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Quantum Key Recycling aims to re-use the keys employed in quantum encryption and

quantum authentication schemes. QKR protocols can achieve better round complexity
than Quantum Key Distribution. We consider a QKR protocol that works with qubits,

as opposed to high-dimensional qudits. A security proof was given by Fehr and Salvail

[1] in the case where there is practically no noise. A high-rate scheme for the noisy
case was proposed by Škorić and de Vries [2], based on eight-state encoding. However,

a security proof was not given. In this paper we introduce a protocol modification to

[2] and provide a security proof. The modified protocol has high rate not only for 8-
state encoding, but also 6-state and BB84 encoding. Our proof is based on a bound on

the trace distance between the real quantum state of the system and a state in which

the keys are completely secure. It turns out that the rate is higher than suggested by
previous results. Asymptotically the rate equals the rate of Quantum Key Distribution

with one-way postprocessing.
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1 Introduction

1.1 Quantum Key Recycling

Quantum cryptography uses the properties of quantum physics to achieve security feats that

are impossible with classical communication. Best known is Quantum Key Distribution

(QKD), first described in the famous BB84 paper [3]. QKD establishes a random secret

key known only to Alice and Bob, and exploits the no-cloning theorem for unknown quantum

states [4] to detect any manipulation of the quantum states. Already two years before the

invention of QKD, the possibility of Quantum Key Recycling (QKR) was considered [5]. Let

Alice and Bob encrypt classical data as quantum states, using a classical key to determine the

basis in which the data is encoded. If they do not detect any manipulation of the quantum

states, then Eve has learned almost nothing about the encryption key, and hence it is safe

for Alice and Bob to re-use the key. A QKR protocol can achieve better round complexity

than QKD, since communication about basis choices is avoided. After the discovery of QKD,

interest in QKR was practically nonexistent for a long time. QKR received some attention
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again in 2003 when Gottesman [6] proposed an Unclonable Encryption scheme with partially

re-usable keys. In 2005 Damg̊ard, Pedersen and Salvail introduced a scheme that allows for

complete key recycling, based on mutually unbiased bases in a high-dimensional Hilbert space

[7, 8]. Though elegant, their scheme unfortunately needs a quantum computer for encryption

and decryption. In 2017 Fehr and Salvail [1] introduced a qubit-based QKR scheme (similar

to [5]) that does not need a quantum computer, and they were able to prove its security in

the regime of extremely low noise. Škorić and de Vries [2] proposed a variant with 8-state

encoding, which drastically reduces the need for privacy amplification and tolerates higher

noise levels, but the security was not proven. Attacks on the qubit-based QKR schemes of

[1, 2] were studied in [9], but that did not yield a security proof.

1.2 Contributions and outline

We investigate qubit-based Quantum Key Recycling, taking an ‘engineering’ point of view:

we do not aim for complete key re-use, but rather for a high ratio of message length versus

expended key bits.

• We introduce a modification in the QKR protocol of Škorić and de Vries [2]. The basis

key now gets refreshed even in case of an Accept; the key update is done by hashing the

payload of the qubits into the old key, without using up existing key material. Furthermore,

we modify the privacy amplification: instead of deriving a classical one-time pad from

the qubits’ payload solely, we compress the payload and the old basis key together. For

simplicity we combine the privacy amplification and the key refreshment into a single

hashing operation.

• We provide a security proof. Our proof technique differs from [1]. We treat all keys on

the same footing and show that they remain close to uniform given Eve’s side information,

whereas in [1] some keys become non-uniform.

Our approach is as follows. We switch to an EPR formulation of our protocol. First we

consider attacks in which Eve collects quantum side information from one EPR pair at a

time; we apply symmetrisation of the noisy Alice-Bob system as introduced in [10, 11].

We upper bound the trace distance between the real state and an ideal state in which

all the keys are decoupled from the subsystem available to Eve. Finally we invoke the

post-selection method [12] in order to obtain security against general attacks.

For asymptotically large n (number of qubits) the steps in our derivation are very similar

to [13, 14]; we make use of smooth Rényi entropies, which asymptotically tend to the von

Neumann entropy. For finite n we present a separate result without smoothing, based on

straightforward diagonalisation.

• The QKR rate is defined as the message length minus the key expenditure, divided by n.

From our bound on the trace distance we obtain an expression for the QKR rate as a

function of n and the tolerated bit error rate (β). For n → ∞ the rate equals the rate

of QKD with one-way postprocessing (i.e. without two-way advantage distillation). This

means that whenever it is possible to do one-way-postprocessing-QKD, it is also possible to

do QKR at the same asymptotic rate and hence get the benefit of reduced communication

complexity.
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For finite n, our approach without smoothing yields a rate≈ 1−h(β)−2 log[
√

(1− 3
2γ)(1− γ)

+
√

3
2γ(1 + γ)], where h is the binary entropy function. Both these results are more

favourable than what one would expect based on the min-entropy analysis in [9] and

straightforward generalisations of [1] to the noisy case.

It is interesting to note that the asymptotic equivalence of the QKR and QKD rate holds

not only for 8-state encoding. For 6-state and 4-state (BB84) encoding there is a severe

leakage of the qubit payload if Eve intercepts the whole cipherstate. From [2] and [9] it

would seem that this leakage necessarily implies low QKR rate. However, in our protocol

the leak is masked by the secret key that is used for privacy amplification.

The outline of the paper is as follows. In the preliminaries section we introduce notation; we

briefly review smooth Rényi entropies, proof techniques and methods for embedding classical

bits in qubits, and we summarise known results regarding Eve’s optimal extraction of infor-

mation from a qubit into a four-dimensional ancilla state. In Section 3 we motivate why we

depart from the entanglement-monogamy based proof technique. In Section 4 we present the

modified QKR protocol. Section 5 states the main theorems and discusses rates and optimal

parameter choices. In Section 6 we compare to existing results, discuss erasures, and suggest

topics for future work.

2 Preliminaries

2.1 Notation and terminology

Classical Random Variables (RVs) are denoted with capital letters, and their realisations with

lowercase letters. The probability that a RV X takes value x is written as Pr[X = x]. The

expectation with respect to RV X is denoted as Exf(x) =
∑
x∈X Pr[X = x]f(x). Sets are

denoted in calligraphic font. We write [n] for the set {1, . . . , n}. For a string x and a set of

indices I the notation xI means the restriction of x to the indices in I. The notation ‘log’

stands for the logarithm with base 2. The notation h stands for the binary entropy function

h(p) = p log 1
p +(1−p) log 1

1−p . Sometimes we will write h({p1, . . . , pk}) meaning
∑
i pi log 1

pi
.

Bitwise XOR of binary strings is written as ‘⊕’. The Kronecker delta is denoted as δab. The

inverse of a bit b ∈ {0, 1} is written as b̄ = 1 − b. The Hamming weight of a binary string x

is written as |x|. We will speak about ‘the bit error rate γ of a quantum channel’. This is

defined as the probability that a classical bit g, sent by Alice embedded in a qubit, arrives at

Bob’s side as ḡ.

