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ENZO EVERS, RONALD LAMERS AND TOM OOMEN

Introduction
Thermo Fisher is a leading manufacturer of electron 
microscopes. Their high-end (transmission) electron 
microscopes are developed and produced in Eindhoven 
(NL). These systems are capable of visualising objects at 
the atomic scale with a resolution down to 50 picometer 
(sub-Ångström resolutions). 

The goal of an electron microscope is to acquire high-
quality and high-resolution images of a specimen. The basic 
operation principle of an electron microscope, which is 
similar to that of a conventional light microscope or slide 
projector, is shown in Figure 1. Whereas a slide projector 
works with light and optical lenses, an electron microscope 
works with electrons and electromagnetic lenses. 

A general overview of a transmission electron microscope 
is shown in Figure 2. The electron beam is generated inside 
the electron source, and the electrons pass through the 
condenser lens system, which makes the electron beam 
parallel. Then, the electron beam passes through a thin 
specimen that is mounted on a sample manipulation stage. 
This stage can move the specimen with respect to the 
electron beam, hence a large area of the specimen can be 
imaged. The corrector lens system is an additional module 
that can be placed on the electron microscope to correct 
for optical aberrations. Finally, the projector lens system 
magnifies the image and projects it onto a camera.

Thermal effects are becoming increasingly important in efforts to enhance the 
performance of electron microscopes. Therefore, accurate thermal-mechanical 
models are desired for analysis and control. Modelling thermal systems from 
experimental data, i.e. system identification, is challenging due to large 
transients, large time scales, excitation signal limitations, large environmental 
disturbances, and nonlinear behaviour. An identification framework has been 
developed to address these issues. The presented approach facilitates the 
implementation of advanced control techniques and error compensation 
strategies by providing high-fidelity models.

1

Similar operation principle of a slide projector and a transmission 
electron microscope (TEM) [1].

General overview of a transmission electron microscope [2].
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Because an electron microscope is capable of visualising 
objects at the atomic scale, it is a key enabler for 
nanotechnology, life science, material science and 
semiconductor technology. Electron microscopes are 
increasingly being used as analysis tools in laboratories and 
industry. Whereas the material science market is pushing 
the boundaries with respect to resolution of electron 
microscopes, markets as semiconductors and life science are 
pushing the boundaries with respect to throughput. In view 
of these increasing demands for throughput and resolution, 
the stability of electron microscopes becomes increasingly 
important.

Stability
Acquiring high-resolution images requires the exposure 
time of the camera to be sufficient long. The image 
acquisition process takes time, because a sufficient amount 
of electrons need to be detected in order to provide enough 
contrast in an image, which is the main measure for image 
quality. In fact, the contrast improves with increased 
exposure time. During the exposure time, the specimen 

must remain stationary with respect to the electron beam. 
Movement of the specimen, known as drift, would lead to a 
blurred image, as shown in Figure 3. In this context, stability 
is defined as minimal drift of the sample position with 
respect to the electron beam. At present, the state-of-the-art 
approach is to wait (minutes to hours) until the drift is low 
enough for high-quality imaging, which significantly 
reduces the throughput of the system. 

For example, in life science applications a so-called single-
particle analysis is performed to study single proteins 
that perform key roles in diseases in their native context 
in the cell at near atomic resolution. In such analyses, the 
microscope can be taking images automatically for several 
days, during which image quality, and thus stability 
(< 10 nm/min) of the electron microscope must be 
guaranteed. 

Sensitivity
In Figure 4, a more detailed view is given on the specimen 
location inside the electron microscope. The specimen is 
placed on a sample holder, which will be positioned inside 
the sample manipulation stage and the electron microscope. 
Also shown in Figure 4 is the thermal expansion loop. 

The thermal expansion loop covers parts of the electron 
microscope on which the stage has been mounted, parts of 
the stage, and parts of the sample holder. If the temperature 
of these parts changes due to thermal disturbances, they 
will deform, which will cause drift of the sample position 
with respect to the electron beam. The thermally induced 
deformation in X-direction is far more dominant than in 
Z- and Y-direction, therefore the thermal expansion loop 
can be considered as a sum of 1D expansions in X-direction 
of all parts inside the loop. The maximum allowed drift 
of the specimen is 0.5 nm/min. 

