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ABSTRACT
In this paper, we present a method for numerical computation of collective Thomson scattering (CTS). We developed a forward
model, eCTS, in the electrostatic approximation and benchmarked it against a full electromagnetic model. Differences between
the electrostatic and the electromagnetic models are discussed. The sensitivity of the results to the ion temperature and the
plasma composition is demonstrated. We integrated the model into the Bayesian data analysis framework Minerva and used
it for the analysis of noisy synthetic data sets produced by a full electromagnetic model. It is shown that eCTS can be used
for the inference of the bulk ion temperature. The model has been used to infer the bulk ion temperature from the first CTS
measurements on Wendelstein 7-X.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5048361

I. INTRODUCTION
The most advanced concepts for energy generation by

controlled nuclear fusion rely on the magnetic confinement
of a hot plasma of the hydrogen isotopes deuterium and tri-
tium in a toroidal geometry. The international flagship project
ITER, a reactor of the tokamak-type, has been designed to
produce 500 MW of fusion power, ten times more than the
power needed to sustain the reaction. While the tokamak
is the furthest developed in terms of performance, another
toroidal magnetic confinement concept, the stellarator, is
thought to offer advantages over the tokamak. Perhaps the
most important one is the fact that it is intrinsically steady
state. The latest and most advanced stellarator, the Wen-
delstein 7-X (W7-X) experiment in Greifswald (Germany),
came into operation in 2015.1–3 The mission of W7-X is to
explore the potential of the optimized stellarator concept as a
fusion reactor. Of fundamental importance in this programme

is the adequate diagnostic of the key plasma parameters,
ranging from basic plasma parameters such as density and
temperature to the radial electric field, the distribution func-
tion of fast ions (due to external heating), and to processes
such as turbulence driven transport or magnetohydrodynamic
instabilities.

This paper concerns the development of a diagnostic
system for W7-X based on the collective Thomson scatter-
ing (CTS) of a probing beam of mm-waves. This technique
in principle gives access to a variety of fundamental core
plasma properties, including the ion temperature,4–6 the radial
electric field, the fast ion distribution function,7–10 and the
composition.11–14 The CTS diagnostic for fusion plasmas has
originally been proposed in Ref. 15, and important theory
developments have been made in Refs. 16–19. CTS has been
applied in several fusion experiments7,8,11 and is foreseen
for ITER.20 The CTS diagnostic is a fairly complex plasma
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diagnostic. Apart from the already complex collective Thom-
son scattering process, the mm-wave beam diffracts in the
inhomogeneous and fluctuating plasma and may encounter
resonances and cutoffs. These depend on the plasma state, the
wave polarization, and the angle with respect to the magnetic
field. One must ensure that the diffracting viewing line and
the probing beam intersect despite these effects, and these
effects must be taken into account in the interpretation of the
detected signal. CTS is also challenging because the scattering
cross sections are small, resulting in low signal levels, while
there is a background radiation from electron cyclotron emis-
sion (ECE) as well as the stray light from the probing beam.
Even if the signal-to-noise ratio is high, the interpretation of
the recorded signal remains a complex task. This first requires
a computer code which simulates the CTS spectra for the
given geometry of the setup and a set of plasma parameters,
based on a physics model of the microscopic wave-plasma
interaction. Second, this forward model must be combined
with an integrated data analysis system which provides all
required additional information, such as the density profile,
measured by independent diagnostic systems, as well as the
information on the (modulated) probing beam. The W7-X inte-
grated data analysis environment Minerva is a conglomeration
of (Bayesian) probability theory and graph theory.21 It pro-
vides a standardized data analysis infrastructure, taking into
account the measurements of every implemented diagnostic.
In addition, it facilitates the exchange of any physics mod-
els underlying a particular diagnostic. This feature will allow
the comparison of CTS physics models in a completely new
way. To implement the CTS model into Minerva, it was nec-
essary to build a new CTS code as pre-existing CTS codes are
not open source. It should be remarked here that there is no
common view in the literature on what the most appropri-
ate physics model of CTS is. The basis is formed by plasma
kinetic theory and Maxwell’s equations. A physics model is
then constructed either by considering the full electromag-
netic response of the plasma to the fluctuations or by mak-
ing the electrostatic approximation. The adequacy of the two
descriptions (electromagnetic vs. electrostatic) in a particular
experimental situation has been debated in the past by sev-
eral authors,22–25 who independently developed CTS codes.
Despite these efforts, it remains ambiguous in which situa-
tions the electrostatic approximation suffices and when the
full electromagnetic model is required. Although it has been
reported that the choice between the two models depends
on the scattering geometry,25,26 the choice is also depen-
dent on the plasma parameters. One purpose of this paper
is to contribute to resolving this ambiguity for W7-X plasmas
by adopting a systematic approach to CTS modeling. We will
adopt the electrostatic approximation and discuss its appli-
cability to the bulk ion temperature measurements. To our
knowledge, such a discussion is lacking in the literature. Con-
cerning the numerical implementation of the model, we note
that theoretical expressions contain infinite summations of
modified Bessel functions, exponentials, and the plasma dis-
persion function. We present formulas to evaluate these sums
effectively, which are otherwise not found in the literature. In
this paper, we will

• describe the newly developed CTS code, in particular
the numerical methods employed to deal with infinite
sums (Sec. II)

• demonstrate the modeling of CTS spectra on the new
fusion experiment Wendelstein 7-X (Sec. III)

• outline the implementation of our CTS code into the
Bayesian data analysis framework Minerva (Sec. IV)

• compare the results of the code to the output gen-
erated with a code based on the full electromagnetic
treatment25–27(Sec. V)

• present the first CTS spectrum measured on Wendel-
stein 7-X and analyzed by our model (Sec. VI)

• discuss the implications of the results (Sec. VII)
• conclude and give the outlook in Sec. VIII.