For quantum states we use Dirac notation, with the standard qubit basis states |0〉 and

|1〉 represented as
(

1
0

)
and

(
0
1

)
respectively. The Pauli matrices are denoted as σx, σy, σz. The

standard basis is the eigenbasis of σz, with |0〉 in the positive z-direction. We write 1 for the

identity matrix. The notation ‘tr’ stands for trace. The Hermitian conjugate of an operator A

is written as A†. The complex conjugate of z is denoted as z∗. Let A have eigenvalues λi. The

1-norm of A is written as ‖A‖1 = tr
√
A†A =

∑
i |λi|. The trace distance between matrices ρ

and σ is denoted as δ(ρ;σ) = 1
2 ||ρ− σ||1. It is a generalisation of the statistical distance and

represents the maximum possible advantage one can have in distinguishing ρ from σ.

Consider uniform classical variables X,Y and a quantum system labeled ‘E’ (under Eve’s

control) that depends on X and Y . The combined classical-quantum state is ρXYE =
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Exy|xy〉〈xy| ⊗ ρE
xy. The state of a sub-system is obtained by tracing out a subspace, e.g.

ρYE = trXρ
XYE = Ey|y〉〈y| ⊗ ρEy , with ρEy = ExρExy. The fully mixed state of subsystem X is

denoted as µX . The security of the variable X, given that Eve holds the ‘E’ subsystem, can

be expressed in terms of a trace distance as follows [13],

d(X|E)
def
= δ

(
ρXE ; µX ⊗ ρE

)
(1)

i.e. the distance between the true classical-quantum state and a state in which X is completely

unknown to Eve. X is said to be ε-secure with respect to ρ if d(X|E) ≤ ε. When this is the

case, it can be considered that X is ‘ideal’ except with probability ε.

A family of hash functions H = {h : X → T } is called pairwise independent (a.k.a. 2–

independent or strongly universal) [15] if for all distinct pairs x, x′ ∈ X and all pairs y, y′ ∈ T it

holds that Prh∈H [h(x) = y∧h(x′) = y′] = |T |−2. Here the probability is over random h ∈ H.

Pairwise independence can be achieved with a hash family of size |H| = |X |.

2.2 Smooth Rényi entropies

Let ρ be a mixed state. The von Neumann entropy of ρ is S(ρ) = −tr ρ log ρ. The ε-smooth

Rényi entropy of order α is defined as [13]

For α ∈ (0, 1) ∪ (1,∞) : Sεα(ρ)
def
=

1

1− α log min
ρ̄: ‖ρ̄−ρ‖1≤ε

tr ρ̄α, (2)

where the density operator ρ̄ may be sub-normalised. Furthermore Sε0(ρ) = limα→0 S
ε
α(ρ) and

Sε∞(ρ) = limα→∞ Sεα(ρ) It has been shown that the smooth Rényi entropy of factor states

ρ⊗n asymptotically approaches the von Neumann entropy.

Lemma 1 Let ρ be a density matrix.

Sε2(ρ⊗n) ≥ nS(ρ)− (2 log rank(ρ) + 3)
√
n log 2

ε . (3)

Sε0(ρ⊗n) ≤ nS(ρ) +O(
√
n log 1

ε ). (4)

This lemma follows from [10] (Corollary 3.3.7 and the comment above Theorem 3.3.6), com-

bined with Sε2 ≥ Sε∞.

2.3 QKR security definition and proof structure

The aim of QKR is to send private authenticated messages, with a better round complexity

than QKD. The protocol (see Section 4) has three basic steps. (i) Alice sends quantum states

and classical data to Bob. (ii) Bob responds with a decision bit c ∈ {Accept, Reject}. (iii) In

case of Accept, most of the key material K is re-used; in case of Reject, the key material is

refreshed from K to K ′.
In order to be considered secure, a QKR protocol must satisfy two properties: (1) even if

Eve intercepts everything that Alice sends, she must learn only negligible information about

the message; (2) if Eve knows the plaintext and Bob Accepts, Eve’s knowledge about the keys

used in the next round should be negligible.

For the security of the keys under known-plaintext we will use a recursive proof structure

as in [1]. The starting situation is an ‘ideal’ state ρ(0) = ρK ⊗ ρE, in which the key material

K is decoupled from Eve’s state. After one round of QKR the state has evolved to ρ
(1)
c ;
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this includes actions by Eve as well as key updates by Alice and Bob. Accept happens with

probability Pacc and leads to a state ρ
(1)
acc = Ek|k〉〈k|⊗ ρ̃E

k in which Eve has potentially gained

knowledge about K; Reject happens with probability Prej and yields a state ρ
(1)
rej = ρ̃K ⊗ ρ̃E

which has factorised form due to the key refreshment.

The notion of secure key re-use is expressed as follows. Under known-plaintext conditions,

a bound is derived on the distance between ρ
(1)
c and the ideal state ρ(0), given that Eve

observes the decision bit: Pacc‖ρ(1)
acc − ρ(0)‖1 + Prej‖ρ(1)

rej − ρ(0)‖1 ≤ ε, which is equivalent to

Pacc‖ρ(1)
acc − ρ(0)‖1 ≤ ε.

By induction Ec1···cN ‖ρ(N)
c1···cN − ρ(0)‖1 ≤ Nε, where ρ(N) is the state after N rounds. This

can be seen as follows. After two rounds the state is ρ
(2)
c1c2 , and the security quantity of interest

is Ec1c2‖ρ(2)
c1c2−ρ(0)‖1 = P 2

acc‖ρ(2)
acc,acc−ρ(0)‖1 +PrejPacc‖ρ(2)

rej,acc−ρ(0)‖1 = P 2
acc‖ρ(2)

acc,acc−ρ(0)‖1
+PrejPacc‖ρ(1)

acc− ρ(0)‖1 ≤ P 2
acc‖ρ(2)

acc,acc− ρ(0)‖1 +Prejε. Using the triangle inequality the first

term is upperbounded as P 2
acc‖ρ(2)

acc,acc − ρ(0)‖1 ≤ P 2
acc‖ρ(2)

acc,acc − ρ(1)
acc‖1 +P 2

acc‖ρ(1)
acc − ρ(0)‖1

≤ P 2
acc‖ρ(2)

acc,acc − ρ(1)
acc‖1 +Paccε. Finally it is used that the mapping from ρ(i) to ρ(i+1) is a

CPTP map, which cannot increase distance. Hence ‖ρ(2)
acc,acc − ρ(1)

acc‖1 ≤ ‖ρ(1)
acc − ρ(0)‖1. It

follows that Ec1c2‖ρ(2)
c1c2 − ρ(0)‖1 ≤ 2ε.

2.4 Post-selection

In a collective attack Eve acts on individual qudits. This is not the most general attack.

For protocols that are invariant under permutation of the qubits, a post-selection argument

[12] can be used to show that ε-security against collective attacks implies ε′-security against

general attacks, with ε′ = ε(n + 1)d
4−1, where d is the dimension (d = 2 for qubits). Hence,

by paying a modest price in terms of privacy amplification, e.g. changing the usual privacy

amplification term 2 log 1
ε to 2 log 1

ε + 2(d4 − 1) log(n + 1), one can ‘buy’ security against

general attacks.

