Metadata, citation and similar papers at core.ac.uk

Provided by DepositOnce

Fachgebiet Software Technik
Fakultdt IV Elektrotechnik und Informatik
Technische Universitat Berlin

CSP as a Coordination Language

A CSP-based Approach to the Coordination of Concurrent Systems

Von der Fakultat IV — Elektrotechnik und Informatik
der Technischen Universitit Berlin
zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften
Dr. rer. nat.

genehmigte Dissertation
vorgelegt von

Diplom-Informatiker
Moritz Kleine

aus Hamburg

Promotionsausschuss:

Vorsitzender: Prof. Dr. Uwe Nestmann
Berichter: Prof. Dr. Stefan Jahnichen
Berichter: Prof. Dr. Michael Leuschel

Tag der wissenschaftlichen Aussprache: 24. Juni 2011

Berlin 2011

D 83

ST

https://core.ac.uk/display/57705798?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Complex concurrent systems are in general hard to understand, and equally
hard to specify and to verify. The process algebra Communicating Sequential
Processes (CSP) offers a way of taming the complexity of concurrent systems
by focusing on the interaction behavior of systems and abstracting from syn-
chronization mechanisms and other implementation details. CSP provides a
mature intermediate level formalism that allows us to specify and model such
systems in a mathematically precise way and to verify important properties,
e. g., deadlock-freedom. However, the derivation of a system’s implementation
from its CSP-based model is still a problem and subject to ongoing research.
It is, for example, not obvious how to integrate CSP with internal actions of
a system, because CSP abstracts from internal actions to a great extent. To
overcome this problem, we propose to integrate CSP with a sequential host
language such that the concurrency aspects of systems are captured on the
CSP level and its actions are implemented in the sequential host language.
This idea of separating concurrent and sequential aspects of a system is also
known from coordination languages, but those are in general less amenable to
automated verification.

In this thesis, we present the use of CSP as a formal coordination language
for arbitrary sequential host languages, allowing us to use CSP for the design,
implementation, and verification of concurrent systems. To this end, we de-
velop the model of a coordination environment that simulates a CSP process
at runtime and performs the system’s actions accordingly. The coordination
environment controls the system’s interaction with its environment as well as
its internal actions. We present proof obligations to ensure that the properties
proved on the CSP level also hold on the implementation level of the system.
We also present an implementation of the coordination environment for the
target language Java and a case study of constructing a workflow server as a
coordinated concurrent Java program.

This thesis contributes to the theory and practice of CSP, to the engineer-
ing of correct concurrent systems, and to the modeling and management of
workflows. The main contribution of this thesis is a target language indepen-
dent CSP-based framework for the construction of provably correct concurrent
systems.

Zusammenfassung

Die Beherrschbarkeit komplexer nebenléufiger Systeme héngt in hohem Ma-
B8e davon ab, mit welchen Methoden das System modelliert bzw. spezifiziert
wird. Formale auf Nebenlaufigkeit spezialisierte Methoden erlauben es, solche
Systeme elegant auf einem hohen Abstraktionsniveau zu modellieren und zu
analysieren. Ein Vertreter derartiger Methoden ist die in dieser Arbeit ver-
wendete Prozess Algebra CSP. CSP ist ein weitverbreiteter, wohluntersuchter
Formalismus, der es erlaubt, ein nebenlaufiges System mathematisch prézise zu
beschreiben und wichtige Eigenschaften, beispielsweise Verklemmungsfreiheit,
zu verifizieren. Dennoch ist die Ableitung einer Systemimplementierung aus ei-
nem gegebenen CSP Modell immer noch ein aktueller Forschungsgegenstand.
So ist zum Beispiel unklar, wie interne Aktionen eines Systems in einer Imple-
mentierung integriert werden kénnen, da diese in CSP ununterscheidbar sind.
Als Losung wird in dieser Arbeit vorgeschlagen, CSP mit einer sequentiellen
Zielsprache zu integrieren, so dass die Aktionen eines Systems in der sequen-
tiellen Zielsprache implementiert werden und die Aktionen entsprechend eines
CSP Prozesses koordiniert werden. Koordinationssprachen zielen ebenfalls dar-
auf ab, Nebenldufigkeit von sequentiellen Aspekten eines Systems zu trennen,
sie sind aber weniger auf automatisierte formale Verifikation ausgerichtet.

In der Arbeit wird die Verwendung der Prozess Algebra CSP als forma-
le Koordinationssprache fiir beliebige sequentielle Zielsprachen vorgeschlagen.
Hierfiir wird das formale Fundament einer Koordinationsumgebung entwickelt,
die einen CSP Prozess zur Laufzeit simuliert und die Aktionen des Systems
entsprechend ausfiithrt. Besonderer Wert liegt auf der Koordination interner
Aktionen und auf der Erkennung von Nebenldufigkeit zwischen extern syn-
chronisierbaren und internen Aktionen. Durch Beweisverpflichtungen wird der
Zusammenhang zwischen dem Koordinationsprozess und den Implementierun-
gen der Aktionen hergestellt. Die Koordinationsumgebung wird konkret fiir die
Zielsprache Java implementiert. Desweiteren wird eine Fallstudie vorgestellt,
die sich mit der Entwicklung eines Workflow Servers beschéftigt, dessen in-
terne Nebenldufigkeit einerseits selbst mittels CSP koordiniert wird und der
andererseits CSP-basierte Workflows ausfiihren kann, die ebenfalls durch eine
CSP Koordinationsumgebung gesteuert werden.

Die Arbeit enthélt wissenschaftliche Beitrdge zur Theorie und der prakti-
schen Verwendbarkeit von CSP, beziiglich der Konstruktion korrekter neben-

ldufiger Systeme, sowie zum Bereich der Modellierung und Verwaltung von
Workflows.

Contents

1 Introduction
1.1 Problems.
1.2 Proposed Solution
1.3 Motivation
1.4 Outline.
2 CSP
2.1 Syntax
2.2 Operational Semantics
2.3 Denotational Semantics
2.4 Refinement and Algebraic Semantics
2.5 Tools
2.5.1 Animatorso
2.5.2 Model Checkers
2.5.3 Refinement Checkers
2.6 SUummary . o.o.o. ..
3 Further Terminology and Notations
3.1 Coordination Languages
3.2 Java Concurrencyo
3.3 Infamous Phenomena of Concurrency
3.4 Business Processes and Workflows
3.5 Summary ...
4 Simulating Truly Concurrent CSP
4.1 The Transformation 7"
4.2 Assembling the System
4.3 Properties
4.4 Exampleso

11
11
13
13
14

15
16
19
23
27
29
29
29
30
31

33
33
34
36
37
38

4.4.1
4.4.2
4.4.3
4.4.4

Choice versus Concurrency
One-place Buffer
Dining Philosophers
Van Glabbeek’s Owl

4.5 Restricting T o

4.5.1
4.5.2

Prohibiting Internal Choice, Hiding and Timeout
Prohibiting External Choice and Timeout

4.6 Discussiono

Conflict, Internal Actions and FD Preservation

5.1 Simulation, Monitoring and Interruption

5.2 Transforming External Choice

5.3 Transforming Timeout

5.4 Transforming Interrupt 0oL

5.5 Discussion

Designing a CSP-based Coordination Environment

6.1 Unraveling Abstractions

6.1.1
6.1.2

Timeout, Hiding and Nondeterminism

Duration, Conflict and Concurrency

6.2 Design Decisions 00000

6.2.1
6.2.2
6.2.3

Interpreting 7"
Performing Actions

Choosing Events

6.3 Supported Processes

6.4 Integrating Specifications of UDFs

6.5 Categorizing Coordination,

6.6 Discussion

Coordinating Java Threads

7.1 General Design Decisions

7.2 Implementing the CSP Coordination Environment

7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6

The Environment
Assigning UDFs to Events
Events and Hidden Transitions
Processes and Process Operators
Performing Actions

Choosing Events

7.3 Modular Verification
7.4 Supported Processes

59
60
62
65
67
68

71
72
73
75
76
7
78
79
79
81
83
84

7.4.1 Example . .
7.4.2 Turning Bad

7.5 Discussion

Processes into Good Ones

8 Using CSP for the Modeling and Coordination of Workflows
8.1 A CSP-based Workflow Server

8.2 Verifying the Server
8.3 Modeling Business P
8.4 Workflow Definitions
8.5 Compensation . . .

8.6 Discussion

9 Related Work

9.1 Coordination . . .

rocessin CSP

9.1.1 Non-CSP Approaches
9.1.2 (CSP-based Approaches
9.2 Truly Concurrent Semantics for CSP

9.3 (CSP-like Concurrenc

y Frameworks

9.4 Modeling and Managing Business Processes
9.4.1 Modeling Techniques

9.4.2 Compensation

9.5 Summary

10 Conclusion
10.1 Summary
10.2 Contributions . . .
10.3 Future Work
10.4 Related Publications
10.5 Acknowledgements

A Proofs
B Examples

Bibliography

96
98
98

101
102
105
107
110
111
113

115
115
116
117
119
120
122
123
124
125

127
127
129
130
132
132

133

143

165

Introduction

This thesis deals with the problem of developing provably correct concurrent
systems, which is still a challenging task and subject to ongoing research. The
main problem introduced by concurrency is the increased level of complexity
of the system (compared to a purely sequential system). Nondeterminism and
state-space explosion are phenomena related to this problem. As a result,
concurrent systems are commonly hard to grasp, hard to specify and quickly
grow beyond the proof power of nowadays automated verification tools. Even
worse, implementations of such systems often exhibit unexpected asynchronous
behavior that quite often manifests in subtle bugs.

The use of formal methods to specify concurrent systems helps us to avoid
such bugs early in the design phase of a system and to verify desired proper-
ties, e.g., deadlock-freedom, of the system. Formal methods tend to describe
concurrent systems on a rather abstract level for convenience of modeling and
reasoning. For example, CSP is an ideal choice for modeling and reasoning
about concurrent systems because of its rather high level of abstraction to-
gether with its mature tool support.

