

Platoon forming algorithms for intelligent street intersections

Citation for published version (APA):
Timmerman, R., & Boon, M. (2019). Platoon forming algorithms for intelligent street intersections. arXiv, 2019,
Article 1901.04583v1. https://doi.org/10.48550/arXiv.1901.04583

DOI:
10.48550/arXiv.1901.04583

Document status and date:
Published: 02/01/2019

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.48550/arXiv.1901.04583
https://doi.org/10.48550/arXiv.1901.04583
https://research.tue.nl/en/publications/0616964c-be30-4953-b803-2ef98bca1173

ar
X

iv
:1

90
1.

04
58

3v
1

 [
cs

.D
S]

 2
 J

an
 2

01
9

Platoon Forming Algorithms for Intelligent Street Intersections

R.W. Timmermana and M.A.A. Boona

aEindhoven University of Technology, Eindhoven, The Netherlands

ARTICLE HISTORY

Compiled 16th January 2019

Abstract

We study intersection access control for autonomous vehicles. Platoon forming al-
gorithms, which aim to organize individual vehicles in platoons, are very promising.
To create those platoons, we slow down vehicles before the actual arrival at the in-
tersection in such a way that each vehicle can traverse the intersection at high speed.
This increases the capacity of the intersection significantly, offering huge potential
savings with respect to travel time in nowadays traffic.

We propose several new platoon forming algorithms and provide an approximate
mean delay analysis for our algorithms. A comparison between the current day prac-
tice at intersections (through a case study in SUMO) and our proposed algorithms is
provided. Simulation results for fairness are obtained as well, showing that platoon
forming algorithms with a low mean delay sometimes are relatively unfair, indicating
a potential need for balancing mean delay and fairness.

KEYWORDS

Platoon forming algorithms, speed control algorithms, autonomous vehicles,
queueing theory, polling models.

1. Introduction

Congestion is commonplace at intersections in urban traffic, but intersections are in-
evitable to divide capacity among vehicles from conflicting flows. To do so in a fair
and efficient manner, intersections are typically managed by some kind of switching
process that alternatingly gives access to batches of vehicles, imposing a constraint on
the maximal batch size that can pass the intersection.

The traditional way of regulating the switching process is by installing traffic lights
with static signalling, using timers, see e.g. Darroch (1964) and van Leeuwaarden
(2006), or dynamic signalling with sensor data of currently existing traffic flows, see
e.g. Papageorgiou et al. (2003). Anticipating the emergence of self-driving vehicles, ef-
ficient and fair algorithms for intersection access should be designed. Platoon Forming
Algorithms (PFAs) provide such alternatives for self-driving vehicles, no longer letting
the traffic light dictate the switching process and hence batch forming, but letting
the vehicles organize themselves in batches, well in advance of arriving at the inter-
section as in Miculescu and Karaman (2014, 2016) and Tachet et al. (2016). This way
platoons of vehicles are formed that can pass the intersection collectively.

There is a natural tension between capacity and fairness. One of the fairest switching
rules is to let vehicles pass the intersection in order of arrival (on an intersection wide

Contact R.W. Timmerman, email: r.w.timmerman@tue.nl

http://arxiv.org/abs/1901.04583v1

basis). This rapidly becomes unsustainable, because each switch requires an additional
clearance time, which decreases the capacity of the intersection. In near-saturation
conditions, when the flows together impose a high volume-to-capacity ratio, the loss
of capacity due to switching will have a dramatic effect on delays.

In PFAs, vehicles arriving at the intersection arrange themselves in platoons, not
adapting their relative position to other vehicles on the same lane but adapting their
speed. The key feature is that cars, while approaching the intersection, adjust their
speeds and upon arrival at the intersection are at high speed, accessing the conflict area
of the intersection for a minimum period of time. In this way, time bans to give way
to other traffic flows still exist, but the platoons are processed in the quickest possible
way, because the size and speed of the platoons, of all directions, are organized by the
PFA.

PFAs are one particular example of the ‘slower is faster’ effect, which is also ob-
served in e.g. Helbing, Farkas, and Vicsek (2000) and Helbing and Mazloumian (2009),
where, perhaps counter-intuitively, slowing down early results in less delay on average
in the future. Moreover, this phenomenon results in environmental advantages as less
braking-and-pulling-up-again is needed and cars reach their destination more quickly.

The importance of intersection access algorithms has been recognized for several
years. Examples of PFAs can be found in Tachet et al. (2016), which uses a batch
formation algorithm based on arrival times of vehicles and a maximum batch size
and in Miculescu and Karaman (2014, 2016), which use queueing models, and to be
more specific polling models. The key link between the PFAs and polling models is
a speed control algorithm introduced in Miculescu and Karaman (2014), which we
will use in our models as well. However, many more models and control techniques
are investigated like reservation based control algorithms, see e.g. Dresner and Stone
(2008), and controls based on fuzzy logic, see e.g. Milanés et al. (2010). For an overview
we refer to Rios-Torres and Malikopoulos (2017), yet we focus on PFAs in this paper.

The area of application of PFAs is not restricted to intersections. There are nu-
merous cases where PFAs could be used to achieve a good performance. An ex-
ample in traffic would be the merging of different streams of vehicles (discussed in
e.g. Rios-Torres and Malikopoulos 2017). Another possible application can be found
in automated guided vehicles (AGVs) systems, where AGVs cross each other or have
to merge, see e.g. Kockelkoren (2018). In Kockelkoren (2018), ideas stemming from
speed profile algorithms are used and so PFAs can be used in similar types of AGV
systems.

Main Contributions

We present several new PFAs, based on enhanced polling policies, that perform well re-
garding mean delay, unifying and extending ideas from Miculescu and Karaman (2016)
and Tachet et al. (2016).

A key building block are speed profile algorithms such as the MotionSynthesize
procedure, introduced in Miculescu and Karaman (2014), revealing a relation between
PFAs and polling models. We have developed an alternative to the MotionSynthesize
procedure exhibiting desirable properties and we have found closed-form solutions for
the MotionSynthesize procedure and this alternative, alleviating the need for linear
optimization solvers.

Using such speed profile algorithms, a link between polling models and PFAs is
established, making it possible to conduct a performance analysis on e.g. mean delay,

2

which is the main performance characteristic considered in the literature for algorithms
like PFAs.

Another important characteristic is the fairness of a PFA. Fairness in queueing
models (and therefore PFAs) is important in the perception of customers, see
e.g. Rafaeli, Barron, and Haber (2002). We use the quantification of fairness as defined
in Shapira and Levy (2016) for polling models, in order to assess the fairness of the
various PFAs.

Furthermore, we provide a comparison between the performance of traditional traffic
technologies and PFAs through simulations in SUMO and show that intersections in
the future can be used much more efficiently, reducing congestion.

Organization of the paper

This paper is organized in the following way. We start with a description of the various
ingredients of the model and provide an extensive description of the new PFAs that we
introduce in Section 2. Section 3 is devoted to speed profile algorithms. Afterwards, we
introduce polling models and give the analytical results that we need for the analysis
of mean delay and fairness of PFAs in Section 4. Subsequently, Section 5 provides a
comparison between the traditional traffic light (represented by simulations in SUMO)
and our PFAs, focusing on mean delay and we wrap up in Section 6.

