreased by 11.2% in volume for the
prostate. Yet the percentage of γDose failure decreased by only 0.6% and 0.0% for
the overlapping body contours and anus & rectum, respectively.

CTs Overlap of prostate
and anus/rectum

γCT(50HU, 3 mm) γDose(3%, 3 mm) γ000

Figure 6.4: Results for Patient 1 (parameter set C). In the first colums the CTsim and CTps

(in pink) are compared to CTGT (in green). In the second column, the contours of prostate
(P) and anus/rectum (A/R) are compared. When the images are greyscale (Column 1) or
white (Column 2) there is overlap between the compared images. The third and fourth
columns show the γCT (Column 3) and γDose (Column 4). In green, the γ values are between
-1 and 1. In red and blue are the voxels in which the γ failed to meet the criteria of (50HU,
3 mm) for the CT values and (3%, 3 mm) for the dose. For Column 4, the areas where there
is an underdosages compared to CTGT (γDose < -1) are shown in blue. In red there is an
overdosage compared to CTGT (γDose > 1).

All available results for Patient 1 are summarized in Fig. 6.5. Fig. 6.5A shows
that the DSC improved for all parameter sets. For prostate the best results were
obtained with parameter set E, for anus & rectum set C performed best. Both the
MAD and MAX where smaller compared to the reference situation (Fig. 6.5B).
Fig. 6.5C and 6.5D detail results on gamma failure, based on CT values and dose,
respectively. In case of CT-based evaluations the best results were achieved using
parameter set B for prostate and anus & rectum, and using parameter set D for
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the body contours. For the dose-based evaluations, parameter set C gave the best
results in all cases. The analyses were repeated for all available patient data and
the overview of the results is detailed in Appendix C.2.

Evaluation of all patient cases (Table 6.3 and Fig. C1.A,E,I,M,Q,U in Appendix C.2)
shows that the DSC of the prostate increased the most for the two contour-based
parameter sets (D and E). Parameter set E with 300 iterations did not succeed in
the deformation of Patient 2 because there was a too small overlapping volume.
Therefore not enough voxels could be mapped and the registration failed to find a
solution. Only for Patient 3a none of the parameter sets gave an improvement for
any of the contours. Overall, the maximum changes in DSC for the intensity-based
normalized-correlation parameter sets were a decrease of -0.5 or an improvement
of +0.3. For the contour-based parameter sets, these values were -0.3 and +0.4.

(A)

(C)

(B)

(D)

Figure 6.5: Results for all five parameter sets used on Patient 1. The circle represents
the body contours, the star the prostate contours and the square a combination of anus
and rectum. (A) DSC. (B) Absolute distance for the prostate contours (MAX and MAD).
(C) Volume percentage of the gamma failure (|γCT(50HU, 3 mm)| > 1. (D) Percentage of a
gamma failure (|γDose(3%, 3 mm)| > 1).
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Table 6.3: Five evaluation methods were used to evaluate the delineated prostate contours.
The first and second column detail the patient and the used evaluation method. Both
gamma index values show the volume percentage of gamma failure, (γCT(50HU, 3mm)> 1)
and (γDose(3%, 3mm) > 1) respectively. In the third column the reference situation
(comparison beween CTsim and CTGT) can be found. In the final five columns the results for
each of the parameter sets (A-E) are detailed. The bold numbers indicate which parameter
sets resulted in the same result or in an improvement with respect to the reference.

Patient Metric Ref A B C D E

1 DSC 0.4 0.7 0.7 0.7 0.7 0.7
MAD [mm] 7.5 3.3 3.5 3.7 2.7 2.7
MAX [mm] 27.9 15.3 16.3 16.0 9.8 12.2
γCT [%] 12.0 4.6 2.9 3.0 5.3 7.1
γDose [%] 18.3 12.4 8.1 7.1 13.0 13.7

2 DSC 0.5 0.5 0.5 0.5 0.6 -
MAD [mm] 5.1 5.5 5.5 5.7 3.9 -
MAX [mm] 16.0 18.1 21.6 23.2 13.9 -
γCT [%] 11.5 14.6 12.8 12.3 10.2 -
γDose [%] 1.6 2.2 2.8 2.9 1.4 -

3a DSC 0.8 0.6 0.4 0.4 0.6 0.6
MAD [mm] 1.6 4.5 6.1 6.5 3.8 3.8
MAX [mm] 5.8 14.3 16.3 18.0 10.7 10.7
γCT [%] 6.9 7.4 7.8 8.5 7.5 7.3
γDose [%] 2.3 2.0 1.6 1.9 2.1 1.9

3b DSC 0.8 0.6 0.6 0.6 0.8 0.8
MAD [mm] 2.3 4.3 4.2 4.4 2.1 2.3
MAX [mm] 8.4 16.4 18.9 19.1 5.9 6.1
γCT [%] 6.6 6.6 7.0 6.8 5.0 5.1
γDose [%] 3.8 3.5 2.7 3.2 1.8 2.2

3c DSC 0.6 0.5 0.5 0.5 0.7 0.7
MAD [mm] 4.4 3.8 4.4 4.9 2.5 2.2
MAX [mm] 12.4 14.0 12.4 13.0 7.1 6.2
γCT [%] 9.9 7.1 7.7 7.2 7.9 6.8
γDose [%] 4.1 3.3 3.5 4.2 3.4 3.8

3d DSC 0.4 0.5 0.6 0.7 0.8 0.8
MAD [mm] 6.6 5.9 4.5 4.0 2.1 1.9
MAX [mm] 20.1 22.0 25.7 27.5 10.4 9.7
γCT [%] 11.8 6.7 4.4 4.0 10.1 9.3
γDose [%] 10.3 9.9 9.5 8.7 6.9 6.5

For the changes in CT HU values, the percentage of the volume with a
|γCT(50HU, 3mm)| > 1 for prostate is shown in Table 6.3 and for the other
contours in Appendix C (Table C.1 and Fig. C1.C,G,K,O,S,W). A maximum
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improvement was seen of 20.5% (14.6% for contour-based) and the poorest results
gave an increase of 3.2% (2.2% for contour-based) in the volume with
|γCT(50HU, 3 mm)| > 1.

Looking at the prostate results as shown in Table 6.3, in case an improvement
was achieved, the contour parameter set (D, 100 iterations) seemed to give an
improvement in most cases, yet it was not always the best one. The results for the
other contours (body, anus & rectum and bladder), that can be found in Table C.1
in Appendix C.2 confirm this as well.

6.4 Discussion
We have evaluated the impact of applying US-derived tissue deformations to
approximate CT images to the real anatomical organ position of prostate patients
during radiation therapy. As noted earlier, a similar workflow was presented by
Pennec et al. [17] for brain surgery applications. However, in that study pseudo-
MR images of the brain were created. To our knowledge, this is the first time a
similar method is used for RT applications.

In this study, Patients 1 and 3d would have benefited most from the deformations
(> 3% volume decrease for the volume with a |γDose|>1). In addition, the difference
in dose between CTsim and CTGT was there also the largest (> 10% volume with
a |γDose|>1). For the other patient cases, the improvements were not clinically
relevant.

Ideally, one should be able to evaluate beforehand which patients would benefit
from applying the deformations. The only metric that is available prior to DIR
and could be suitable is the DSC of the prostate contours on USsim and UStx. A
statistical evaluation was performed to find a possible correlation between these
DSC and the effect on the dose deposition on the prostate (|γDose|>1).
Unfortunately such a correlation was not found, possibly due to the limited
number of patients. However, there seems to be a trend that the patients with the
largest geometric changes benefit most from deformations, but a future study
with a larger image database will be necessary to validate the predictive power of
this DSC parameter to obtain a clearer indication when it is worthwhile to
perform DIR.

Besides a larger database to perform statistics, such a database could be used to
find an optimal metric and parameter set for the DIR. For this proof-of-principle
study, two deformation metrics were used and only the number of iterations
varied. Optimization of the metrics and parameter set may improve the results.
In the current study, the results of the evaluation methods were not always in
agreement. Even between the CT and dose values there were some differences
due to the cumulative effect of the dose along the beam path. The differences
between change in γCT and γDose are caused by the fact that the dose in the organs
is not only dependent on the local HU, but also on the HU along the beam path.
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The best evaluation method is dependent on the purpose; the evaluation of the
best parameter set should therefore always be assessed with the correct evaluation
method. In case of ART, this could be γDose(3%, 3 mm).

A limitation of an US-based deformation field is that the volume of the CT on
which one can directly calculate the deformation field is limited to the volume of
the US data available (Fig. 6.3). The deformation field propagates further, but this
is not based on image data and is therefore maybe less reliable. For Patient 2, a
small overlap of US volumes resulted in a failure in parameter set E.
Standardization of scanning, such that at least the complete prostate is visible, the
US volume overlap is maximal, and US images with larger fields of view may
improve the results. Transperineal scanning with a larger image sector or perhaps
even fusion of multiple US scans from different directions, can extend the field of
view.

However, the US image will never completely overlap the CT image, therefore
part of the deformation field will still be based on only an extrapolated
deformation field. For an ideal exact extrapolation, it may be crucial to take into
account the mechanical properties of tissues and organs, such as skin, bones and
bladder, which are positioned outside of the overlapping US images. In this work,
some deformation field propagation outside of the overlapping US volumes is
already inherently taken into account, due to the use of the so-called
multi-resolution approach during the deformable registration. In this approach
the registration starts with images that have a lower complexity. For example,
images that were smoothed and possibly down-sampled. During the registration,
a B-spline control point grid is overlaid on the fixed image. This grid is always
rectangular. Control points that are outside of the region of interest (overlapping
parts of the US volumes) are in principle not affected. However, due to the
multi-resolution approach the control-point spacing is larger at lower resolutions
than at higher resolutions. For this reason, a larger area around the region of
interest is affected at lower resolutions, which typically produces deformations
outside of the region of interest.

Another reason why it is important to have standardization of the US scanning
is that, just like with the IGRT usage of the US images, it is important to have
reproducible US images. In particular the probe pressure [18], [32] and speed-
of-sound aberration [33] along the imaging beam should be comparable. One
cannot distinguish between the US imaging dependent changes caused by non-
standardized procedures or real anatomy changes. Therefore it is best to prevent
them, or correct [34]–[37] for them prior to the DIR procedure. For our specific
cases, preliminary inspection revealed that these corrections were not necessary.

Validation of the DIR methods in general is also still necessary to reliably perform
DIR for ART. Different deformation algorithms lead to different results, therefore
more research is necessary.
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6.5 Conclusion
It was possible to generate a pseudo-CT (CTps) with the use of DIR based on US
imaging, which was more representative of CTGT than CTsim. For the patients with
the smaller prostate change over time, the procedure did not improve the dose
calculations significantly. The largest improvements were seen for patients with
the largest anatomical changes. More research with a larger image database is
necessary to find an optimal deformation metric and parameter set. With a larger
database, it might be possible to find a predictive measure and associated criteria
to decide whether DIR is worthwhile for individual patients.
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Abstract
The purpose of this study was to evaluate eight possible approaches to create
pseudo-CT images for radiotherapy (RT) treatment re-planning. These re-planning
CT scans would normally require a separate CT scan session. If important changes
occur in the patient’s anatomy between simulation (SIM) and treatment (TX)
stages, 3D ultrasound (US) images acquired at the two stages, available in US
guided RT workflows, can be used to produce a deformation field. Proof of concept
research showed that the application of this deformation field to the SIM CT image
yields a pseudo-CT which can be more representative of the patient at TX than
SIM CT. Co-registered CT and US volumes acquired at five different time points
during the RT course of a prostate cancer patient were combined into data pairs,
providing ground truth CT images (CTtx). Eight different methods were explored
to create the deformation field that was used to produce the pseudo-CT scan.
Anatomical structure comparison and γ index calculations were used to compare
the similarity of the pseudo-CT volumes and the reference TX CT volumes.