2.5 Encoding a classical bit in a qubit

We briefly review methods for embedding a classical bit g ∈ {0, 1} into a qubit state. The

standard basis is |0〉, |1〉 with |0〉 the positive z-direction on the Bloch sphere. The set of

bases used is denoted as B, and a basis choice as b ∈ B. The encoding of bit value g in basis

b is written as |ψbg〉. In BB84 encoding we write B = {0, 1}, with |ψ00〉 = |0〉, |ψ01〉 = |1〉,
|ψ10〉 = |0〉+|1〉√

2
, |ψ11〉 = |0〉−|1〉√

2
. In six-state encoding [16] the vectors are ±x, ±y, ±z on the

Bloch sphere. For 8-state encoding [2] we have B = {0, 1, 2, 3} and the eight states are the

corner points of a cube on the Bloch sphere. We write b = 2u + w, with u,w ∈ {0, 1}. The

states are

|ψuwg〉 = (−1)gu
[
(−
√
i)g cos α2 |g ⊕ w〉+ (−1)u(

√
i)1−g sin α

2 |g ⊕ w〉
]
. (5)

The angle α is defined as cosα = 1/
√

3. For given g, the four states |ψuwg〉 are the Quantum

One-Time Pad (QOTP) encryptions [17, 18, 19] of |ψ00g〉. The ‘plaintext’ states |ψ000〉, |ψ001〉
correspond to the vectors ±(1, 1, 1)/

√
3 on the Bloch sphere.

2.6 Eve’s ancilla state

Attacks on QKR were studied in some detail in [9]. They formulated an EPR version of

qubit-based QKR protocol. Instead of creating |ψbixi〉 and sending it to Bob, Alice performs
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a measurement on one half an EPR singlet state (using basis bi) while the other half goes to

Bob. Eve may manipulate the EPR state; this turns the pure EPR state into a mixed state.

The noise symmetrisation technique of [11] was applied to simplify the state. If Eve’s actions

induce bit error probability γ (defined as a bit mismatch in xi between Alice and Bob), then

this corresponds to a state of the AB subsystem of the form ρ̃AB = (1 − 3
2γ)|Ψ−〉〈Ψ−| +

γ
2

(
|Φ−〉〈Φ−|+ |Ψ+〉〈Ψ+|+ |Φ+〉〈Φ+|

)
, where |Ψ±〉 = |01〉±|10〉√

2
and |Φ±〉 = |00〉±|11〉√

2
de-

note the Bell basis states.a Eve’s state is obtained by purifying ρ̃AB. The pure state is

|ΨABE〉 =
√

1− 3
2γ|Ψ−〉 ⊗ |m0〉+

√
γ
2

(
−|Φ−〉 ⊗ |m1〉+ i|Ψ+〉 ⊗ |m2〉+ |Φ+〉 ⊗ |m3〉

)
, where

|mi〉 is an orthonormal basis in Eve’s four-dimensional ancilla space. Let v = (v1, v2, v3) be

a 3-component vector on the Bloch sphere describing the ‘0’ bit value in a certain basis. Let

|v ·m〉 be shorthand notation for v1|m1〉 + v2|m2〉 + v3|m3〉. Let x be the bit value that

Alice measures, and y Bob’s bit value. (In the noiseless case we have y = x̄ because of the

anti-correlation in the singlet state.) One of the results of [9] is an expression for Eve’s mixed

ancilla state when v, x, y are fixed,

σv
xy

def
= |Ev

xy〉〈Ev
xy|, (6)

|Ev
01〉 =

1√
1− γ

[√
1− 3

2γ|m0〉+
√

γ
2 |v ·m〉

]
|Ev

10〉 =
1√

1− γ

[√
1− 3

2γ|m0〉 −
√

γ
2 |v ·m〉

]
(7)

|Ev
00〉 =

1√
2(1− v2

3)

[
(−v1v3 − iv2)|m1〉+ (−v2v3 + iv1)|m2〉+ (1− v2

3)|m3〉
]

|Ev
11〉 =

1√
2(1− v2

3)

[
(−v1v3 + iv2)|m1〉+ (−v2v3 − iv1)|m2〉+ (1− v2

3)|m3〉
]
.

The E-vectors are not all orthogonal. We have 〈Ev
01|Ev

10〉 = 1−2γ
1−γ . (The rest of the inner

products are zero.) It holds that |−v1v3−iv2√
1−v23

|2 = 1 − v2
1 and |−v2v3+iv1√

1−v23
|2 = 1 − v2

2 . We have

|Ev
10〉 = |E−v01 〉 and |Ev

11〉 = |E−v00 〉. The state |Ev
00〉 looks complicated, but the projector

is given by the more simple expression |Ev
00〉〈Ev

00| = 1
2

∑3
j=1 |mj〉〈mj | − 1

2 |v ·m〉〈v ·m| +
i
∑3
jkp=1 εjkpvj |mk〉〈mp|, where εjkp stands for the antisymmetric Levi-Civita symbol. For

a given basis set B and b ∈ B we will write σbxy instead of σv
xy, as the vector v is implicitly

defined by the pair (B, b). The following useful identity holds,

Exyσ
b
xy = (1− 3

2γ)|m0〉〈m0|+ γ
2

3∑
j=1

|mj〉〈mj |. (8)

3 Motivation

It is possible to add noise tolerance to the construction of Fehr and Salvail [1], but this leads

to a result that is unsatisfactory in two respects. (i) For 4-state and 6-state encoding the

scheme has a low rate. Even at zero noise the rate is below 1. (ii) For 8-state encoding it is

aFor 4-state QKR an extra ingredient is needed to arrive at this expression: the use of test states so as to
probe more than a circle on the Bloch sphere.
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known [9] that the zero-noise rate should be 1, but the proof technique of [1] does not show

it. We explain this below.

A straightforward way of adding more noise tolerance to the construction of Fehr and Sal-

vail [1] is as follows. Alice sends to Bob an encrypted syndrome. The encryption is done with a

one-time pad, i.e. a certain amount of existing key material has to be spent. Let the number of

qubits be n; the length of the secret after privacy amplification is `; the tolerated bit error rate

is β. The proof technique in [1] is based on an entanglement monogamy game [20]. It yields

a trace distance
√

2`pwin between ideality and reality, where pwin is the winning probability,

pwin ≤ µn2nh(β) (asymptotically), where µ = 1
|B| + |B|−1

|B|

√
maxbb′∈B:b′ 6=b maxxx′ ‖F bxF b

′
x′‖∞.

Here F bx is the projection operator that corresponds to data bit x ∈ {0, 1} in the basis b. The

value of µ is given by µ4 = 1
2 + 1

2

√
1
2 ≈ 0.85, µ6 = 1

3 + 2
3

√
1
2 ≈ 0.80, µ8 = 1

4 + 3
4

√
2
3 ≈ 0.86 for

4-state, 6-state and 8-state encoding respectively.bGiven that an amount nh(β) of key material

has to be spent, the asymptotic QKR rate `−expenditure
n is upper bounded by 1−log(2µ)−2h(β).