Coordination languages offer another approach to taming the complexities
of concurrent systems that is more driven by practical needs of programming
than by the ultimate goal to support mechanized verification. Their key idea is
to separate the interaction behavior from the sequential functional aspects on
the implementation level. The interaction behavior is expressed in the coordi-
nation language and the sequential functional aspects in its target language. In
this sense CSP and coordination languages are quite similar and serve the same
purpose. However, while coordination languages were developed to facilitate
concurrent and parallel programming (for some target language), CSP targets
designs and proofs (completely independent of implementation languages).

In this thesis, we present an approach to combine these two.

1.1 Problems

Several approaches proposed in literature are based on the idea to use CSP to
coordinate the operations of components described in some state-based formal-

11

12 Introduction

ism. Examples are Circus [WC02] (combining CSP with Z) and CSP || B [ST04]
(combining CSP with B). The common drawback of these approaches is that
the CSP part of a system’s design must be manually implemented at some
point. The problem then is that there is a gap between a formal design of a
system and its implementation.

There are two fundamentally different approaches to bridging the gap be-
tween a CSP-based design of a system and its implementation. The first ap-
proach is to transform one of the implementation level descriptions of the sys-
tem (e. g., its source code) into CSP and to establish conformance of the result
to its design. In [KH09, Kle09], we explore this approach. It is supported by
our LLVM2CSP tool [KBG'11] which extracts CSP models from the compiler
intermediate representation of concurrent programs. Unfortunately, it does
not yet scale up to industrial-size systems.

The second approach is to derive implementations from the designs in a
strictly formal way ensuring correctness by construction (as promoted by the
B method [Abr96]). Finding methods for deriving implementations from CSP-
based models is an active field of research and we establish our solution in
this thesis. The main problem is due to the abstractions built into CSP. For
example, CSP abstracts simultaneity of actions. Its standard semantics are
interleaving ones that identify simultaneity with ‘in either order’. This raises
the question:

can we profit from true concurrency?

Furthermore, CSP is equipped with a rich set of process operators supporting
the concise modeling of concurrent systems. This raises the question:

can we use full CSP?

For example, CSP defines deterministic and nondeterministic choice. However,
nondeterminism has to be resolved on the implementation level, because the
theoretical concept of nondeterminism is not supported by nowadays comput-
ing hardware.

CSP has influenced the development of programming languages (e. g., oc-
cam [Bar92]) and there are concurrency frameworks extending general pur-
pose programming languages with CSP-like concurrency facilities. Examples
are the Java frameworks JCSP [WMO00] and CTJ [HBB99], the C++ frame-
work CSP++ [Gar03], and the Python library PyCSP [BVAO7]. These frame-
works implement channels to facilitate atomic directed communication between
threads and free the programmer from dealing with error-prone low-level syn-
chronization primitives. They focus on communication rather than CSP opera-
tors and support only a subset of CSP. To complement these frameworks, we do
not focus on communication but on supporting the various process operators
offered by CSP.

1.2 Proposed Solution 13

1.2 Proposed Solution

As a solution to the questions raised above, we propose to use CSP itself as
a coordination language for truly concurrent systems. True concurrency re-
quires some means to discriminate simultaneous actions from those that may
appear in either order but exclusively. To this end, we develop the theoreti-
cal background of the coordination, primarily focusing on the CSP part of it.
We present a syntactical transformation of processes realizing the simulation
of truly concurrent CSP within the framework of its standard interleaving se-
mantics. Different versions of the transformation are discussed that allow us
to encode various levels of concurrency while maintaining the interleaving se-
mantics of a process. This transformation can be exploited with standard CSP
tools to detect possible concurrency. Furthermore, it is used as the semantical
foundation of a coordination environment that we define in a target language
independent way.

The coordination environment undoes the abstractions built into CSP in a
way suitable for real-life systems. It simulates a coordination process at run-
time and performs user-defined functions (the component’s operations) when
an event is performed. Another key feature of the environment is noninva-
siveness. This means that the coordinated operations do no have to make use
of primitives offered by the coordination environment. Client code remains
oblivious to coordination.

The coordination environment is implemented in Java and applied to a case
study of implementing a coordinated workflow server. Although we present an
implementation of a coordination environment for the target language Java,
the approach presented here does not focus on a specific state-based formal-
ism for expressing the functional aspects of the components’ operations (the
actions) and also claims independence of a specific target language. Formal
relationships between concurrent aspects expressed in CSP and properties of
actions are presented in a general way. Thereby, we obtain proof obligations
that can be expressed in various state-based modeling languages using their
specific verification strategies.

1.3 Motivation

This work is motivated by the following famous quotation from Hoare’s Turing
Award Lecture.

There are two ways of constructing a software design: One way is
to make it so simple that there are obviously no deficiencies, and
the other way is to make it so complicated that there are no obvious
deficiencies. The first method is far more difficult. [Hoa81]

The process algebra CSP provides a way to express the design of a concur-
rent system in an elegant and concise manner. It helps us to simplify the

14 Introduction

design by focusing on the interaction behavior of concurrent components while
abstracting from their internal behavior.

Using CSP as a coordination language frees the programmer of the coordi-
nated component’s operations from dealing with concurrency primitives at all.
Noninvasiveness of our approach ensures that the programmer may implement
the operations as if the components were to be used in a purely sequential
context.

The main advantages of our approach are twofold: First, it enables us
to separate concurrent and sequential concerns of a system, which simplifies
the development of concurrent systems helping us to avoid bugs at design
time. Second, the use of CSP as a coordination language comes with all the
advantages of CSP: concise modeling of interaction behavior, well-defined and
well-investigated formal semantics, and, in particular, its mature tool support,
which enables the (automated) verification of concurrent systems.

1.4 OQOutline

This thesis is organized as follows. The theoretical background is presented in
Chapter 2. In that chapter, we present the syntax and semantics of CSP and
introduce the tools that we use for modeling and verifying processes. We then
go on to present more informal background, e. g., the concept of coordination
languages and the problems with Java concurrency in Chapter 3. The main
part of the thesis is presented in chapters 4 to 8. The formal foundation of our
approach is developed in Chapter 4 and extended in Chapter 5. In Chapter 4,
we present a syntactical transformation of CSP processes enabling the simula-
tion of truly concurrent processes to be encoded in standard interleaving CSP.
Chapter 5 extends the transformation in a way that makes it suitable to serve
as semantical foundation of a CSP coordination environment. Both versions
of the transformation can be exploited by standard CSP tools to determine
possibly simultaneous events in a process. A model of our coordination envi-
ronment is presented in Chapter 6. There, we explain how the abstractions
built into CSP are unraveled to support the implementation of coordinated
systems. We also present proof obligations that ensure the safe composition
of the implementations of the coordinated actions. For example, possibly con-
current actions must not access shared data. Chapter 7 presents our Java
implementation of that environment. The case study presented in Chapter 8
is about implementing a CSP-based workflow server as a coordinated system,
and modeling (compensable) workflows in CSP. In Chapter 9, related work is
discussed in detail and compared to our approach. The thesis closes with a
summary and concluding discussion in Chapter 10.

2 CSP

The process calculus Communicating Sequential Processes (CSP), introduced
by Hoare in the late 1970s, was largely stable by the mid 1980s [Hoa85] since
when it has been widely applied and developed. Its strength is the specification
and verification of reactive and concurrent systems in which synchronization
and communication play a key role. CSP provides an algebraic notation based
on events, process names and process operators tailored for the concise mod-
eling of current systems. Concurrent systems are modeled as processes that
perform events. If a process offers an event with which its environment agrees
to synchronize, the event is performed. Events are both atomic and instanta-
neous. In [Hoa04], Hoare introduces events as abstractions of atomic actions
of a system in the understanding that duration of actions can be modeled by
splitting events into start and end events. Events can also be regarded as
rendezvous communication between processes. From this viewpoint, processes
are anonymous entities communicating synchronously over named channels.
Accordingly, an event models the occurrence of a communication identified by
the channel name and the message being sent over it. Messages can only be
sent if the receiver is willing to accept them.

CSP is equipped with a wide range of formal semantics. Modeling, ex-
ploration and verification of processes is supported by a number of industrial-
strength tools. The concept of refinement facilitates the step-wise development
of processes by gradually restricting their behaviors. In this context, CSP
enjoys the property of compositionality: given a process that satisfies some
specification and another process refining a part of the first process, we may
replace that part with the second process and obtain a new process that also
satisfies the specification.

A detailed overview of the syntax and its informal description is given in
Section 2.1. A process can be thought of as a (possibly infinite) transition
system. This view is presented in Section 2.2. From the denotational view-
point that is introduced in Section 2.3, processes are mapped to mathematical
constructs (sequences and sets of events) that describe what a process can do
or refuse to do. The algebraic semantics of CSP is introduced in Section 2.4.
At the end of this chapter, in Section 2.5, we give a brief overview of CSP tools
supporting the analysis of processes.

15

16 CSP

2.1 Syntax

CSP is equipped with a rich set of process operators that combine events with
processes (prefixing) and processes with processes. The syntax presented here
is mostly taken from [Ros05] and [GRAO05]. We present two flavors of notations:
a mathematical one and the machine-readable dialect CSP);. The mathemati-
cal notation is modified in some minor details to fit our needs. Throughout this
thesis, we mostly use the mathematical notation. The CSP); syntax is used to
emphasize practical concerns of a process, e. g., automated verification.

There are the following four predefined processes in CSP:
SKIP STOP CHAOS dw.

SKIP and STOP are ‘atomic’ processes; the former models successful termi-
nation; the latter models deadlock. CHAOS(A) is a process that may nonde-
terministically perform events from A. It may as well refuse to do anything
at all. The phenomenon of infinite internal behavior is known as divergence
or livelock. It is commonly represented by the process div. This process is
sometimes used in specifications or arises in proofs.

The set of events that may be communicated by a process P is said to
comprise its alphabet ¥p (or simply X if the context is clear). In CSPy, ¥
is written ‘Events’. The mathematical notation does not require alphabets
to be explicitly defined (X can be derived from the syntax of the processes).
However, CSPy; requires explicit definition of the alphabets of processes. To
facilitate the modeling of communication, alphabets of processes are defined
in terms of (parameterized) channels. For example,

channel a,b : X

declares channels a and b that communicate values in X. The parameters
following the colon are types separated by dots and describe the protocol of
the channel. Events are then composed of a channel name followed by the
communicated values preceded by dots or the ? and ! decorations to model
input and output respectively. Events have the form

channel_name ((7|!|.) value)*

where channel_name stands for the actual channel name and value for the
values being communicated (or variables of types as defined by the channel
protocol). Provided that 3 € X, the compound event a.3 models communica-
tion of 3 over the channel a. Channels that are not parameterized give rise to
primitive events being represented only by the channel name. Note that the
? decoration introduces a fresh variable, while ! and . can only be used with
fixed values or variables in scope.