In five out of ten data pairs, all the eight approaches resulted in the creation of a
pseudo-CT equal or more similar to the TX CT than the SIM CT within the region
of interest, with an average improvement of 54.1% (range: 5.1% - 126.5%) in Dice
similarity coefficient (DSC) and 32.3% (range: 0.3% - 52.6%) in the γ index. For the
remaining data pairs, four up to seven approaches resulted in an improvement in
both DSC (range: 4.3% - 54%) and γ index (range: 0.8% - 41.3%).

In conclusion, at least four out of eight explored approaches resulted in more
representative pseudo-CT images in all the data pairs. In particular, the
approaches in which an initial rigid alignment was combined with deformable
registration performed best.

This chapter has been published as: S.M. Camps, S. van der Meer, F. Verhaegen, D. Fontanarosa,
"Various approaches for pseudo-CT scan creation based on ultrasound to ultrasound deformable
image registration between different treatment time points for radiotherapy treatment plan adaptation
in prostate cancer patients." Biomed. Phys. Eng. Express 2(3), 35018 (2016).
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7.1 Introduction
Radiotherapy (RT) is one of the treatment modalities for various types of cancer.
The goal of RT is to deliver a high radiation dose over several treatment fractions
to tumor tissue, while at the same time sparing normal tissue as much as possible.
Prior to treatment commencement (simulation stage, SIM) typically an initial
computerized tomography scan (simulation CT, CTsim) is acquired, which
provides electron density information, necessary for radiation dose calculations.
Subsequently, a treatment plan is prepared where regions of interest (ROI,
typically target and organs at risk, OARs) are outlined and the optimal dose
distribution is calculated.

An important aspect of the RT workflow is patient setup. Prior to each treatment
(TX) fraction, the patient’s position must correspond to the position at SIM, since
the treatment plan that is going to be delivered with highly conformal beams
was prepared for this position. Even when the patient appears correctly aligned
externally, internal anatomic changes may have occurred. For example, in the case
of prostate cancer, different filling of bladder or rectum can cause a shift of the
target [1]. Delivery of the initial treatment plan might then result in a suboptimal
dose deposition in the tumor and/or in extra unwanted irradiation of normal
tissues, possibly producing excessive toxicity.

This implies that, ideally, in case changes have occurred, the treatment plan should
be updated prior to (or even during) each treatment fraction (Adaptive Radiation
Therapy [2], ART). As CT images are currently required to calculate dose, this
would involve acquisition of multiple additional CT images during the treatment
course, to enable re-planning. This is not part of the standard clinical routine,
though (although some attempts were made in the past [3]), due to the long times,
complex procedures, extra dose depositions and high costs involved.

In the proof of concept study by Van der Meer et al. [4] a workflow was introduced
to produce pseudo-CT image datasets prior to each treatment fraction. In that
workflow, based on an ultrasound (US) guidance for RT (USgRT) [5] approach,
the US scan taken before treatment fraction n (at time tn) was used to reveal the
geometric changes that occurred between SIM and tn and to create a pseudo-CT.
Van der Meer et al. [4] showed that it is possible to create a pseudo-CT scan using
deformable image registration which was more representative of the patient’s
tissue distribution at TX than CTsim.

No other papers that involve deformable registration of US volumes to create
pseudo-CT images for RT purposes were found in the literature. However,
Pennec et al. [6] used deformable registration of preoperative and intraoperative
US images of the brain, to create pseudo-MR images for brain surgery
applications. This resulted in an acceptable representation of the brain anatomy
during surgery.
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In this study, the workflow proposed by Van der Meer et al. [4], that included
two approaches to perform registration of the US volumes between SIM and
TX and create a deformation field, was extended by introducing six additional
approaches. The workflow including in total eight approaches was applied on
image data from one patient who underwent RT for localized prostate cancer. This
resulted in the creation of multiple pseudo-CT scans. Subsequently, the similarity
between these scans and available ground truth images (CTtx) was assessed. This
gave more insight into which of the explored approaches was the most suitable
for this particular purpose.

7.2 Materials and methods
7.2.1 Workflow
Van der Meer et al. [4] proposed a workflow (Fig. 7.1) in which US images were
used to create pseudo-CT images using deformable image registration. We
extended this workflow and explored six additional approaches to create a
deformation field between USsim and UStx. Deformable registration based on
either the total US volume or the prostate contour extracted from this volume
was not only used as standalone procedure (as done by Van der Meer et al. [4]),
but also combined with an initial alignment (translation) which can be based on
the total US volume or just the prostate contour as well. Also the execution of the
initial alignment as standalone procedure is possible. All explored approaches are
detailed in Table 7.1.

When the deformation field so created is then applied on CTsim, this results in
the creation of pseudo-CT images (CTps). In the present work, the CTps volume is
compared to ground truth images (CTtx, in normal clinical workflow these images
are not acquired) to assess if the pseudo-CT images represent CTtx more accurately
than the CTsim volume. This evaluation, where only the similarity between CTps

and CTtx is assessed, might also give more insight into which approach is the most
suitable for the deformation field creation.

Table 7.1: Eight possible approaches to create pseudo-CT images that were explored in this
study. The approaches marked with * were used by Van der Meer et al. [4] as well.

Procedure Based on Followed by Based on

Translation US volume
Translation Prostate contour US
Deformable registration* US volume
Deformable registration* Prostate contour US
Translation US volume Deformable registration US volume
Translation US volume Deformable registration Prostate contour US
Translation Prostate contour US Deformable registration US volume
Translation Prostate contour US Deformable registration Prostate contour US
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Figure 7.1: Schematic representation of the workflow proposed by Van der Meer et al. [4]: US
volumes are acquired at both simulation (USsim) and treatment stage (UStx). A CT volume
is normally only acquired at simulation stage (CTsim), but for this study four additional
CT scans were acquired that could be used as ground truth (CTtx). Subsequently, eight
approaches (Table 7.1) are investigated to create a deformation field. This deformation
field is then applied on the CTsim volume resulting in an approximation of CT image data
at treatment stage (CTps). For evaluation purposes CTps is then compared to CTtx

.

7.2.2 Data description
Five co-registered CT and transabdominal 3D US (TAUS) image sets were
available at different time points for one patient who underwent RT for localized
prostate cancer. The time between the imaging sessions was two weeks and
subsequent weekly follow-up occurred (Fig. 7.2). All the data were acquired
using a Clarity 3D US system (Elekta, Stockholm, Sweden) in a CT-room with the
external skin markers of the patient aligned with the room lasers.

Week 0
Time point 2
Week 2 Week 3 Week 4 Week 5

Time point 1 Time point 2 Time point 3 Time point 5Time point 4

CT scan CT scan CT scan CT scan CT scan

US scan US scan US scan US scan US scan
Co-registered

Figure 7.2: Image acquisition time line of one patient who underwent RT for localized
prostate cancer. At each time point, a co-registered CT-US scan is acquired. The US scan is
acquired right before or after the CT scan acquisition.

.
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For US volume acquisition a convex transducer was used (type C5-2/60, center
frequency 3.5 MHz, Sonix Series, Ultrasonix Medical Corporation, Richmond, BC,
Canada). The CT images were acquired with a SOMATOM Sensation Open CT
scanner (Syngo CT 2006A, Siemens, Erlangen, Germany; voxels: 1x1x3 mm). On
each dataset (US and CT), the prostate was manually segmented by an
experienced user. In addition, on the CT volumes anus and rectum were
manually segmented as well. No patient setup correction was performed after
acquisition of the volumes.

To execute the workflow multiple times and increase statistical significance,
cross-combinations of the five co-registered CT and TAUS volumes were made.
This resulted in 20 possible pairs, in which one dataset was designated ground
truth and the other simulation. For each pair, the overlap between the prostate
contours on CTsim and CTtx was expressed with a Dice similarity coefficient (DSC,
Section 7.2.6). We decided to focus on the datasets which had an initial prostate
overlap ≤ 0.75 DSC, as these might benefit the most from the proposed workflow.
This narrowed the number of pairs down to 10 (Table 7.2). From now on, these
combinations of ground truth and simulation datasets are referred to as ’data
pairs’.

Table 7.2: Image data acquired at different time points (1-5) were combined into data pairs,
designating one dataset (co-registered CT and US volumes) as simulation and the other as
ground truth. Only data pairs with an initial overlap (DSC) between the prostate contour
on CTsim and the contour on CTtx (detailed in Table 7.4) which was smaller than or equal to
0.75 were used in this study.

Data pair Simulation Ground truth

T1 - T4 Time point 1 Time point 4
T1 - T5 Time point 1 Time point 5
T2 - T4 Time point 2 Time point 4
T2 - T5 Time point 2 Time point 5
T3 - T5 Time point 3 Time point 5
T4 - T1 Time point 1 Time point 1
T4 - T2 Time point 1 Time point 2
T5 - T1 Time point 5 Time point 1
T5 - T2 Time point 5 Time point 2
T5 - T3 Time point 5 Time point 3

Prior to initial alignment (described in the following section), all the volumes were
resampled to the same image dimensions (512x512x128 voxels) using the software
REGGUI (version 2.5, Université Catholique de Louvain, Belgium) [7] to make
them compatible with pre-processing, registration and evaluation requirements,
which arise from the eight different approaches.
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7.2.3 Initial alignment
A preliminary visual inspection of the US and CT volumes revealed that not only
non-rigid deformation occurred between the time points, but also translation of
the whole body, primarily in the lateral direction. This can be explained by the fact
that the table of the used CT scanner could not move in this direction. So to ensure
correct setup, the patient had to move in lateral direction with respect to the table
and this apparently introduced errors. The software ElastiX (Version 4.7, Image
Sciences Institute, University Medical Center Utrecht, the Netherlands) [7]–[9]
was used to initially align the images applying translation alone. Hereby, a multi-
resolution approach could be used [10].

The translation was either based on the total US volumes or on the manually
outlined binary prostate contours on the US images alone. In the latter case, the
assumption made was that the translation of the prostate is representative for the
translation of the whole body. As noted before, primarily lateral translation of the
CT image was detected. For the datasets used in this study, trial and error showed
that excluding translation in the other directions gave the best results.

ElastiX requires three inputs to perform the registration: a fixed image (in our
case the prostate contour UStx or the whole UStx volume), a moving image (the
prostate contour USsim or the whole USsim volume), and a parameter file. The
parameters in this file determine the registration characteristics, e.g. the similarity
metric used. We used a general parameter set that was based on the example
translation file provided by ElastiX for the initial alignment (Appendix D.1). In
this parameter set, three resolutions were used in the multi-resolution approach.
For four data pairs the translation based on the prostate contour only failed. The
contour was translated excessively outside the field of view of the image. No
excessive translation occurred when, for these cases, less than three resolutions
were used in the multi-resolution approach.

At the end, the TransformiX [7]–[9] software, provided with the ElastiX package,
was used to apply the deformation field on all SIM datasets. If no translation of the
whole body occurred, the initial alignment is potentially useless and time could
be saved by not performing it.

7.2.4 Pre-processing
To prepare the volumes for the deformable registration process, a few initial steps
were required. In particular, since each voxel must have a spatially corresponding
voxel to map to, to make sure that a valid metric value can be calculated, only the
overlapping parts of the US volumes were used. In addition, it was important to
ensure that the volumes had sufficient overlap, otherwise not enough voxels
would be mapped and the registration would fail. In Fig. 7.3 the complete
procedure is shown: first, threshold based segmentation of the original volumes
(Fig. 7.3A) produced binary masks (Fig. 7.3B) in which potential holes were filled
performing a morphological closing with a 4x4 kernel (Fig. 7.3C). Next,
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multiplication of these masks resulted in a binary mask of the overlapping
regions of the US volumes (Fig. 7.3D). This mask was used as a ROI during the
registration procedure, which is described in the next section. Finally,
multiplication of this mask by the original US volumes (Fig. 7.3A · Fig. 7.3D)
extracted the regions that contain information in both USsim and UStx volumes
(Fig. 7.3E).