II. METHOD
A. Theoretical framework

From a diagnostic point of view, it is necessary to estimate
the power received by a diffraction limited receiver. Let Ps and
Pi be the scattered and incident power and ωi and ωs be the
angular frequencies of the incident and the scattered waves,
respectively. The spectral power density received is then given
by18

∂Ps

∂ω
= PiOb

ωiωs

2πc2
r2
eneGS(k,ω), (1)

where re is the classical electron radius, c is the speed of light
in vacuum, ne is the electron density, Ob is the beam overlap
volume, G is the geometrical form factor, and S(k, ω) is the
spectral density. The beam overlap is defined as the volume
integral of the normalized incident and scattered beam inten-
sities, Ii and Is. In the case of uniform beam intensities and
perfect intersection, the overlap can be approximated by the
ratio of the overlap volume, V, and the product of the beam
cross sections, Ai and As, and is given by25

Ob =

∫
IiIsdV ≈

V
AiAs

. (2)

The spectral density S(k,ω) is a function of the scattering wave
vector k and the frequency ω which are defined as

ω = ωs −ωi, (3)

k = ks − ki. (4)

To specify the scattering geometry (see Fig. 1), we intro-
duce the angle between the incident and the scattered
waves, θ = ∠(ki, ks), and the angle between the scat-
tering wave vector and the local magnetic field vector
φ = ∠(k, B). The spectral density S(k, ω) contains the plasma
response to the microscopic fluctuations. The geometrical
form factor G accounts for the response to the incident
and the scattered waves. As most spectral variation of the
received power comes from the product GS(k, ω), the calcu-
lation of this product is the main objective of the CTS the-
ory. We thus define the scattering function as Σ = GS(k, ω).
The geometrical form factor is given by the following
expression:28

Rev. Sci. Instrum. 90, 023501 (2019); doi: 10.1063/1.5048361 90, 023501-2

Published under license by AIP Publishing

https://scitation.org/journal/rsi


Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

FIG. 1. The scattering geometry is defined by the angles indicated in the figure
on the left: φi , φs, and the angle χ between the planes defined by B and ki, and
B and ks, respectively. When φi + φs = π, the scattering geometry is uniquely
defined by angles φ and θ indicated in the figure on the right.

Gλν =
ω2

sω
2
i

ω4
pe

µsνµiλ |(e∗sν · (Î − ε̂i) · eiλ) |2

(e∗sν · ε̂s · esν )(e∗iλ · ε̂i · eiλ)
, (5)

where ωpe = (nee2/meε0)1/2 is the plasma frequency, the sub-
scripts s and i indicate the scattered and the incident wave,
respectively, the subscripts ν and λ specify the polarization
(the O mode or X mode propagating in the plasma), e denotes
the polarization vector, and ∗ denotes the complex conjuga-
tion. The corresponding refractive index is denoted by µ, and
ε̂ is the cold plasma dielectric tensor.

Assuming that the equilibrium distributions for both elec-
trons and ions are isotropic Maxwellian distributions with-
out drifts, the expression for the spectral density function for
a magnetized plasma, in the electrostatic approximation, is
given by23

S(k,ω) =
�����
1 −

He

εl

�����

2 2
√
π

|k‖ |ve
×

+∞∑
l=−∞

e−k
2
⊥r

2
le Il(k2

⊥r
2
le)e
−

(ω−lωce )2

k2
‖
v2
e

+
�����
He

εl

�����

2 2
√
πZ2

i ni

ne |k‖ |vi

+∞∑
l=−∞

e−k
2
⊥r

2
li Il(k2

⊥r
2
li)e
−

(ω−lωci )
2

k2
‖
v2
i , (6)

where ni and ne denote ion and electron densities, 3e and 3i are
the electron and ion thermal velocities, respectively, ωce and
ωci denote the cyclotron frequencies, and rle and rli denote
Larmor radii. The parallel and the perpendicular wave vectors
are defined with respect to the direction of the magnetic field
B0, and they are given by k⊥ = k sinφ and k‖ = k cosφ, respec-
tively. The summation is performed over the order of the mod-
ified Bessel function of the first kind, Il, and the cyclotron
harmonics. ε l = 1 + He(k,ω) + Hi(k,ω) is the longitudinal dielec-
tric function in which He and Hi stand for the electron and the
ion susceptibilities, respectively,

He(k,ω) = α2
+∞∑

l=−∞

e−k
2
⊥r

2
le Il(k2

⊥r
2
le)

(
1 +

ω

k‖ve
Z
(
ω − lωce

k‖ve

))
, (7)

Hi(k,ω) = α2 Z
2
i niTe

neTi

+∞∑
l=−∞

e−k
2
⊥r

2
li Il(k2

⊥r
2
li)

(
1+

ω

k‖vi
Z
(
ω − lωci

k‖vi

))
, (8)

where Z(ω−lωce
k‖ ve

) ≡ Z(yl) is the plasma dispersion function which
is defined as29

Z(yl) = i
√
πe−y

2
l − 2e−y

2
l

∫ yl

0
ep

2
dp. (9)

In Sec. II B, we outline the numerical approach for the compu-
tation of summations in Eqs. (6)–(8).

B. Infinite summations
We can identify three types of sums in Eqs. (6)–(8),

+∞∑
l=−∞

e−xIl(x) = 1, (10)

+∞∑
l=−∞

e−xIl(x)Z(yl), (11)

+∞∑
l=−∞

e−xIl(x)e−y
2
l . (12)

The modified Bessel functions of the first kind are normal-
ized, and given the property Il(x) = I−l(x), the normalization
relation30,31 is given by

+∞∑
l=−∞

Il(x) = Io(x) + 2
+∞∑
l=1

Il(x) = ex. (13)

From Eq. (13), it follows that the sum in Eq. (10) is trivial and
equal to 1.30,31 To compute the remaining sums, we will use an
algorithm for summing orthogonal polynomial series.32,33 The
sums in Eqs. (11) and (12) have to be rewritten in a form which
facilitates the use of the chosen algorithm. Using the normal-
ization of the modified Bessel functions (13), we can rewrite
Eq. (11) in the following way:

+∞∑
l=−∞

e−xIl(x)Z(yl) =
∑+∞

l=1 e
−xIl(x)(Z(yl) + Z(y−l)) + e−xI0(x)Z(y0)

exe−x

=

∑+∞
l=1 Il(x)(Z(yl) + Z(y−l)) + I0(x)Z(y0)

Io(x) + 2
∑+∞

l=1 Il(x)

=

1
I0(x)

∑+∞
l=1 Il(x)(Z(yl) + Z(y−l)) + Z(y0)

1 + 2 1
I0(x)