2. Model Formulation

We will consider models in which autonomous vehicles are crossing an intersection.
We assume the existence of a control region around the intersection with at the center
a centralized controller communicating with all vehicles within the control region,
setting the access times of each of the arriving vehicles to the intersection. This central
controller creates platoons of vehicles by scheduling the crossing times of the vehicles
according to some policy (the PFA) in such a way that every vehicle is able to cross
the intersection at its designated time. We assume that we can control the speed of
a vehicle and do so in such a way that the intersection is used efficiently. We make
sure that vehicles drive at maximum speed at the moment they are starting to cross
the intersection, using ideas introduced in Miculescu and Karaman (2014). Instead of
stopping at the stop line and still having to accelerate when crossing the intersection, a
vehicle is already slowed down before it reaches the intersection and starts accelerating
again before it reaches the intersection. This amongst others implies that the time to
cross the intersection is the same for each vehicle. Each vehicle is namely simply driving
at full speed through the intersection. The last assumption discussed here, is that we
assume that the central controller can look ‘ahead’ for the same amount of time for
each of the lanes, to ease the notation and algorithms.

An advantage of the control region, besides the ability to control the speed of
arriving vehicles, is that we can adjust the scheduling of the vehicles based on the
arriving vehicles that are not yet at the intersection. This specific anticipation is key to
the forming of platoons and is up to the central controller at the intersection and results
in a specific PFA. There are many PFAs, yet we will specifically focus on PFAs that
find their origin in so-called polling models, because they are efficient, well understood
and have proven their value in other application areas, such as communication systems
and production lines.

3

2.1. Platoon Forming Algorithms

We present our new PFAs as standalone algorithms, based on service disciplines for
polling models, which are described in a way fit for PFAs. We also briefly discuss the
Batch Algorithm, originating from Tachet et al. (2016), which serves as a benchmark
for our PFAs. The PFAs we discuss, are all derived from so-called branching-type
disciplines, which find their origin in the polling literature, see e.g. Resing (1993).
Branching-type service disciplines include the exhaustive and the gated discipline,
which all allow for many exact results.

Before we start with the descriptions of the PFAs we introduce some concepts
and notation. The PFA determines the crossing time of each of the vehicles in the
control region that have not yet crossed the intersection. We represent this schedule
by an entity we call ‘vehicles’. A vehicle V has three properties: a lane dV , an earliest
crossing time aV and the currently scheduled crossing time cV . We assume that at
every point in time we have such a list of vehicles, ordered on basis of the cV ’s. The
PFA updates (part of) the crossing time of the vehicles upon arrival and departure
epochs of vehicles in the control region. The latter is dealt with in an easy way: if
the current time is cV +B, where B denotes the difference in crossing times between
two vehicles on the same lane, then vehicle V is removed from the ordering. Turning
towards arrivals of vehicles within the control region, we need to consider the crossing
times of all vehicles already scheduled in order to schedule V . There are several ways
to schedule those vehicles and the first we discuss is the exhaustive discipline, as
described in Algorithm 1. This discipline is known for its low mean delay, which is
the main reason to consider this discipline. We also introduce one more constant, S,
that represents the time between the start of crossing of two vehicles on different lanes
(similar to clearance times at intersections nowadays).

An intuitive explanation of the exhaustive discipline is the following: if a vehicle
that arrives in the control region is able to get within B seconds of the vehicle in front
of it on the same lane (which might occur if the vehicle is delayed by its predecessor),
it is allowed to join the same platoon as its predecessor. This would imply that all
vehicles on different lanes have to wait an additional B seconds. If a vehicle cannot
join the platoon in front of it, it will form a new platoon. If no vehicle (on the current
lane) is able to join the platoon currently crossing the intersection, the next platoon
of vehicles at the next lane may cross the intersection. As a result we have a cyclic
structure of departures of platoons.

Although the exhaustive PFA will have very good delay characteristics, we will
consider the gated PFA (discussed below) as well. An advantage of the gated discipline
is that there is less variation in the size of platoons and, hence, cycle lengths are less
variable as well. It may result in longer delays though, as we will see in the numerical
examples in Section 4.

For the gated PFA, we need to keep track of one additional variable for each vehicle,
compared to the exhaustive PFA. In this gated discipline we are ‘putting gates’ which
can be seen as ‘fixing the vehicles of a platoon’, meaning that future arrivals in the
same lane cannot join the currently formed platoon (i.e. they are ‘behind the gate’).
We use an indicator, gV , for vehicle V . If gV = 1, it denotes that the vehicle is allowed
in the same, currently departing, platoon as its predecessor, whereas a 0 denotes that
the vehicle is behind the gate and is not part of the currently departing platoon.

The intuitive explanation of the gated algorithm is quite close to that of the ex-
haustive discipline, with one exception. It is not always allowed to join a platoon, even
if a vehicle is able to get within B seconds from its predecessor on the same lane. This

4

Algorithm 1 exhaustive algorithm.

1: Input: current ordering of vehicles, denoted (V1, V2, ..., Vk), ordered on basis of cV ;
the last vehicle that started to cross the intersection, Vlast; and a to be scheduled
vehicle V0 with earliest arrival time at the intersection aV0

in lane dV0
.

2: if cVK
+B < aV0

then ⊲ The ordering is empty
3: if dV0

= dVlast
then

4: Put cV0
= max{aV0

, cVlast
+B}.

5: else

6: Put cV0
= max{aV0

, cVlast
+ S}.

7: end if

8: else ⊲ The ordering is nonempty
9: if there exists an i, i = 1, 2, ..., k, with dVi

= dV0
then

10: Find the vehicle Vj in ordering with dVj
= dV0

and cVj
is maximal.

11: Put cV0
= cVj

+B.
12: For each vehicle V with cV > cVj

, put cV = cV +B.
13: else ⊲ Search for the predecessor of V0 in the schedule
14: for l in (dV0

− 1, dV0
− 2, ..., 1, n, n − 1, ..., dV0

+ 1) do
15: if there is a vehicle V with dV = l then
16: break

17: end if

18: end for

19: Find the vehicle Vj with dVj
= l and cVj

is maximal.
20: if cVj

+ S > aV0
then

21: Put cV0
= cVj

+ S.
22: For each vehicle V with cV > cVj

, put cV = cV + S.
23: else

24: Put cV0
= cVK

+ S.
25: end if

26: end if

27: end if

28: Add vehicle V0 to the ordering.
29: Output: the new ordering (V1, V2, ..., V0, ..., VK), where the vehicles V are ordered

on basis of cV .

is only allowed if the lane is not the lane from which vehicles are currently departing
(the platoon is not yet fixed). Therefore, the variables gV are governed by the follow-
ing process: as soon as a vehicle V ′ starts to cross the intersection and gV ′ = 0, then
we put gV ′ = 1 and for all vehicles V that have a scheduled time within B from its
predecessor (i.e. the vehicles that are forming a platoon at that specific moment), the
variable gV is put to 1 (i.e. they are in front of the gate and the platoon is finalized).
Departures of vehicles are dealt with in the same way as in the exhaustive discipline.
We again have the cyclic structure as in the exhaustive discipline. The gated algorithm
can then be described as in Algorithm 2.

As a reference to algorithms so far established in the literature, we also con-
sider the Batch Algorithm from Tachet et al. (2016). For the full description we refer
to (Tachet et al. 2016, Supplementary Information, Section 1.5). The Batch Algorithm
has some ingredients of a gated PFA (also in the Batch Algorithm ‘gates’ are put),
together with a maximum number of vehicles dealt with in one cycle.

5

Algorithm 2 gated algorithm.

1: Input: current ordering of vehicles, denoted (V1, V2, ..., Vk), ordered on basis of cV ;
the last vehicle that started to cross the intersection, Vlast; and a to be scheduled
vehicle V0 with earliest arrival time at the intersection aV0

in lane dV0
.