The CT volumes used for prostate cancer patients usually encompass the whole
abdomen, while the US volumes only encompass (parts of) the pelvic region. Due
to the fact that the Clarity system outputs the co-registered volumes in CT
dimensions, some US volume regions only contain black background voxels. To
speed up calculations, all the slices in the US volumes not containing information
were removed and the US volumes were cropped to remove surrounding
background voxels (Fig. 7.3F). From now on, all mentioned image datasets refer
to the cropped images with removed slices, unless stated otherwise.

USsim

UStx

(A) (B) (C) (D) (E) (F)

Figure 7.3: Overview of the pre-processing procedure. (A) Spatially corresponding 2D slice
of the initial US volumes. (B) Binary masks of the 2D slices obtained with thresholding.
(C) Potential holes are closed using morphological closing. (D) Overlapping parts of
both US masks obtained by multiplication of the masks in (C). (E) Overlapping parts
of the original volumes extracted, (A)·(D). (F) Background pixels are removed to speed up
calculations.

Another important observation is that not all types of tissue present in the US
volumes deform non-rigidly. For example, bones are rigid structures and therefore
are primarily expected to translate or rotate. To asses if the bones deformed non-
rigidly during the registration procedure the exact position of the bones at SIM
has to be known. For this reason, bones were extracted from CTsim performing
semi-automatic segmentation based on thresholding resulting in a binary mask of
the bones (Bonesim).

Finally, for all CTsim and CTtx volumes, the corresponding contours of prostate,
rectum and anus were combined into one volume per dataset containing binary
masks of all three structures (CTsim_contours and CTtx_contours).
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7.2.5 Deformable registration and deformation field application
The implemented GUI and ElastiX were also used to perform 3D multi-resolution
deformable registration of the US volumes. The parameters needed during this
registration are detailed in Section 7.2.7.

Two different strategies to execute the deformable registration were explored.
In the first strategy, the voxels of the total USsim volume (moving image) were
spatially mapped onto the voxels of UStx (fixed image). In the second strategy,
just the binary masks of the prostate contours on the USsim and UStx volumes
were used as moving and fixed images, respectively. Both strategies could be
executed preceded by one of the initial alignment procedures (Section 7.2.3), or as
standalone procedure as well.

During the registration, a B-spline control point grid is overlaid on the fixed image.
This grid is always rectangular and control points that are outside the ROI (binary
mask of overlapping parts of the US volumes, Section 7.2.4), in principle, are
not affected. However, since a multi-resolution schedule is used, the control point
spacing is larger at the lower resolutions than at the higher resolutions. This means
that a larger area around the ROI is affected at lower resolutions, which can lead
to deformations outside the ROI. In subsequent resolutions these deformations
are preserved. In this way, to some extent, deformation field propagation outside
of the US volumes is inherently taken into account.

After creation of the deformation field, the final step of the registration workflow
was its application to CTsim to create the CTps volume. The deformation field was
applied on the whole CTsim volume, specifying which slices should be affected.
Prior to evaluation, the resulting CTps was cropped to match the US dimensions
again. The same procedure was repeated for CTsim_contours.

7.2.6 Evaluation
To assess if the CTps volume represents the CTtx volume better than the CTsim

volume, the similarities between CTps and CTtx and between CTsim and CTtx

should be investigated. This evaluation can be based on e.g. position of anatomical
structures or correspondence of image intensity values (Hounsfield units [HU]).

First, the determinant of the Jacobian of the deformation fields was calculated
to determine if folds in the deformation field were present [11]. Therefore, all
the CTps volumes corresponding to determinant values smaller than zero were
excluded from further evaluation.

The overlap of the same anatomical structure contours on different volumes can
provide information on the similarity of those volumes. For this reason, the
overlap of CTsim_contours and CTtx_contours, as well as the overlap of CTps_contours

and CTtx_contours were calculated using the Dice Similarity Coefficient (DSC) [12],
[13]:

DSC(X,Y ) :=
2|X ∩ Y |
|X|+ |Y |

(7.1)
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where X and Y are the binary structure contours and the operator |.| includes all
the voxels that have a value equal to 1. A DSC of 1 indicates perfect overlap, while
a value of 0 means no overlap at all. For evaluation purposes, also the overlap
between the prostate contours on the US volumes as well as the overlap between
the prostate contours on UStx and CTtx were expressed in DSC. It is important to
mention that the DSC is always calculated with respect to the overlapping parts
of the US volumes, not the total available volume.

In addition to the DSC, the gamma (γ) index [14] was proposed as a second metric
for evaluation. This index is typically based on two acceptance criteria: distance-
to-agreement [DTA] and dosimetric difference. The γ index is commonly used to
evaluate discrepancies between measured and calculated dose on a voxel scale,
while taking into account the neighboring voxels as well. An index value γ > 1
indicates that the corresponding voxels in both volumes exceed the maximum
acceptable dosimetric difference/distance-to-agreement according to the criteria
set.

In this work, we propose to use the same concept to assess the similarity between
whole CT volumes at a voxel level. Therefore, the γ index was based on Hounsfield
units (HU) instead of dose. An evaluation algorithm [15] developed in-house was
used. As negative HU cannot be input in the software, the CT image data were first
normalized by increasing all voxel values with the absolute value of the minimum
negative HU present in the dataset.

Prior to γ index calculations, acceptance criteria need to be set. According to a
survey performed by Nelms et al. [16], in most institutions that perform these
calculations a 3 mm DTA criterion is used. In our case, the DTA was also set to
3 mm.

In this study, the focus was on prostate cancer patients and for this reason the
second acceptance criterion (HU difference) was based on in vivo prostate HU as
determined by D’Souza et al. [17]. They used several human subjects to determine
that in case a voxel has an intensity value within 45 ± 17 HU it can be considered
a prostate voxel. To translate this value to a HU difference criterion, it was first
normalized using the same approach as described before. The minimum absolute
HU value was added and this resulted in 1069 ± 17 HU, which implies 1069 ± 2%
HU. For this reason, the γ index calculations were performed using a 3 mm DTA
and 2% HU difference criterion.

The last evaluation method involves the assessment of bone edge deformation.
The deformation field created with the different approaches was applied on the
previously defined Bonesim (binary mask of bones extracted from CTsim) resulting
in a deformed binary bone mask (Bonedef). If the bone edges only underwent
translation and/or rotation, it should be possible to map Bonedef back to Bonesim

just using rigid registration.
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Figure 7.4: Workflow of bone rigidity assessment. First the created deformation field was
applied on Bonesim resulting in Bonedef. If bone edges did not deform during registration, it
should be possible to rigidly map Bonedef back to Bonesim. The rigid registration of Bonedef

results in Bonedefshift, which is, in the end, compared to Bonesim.

The parameter file used for this registration is detailed in Appendix D.2. The rigid
registration results in Bonedefshift and subsequently the overlap between Bonedefshift

and Bonesim are expressed with a DSC (Fig. 7.4). This was a measure for how
much the bone edges deformed during the deformable registration procedure. A
DSC value of 1 indicates perfect overlap and therefore implies that no non-rigid
deformation of the bone edges occurred.

7.2.7 Parameter set selection
Most of the parameters that are required to perform the deformable registration
are directly related to the task that needs to be performed. For example, a specific
value needs to be assigned to the ’Transform’ parameter to perform a B-spline
transformation. On the other hand, some parameters, such as the maximum
number of iterations, directly influence the performance of the registration.
Unfortunately, it is hard to determine a priori which settings will produce good
results. For this reason, multiple parameter sets for each data pair were tested per
approach. Table 7.3 details the four parameters that could not be determined
reliably a priori. These parameters are varied in the parameter set selection
procedure, exploring the values listed in Column 2 of Table 7.3. During this
process, the other parameters were kept fixed.

Table 7.3: Parameters which were varied during the parameter set selection, including the
values that were explored during this selection procedure.

Parameters Explored values

Metric Sum of squared differences, mutual information
or cross validation

Number of resolutions 1, 2, ... or 5
Maximum number of iterations 5, 15, ... or 305
Final grid spacing (mm) 10, 15, ... or 35
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In the parameter set selection procedure, for each data pair at least 50 different
parameter sets were used per approach that involved deformable registration.
Each set was used to perform the deformable registration, followed by calculation
of the overlap of the prostate contours on USdeform and UStx and calculation of
the determinant of the Jacobian. If this determinant was smaller than zero, the
result was excluded from further evaluation and an additional parameter set was
randomly selected and tested.

After performing the registration per approach at least 50 times, the parameter set
that resulted in the largest overlap of the prostate contours on USdeform and UStx

for that specific data pair was selected and the corresponding deformation field
was used to continue the workflow with. These parameter sets can be found in
Appendix D.3.

7.3 Results
Each of the eight approaches resulted in the creation of a deformation field that
was subsequently applied on CTsim_contours. The resulting CTps_contours were then
compared with CTtx_contours using the DSC. These results are listed in Table 7.4. In
the second column, the reference situation is detailed, defined as the overlap of
CTsim_contours and CTtx_contours expressed in DSC. For each data pair, the result of
the approach(es) leading to the highest improvement is displayed bold.

Next to the overlap of the contours, also the deformation of bones was assessed.
Following the procedure described in Section 7.2.6, the rigidity of the bone edges
is expressed in DSC per approach for each data pair. The last row of Table 7.4
contains the average bone rigidity DSC per approach. As noted before, a DSC of
1 implies that no non-rigid deformation of the bone edges occurred during the
registration procedure.

After the deformation field application, some approaches (e.g. deformable
registration only) based on the total US volumes for some data pairs failed to
result in an improvement of the overlap. For each data pair, one of the approaches
led to an improvement of at least 4.3%. The best improvements were as high as
126.5%. In three out of ten data pairs the contour based translation followed by
the contour based non-rigid deformation performed best. In all the other data
pairs the difference between this approach and the best performing approach was
not more than 0.05 DSC. In addition, the approaches that gave the best results in
structure overlap, mostly fall in the 0.95 - 1 DSC range in terms of bone rigidity.

To evaluate the similarity of the CT volumes quantitatively, the deformation fields
were applied to the total volumes. The calculation of the deformation field and
the subsequent application performed on a standard PC (i5 CPU, 2.6 GHz, 4 GB
RAM) took on average 98 seconds (range: 14 - 196 seconds). All calculation times
per approach and data pair are detailed in Appendix D.4.

121



7 . P S E U D O - C T S C A N C R E AT I O N

Table
7.4:For

each
stud

ied
d

ata
pair

(colum
n

1),the
overlap

ofC
T

contours w
as

calculated
and

expressed
in

D
SC

.T
he

reference
is

d
efined

as
the

overlap
betw

een
C

T
sim

_contours and
C

T
tx_contours .In

the
rem

aining
colum

ns
the

overlap
betw

een
C

T
tx_contours and

C
T

ps_contours ,resulting
from

one
of

the
perform

ed
approaches

(prostate
contour

[C
]

and
/

or
U

S
volum

e
[U

S]
based

)
is

listed
.N

extto
the

D
SC

value,also
the

relative
im

provem
entw

ith
respectto

the
reference

situation
w

as
calculated

and
listed.T

he
bold

num
bers

indicate
w

hich
approach(es)resultin

the
highestim

provem
entw

ith
respectto

the
reference.In

the
finalrow

,the
bone

rigidity
results

are
displayed

as
the

average
D

SC
per

approach.