This bound on the rate is unfavourable for the 8-state case, even though it is known that QKR

with 8-state encoding has good properties [9], e.g. no leakage of the qubit payload at zero noise.

Our aim is to obtain a tighter bound on the rate, for all encoding schemes.

4 Our adapted QKR protocol

In this paper we consider the QKR scheme #2 proposed in [2], which is a slightly modified

version of the QEMC∗ scheme of Fehr and Salvail [1]. We introduce a small change in the

protocol:

• Some key refreshment of the basis key occurs even in case of an Accept.

• The one time pad is derived not only from the qubits’ payload but also from the basis key.

The key material shared between Alice and Bob consists of four parts: a basis sequence b ∈ Bn,

a MAC key kMAC ∈ {0, 1}λ, an extractor keycu ∈ U , and a classical OTP ksyn ∈ {0, 1}a for

protecting the syndrome. The plaintext is m ∈ {0, 1}`.
Alice and Bob have agreed on a pairwise independent hash function Ext : U × {0, 1}n ×

Bn → {0, 1}` × Bn, a MAC function Γ : {0, 1}λ × {0, 1}n+`+a → {0, 1}λ, and a linear

error-correcting code with syndrome function Syn : {0, 1}n → {0, 1}a and decoder SynDec:

{0, 1}a → {0, 1}n. For efficiency reasons we take a one-time MAC function whose key size

does not exceed the tag size.d

The basis set B and the functions Ext,Γ, Syn, SynDec are publicly known.

Encryption

Alice performs the following steps. Generate random x ∈ {0, 1}n. Compute s = ksyn⊕Syn(x)

and z||b′ = Ext(u, x||b). Compute the ciphertext c = m ⊕ z and authentication tag τ =

Γ(kMAC, x||c||s). Prepare the quantum state |Ψ〉 =
⊗n

i=1 |ψbixi〉 according to Section 2.5.

Send |Ψ〉, s, c, τ to Bob.

bWe note that the pwin obtained numerically with Semidefinite Programming is the same for 6-state and
8-state.
cThe extractor key was not mentioned explicitly in [2].
dAlternatively, it is an arbitrary information-theoretically secure MAC and the MAC key is re-used indefinitely;
but then the tag has to be one-time padded and the pad has to be refreshed in every round. This construction
leads to the same amount of key expenditure and involves a few more operations.
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Decryption

Bob receives |Ψ′〉, s′, c′, τ ′. He performs the following steps. Measure |Ψ′〉 in the b-basis. This

yields x′ ∈ {0, 1}n. Recover x̂ = x′⊕SynDec(ksyn⊕s′⊕Synx′). Compute ẑ||b′′ = Ext(u, x̂||b)
and m̂ = c′ ⊕ ẑ. Accept only if τ ′ = Γ(kMAC, x̂||c′||s′) holds and the syndrome decoding was

successful. Communicate Accept/Reject to Alice (publicly but with authentication).

Key update

Alice and Bob perform the following actions.

• In case of Reject: Take new keys ksyn, kMAC, b, u.

• In case of Accept: Take new keys ksyn and kMAC. The key u is re-used. Alice replaces b

by b′. Bob replaces b by b′′.

The replacement of kMAC consumes a small constant amount of existing secret key material

shared between Alice and Bob. The replacement of ksyn on the other hand consumes a noise-

dependent amount of key material proportional to n. See Section 5.6 for a discussion of the

balance between message length and key expenditure.

8 Security proof for quantum key recycling with noise

Alice	 Bob	
EPR	

Measure in basis b 2 Bn.
Result x 2 {0, 1}n.
s = ksyn � Syn(x).
z||b0 = Ext(u, x||b).
c = m � z.
⌧ = �(kMAC, x||c||s). s, c, ⌧

Measure in basis b 2 Bn.
Result y 2 {0, 1}n.

Receive as s0, c0, ⌧ 0.
x̂ = ȳ � SynDec(ksyn � s0 � Syn ȳ).

ẑ||b00 = Ext(u, x̂||b).
m̂ = c0 � ẑ.
Accept if SynDec worked

and �(kMAC, x̂||c0||s0) = ⌧ 0.
Accept / Reject

New ksyn and kMAC.
If Accept: b̃ = b00, ũ = u.
If Reject: new b̃, ũ.

New ksyn and kMAC.
If Accept: b̃ = b0, ũ = u.
If Reject: new b̃, ũ.

Fig. 1. @@

yields x0 2 {0, 1}n. Recover x̂ = x0�SynDec(ksyn�s0�Synx0). Compute ẑ||b00 = Ext(u, x̂||b)
and m̂ = c0 � ẑ. Accept only if ⌧ 0 = �(kMAC, x̂||c0||s0) holds and the syndrome decoding was

successful. Communicate Accept/Reject to Alice (publicly but with authentication).

Key update

Alice and Bob perform the following actions.

• In case of Reject: Take new keys ksyn, kMAC, b, u.

• In case of Accept: Take new keys ksyn and kMAC. The key u is re-used. Alice replaces b

by b0. Bob replaces b by b00.

The replacement of kMAC consumes a small constant amount of existing secret key material

shared between Alice and Bob. The replacement of ksyn on the other hand consumes a noise-

dependent amount of key material proportional to n. See Section 5.5 for a discussion of the

balance between message length and key expenditure.

@@ protocol-plaatje?? @@

Fig. 1. EPR version of the QKR protocol. The EPR pairs are in the singlet state.

5 Main result

5.1 Attacker model and proof method

The attacker model is the one used in most works on QKD. Eve is able to manipulate the

classical channel and the quantum channel between Alice and Bob in any way. Eve has

no access to the private computations taking place in Alice and Bob’s devices. Eve has

unbounded (quantum) computation power and unbounded quantum memory.

We work with the EPR version of the protocol (Fig. 1). The protocol steps are practically

the same as in Section 4. The only difference is that Alice does not prepare the state |Ψ〉;
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instead Eve hands the parts of a noisy EPR pair to Alice and Bob whereupon Alice performs

a measurement in the b-basis, resulting in a state |Ψ〉 with random payload x.

First we consider attacks where Eve entangles her quantum system with individual EPR

pairs. Eve is allowed to postpone measurements. For this limited class of attacks we derive

a bound (Theorems 1 and 2) on the trace distance between the real state and an ideal state,

as explained in Section 2.3. Finally we invoke post-selection to extend the validity of the

security proof to general attacks.

In Section 5.4 we present an asymptotic result for n → ∞. We follow proof steps as in

[13, 14]. Smoothing is introduced, after which the trace distance is upperbounded in a number

of steps. First the trace operation and the average over the hashing key u are pulled into the

square root using Jensen’s inequality; then the properties of pairwise independent hashes are

used to evaluate the average over u; this results in an expression that can be written in terms

of smooth Rényi entropies Sε0 and Sε2 . Finally Lemma 1 is invoked to make the transition

from smooth Rényi entropies to non-smooth von Neumann entropies, which are then easily

evaluated.

In Section 5.5 we present a non-asymptotic result without smoothing. The proof follows

similar steps up to and including the average over u, except that the trace operation is kept

outside the square root. The operator square root is evaluated explicitly, which is feasible

because of the diagonal form of the operator. No use is made of entropies.