∑+∞
l=1 Il(x)

. (14)

Adopting the nomenclature from Ref. 32, we will first compute
the sum from the denominator in Eq. (14),

B0 =
1

I0(x)

+∞∑
l=1

Il(x) =
1

I0(x)
*.
,

+∞∑
l=0

Il(x) − I0(x)+/
-
=

1
I0(x)

+∞∑
l=0

Il(x) − 1

=
1

I0(x)
*.
,
I0(x) + I1(x) +

+∞∑
l=2

Il(x)+/
-
− 1 =

I1(x)
I0(x)

*.
,

1
I1(x)

+∞∑
l=2

Il(x) + 1+/
-

=
I1(x)
I0(x)

(B1 + 1). (15)
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This result is easily generalized, and a recurrence relation is
obtained,

Bl =
Il+1(x)
Il(x)

(Bl+1 + 1) ≡ rl+1(Bl+1 + 1). (16)

The ratios of consecutive modified Bessel functions, rl+1, are
defined by

rl+1 ≡
Il+1(x)
Il(x)

=
1

rl+2 + 2(l + 1)/x
. (17)

This relation follows directly from the recurrence relation for
the modified Bessel functions,

Il+1(x) =
−2l
x

Il(x) + Il−1(x), l ≥ 1. (18)

Starting from Bessel’s equation, pairs of lower and upper
bounds on rl can be derived for each l.33 The common
bounds for all l are found to be 0 and 1. We use this result
to set the starting value for backward recursion in Eq. (17):
rN+2 = 1, where N represents the number of steps. The con-
dition BN+1 = 0 enables us to calculate B0 by successively eval-
uating Bl, Bl−1, . . ., B1. The sum from the numerator of Eq. (14)
S0 ≡

1
I0(x)

∑+∞
l=1 Il(x)(Z(yl) + Z(y−l)) satisfies a similar recurrence

relation but with the initial condition SN = 0,

Sl = rl+1(Sl+1 + Z(yl+1) + Z(y−l−1). (19)

For the eCTS code application to Wendelstein 7-X plasmas (see
Sec. III), we found that N = 200 produces satisfactory results
over the entire parameter range of interest.

This result is derived by the same reasoning used in the
calculation of B0 in Eq. (15). Both Sl and Bl are thus calculated
by successive evaluation, and the final result can be written in
a concise manner,

+∞∑
l=−∞

e−xIl(x)Z(yl) =
S0 + Z(y0)

1 + 2B0
. (20)

The same approach is used to calculate (12). The only differ-
ence in the procedure is the substitution of e−y

2
l for Z(yl). The

errors do not build up because they satisfy the same recur-
rence relations as the quantities Bl and Sl. Thus the errors are
bounded.32,33

III. MODELING CTS AT W7-X
The eCTS code is applied to model a Wendelstein 7-X

plasma. The purpose of this section is to demonstrate the
sensitivity of the forward model to the ion temperature and
to the plasma composition. The scattering function has been
defined previously as the product of the geometrical form fac-
tor and the spectral density function Σ = GS(k, ω). The geo-
metrical form factor G contains the response of the plasma
to the incident and scattered waves, and the spectral den-
sity function S(k, ω) contains the response to the fluctuations.
These two quantities can be modeled separately, as we show
in Secs. III A and III B.

A. Calculations of the geometrical form factor
We calculated the geometrical form factor for four scat-

tering channels X→ X, X→O, O→O, and O→ X in the density

range typical for W7-X. From the results of the calculation, we
can estimate the density range within which the diagnostic
can operate as well as the potential benefits and disadvan-
tages of using a specific scattering channel. The limits of this
range depend on the locations of the cutoffs and the reso-
nances where reflection and absorption occur in the plasma.
The cutoffs and resonances will differ for different modes of
the propagating radiation and thus differ for different scatter-
ing channels. Formally, we say that a resonance is the point at
which the refractive index of the plasma goes to infinity, and a
cutoff is the point at which the refractive index goes to zero.
The geometrical form factor is a function of the plasma refrac-
tive index, and its value is therefore strongly influenced by the
cutoffs and resonances of the incident and scattered waves.
The abrupt change of the value of the G factor is an indica-
tion of the absorption or reflection of the probing radiation.
Ideally, the scattering volume of the CTS diagnostic will not
be in the vicinity of a cutoff or a resonance. In addition to the
dependence on the plasma parameters, the cutoff frequency
also depends on the strength of the external magnetic field.
The field strength can vary up to 5% along the direction of
propagation of the incident radiation through the plasma. On
the magnetic axis, the strength varies between 2.1 T and 2.5 T.
This has been taken into account. The results are depicted in
Figs. 2–5.

Note that the calculations given here show the density
dependence of the G factor for the probing frequency of
140 GHz. One can also look at the frequency dependence for a
fixed density. From the results, we see that the G factor has a
significantly lower value for O → O or mixed mode scattering
in comparison to X → X scattering. However, one advantage
of O → O scattering is the ability to measure at higher densi-
ties. From these results, it follows that if the density is below
1.2 × 1020 m−3 for B = 2.5 T (or below 1.0 × 1020 m−3 for
B = 2.1 T), X → X should be used. The strength of the ECE for

FIG. 2. Geometrical form factor for X to X mode scattering for two magnetic field
configurations.
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FIG. 3. Geometrical form factor for X to O mode scattering for two magnetic field
configurations.

each polarization should also be compared when selecting the
polarization. The strength of the ECE has not been taken into
account in the calculations.

B. Calculations of the spectral density function
The CTS diagnostic on W7-X will have the receiver at a

fixed position but will be able to switch between two ports
through which the probing beam can be injected into the
plasma. This flexibility allows for a range of scattering angles.
Sensitivity of the model to the plasma composition and the
bulk ion temperature is demonstrated in Figs. 6 and 7. The
model correctly reproduces the ion cyclotron structure of the

FIG. 4. Geometrical form factor for O to O mode scattering for two magnetic field
configurations.