Advanced Thermal Control 
Consortium

Thermo Fisher has joined the Advanced Thermal Control 
Consortium. The aim of this consortium is to advance the 
theoretical and applied approaches to design, simulation, 
measurement and compensation techniques essential for 
the development of precision modules/systems subject 
to internal or external thermal loads [3]. Within this 
consortium, a fruitful collaboration between Thermo 
Fisher and Eindhoven University of Technology has 
been set-up to expand the identification and control 
approaches available for thermal-mechanical systems.

 WWW.TUE.NL/HTSC 

Image of an object (gold) [4].
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(b)	 With blur.
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For an impression of the required temperature stability, the 
thermal expansion loop is folded open; the total length is 
approximately 350 mm. If an average coefficient of thermal 
expansion is assumed for all the parts of 15 µm/m/K, the 
required temperature stability of the thermal expansion 
loop to meet the drift requirement of 0.5 nm/min is 0.1 mK/
min. This temperature stability requirement is worst-case, 
since thermal expansions can cancel each other. However, 
the coefficients of thermal expansion and thermal time 
constants differ for all parts inside the expansion loop.

Main disturbances
The performance of electron microscopes is disturbed by 
mechanical vibrations and acoustics, and electromagnetic 
fields, but also due to thermal disturbances. These cause 
thermal-mechanical deformations of the system, which are 
observed in the image as drift. Thermal disturbances can be 
divided in external and internal disturbances. Main external 
disturbances are the air temperature variations in the 
electron microscope room and the temperature and flow 
variations of the cooling water. Main internal disturbances 
are temperature variations due to power dissipation 
variations of the electromagnetic lenses, motors and 
encoders. 

A special case of disturbance is the insertion of a specimen 
holder. Typically, the temperature of the sample holder is 
not equal to that of the microscope. The sample holder has 
to take over the temperature of the microscope, and until 
a new thermal equilibrium is reached, the system will 
be subject to drift. 

For counteracting acoustic disturbances high-end electron 
microscopes are placed in an acoustic enclosure, as shown 
in Figure 5. This acoustic enclosure also attenuates the effect 

of room temperature variations. The thermal time constant 
of such an enclosure is approximately 4 hours. This means 
that slow room air temperature variations, such as the day-
night cycle, are still affecting the electron microscope, 
leading to thermally induced drift of the sample position 
with respect to the electron beam. 

Power dissipation inside the sample manipulation stage due 
to motors and encoders, albeit only a few milliwatts, causes 
drift. The power dissipation of the electromagnetic lenses 
is also a main thermal disturbance. Although most electro
magnetic lenses are operated in a constant-power setting, 
this is not applicable for all lenses inside the electron 
microscope. So, the variation in the power dissipation 
of the electromagnetic lenses is also a source of drift. 

System identification
To meet the ever-increasing demands to enhance the 
throughput and positioning accuracy, thermal deformations 
must be analysed and compensated for using real-time error 
compensation techniques and an appropriate thermo-
mechanical model. Accurate modelling of precise thermo-
mechanical systems is complex, e.g., due to uncertain 
parameters and contact resistances. Earlier solutions to 
compensate for the deformations in electron microscopes, 
for instance, cannot cope with large deformations and 
strongly depend on model quality [5] [6]. Therefore, an 
accurate parametric model is desired for a model-based 
approach. Ideally, using a limited amount of temperature 
measurements combined with an accurate thermo-
mechanical model enables the deployment of error-
compensation techniques [7] [8].

State-of-the-art at Thermo Fisher
The state-of-the-art for thermal-mechanical system 
identification within Thermo Fisher is to apply step-like 
heat load excitations, and measure the response in 
temperature and/or drift. In certain scenarios, e.g., 
for measuring cooling-water-related transfer functions, 
a square-wave waveform is used as input signal, with 
a duty cycle of 50%, in which the time period of the 
waveform is varying. 