5.2 What to prove

Alice and Bob’s shared key material consists of ksyn, kMAC, b, u. The only keys open to

attack are b and u, since ksyn and kMAC get discarded after each round. Eve’s classical side

information consists of s (OTP’ed syndrome), τ (authentication tag), the ciphertext c = z⊕m,

and the Accept/Reject bit. The s and τ carry no information about b, u, x. Hence we will

need to prove (i) that µ, b, u are safe given c, the Accept/Reject bit and Eve’s quantum side

information; (ii) that b, u are safe given c, known plaintext m, the Accept/Reject bit and

Eve’s quantum side information.

Eve’s quantum side information consists of her ancilla particles which have interacted

with the EPR pairs. The state of the i’th ancilla depends on xi, yi, bi and is given by the

4-dimensional matrix σbixiyi as specified in (6). We introduce the binary variable Ω, with

Ω = 1 indicating that Alice receives a properly authenticated Accept message from Bob. The

keys after execution of one QKR round are denoted with a tilde, i.e. ũ, b̃. We work with

quantum-classical states; each classical variable is assigned a quantum register, indicated as

a capital-letter superscript on the state ρ. Eve’s ancillas are denoted as the subsystem “E”.

The two quantities of interest are the trace distances ‖ρB̃ŨMCΩE − µB̃ŨM ⊗ ρCΩE‖1 and

‖ρB̃ŨMCΩE − µB̃Ũ ⊗ ρMCΩE‖1. Below we will see that they reduce to the same expression.

We introduce a binary variable θxy which indicates whether the error correction succeeds.

θxy
def
=

{
1 if Hamm(x⊕ ȳ) ≤ t
0 otherwise

. (9)

(Note that ȳ appears instead of y, because of the anti-correlation in the singlet state.) We

write pxy = pxpy|x with px = 2−n and py|x = γ|x⊕ȳ|(1− γ)n−|x⊕ȳ|. The probability that the
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error correction succeeds is given by

Pcorr(t, γ) =
∑
xy

pxyθxy =

t∑
c=0

(
n

c

)
γc(1− γ)n−c. (10)

Alice will re-use keys (Ω = 1) if she receives an authenticated Accept bit from Bob. The

probability of this event can be bounded as Pacc(t, γ) ≤ Pcorr(t, γ) + 2 · 2−λ. Here λ is the

size of the authentication tag. One term 2−λ comes from the possibility that Eve forges

Alice’s MAC. Another term 2−λ comes from the possibility that Eve forges Bob’s MAC on a

Reject message and turns it into an Accept message. In the rest of the paper we will ignore

these MAC forgery complications when writing down states, but it is understood that we will

always have to add a term 2 · 2−λ to the trace distance.

5.3 Description of the state

We introduce notation Eb
def
=
∑
b∈Bn |B|−n, Eu

def
=
∑
u∈U

1
|U| , and in slight abuse of notation

we define Eb̃,Eũ in the same way. Furthermore we introduce Exy
def
=
∑
x,y∈{0,1}n pxy. The full

quantum-classical state of all the relevant classical variables and Eve’s system together is

ρBB
′B̃UŨMXY ZCΩE = Ebumxy

∑
b′b̃ũczω

δz||b′,Ext(u,x||b)δc,m⊕z[δω1θxyδb̃b′δũu +
δω0θxy
|Bn × U| ]

|bb′b̃uũmxyzcω〉〈bb′b̃uũmxyzcω| ⊗ ρEbxy. (11)

Here the case of successful error correction (θxy = 1) leads to Accept (ω = 1), key re-use

ũ = u and refresh b 7→ b̃ = b′. Failure of the error correction yields a Reject and completely

random keys b̃, ũ (the factor 1/|Bn × U|).
Note that in (11) we have written ρEbxy without dependence on the classical variable c,

which is in principle available to Eve at the moment when she creates the “E” subsystem.

(And m, z in case of known plaintext). We are allowed to do this because the pairwise

independent hash function Ext completely decouples x from z. It holds that PrU [Z = z|X =

x,B = b] = 2−`, where U is the random variable. This implies that X given Z is also

uniform. When Eve acts on the individual EPR pairs, she has no information that could

lead her to treat any position i ∈ [n] differently from the other positions. Thus we have

ρEbxy =
⊗n

i=1 σ
bi
xiyi , with σbxy as defined in (6).e

By applying the appropriate partial traces to (11) we get

ρB̃ŨMCΩE = Eb̃ũm
∑
cω

2−`|b̃ũmcω〉〈b̃ũmcω| ⊗ [δω1ρ
E
b̃ũmc,ω=1

+ δω0ρ
E
b̃ũmc,ω=0

] (12)

ρE
b̃ũmc,ω=1

= Exyθxy2`
∑
b

δm⊕c||b̃,Ext(ũ,x||b)ρ
E
bxy (13)

ρE
b̃ũmc,ω=0

= ExyθxyEbρ
E
bxy (14)

eOne may want to formally write ρEbxycm instead of ρEbxy . Then this notation can be kept in the derivation

below up to (27), where it becomes necessary to use the fact that the ancilla states do not actually depend
on c and m.
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and further tracing yields

ρMCΩE = µMC ⊗
∑
ω

|ω〉〈ω| ⊗ [δω1ρ
E
ω=1 + δω0ρ

E
ω=0], (15)

ρEω=1 = ExyθxyEbρ
E
bxy (16)

ρEω=0 = ExyθxyEbρ
E
bxy. (17)

Here we have used the property Euδz||b′,Ext(u,x||b) = 2−`|B|−n of the pairwise independent

hash function. Note that µB̃ŨM ⊗ ρCΩE = µB̃Ũ ⊗ ρMCΩE , which means that the security of

B̃ŨM given CΩE is the same as the security of B̃Ũ given MCΩE.

5.4 Asymptotic result

Theorem 1 Consider one round of the QKR protocol (Section 4) with 6-state or 8-state

encoding. Let Eve cause noise described by parameter γ as discussed in Section 2.6. Let t be

the number of errors that can be corrected by the error-correcting code. In the limit n → ∞
it holds that

d(B̃Ũ |MCΩE) ≤ 21−λ + min
(
Pcorr(t, γ),

√
2`−1−n+nh({1− 3

2γ,
γ
2 ,
γ
2 ,
γ
2 })−nh(γ)

)
(18)

with Pcorr as defined in (10).

Let β
def
= t/n. For γ > β the probability Pcorr is exponentially small. For γ ≤ β, the second

expression can be made exponentially small for ` < n+ nh(γ)− nh({1− 3
2γ,

γ
2 ,

γ
2 ,

γ
2 }).

Asymptotically the length of the syndrome is a = nh(β), and the O(log n) contribu-

tion from post-selection (Section 2.4) becomes negligible compared to n. The QKR rate
`−a−O(logn)

n goes to

asymptotic rate = 1− h({1− 3
2β,

β
2 ,

β
2 ,

β
2 }), (19)

which is exactly the asymptotic rate of 6-state QKD.