2: if cVK
+B < aV0

then ⊲ The ordering is empty
3: if dV0

= dVlast
then

4: Put cV0
= max{aV0

, cVlast
+B}.

5: else

6: Put cV0
= max{aV0

, cVlast
+ S}.

7: end if

8: else ⊲ The ordering is nonempty
9: if there exists an i with dVi

= dV0
then

10: if all vehicles V ′ with lane dV ′ = dV0
satisfy gV ′ = 1 then

11: if dVK
= dV0

then

12: Put cV0
= cVK

+B.
13: else

14: Put cV0
= cVK

+ S.
15: end if

16: else

17: Find the vehicle Vj with dVj
= dV0

and cVj
is maximal.

18: Put cV0
= cVj

+B.
19: For each vehicle V with cV > cVj

, put cV = cV +B.
20: end if

21: else ⊲ Search for the predecessor of V0 in the schedule
22: for l in (dV0

− 1, dV0
− 2, ..., 1, n, n − 1, ..., dV0

+ 1) do
23: if there is a vehicle V with dV = l then
24: break

25: end if

26: end for

27: if all vehicles V ′ with lane dV ′ = i satisfy gV ′ = 0 then

28: Find the j with dVj
= i and cVj

is maximal.
29: Put cV0

= cVj
+ s.

30: For each vehicle V with cV > cVj
, put cV = cV + S.

31: else

32: Find the j with dVj
= i, gVj

= 1 and cVj
is maximal.

33: Put cV0
= cVj

+ S.
34: if all vehicles V satisfy dV = i then
35: For each vehicle V with cV > cVj

, put cV = cV + 2S −B.
36: else

37: For each vehicle V with cV > cVj
, put cV = cV + S.

38: end if

39: end if

40: end if

41: end if

42: Add vehicle V0 to the ordering.
43: Output: the new ordering (V1, V2, ..., V0, ..., VK), where the vehicles V are ordered

on basis of cV .

6

3. Speed Profile Algorithms

Now that we know how to schedule the crossing times of vehicles at the intersection, we
turn to the other key ingredient of our model, which is the speed profiling of arriving
vehicles. We start with some requirements that the PFAs have to satisfy before we can
control the speed of the arriving vehicles in a proper and safe way. The main condition
a PFA has to satisfy is regularity.

Definition 3.1 (Miculescu and Karaman 2014, 2016). A polling policy is regular if
an arrival in a queue does not change the order of service of all currently present
vehicles. I.e. the new arrival is inserted somewhere in the order of service of all waiting
vehicles.

A regular polling policy, together with assuming a sufficiently big control region,
ensures that the intersection coordination algorithm in Miculescu and Karaman (2014,
2016) and the speed profile algorithms that we will introduce are solvable. These
assumptions are necessary with respect to the (possibility of) rescheduling of vehicles.
As can be seen in Algorithms 1 and 2, the access time of (some of the) vehicles to
the intersection might be increased, upon which trajectories have to be rescheduled.
The above assumptions ensure that we can find feasible and safe trajectories for every
vehicle, also in case of rescheduling, cf. Miculescu and Karaman (2014, 2016).

Besides these two assumptions on regularity and the size of the control region, we
also need to make sure that there are not too many vehicles in the control region at the
same time: if there are too many vehicles present in the control region, it might be the
case that a newly arriving vehicle cannot decelerate to a complete stop in the distance
between entering the control region and the stopping position of its predecessor. This
phenomenon is called overcrowding, see Miculescu and Karaman (2016). A way to deal
with this is proposed as well: we assume that a vehicle that cannot enter the control
region safely, does not enter the control region at all.

All PFAs that we discussed are regular in the sense of Definition 3.1. For the Batch
Algorithm of Tachet et al. (2016) we postulate that this condition is also satisfied.

3.1. Optimization based Speed Profile Algorithms

In this subsection, we discuss two algorithms that, satisfying above conditions, result
in an efficient use of the intersection which is our main purpose. To this end, we require
that vehicles drive at maximum speed while crossing the intersection, so we need to
control the speed of arriving vehicles while they are in the control region. A relatively
simple optimization algorithm can then be formulated that does the trick, as is shown
in Miculescu and Karaman (2014, 2016) (the MotionSynthesize procedure). In order to
solve this minimization problem, time is discretized. The MotionSynthesize procedure
is then reduced to a linear optimization problem, for which efficient solvers exist.

The optimization procedure has several nice properties, among which is that the
algorithm is provably safe (Miculescu and Karaman 2016). Another property is that
the distance between vehicle and intersection is minimized across the whole time period
a vehicle is in the control region. This is equivalent with the minimization of the area
under the distance-time diagram, where the distance is defined as the distance between
vehicle and intersection. The physical length of the queue of vehicles is thus also
minimized. This is favorable in a network setting, minimizing the amount of spillback
to other intersections. Yet, this specific property of minimizing the distance between

7

vehicle and intersection has a high energy consumption and may not be very pleasant
for passengers. Below, in Algorithm 3, we discuss a slightly different formulation of the
problem and we minimize the total amount of the absolute value of the acceleration
instead of the distance between vehicle and intersection. Instead of minimizing the area
under the distance-time graph, we now minimize the area under the ‘absolute value
of the acceleration-time’ graph. Note that tf is set by the PFA, which corresponds
to the time cV in Algorithms 1 and 2. We use the notation tf for consistency with
the notation in Miculescu and Karaman (2016). Assuming regularity of the PFA and a
sufficiently big control region is not sufficient to ensure a feasible optimization problem
as it is for the MotionSynthesize procedure. We formulate a mild additional constraint
to guarantee feasibility of the optimization problem, which is that one needs to be
sure that when the preceding vehicle is done decelerating, the next vehicle is able
to decelerate to that same speed as well before the preceding vehicle is decelerating
further (due to rescheduling for example). As will turn out, a vehicle starts decelerating
immediately after entering the control region (see e.g. Figure 1). As a consequence, if
a vehicle is entering the control region, it needs to be sure that it is able to decelerate
to the speed of its predecessor while maintaining a certain distance to its predecessor
at the same time, showing that we need the additional assumption.

Before we turn to the algorithm, we introduce some notation. Each vehicle has a
trajectory that is computed along the lines of the algorithm, given the current time,
t0, and the scheduled crossing time tf . The algorithm will compute x(t), the place
of the vehicle at time t, t0 ≤ t ≤ tf , the speed v(t) at time t and the acceleration
a(t) at time t. Furthermore, y(t) denotes the trajectory of the predecessor (if any);
l denotes the minimal distance between the front part of two successive vehicles; am
denotes the maximum acceleration; −am denotes the maximum deceleration; and vm
denotes the maximum speed. Algorithm 3 can be discretized in order to obtain a linear
optimization problem, just as the MotionSynthesize procedure.

Algorithm 3 MotionSynthesize procedure with a minimal acceleration

1: Input: x0(t0), v0(t0), t0, tf , y.
2: Compute

MotionSynthesizeAcc(x0(t0), v0(t0), t0, tf , y) := argmin
x:[t′

0
,t′f]→R

∫ t′f

t′
0

|a(t)|dt

subject to

x′′(t) = a(t), for all t ∈ [t′0, t
′
f];

0 ≤ x′(t) ≤ vm, for all t ∈ [t′0, t
′
f];

|a(t)| ≤ am, for all t ∈ [t′0, t
′
f];

|x(t)− y(t)| ≥ l, for all t ∈ [t′0, t
′
f];

x(t0) = x0(t0); x
′(t′0) = v(t0);

x(tf) = 0; x′(tf) = vm.

3: Output: x(t).