D
ata

R
ef

Translation
Translation

D
eform

D
eform

Translation
Translation

Translation
Translation

pairs
[U

S]
[C

]
[U

S]
[C

]
[U

S]
[U

S]
[C

]
[C

]
D

eform
D

eform
D

eform
D

eform
[U

S]
[C

]
[U

S]
[C

]

D
SC

D
SC

+%
D

SC
+%

D
SC

+%
D

SC
+%

D
SC

+%
D

SC
+%

D
SC

+%
D

SC
+%

T
1-T

4
0.50

0.70
40.0

0.71
42.0

0.63
26.0

0.69
38.0

0.68
36.0

0.73
46.0

0.74
48.0

0.75
50.0

T
1-T

5
0.34

0.67
97.1

0.68
100.0

0.59
73.5

0.70
105.9

0.64
88.2

0.77
126.5

0.61
79.4

0.77
126.5

T2-T4
0.69

0.81
17.4

0.78
13.0

0.60
-13.0

0.78
13.0

0.74
7.2

0.77
11.6

0.72
4.3

0.76
10.1

T2-T5
0.50

0.45
-10.0

0.68
36.0

0.22
-56.0

0.55
10.0

0.35
-30.0

0.71
42.0

0.55
10.0

0.70
40.0

T3-T
5

0.59
0.76

28.8
0.75

27.1
0.73

23.7
0.71

20.3
0.76

28.8
0.74

25.4
0.75

27.1
0.74

25.4
T4-T

1
0.50

0.70
40.0

0.71
42.0

0.46
-8.0

0.77
54.0

0.71
42.0

0.75
50.0

0.68
36.0

0.77
54.0

T4-T2
0.69

0.79
14.5

0.79
14.5

0.64
-7.3

0.75
8.7

0.77
11.6

0.78
13.0

0.77
11.6

0.78
13.0

T5-T1
0.34

0.68
100.0

0.47
38.2

0.57
67.7

0.66
94.1

0.41
20.6

0.75
120.6

0.61
79.4

0.74
117.7

T5-T2
0.50

0.36
-28.0

0.70
40.0

0.46
-8.0

0.67
34.0

0.46
-8.0

0.53
6.0

0.57
14.0

0.67
34.0

T5-T3
0.59

0.74
25.4

0.76
28.8

0.75
27.1

0.62
5.1

0.74
25.4

0.73
23.7

0.78
32.2

0.75
27.1

Bone
-

1.00
±

0.00
1.00

±
0.00

0.82
±

0.12
0.92
±

0.05
0.84
±

0.10
0.95
±

0.05
0.86

±
0.07

0.95
±

0.04

122



7.3. Results

Ta
bl

e
7.

5:
Fo

r
ea

ch
d

at
a

pa
ir

,t
he

nu
m

be
r

of
vo

xe
ls

w
it

h
γ
>

1
in

th
e

co
rr

es
po

nd
in

g
ov

er
la

pp
in

g
pa

rt
s

of
th

e
U

S
vo

lu
m

e
w

as
ca

lc
ul

at
ed

fo
r

ea
ch

ap
pr

oa
ch

(p
ro

st
at

e
co

nt
ou

r
[C

]a
no

r
U

S
vo

lu
m

e
[U

S]
ba

se
d

)a
nd

ex
pr

es
se

d
in

pe
rc

en
ta

ge
s.

T
he

va
lu

es
in

th
e

re
fe

re
nc

e
co

lu
m

n
w

er
e

ba
se

d
on

C
T

si
m

an
d

C
T

tx
.N

ex
tt

o
th

e
re

la
ti

ve
nu

m
be

r
of

no
n-

m
at

ch
in

g
vo

xe
ls

,a
ls

o
th

e
re

la
ti

ve
im

pr
ov

em
en

tw
it

h
re

sp
ec

tt
o

th
e

re
fe

re
nc

e
si

tu
at

io
n

w
as

ca
lc

ul
at

ed
.T

he
bo

ld
nu

m
be

rs
in

di
ca

te
w

hi
ch

ap
pr

oa
ch

(e
s)

re
su

lt
in

th
e

hi
gh

es
ti

m
pr

ov
em

en
tw

it
h

re
sp

ec
tt

o
th

e
re

fe
re

nc
e.

In
th

e
fin

al
ro

w
,t

he
bo

ne
ri

gi
di

ty
re

su
lt

s
ar

e
di

sp
la

ye
d

as
th

e
av

er
ag

e
D

SC
pe

r
ap

pr
oa

ch
.

D
at

a
R

ef
Tr

an
sl

at
io

n
Tr

an
sl

at
io

n
D

ef
or

m
D

ef
or

m
Tr

an
sl

at
io

n
Tr

an
sl

at
io

n
Tr

an
sl

at
io

n
Tr

an
sl

at
io

n
pa

ir
s

[U
S]

[C
]

[U
S]

[C
]

[U
S]

[U
S]

[C
]

[C
]

D
ef

or
m

D
ef

or
m

D
ef

or
m

D
ef

or
m

[U
S]

[C
]

[U
S]

[C
]

Fa
il

Fa
il

∆
Fa

il
∆

Fa
il

∆
Fa

il
∆

Fa
il

∆
Fa

il
∆

Fa
il

∆
Fa

il
∆

[%
]

[%
]

[%
]

[%
]

[%
]

[%
]

[%
]

[%
]

[%
]

[%
]

[%
]

[%
]

[%
]

[%
]

[%
]

[%
]

[%
]

T1
-T

4
34

.4
22

.8
33

.7
21

.4
37

.8
28

.2
18

.0
25

.9
24

.7
26

.0
24

.4
19

.3
43

.9
23

.4
32

.0
17

.8
48

.3
T

1-
T5

35
.2

21
.2

39
.8

21
.6

38
.6

23
.2

34
.1

22
.0

37
.5

21
.2

39
.8

16
.7

52
.6

22
.1

37
.2

17
.9

49
.1

T2
-T

4
34

.7
25

.2
27

.4
26

.8
22

.8
36

.8
-6

.1
28

.4
18

.2
29

.5
15

.0
27

.3
21

.3
30

.2
13

.0
27

.0
22

.2
T2

-T
5

38
.6

40
.0

-3
.6

26
.8

30
.6

45
.4

-1
7.

6
38

.3
0.

8
41

.8
-8

.3
27

.5
28

.8
28

.5
26

.2
25

.3
34

.5
T

3-
T5

34
.8

20
.3

41
.7

20
.6

40
.8

29
.6

14
.9

30
.5

12
.4

21
.4

38
.5

20
.4

41
.4

23
.5

32
.5

20
.7

40
.5

T
4-

T1
43

.3
33

.4
22

.9
31

.0
28

.4
40

.9
5.

5
29

.8
31

.2
33

.6
22

.4
30

.5
29

.6
30

.7
29

.1
29

.0
33

.0
T

4-
T2

34
.7

25
.2

27
.4

23
.5

32
.3

35
.8

-3
.2

33
.1

4.
6

23
.6

32
.0

25
.7

25
.9

24
.8

28
.5

25
.6

26
.2

T
5-

T1
39

.2
24

.6
37

.2
36

.3
7.

4
26

.5
32

.4
33

.6
14

.3
32

.8
16

.3
24

.0
38

.8
28

.8
26

.5
25

.9
33

.9
T5

-T
2

34
.4

38
.8

-1
2.

8
20

.4
40

.7
38

.1
-1

0.
8

26
.1

24
.1

37
.6

-9
.3

35
.0

-1
.7

31
.7

7.
8

20
.2

41
.3

T
5-

T3
38

.1
22

.9
39

.9
22

.6
40

.7
31

.2
18

.1
38

.0
0.

3
29

.6
22

.3
22

.9
39

.9
26

.7
29

.9
23

.4
38

.6

Bo
ne

-
1.

00
±

0.
00

1.
00
±

0.
00

0.
82
±

0.
12

0.
92
±

0.
05

0.
84
±

0.
10

0.
95
±

0.
05

0.
86
±

0.
07

0.
95
±

0.
04

123



7 . P S E U D O - C T S C A N C R E AT I O N

After application of the deformation field, the corresponding γ indices were
calculated. As an example, the outcome for data pair T1 - T4 is shown in Fig. 7.5A
and Fig. 7.5B. As noted before, yellow voxels do not match within the previously
defined acceptance criteria. Comparison of CTps with CTtx clearly results in less
yellow voxels, than if CTsim is compared to CTtx.

Reference T1-T4

(A)

Result Translation [C] 
+ Deform [C]

(B)

Figure 7.5: (A) γ index between CTsim and CTtx (reference) of data pair T1 - T4. The red
contour indicates the overlapping parts of the co-registered US volumes. A green-yellow
voxel indicates γ > 1, so these voxels of the compared volumes do not match within the
acceptance criteria. (B) γ index between CTps and CTtx.

For each data pair, the number of voxels with γ > 1 with respect to the total US
volume (red contours in Fig. 7.5A and 7.5B) expressed in percentages, as well as
the relative improvement (decrease of the relative number of yellow voxels) with
respect to the reference, were calculated and listed in Table 7.5.

7.4 Discussion
This study has shown that it is possible with at least four out of the eight proposed
approaches to create a pseudo-CT volume for each pair of co-registered CT-US
volumes which, according to the used evaluation criteria, represents the patient
anatomy at TX better than at CTsim. All the approaches that failed to result in an
improvement required the use of total US volumes (and not only the prostate
contours) for either translation and/or deformable registration. In addition, the
approaches failed for all data pairs in which data from Time point 2 were involved.
This suggests that the data at Time point 2 might contain artifacts that influence
the registration procedures. Unfortunately, visual inspection of the data did not
reveal any clear issues.

A combination of initial alignment followed by deformable registration produced
the best results. When this initial alignment was based on the prostate contour only,
the assumption was made that the translation of the prostate was representative
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7.4. Discussion

for the translation of the whole body. This can be justified by the assumption
that the motion of the total body could be considered one order of magnitude
larger than the motion of the prostate. Possible (relatively small) translation of the
prostate with respect to the body could be corrected by subsequent deformable
registration. Performing the translation in a case where actually no translation
of the whole body occurred might introduce the same type of errors, which can
be fixed with the deformable registration afterwards. Future research on a larger
patient population will show if initial alignment is still necessary and if including
only lateral direction is sufficient.

Even better results might be achieved when different US scanning techniques
are used for US image acquisition, as this may improve the quality of the global
information available from the US volumes. For example, transperineal US for
prostate imaging has a larger field of view (FOV) than TAUS and usually produces
images with a better contrast. This US scanning technique is already included
in the Autoscan system of Elekta (Stockholm, Sweden). We hypothesize that the
performance of the approaches involving total US volumes might be better when
these transperineal images are used.

The evaluation of the similarity of the CTps and CTtx volumes based on anatomical
structures and HU proposed in this work may provide a valuable insight on which
CTps volumes are acceptable. The ultimate evaluation, though, is to perform dose
calculations to assess what the use of CTps instead of CTsim images would mean
in terms of radiation dose deposition.

In this study, the γ index was used to perform the whole CT evaluation.
Depending on the acceptance criteria set, the index seemed to be able to quantify
differences in soft tissue. Unfortunately, bone similarity could not be assessed
with the same acceptance criteria. Neighboring bone voxels can initially differ
more than the set 2% in HU. So even when there is a misalignment of less than
one voxel position, this might already be not accepted. This phenomenon could
also explain the discrepancy between the differences in improvement between
the DSC and γ index, which sometimes resulted in different recommendations for
the best approach. In the ideal case, it would be possible to assign different
acceptance criteria to bone regions and soft tissue.

Next to the similarity of the CT volumes, also bone deformation was assessed. For
most data pairs (80%) the best performing approach had a bone rigidity between
0.95 and 1 DSC. ElastiX has a rigidity penalty [18] parameter available to constrain
certain regions (such as bones) to only undergo rigid influence of the registration
of the surrounding tissue. The bone rigidity results show that the bone edges did
not undergo deformation. Constraining bone regions could also result in a worse
overlap of anatomical structures. For these reasons, no constraints were taken into
account during the registration procedure in this study. If in future studies more
deformation of the bones will be detected, dose calculations can reveal what the
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7 . P S E U D O - C T S C A N C R E AT I O N

effect is on the dose deposition and if the use of the rigidity penalty would be
beneficial.

In general, the limited FOV of US with respect to other imaging modalities such
as CT, is one of the issues connected with registration based on US volumes. Only
information inside the US volume is, in principle, used to create the deformation
field during the registration. However, due to the multi-resolution approach
some deformation field is available outside of the US volume as well (described
in Section 7.2.5). During the registration procedure no correction for this was
performed because, eventually, extrapolation of the deformation field should to
some extent be performed to deform the whole CT volume. This is important
because changes in tissue distribution may occur outside the US volume as well.
The earlier mentioned transperineal US has a larger field of view and might
therefore be suitable to create a larger deformation field. In addition, a
deformation field extrapolation procedure could be implemented, taking into
account the mechanical properties of the tissue and organs, such as skin, bones
and bladder, which are positioned outside the US volume.