Proof of Theorem 1: First of all there is the contribution 21−λ from the possibility of forging

the MACs, as explained in Section 5.2. Next we write D
def
= ‖ρB̃ŨMCΩE − µB̃Ũ ⊗ ρMCΩE‖1.

We introduce smoothing as in [13, 10, 14] by allowing states ρ̄ that are ε-close to ρ in terms of

trace distance. This yields D ≤ 2ε+D̄, with D̄
def
= ‖ρ̄B̃ŨMCΩE−µB̃Ũ⊗ρ̄MCΩE‖1. Substituting

(12,15) into this expression givesf

D̄ = Eb̃ũmc‖ρ̄Eb̃ũmc,ω=1
− ρ̄Eω=1‖1. (20)

In slight abuse of notation we have written Ec(· · · ) def
=
∑
c 2−`(· · · ). The ρ̄E

b̃ũmc,ω=1
and

ρ̄Eω=1 are both sub-normalised states; their trace equals Pcorr(t, γ). Hence it holds that D̄ ≤
2Pcorr(t, γ). This corresponds to the first expression in the ‘min’ in (18). For γ ≤ t/n we

fThe ω = 0 part disappears, since the Reject event of the real protocol is identical to the Reject in the ‘ideal’
case. Even in case of a Reject the plaintext M is secure; no matter how much leaks about X, the X is masked
by U , which is then discarded.
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derive a bound as follows.

D̄ ≤ Eb̃ũmc‖ρ̄Eb̃ũmc − ρ̄
E‖1 = Eb̃ũmctr

√
(ρ̄E
b̃ũmc

− ρ̄E)2 (21)

Jensen
≤ Eb̃ũmc

√
rank([ρ̄E

b̃ũmc
− ρ̄E ]2)

√
tr (ρ̄E

b̃ũmc
− ρ̄E)2 (22)

≤
√

2rank(ρ̄E)Eb̃ũmc

√
tr (ρ̄E

b̃ũmc
− ρ̄E)2 (23)

Jensen
≤

√
2rank(ρ̄E)

√
tr Eb̃ũmc(ρ̄

E
b̃ũmc

− ρ̄E)2 (24)

=
√

2rank(ρ̄E)
√

tr Eb̃ũmc(ρ̄
E
b̃ũmc

)2 − tr (ρ̄E)2. (25)

In (23) we used that rank(ρ̄E
b̃ũmc

−ρ̄E) ≤ rank(ρ̄E
b̃ũmc

)+rank(ρ̄E) andgrank(ρ̄E
b̃ũmc

) ≤ rank(ρ̄E).

From the properties of two-universal hash functions we get

tr Eũ(ρ̄E
b̃ũmc

)2 = tr Exx′
∑
bb′

[22`Eũδm⊕c||b̃,Ext(ũ,x||b)δm⊕c||b̃,Ext(ũ,x′||b′)]ρ̄
E
bxρ̄

E
b′x′ (26)

= tr Exx′
∑
bb′

[|B|−2n + δbb′δxx′(2
`|B|−n − |B|−2n)]ρ̄Ebxρ̄

E
b′x′ (27)

= tr (ρ̄E)2 + (2`|B|n − 1)tr EbxEb′x′ |bx〉〈bx||b′x′〉〈b′x′| ⊗ ρ̄Ebxρ̄Eb′x′ (28)

= tr (ρ̄E)2 + (2`|B|n − 1)tr (ρ̄BXE)2. (29)

Substitution into (25) gives

D̄ <
√

2`+1|B|nrank(ρ̄E)tr (ρ̄BXE)2 (30)

=
√

2`+1|B|n2S0(ρ̄E)−S2(ρ̄BXE) =

√
2`+1|B|n2S

ε
0(ρE)−Sε2(ρBXE) (31)

=

√
2`+1|B|n2S

ε
0([Ebxyσbxy ]⊗n)−Sε2([Ebxy|bx〉〈bx|⊗σbxy ]⊗n) (32)

Lemma 1→
√

2`+1|B|n2nS(Ebxyσbxy)−nS(Ebxy|bx〉〈bx|⊗σbxy). (33)

(In the last two lines we have x, y ∈ {0, 1} and b ∈ B in contrast to the previous lines.) From

(8) we have S(Ebxyσbxy) = h({1− 3
2γ,

γ
2 ,

γ
2 ,

γ
2 }) = −(1− 3

2γ) log(1− 3
2γ)− 3γ2 log γ

2 and

S(Ebxy|bx〉〈bx| ⊗ σbxy) = S(BX) + EbxS(Eyσ
b
xy) (34)

= log |B|+ 1 + EbxS([1− γ]σbxx̄ + γσbxx) (35)

= log |B|+ 1 + h(γ). (36)

In the last line we used that the projectors σbxx̄ and σbxx are orthogonal to each other.

Note that the description of Eve’s ancilla state in Section 2.6 is valid for 4-state (BB84)

encoding under the condition that test states are used which probe the whole Bloch sphere;

then the QKR rate is given by (19). If only the xz-plane of the Bloch sphere is involved in

the protocol, then (33) still holds, but with different σbxy matrices, yielding a QKR rate equal

to the BB84 QKD rate.

gThis holds because ρ̄E is a sum of many terms ρ̄E
b̃ũmc

.



D. Leermakers and B. Škorić 13

5.5 Non-asymptotic result without smoothing

We want to have a bound on d(B̃Ũ |MCΩE) also for finite n. One approach would be to

start from (32) and analyse the smooth entropies Sε0 and Sε2 for finite n and ε, and minimise

over ε. However, that is a cumbersome procedure. Below we present a less tight but easier

to derive bound, obtained by setting ε to zero.

Theorem 2 Consider one round of the QKR protocol (Section 4). Let Eve cause noise

described by parameter γ as discussed in Section 2.6. Let t be the number of errors that can

be corrected by the error-correcting code. Let the function f be defined as

f(γ)
def
=
√

(1− 3
2γ)(1− γ) +

√
3
2γ(1 + γ). (37)

The trace distance between the real state and the ideal state can be bounded as

d(B̃Ũ |MCΩE) ≤ 21−λ + min
{
Pcorr(t, γ), 1

2

√
2`−n+2n log f(γ)

}
. (38)

For large γ the probability Pcorr(t, γ) is exponentially small in n. Note that 2 log f(γ) ∈ [0, 1)

for γ ∈ [0, 1
2 ). For any γ < 1

2 it is possible to choose ` such that the
√· · · in (38) becomes

exponentially small in n. However, this is only half of the story, because the QKR rate is

obtained by subtracting the key expenditure from `.