Communication is assumed to take place instantly and atomically even if
multiple flows of data are encoded in a single event (e.g., d?z!y?z for the

2.1 Syntax 17

channel d : X.Y.Z and y € Y). The communication event is assumed to
happen only if all the participants are prepared to perform it.

The {].|} operator can be used to compute the set of events that complete
the set of given prefixes (e.g., channels).

Table 2.1 shows the syntax of the CSP (and CSPy) process operators rel-
evant for this thesis. It uses the following conventions: a and b are channel
names, X is a set of values to be communicated, A C ¥ a set of events and
x a variable representing communication parameters or events. Furthermore,
P and (@) are processes, ¢ is a Boolean expression, and M is a mapping from
events to events.

Table 2.1: CSP mathematical and machine-readable syntax.

CSP CSPy, Description

a— P a —>P simple prefix
a?r: X — P(z) a?x:X —>P(x) constrained input
r:A— P(x) [[x:A@x —>P(x) prefix choice

P;Q P;Q sequential composition
POQ Pl Q external choice
PMQ P17 Q internal choice
PrQ P [>Q timeout

PAQ P /AQ interrupt

P4 @ P [|A]] Q generalized parallel
P @ P [|Events|] Q parallel

Pl Q P || Q interleaving

P\ A P\ A hiding

P4g*@Q if g then P else Q conditional

g & P g &P Boolean guard

Pla < 0] P [[a <—D]] renaming

P[M] P [[M]] renaming

Prefixing combines events with processes. Table 2.1 shows three different
flavors of prefixing. Simple prefixing combines a single event with a process.
The (constrained) input decoration offers its environment the possibility to
synchronize on any extension on a that matches X. Given the channel a: C,
the constrained input decoration a?z: X limits the communication over a to
z € C' N X. The actual communication parameter is bound to the variable x.
If X is omitted, all values from C are valid. Prefix choice offers its environment
all the events in A and binds the chosen event to the variable z. In the context
of this thesis, it is important to observe that both compound events and the

18 CSP

input/output decorations are merely syntactic sugar. The processes
a?r — P(z) and z:{|a|} — P(x)

are very similar. Both are willing to synchronize on every event in {| a |}
initially. However, the variable z is the parameter communicated over a in the
first process while it is the whole compound event in the second.

Sequential composition combines two processes such that the second process
only starts after termination of the first.

External and internal choice, timeout and interrupt model four different
styles of choices between the combined processes. Combining two processes P
and () using the external choice operator yields a process that offers its envi-
ronment the choice whether to continue as P or as). Internal choice yields
a process that internally decides whether to continue as P or as). Timeout
(sometimes called ‘sliding choice’) combines the behavior of the external choice
operator with the possibility to switch off P if the environment does not agree
to perform one of P’s events before some timeout occurs. The interrupt op-
erator combines P and () such that () is offered until P terminates but () is
discarded if the environment decides to synchronize on an event offered by @.

The generalized parallel operator synchronizes two processes over the events
in A. Parallel and interleaving are its special cases. Parallel requires two
processes to synchronize on every event and interleaving does not synchronize
at all. Hence, the following two equivalences hold:

Plel@=P|@Q
Pl @="PIlQ.

In this thesis, we use the term parallel composition synonymously to generalized
parallel.

The Boolean expression ¢ may be used in conditional expressions or as a
guard. Guards and conditionals are defined such that the following equivalence
holds:

g& P=P <g+STOP .

Renaming of event a to b in process P is written P|a < b], or more generally
P[M] where M is a mapping from source events to target events (e.g., M =

{(a, b}).

Internal and external choice, interleaving and (generalized) parallel compo-
sition support replication
Qr:AeP

where ® is one of these operators, A a set (which must be nonempty in the
case of internal choice) and P the process expression to be replicated.

The mathematical syntax supports the definition of named processes (e. g.,
P = a — SKIP) and the definition of anonymous processes (e.g., « — SKIP).
Recursion requires that a process be named. Local processes can be introduced
using the p operator (for defining recursive processes locally). Examples of

2.2 Operational Semantics 19

equivalent recursive processes are
P=a—P and wPeag— P.

The p operator is not available in CSPy; but can be mimicked by a let within
clause.

2.2 Operational Semantics

Processes can be regarded as labeled transition systems (LTS). In brief, an LTS
is a directed labeled graph representing the states and transitions of a system
(refer to [Ros05, Chapter 7.2] for an introduction to LTS). This view gives rise
to the operational semantics of CSP. Generally, the operational semantics for
a programming language describes how a valid program is interpreted as se-
quences of computational steps where the states of the program are formalized
by the nodes of an LTS and the steps are firings of the transitions connecting
the nodes. The operational semantics of CSP is given by logical inference rules
that define the firing rules of the operators. The general form of an inference

rule is . _
Premisey, . .., Premise,

Conclusion

Condition .

Such a rule allows us to draw the specified conclusion if all n premises hold
under the side condition Condition. An inference rule without any premises is
called an aziom.

The set of events that a process P offers initially is initials(P). It is of-
ten used in specifications and must be effectively computed for purposes of
simulation. Examples are

initials(STOP) =10,
initials(SKIP) = {v'}, and
initials(z: A — P(z)) = A.

Inference rules allow us to compute the initial events of a process, and how
the process evolves after performing an event. The transition from P to P’
due to the occurrence of an event a is represented as P — P’. The inference
rules enable us to compute the LTS of a given process (such that each labeled
transition of the LTS is justified by an inference rule). There is, for example,
no inference rule for STOP. Accordingly STOP is deadlock: it has no initial
events and may not perform any event. This also means that it is guaranteed
to be a leaf of any process’ LTS.

For (semantic) convenience the alphabet of each process is extended to
contain two further events: 7 ¢ X represents an internal transition (an hidden
event) and v/ ¢ ¥ represents termination. The alphabet extended with v/,
namely X U {v'}, is written 2.

20 CSP

SKIP models successful termination by offering only v'. There is a single
firing rule (an axiom) dealing with SKIP.

SKIP - Q

Hence, €2 represents the state after successful termination of a process. Al-
though it seems to be quite similar to STOP at first glance these processes are
very different. First, {2 is a purely semantical process and does not exist on
the syntactical level. Second, 2 can only be reached by v* transitions, while
any transition might potentially lead to deadlock. Third, it is also responsible
for distributed termination as explained further down.

The process a — P offers its environment the opportunity to synchronize
on a in which case it then behaves like P. The operational firing rule is

(a — P) % P.

Given a set of events A C Y, prefixing is generalized to prefix choice by
z:A — P(z). This construct reduces to STOP if A is empty:

z:0) — P(z) = STOP.

The inference rule for prefix choice is similar to the one presented above except
that any x is substituted with the actual communication event in P. Similarly,
in the case of a (constrained) input communication (a?z:X — P) any occur-
rences of z in P are substituted with the actual communication parameter
(refer to [Ros05, Chapters 6.1 and 7.3] for a discussion of variable scopes).
Throughout the rest of this section, a € ¥ and z € Y U {v, 7}.

According to the following two firing rules, the sequential composition P ;)
behaves like P and, if that terminates, then behaves like ().

T v
P?P’ T4V P—>TP’
P;Q— P';Q P:Q—Q

P O @ offers its environment a choice between P and () based on syn-
chronization with their initial events. The first two rules show that internal
transitions do not resolve the choice. The third and fourth rules specify that
the choice is resolved in favor of the operand performing a visible event.

P, p Q — Q
POQ-POQ POQ-—prOg
T T /
P—)IP, I'?é'r Q—>IQ .T?é'r

POQ - P POQ - Q

The process P M () behaves like either P or () but the choice is made inter-
nally, beyond environmental influence. The following two firing rules express

2.2 Operational Semantics 21

this nondeterministic choice.

PnNQ-—-—P PNQ - Q

A third kind of choice, timeout, combines external and internal influences.
Although it can be represented using internal and external choice by

PrQ=(PBQ)NAQ,

it is common to define the following separate firing rules for timeout. The first
states that a 7 transition on its first operand does not resolve the timeout.
The second formalizes resolution of the timeout to the left. The third models
resolution to the right by an internal transition.

i i p-—=p -
PrQ-——>P>Q PrQ = P PrQ-—Q

These firing rules give rise to an LTS that is different from that of the alterna-
tive representation given above. The LTS of the alternative version contains
more intermediate states. Their semantic equivalence is given by the fact that
both LTS yield the same non-7 events for external synchronization.

The process P A @ behaves like P except that it constantly offers its
environment the initial events of (). If the environment decides to synchronize
on one of the initials of), P is interrupted and control is passed to (). As
the following firing rules show, interrupt is resolved only if P terminates or)
performs a visible transition.

Pt p PP

z I?’é\/ v
PAQ-SPAQ PAQ-SQ
Q" Q et .

PAQ-PAQ PAQ-(Q

The parallel composition P |4| @ requires P and @ to synchronize on each
event a € A, but performs other events of P or () as determined by those pro-
cesses. Internal transitions may occur on both sides without synchronization.

P p Q— Q
Plal @ — P4l Q Plal Q= P4 @

Events outside A are not synchronized either.

PP aex\ A O—0 ex\a
Plal Q@ — P |4l Q Plal @ — P4l Q

22 CSP

Events from the synchronization set A are to be synchronized.

PP Q-5
a a
Plal Q — P |4l @

cA

Termination in parallel compositions requires special care. Either side is al-
lowed to terminate independently if it decides to do so. The whole construction
terminates only if both sides have terminated.

P p Q-5
Plal Q-4 Q Pl Q- P4l Q Q4 Q-5

The special cases of synchronization on ¥ (]|) and interleaving (|||) are sub-
sumed under these eight firing rules.