Algorithm 3 is solvable under the set of conditions formulated above, i.e. regularity
of the PFA, a sufficiently big control region and the assumption on decelerating of a
predecessor of a vehicle. The main difference is that instead of minimizing the distance

8

from vehicle to intersection, we minimize the (absolute value of the) acceleration ap-
plied by the vehicle while being in the control region. This obviously has consequences
for the amount of energy consumption (it will be lower than in the MotionSynthesize
procedure). Disadvantages include that the physical length of the queue grows and
that vehicles cannot enter the control region as close to each other (as vehicles slow
down immediately when entering the control region).

We have found analytical solutions to the MotionSynthesize procedure and Al-
gorithm 3. So instead of the need to solve a linear optimization problem each time,
we have a simple set of calculations that we can perform to find the trajectory of
a vehicle, which is optimal with respect to minimizing the distance or acceleration.
These analytical solutions are discussed in the next subsection and are similar in spirit
as the results in e.g. Lawitzky, Wollherr, and Buss (2013) and Dib et al. (2014).

3.2. Closed-form Speed Profile Algorithms

We start with the observation that the optimization problem formulated in the Mo-
tionSynthesize procedure always leads to piece-wise constant acceleration, where at
most four changes in the acceleration occur. Below we will see why.

This observation implies that if we can find the points at which the acceleration
changes, we are able to determine the trajectory analytically and in closed-form. We
give some intuition behind the main ideas of Algorithm 4. We have to plan the tra-
jectory from t0 until tf , the crossing time set by the PFA. It is sufficient to give the
acceleration for any time t for which t0 ≤ t ≤ tf . As said, the acceleration is piece-wise
constant and there are at most four changes in the acceleration. We shortly describe
those five parts of the arriving trajectory.

• No acceleration or deceleration from t0 until tdec;
• Deceleration at maximum rate from tdec until tstop;
• A stop from tstop until tacc;
• Acceleration at maximum rate from tacc until tfull;
• No acceleration or deceleration from tfull until tf .

All that remains is that we have to find tdec, tstop, tacc and tfull in such a way that
we minimize the distance between vehicle and intersection. The four times are found
using the following observations. We continue as long as possible at maximum speed,
decreasing the distance between intersection and vehicle as quickly as possible (this
corresponds to time tdec). After some time we know that we have to decelerate, because
if we do not, we either are too early at the intersection or not at a maximum speed.
This implies that the remainder of the trajectory is fixed: we decelerate at maximum
rate (until tstop), possibly stop for some time (until tacc), and accelerate at maximum
rate (until tfull). Then the vehicle might drive at full speed for some time until tf .

The closed-form solution of the MotionSynthesize procedure is formulated in Al-
gorithm 4, where we assume that t0 = 0 to ease the notation and that v0(0) = vm.
We can allow for general v0(0), but the algorithm would become more involved and in
the interest of space and clarity we focus on the case v0(0) = vm. The input consists
of the current distance between vehicle and intersection, x0(0), the scheduled crossing
time of the vehicle, tf , and the trajectory of the predecessor of the vehicle for which
we are currently planning the trajectory, y.

We prove that the MotionSynthesize procedure and Algorithm 4 are equivalent,
which is the subject of the next lemma.

9

Algorithm 4 closed-form solution to the MotionSynthesize procedure.

1: Input: x0(0), tf and y.
2: Define the arrival time of the vehicle associated with y as tf,y.
3: if tf − tf,y = B then

4: Consider trajectory y and determine the time at which the vehicle continues
at full speed. Call this time tfull.

5: else

6: Put tfull = tf .
7: end if

8: Put

L = vm(tf −
vm
am

). (1)

⊲ L represents the distance covered if a vehicle stops for 0 seconds
9: if L ≥ x0 then ⊲ The vehicle has to stop

10: Put tacc = tfull − vm/am.
11: Put tstop = tacc − (tf − vm/am − x0/vm).
12: Put tdec = tstop − vm/am.
13: else ⊲ The vehicle does not have to stop
14: Define

t̃ =

√

−x0 + tfvm
am

. (2)

⊲ t̃ is the deceleration time
15: Put tacc = tfull − t̃.
16: Put tstop = tacc.
17: Put tdec = tacc − t̃.
18: end if

19: Then

a(t) = x′′(t) =































0 if 0 ≤ t < tdec,

−am if tdec ≤ t < tstop,

0 if tstop ≤ t < tacc,

am if tacc ≤ t < tfull,

0 if tfull ≤ t < tf .

(3)

20: Knowing a(t), we can compute x(t) by integrating twice and using the conditions
x(0) = x0 and the velocity at time 0 being vm.

21: Output: x(t).

Lemma 3.2. The MotionSynthesize procedure and Algorithm 4 are equivalent in the
sense that both minimize the distance between vehicle and intersection across the time
period t0 to tf .

Proof. We split the proof in two parts. First we prove that the obtained form of the
trajectory is optimal (i.e. the five parts of the trajectory) and then we prove that the
times tdec, tstop, tacc and tfull in Algorithm 4 indeed result in the trajectory having

10

the minimal area under the distance-time graph.

Segment 1. We first argue that the trajectory consists of at most five parts. The last
part, from tfull until tf , has non-zero length if (and only if) the vehicle V of which
we are currently planning the trajectory is delayed by its predecessor, of which the
trajectory is denoted with y. This means that at some point in time, the constraint
that there should be a minimal distance between the two vehicles (i.e. the constraint
|x(t) − y(t)| ≥ l in the MotionSynthesize procedure) is active. Then we observe that:
the time between the crossing of V and its predecessor is B; the minimum distance
between two vehicles is fixed for the whole time period; and that at some point the
predecessor of V is driving at full speed, which we denote with tf,y. So, from the
first moment that the distance between the two vehicles is the minimum distance, the
distance remains the same. This means that we need the vehicle V to drive at full
speed from tf,y, as well, so tfull = tf,y.

We describe the first four parts of the trajectory, which are split in the following
way: driving at full speed (until tdec), decelerating (until tstop), stop (until tacc) and ac-
celerating (until tfull), where the last three periods may have zero length. V continues
as long as possible at full speed (decreasing the distance between vehicle and intersec-
tion as quickly as possible). This implies that if V decelerates, it has to decelerate at
maximum rate (otherwise we could have continued at full speed longer). Depending on
the amount of delay, the vehicle might be stopped for some time. It stops at the place
where V is just able to reach the maximum speed, when accelerating at maximum rate
(for if V does not, it could stop closer to the intersection). The described trajectory
minimizes the distance between vehicle and intersection, because we continue as long
as possible at full speed from the start.

Segment 2. As argued in Part 1, the time tfull is determined by the trajectory y
of the predecessor of V and is fixed. If the crossing times differ a time B, then the
time at which the predecessor starts driving at full speed, tf,y, should equal tfull, and
otherwise it is simply tf , which is the way we choose tfull in lines 3-7.

Then we need to check whether or not the vehicle has to stop. We do this by
calculating the distance that V would cover when it stops for 0 seconds. This is done
in (1). Define vm/am = t1, then indeed

L = (tf − 2t1)vm −
1

2
amt21 + vmt1 +

1

2
amt21 = (tf − t1)vm.

If L ≥ x0, it means that V would cover a larger distance than or the same distance
as x0 if it stops for 0 seconds. But then it potentially crosses the intersection before tf ,
so we need to stop V . We do this for a time L/vm − x0/vm = tf − vm/am − x0/vm, as
this is the time at which the vehicle would start crossing the intersection ‘too early’.
So, building backwards from tfull, we see that tacc = tfull − vm/am (as the vehicle has
to accelerate from 0 to vm), tstop = tacc−(tf−vm/am−x0/vm) and tdec = tstop−vm/am
(as the vehicle has to decelerate from vm to 0) as in lines 10-12.