7.5 Conclusion
The purpose of this study was to investigate the differences between created
pseudo-CT images and reference CT images, using various approaches for
deformation field calculation. In addition, evaluations were performed to assess
how well these images represent the patient at TX. Similarity analysis of CTps and
CTtx showed that, for five out of eight data pairs, all approaches resulted in an
improvement of the similarity with respect to the CTsim. For the remaining pairs
four up to seven approaches resulted in an improvement. On average, the
approaches that involved translation followed by deformable registration gave
the best results. The promising results warrant more research on different US
methods and parameter set optimization techniques in a larger patient group. In
addition, the research could be extended to other cancer sites, such as liver.
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For this PhD work, I have investigated how the ultrasound (US) guided
radiotherapy (RT) workflow for prostate cancer patients can be improved. In
particular, there were two aspects of the workflow that in my opinion had to be
optimized, because they were the major causes why this guidance technique is
currently not widespread in RT: the process is operator dependent and it does not
provide enough information to adapt or re-plan the treatment in case errors are
detected. These aspects are covered in the three different parts of this thesis and
include proof-of-concept and feasibility studies, as well as more mature studies.
The first part (Chapter 3 and Chapter 4) describes the proposition of an approach
to automatically provide an operator with a patient-specific US probe setup. In
the second part (Chapter 5), an automatic quality assessment procedure for 2D
US images using deep learning is detailed. In the third part (Chapter 6 and
Chapter 7), the creation of pseudo-CT scans that can provide crucial electron
density information for adaptive dose re-calculations is described.

In all three parts of this thesis promising results have been reported. Nevertheless,
a lot of work still needs to be done to make US image acquisition, interpretation
and utilization integrated in the RT workflow as well as some other available
imaging modalities. In the next sections, the parts of this thesis are thoroughly
discussed while pointing out contributions, limitations and recommending future
work. In addition, a future perspective is given on the use of US guidance in RT
workflows in general and in prostate cancer RT workflows specifically. Finally, a
brief future outlook on US guidance during medical interventions other than RT
is given.

8.1 Overview and discussion of thesis chapters
Automatic US probe setup
In current clinical practice, an operator needs to interpret the live US images,
while positioning the US probe on the body of the patient, in order to understand
if the correct anatomical structures are visualized with sufficient quality. This
requires a significant amount of training with a steep learning curve. If the
operator was provided with an (initial) patient-specific US probe setup, this could
remove part of the need for training and potentially decrease operator
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8 . G E N E R A L D I S C U S S I O N

dependence. The phantom study and preliminary patient study described in
Chapter 3 and Chapter 4 of this thesis, respectively, detailed a possible approach
to automatically provide the operator with this patient-specific probe setup.

In the proof-of-concept study, several possible setups were calculated for a
phantom, based on an acquired CT scan and reproduced using a robotic arm. The
visual inspection of the subsequently acquired US volumes implied that this
algorithm is able to propose probe setups that fulfill all clinical requirements.
Therefore the decision was made to move onto patient data. In the patient study,
the probe setups were automatically calculated based on simulation CT scans of
the individual patients. These patient-specific probe setups were retrospectively
compared with the setups used by a radiation oncologist during the actual image
acquisition. The results obtained for three prostate cancer patients showed that it
seems possible to propose a patient-specific probe setup that could allow
visualization of the required anatomical structures. This patient study was a
proof-of-concept and is an initial step on the path towards fully automatic
proposition of patient-specific US probe setups for prostate cancer patients.

In order to draw final conclusions on the ability of the algorithm to propose a
suitable setup, a prospective analysis should be performed next. In that case, a
probe setup should be determined, after which the operator should replicate this
setup on the body of the patient, acquire an US image and evaluate if indeed the
correct anatomical structures are visualized. To be able to do this, the development
of a probe fixation system including a system that can localize the probe in the
room is crucial. This was not in the scope of this PhD work. Nevertheless, in the
phantom study a first attempt was made to use a robotic arm for this purpose, but
due to unexpected motion of the arm this could not be used in the patient study
as well. For probe positioning on the body of the patients, a mechanical arm was
used instead. However, also this prototype arm should be developed further, in
order to allow the operator to reproduce the proposed probe setup precisely on
the body of the patient.

After the confirmation that the algorithm can indeed propose suitable probe
setups, the focus should be on how this principle can be effectively implemented
in the RT workflow. The approach described in Chapter 3 and Chapter 4 requires
positioning of the US probe after the acquisition of the CT scan. In the ideal case,
the CT scan and US volume would be perfectly registered. Unfortunately,
positioning the probe after the CT scan would most probably result in motion
and so in a sub-optimal registration of the US and CT images. In future work, it is
important to quantify this motion and to understand how this could influence the
radiation dose deposition. If the motion would lead to unacceptable dose
deviations, the proposed approach described in this thesis could be modified in
several ways.

A possible solution could be the use of a scout-CT scan instead of the simulation
CT scan. A scout-CT scan usually has less slices than a regular CT scan and it is
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acquired in some medical centers before the simulation CT scan to check for air in
the rectum. Potentially, the anatomical information captured in this scout-CT scan
is sufficient to propose a suitable probe setup. Another solution could be the use of
CT scans and probably also MR scans that have been acquired for diagnosis. This
could then yield an initial probe setup that subsequently should be fine-tuned
when the probe is positioned on the body of the patient. The live US images that
are available as soon as the probe is in place, can provide anatomical information
for this fine-tuning. In order to allow a relatively untrained operator to perform
this fine-tuning, automatic interpretation of these live images is key. In Chapter
5 already a first step towards this automatic interpretation of US images is made
and in the next section of this discussion, this chapter is discussed in further detail.

The algorithm introduced in Chapter 4 made assumptions including, for
example, how bony structures would restrict the visualization of subsequent
anatomical structures. In addition, the algorithm followed a relatively
straightforward approach to propose patient-specific probe setups. Nevertheless,
promising results were obtained. One could wonder if a more precise calculation
of the probe-setup would, in the end, be worth the effort. Unless the time
between the acquisition of the CT scan that is used for this setup calculation and
the US volume acquisition is very short, anatomical structures might move and
therefore the calculated probe setup might not be optimal anymore. Potentially,
aiming for a setup that positions the anatomical structures of interest in the center
of the field of view of the probe is a better approach than aiming for the optimal
setup. This could allow for some displacements before the structures would
escape the field of view. This approach would only require a small modification
in the final assessment procedure of the possible probe setups in the current
algorithm and should therefore be straightforward to realize. In case a more
precise probe-setup calculation turns out to be necessary, several options could be
investigated, including simulation of US images with (e.g. [1]) or without the use
of deep learning strategies (e.g. [2] and [3]) and the use of 3D surface mapping
strategies (e.g. [4]) to retrieve the perineal skin area on which the probe can be
positioned in clinical practice.

Automatic image quality assessment
As noted in the previous section, a significant amount of training is required to be
able to interpret US images. This does not only include interpretation during the
setup of a US probe, but also during the subsequent continuous US imaging. In
order to use these US images for radiation dose guidance, specific information
needs to be extracted from them by an operator. This information could be, for
example, the location of the treatment target or the location of an organ at risk.
Ultimately, the operator would only be presented with the already extracted
information, for example, in the form of anatomical structure segmentations, and
not with the underlying image data. In this way, operator dependence can
probably be reduced and the usability of US imaging in RT workflows improved.
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Before this ultimate goal can be achieved, there are several challenges that need
to be faced first, one of them being quality assessment of US images. Small
motion of the patient or of his anatomical structures during the RT treatment
might compromise the US image quality. This could result in US images that
cannot be used for reliable dose guidance anymore. Currently, this quality
assessment needs to be done by a trained operator, who might not be available
for the whole treatment fraction of every patient.

In Chapter 5 of this thesis, an exploratory study is described which was
performed to understand if it is feasible to train a deep learning algorithm so it
can automatically assign a quality score to 2D TPUS images. To the best of my
knowledge, just a few publications were available on US image quality
assessment in general when this study was started, which mostly assessed fetal
images (e.g. [5] and [6]) or made use of hand crafted features (e.g. [7]). Therefore,
a feasibility study was justified. The results achieved in this study, show that the
used deep learning algorithm can achieve a higher accuracy (94%) than the worst
performing expert (92%). This does not only prove feasibility of quality
assessment by means of deep learning, but it also warrants further improvements
of the currently implemented approach and exploration of other deep learning
algorithms.

In order to make the described approach more suitable for usage during the
current RT workflow of prostate cancer patients, there are two main aspects that
need attention. First, the quality of a whole 3D TPUS volume is more relevant
than the quality of a single 2D image, as the US volume is more suitable to be
used for tracking of the prostate and the surrounding organs at risk. However,
the assessment of a volume instead of a 2D image brings along several challenges.
In this study, even though the algorithm was executed on a GPU, it sometimes
ran out of memory. So, in order to process an even larger database consisting of
volumes, more calculation power would be required and/or the focus should
lie on developing a more memory efficient deep learning algorithm. Also, the
current database consisted of 13,463 2D images, which were picked from 16,000
evaluated images, which were again part of a much larger database of 178,368
images (resulting from 11,148 volumes). If the volumes had been used instead
of the images, the largest database would have been only 11,148 volumes. It is
less labor intensive and time consuming to acquire sufficient 2D images with a
3D probe to train and evaluate the algorithm, than it is to acquire sufficient 3D
volumes for the same purpose. Finally, the experts would also need to assign a
quality score to a whole volume instead of to single images, and establishing the
criteria for the different quality scores would, most probably, be more challenging
in three dimensions than it is for a single slice of the volume.

Second, currently only images acquired by four radiation oncologists with an
X6-1 xMatrix probe (Philips Healthcare, Bothell, WA, USA) were included in the
database. However, the deep learning algorithm will probably make mistakes
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when it is presented with a type of images that it has never seen before. For this
reason, it would be desired to expand the database with TPUS volumes acquired
by a broader range of clinicians, in order to make the algorithm more robust.

The use of deep learning could be of great potential for US image interpretation
and the promising results reported in Chapter 5 may only be just the beginning.
In addition to the binary image quality assessment, there are several other aspects
of US image interpretation in which deep learning could potentially be of help.
One could think of, for example, automatic segmentation (e.g. [8] and [9]),
automatic assessment in which direction the US probe should be moved to
achieve a better visualization of anatomical structures of interest and the
automatic tracking of relevant anatomical structures [10]. In addition, deep
learning could also be beneficial in US beamforming (e.g. [11]–[13]) allowing
(partial) elimination of image artifacts. However, with the currently used
supervised learning method, which involves learning from ground truth labels,
this would require a lot of input from the experts in the form of, among others,
quality scores and manual delineations of anatomical structures, so these can be
used to train the algorithm. In addition, the experts should somehow come to an
agreement on what would be the correct quality score or where the contour
should be drawn. In particular for US imaging, achieving such an agreement is
not trivial.

For this reason, the developments in weakly supervised and unsupervised deep
learning should be followed closely, as this might be part of the solution. In this
type of deep learning, the algorithm is not provided with a pixel level annotated
image for training, but just with course object locations (e.g. bounding boxes) or
an indication if a certain anatomical structure is present in the image [14] (weakly
supervised) or the algorithm is not provided with any kind of ground truth label
(unsupervised). These approaches seem worth investigating further in the medical
domain, as interesting results have been shown already for, for example, automatic
lesion detection on brain MR scans, multiple organ detection on 4D patient data
and breast density segmentation [15]–[17].