Models are tuned (as yet) manually based upon the 
measured data in the time and frequency domain. The 
time constants of the system can be as long as 12 hours. 
Especially long time constants often result in experiments, 
either in the time or frequency domain, running for 
multiple days. During these measurements, the experiment 
is influenced by disturbances, including the varying ambient 
temperature. These influences often lead to poor signal-to-
noise ratios, so that the information obtained from the 
experiment is limited.Thermo Fisher Titan microscope outside an opened acoustic enclosure. 

(Photo: Leo Koomen)
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Currently, experimental modelling of thermal systems is 
often done by sequential excitation of system inputs until 
steady state is achieved. Due to the large time constants 
in thermal systems, this method rapidly becomes tedious 
for an increasing number of inputs. There is a strong desire 
to reduce the time and to improve the quality of the 
measurements, and to improve the estimation of uncertain 
model parameters, such as the emissivity in radiation heat 
transfer, thermal contact resistances and material 
properties, e.g. at cryogenic temperatures.

Advances
Here, the key contribution lies in accurate modelling of 
thermomechanical behaviour using multi-input multi-
output (MIMO) frequency response function (FRF) 
identification. Advances in system identification are 
leveraged to model thermomechanical systems and yield 
improved system models [9]. The approach is threefold 
and comprises the following contributions:
•  �Fast and accurate multivariable FRF estimations 

of thermal systems under transient conditions.
•  �Improved low-frequency estimation error by 

incorporation of additional sensor inputs.
•  �Estimation of thermal system parameters using  

a grey-box approach.

Transients
Consider a causal linear discrete time-invariant (LTI) 
system in an open-loop identification setting. The response 
y(n) to an input u(n) is given by:
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Here, g(n) is the impulse response of the system. Taking 
a measurement from tstart to tend of length N and applying 
the discrete Fourier transform (DFT) yields:
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with N the number of samples and Y(k) 
and U(k) the DFT of y(m) and u(m), respectively, and G(Ωk) 
the frequency response function of the LTI system. 
Additionally, a term T(Ωk) is required to account for the 
transient response by going from infinite time to a discrete 
time interval. 

Traditionally, the empirical transfer function estimation 
(ETFE) is used to derive the FRF, defined as:
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Here, T(Ωk)U(k)–1 is an estimation bias of the ETFE caused 
by transients in the response y(n). While the ETFE can 
often yield acceptable results on mechanical systems, since 

the transient is significantly shorter than the measurement 
period, for thermal systems the estimation accuracy is 
severely biased due to the strong transients and large time 
constants, e.g. 4 hours for the acoustic enclosure. To reduce 
the estimation error, the transient should be explicitly 
addressed during the FRF estimation.

Local parametric modelling
To cope with data gathered under transient conditions, 
a local modelling method is adopted. The method is 
developed in [10] and applied in [11] and it uses a local 
rational parameterisation of G(Ωk) and T(Ωk). The system 
dynamics and transient are parametrised for a small local 
frequency window k + r as:
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Here, Bb are the basis functions and θ the corresponding 
estimation parameters. This parametrisation is linear in the 
parameters, i.e. the optimisation is convex with an analytic 
solution. Moreover, the basis functions Bb are user-specified, 
e.g. orthonormal rational functions. This combines the 
benefits of a linear optimisation and a rich, possibly 
rational, parameterisation. By explicitly estimating the 
transient term T(Ωk) it can be removed from the FRF 
estimation of G(Ωk), thus avoiding the estimation bias 
that would be obtained using the ETFE. Moreover, 
since transient data can be used, which is otherwise 
often discarded, a significant reduction in experimental 
measurement time is achieved. 