If L < x0, then the vehicle does not have to stop. This means that, if t represents
the time V decelerates (and also accelerates), we traverse a distance

vm(tf − t) + (vm − amt)t,

which has to equal x0. Solving for t yields one positive solution, which is given by t̃ in
(2). So, in this case we can choose tacc = tfull − t̃, tstop = tacc and tdec = tstop − t̃, as

11

in lines 15-17. Note that tstop does not correspond to a stop of the vehicle if L < x0,
but to the time we start accelerating (which is why we choose tstop = tacc).

Then combining the defined times, we see that we obtain (3). With this choice of
times, we see that we minimize the area under the distance-time graph. This is exactly
the same criterion as we optimize for in the MotionSynthesize procedure, so the two
algorithms yield the same trajectory.

Remark 1. Algorithm 4 assumes that there is at most one period of deceleration,
possibly a stop, and acceleration. It is readily seen that this is the case for the exhaust-
ive and gated PFA. However, for other disciplines, like the Batch Algorithm, this might
not be the case, and the period from t0 until tf might have to be split in more than
five different periods. A similar type of speed profile algorithm is still possible, but is
more involved and therefore omitted in interest of space and clarity of the algorithm
and argumentation.

So, Algorithm 4 has the same desirable properties as the MotionSynthesize proced-
ure, but is computationally much less expensive and also provides intuition on the
shape of the trajectories. A visualization of such trajectories can be found in Figure 1.

We can also formulate such an alternative for Algorithm 3, where we, again, put t0 = 0
to ease the notation. We allow for general v0(0) now. We have the same structure as
for Algorithm 4. Also in this case, the acceleration is piece-wise constant, yet there
are at most three changes in the acceleration. We shortly describe those four parts of
the arriving trajectory.

• Deceleration at maximum rate from t0 until tcruise;
• No acceleration or deceleration from tcruise until tacc;
• Acceleration at maximum rate from tacc until tfull;
• No acceleration or deceleration from tfull until tf .

This is also visible in Figure 1 below. Note that we start decelerating as soon as
possible, because we want to cruise at a relatively low speed. If we would not cruise at
a low speed, then we would have to decelerate more (as we covered a longer distance at
high speed). So we decelerate maximally for some time, continue at a constant speed
for some time and then accelerate maximally (taking advantage of the lower cruising
speed as long as possible). The resulting algorithm is formulated in Algorithm 5 and
equivalence with Algorithm 3 is proven thereafter.

Then we have the following lemma.

Lemma 3.3. Algorithm 3 and Algorithm 5 are equivalent in the sense that both min-
imize the absolute value of the applied acceleration across the time period t0 to tf .

Proof. We again split the proof in two parts, the form of the trajectory and then we
check the computation of tcruise, tacc and tfull in Algorithm 5.

Segment 1. The optimal trajectory consists of at most four parts. The last part,
from tfull until tf is determined in the same way as shown in the proof of Lemma 3.2.

The first three parts of the trajectory are split in the following way: decelerating
(until tcruise), cruising at a fixed speed (until tacc) and accelerating (until tfull), where
the first and last period may have zero length. We want to minimize the area under
the absolute value of the acceleration-time graph. We decelerate as early as possible

12

Algorithm 5 closed-form solution to Algorithm 3.

1: Input: x0(0), v0(0), tf and y.
2: Define the arrival time of the vehicle associated with y as tf,y.
3: if tf − tf,y = B then

4: Consider trajectory y and determine the time at which the vehicle continues
at full speed. Call this time tfull.

5: else

6: Put tfull = tf .
7: end if

8: Put

t1 =
amtf + v0(0) − vm

2am
−

√

4amx0 + (amtf − v0(0))2 − 2amtfvm − 4am(tf − tfull)vm + 2v0(0)vm − v2m
2am

(4)
9: Put

t2 =
amtf + v0(0) − vm

2am
+

√

4amx0 + (amtf − v0(0))2 − 2amtfvm − 4am(tf − tfull)vm + 2v0(0)vm − v2m
2am

(5)
10: Put tcruise = t1 and tacc = t2.
11: Then,

a(t) = x′′(t) =



















−am if 0 ≤ t < tcruise,

0 if tcruise ≤ t < tacc,

am if tacc ≤ t < tfull,

0 if tfull ≤ t < tf .

(6)

12: Knowing a(t), we can compute x(t) by integrating twice and using the conditions
x(0) = x0 and the velocity at time 0 being v0(0).

13: Output: x(t).

and accelerate as late as possible, and both at the maximum rate. If we would not
do one of these three things, it means that we would have to decelerate more as we
drive at high speed longer (and as e.g. the average speed is fixed, namely x0/tf , we
would have to decelerate more to a lower speed). So, indeed the first three parts of
a trajectory consist of decelerating at maximum rate, then cruising at a fixed (and
relatively low) speed and then accelerating at maximum rate.

Segment 2. As argued in the proof of Lemma 3.2, the time tfull is determined by
the trajectory y of the predecessor of V and is fixed. So tfull is chosen as in lines 3-7.

Knowing this, we can compute the remainder of the trajectory. We can compute
the traversed distance if we immediately decelerate for a time t and accelerate as late
as possible for a time t + vm/am − v0(0)/am (because it might be that v0(0) 6= vm),

13

which is

v0(0)t−
1

2
amt2 +

(

vm − am(t+
vm
am

−
v0(0)

am
)

)(

t+
vm
am

−
v0(0)

am

)

+ (tf − tfull)vm+

(

vm − am(t+
vm
am

−
v0(0)

am
)

)(

tf − 2t−
vm
am

+
v0(0)

am

)

+
1

2
am

(

t+
vm
am

−
v0(0)

am

)2

.

(7)
Equating (7) with x0 and solving for t, results in two positive values. The smaller one
is given as t1 in (4) and the larger one as t2 in (5). So we can put tcruise = t1 and
tacc = t2.

Then combining the defined times, we obtain (6). With this choice of times, we see
that we minimize the area under the absolute value of the acceleration-time graph. This
is exactly the same criterion as we optimize for in Algorithm 3, so the two algorithms
yield the same trajectory.

A visualization of trajectories generated by Algorithms 4 and 5 is depicted in Fig-
ure 1.

0 5 10 15 20 25

0

20

40

60

80

100

t

x(
t)

Figure 1. Algorithm 4 (solid lines) and Algorithm 5 (dashed lines) for several vehicles with t (s) on the
horizontal axis and x(t) (m) on the vertical axis for several vehicles.

4. Performance Analysis

Having covered the two main ingredients of the model, we turn to the performance
analysis. The two measures that we consider are mean delay and fairness. In order to
obtain results on mean delay and fairness, we first establish a link between the model
we described so far and polling models.

4.1. Polling Model

Polling models are well-studied mathematical objects representing queueing models
with multiple queues sharing a single server. For an overview of applications we refer
to Boon, van der Mei, and Winands (2011) and for an overview of commonly used
methods we refer to Vishnevskii and Semenova (2006).

14

A general polling model has n queues, each with a distinct arrival process (usually
a Poisson process) with parameter λi, which are assumed to be independent from
each other. Each queue has its own generally distributed service time from which is
sampled independently. A single server is visiting each of the n queues in a certain
(possibly random) order to serve customers. After a certain period at a queue the server
switches to the next queue. We assume that this switching takes zero time. Instead,
we assume that if we switch to a queue that is non-empty, a setup is performed.
Otherwise, we do not perform a setup and continue immediately to the next queue
(see e.g. Singh and Srinivasan 2002). When all queues were empty before the arrival
of a vehicle, we assume that a setup was started at the most recent departure epoch.
This is a feature that has not been studied before in the polling literature, but that
naturally represents the behaviour of our PFAs.