Pseudo-CT scan creation
After the acquisition and interpretation of the US images, the next step is the usage
of these images in the RT workflow. It has been extensively covered in several parts
of this thesis that the aim of RT treatment is to irradiate tumor tissue, while sparing
normal tissue as much as possible. For this reason, final dose distributions are the
most relevant metric to measure efficacy of US guidance during the course of the
treatment. In order to calculate these distributions, electron density information
(and so the CT scans that can provide this information) are of interest. As frequent
CT imaging during the course of the treatment is not part of the standard clinical
routine, we propose an approach in which US images are used to determine the
required electron density information.
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In Chapter 6 and Chapter 7 of this thesis an approach is described to create
pseudo-CT scans using (deformable) image registration of transabdominal US
(TAUS) volumes. The presented results show that several registration approaches
can result in the creation of a pseudo-CT scan that anatomically represents the
patient at treatment stage better than the simulation CT scan does. In addition,
some preliminary dosimetric evaluations have been performed. However, it is
important to investigate further what could be the exact benefit of such a
pseudo-CT scan creation approach for adaptive dose recalculation. Especially,
because, for example, Fraser et al. [18] have reported that the amount of
under-dosage or over-dosage of an anatomical structure is not directly
proportional to the magnitude of the occurred shifts of that anatomical structure.
Therefore, the relatively limited dosimetric evaluations could be considered
limitation of this study and should definitely be taken care of in the future,
preferably looking at hypo-fractionation [19] schemes as well.

The US image data used for the pseudo-CT scan creation was acquired with
the transabdominal probe of a Clarity system (Elekta, Stockholm, Sweden). The
usage of this transabdominal probe for prostate imaging for RT guidance is not
optimal due to the limited field of view, the requirement for a full bladder, possible
probe pressure effects (e.g. [20] and [21]) and the presence of the probe in the
radiation beam path. For this reason, it would be interesting to repeat the same
work using the newer Clarity Autoscan system (Elekta, Stockholm, Sweden) which
involves US imaging with a TPUS probe which does not, or to a lesser extent,
suffer from these disadvantages. In order to compare created pseudo-CT scans
with ground truth CT scans, acquisition of several ground truth scans from the
same patient over the course of the treatment would be required. Multiple CT
scans expose the patient to additional radiation and are therefore not part of the
standard clinical routine. Usually an additional CT scan is only acquired when
there are clear clinical implications that the treatment plan requires re-planning,
such as severe weight loss or gain. Therefore, it could be challenging to get a study
approved by a medical ethics committee that purposely involves the acquisition of
multiple CT scans. However, as the currently achieved results are promising, this
might convince the committee that the potential benefits outweigh the radiation
exposure risk.

The performance of the algorithms used in this thesis for registration of the US
volumes is still highly dependent on the used parameters, such as number of
iterations and the similarity metric. Unfortunately, it is not yet possible to
determine a priori which parameter set would yield good results. Also, the
optimal parameter set might differ for individual image data sets. Nowadays, the
use of deep learning approaches for several types of image processing problems
is expanding very fast. Potentially, a way to eliminate the influence of these
parameters can be found in this area of research. Several papers have been
published on performing image registration by means of deep learning, such as
[22], [23] and [24]. Unfortunately, no work seems to be published yet on the
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registration of US volumes. Due to the peculiar characteristics of US imaging this
is a harder problem to tackle than, for example, registration of MR images.
However, as the deep learning field keeps expanding, this could rapidly change
in the near future.

Two other deep learning approaches that could possibly be of use for the creation
of pseudo-CT scans are the use of style transfer or generative adversarial networks
(GANs). A style transfer approach renders the content of an image in a different
style. For example, a picture of houses along a canal can be rendered in the style
of a painting of Vincent van Gogh, as shown in [25] and [26]. The same kind of
principle could potentially be applied to US images in order to render them in the
style of a CT scan. However, no publications in this direction seem to be available
in literature and currently, the only evaluation metric seems visual judgment if
the style "looks like" the reference style [26]. Therefore, it seems difficult to judge
the accuracy of the algorithm and so the potential usability in medical imaging.
The use of GANs ([1], [27], [28]), however, could be very promising.

Created pseudo-CT scans that represent the anatomy of the patient well, can
provide more insight into if treatment re-planning could be beneficial for that
specific patient. In addition, these scans could potentially even be used for the
actual re-planning as well. To design a treatment plan for a prostate cancer
patient, electron density information of a substantial part of the abdomen is
usually required, in order to calculate the optimal radiation beam paths. The field
of view of an US probe is currently not big enough to cover a sufficient part of the
abdomen and so to create a pseudo-CT scan that covers a substantial part of the
abdomen. However, in the current registration implementation, already some
deformation is estimated outside of the US volume. Potentially this could
somehow be extended using assumptions on the deformable characteristics of the
surrounding tissues. Another solution could be the use of image compounding as
has been done by, for example, [29] and [30]. This would involve the acquisition
of several US volumes, for example, from different angles and compounding
them, resulting in an US image with a bigger field of view and also an improved
signal to noise ratio.

8.2 Future perspective
Developments in immunotherapy treatment for several types of cancer have
shown very promising results, even for patients with metastatic cancer
(e.g. [31]–[33]). Intuitively this type of treatment, during which the patient’s own
immune system is assisted and encouraged to fight the cancer by itself, seems to
make more sense than attempting to destroy the individual cancer cells using
chemotherapy or RT treatment. Therefore, I am wondering if the use of radiation
for ablative cancer treatment, as we currently know it, will still be considered a
viable treatment option in 5, 10, or 20 years from now.
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RT has always been seen as an effective, but local cancer treatment option [34].
Surprisingly, over 20 case reports have been published in which tumor regression
is reported outside of the regions that have been treated with RT [35]. The
underlying mechanisms of this so-called abscopal effects have not been fully
understood yet. However, there is a suspicion that this effect might contribute to
the enhanced immune response [35] when the patient is treated with a
combination of RT and immunotherapy, which is reported in several publications
(e.g. [36] and [37]).

As the human immune system is extremely complex, it might take decades and
a lot of research to understand how RT and immunotherapy can be combined
most effectively and what kind of role (US) image guidance can play in this. In
the meantime, men will keep receiving a prostate cancer diagnosis, undergo RT
treatment and so they can potentially benefit from US image guidance already.
Therefore, in the remainder of this discussion, an outlook in the closer future on
US guidance during RT in general and for prostate cancer patients specifically is
given. Finally, US guidance can also be of help during other medical interventions
than RT treatment. For this reason, also a brief outlook on US guidance for other
medical interventions is given.

US guidance in RT in general
The use of US imaging for dose guidance in RT workflows is not only limited to
prostate RT workflows, but has been applied to other RT workflows, such as liver
and breast, as well. However, no matter which anatomical structure is imaged
using US imaging, most of the challenges associated with this image modality,
such as the need for a trained operator, the need for image interpretation during
the acquisition and inaccessibility of anatomical structures shielded by bone, will
still occur. Therefore, also for these other RT workflows including, for example,
cervix [38], breast [39] and liver [40], research, such as anatomical structure
tracking evaluation, is conducted to allow for US guidance during the course of
the treatment. Joining forces and trying to come up with general solutions that
could fit all these fields of research could speed up the developments and so
make the use of US imaging more appealing.

Currently, there seems to be a focus on the potential use of an MR guided RT
system, the MR-Linac ([41] and [42]). In this system a linear accelerator is
integrated into an MR scanner, which could allow for MR guidance during the
radiation dose delivery. Most clinicians are more familiar with MR scans than
with US images and the workflow of this MR-Linac is most probably less
operator dependent than an US guided workflow. These two factors could
explain the growing interest for the MR-Linac [43]. However, in comparison with
US imaging this system is way more expensive, not only including the cost of the
system itself, but also the unavoidable replacement of the currently available
Linacs. In addition, this magnetic field might influence the direction of the
radiation beam. For example, Perik et al. [44] have shown that the magnetic fringe
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field of an MR-Linac can influence the beam steering of the regular Linacs in
adjacent bunkers. Even though this could be corrected for, this raises questions
about the influence of the field on the beam of the MR-Linac itself and if there are
any other (negative) influences that should be thoroughly investigated before the
MR-Linac is introduced in the clinics at a larger scale.

Moreover, the number of proton therapy centers in the world is currently rapidly
growing. This type of external beam RT makes use of a beam of protons instead
of an X-ray beam. In contrast with more traditional X-ray irradiation, a single
proton beam has a maximal dose at a user-defined depth and no exit dose [45].
These characteristics make it possible to reduce to radiation dose to normal tissue
substantially, while preserving dose to the target. This results in a more favorable
dose distribution in comparison with conformal photon therapy. However, with a
maximal dose at a user-defined depth, the need for (image) guidance is crucial.
The influence of the magnetic field of a MR scanner on the proton beam and the
absence of an exit dose necessary for electronic portal imaging make these imaging
modalities not suitable for usage during a guided proton therapy workflow. As US
imaging does not suffer from these problems, it can therefore be a good candidate
for proton therapy guidance.

US guidance for prostate RT
The motion of the prostate, both inter- and intra-fraction is relatively small in
comparison with anatomical structures that are affected by breathing motion,
such as liver and pancreas. Therefore one could reason that real-time US guidance
is more relevant for structures that are affected by breathing motion. However, the
dosimetric consequences of motion of the prostate and the organs at risk during
the RT workflow have not been fully understood yet. Especially, in the hypo-
fractionation schemes [19], during which more radiation dose is delivered in each
(longer) treatment fraction, these anatomical structure motions could potentially
result in significant dose deviations.

Also, with 1.6 million men being diagnosed with prostate cancer worldwide
every year, the prostate cancer patient population is significantly larger than the
number of patients diagnosed with, for example, liver (about 850,000 diagnoses)
and pancreas (about 400,000 diagnoses) cancer [46]. This larger patient
population could potentially make it easier to recruit patients for studies. For this
reason, some proof-of-concept studies, that look into generic challenges of US
imaging, such as image quality assessment, could be performed based on
prostate patient data and then further fine-tuned for the smaller patient
populations of other cancer sites.

Finally, as mentioned in the previous section, the use of proton therapy is growing,
also for the treatment of prostate cancer (e.g. [47]). Due to the unsuitability of other
image modalities in a proton environment, also for prostate proton therapy US
guidance could be the image guidance approach of choice.
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Summarizing, even though the anatomical structure motion in prostate RT is
relatively small, further development of US guided RT workflows for prostate
cancer patients is still justified, due to still unknown dose consequences, the
potential in hypo-fractioned schemes and proton therapy, and the ability to
transfer research on prostate to other cancer sites.

US guidance outside RT
There seems to be a growing realization in the medical community that US
imaging can provide valuable (volumetric) information that can be used for
navigation and guidance during a wide range of medical procedures. This image
modality can provide a cost effective and harmless solution for this guidance
during procedures in which guidance was absent before or which was
cumbersome, expensive and/or potentially harmful for the patient. Procedures
during which US guidance can be of use range from epidural needle
placement [48] and breast conserving surgery [49] to lung biopsies [50].

Especially with the improving 3D, 4D and elastography capabilities which are
currently available in the clinic, the range of applications might grow and the
usage of US imaging for guidance might increase. Also, the developments towards
faster image acquisition, higher frame rates, smaller US probes, stick-on probes,
flatter probes and many others, can contribute to an increase in the popularity of
US imaging.

However, as also noted in an earlier section, no matter which anatomical
structure is imaged using US imaging, most of the common challenges (e.g. need
for image interpretation, operator dependence and establishment of acoustic
coupling) associated with this image modality will occur (up to a certain extent).
Therefore, part of the research presented in this thesis, such as the automatic
image quality assessment of US images, could not only be of use for US guidance
in prostate cancer RT workflows, but also for other guidance procedures and
potentially even for diagnostic US imaging as well.

In conclusion, in my opinion the use of US imaging, not only for guidance during
(prostate) cancer RT workflows, but also for guidance during other medical
procedures will keep increasing in the upcoming years. This increased usage can
be boosted even further by tackling the generic and most predominant challenges
associated with US imaging. The work presented in this thesis has contributed to
the tackling of these challenges for US guidance in prostate RT workflows
specifically and partially even for US guidance in general.
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A Patient-specific transperineal
ultrasound probe setup

A.1 Bone mask extraction
Voxels in the CT volume that correspond to bone tissue, tend to be brighter and
so tend to have a higher Hounsfield Unit (HU) than the surrounding soft tissue.
This principle was used to perform initial thresholding on the whole CT volume
using a threshold value of 200 HU (empirically chosen).