The process P \ A executes the events in the set A internally, without
synchronization by its environment; they can be thought of as being replaced
by 7 events.

i i .
P\A- P\ A

€A

Events outside A (except v') are under environmental control as defined by P.

p - P
a ¢ AU{V
P\A- P\ A ¢ 3

The hiding construction is resolved by the v* event.
PSP
P\A-SQ
Conditionals and guards do not need their own firing rules because these
two operators merely constrain the set of events that a process offers initially.

If an event is performed it is performed as defined by the processes that are
within the scope of the conditional or guard operator.

Renaming (P[M]) affects only those events that are in the domain of M.

a I a

P—b)P (a,b) e M PTP, a € X\ dom M
P[M] — P'[M] PM] — P'[M]

Internal transitions are not affected by renaming. The v* event resolves the

renaming construct.

p_",p P p
P[M] =5 P'[M] PM] -5 0

For example the following process P, defined as an abstraction of compo-
nents that synchronize on a, simply offers the event ¢ and then terminates

2.3 Denotational Semantics 23

Py = (a — SKIP |(ay] (b — SKIP ;a — SKIP)) \ {b}

Py = (a — SKIP | (o] (SKIP ;0 — SKIP)) \ {b}

Py = (a — SKIP | (o] (a — SKIP)) \ {b}

a‘m G(H‘(HG

Py = (SKIP |(ay| SKIP) \ {b}

-
—

A
Vs

L)
©

Py = (Q |1ay] SKIP) \ {b}
Py = (SKIP [(a|) \ {6}

—
—

V'
A

Py = (Q [a3]) \ {0}

OV

PGZQ

Figure 2.1: LTS of process P shown in equation (2.1)

successfully.
P = (a — SKIP |(4y| (b — SKIP ;a — SKIP)) \ {b} (2.1)

The LTS of this process is shown in Figure 2.1. The initial state is labeled
Py, hence Py = P. Initially, the operands of the parallel composition cannot
synchronize. The only transition that can fire is the 7 transition introduced by
the hiding of b. Before synchronization on a can happen, the right-hand side
must resolve the sequential composition by another 7 transition. Now both
sides may terminate finally resulting in distributed termination of the parallel
composition and of the hiding construct.

2.3 Denotational Semantics

The fundamental idea of denotational semantics is to interpret the dynamic
notion of reduction by the static notion of equality. The semantics of a com-
pound statement derives from the denotations of its immediate parts.

CSP has a range of denotational semantic models, the most basic of which
are: the traces model 7; the stable failures model F; and the failures-divergences
model FD [Ros05]. These models express the semantics of processes in increas-
ing levels of detail. For example, internal and external choice are indistin-

24 CSP

guishable in the traces model but resolved in the stable failures model, whilst
divergence is resolved in the failures-divergences model. In the following, we
briefly introduce these three models. Throughout this thesis >* denotes the set
of finite sequences of events. t, u are sequences, the concatenation of sequences
t and u is written ¢ 7 u.

A sequence of events that a process may perform is called a trace of the
process. In the traces semantics of CSP, a process is represented by the set of
all its possible traces; the result is useful in specifying safety properties. Traces

are always nonempty
traces(P) # ()

and prefiz-closed
Vi,ue Xt u€ traces(P) = t € traces(P).

The former property holds because each process may perform the empty trace
() € traces(P). The latter property must be satisfied to ensure that all sub-
traces of a trace of a process are also traces of that process.

Examples of how traces are computed are the following:

={0}

= {0, ()}

= {0} U {{a) "t] ¢ € traces(P)}
= if b then traces(P) else traces(Q)

traces(STOP
traces(SKIP

traces(a — P

traces(P €b> Q

~— ~— S~ ~—

Internal and external choice are indistinguishable in the traces model.

traces(P M Q) = traces(P) U traces(Q)
traces(P O Q) = traces(P) U traces(Q)

As a consequence, the traces model fails to describe liveness properties: while
P O () cannot refuse to synchronize on any of the initial events of P or @,
P 1 @) can do so but this fact cannot be derived from the traces of a process.

The traces of processes synchronizing on their whole alphabets are easily
defined as shown below. Interleaving and generalized parallel composition are
defined using auxiliary operations on traces which can be found in [Ros05,
pages 67 and 70].

traces(P || Q) = traces(P) N traces(Q)

traces(P ||| Q) = U{t || w |t € traces(P) A u € traces(Q)}
traces(P |x| Q) = U{t |x| u |t € traces(P) A u € traces(Q)}

The traces of a process can be defined inductively on its syntax (as shown
above) or derived from its LTS (as shown in the previous section).

2.3 Denotational Semantics 25

The traces semantics records behaviors that a process can do. In the stable
failures semantics this is enriched with sets of events that can be constantly
refused by a process after a particular trace. These sets are called refusals. A
failure is a pair (¢, X') where ¢t € 3% is a trace and X C 3, a refusal set. The
notion of stability is explained best using the operational semantics of CSP:
a process is in an unstable state if the state has outgoing 7 edges; otherwise
it is a stable state. Process Py of Figure 2.1, for example, represents a stable
state, while P3 represents an unstable state. Unstable states do not give rise
to a failure, but stable states do. The failures of P, are

{(0. X)X €2\ {a}}.

The stable failures semantics, by additionally recording the refusals of a pro-
cess, is useful in specifying a system’s safety and liveness properties. Deadlock-
freedom of P, for example, is specified as

V't e traces(t) : (t,2,) ¢ failures(P) .
Closely related are the failures of STOP

failures(STOP) ={((), X | X CX,)}.
Internal and external choice are resolved in this model.

failures(P M Q) = failures(P) U failures(Q)

)
failures(P O Q) = {({), X) | ((), X) € failures(P) N failures(Q)}
U{(t,X) | (t,X) € failures(P) U failures(Q) Nt # ()}
U{((),X) | X CEA (V) € traces(P) U traces(Q)}

The informal explanation is that P I @ is in an unstable state initially. After
resolving the internal choice, it behaves either as P or as @ resulting in the
set union presented above. The external choice, however, may be in a stable
state initially removing the initial events of each of the choice’s operands from
the refusals of the other respectively.

Since the interrupt operator plays an important role in this thesis (espe-
cially in Chapter 5), its traces and failures are presented here. The traces of
P A\ @ are the union of P’s traces with all nonterminating traces of P contin-
ued with @)’s traces. The failures are not as easily derived because of possible
termination of P. The failures of the whole construct contain the failures of P
up to the point just before termination. After each trace ¢ € traces(P) such
that P might terminate after ¢, v' cannot be refused (even if v € refusals(@Q)).
After termination of P, any event can be constantly refused (the whole con-
struct has terminated). Before termination of P, () may take over any time

26 CSP

thus ignoring the refusals of P.

traces(P A\ Q) = traces(P) U{t " u | t € traces(P) N X" A u € traces(Q)}
failures(P A Q) = {(t, X) € failures(P) | t € ¥*}
U{(t,X) |t (V) € traces(P) N X C X}
U{(t (), X) |t (V) € traces(P) N X C X/}
U{(t " u,X) | t € traces(P)NE" A (u, X) € failures(Q)}

The traces model is about what a process can do, while the stable failures
model enables us to reason about what a process must do or what it can
refuse to do. However, the stable failures model fails to resolve infinite internal
behavior because each node on an infinite path of 7 transitions represents an
unstable state. Thus, in addition to traces and refusals, a complete description
of the behavior of processes must take divergences into account. The failures-
divergences model solves this problem by additionally recording the states in
which a process can diverge. Divergence can be introduced by hiding (resulting
in loops of 7 events), the symbol div and by ill-formed recursion like P = P.
See [Ros05, Chapter 8.3] for an in-depth presentation of the failures-divergences
model.

In the rest of this thesis, we will primarily focus on the stable failures
semantics of processes because the stable failures and failures-divergences se-
mantics collapse for livelock-free processes (and we are mostly interested in
livelock-free processes). Therefore, we will always discuss if a construction or
operation on processes may cause or eliminate divergence.

In Section 2.2, we have introduced the initials of a process: the set of events
that the process offers initially. The initials of a process are mostly relevant
for its operational semantics but can also be given in terms of its denotational
semantics:

initials(P) = {x | (z) € traces(P)}.

Closely related to the notion of initials is the ‘after’ operator P/t that
describes P after performing the trace ¢ € traces(P). It is defined for traces
only and satisfies

traces(P/t) ={u |t u € traces(P)}.
To illustrate its connection to initials this equality can also be stated as
P =7 z:initials(P) — P/{(x) .

It is important to note that this operator is not a part of the CSP language
and cannot be used to model processes. However, it is often used in proofs
when it is assumed that a process has already executed a particular trace.

2.4 Refinement and Algebraic Semantics 27

2.4 Refinement and Algebraic Semantics

Conformance in CSP is expressed by refinement. Informally, P C @ (speak
‘P is refined by @’) means that ¢ conforms to P, or that @’s behaviors
are contained in those of P. Formally, for any of the three semantic models
M e {T,F, FD},

PCm Q & M[Q] € M[P]

where M[P] denotes the semantics of process P in semantic model M. Based
upon the notion of refinement, CSP provides a refinement calculus supporting
process development.

Refinement in the traces model 7 is about restricting the behaviors of a
process. The most refined process in this semantics is STOP because for every

process P
PCs STOP.

Refinement in the stable failures and the failures-divergences models is about
removing nondeterminism. Deterministic processes (those without unstable
nodes) cannot be refined further in these models. This is expressed formally
by the basic refinement law ‘resolution of nondeterministic choice’

PONQCP. (2.2)

Containment in the failures-divergences model is defined such that divergence
is the greatest element in the refinement relation. Hence,

div E]—'D P

holds for every process P.

Algebraic reasoning is supported by refinement laws that correspond to con-
tainments in the failures-divergences model. However, although the following
laws can be derived from the denotational semantics and stated as theorems,
they are given as a set of algebraic laws of an algebraic semantics.

Processes are no longer interpreted in terms of sets of events they may
perform or refuse but simply by the process terms that they are composed
of. Theorems in the algebraic semantics are all those equivalences that can be
derived from the basic laws (axioms).