We will analyze the performance of PFAs regarding delay through polling models.
Although we take a vertical queueing approach in those polling models (i.e. the vehicles
are all stopped at the stop line at the intersection, occupying no space), the intersection
control algorithm provides a one-to-one relation between the vertical queueing model
and the PFAs. We visualize this in Figure 2, where the black line represents a self-
driving vehicle, and the red dotted line represents the corresponding ‘vehicle’ in the
vertical queueing model. Both ‘vehicles’ enter the control region at the same time
(so also the earliest possible arrival time at the intersection is the same for both).
They also have the same service time, because as soon as the vehicles start to cross
the intersection they have the same trajectory. So the delay for both vehicles, the
difference between earliest possible crossing time and actual crossing time, is the same,
as visualized in Figure 2.

0 2 4 6 8 10

−20

0

20

40

60

80

100

t

x(
t)

delay

Figure 2. Visualization of the link between the traffic model with PFAs and polling models. The black line
represents a self-driving vehicle, and the red dotted line represents the corresponding ‘vehicle’ in the vertical
queueing model.

To make the connection between the traffic model and polling models more ex-
plicit, we argue how the traffic model translates to a polling model. The time B in
between vehicles from the same stream accessing the intersection is the service time
in the polling model, whereas the clearance time S is the setup time in the polling
model. Which queue or lane is to be served is decided upon by the service discipline,
respectively the PFA.

So, our intersection model precisely fits the framework of polling models. We will
use the ideas and results already obtained for polling models to give a sound analysis
of the traffic model discussed so far. From now on in this section, we will be focusing
on the polling model and related results, therefore using queueing terminology.

15

4.2. Mean Delay

The specific assumptions result in a polling model that does not fall into the standard
framework, and a fully analytical solution is difficult (if not impossible) to derive. So,
we focus on approximations, being much faster and still accurate, and refrain from
providing an analytical solution.

We focus on obtaining approximations for the mean delay that still require some
analytical results, but that are easier to derive than the full distribution of the delay.
We start with a definition of delay. Delay Di at lane i is defined as the actual time
of a car crossing the intersection minus the free-flow time in which a car could cross
the intersection. Bi denotes the service time of queue i, whereas Si denotes the setup
time when we arrive at queue i. We have Poisson arrivals with rate λi and define
ρi = λiE[Bi] and ρ =

∑

i ρi, where ρ is similar to the vehicle-to-capacity ratio. The
approximations that we propose for the mean delay are all of the form,

E[DP
i,app] =

KP
0,i +KP

1,iρ+KP
2,iρ

2

1− ρ
, (8)

like in Boon et al. (2011), where KP
j,i are constants that are yet to be determined

and P denotes the PFA. The constants, that might depend on P and the arrival
distribution (due to space limitations we only consider Poisson arrivals), are derived
through requiring (8) to be exact in various limiting cases. These three cases are the
following: (8) should match the mean delay for queue i in the light-traffic limit, the
derivative of the light-traffic limit and the heavy-traffic limit. Then we have a system
of three equations with three unknowns, which we can solve to find the constants KP

j,i.
These approximations are based on the framework described in Boon et al. (2011),
which is in turn based on ideas developed in Reiman and Simon (1988). Note that (8)
is only valid for ρ < 1, which is the condition for the polling model (and therefore also
for our PFAs) to be stable.

We start with deriving the light-traffic limit for general service time and setup time
distributions for the mean delay. The light-traffic here corresponds to the case where

P(server not working and not setting up) ↑ 1,

which means that both λiE[Bi] and λjE[Si] should be close to zero. We denote
with Xres

i the residual or overshoot of the random variable X with mean E[Xres] =
E[X2]/(2E[X]). Then we have the following lemma.

Lemma 4.1. The light-traffic limit for the mean delay, up to and including first-order
terms, for all discussed PFAs, satisfies

E[DLT
i] = ρiE[B

res
i] +

∑

j 6=i

ρj(E[B
res
j] + E[Si]) +

∑

j 6=i

λjE[Si]E[S
res
i]. (9)

Proof. We consider what happens in each phase of the cycle and argue what the
waiting time is of a customer arriving at queue i.

We have n different visit periods, numbered j = 1, ..., n. If j = i, we only have to
wait for a residual service time of the customer that is currently in service (using the
PASTA property of Poisson arrivals). This happens with probability λiE[Bi] = ρi. The
contribution to the waiting time is thus ρiE[B

res
i]. If i 6= j, we have to wait for the

16

residual service time of the customer that is in service and for the setup time to our
own queue i. This all happens with probability λjE[Bj] = ρj , so the contribution to
the waiting time is ρj(E[B

res
j] + E[Si]).

The setup periods: we again have j = 1, ..., n. The case i = j does not occur, as we
do not have a setup time in that case (we take the customer immediately into service).
The cases i 6= j, occur with rate λjE[Si] (which converges to zero) and if we arrive
during such a period, we have to wait for a residual setup time. So the contribution is
λjE[Si]E[S

res
i].

Cases where we see more than one customer when we arrive in the system are all
of order O(ρ2) or higher, so we do not consider those terms.

Summing all possibilities, we arrive at (9).

The heavy-traffic limit of the mean delay does depend on the PFA. In heavy traffic,
the behaviour of our PFAs and regular polling models is the same. Consequently,
the heavy-traffic limits for the exhaustive and gated PFAs are the same as the heavy-
traffic limits for the exhaustive and gated disciplines in e.g. Boon (2011), where polling
models with switch-over times (rather than setup times) are presented. Indeed, if the
lengths of the setups and switch-overs are the same, the polling model with switch-
overs (and without setup times) is the same as the polling model with setup times
(but no switch-over times), because each setup will be performed in heavy traffic (as
all queues are non-empty when the server visits them) and can be seen as an ‘ordinary’
switch-over time. This implies that we can use the results from Boon (2011), so

E[DHT,P
i] =

ωP
i

1− ρ
+ o((1 − ρ)−1), (10)

with P denoting the PFA, where

ωexh
i =

1− ρ̂i
2





σ2

∑n
j=1 ρ̂j(1− ρ̂j)

+

n
∑

j=1

E[Rj]



 , (11)

for the exhaustive PFA, with σ2 = E[B2]/E[B] (in case of Poisson arrivals) and ρ̂i =
ρi/ρ and

ωgat
i =

1 + ρ̂i
2





σ2

∑n
j=1 ρ̂j(1 + ρ̂j)

+

n
∑

j=1

E[Rj]



 (12)

for the gated PFA.
The general approximation in (8) is now ready to be used. We obtain the following

theorem.

Theorem 4.2. The mean delay experienced for PFA P can be approximated with

17

Equation (8), where

KP
0,i = 0,

KP
1,i = ρ̂iE[B

res
i] +

∑

j 6=i

ρ̂j(E[B
res
j] + E[Si]) +

∑

j 6=i

λ̂jE[S
res
i]E[Si], (13)

KP
2,i = ωP

i −KP
1,i,

with λ̂i = ρ̂i/E[Bi].

Proof. As mentioned before, we put three conditions on the constants KP
j,i, j = 0, 1, 2.