In Fig. A.1A an axial projection of the simulation CT scan is shown while the
corresponding coarse outline of the bones resulting from the thresholding
procedure is displayed in Fig. A.1B. Since it was necessary to obtain a bone mask
with a connected boundary, post-processing steps were required, which were
performed per axial slice.

(A)

X
Y

(C)

(B)

(D)

X Y

Z

(E)

Figure A.1: Workflow to extract a 3D binary bone mask from a CT volume. (A) One
axial slice of an acquired CT volume. (B) Bone mask after initial thresholding. (C) Each
color corresponds to one connected component identified in the 2D slice. (D) The red line
represents the boundary that envelopes the pixels of the different connected components.
This boundary was then used to create a solid 2D binary bone mask. (E) Bone mask resulting
from repeating the procedure on all axial slices displayed using a 3D interpolation process.

After bridging single, unconnected pixels and removing connected components
that were smaller than a specific threshold of 25 pixels (empirically chosen), each
remaining connected component (Fig. A.1C) was assessed separately.
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Subsequently, a compact boundary per component was retrieved that enveloped
the pixels of this component (red boundaries in Fig. A.1D). This was done to
ensure that a mask with a connected boundary could also be retrieved, even
when the original boundary of the bones was not closed.

Finally, the new boundary was filled with white pixels, resulting in a 2D binary
mask of the bones of the corresponding axial slice (Fig. A.1D). The above
procedure was repeated for all axial slices of the volume, resulting in a 3D bone
mask, as displayed in Fig. A.1E.

A.2 Leg mask extraction
In order to identify the part of the legs that were covering the perineal skin area,
each 2D axial slice of the CT volume of the patient was investigated separately.
In this study, five different 2D slice categories were identified, of which visual
examples are displayed in Fig. A.2. Category A included all 2D slices on which
two unconnected legs were present (Fig. A.2A). In Category B these two legs
were also present, however, in addition, one or multiple parts of the scrotum
were visualized as well (Fig. A.2B). All these body parts were still unconnected.
Category C included all slices on which two legs were present with one or multiple
parts of the scrotum connected to one of the legs (Fig. A.2C). In Category D the
scrotum was connected to both legs (Fig. A.2D), while in Category E neither
legs nor scrotum were visualized (Fig. A.2E). Of course, also combinations of the
categories existed, such as two legs with part of the scrotum connected to one of
the legs and part of the scrotum unconnected. However, these could be handled
by combining the different steps described below.

(A) (B) (C)

X

Y

(D) (E)

Figure A.2: Five defined 2D slice categories. (A) Two unconnected legs. (B) Two
unconnected legs with one or multiple unconnected parts of the scrotum. (C) Two legs
with one or multiple parts of the scrotum connected to one of the legs. (D) The scrotum
connected to both of the legs. (E) Legs and scrotum are absent in the slice.
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A.2. Leg mask extraction

In order to distinguish Category A from C, the perimeters of the two connected
components on each slice were determined and plotted starting from the most
caudal slice. A clear increase in the length of the perimeter could be recognized
when the slices transitioned from Category A to Category C. Before this transition
point, all the slices with two components were classified as Category A, while
after this point the slices were classified as Category C.

The distinction between the Categories D and E was performed based on the shape
of the bone present in the slice. If the femur bone significantly started to change
shape, the slice was classified as not containing legs or scrotum anymore. Hence
also in this case, a transition point could be recognized, marking the transition
from Category D to E.

After the category division, a binary leg mask of the patient was created. As
Category A only shows the legs of the patient, these slices were directly added to
the mask. The slices of Category B were converted into Category A by removing
the smallest components (based on their area) from the slices, until only two
components were left. These were then also added to the mask.

Prior to adding the legs of Category C to the legs mask the scrotum needed to be
removed. To this end, the leg to which the scrotum was connected was identified,
as well as the maximum voxel in Y-direction and minimum voxel in X-direction
(see magenta diamonds in Fig. A.3A).

(A) (B)

X
Y

(C) (D)

Figure A.3: Workflow to remove the scrotum from 2D slices of Category C. (A) Binary
mask of a Category C slice with the magenta diamonds representing maximum voxel
in Y-direction and minimum voxel in X-direction. The cyan line shows the perimeter of
the mask between these points. (B) Binary mask with the blue diamond representing the
last local minimum of the anterior perimeter and the cyan line representing the posterior
perimeter. (C) Binary bone mask with the blue diamonds being the local minimum of the
anterior perimeter and the global maximum of the posterior perimeter connected by a cyan
straight line. (D) Corresponding CT slice after the straight line of (C) was used as cutting
line.
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Subsequently, the last local minimum of the perimeter between these points (cyan
line in Fig. A.3A) was found and represented by the blue diamond in Fig. A.3B.
The X-coordinate of this local minimum was then used to select the perimeter on
the posterior side using a set margin. In this case, the margin was 20 voxels and
the resulting perimeter selection is displayed with the cyan line in Fig. A.3B. Next,
the global maximum of this selected perimeter was connected by a straight line to
the earlier found local minimum of the anterior side, see Fig. A.3C. Finally, this
straight line was used as a cutting line to disconnect the scrotum from the leg
(Fig. A.3D), allowing the slice to be processed the same way as slices of Category B.

To remove the scrotum from the Category D slices, a similar procedure was
followed. After identification of the left and right legs, the voxels with the
maximum and minimum Y-coordinates for both legs were determined (magenta
diamonds in Fig. A.4A). Subsequently, the local minima and maxima on the
perimeters between these points (cyan lines in Fig. A.4A and Fig. A.4B) were
identified (blue diamonds in Fig. A.4B). Based on some set constraints and the
neighboring slices, the correct local minima could then be selected and connected
by straight lines (cyan lines in Fig. A.4C). Finally, the original CT slice was then
cut along those lines, which allowed processing of the slice the same way as a
Category B slice (Fig. A.4D).

(A)

X
Y

(C)

(B)

(D)

X
Y

Z

(E)

Figure A.4: Workflow to remove the scrotum from 2D slices of Category D. (A) Binary mask
of a Category D slice with the magenta diamonds representing the voxels with maximum
and minimum Y-coordinates and the cyan lines indicating the perimeters between these
points. (B) Binary mask with the same perimeters and the local minima and maxima of
these perimeters represented by the blue diamonds. (C) Selected minima and maxima
being connected by straight cyan lines. (D) Corresponding CT slice after the straight lines
of (C) were used as cutting line. (E) The body outline of the patient with the identified bone
mask displayed in green.
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A.3. Bone mask underestimation

After processing all the slices which contained legs (Category A-D), a binary
leg mask was constructed which could be used later on to restrict the accessible
perineum area (Fig. A.4E).

A.3 Bone mask underestimation

Z=191

(A)

Z=195

(B)

Z=198

(C)

YX

Z

(D)

Figure A.5: Example of underestimation during bone segmentation based on image data of
Patient 1. (A) CT slice at Z=191 with superimposed in red the detected bone edges. (B) CT
slice at Z=195 with a missing spine segmentation at the arrow. (C) CT slice at Z=198 with
the spine found again. (D) 3D representation of the bone mask. The arrow indicates a piece
of spine disconnected from the mask due to underestimation in slices Z=195-197. If this
piece was smaller than 50 voxels, it was removed before coccyx identification.
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B US image quality assessment
using deep learning

B.1 Parameters of additional deep learning approaches

Table B.1: Parameters of the additional deep learning algorithms per implementation step
with the asterisks indicating the optimized hyper-parameters.

CNN + GP (two class) CNN + Softmax

Parameter Value Value

DenseNet Number of blocks* 2 3
Number of layers* 18 18
Growth rate k* 12 12
Outputs* 200 -

GPflow Model SGPR -
Kernel RBF -
Initial kernel variance* 0.2 -
Inducing points* 150 -

Training Batch size* 200 50
Epochs* 75 75
Optimizer Adam Adam
Learning rate* 1e-8 1e-6
Drop-out rate* 0.05 0.05
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C Proof-of-concept study for
pseudo-CT scan creation

C.1 Parameter file

Intensity based deformation Changes for the contour
based deformation

(FixedInternalImagePixelType "float")
(MovingInternalImagePixelType "float")
(UseDirectionCosines "false")
(Registration "MultiMetricMultiResolutionRegistration")
(FixedImagePyramid "FixedRecursiveImagePyramid")
(MovingImagePyramid "MovingRecursiveImagePyramid")
(Interpolator "BSplineInterpolator")
(Optimizer "AdaptiveStochasticGradientDescent")
(ResampleInterpolator "FinalBSplineInterpolator")
(Resampler "DefaultResampler")
(Transform "BSplineTransform")
(Metric "AdvancedNormalizedCorrelation"
"TransformRigidityPenalty")

(Metric "AdvancedMeanSquares"
"TransformRigidityPenalty")

(NumberOfResolutions 3)
(HowToCombineTransforms "Compose")
(MaximumNumberOfIterations 100)
(10, 50 or 100)

(MaximumNumberOfIterations 300)
(100 or 300)

(Metric0Weight 1.0) (Metric1Weight 10.0)
(LinearityConditionWeight 100.0)
(OrthonormalityConditionWeight 1.0)
(PropernessConditionWeight 2.0)
(UseLinearityCondition "true")
(UseOrthonormalityCondition "true")
(UsePropernessCondition "true")
(CalculateLinearityCondition "true")
(CalculateOrthonormalityCondition "true")
(CalculatePropernessCondition "true")
(DilateRigidityImages "false" "false" "false")
(DilationRadiusMultiplier 1.0 1.0 1.0)
(UseFixedRigidityImage "false")
(UseMovingRigidityImage "true")
(MovingRigidityImageName "filepath and -name of the mask")
(FinalGridSpacingInPhysicalUnits 20)
(NumberOfSpatialSamples 2500)
(ImageSampler "Random")
(BSplineInterpolationOrder 3)
(FinalBSplineInterpolationOrder 1) (FinalBSplineInterpolationOrder 0)
(DefaultPixelValue 0)
(ResultImagePixelType "short")
(ResultImageFormat "mhd")
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C.2 Results for bladder, anus & rectum and body contours

Table C.1: Gamma index evaluations based on HU and dose as well as DSC calculations
were performed for body, anus & rectum and bladder. The first three columns detail the
patient, the evaluated contour and the used evaluation metric (gamma failure based on
HU or dose expressed in volume % and DSC). The values in the Ref (reference) column
were based on evaluation of CTsim and CTtx. The final columns detail the evaluation of the
created CTps using the specific parameter sets A-E and CTtx. The bold numbers indicate
which parameter sets resulted in the same result or in an improvement with respect to the
reference.