FIG. 5. Geometrical form factor for O to X mode scattering for two magnetic field
configurations.

spectrum.34 This structure results from the hot electrostatic
waves known as the ion Bernstein waves driven by the ion
cyclotron motion in a magnetized plasma. The ion cyclotron
structure can be observed only when the scattering geome-
try is such that φ ≈ 90, the ion Bernstein waves are strongly
damped otherwise. As can be seen in Fig. 6, the separation
between the peaks corresponds to the ion cyclotron fre-
quency of hydrogen (blue) and deuterium (red). Figure 6 also
shows that the hydrogen spectrum is broader than the deu-
terium spectrum as is expected for lighter species. In Fig. 7,
we calculate the spectral density for two different values of
the ion temperature while keeping all other parameters fixed.

FIG. 6. Sensitivity of the output of the code to the plasma composition: separation
between the peaks corresponds to the ion cyclotron frequency of the given ion
species, for deuterium ≈18.3 MHz and for hydrogen ≈36.5 MHz at B = 2.4 T.
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FIG. 7. Sensitivity of the output of the code to the ion temperature. Spectra are
calculated for a deuterium plasma with the following parameter values: ne = ni = 6
× 1019 m−3, B = 2.4 T, θ = 100, φ = 130, and Te = 10 keV.

The observation angle is φ = 130◦, and there is no ion cyclotron
structure as expected. The appearance of the peak in the
spectrum is related to the ratio Te/Ti. When this ratio is
small, the effect of Landau damping is significant and the
peak is not pronounced.17 Notice that the hump in the spec-
trum is also an enhancement of the scattered power. Such
enhancements are expected at (ω, k) which satisfy the dis-
persion relation ε l ≡ 1 + He(k, ω) + Hi(k, ω) = 0. When there
is a significant difference in the ion and electron tempera-
tures, such as in Fig. 7, the enhancement which appears in
the spectrum corresponds to the ion acoustic wave. Observa-
tion of the ion acoustic wave allows one to quickly and easily
obtain the value of the ion temperature from the following
relation:

facoustic =
k

2π

√
Te + 3Ti

mion
. (21)

For this example, the values k/2π ≈ 620 1/m, Ti = 3 keV,
Te = 10 keV, and mdeuterium = 3.3435·10−27 kg substituted into
Eq. (21) give facoustic ≈ 0.592 GHz. This is the frequency at
which the enhancement appears in Fig. 7. Given the electron
temperature, the ion temperature can be recovered from the
result of the calculation. In order for the developed model
to be used in a real data analysis on Wendelstein 7-X, it is
necessary to integrate it into the data analysis framework
Minerva.

IV. INTEGRATION OF THE CTS FORWARD MODEL
INTO THE MINERVA FRAMEWORK

The implementation of the CTS forward model into the
Minerva framework will allow the inference of the model
parameters, given the measured data, in a Bayesian fashion.
Several other plasma diagnostic models operational on W7-X
are already implemented in the framework. It has also been

used in a number of other experiments.21,35 The physics model
of each diagnostic is represented in the Minerva framework as
a graphical model. In a forward model of a diagnostic, mea-
sured data are derived from the model parameters by using
the code implementation of physical processes. According to
Bayesian probability theory, the Bayes formula can be used to
solve the inference of the parameters of the model,

P(M |D) =
P(D |M)P(M)

P(D)
, (22)

where P(M|D) represents the posterior probability distribution
for the model parameters M with respect to the measured data
D, P(D|M) is the likelihood of the data given model parame-
ters, P(M) is the prior probability distribution assigned to the
model parameters before data acquisition, and P(D) is a nor-
malizing factor. Figure 8 shows a sketch of the implementation
of CTS forward model into Minerva. The measured data are
represented in the graphical model by an observation node
(blue circle). Model parameters can be inferred via a Maximum
A Posterior (MAP) algorithm: the parameters which maximize
the left-hand side of Eq. (22) can then be found. The inver-
sion can be pushed a step further. The strength of Bayesian
analysis lies in the fact that the result of the inference is not
just one single set of model parameter values; instead it is
the whole posterior probability distribution which quantifies
uncertainties in the inversion process. The posterior distribu-
tion can be sampled by using a Metropolis-Hastings Markov
Chain Monte Carlo algorithm.36 In this way, the confidence
of the inferred model parameters is determined from the dis-
tribution of the samples. At the end, the aim of the Minerva
framework will be to exploit the central point of Bayesian
probability theory: more data bring more information which in
turn increases the accuracy of the parameter estimation. This
can be performed by joining together the information coming
from the different diagnostics which are used to infer the same
parameter(s).21 In this way, the uncertainties of the inferred

FIG. 8. Scheme for Minerva implementation of the CTS model. The green cir-
cle represents the free parameters in the model; the blue circle represents
the observed quantities. The inversion process is indicated with a dashed
arrow.
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values, given by the posterior distribution, take into consid-
eration all the possible information coming from the differ-
ent diagnostics. Consequently, one such integrated framework
is able to give the most reliable estimation of a parameter
by running a joint Bayesian analysis that takes into account
uncertainties in every step of the inference. It is with this
in mind that the CTS model is implemented in the Minerva
framework.

V. ANALYSIS OF SYNTHETIC CTS DATA
An essential part of the implementation of the CTS for-

ward model into the Minerva framework is the creation of the
model builder class. In this class, we specify the dependen-
cies between the input parameters, the forward model, and
the observed data. The model builder creates a graph object
which contains the representation of the model. Once the
graph is created, the operations can be performed directly on
the nodes of the graph. The nodes on the graph can be param-
eter values, computational nodes, and observed data. We can
assign a prior probability distribution to the parameters which
we want to infer by inversion from the observations. Prior dis-
tributions are defined by the mean and the variance. For the
analysis of synthetic CTS data, we created the model depicted
in Fig. 9. Prior distributions have been put on the electron and
ion temperatures and on the geometrical form factor G. To
generate noisy synthetic spectra, we have considered the fol-
lowing: during a CTS measurement, the probing radiation is
modulated, and the signal recorded during the periods when
the probing beam (the gyrotron in our case) is turned off is
the background noise (an ECE of 100 eV up to 300 eV) which
may or may not be Gaussian. When this recorded noise signal
is subtracted from the signal recorded when the source is on,
and calibration is applied, what remains is thermal noise. Only
after such pre-processing is the spectrum ready for further
analysis requiring the use of the forward model and Bayesian
inference. The synthetic data have thus been generated by the
addition of Gaussian noise to the spectra produced by the fully
electromagnetic code.25 The data have then been fed into the
node Spectrum (see Fig. 9), and the parameter values have been
inferred from this node. Depending on the data set, Minerva
fits either the scattering function, Σ(k, ω), or the scattered

FIG. 10. Gaussian noise (5% of the maximum value) was added to a spectrum
obtained by the full electromagnetic code25 for the scattering channel X → X in a
deuterium plasma (black and blue dots). The spectrum has been fitted by the MAP
inversion (the red line). Final temperatures obtained by fitting are indicated in the
legend.

power Ps. In order to fit the data, Minerva performs the maxi-
mization of the posterior probability distribution (MAP) on the
free parameters and updates the input to the integrated CTS
forward model at each iteration. The process is repeated until
convergence.