These are the following

E[DP
i,app]

∣

∣

∣

ρ=0
= E[DLT

i]
∣

∣

∣

ρ=0
,

d

dρ
E[DP

i,app]
∣

∣

∣

ρ=0
=

d

dρ
E[DLT

i]
∣

∣

∣

ρ=0
,

(1− ρ)E[DP
i,app]

∣

∣

∣

ρ↑1
= E[DHT,P

i].

Using Lemma 4.1 and Equation (10),

KP
0,i = 0,

KP
0,i +KP

1,i = ρ̂iE[B
res
i] +

∑

j 6=i

ρ̂j(E[B
res
j] + E[Si]) +

∑

j 6=i

λ̂jE[S
res
i]E[Si],

KP
0,i +KP

1,i +KP
2,i = E[DHT,P

i] = ωP
i .

(14)

It can easily be seen that (14) reduces to (13).

Remark 2. The above mentioned results for mean delay can readily be extended to
results for the mean number of vehicles in the queue, using Little’s law. Together with
the speed regulation algorithm, the physical length of the queue can be calculated
(for example if we define the last vehicle that has already decelerated to be in the
queue). This would give information about e.g. spillback of the intersection to other
intersections.

In general the approximations work fine for all discussed PFAs, as can be seen
in Figure 3 (comparing the solid lines (the exact results) and the dashed lines (the
approximations)). We present examples where we put vm = 15 m/s, am = 4 m/s2,
l = 5 m and s = 10 m and where two lanes cross each other. We consider two cases
where the load on both lanes is split differently: one case where ρ1 = ρ2 (referred
to as being symmetric) and one case where ρ1 = 3ρ2 (referred to as being asym-
metric). Following Tachet et al. (2016), we put B = 1 s and S = 2.375 s. The two
discussed PFAs result in the Figure 3, where also, as a benchmark, the Batch Al-
gorithm from Tachet et al. (2016) is considered, with a maximum batch size of 100.
The approximations are also good for all other settings we simulated.

We see that the exhaustive PFA performs really well, if we focus on mean delay,
compared to the other PFAs. This can also be understood from the heavy-traffic limits
(11) and (12). The performance of the Batch Algorithm is similar to that of the gated

18

0.2 0.4 0.6 0.8

0

20

40

60

80

100

ρ

E
[D

]

batch
gated
exhaustive

0.2 0.4 0.6 0.8

0

20

40

60

80

100

ρ

E
[D

]

batch
gated
exhaustive

Figure 3. Mean delay experienced by an arbitrary car for the symmetric case (top) and asymmetric case
(bottom). The solid lines represent simulation results and the dashed lines approximations.

PFA, except for higher values of ρ, which is due to the maximum batch size of 100. This
maximum batch size causes a lower maximum capacity for the Batch Algorithm than
for the exhaustive and gated PFA and therefore, the Batch Algorithm has a sharp
increase in mean delay earlier than the other two PFAs. We expect the exhaustive
PFA to be (very close to) optimal with respect to the mean delay. This optimality
was, to some extent, already observed in e.g. Newell (1969), Levy, Sidi, and Boxma
(1990) and Wu, Yan, and Abbas-Turki (2013).

4.3. Fairness

In order to show that the exhaustive PFA is not the best for all performance metrics
we consider fairness in this subsection. We use the definition of fairness for polling
models, denoted with F , as introduced in Shapira and Levy (2016),

F =
E[Nahead]

E[Ntotal]
,

where Nahead denotes the number of cars an arbitrary car sees upon arrival and that
are served ahead of it; and where Ntotal denotes the total number of cars an arbitrary
car sees upon arrival. In words this means that we quantify the percentage of cars that
did not overtake an arbitrary car (on an intersection-wide basis).

We present simulation results for fairness for the same set of examples as for the
mean delay.

19

0.2 0.4 0.6 0.8

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ρ

Fa
ir

ne
ss

batch
gated
exhaustive

0.2 0.4 0.6 0.8

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ρ

Fa
ir

ne
ss

batch
gated
exhaustive

Figure 4. Fairness experienced by an arbitrary car for the symmetric case (top) and asymmetric case (bot-
tom).

Considering fairness, we see once more that the gated PFA is close to the Batch
Algorithm for values of ρ that are not too high. The increase of fairness for high values
of ρ for the Batch Algorithm is due to the maximum batch size of 100. The exhaustive
PFA is worse on fairness, but is still above 75%. It seems that a low mean delay results
in a relatively low fairness, showing a potential need to balance the two performance
measures, which is to some extent visible in the increase of fairness for the Batch
Algorithm and high values of ρ.

5. Comparison traditional Traffic Light and PFAs

The goal of this section is to provide a comparison between traditional traffic lights
and PFAs on basis of delay. As a measure for the traditional traffic light we use the
traffic simulator SUMO. We will consider two scenarios in SUMO: one with fixed
control and one with adaptive control (based on so-called time loss in the SUMO User
Documentation). We will compare these two scenarios with the exhaustive PFA.

We again consider two examples where two lanes cross each other and the vehicle
to capacity ratio is in the first example the same on both lanes, whereas in the second
example the ratio between the loads on the lanes is 1 : 3. For the exhaustive PFA we
again put B = 1 s and S = 2.375 s. For the fixed control simulation in SUMO and the
first example we assume a green period for both lanes of 22 s and an amber period of
3 s; for the second example we pick green periods of 11 and 33 s and amber periods
of length 3 s. Note that some of the results for the fixed control in Figure 5 could

20

be slightly improved by adapting the length of the green period. For the adaptive
control in SUMO we assume a maximum green period duration of 45 s and an amber
period of 3 s for the symmetric example and a maximum green of 22 and 68 s for
the asymmetric case. Note that we do not have to define the variable B in SUMO, as
the vehicles themselves will decide what B is. The delay in SUMO for the fixed and
adaptive control is obtained in the following way: we compute the mean time spent
in the system for all vehicles and subtract the mean time vehicles spent in the system
under free-flow conditions (i.e. putting the traffic light at green for one lane all the
time). We take exactly the same arrivals for all three scenarios.

0.1 0.2 0.3 0.4 0.5

0

10

20

30

40

50

ρ

E
[D

]

SUMO − fixed
SUMO − adaptive
exhaustive

0.1 0.2 0.3 0.4 0.5

0

10

20

30

40

50

ρ

E
[D

]

SUMO − fixed
SUMO − adaptive
exhaustive

Figure 5. Mean delay for an arbitrary car for traditional traffic lights (represented by SUMO) and the
exhaustive PFA for the symmetric example (top) and the asymmetric case (bottom).

We see in Figure 5 that there is quite a difference between either the fixed cycle
traffic light or the adaptive traffic light, and the exhaustive PFA. To some extent, this
was also observed in Tachet et al. (2016). The capacity of the intersection for the latter
case is almost twice as high as for the traditional traffic light, showing a huge potential
in resolving congestion. This is mainly due to the speed regulation of vehicles, which
increases the speed of vehicles crossing the intersection, but also due to the scheduling
strategies of the PFA.

6. Conclusion and Discussion

We have shown that significant gains can be obtained compared to nowadays traffic
when speed regulation and PFAs can be employed and have given ways to decrease
mean delay on intersections. This has been shown through a connection between

21

polling models and PFAs.
It seems that the exhaustive PFA is close to optimality with respect to mean delay.

However, the exhaustive PFA exhibits relatively poor fairness characteristics. It might
be worthwhile to find a balance between mean delay and (e.g.) fairness in order to
obtain some kind of optimal setting for the PFA. A possibility hereto might be the
so-called k-limited discipline in polling models, where for each lane an upper bound to
the platoon size is set. Intuitively, the k-limited discipline is similar to the exhaustive
discipline, except for this maximum size of the platoon.