The most fundamental laws are the following unit-laws.

STOPO P = P (2.3)
SKIP;P = P (2.4)
P;SKIP = P (2.5)

SKIP|||P = P (2.6)

Law 2.6 can be generalized to

SKIP |o| P=P if SpnA=0. (2.7)

28 CSP

Another group of fundamental laws (the step-laws) describe the stepwise
behavior of processes.

(x:A—-P)0O(z:B— Q) = z:AUB— (P11 Q)
frz e ANBY¥

(P fz€A%Q)) (28)
STOP = z:0— P (2.9)

{P\X if a € X

(¢ — P)\ X (2.10)

a— (P\X) ifa¢ X

Law 2.8 states that the external choice operator is resolved nondeterminis-
tically if the initial events of its operands overlap and that it is resolved to the
side that performed the event otherwise. Law 2.9 justifies the understanding
of STOP as a process without initial events.

Let P=3s:A— P and Q = 2: B — @’. The initials of P |x| @ are then
C=(XNANB)U(A\ X)U(B\ X). Using these definitions, we state the

step law for generalized parallel composition as follows:

Plx|Q = z:C— (P'|x| Q) fz e X%
(P x| Q)M (P[x| @) $z € AN B
((P"]x| @) €2 € A%(P [x] @) (2.11)

Accordingly, the event z is synchronized if it is in X. If it is offered by both
P and @, it is performed nondeterministically by either P or (). Otherwise, it
is performed by the process that offered it.

Further important laws are the following idempotence, symmetry, and as-
sociativity laws.

pop = P (2.12)
PP = P (2.13)
P4bPP = P (2.14)
POQ = QOP (2.15)
PNQ = QNP (2.16)
Plal@Q = Q4P (2.17)
(P\A)\ B :(P\E\A (2.18)
PO(QOR) = (POQ)O (2.19)
PO(QNR) = (POQ)N (2.20)
P\A|(Q\A\R) = (P |A’ Q) \A!R (2.21)
Pi(Q;R) = (P;Q);R (2.22)

Proofs presented in this thesis are mostly based on the algebraic semantics
of CSP but sometimes resort to the denotational or the operational seman-

2.5 Tools 29

tics. Further algebraic laws are derived from the denotational semantics when
needed.

2.5 Tools

There are many tools available that support the modeling, understanding, or
formal analysis of CSP processes. Such tools include animators, automated
refinement checkers, model checkers and theorem provers (e.g., for proving
refinements of infinite state processes). Of the tools presented in the rest of
this section, FDR and ProB are the most important for this thesis.

2.5.1 Animators

Animators offer users the possibility to step through processes and explore
their behaviors. For this purpose, animators implement the firing rules given
by the operational semantics and unroll (interpret) the process under consider-
ation according to these firing rules. While unrolling the process, an animator
(partially) computes the LTS of the process and outputs a trace corresponding
to a single branch of the LTS. Animators allow the user to play environment
of a process as well as to control its internal transitions to explore its behavior.
This is a great help in developing and understanding processes and in teaching
CSP.

Animators that are widely used in the CSP community are ProBE [Ros05],
ProB [LFO08] and the process analysis toolkit PAT [SLDO08]. ProB supports
LTL model checking in addition to process animation. PAT is equipped with
refinement and LTL model checking capabilities. The CSPy, toolkit [Fonl0]
offers implementations of the firing rules for reuse in custom CSP tools and
also offers its own CSP animator.

Sometimes, animators are also called simulators. For the purpose of this
thesis, the notion of simulation is distinguished from animation. Animation
refers to the act of a human playing with a tool that interactively explores
the state space of a system. This technical view relates to the common under-
standing of animation as ‘creating the illusion of movement’. Simulation, in
contrast, denotes a relation between (labeled) transition systems that is useful
in the study of operational semantics. Intuitively, a system simulates another if
it can match all of its moves. This matches the common understanding of sim-
ulation as ‘imitating the appearance or character of somebody or something’
in the sense that a system imitates the behavior of another.

2.5.2 Model Checkers

Generally speaking, model checkers check whether a temporal logic specifica-
tion ¢ holds on a given model M, formally M = ¢. Model checkers are mostly
concerned with finite state systems and exhaustively search the state space of

30 CSP

the system under consideration. However, some model checkers also support
infinite state systems, but then the checking procedure is not guaranteed to
terminate in general. Well-known temporal logics used for model checking pur-
poses are Computational Tree Logic (CTL) and Linear Temporal Logic (LTL)
which are both subsets of CTL* [CGP99]. Both ProB and PAT support LTL
model checking of CSP processes. In the context of this thesis, LTL is consid-
ered exclusively. Readers not familiar with LTL may refer to [CGP99] because
it is not introduced here.

ProB supports the LTL! dialect [PLO8]. This dialect is remarkably rich
in terms of temporal operators and atomic propositions. The [.] operator, for
example, targets traces and checks if an event is performed by the process
under consideration. The e(.) operator targets failures and checks if an event
is enabled (cannot be refused). For example, the formula

¢ = G([a] = e(a))

specifies that the event a is available when it is performed. Hence, ¢ is a
tautology. However,

¥ = G(e(a) = [a])
is not a tautology but satisfiable. The following process P, for example, satis-

fies ¢ (P =) while @ £ -

P=a—P
QQ=a— STOPOb— STOP

The reason is that P must perform a whenever it is enabled but) may per-
form b even though a cannot be refused initially. LTL formulas given in the
subsequent chapters are set in LTLI? syntax.

The LTL dialect supported by PAT targets specifications on traces only. It
does not offer an operator to specify the availability of events in LTL properties.

The relationship between refinement checking and LTL model checking was
investigated by Leuschel et al. in [LMCO01] and more recently by Lowe [Low08].
An important result is that there are LTL properties that cannot be expressed
as refinement relations and vice versa (in the semantic models considered here).
Thus we use both model checking and refinement checking for the purposes of
this thesis.

2.5.3 Refinement Checkers

Refinement checking refers to proving if the behaviors of a process are contained
in the behaviors of another. Automated refinement checking of finite state
processes is supported by FDR [Ros05], PAT [SLD08| and ARC [PY96], for
example. Infinite state systems can be interactively checked using the CSP-

Prover [IR05] (built atop of Isabelle/HOL [NPWO02]).

2.6 Summary 31

channel a.,b

P = (a— SKIP [|{a}|] (b — SKIP; a — SKIP)) \ {b}
Q = a — SKIP

assert P [FD= Q

assert Q [FD=P

Figure 2.2: CSPy; encoding of example process P shown in Equation 2.1 (p. 23).

In this thesis, we focus on the automatic refinement checker FDR (version
2.83). This tool proves or refutes assertions of the form P Cp @ (where
M € {T,F,FD} as described in Section 2.4). It also supports predefined
assertions for checking if a process is deterministic and if it is deadlock- or
livelock-free.

FDR inputs processes expressed in CSPy;, which is now the de facto stan-
dard for machine-readable CSP (and also supported by ProB). CSPy, expresses
CSP by a small but powerful functional language, offering constructs such as
lambda and let expressions and supporting pattern matching and currying. It
also provides a number of predefined data types, including Booleans, integers,
sequences and sets, and allows user-defined data types. The alphabet of the
processes of a CSPy, script is defined by the script’s typed channel definitions.

Figure 2.2 shows the CSPy encoding of the example process P (equa-
tion (2.1) introduced in Section 2.2). The last two lines of the CSPy, script
assert P = @ (in the failures-divergences model FD but also in 7 and F).
When examining the operational semantics of P, we found that P is able to
perform the trace (a,v’) and we also found that it cannot avoid doing so.
Thus, as expected, both assertions hold. See [GRAO05] or [Ros05] for further
details on CSPy,.

2.6 Summary

This chapter has presented the process algebra CSP. We have introduced its
syntax focusing on the role of events. In the context of this thesis, events are
regarded as abstractions of arbitrary actions of a system (possibly involving
communication but also describing local data transformations). Then, we have
introduced the operational, denotational, and algebraic semantics of CSP. The
operational semantics allows us to regard processes as states and events as
transitions allowing the system to evolve from one state to another. Hence, it
allows us to ‘execute’ CSP processes. The denotational and algebraic semantics
are mostly used in proofs. There is a close connection between these semantic
models because the denotational semantics of a process can be computed from
its labeled transition system (using its operational semantics) and the laws
of the algebraic semantics can be derived as theorems from the denotational
semantics. At the end of the chapter, we have described some of its most

32 CSP

widely used tools. FDR and ProB are the ones being used in the rest of the
thesis. Both tools support CSPy,.

3 Further Terminology and
Notations

In this chapter, we introduce further terminology and notations. The concept
of coordination languages is introduced in Section 3.1. We then go on to present
Java concurrency and its weaknesses in Section 3.2. Infamous phenomena of
concurrency (those that the approach presented here aims to avoid) are briefly
introduced in Section 3.3. Finally, the most basic terminology used in the
context of Business Process Management, relevant for Chapter 8, is introduced
in Section 3.4.

We presume basic knowledge of Z, Petri Nets and the Java programming
language. The mathematical notation used in this thesis is a subset of the
Z mathematical toolkit as presented in [Spi92]. For example, we use # to
denote the cardinality of a set as well as the length of a sequence. Petri Nets
(see, e.g., [GV03] for an overview) strongly influenced formal approaches to
the modeling of business processes. Petri Nets also appear in the context
of approaches to coordination. We use the Java programming language to
implement the concepts presented in this thesis to explore the applicability of
our approach.

3.1 Coordination Languages

In [GC92], Gelernter and Carriero, the inventors of the Linda language, intro-
duce the term coordination language.