Incorporating additional sensor inputs
One of the main environmental disturbances are the 
fluctuations in ambient temperature. To reduce the effect 
of these disturbances on the system identification set-up, 
measurements of the ambient temperature are incorporated 
as an additional input. In particular:
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Here, D(k) is the DFT of the measured environmental 
disturbance, e.g. the ambient temperature. Here, 
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. By using the proposed 
local parametric method, this full transfer function matrix is 
estimated from the measurement data. Since the ambient 
temperature typically contains the most energy at lower 
frequencies, including this as an additional ‘excitation’ input 
removes a low-frequency disturbance and consequently leads 
to improved estimation results for this frequency range. 
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THEME – THERMALLY INDUCED DEFORMATIONS IN ELECTRON MICROSCOPY

Parameter estimation
A lumped-parameter model is often used for initial analysis 
during the design process, and initial prototyping stage. To 
facilitate model-based control and error compensation 
approaches, an accurate parametric model of the thermo-
mechanical system is desired. The lumped-parameter model 
often contains parameters and boundary conditions that are 
uncertain or unknown, e.g. material properties or thermal 
contact resistances. At present, models are tuned manually 
based upon the measured data in the time and frequency 
domain. With increasing complexity of the physical systems, 
and their corresponding models, the manual tuning of 
parameters is becoming too cumbersome. 

Grey-box identification 
To yield high-fidelity thermomechanical models, grey-box 
identification is used to improve the accuracy of unknown 
parameters in the lumped-parameter models. By means 
of spatial discretisation of the thermal dynamics 
a parameterised model is generated, here shown in state-
space form:
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is the parameter set with Np the number of 
parameters. The aim of grey-box identification is to 
calibrate the parameter set ϕ such that the model is suitable 
for control. The approach is based on minimising the 
discrepancy between the measured non-parametric FRF 
and the FRF of the parametric model with the following 
cost function:
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is the FRF of the 
parametric model and W(Ωk) is a dynamic weighting filter 
based on the variance of the measured FRF. By minimising 
the cost function J the parameter values in ϕ become such 
that the parametric model best describes the experimental 
system. This yields a high-fidelity model suitable for 
advanced control and error compensation techniques.

Case study
The presented approaches for system identification are 
applied to a 1D thermal system; see the box on the right.

(Main article continued on page 18.)

Case study: 1D thermal system

The experimental set-up shown in Figure 6 consists of an aluminium cylinder 
containing a slice of high-thermal-resistance material (POM), two excitation inputs 
(u1, u2), two temperature sensors (Ti , i Є [1,5]) and two ambient temperature sensors 
(T∞). The experimental set-up is representative of a chain of thermal resistances in 1D, 
a situation commonly found in electron microscopes where the thermal expansion 
is considered dominant in one direction; see, e.g., Figure 4.

Identification under transient conditions
The local parametric method has the potential to construct a system FRF from data 
obtained under transient conditions. For this, the heater u1 and sensor T1, shown 
in Figure 6, are used as input and output, respectively. The excitation signal u1(t) is 
a random-phase multi-sine, i.e. a collection of sinusoidal signals:
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Here, N is the amount of samples in one period, Ak is an amplitude, ψk a uniformly 
distributed phase on [0,2π) and Δ an off-set since the input is constrained to be 
positive. By then applying 4 periods of each 4 hours as excitation, a time-domain 
response as shown in Figure 7 is obtained.

POM

6

Experimental set-up. An aluminium cylinder containing a slice 
of high-thermal-resistance material (POM), two excitation inputs 
(u1 , u2 ), two temperature sensors (Ti , i Є [1,5]) and two ambient 
temperature sensors (T∞ ).
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7

Temperature response u1  T1 of the experimental set-up to a 
random-phase multi-sine with offset for 4 periods of each 4 hours. 
The dataset is divided into two sub-records, (1) containing the first 
two periods (in blue), and (2) containing the last two periods (in red), 
considered as a validation data-set. A measurement of the ambient 
temperature T∞ is shown in black. 
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The time-domain response shows an initial step-like 
response in temperature, due to the offset Δ in u1, in 
addition to a periodic response to the multi-sine excitation. 
Two sub-records of the same dataset are considered: 
•  �The first sub-record includes the first two periods, 

containing a significant initial transient and environmental 
disturbances. 

•  �The second sub-record consist of the last two periods 
with a substantially smaller transient and environmental 
disturbance, and is used as a validation dataset. 