In principle our PFAs could be used in nowadays traffic as well. The only require-
ment is that it must be known on an intersection wide basis in which order the vehicles
arrive. The requirement that we can control the speed of arriving vehicles is not needed
to execute the PFAs. This assumption would only play a role in what the variables
B and S would look like. But even then, the scheduling part of a PFA might still be
used. Using some kind of speed advisory system for conventional vehicles, it might be
possible to come close to the performance of the PFAs based on self-driving vehicles.

A future direction of research is to investigate more realistic intersection scenarios,
yet we expect similar results. Depending on the extension, our results readily apply,
if at most one stream of vehicles is allowed to cross the intersection, or need to be
generalized. We also would like to extend our approximations to obtain analytical
results for fairness.

We have studied an isolated intersection, where vehicles arrive individually in the
control region. In a network of intersections there are several complications. Firstly,
the arrival processes of vehicles become dependent. Moreover, the interplay between
various intersections is non-trivial. Already for a tandem of fixed cycle traffic light
intersections, it is difficult to find a good green wave, see e.g. Oblakova et al. (2017).
Our PFAs are much less strict on e.g. the cycle length, imposing an even more difficult
task of balancing a whole network of intersections. Once more, the k-limited PFA
(having a fixed maximum cycle length) might prove to be an outcome in this respect.

A study on how realistic our proposed models are, might also be relevant. We
assume e.g. that each vehicle is able to perfectly match the criteria we set in the speed
regulation assumptions. For example, there might be some uncertainty in the control
of a self-driving vehicle. A notion like string-stability of a platoon of vehicles (see
e.g. Swaroop and Hedrick 1996) might be investigated for our proposed models.

Acknowledgments

We would like to thank Johan van Leeuwaarden, Onno Boxma, Wim van Nifterick
and Serge Hoogendoorn for interesting discussions.

Funding

This work was supported by NWO under Grant 438-13-206.

References

Boon, M.A.A. 2011. “Polling models: from theory to traffic intersections.” PhD thesis, Eind-
hoven University of Technology.

22

Boon, M.A.A., R.D. van der Mei, and E.M.M. Winands. 2011. “Applications of polling sys-
tems.” Surveys in Operations Research and Management Science 16 (2): 67–82.

Boon, M.A.A., E.M.M. Winands, I.J.B.F. Adan, and A.C.C. van Wijk. 2011. “Closed-form
waiting time approximations for polling systems.” Performance Evaluation 68 (3): 290–306.

Darroch, J.N. 1964. “On the traffic light queue.” The Annals of Mathetical Statistics 35: 380–
388.

Dib, W., A. Chasse, P. Moulin, A. Sciarretta, and G. Corde. 2014. “Optimal energy manage-
ment for an electric vehicle in eco-driving applications.” Control Engineering Practice 29:
299–307.

Dresner, K., and P. Stone. 2008. “A multiagent approach to autonomous intersection manage-
ment.” Journal of Artificial Intelligence Research 31: 591–656.

Helbing, D., I. Farkas, and T. Vicsek. 2000. “Simulating dynamical features of escape panic.”
Nature 407: 487–490.

Helbing, D., and A. Mazloumian. 2009. “Operation regimes and slower-is-faster effect in the
control of traffic intersections.” The European Physical Journal B-Condensed Matter and
Complex Systems 70 (2): 257–274.

Kockelkoren, L.M.C. 2018. “Centralized merge control for FLEET, a material handling AGV
system.” Master’s thesis, Eindhoven University of Technology.

Lawitzky, A., D. Wollherr, and M. Buss. 2013. “Energy optimal control to approach traffic
lights.” In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Confer-
ence on, 4382–4387. IEEE.

Levy, H., M. Sidi, and O.J. Boxma. 1990. “Dominance relations in polling systems.” Queueing
Systems 6 (1): 155–171.

Miculescu, D., and S. Karaman. 2014. “Polling-systems-based control of high-performance
provably-safe autonomous intersections.” In IEEE 53rd Annual Conference on Decision
and Control (CDC), 1417–1423. IEEE.

Miculescu, D., and S. Karaman. 2016. “Polling-systems-based autonomous vehicle coordination
in traffic intersections with no traffic signals.” arXiv preprint:1607.07896 .

Milanés, V., J. Pérez, E. Onieva, and C. González. 2010. “Controller for urban intersections
based on wireless communications and fuzzy logic.” IEEE Transactions on Intelligent Trans-
portation Systems 11 (1): 243–248.

Newell, G.F. 1969. “Properties of vehicle-actuated signals: I. one-way streets.” Transportation
Science 3 (1): 30–52.

Oblakova, A., A. Al Hanbali, R.J. Boucherie, and J.C.W. van Ommeren. 2017. “Green wave
analysis in a tandem of traffic-light intersections.” .

Papageorgiou, M., C. Diakaki, V. Dinopoulou, A. Kotsialos, and Y. Wang. 2003. “Review of
road traffic control strategies.” Proceedings of the IEEE 91 (12): 2043–2067.

Rafaeli, A., G. Barron, and K. Haber. 2002. “The effects of queue structure on attitudes.”
Journal of Service Research 5 (2): 125–139.

Reiman, M.I., and B. Simon. 1988. “An interpolation approximation for queueing systems with
Poisson input.” Operations Research 36 (3): 454–469.

Resing, J.A.C. 1993. “Polling systems and multitype branching processes.” Queueing Systems
13 (4): 409–426.

Rios-Torres, J., and A.A. Malikopoulos. 2017. “A survey on the coordination of connected and
automated vehicles at intersections and merging at highway on-ramps.” IEEE Transactions
on Intelligent Transportation Systems 18 (5): 1066–1077.

Shapira, G., and H. Levy. 2016. “On fairness in polling systems.” Annals of Operations Research
https://doi.org/10.1007/s10479-016-2247-8.

Singh, M.P., and M.M. Srinivasan. 2002. “Exact analysis of the state-dependent polling model.”
Queueing Systems 41 (4): 371–399.

Swaroop, D., and J.K. Hedrick. 1996. “String stability of interconnected systems.” IEEE Trans-
actions on Automatic Control 41 (3): 349–357.

Tachet, R., P. Santi, S. Sobolevsky, L. I. Reyes-Castro, E. Frazzoli, D. Helbing, and C. Ratti.
2016. “Revisiting street intersections using slot-based systems.” PloS ONE 11 (3): e0149607.

23

https://doi.org/10.1007/s10479-016-2247-8

https://doi.org/10.1371/journal.pone.0149607.
van Leeuwaarden, J. S. H. 2006. “Delay analysis for the fixed-cycle traffic-light queue.” Trans-

portation Science 40 (2): 189–199.
Vishnevskii, V.M., and O.V. Semenova. 2006. “Mathematical methods to study the polling

systems.” Automation and Remote Control 67 (2): 173–220.
Wu, J., F. Yan, and A. Abbas-Turki. 2013. “Mathematical proof of effectiveness of platoon-

based traffic control at intersections.” In Intelligent Transportation Systems-(ITSC), 2013
16th International IEEE Conference on, 720–725. IEEE.

24

https://doi.org/10.1371/journal.pone.0149607

	1 Introduction
	2 Model Formulation
	2.1 Platoon Forming Algorithms

	3 Speed Profile Algorithms
	3.1 Optimization based Speed Profile Algorithms
	3.2 Closed-form Speed Profile Algorithms

	4 Performance Analysis
	4.1 Polling Model
	4.2 Mean Delay
	4.3 Fairness

	5 Comparison traditional Traffic Light and PFAs
	6 Conclusion and Discussion