Proof of Theorem 2: We follow the proof of Theorem 1 up to (21) but without smoothing

(ε = 0). Using Jensen’s inequality for concave operators we write

Eũ
√

(ρE
b̃ũmc

− ρE)2 ≤
√

Eũ(ρE
b̃ũmc

− ρE)2 =
√

Eũ(ρE
b̃ũmc

)2 − (ρE)2. (39)

The last equality holds because EũρEb̃ũmc = ρE . Next we use (27), but without the trace. This

gives

D ≤
√

2`−ntr
√

Ebx(ρEbx)2. (40)

Next we show that the expression under the square root is diagonal. Using ρEbx =
⊗

i{(1 −
γ)σbixixi + γσbixixi} and the orthogonality σbxx̄σ

b
xx = 0 we get

Ebx(ρEbx)2 =

n⊗
i=1

{
(1− γ)2Ebi

σbi01 + σbi10

2
+ γ2Ebi

σbi00 + σbi11

2

}
(41)

=
{

(1− γ)
[
(1− 3

2γ)|m0〉〈m0|+ γ
6

3∑
j=1

|mj〉〈mj |
]

+ γ2

3

3∑
j=1

|mj〉〈mj |
}⊗n

(42)

=
{

(1− γ)(1− 3
2γ)|m0〉〈m0|+ γ(1+γ)

6

3∑
j=1

|mj〉〈mj |
}⊗n

(43)

from which it follows that

tr
√

Ebx(ρEbx)2 =

{√
(1− γ)(1− 3

2γ) +
√

3
2γ(1 + γ)

}n
. (44)
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Theorem 3 Consider the context of Theorem 2. Let β = t/n. Let σ be a security

parameter. Let ` be chosen as

` ≤ n− 2n log f(β)− 2ξ
√
σn− 2σ − 1 (45)

ξ
def
= min

{
f ′(β)

f(β)

[√
2β

ln 2
+
σ

n
+

√
σ

n

]
,

√
3

ln 2

}
. (46)

Then

d(B̃Ũ |MCΩE) ≤ 2 · 2−λ + 2−σ. (47)

Proof: See Appendix 1.

If according to (45) the length ` becomes negative then this means that the desired security

level σ cannot be achieved.

A typical choice for the tag length would be λ = σ + 1, yielding 2/2σ in the right hand

side of (47). Several things are worth noting.

• The ξ is of order 1. Hence the term ξ
√
σn scales as

√
n.

• The function f is concave. There is no advantage for Eve in choosing a position-dependent

noise level γi instead of the same noise level γ for all i ∈ [n].

• Analysis of QKD instead of QKR using the same technique yields a result similar to Theo-

rem 2, but with a slightly more favourable function instead of f(γ), namely
√

(1− γ)(1− 3
2γ)+√

1
2γ(1− γ)+γ

√
2. (We mention this without showing the proof.) Nevertheless, the asymp-

totics of QKD and QKR are the same.

As explained in Section 2.4, by invoking post-selection we can ‘buy’ security against general

attacks by reducing the message length ` a bit. The bound (38) changes by a factor (n+1)15,

which can be compensated by shrinking ` from (45) to

` ≤ n− 2n log f(β)− 2ξ
√
σn− 2σ − 1− 30 log(n+ 1). (48)

5.6 Non-asymptotic QKR rate; Choosing the parameter values

We want to characterize the non-asymptotic performance of our QKR scheme under ideal

circumstances. Consider a sequence of QKR rounds with a large number of consecutive

Accepts. Let η = 2 · 2−λ + 2−σ be the ‘imperfection’ induced by one round of QKR. Let θ

be the maximum distance that Alice and Bob are willing to tolerate between reality and the

ideal state ρ(0). After N = bθ/ηc rounds they have to refresh all their key material. The

QKR rate is

rate =
total message data sent in N rounds− expended key material

N · n . (49)

The total message size is N`, with ` specified in (48). The total key expenditure consists of N

times two λ-bit authentication tags, N a-bit OTPs that protect the syndromes (asymptotically

a ≈ nh(β)), n log |B| bits of basis key b, and n bits of extractor key u. This gives

rate = 1− a

n
− 2 log f(β)− 2ξ

√
σ√
n
− 30 log(n+ 1)

n
− 2λ+ 2σ

n
− 1 + log |B|

N
. (50)
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0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
0.0

0.2

0.4

0.6

0.8

1.0

β

rate

without
smoothing

with
smoothingE

M
6E

M
8

Fig. 2. Asymptotic QKR rates. The ‘with smoothing’ curve is the result (19). The ‘without

smoothing’ curve is the result 1 − h(β) − 2 log f(β) obtained without smoothing. The ‘EM6’ and

‘EM8’ curves correspond to the bound 1 − log(2µ) − 2h(β) based on Entanglement Monogamy,
with constants µ = µ6 and µ = µ8 respectively (see Section 3).

Note that η can be made exponentially small (N exponentially large) by increasing λ and σ.

For large n and N the rate (50) tends to 1 − h(β) − 2 log f(β), which is lower than the

asymptotic result of Section 5.4. The discrepancy is of course caused by the fact that we

did not use smoothing in Theorem 2. Fig. 2 shows the asymptotic (QKR=QKD) rate (19)

as well as the ε = 0 rate (50) in the limit n → ∞, N → ∞ and the rates obtained from the

Entanglement Monogamy approach (Section 3). Obviously smoothing improves the tightness

of the provable bounds significantly. Furthermore it is also clear that the Entanglement

Monogamy bounds are very far from tight.

It is possible to reduce the key expenditure. “Scheme #3” in [2] greatly reduces the key

material spent on protecting the syndrome, but it increases the number of qubits needed to

convey the message. It does not modify the rate (50).

Instead of pairwise independent hashing one may use ‘δ-almost pairwise independent’

hash functions. A small security penalty δ is incurred, but the length of the extractor key u

is reduced from n to approximately min(n− `, `+ 2 log 1
δ ).

Furthermore, it is possible to send keys for the next round (ksyn and the two MAC-padding

OTPs) as part of the payload in the current round. This trick completely nullifies the key

expenditure in case of Accept, but reduces the message size by a+2λ. The rate is unaffected.

Typically θ is fixed. Then it remains to tune N (which via η = θ/N fixes σ) and n for fixed

(θ, β) so as to optimise the rate. In Fig. 3 the non-asymptotic rate is plotted for θ = 2−256

and various values of β, N and n. We see that the asymptotic rate can be approached well

for realistic values of N and n.

6 Discussion

6.1 Comparison to existing results

The proof technique of [1] requires a special ‘key privacy’ property of the MAC function, and

has to keep track of the security of the MAC key. We avoid this requirement at the cost

of spending λ additional bits of key. An interesting difference with respect to [1] is that we
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Fig. 3. Non-asymptotic bound on the QKR rate as a function of the number of qubits (n),
for various values of the design parameter N and tolerated noise β. The dashed lines indi-
cate the ε = 0 limit 1 − h(β) − 2 log f(β). λ = σ + 1; θ = 2−256; the syndrome length
a is set to nh(β) +

√
nΦinv(10−6)

√
β(1− β) log 1−β

β
(see e.g. [21]), where Φ is defined as

Φ(z)
def
=

∫∞
z (2π)−1/2 exp[−x2/2]dx.

capture the security of the basis key B and the extractor key U in a single quantity (a single

trace distance), whereas [1] uses a min-entropy result for B and a trace distance for U .

We compare our result to the min-entropy analysis of attacks in [9]. For the ‘K2 attack’

(a known-plaintext attack on b) a min-entropy loss of log(1 +
√

6β(1− 3
2β)) bits per qubit
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was found for 8-state encoding; that is more than our leakage result 2 log f(β). We conclude

that non-smooth min-entropy is too pessimistic as a measure of security in this context.