We introduced this term [i. e., coordination language| to designate
the linguistic embodiment of a coordination model. The issue is not
mere nomenclature. Our intention is to identify Linda and systems
in its class as complete languages in their own rights, not mere ex-
tensions to some existing base language. Complete language means
a complete coordination language of course, the embodiment of a
comprehensive coordination model. [GC92, p. 99

33

34 Further Terminology and Notations

The basic observation underlying the concept of coordination languages is
the orthogonality of concurrency and parallelism to sequential aspects of a
system. For example, Linda [ACGS86] is a coordination language adding par-
allelism to sequential target languages such as C or Fortran. It allows tasks
to be distributed dynamically at runtime. Linda comprises a model of coor-
dination and communication among several parallel processes in a machine-
and language-independent way. The communication model of Linda is based
upon virtual associative shared memory, the so-called tuplespace. It is used for
storing and retrieving objects and also for distributing tasks among the partic-
ipating processing units. Linda defines operations for reading a tuple, writing
a tuple, atomically reading and removing a tuple from the tuplespace, and
the distribution of tasks. These four operations are implemented for specific
target languages and machines and allow sequential programs to be turned
into concurrent or parallel ones. The Linda programming model treats process
coordination as a separate activity from computation and subsumes various
levels of concurrency. For example, it allows multi-threaded programs to be
turned into parallel ones without change. However, the Linda programming
language does not offer an approach for the specification and verification of
concurrent systems. It can be regarded as a proof-of-concept of coordination
languages.

In the context of this thesis, coordination refers to the abstract idea of
supervising and controlling the behavior of concurrent components. Thus,
we understand systems such as Reference Nets [Kum02], CSP || B [ST04],
rCOS [CHLO06], and the approach presented in this thesis, as formal approaches
to coordination.

3.2 Java Concurrency

Java is a very popular programming language used in the development of desk-
top applications, servers and mission-critical enterprise applications. It offers
built-in concurrency and is often used to develop multi-threaded programs to
take advantage of concurrent threads running on symmetric multi-processors
or on networks of processors. Java threads are ordinary Java objects residing
in shared memory space. Unlike ordinary method calls, the call to Thread.start
is intercepted by the Java Virtual Machine (JVM) to execute the method in
its own thread of control. The synchronization facilities of Java are based on
monitors on objects. Monitors control the interplay of threads. The primitives
are

m synchronized

m Object.wait

m Object.notify, and
m Object.notifyAll.

The synchronized keyword obtains and frees monitors on objects. The other
primitives interact with the scheduler of the JVM. Object.wait causes the cur-

3.2 Java Concurrency 35

class Synchronized {
private final Object o = new Object ();
synchronized void doSynchronized0 (){
while (...) {
try {
this. wait ();

}

catch(InterruptedException e){...}

}

void doSynchronizedl (){
synchronized (o) {
while (...) {

try {
o.wait ();
}

catch(InterruptedException e){...}

}
o.notify ();
}
}
}

Figure 3.1: Example class skeleton illustrating Java concurrency primitives.

rent thread to wait. Object.notify notifies a nondeterministically chosen wait-
ing thread and Object.notifyAll notifies all waiting threads. In both cases
only one thread may enter the monitor. Figure 3.1 illustrates the use of these
primitives. A thread calling the Synchronized.doSynchronized0) method ob-
tains a monitor on that very instance of Synchronized. The second method
(doSynchronizedl) uses another object as monitor ensuring independence of
the two methods.

These primitives are considered weak and leave even the skilled programmer
vulnerable to error. D. Lea put it this way when posting the Java Specification
Request (JSR) 166:

[...] such facilities are notoriously hard to get right and even more
difficult to optimize. The concurrency facilities written by applica-
tion programmers are often incorrect or inefficient. [Lea02]

The fundamental difficulty lies in the use of monitors as the basic syn-
chronization primitive. The problem arises from the fact that a thread passes
control from one object to another by calling its methods. Thus, when imple-
menting a method that needs to access some shared data (or more generally
needs to synchronize in some respect) it is not always obvious what monitors a
potential caller might belong and what monitors callees of the current method
may acquire. As a consequence, rules for coordinating access need to be de-
signed and enforced if chaos is to be avoided. A more elaborate — and very
illuminating — discussion on Java concurrency is given in [HBB99].

36 Further Terminology and Notations

Some research has therefore been done to tame the complexities of concur-
rent Java programs by developing concurrency frameworks atop Java threads
to hide the Java synchronization primitives from the developer, e. g., the frame-
works which we present later on in Section 9.3. To overcome the problems of
Java concurrency, JSR 166 was finally released in 2004 as part of Java 5 in
the java.util.concurrent [Sun] package. The new concurrency package offers
abstractions that hide the above-mentioned Java concurrency primitives but
still lacks the support of automated verification. Furthermore, the Java Mod-
eling Language (JML) [LBRO6] does not yet explicitly address concurrency.
Extending JML towards concurrency is still an active field of research. The
authors of [BCCT05], for example, pose the question

How should concurrency properties be specified (in JML)?

Our answer to this very question is to have concurrency expressed in a spe-
cialized formalism, e.g., CSP, and to use additional proof obligations relating
the CSP specification with the state-based JML specification.

3.3 Infamous Phenomena of Concurrency

In the previous chapter, we have introduced CSP as a formalism for specifying,
modeling and reasoning about concurrent systems. In that context we have
presented deadlock and livelock as two basic pathological phenomena. Both
are explicitly modeled in CSP by the processes STOP and div.

Java programs may also suffer from these phenomena. Deadlock arises
when a group of threads reaches a state where each one of them is waiting
for another to do something that will enable it to proceed. For example, the
threads are either blocked on a monitor entry or have put themselves to sleep
by calling Object.wait and are waiting for another thread to call Object.notify
or Object.notifyAll. In this situation, the system is stuck and has evolved to
STOP.

Livelock occurs if a group of threads get into an infinite cycle of interaction
amongst themselves and refuse to respond to anything outside their group.
This corresponds to the CSP notion of divergence.

Two further phenomena are threats to concurrent systems: starvation and
data races. Starvation is observed when a single thread is blocked indefinitely,
waiting for a condition that the other threads never set up for it. A sys-
tem that allows a shared variable to be concurrently accessed without proper
locking or synchronization possibly produces a data race. This may result in
nondeterministic final values of the shared variable. While starvation can still
be checked for on the CSP level, detection of data races needs more information
than is available on that level (as discussed in Section 6.4).

Livelock and Starvation are often caused by repeated (local) choices that
are always resolved in the same way. Process P in

(nPoa—P)|[[(nQeb—Q)lapy| (nRea— RMTb— R))\{b},

3.4 Business Processes and Workflows 37

for example, is subject to starvation if the internal choice in R is always resolved
to the right-hand clause. In that situation, the whole process is subject to
livelock. Although this situation is theoretically valid, it is often unlikely to
arise in reality. This fact is expressed by the notion of fairness. The notion of
fairness conditions refers to conditions that ‘cure’ processes that behave badly
under the assumption that repeated (local) choices can always be resolved in
the same way. The process shown above, for example, is well behaved under
the assumption that the internal choice in R is a fair one. Fairness can be
specified on different levels of granularities (e.g., local or global) and can be
regarded as an abstraction of probabilities. FDR does not support fairness but
PAT explicitly deals with fairness, as described in [SLDP09].

3.4 Business Processes and Workflows

The notions of business process and workflow are often used as synonyms for
each other. In this thesis, we follow the definitions as given by the Workflow
Management Coalition (WEMC) in [Coa99]. A business process denotes the
abstract concept of processes that are performed by employees of an organi-
zation to realize the goals of that organization. The WIMC defines a business
process as

a set of one or more linked procedures or activities which collec-
tively realise a business objective or policy goal, normally within
the context of an organisational structure defining functional roles
and relationships. [Coa99, p. 10]

The model of a business process defines roles, tasks, activities, conditions
and events and the relationship between those. A workflow defines how, by
whom and by which means the business process is to be executed. We call such
a model of a business process a workflow. The WEMC states that a workflow
describes

the automation of a business process, in whole or part, during which
documents, information or tasks are passed from one participant to
another for action, according to a set of procedural rules. [Coa99,

p. 8]

Incarnations of workflows for a specific workflow server are called workflow
definitions. Workflow servers manage workflow definitions and allow users to
create instances of workflows controlling the tasks and activities necessary for
dealing with the documents or data being processes to satisfy the modeled busi-
ness process. If one is solely interested in the control structure of a workflow,
e.g., for proving deadlock-freedom, it is often sufficient to disregard aspects
such as roles and access control. An example of such an abstract model of
a workflow modeled as a Petri Net is shown in Figure 8.2. It represents a
workflow composed of the basic tasks a, b, ¢, d, e, f, g, h.

38 Further Terminology and Notations

3.5 Summary

This chapter has presented further notations and terminology used throughout
the thesis. The concept of coordination languages is based on the idea to segre-
gate interaction behavior of a concurrent system from its sequential functional
aspects. Java concurrency is based on monitors and primitives to synchronize
on monitors. The drawback of Java concurrency is that the primitives are
error-prone to use and that it is not yet supported by JML. Concurrent Java
programs are threatened by deadlock, livelock, starvation and data races. Fair-
ness assumptions may help to rule out bad behavior on the semantical level
but then it must also be ensured that implementations adhere to these assump-
tions. The two most basic unwanted phenomena of concurrency are deadlock
and livelock. These can be detected with FDR. Finally, the basic terminology
of business processes were briefly introduced. A workflow is a model of a busi-
ness process and a workflow server is a system controlling workflow definitions
and instances of workflows. Workflows are only relevant for chapters 8 and 9.

4 Simulating Truly Concurrent
CSP

Es gibt nichts Praktischeres
als eine gute Theorie.

(Immanuel Kant)

As motivated in the Introduction and presented in Chapter 2, process alge-
bras, like CSP, allow synchronizing processes to be combined in parallel with
the result that the system designer need not be concerned about exploiting si-
multaneity, which may arise naturally in an implementation conforming to the
design. But sometimes, for example for purposes of simulation, it is useful to
know what potential simultaneity a design embodies, and then the abstraction
carefully built in to the process algebra must be revoked.

In this chapter, we study one way to make explicit the simultaneity of events
implicit in a CSP process. Events were designed in CSP to be instantaneous,
on the understanding that duration can then be modeled by splitting an event
into start and end events. Our approach starts by unravelling that assumption,
and proceeds by constructing a faithful, controlled simulation of the process.