Applying both the proposed local parametric identification 
method and the ETFE on the first sub-record of the data in 
Figure 7 yields results as shown in Figure 8. Both methods 
are compared to the FRF obtained by applying the proposed 
method on the second sub-record, which is considered a 
validation dataset. It then shows that the ETFE is severely 
biased by the transient component T(Ωk), shown as magenta 
circles, while the proposed method is not. 

This illustrates that the proposed method is insensitive to 
the initial transient in the data set and estimates an FRF that 
is almost identical to the one obtained from the validation 
record. This potentially leads to significant savings in 
experimental time, since now data obtained under transient 
conditions can be used that would otherwise be discarded. 

Incorporating additional inputs
Incorporating additional input signals can potentially yield 
an improved FRF estimation by increasing the energy in the 
system. The results in Figure 9 illustrate effects of including 
the ambient temperature T∞ as an additional input. It shows 
that the low-frequency estimation is improved and a smaller 
variance is achieved, as indicated by the shaded area. 

Grey-box parameter estimation
The cumulative effort of the previous techniques yields an accurate FRF suitable for 
parameter calibration. The parameters of a multi-input multi-output (MIMO) 
lumped-capacity thermal model are calibrated by minimising the cost function J(ø) 
using a Nonlinear Least Squares optimisation procedure in MATLAB. In Figure 10 
the estimated non-parametric FRF and the calibrated parametric model are shown. 
Clearly, the estimated parametric model is within the 3σ uncertainty of the 
FRF estimation. 

Moreover, it shows that the transfer functions on the off-diagonal have a reduced 
gain level and an increased estimation uncertainty. This is the result of the slice 
of POM material glued in between the two aluminium parts of the beam, as shown 
in Figure 6. The POM material has a lower conductivity, therefore acting as a high 
thermal resistance between u1  T3 and u2  T1 making the identification of the 
related transfer functions increasingly difficult due to the reduced signal-to-noise 
ratio. The proposed calibration procedure yields a MIMO high-fidelity parametric 
model of the experimental system that is suitable for advanced control techniques 
and error compensation strategies that enable increased attenuation of thermal-
induced deformation errors.
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8

FRF estimation using the ETFE (blue dashed) and the proposed method 
(blue solid). It shows that the ETFE clearly estimates an erroneous FRF 
when compared to the validation data (red solid), while the proposed 
method does not. This is caused by the transient component T(Ωk ), 
indicated as magenta circles. 

9

FRF estimation of u1   T1 by (a) using only input u1 (red);  
and (b) incorporating additional inputs (blue), thereby reducing 
the impact of environmental disturbances on the FRF estimation. 
This results in an improved low-frequency FRF estimation, since 
these disturbances typically contain most of their energy in this region. 

Non-parametric FRF estimate (dotted) of the experimental set-up and the 3σ estimation 
uncertainty (red shaded). The FRF is used for a grey-box parameter estimation, yielding a high-
fidelity parametric model (black solid)
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THEME – THERMALLY INDUCED DEFORMATIONS IN ELECTRON MICROSCOPY

Summary
Drift caused by thermal expansion in an electron 
microscope is one of the leading sources of error in the final 
imaging performance. Moreover, due to the ever-increasing 
demands to enhance the throughput and positioning 
accuracy, the specifications for the drift requirements are 
increasingly stringent. This necessitates a thorough analysis 
of the thermal effects and an appropriate control approach 
using an accurate thermomechanical model. Accurate 
modelling of precise thermomechanical systems is complex, 
e.g., due to uncertain parameters and contact resistances. 

The identification framework presented in this article 
enables the fast and accurate identification of thermal 
dynamics in view of precision motion control. The 
proposed methodology has been applied to a multi-variable 
experimental set-up. It achieved a significant improvement 
in estimation accuracy and a reduced experimentation time 
by suppressing the transient and disturbance contributions. 
The presented methods facilitate the implementation 
of advanced control techniques and error compensation 
strategies, enabling increased accuracy and throughput 
in electron microscopy and other high-precision 
mechatronic systems.
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