It was pointed out in [2, 9] that with 8-state encoding there is no leakage about the qubit

payload X, whereas 6-state and BB84 encoding allow Eve to learn a lot about X in case of

a Reject. One may conclude that more privacy amplification is needed for 6-state and BB84

encoding than for 8-state. However, it turns out that the situation is the same for all encoding

schemes: the privacy amplification key U adequately masks X and gets replaced upon Reject.

6.2 Dealing with erasures

Our analysis has not taken into account quantum channels with erasures. (Particles failing to

arrive.) Consider a channel with erasure rate η and bit error rate β for the non-erased states.

The Alice-to-Bob channel capacity is (1 − η)(1 − h(β)). A capacity-achieving linear error-

correcting code that is able to deal with such a channel has a syndrome of size nh(β)+nη[1−
h(β)]. Imagine the QKR scheme of Section 4 employing such an error-correcting code. On

the one hand, the key expenditure increases from nh(β) to nh(β)+nη[1−h(β)]. On the other

hand, the leakage increases. Every qubit not arriving at Bob’s side must be considered to be

in Eve’s possession; since an erasure can be parametrised as a qubit with β = 1
2 , the leakage is

1 bit per erased qubit. Hence the leakage term n ·2 log f(β) changes to n(1−η)2 log f(β)+nη.

The combined effect of the syndrome size and the leakage increase has a serious effect on the

QKR rate. The asymptotic rate becomes 1− h(β)− η[1− h(β)]− (1− η)2 log f(β)− η. For

β = 0 this is 1− 2η; at zero bit error rate no more than 50% erasures can be accommodated

by the scheme. In long fiber optic cables the erasure rate can be larger than 90%. Under such

circumstances the QKR scheme of Section 4 simply does not work. (Note that continuous-

variable schemes do not have erasures but instead have large β.)

One can think of a number of straightforward ways to make the QKR protocol erasure-

resistant. Below we sketch a protocol variant in which Alice sends qubits, and Bob returns

an authenticated and encrypted message.

1. Alice sends a random string x ∈ {0, 1}q encoded in q qubits, with q(1− η) > n.

2. Bob receives qubits in positions i ∈ I, I ⊆ [q] and measures x′i in those positions. He

aborts the protocol if |I| < n. Bob selects a random subset J ′ ⊂ I, with |J ′| = n.

He constructs a string y′ = x′J ′ . He computes s′ = ksyn ⊕ S(y′), z′||b′ = Ext(u, y′||b),
c′ = m⊕ z′, t′ = Γ(kMAC,J ′||y′||c′||s′). He sends J ′, s′, c′, t′.

3. Alice receives this data as J , s, c, t. She computes y by doing error correction on xJ
aided by the syndrome ksyn ⊕ s. Then she computes z||b′′ = Ext(u, y||b), m̂ = z ⊕ c and

τ = Γ(kMAC,J ||y||c||s). Alice Accepts the message m̂ if τ = t and Rejects otherwise.hKey

refreshment is as in the original protocol.

The security is not negatively affected by the existence of erasures. Assume that Eve holds

all the qubits that have not reached Bob. Since the data in the qubits is random, and does

not contribute to the computation of z′, it holds that (i) it is not important if Eve learns the

content of these bits, (ii) known plaintext does not translate to partial knowledge of the data

content of these qubits, which would endanger the basis key b and the extractor key u.

hAlice may send the (authenticated) Accept/Reject bit along with the next batch of qubits; then the protocol
has only two rounds.
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6.3 Future work

It is possible to evaluate or bound the Sε0(ρE) and Sε2(ρBXE) in (31) for finite n and ε ‘by

hand’, i.e. specifically for ρEbxy = ⊗ni=1σ
bi
xiyi . That would yield a non-asymptotic result for `

that is more favorable than Theorem 3.

It is interesting to note that QKR protocols which derive an OTP z from the qubit payload

and then use z for encryption look a lot like Quantum Key Distribution, but with reduced

communication complexity. This changes when the message is put directly into the qubits,

e.g. as is done in Gottesman’s Unclonable Encryption [6]. It remains a topic for future work

to prove security of such a QKR scheme.

The QKR scheme of Section 4 can be improved and embellished in various ways. For

instance, Alice’s λ-bit key expenditure for one-time MACing may not be necessary. The

authentication tag may simply be generated as part of the Ext function’s output, and then

the security of the MAC key can be proven just by proving the security of the extractor key u

(similar to what is done in [1]).

Furthermore, as mentioned in Section 5.6, one may use ‘scheme #3’ of [2] which protects

the syndrome by sending it through the quantum channel instead of classically OTP-ing it.

This too reduces the key expenditure, and it does not affect the rate.

Another interesting option is to deploy the Quantum One Time Pad with approximately

half the key length, which still yields information-theoretic security. This would slightly im-

prove the rate (50) by reducing the amortised cost of refreshing b from 2
N to approximately 1

N .

Finally, various tricks known from QKD may be applied to improve the noise tolerance of

QKR, e.g. artificial noise added by Alice.
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Appendix A: Proof of Theorem 3

We (implicitly) define a function γmax(t, σ) as Pcorr(t, γmax) = 2−σ. For γ ≥ γmax eq. (47)

clearly holds. Next we need to bound the expression log f(γ) for γ ≤ γmax. Taking the

Chernoff bound Pcorr(t, γ) ≤ exp[− n
2γ (γ − t

n )2] and solving for γ we get

γmax(t, σ) ≤ γ0(t, σ)
def
=

t

n
+
σ ln 2

n
+

√
2
t

n

σ ln 2

n
+ (

σ ln 2

n
)2. (A.1)

We will bound the expression log f(γ0) in two different ways: for ‘large’ β and for ‘small’ β.

• As f is a concave function we have f(γ0) ≤ f(β) + (γ0 − β)f ′(β). This yields

log f(γ0) ≤ log f(β) + log[1 +
f ′(β)

f(β)
(γ0 − β)] ≤ log f(β) +

f ′(β)

f(β)

γ0 − β
ln 2

= log f(β) +
σ

n
+

√
2β

σ

n ln 2
+ (

σ

n
)2. (A.2)

• We write log f(γ0) = log f(β)+log f(γ0)
f(β) ≤ log f(β)+ log f(γ0)

f(β)

∣∣∣
β=0

. The inequality follows

from the fact that f(γ0)/f(β) is a decreasing function of β. This yields

log f(γ0) ≤ log f(β)+log f(
2σ

n
) ≤ log f(β)+ log[1+

√
3
2 ( 2σ

n )] ≤ log f(β)+ 1
ln 2

√
3σ
n .

(A.3)

From (A.2) and (A.3) we conclude n log f(γmax(t, σ)) ≤ n log f(β) + ξ
√
σn with ξ as defined

in (46). With ` chosen according to (45), the expression
√

2`−n+2n log f(γmax) in (38) is upper

bounded by 2−σ/
√

2. Hence the second expression in the min{·, ·} (38) is upper bounded by
2−σ

2
√

2
+ 2−σ

2 + 2−2σ

2
√

2
< 2−σ.