A. Scattered power
Analysis of actual data will require the scattered power

[see Eq. (1)] to be fitted rather than the scattering function.
In Fig. 10, we have fitted the power scattered by a deuterium
plasma. For this purpose, we added the value to the node
Pi = 100 kW (incident power). Other nodes were set to the fol-
lowing values: ne = ni = 6 × 1019 m−3, B = 2.4 T, φ = 100.7◦,
and θ = 169.7◦. The final obtained value of the bulk ion tem-
perature was Ti = 1.2 ± 0.2 keV, while the observed data
have been produced with the value Te = Ti = 1.3 keV. Note
that there is a tilt of the baseline in the negative frequency

FIG. 9. Probability graphical model produced by the ModelBuilder. The squares indicate either constants/input files or calculation nodes (the eCTS code for example is in
the CTS node). The blue nodes indicate free parameters with a prior distribution. The gray node indicates the data to be fitted. The arrows do not indicate the direction of
information flow.
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region in Fig. 10. In the electrostatic approximation, the cal-
culated baseline of a spectrum is always at 0. This is not
the case for the electromagnetic treatment where the spec-
trum can be tilted as in Fig. 10. To fit such a spectrum in
the electrostatic approximation, we can prioritize the fitting
of the higher frequency side to obtain a result for the bulk
ion temperature. Additionally, one can in experiments observe
an offset of the baseline which results from the background
radiation.

The spectra have to be pre-processed by making a back-
ground subtraction, applying calibration, and averaging over a
number of data acquisition periods before Minerva inversions
can be employed. Otherwise, Minerva will try to increase the
width of the spectrum sufficiently attempting to create a tilt
or an offset in a particular spectral range. This will result in
unrealistically high ion temperatures.

Performance of the model for low signals (below 5 eV)
and in the reactor relevant temperature range have been
tested on a data set containing 29 synthetic spectra in the
range from Ti = Te = [1, 15] keV. The results are given
in Fig. 11. Error bars indicate the discrepancy between the
recovered ion temperature and the temperature used as
input for the production of the synthetic spectra. The graph
can be divided into three regions according to the input
temperature:

1. [1, 8] keV
2. [8.5, 10] keV
3. [10.5, 15] keV

In the first region, there were no tilts or offsets of the base-
line of the spectra. The error is below 10%. In the second
region, the electromagnetic effects gave rise to tilting of the
baseline in the low frequency range. Preferential fitting of the
high frequency part of the spectra was made in order to get

FIG. 11. Recovered ion temperature as a function of the input ion temperature
for 29 spectra. The Gaussian noise added to the synthetic spectra is 5% of the
maximum value.

feasible values of the ion temperature. The third region is out-
side of the foreseen W7-X ion temperature range. It is also
the region where the electromagnetic effects become more
prominent which results in a significant increase in error bars
(the largest one is at Ti = 14 keV, where we have an error of
approximately 20%).

B. Applicability of the electrostatic approximation
A forward model of collective Thomson scattering (eCTS)

has been developed based on the approach in Sec. II. In this
section, we compare the results of our code to the output of
a full electromagnetic treatment.25–27 The spectra have been
generated by the electromagnetic model and analyzed by the
electrostatic one in an attempt to explore the plasma condi-
tions under which the electromagnetic effects become rele-
vant for CTS on Wendelstein 7-X. For a given plasma state,
different features appear in a CTS spectrum depending on
the observation angle. The benchmark spectra have been pro-
duced for two observation angles φ in a homogeneous deu-
terium plasma while keeping the following input parameters
fixed: ne = ni = 6 × 1019 m−3, Te = Ti = 1 keV, and B = 2.4 T.
The incident and scattered radiation is assumed to be polar-
ized either in X or in O mode. We give the result for the X →
X scattering channel in Figs. 12 and 13, for which the largest
discrepancy between the two models is observed. The observ-
able discrepancy in the width which can lead to an increase
in the error of the inferred bulk ion temperature is caused
by the underlying difference of the physics models. This is a
systematic effect. In the case of φ ≈ 90◦, depicted in Fig. 13,
we note that our code reproduces the expected ion cyclotron
effects on the CTS spectrum. Although less pronounced, also
in this case, there is a difference in the width of the two

FIG. 12. Comparison of our code (eCTS) with the result obtained with a full electro-
magnetic treatment.25 The spectrum is calculated for a deuterium plasma without
impurities, with the following values of input parameters: ne = ni = 6 × 1019 m−3,
Te = T i = 1 keV, B = 2.4 T, X → X, θ = 100◦, and φ = 130◦.
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FIG. 13. Comparison of our code (eCTS) with the result obtained with a full electro-
magnetic treatment.25 The spectrum is calculated for a deuterium plasma without
impurities, with the following values of input parameters: ne = ni = 6 × 1019 m−3,
Te = T i = 1 keV, B = 2.4 T, X → X mode scattering, θ = 100◦, and φ = 92◦. The
peaks in the spectrum represent the ion cyclotron signature, which is visible for
observation angles close to 90◦.

results. Note that the positions of the peaks are exactly the
same.