An important consequence of the approach taken here is that sets of events
that may occur concurrently are computed statically. As a result, the approach
is suitable for realistic simulation (in the sense that functions attached to events
may be executed concurrently and may require positive duration). Indeed any
(non-v') event (even synchronization events) can be linked to a terminating
user-defined function, and the functions executed concurrently, as we will see
in Chapter 6. There, the model of a CSP-based coordination environment
simulating a coordination process at runtime is presented. In that environment,
a user-defined function is started immediately after its corresponding start
event and after its termination the corresponding end event becomes available.

Section 4.1 introduces a syntactical transformation of processes T that
splits events into a start and an end event. Then Section 4.2 shows how
the transformed process can be used to compose a system that simulates the
original process while collecting concurrency information. The construction is
shown to be faithful in the sense that the simulated version equals the original

39

40 Simulating Truly Concurrent CSP

process in the traces semantics. Properties used to prove that the construction
preserves the semantics of the original process are presented in Section 4.3.
The approach is shown at work on four small but typical examples which are
presented in Section 4.4. In Section 4.5, we present two subsets of CSP such
that Eat preserves the failures-divergences semantics of every process in these
subsets. This chapter closes with a discussion in Section 4.6.

4.1 The Transformation 7T

In this section we present the transformation 7T that achieves the simulation
motivated above. T models duration of events by splitting them (as described
in [Hoa85] and discussed in [vGV97]). Internal transitions are exposed by in-
troducing fresh events. The purpose of the transformation is to put the trans-
formed process T'(P) into parallel with a control component (being introduced
in the next section) that records the start and end events of every transition of
the original process P (including hidden events). The control component can
then record possible simultaneity in 7" and thus be used to compute possible
concurrency in P.

Throughout this chapter processes are expressed using the syntax
SKIP | STOP | (z:X — P(z)) | P;Q | PO Q| P|al Q]

P\A|POQ|PM]|P>Q.

for the ‘atomic’ processes, prefix choice, sequential composition, external choice,
parallel composition, hiding, internal choice, renaming and timeout respec-
tively.

Let I = {ic_0,t0_0,... ic_n,to_n} be a set of fresh events relative to Xp
modeling timeout and resolution of internal choice. Furthermore, let

s,sh,e,eh:XpUI
be fresh channels relative to >Xp. The transformation 7T is defined as follows.

= SKIP

= s?2: X - ex— T(P(x))
= T(P); T(Q)

re = T(P)O T(Q)

T(SKIP)
)
)
0 Q) (P) B
T(P[al Q) = T(P) l{szcapeay] T(Q)
) (P)
)
)
)

T(z:X — P(x)
T(P;Q

T(P\A) = T(P)[s.x « sh.x,e.x «— eh.x |z € A]

T(PN Q) = sh.ic_i— ehic_i— (T(P)N T(Q))
T(PM]) = T(P)[s.x « s.y,e.x — ey | (z,y) € M]
T(PrQ) = T(P)Od (sh.to_i — eh.to_i — T(Q))

4.2 Assembling the System 41

T does not affect v'. For prefix choice, T splits each event x into its start
event s.z and end event e.z. As special cases,

T(STOP) = STOP
T(x — P)=sxz— ex— T(P).

T distributes over sequential composition, external choice and parallel com-
position, in the latter case by synchronizing on the split events instead of the
original events. For hiding, 7' communicates the split events over the channels
sh and eh (standing for ‘start hidden’ and ‘end hidden’, respectively). For
each internal choice, thought of as resulting from an internal transition, T
introduces a fresh hidden event labelled ic_i € I for that transition where the
i denotes the i-th occurrence of the process operator in the input process. It
is then split and communicated over the sh and eh channels responsible for
hidden events. T distributes over renaming by lifting the renaming to the split
events. Finally T distributes over the operands of a timeout, replaces the time-
out by external choice and introduces a fresh timeout event labelled to_i € I
for each timeout communicated over the channels sh and eh responsible for
hidden events (recall the motivation for the timeout operator to express the
abstraction of one initial event in an external choice; see, for example, [Ros05]).

The alphabets of P and T'(P) are disjoint, since

Yy € {|s. e, sh,ehl}.

To illustrate T, Figure 4.1 shows the stepwise transformation of the ex-
ample process given in equation (2.1) (p. 23). First, the hiding operator is
transformed, second, the parallel composition. T distributes over sequential
composition in the third step. The next step deals with prefixing and perform
the splitting of a and b. Finally, SKIP is mapped to SKIP. The resulting
process can simplified to

sh.b — eh.b — s.a — e.a — SKIP

using laws 2.4 and 2.11 and applying the renaming.

While concurrency cannot be distinguished from choice in the interleaved
semantic models 7, F and FD, the transformation 7" allows them to be dis-
tinguished because start and end events of two events z and y may interleave
only if x and y are concurrent in P. There is, for example, no such interleaving
of start and end events in the example process shown above.

4.2 Assembling the System

The ‘control process’ to be placed in parallel with a transformed process to
record possible simultaneity is defined in terms of a parameter X denoting
a bag; bag union is denoted W, bag difference U, and bag comprehension is
written [2o,...,,]]. Initially the bag is empty. Let term be a fresh event

42 Simulating Truly Concurrent CSP

T((a — SKIP |(a)] (b — SKIP ;a — SKIP)) \ {b})

- T(P\ A)
T(a — SKIP |(sy| (b — SKIP ;a0 — SKIP))[s.b < sh.b, e.b « eh.b]
— T(Plal Q)

(T(a — SKIP) |(s.0.e.0y] T(b— SKIP:a — SKIP))
[s.b < sh.b, e.b < eh.b]

_ T(P;Q)

(T(a — SKIP) |(s.0,c.a}| (T(b — SKIP); T(a — SKIP)))
[s.b < sh.b, e.b «— eh.b]

= T(x — P)

(s.a — e.a — T(SKIP) |(s.a,c.03| (5.0 — e.b — T(SKIP)
;s.a — e.a — T(SKIP)))[s.b < sh.b,e.b < eh.b]

= T(SKIP)

(s.a = e.a — SKIP |(54.ca}| (s.0 = €.b — SKIP;s.a — e.a — SKIP))
[s.b < sh.b, e.b «— eh.b]

Figure 4.1: Example transformation.

modeling the possibility to synchronize before successful termination. The
control process is defined as follows.

C(X)= s?z— C(XW][z])
O sh?z — C(X W [[z])
Oe?z — C(X U [z])
O eh?z — C(X U [[z])
O term — SKIP (4.1)

As outlined in the previous section, the process C(X) is to be put in par-
allel with the transformed process. We define S¢,, = {|s, sh, e, eh, term|} to
be the alphabet on which the transformed process T'(P) and the controller
synchronize. Now because term € Sg,, but term ¢ Y 7r(py, the controller
C cannot terminate while 7'(P) is still active. Since we aim at establish-
ing traces-equality, the parallel composition must be able to terminate if P
terminates successfully. Thus, because of the {2 semantics and distributed
termination of parallel composition, T'(P) is sequentially composed with the
process term — SKIP in the following construction. The construction starts
by transforming an input process P to T'(P) and combining the result with the
control process (4.1) to achieve the result Con(P) (standing for controlled).

Con(P) = (T(P);term — SKIP) |s.,.| C([]) (4.2)

4.2 Assembling the System 43

The events s.x are renamed to z, and the events in
H = {|sh, e, eh, term|}
are hidden using Hr (standing for hidden and renamed)
Hr(P) = P\ H[sx — x|z € Xp| (4.3)
resulting in a process
Ext(P) = Hr(Con(P)) (4.4)

(the extension of P) that we think of as simulating P but enabling it to benefit
from true concurrency.

Using the construction Con given above, possible concurrency is captured
by the bag X maintained by the controller process C(X). Whenever the
size of the bag exceeds one, it holds the names of events that are performed
concurrently at that point.

To ensure that a process is not ‘corrupted’ by Ezt we must show that it is
a fixed point of Ezt in the traces semantics:

Theorem 1 For each process P of the form given above,

P =7 Ezt(P).

The intuition is that Ezt splits each event in its argument, relabels the
start event back to the original and hides the end event and does so whilst
faithfully translating the process combinators. A proof by structural induction
is given in Appendix A.1, using the results of the next section, which enforce
the intuition and enable the proof to proceed uniformly.

Equality (in the traces model) with the original process is established by
renaming the start events of the split events back to their original names and
hiding the end events and all those events corresponding to internal actions
({| sh, eh |}). The exposition of internal transitions disallows equality in the
stable failures (and in the failures-divergences) model, because in general

(POQ)\A # P\ADQ\ A

in these models, but

(POQ)\A =7 P\AOQ\A.

For example, FExt preserves the traces but not the failures of

P=(a— STOP\ {a}) O b— STOP. (4.5)

44 Simulating Truly Concurrent CSP

By algebraic reasoning we obtain P = b — STOP (using laws 2.10 and 2.3),
while

Ezt(P) = (b — STOP) 1 STOP . (4.6)
The proof is shown in Appendix A.2. Now
traces(P) = {(), (b) } and traces(Ext(P)) = {(), (b)}

but
((),X) ¢ failures(P) while ((), %) € failures(Ext(P)) .

Unfortunately, there is no construction F' using parallel composition, hid-
ing and renaming such that F(7T(P O @)) = P O Q. However, there are
constructions using the interrupt operator to transform (and simulate) the
external choice operator as we show in Chapter 5.

The information stored in the bag held by C' can be exploited in various
ways. One obvious way is to introduce guards gy, . .., g3 as follows.

Go(X) = 9(X) & s?z — CGo(X & [z])
O q(X) & sh?z — Co(X W [z])
0 go(X) & e?x — Go(X U [z])
0 g3(X) & eh?z — Go(X U [[z])
a term — SKIP

Since the guards restrict the behavior of (g relative to C, we have C T (.
Modifying the extension Ext of P to use Cy yields

Euto(P) = Hr((T(P);term — SKIP) |, | Co([) -
By construction of Cj and Theorem 1 we have
P Cr Ezty(P) .
In the case that checking with FDR fails to establish the refinement
Exto(P) Er P,

it provides a counterexample leading to a state violating ¢;. Examples exploit-
ing the controller process to obtain concurrency information of processes are
shown in Section 4.4.

4.3 Properties

The Ezt construction presented in the previous section splits the events making
duration of actions explicit. It uses a control process to record start and end of
actions and uses hiding and renaming to reestablish the alphabet of the original

4.3 Properties 45

process. In this section, we present the basic properties of the construction that
allow us to prove that Fxt preserves the traces semantics of its argument.