Patient Contour Metric Ref A B C D E

1 Body γCT [%] 14.3 9.8 11.5 12.7 9.7 11.2
γDose [%] 4.9 4.6 4.4 4.3 4.6 4.7

Anus & Rectum DSC 0.4 0.6 0.7 0.7 0.6 0.7
γCT [%] 22.0 14.5 13.4 13.6 15.2 16.1
γDose [%] 0.2 0.2 0.2 0.2 0.2 0.4

2 Body γCT [%] 23.1 21.7 19.8 19.9 19.9 -
γDose [%] 2.8 2.8 2.8 2.8 2.6 -

Anus & Rectum DSC 0.7 0.6 0.7 0.7 0.7 -
γCT [%] 28.9 25.4 27.3 28.8 28.1 -
γDose [%] 0.8 0.2 0.5 0.7 0.9 -

Bladder DSC 0.6 0.6 0.6 0.6 0.7 -
γCT [%] 10.4 7.7 4.7 3.7 5.8 -
γDose [%] 0.0 0.3 0.7 1.0 0.0 -

3a Body γCT [%] 8.5 7.4 6.8 7.2 8.0 8.0
γDose [%] 0.6 0.6 0.6 0.6 0.6 0.6

Anus & Rectum DSC 0.7 0.4 0.2 0.2 0.4 0.4
γCT [%] 22.7 20.3 22.5 23.9 21.1 21.5
γDose [%] 4.2 4.6 4.3 4.4 4.4 4.7

Bladder DSC 0.8 0.8 0.8 0.8 0.8 0.8
γCT [%] 4.2 3.0 2.7 3.2 6.5 6.4
γDose [%] 0.0 0.0 0.0 0.0 0.0 0.0

3b Body γCT [%] 10.6 9.8 8.2 7.9 5.7 6.0
γDose [%] 0.9 0.8 0.8 0.8 0.5 0.5

Anus & Rectum DSC 0.6 0.6 0.6 0.6 0.7 0.7
γCT [%] 11.7 7.0 6.7 7.2 11.2 12.9
γDose [%] 0.0 0.0 0.0 0.0 0.0 0.0

Bladder DSC 0.8 0.8 0.8 0.8 0.8 0.8
γCT [%] 11.1 8.0 7.0 6.6 7.4 7.7
γDose [%] 0.0 0.0 0.0 0.0 0.0 0.0
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C.2. Results for bladder, anus & rectum and body contours

Patient Contour Metric Ref A B C D E

3c Body γCT [%] 18.1 16.5 15.0 13.5 12.8 12.7
γDose [%] 1.5 1.6 1.8 1.7 1.1 1.1

Anus & Rectum DSC 0.5 0.5 0.6 0.6 0.6 0.6
γCT [%] 19.0 14.2 11.5 9.3 12.9 12.4
γDose [%] 0.0 0.0 0.0 0.0 0.0 0.0

Bladder DSC 0.7 0.7 0.6 0.6 0.8 0.8
γCT [%] 7.6 5.9 6.6 6.5 1.2 1.5
γDose [%] 0.0 0.0 1.3 1.0 0.0 0.0

3d Body γCT [%] 23.8 21.9 19.7 18.5 18.3 17.8
γDose [%] 2.0 2.0 1.9 1.8 1.5 1.5

Anus & Rectum DSC 0.3 0.3 0.4 0.4 0.5 0.5
γCT [%] 32.8 24.2 14.9 12.3 18.3 18.2
γDose [%] 0.5 0.2 0.6 0.4 0.1 0.2

Bladder DSC 0.7 0.7 0.8 0.8 0.8 0.8
γCT [%] 20.8 17.1 12.2 9.6 11.5 11.6
γDose [%] 0.3 0.2 0.1 0.0 0.0 0.0
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C.2. Results for bladder, anus & rectum and body contours
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D Various approaches for
pseudo-CT scan creation

D.1 Parameter set for initial alignment
(FixedInternalImagePixelType "float")
(MovingInternalImagePixelType "float")
(UseDirectionCosines "true")

(Registration "MultiResolutionRegistration")
(Interpolator "BSplineInterpolator")
(ResampleInterpolator "FinalBSplineInterpolator")
(Resampler "DefaultResampler")
(FixedImagePyramid "FixedRecursiveImagePyramid")
(MovingImagePyramid "MovingRecursiveImagePyramid")

(Optimizer "AdaptiveStochasticGradientDescent")
(Transform "TranslationTransform")
(Metric "AdvancedMeanSquares")

(AutomaticScalesEstimation "true")
(AutomaticTransformInitialization "false")
(ErodeMask "false")
(HowToCombineTransforms "Compose")

% NumberOfResolutions was set to 2 or 1 when excessive translation occurred
(NumberOfResolutions 3)

(MaximumNumberOfIterations 750)
(NumberOfSpatialSamples 2500)
(NewSamplesEveryIteration "true")
(ImageSampler "Random")

(FinalGridSpacingInPhysicalUnits 30)
(BSplineInterpolationOrder 1)
(FinalBSplineInterpolationOrder 0)
(MovingImageDerivativeScales 1 0 0)
(DefaultPixelValue 0)

(WriteResultImage "true")
(ResultImagePixelType "short")
(ResultImageFormat "mhd")
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D.2 Parameter set for bone rigidity evaluation
(FixedInternalImagePixelType "float")
(MovingInternalImagePixelType "float")
(UseDirectionCosines "true")

(Registration "MultiResolutionRegistration")
(Interpolator "BSplineInterpolator")
(ResampleInterpolator "FinalBSplineInterpolator")
(Resampler "DefaultResampler")

(FixedImagePyramid "FixedRecursiveImagePyramid")
(MovingImagePyramid "MovingRecursiveImagePyramid")

(Optimizer "AdaptiveStochasticGradientDescent")
(Transform "EulerTransform")
(Metric "AdvancedMattesMutualInformation")

(AutomaticScalesEstimation "true")
(AutomaticTransformInitialization "true")
(HowToCombineTransforms "Compose")
(NumberOfHistogramBins 32)

(NumberOfResolutions 3)
(MaximumNumberOfIterations 250)
(NumberOfSpatialSamples 2500)

(NewSamplesEveryIteration "true")
(ImageSampler "Random")

(BSplineInterpolationOrder 3)
(FinalBSplineInterpolationOrder 0)
(DefaultPixelValue 0)

(WriteResultImage "true")
(ResultImagePixelType "short")
(ResultImageFormat "mhd")
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D.3. Parameter sets for deformable registration

D.3 Parameter sets for deformable registration
(FixedInternalImagePixelType "float")
(MovingInternalImagePixelType "float")
(UseDirectionCosines "false")

(Interpolator "BSplineInterpolator")
(ResampleInterpolator "FinalBSplineInterpolator")
(Resampler "DefaultResampler")

(FixedImagePyramid "FixedRecursiveImagePyramid")
(MovingImagePyramid "MovingRecursiveImagePyramid")

(Optimizer "AdaptiveStochasticGradientDescent")
(Transform "BSplineTransform")
(HowToCombineTransforms "Compose")

(Registration "MultiResolutionRegistration")
(Metric METRIC)
(NumberOfResolutions RESOLUTIONS)

(FinalGridSpacingInPhysicalUnits SPACING)
(MaximumNumberOfIterations ITERATIONS)
(NumberOfHistogramBins 32)

(NumberOfSpatialSamples 2500)
(NewSamplesEveryIteration "true")
(ImageSampler "Random")
(BSplineInterpolationOrder 3)

% The FinalBSplineInterpolationOrder is set to 0 when the deformable registration is
based on contours only, otherwise it is set to 1.
(FinalBSplineInterpolationOrder 0)

(DefaultPixelValue 0)
(WriteResultImage "true")
(ResultImagePixelType "short")
(ResultImageFormat "mhd")

METRIC
SSD = (Metric "AdvancedMeanSquares")
NCC = (Metric "AdvancedNormalizedCorrelation")
MI = (Metric "AdvancedMattesMutualInformation")
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Approach Pair Metric Resolutions Spacing Iterations

Deformable registration T1 - T4 SSD 3 15 295
Prostate contour T1 - T5 SSD 4 10 265

T2 - T4 SSD 3 35 275
T2 - T5 NCC 2 10 205
T3 - T5 NCC 4 5 175
T4 - T1 NCC 5 10 285
T4 - T2 NCC 3 10 195
T5 - T1 SSD 4 5 185
T5 - T2 NCC 4 15 285
T5 - T3 NCC 1 10 165

Deformable registration T1 - T4 MI 3 20 75
US volume T1 - T5 NCC 3 10 125

T2 - T4 NCC 1 25 105
T2 - T5 NCC 4 25 255
T3 - T5 SSD 2 30 105
T4 - T1 SSD 1 20 75
T4 - T2 SSD 4 15 5
T5 - T1 SSD 3 30 45
T5 - T2 NCC 5 20 265
T5 - T3 NCC 4 35 65

Translation T1 - T4 NCC 4 10 295
Prostate contour T1 - T5 SSD 3 10 205

T2 - T4 SSD 2 5 285
Deformable registration T2 - T5 NCC 4 15 225

Prostate contour T3 - T5 SSD 3 5 195
T4 - T1 NCC 5 10 275
T4 - T2 SSD 4 15 225
T5 - T1 SSD 3 15 285
T5 - T2 NCC 2 10 235
T5 - T3 SSD 3 10 275

Translation T1 - T4 MI 2 30 45
Prostate contour T1 - T5 NCC 5 15 235

T2 - T4 NCC 1 15 35
Deformable registration T2 - T5 MI 1 20 75

US volume T3 - T5 SSD 1 30 115
T4 - T1 NCC 1 35 45
T4 - T2 MI 1 25 15
T5 - T1 NCC 2 20 195
T5 - T2 NCC 2 20 225
T5 - T3 MI 2 20 25
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Approach Pair Metric Resolutions Spacing Iterations

Translation T1 - T4 SSD 4 10 265
US volume T1 - T5 NCC 3 10 255

T2 - T4 NCC 4 15 225
Deformable registration T2 - T5 NCC 5 10 245

Prostate contour T3 - T5 NCC 1 5 285
T4 - T1 NCC 3 10 175
T4 - T2 NCC 1 20 285
T5 - T1 NCC 3 5 275
T5 - T2 NCC 3 10 255
T5 - T3 SSD 4 10 195

Translation T1 - T4 MI 2 25 65
US volume T1 - T5 NCC 3 10 255

T2 - T4 MI 3 30 15
Deformable registration T2 - T5 NCC 2 15 275

US volume T3 - T5 SSD 1 20 45
T4 - T1 SSD 4 15 5
T4 - T2 MI 2 35 15
T5 - T1 SSD 2 15 105
T5 - T2 NCC 4 20 245
T5 - T3 MI 3 15 115

D.4 Calculation times

Data Translation Translation Deform Deform Translation Translation Translation Translation
pairs [US] [C] [US] [C] [US] [US] [C] [C]

Deform Deform Deform Deform
[US] [C] [US] [C]

Calculation Calculation Calculation Calculation Calculation Calculation Calculation Calculation
Time Time Time Time Time Time Time Time

[s] [s] [s] [s] [s] [s] [s] [s]

T1-T4 125 149 25 30 150 195 164 189
T1-T5 81 155 26 41 121 123 172 178
T2-T4 79 67 15 39 98 118 83 99
T2-T5 141 57 28 32 164 186 73 106
T3-T5 146 110 23 62 160 196 126 176
T4-T1 72 133 16 61 89 109 148 183
T4-T2 75 51 14 38 91 96 63 81
T5-T1 71 44 14 45 93 121 65 70
T5-T2 90 119 53 50 113 117 141 143
T5-T3 124 118 19 18 144 152 133 134
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3D-CRT 3D conformal radiotherapy

AP Anterior-Posterior

ART Adaptive radiotherapy

BAT B-mode acquisition and targeting

CBCT Cone beam computed tomography

CNN Convolutional neural network

CT Computed tomography

DIR Deformable image registration

DSC Dice similarity coefficient

DTA Distance-to-agreement

EPI Electronic portal imaging

EBRT External beam radiotherapy

FOV Field of view

FM Fiducial marker

GP Gaussian process

HDR High-dose rate

HU Hounsfield units

IGRT Image guided radiotherapy

IMRT Intensity-modulated radiotherapy

LoA Limits of agreement

LDR Low-dose rate

Linac Linear accelerator

LR Left-Right

MAD Mean absolute distance

MAX Maximum absolute distance

MR Magnetic resonance

MRI Magnetic resonance imaging

OAR Organs at risk

OCC One-class classification
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OCSVM One-class support vector machine

PSA Prostate-specific antigen

RBF Radial basis kernel function

ROC Receiver operating characteristics

ROI Region of interest

RT Radiotherapy

RTO Radiation oncologist

SD Standard deviation

SGPR Sparse Gaussian process regression

SI Superior-Inferior

SIM Simulation

SOS Speed of sound

SV Seminal vesiculae

SVM Support vector machine

TAUS Transabdominal ultrasound

TOF Time of flight

TPUS Transperineal ultrasound

TRUS Transrectal ultrasound

TX Treatment

US Ultrasound

USgRT Ultrasound guided radiotherapy

VMAT Volumetric-modulated arc therapy
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