VI. ANALYSIS OF THE FIRST CTS SPECTRA OBTAINED
AT W7-X

The first results from the CTS diagnostic on W7-X were
obtained in the commissioning phase of the diagnostic dur-
ing the OP1.2a experimental campaign in the fall of 2017. The
CTS system is capable of measuring in two distinct cross sec-
tions of W7-X: the triangular and the bean cross sections
(see Fig. 14). Main components of the system are described

in detail in Ref. 37. During OP1.2a, the diagnostic was com-
missioned in the bean shaped cross section. To this end,
an overlap sweep experiment was performed. In the prepa-
ration of the experiment, the locations of the overlap vol-
ume were calculated using the ray-tracer TRAVIS38 which
takes as input parameters the magnetic field and plasma
configurations and the coordinates specifying the direction
of the probing beam (gyrotron A1) and the receiver beam
(F1). The coordinates of A1 were fixed for the entire dura-
tion of the experiment, while the coordinates of F1 were
changed in order to sweep along the expected region of over-
lap with A1. In Fig. 15, we present the result of the overlap
sweep. In each discharge of the experiment, the overlap
was measured before and after gas puff. An increase in the
CTS signal was observed after each gas puff. The maximum
overlap was obtained in the discharge 20 171 011.053 at an
azimuthal angle of −19.3◦. The data were recorded by a sen-
sitive heterodyne receiver equipped with a National Instru-
ments fast data acquisition card with a sampling rate up to
12.5 GS/s. The probing beam was modulated during every
discharge in order to obtain a measurement of the back-
ground ECE radiation. The gyrotron on and off periods were
55 ms and 5 ms, respectively. The spectrum obtained is
depicted in Fig. 16 and presents data averaged over 10 gyrotron
pulses. Plasma parameters of the discharge 20 171 011.053 at
the location of the maximum overlap volume were B = 2.34
± 1 T, ne = 6 ± 1 1019 m−3, and Te = 1.5 ± 0.5 keV in a helium
plasma. The CTS system parameters for the experiment in the
discharge 20 171 011.053 were φ = 109◦ ± 1◦, θ = 141◦ ± 1◦, Pi =
800 ± 10 kW,ωi = 140.18 ± 0.01 GHz, Ob = 17 ± 10 m−1, and scat-
tering channel X-X. The large uncertainty in the parameter Ob
of ≈60% is due to densely packed magnetic flux surfaces at the
location of probe and receiver beams overlap which effectively
leads to a reduction of spatial resolution in our CTS measure-
ments. Taking this into account, we regard Ob as a scaling fac-
tor and present it as a function of the tilting angle in Fig. 15. The
high frequency side of the spectrum was covered by the notch
filter.

FIG. 14. Sketch of the CTS system on W7-X. The CTS
diagnostic can operate in two distinct cross sections of the
machine: the triangular cross section (shown on the left)
and the bean cross section (shown on the right). The names
stem from the shape of the last closed flux surface at the
respective locations (the gray grid represents the last closed
flux surface). Half of the vacuum vessel is indicated by
the yellow regions. The red coloured areas are locations
of absorption of our probing radiation. The blue circles at
intersection of the beams are the locations of the over-
lap volume. First measurements were obtained in the bean
cross section in an overlap sweep experiment in which the
receiver beam was swept across the region of expected
overlap.37
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FIG. 15. Measured spectral power density before and after the gas puff. Maximum
overlap was measured at an azimuthal angle of −19.3◦ during the discharge 20
171 011.053.

To infer the bulk ion temperature from the measured
spectrum, we used the eCTS forward model and Bayesian
inference as described in Secs. III–V. The graphical model
used for the inference of ion temperature was the same
as in Fig. 9 with Ti, Te and G defined as free param-
eters having a prior probability distribution for the MAP
inversion.

FIG. 16. Calibrated CTS spectrum with maximum overlap obtained during the over-
lap sweep experiment (discharge 20 171 011.053). The spectrum contains only
one low frequency wing since the high frequency wing of the spectrum was cov-
ered by the notch filter. The fit of the spectrum was obtained by the eCTS model.
The bulk ion temperature was inferred by the MAP inversion in Minerva.

VII. DISCUSSION
Forward modeling of collective Thomson scattering spec-

tra is crucial for the data analysis. We have developed a
code for spectrum simulations based on the approach of
Refs. 23 and 22, and we have verified that our code repro-
duces the results previously reported by these authors. Dis-
crepancies between the spectra predicted by eCTS and the
full electromagnetic treatment are in agreement with the
ones reported in Refs. 24 and 8. The use of the electro-
static approximation is justified by the fact that the incident
wave is primarily scattered by the fluctuations in the electron
density. The fluctuations are associated with the longitudi-
nal modes in the plasma.16,19 The numerical approach (see
Sec. II) for calculating the sums which appear in the dielec-
tric plasma response and the scattering function is based
on Ref. 32 and the methods for calculating the ratios of
modified Bessel functions published in Refs. 33 and 39. The
method does not require the use of any particular scien-
tific libraries and can easily be extended to the summations
appearing in the full electromagnetic plasma dielectric ten-
sor. It should be noted that the summation index is an integer.
This in fact means that we assume a cylindrical symmetry in
velocity space. The method can be used also for fractional
l and thus allows abandoning the assumption of cylindrical
symmetry.

In Sec. III, we have demonstrated the sensitivity of the
result of our forward model to both the ion temperature and
the plasma composition. The ion temperature can be deduced
from the width of the observed spectrum or from an enhance-
ment of the signal corresponding to the ion acoustic feature.
As expected, the ion acoustic feature is observable only pro-
vided the electron temperature is substantially higher than the
ion temperature.

The developed forward model can be used as it is, but
due to a large amount of dependencies among the parame-
ters, a better fit is obtained if the model is fitted to the data
in a Bayesian fashion.14 To this end, we have implemented
our model into the Bayesian data analysis framework of W7-
X—Minerva—and used it to obtain the ion temperature from
synthetic data. The data analysis is performed within a stan-
dalone environment in Minerva. The prior distributions have
not been inherited from another model but defined within
the model builder. In Sec. V, we show that for spectra with
5% noise and with the input temperatures in the range Ti
= [1, 10] keV, the recovered temperature is within 10% of the
input value. For input temperatures in the range Ti = [10.5,
15] keV, the errorbars are larger, with a maximum value of
20% at Ti = 14 keV. Larger errorbars in the high tempera-
ture region can be attributed to electromagnetic effects, large
width of the spectra, and low signals. An electromagnetic
effect in the bulk ion region is visible in Fig. 10: the baseline
of this synthetic data set is tilted on the left side. This is an
electromagnetic effect in the X mode scattering. The effect
does not influence the inference of the bulk ion tempera-
ture because it does not change the width of the spectrum.
If such tilting is observed, the eCTS model can be used to
preferentially fit the higher frequency side of the spectrum
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and in this way overestimations of the ion temperature will be
prevented.

In theory, CTS is able to simultaneously provide values of
both the electron and ion temperatures. However, we do not
in general expect that to be the case in a fusion plasma. For
the analysis of real data, the value of the electron tempera-
ture and density, Te and ne, will be provided by the incoherent
Thomson scattering system. Within the framework, this will
be achieved by linking the Te and ne nodes to the incoher-
ent Thomson scattering forward model. In this scenario, the
error propagation is accounted for automatically in the fol-
lowing manner: the values of Te and ne are obtained from the
incoherent Thomson scattering model. The widths of the pos-
terior distributions of Te and ne define the widths of the prior
distributions for these nodes in the CTS forward model and
influence the width of the posterior distribution of the final
ion temperature. The first CTS spectrum measured on W7-X
depicted in Fig. 16 has been analyzed by the outlined model.
The result is in agreement with the result obtained by the X-
ray imaging crystal spectroscopy (XICS)40 diagnostic during
the same discharge.

VIII. CONCLUSION AND OUTLOOK
The developed code, eCTS, is a forward model of collec-

tive Thomson scattering in the electrostatic approximation. It
has been integrated into the Bayesian data analysis framework
Minerva and successfully used for the analysis of synthetic
and measured spectra. Taking into account that the electro-
static approximation is not valid for arbitrary plasma condi-
tions, or for arbitrary scattering geometries, we have shown
that the model can be used for the measurements of the bulk
ion temperature and plasma composition in W7-X plasmas.

The model presented here will be expanded into a full
electromagnetic model which will also be implemented into
Minerva. This will allow for a new and unique comparison
of the two treatments. Furthermore, the subsequent ver-
sions of the code will include relativistic effects both in the
geometrical form factor and the spectral density function.

ACKNOWLEDGMENTS
This work has been carried out within the framework of

the EUROfusion Consortium and has received funding from
the Euratom research and training programme 2014-2018
under Grant Agreement No. 633053. The views and opin-
ions expressed herein do not necessarily reflect those of the
European Commission.

REFERENCES
1W. L. G. Grieger et al., “Physics optimization of stellarators,” Phys. Fluids B
4(7), 2081 (1992).
2H. Wobig, “Theory of advanced stellarators,” Plasma Phys. Controlled
Fusion 41(3A), A159–A173 (1999).
3R. Konig et al., “The set of diagnostics for the first operation campaign of
the Wendelstein 7-X stellarator,” J. Instrum. 10, P10002 (2015).
4R. Behn, D. Dicken, J. Hackmann et al., “Ion temperature measurement of
tokamak plasmas by collective Thomson scattering of D2O laser radiation,”
Phys. Rev. Lett. 62(24), 2833–2836 (1989).

5F. Orsitto, “Feasibility study of bulk ion temperature measurement on jet
by means of collective scattering by gyrators radiation,” Rev. Sci. Instrum.
61, 3093 (1990).
6F. Orsitto, “Precision of ion temperatere and impurity fractional density
measurement using the jet collective Thomson scattering diagnostics,” Rev.
Sci. Instrum. 63, 4651 (1992).
7M. Salewski, F. Meo, M. Stejner et al., “Comparison of fast ion collec-
tive Thomson scattering measurements at ASDEX upgrade with numerical
simulations,” Nucl. Fusion 50(3), 035012 (2010).
8M. Nishiura, S. Kubo, K. Tanaka et al., “Spectrum response and analysis of
77 GHz band collective Thomson scattering diagnostic for bulk and fast ions
in LHD plasmas,” Nucl. Fusion 54, 023006 (2014).
9D. Moseev, F. Meo et al., “Comparison of measured and simulated fast
ion velocity distributions in the textor tokamak,” Plasma Phys. Controlled
Fusion 53(10), 105004 (2011).
10D. Moseev, M. Salewski et al., “Recent progress in fast-ion diagnostics for
magnetically confined plasmas,” Rev. Mod. Plasma Phys. 2, 7 (2018).
11M. Stejner, S. K. Nielsen, S. B. Korsholm et al., “Collective Thomson scat-
tering measurements with high frequency resolution at TEXTOR,” Rev. Sci.
Instrum. 81(10), 10D515 (2010).
12S. B. Korsholm, M. Stejner, H. Bindslev et al., “Measurements of intrinsic
ion Bernstein waves in a tokamak by collective Thomson scattering,” Phys.
Rev. Lett. 106(16), 165004 (2011).
13M. Stejner, S. B. Korsholm, S. K. Nielsen, M. Salewski et al., “Tempo-
rally resolved plasma composition measurements by collective Thomson
scattering in TEXTOR (invited),” Rev. Sci. Instrum. 83(10), 10E307 (2012).
14M. Stejner, S. Nielsen et al., “Resolving the bulk ion region of millimeter-
wave collective Thomson scattering spectra at ASDEX upgrade,” Rev. Sci.
Instrum. 85(9), 093504 (2014).
15P. Woskoboinikow, “Development of gyrotrons for plasma diagnostics
(invited),” Rev. Sci. Instrum. 57(8), 2113–2118 (1986).
16A. G. Sitenko, Electromagnetic Fluctuations in Plasma (Academic Press,
New York, 1967).
17I. H. Hutchinson, Principles of Plasma Diagnostics (Cambridge University
Press, Cambridge, 2002).
18H. Bindslev, “On the theory of Thomson scattering and reflectometry in a
relativistic magnetized plasma,” Ph.D. thesis, Riso National Laboratory, 1992,
see https://inis.iaea.org/collection/NCLCollectionStore/_Public/24/
037/24037118.pdf.
19J. Sheffield, D. Froula, S. H. Glenzer, and N. C. Luhmann, Jr., Plasma Scat-
tering of Electromagnetic Radiation: Theory and Measurement Techniques,
2nd ed. (Elsevier, 2010).
20M. Salewski et al., “Impact of ICRH on the measurement of fusion
alphas by collective Thomson scattering in ITER,” Nucl. Fusion 49, 025006
(2009).
21J. Svensson, O. Ford, D. C. Mcdonald et al., “Modelling of JET diagnos-
tics using Bayesian graphical models,” Contrib. Plasma Phys. 51(2-3), 152–157
(2011).
22L. Vahala, G. Vahala, and D. J. Sigmar, “Effects of alpha particles on
the scattering function in CO2 laser scattering,” Nucl. Fusion 26(1), 51–60
(1986).
23T. Hughes and S. Smith, “Calculations of Thomson scattering functions
for alpha particle diagnostics in JET plasmas,” Nucl. Fusion 28(8), 1451–1457
(1988).
24R. Aamodt and D. Russell, “Alpha particle detection by electromagnetic
scattering off of plasma fluctuations,” Nucl. Fusion 32(5), 745–755 (1992).
25H. Bindslev, “A quantitative study of scattering from electromagnetic
fluctuations in plasmas,” J. Atmos. Terr. Phys. 58(95), 983–989 (1996).
26A. I. Akhiezer et al., Collective Oscillations in a Plasma (Pergamon Press,
1967).
27Y. A. K. A. G. Sitenko, “Scattering and transformation of waves in a
magneto active plasma,” Sov. Phys. Usp. 9, 430 (1966).
28T. P. Hughes and S. R. P. Smith, “Effects of plasma dielectric properties
on Thomson scattering of millimetre waves in tokamak plasmas,” J. Plasma
Phys. 42, 215–240 (1989).

Rev. Sci. Instrum. 90, 023501 (2019); doi: 10.1063/1.5048361 90, 023501-11

Published under license by AIP Publishing

https://scitation.org/journal/rsi
https://doi.org/10.1063/1.860481
https://doi.org/10.1088/0741-3335/41/3A/010
https://doi.org/10.1088/0741-3335/41/3A/010
https://doi.org/10.1088/1748-0221/10/10/P10002
https://doi.org/10.1103/PhysRevLett.62.2833
https://doi.org/10.1063/1.1141691
https://doi.org/10.1063/1.1143649
https://doi.org/10.1063/1.1143649
https://doi.org/10.1088/0029-5515/50/3/035012
https://doi.org/10.1088/0029-5515/54/2/023006
https://doi.org/10.1088/0741-3335/53/10/105004
https://doi.org/10.1088/0741-3335/53/10/105004
https://doi.org/10.1007/s41614-018-0019-4
https://doi.org/10.1063/1.3475540
https://doi.org/10.1063/1.3475540
https://doi.org/10.1103/PhysRevLett.106.165004
https://doi.org/10.1103/PhysRevLett.106.165004
https://doi.org/10.1063/1.4729503
https://doi.org/10.1063/1.4894199
https://doi.org/10.1063/1.4894199
https://doi.org/10.1063/1.1138757
https://doi.org/10.1017/CBO9780511613630
https://inis.iaea.org/collection/NCLCollectionStore/_Public/24/037/24037118.pdf
https://inis.iaea.org/collection/NCLCollectionStore/_Public/24/037/24037118.pdf
https://doi.org/10.1088/0029-5515/49/2/025006
https://doi.org/10.1002/ctpp.201000058
https://doi.org/10.1088/0029-5515/26/1/005
https://doi.org/10.1088/0029-5515/28/8/012
https://doi.org/10.1088/0029-5515/32/5/I03
https://doi.org/10.1016/0021-9169(95)00129-8
https://doi.org/10.1070/pu1966v009n03abeh002893
https://doi.org/10.1017/s0022377800014318
https://doi.org/10.1017/s0022377800014318


Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

29B. Fried and S. Conte, The Plasma Dispersion Function: The Hilbert Trans-
form of the Gaussian (Academic Press, 1961).
30I. A. S. Milton Abramowitz, Handbook of Mathematical Functions (Dover,
1965).
31See http://functions.wolfram.com/03.02.23.0006.01 for the relevant
property of the modified Bessel functions of the first kind.
32B. F. J. Smith, “An algorithm for summing orthogonal polynomial series
and their derivatives with applications to curve-fitting and interpolation,”
Math. Comput. 19, 33–36 (1964).
33D. E. Amos, “Computation of modified Bessel functions and their ratios,”
Math. Comput. 28(125), 239–251 (1974).
34H. B. S. K. M. Stejner, S. K. Nielsen, and M. Salewski, “Principles of fuel ion
ratio measurements by CTS,” Plasma Phys. Controlled Fusion 53, 065020
(2011).

35A. Langenberg, J. Svensson, H. Thomsen et al., “Forward modeling of x-
ray imaging crystal spectrometers within the Minerva Bayesian analysis
framework,” Fusion Sci. Technol. 69(2), 560–567 (2016).
36T. W. Anderson and D. A. Darling, “Institute of mathematical statistics,”
Ann. Math. Stat. 23(2), 193–212 (1952).
37D. Moseev et al., “Collecective Thomson scattering on Wendelstein 7-x,”
Rev. Sci. Instrum. 90, 013503 (2019).
38N. Marushchenko, Y. Turkin, and H. Maassberg, “Ray-tracing code TRAVIS
for ECR heating, EC current drive and ECE diagnostic,” Comput. Phys.
Commun. 185(1), 165 (2014).
39W. Gautschi and J. Slavik, “On the computation of modified Bessel func-
tion ratios,” Math. Comput. 32(143), 865–875 (1978).
40M. Reinke et al., “X-ray imaging crystal spectroscopy for use in plasma
transport research,” Rev. Sci. Instrum. 83, 113504 (2012).

Rev. Sci. Instrum. 90, 023501 (2019); doi: 10.1063/1.5048361 90, 023501-12

Published under license by AIP Publishing

https://scitation.org/journal/rsi
http://functions.wolfram.com/03.02.23.0006.01
https://doi.org/10.1090/s0025-5718-1965-0172445-6
https://doi.org/10.1090/s0025-5718-1974-0333287-7
https://doi.org/10.1088/0741-3335/53/6/065020
https://doi.org/10.13182/FST15-181
https://doi.org/10.1214/aoms/1177729437
https://doi.org/10.1063/1.5050193
https://doi.org/10.1016/j.cpc.2013.09.002
https://doi.org/10.1016/j.cpc.2013.09.002
https://doi.org/10.2307/2006491
https://doi.org/10.1063/1.4758281