Throughout this thesis, ¢, u are sequences, the concatenation of sequences
t and u is written ¢t " wu, t [X restricts ¢ to the elements that are contained in
X and #t denotes the length of the sequence ¢. Containment of an element
x in a sequence t is written x in £. In the following, we use the abbreviations
5 € {s,sh} and € € {e, eh} to denote visible or hidden start and end events
respectively. Furthermore, the functions

Sof : {e,eh} — {s,sh} and €, : {s,sh} — {e,eh}

defined by S,r(e) = s and S,r(eh) = eh and €,(s) = e and €,z(sh) = eh are
used to obtain the corresponding 5 (or €) channel for a given € (or §) channel.
The results of this section are used in proving Theorem 1. The following
propositions hold by construction of T'.

First observe the following relations between s and e events.

Proposition 1 (s-e-precedence) FEach instance of an event e.x : Yr(p)
is preceded by its corresponding instance 5.z : Xip(p):

Vit (ex): traces(T(P)) - #(t [{Sor(€).x}) > #(t | {e.x}).

Proposition 2 (e-non-refusability) After events.x has occurred in T'(P),
no event €,¢(3).x can be refused until €, (5).x has occurred:

V(t ™ (5.z) T u, R) : failures(T(P)) - €y (5).zih u=Te,(5).x ¢ R.

Traces are normally used to follow the evolution of a process using the
‘after’ operator. Here we instead use failures, so that instances of events are
identified uniquely; as a result the resolution of nondeterministic choices can be
observed directly, without introducing a 7 operator. For example, evolution of
the process (¢ — STOP M b — STOP) to a — STOP is recorded as evolution
from

{(OAD (O Aad), (O 0D} to {((), {}), (O, {b})}-

Now instances of two events = and y are said to be possibly conflicting in P if
they are exclusive at some point (determining the instance) of P’s evolution.
For example, the events a and b are conflicting in the initial state of

a— STOPObL— STOP.

The opposite is conflict freedom: z and y are said to be conflict-free at some
point of P’s evolution if they are not exclusive. The following weak definition
of conflict freedom captures this intuition.

46 Simulating Truly Concurrent CSP

Definition 1 (Conflict freedom) Events x and y of P are conflict-free
at the point determined by (t, R) : failures(P) in P if

V(t ™ (), R) : failures(P) - y¢ R=y ¢ R'.

T is constructed such that the set of 5 events that can be refused at some
point is guaranteed not to grow if an € event is performed. This property is
formalized by the following proposition.

Proposition 3 (s-e-conflict freedom) The s and e events are conflict-
free throughout T(P):

V(t,R),(t " (e.x), R") : failures(T(P)) - (R"N{|s,sh|}) C R.

The term conflict is also used informally throughout this thesis, having
the operational semantics of CSP in mind: the transitions z,y € X U {v, 7},
leading from P to the states P,, P,, P, # P, respectively, are conflicting in
P if z cannot fire in P, or y cannot fire in P,. This deliberately includes the
case £ = y, because events can be auto-conflicting (if they lead to different
states). This also extends to 7 transitions, because conflicts between those are
also possible (as, e.g.,in (a = POb— Q) \ {a,b}).

If two events can be performed simultaneously at some point in time we say
that they are possibly concurrent. Note that events may be possibly conflicting
and possibly concurrent at the same time (such a process is discussed in Sec-
tion 4.4.4, for example). Possible concurrency can be detected by exploiting
the bag X maintained by the controller process as explained further down.

Definition 2 (Possible concurrency) Let¥, = X\{e.z,eh.x}. The set
of all possibly concurrent events of P is defined:

conc(P) = {(z,y) |3t 7 G.2) " u" (€y(5).x) : traces(T(P)), u : ()"
Syinu V eyinu}.

Then event y : Xp is said to be possibly concurrent with event x : Xp in P if
and only if (z,y) € conc(P).

This definition ensures that a single event is not auto-concurrent. For
example,

conc(a — STOP) = (),

but
conc((a — STOP) |g| (a — STOP)) = {(a,a)}.

4.3 Properties 47

To expose the concurrency information recorded by the controller C' we
enhance the construction presented so far. We introduce a new channel

co : bagYip

to communicate the recorded concurrency information and modify the pro-
cesses C', Con and Ext as follows.

Ci(X) =co.X — (s?70 — Ci(X W [z])
O sh?z — C (X W [z])
O e?z — C1(X U [z])
O eh?z — CY(X U [z])
O term — SKIP)
Con(P) = (T(P);term — SKIP) |s,,,| Ci([])
Ezt;(P) = Hr(Con(P))

We observe that: (a) hiding of co does not cause divergence because there
are no adjacent co events in any trace of Ezt)(P); and (b) co is not in conflict
with any event in Cf, so hiding of co does not introduce nondeterminism and
consequently changes neither the failures of Ext,(P) nor its traces.

Hence

Ci(X)\{[eol} = C(X)

and
Exty(P) \ {|co|} = FExt(P).

The controller process C' never refuses any events offered by T'(P) thus,
again, the following proposition holds by construction of Con.

Proposition 4 The controller process C records the concurrent events of P:

Y(z,y) : conc(P),3t " (co.b) : traces(Cony(P)) - zinb A yinb.

The controller C' is designed to record concurrency information but not
change the behavior of the transformed process T'(P). This is captured for-
mally by the following lemma:

Lemma 1 For any process P as above,

Ezt(P) = Hr(T(P)).

Proof 1 The proof follows by ‘reduction of parallel composition’. By definition
of parallel composition, P |s,| @ = P if Q never refuses an event x : X.

48 Simulating Truly Concurrent CSP

Ext(P)

= definition of Ext
Hr(Con(P))

= definition of Con
Hr((T(P);term — SKIP) c(m)

= reduction of parallel composition: C([]]) never refuses z : Scon
Hr(T(P);term — SKIP) .

= term € H
Hr(T(P)) .

|SCO’VL

The exposition of internal transitions is important from a practical point of
view because it allows the assignment of user-defined functions to computations
that are (although present) not observable from outside the computing system,
enabling the determination of events concurrent with those internal transitions.
On the theoretical side, this decision restricts equality of the source process P
with its extended version Exzt(P) to the traces model because hiding does not
distribute over external choice if initial events are affected. Neither does hiding
distribute over parallel composition if the hidden alphabet intersects with the
synchronization set. The following lemma shows that parallel e events can
safely be removed from the synchronization sets in 7' so that the two sets no

longer intersect, and distributivity of hiding over parallel composition holds in
T.

Lemma 2 Writing A’ = {s.z,ex |z € A} and A" ={s.x | z € A},

Hr(T(P) || T(Q)) = Hr(T(P) |ar| T(Q)).

Proof 2 The proof follows by s-e-precedence (1), e-non-refusability (2) and
s-e-conflict-freedom (3).

First, the equality holds trivially if A = 0; thus assume A # 0. By (1), any
e.x event is preceded by (a not necessarily adjacent) s.x event; thus we focus
on s events. Since the result does not affect © ¢ A, we can further restrict
attention to s.x,x : A. Thus assume s.x,x : A have occurred on both sides.
By definition of T, neither side can refuse s.y,(z,y) € conc(P |a] Q). So
assume both sides have performed t : {s.x | v € A}*. By proposition 2, neither
side can refuse any of e.x,s.x € t, whilst by proposition 1, any e.x,s.x if t
s refused. Furthermore, by proposition 3, no e.x event conflicts with any of
the subsequent s events. Thus, synchronizing on e.x,x : A does not affect
subsequent s events. O

4.4 Examples 49

Finiteness of P is not required in the proof. One might suspect that hiding
of e events might introduce divergence, but this could happen only if there
were unbounded sequences of € events. Such sequences could be introduced by
a cycle of € events but the construction of 7" prevents cycles of € events. Fur-
thermore, processes such as P e (x — SKIP |y| P), although infinite state,
cannot perform unbounded sequences of € events either. The s-e-precedence
property asserts that each infinite sequence of € events must be preceded by an
infinite sequence of § events. But unbounded sequences of 5 events would pre-
vent the occurrence of any € event; so whenever e events are observable there
cannot have been unbounded sequences of § events in T'(P); so divergence
cannot occur.

4.4 Examples

In this section, we apply our approach to the following examples: (a) the
example used to motivate [KP95], illustrating the difference between concur-
rency and conflict; (b) a one-place buffer from [GRAO05]; (¢) a modification
of the dining philosophers from [GRAO05]; and (d) van Glabbeek’s owl taken
from [vGV97]. Due to technical limitations of ProB and FDR, the typing and
naming scheme used in the accompanying CSPy, scripts differ slightly from the
models presented here. For example, the controller maintains a list instead of
a bag because CSPy; has no support for bags built-in. The example scripts are
shown in Appendix B.

4.4.1 Choice versus Concurrency

Consider the processes

P =aq—b—STOPOb— a— STOP
Q = a— STOP |y| b — STOP .

Evidently P = @, although the latter offers concurrency of a and b not allowed
by the former. That is revealed using our technique as follows.

By the definition of T,
T(P) = s.a—e.a—s.b—eb— STOPUOs.b— eb— s.a— e.a— STOP
T'(Q) = s.a— e.a— STOP |y| s.b — e.b — STOP .
To use FDR we define
SPEC = Oz :A{[],[e], o]} ® co.x — SPEC'.

Now Ezt(P) = P and FEzt(Q) = @ but using Ezxt; (see the explanation of
definition 2)
SPEC Cr Exty(P)\ {a, b}

50 Simulating Truly Concurrent CSP

while

SPEC Lt Ext;(Q) \ {a,b}.
The trace generated by FDR leading to the violation of the second refinement

relation, namely
(co.[]], co.[b]}, co.[a, b]),

reveals that the events ¢ and b may occur simultaneously in ¢ but not in P.

The same result can be obtained using the LTL model checking capabilities
of ProB. We introduce the fresh event conc_a_b and define

F(P) = Plco.[a, b]] < conc_a_b]
to check if

¢ = G not [conc_a_b]
holds on F(Ext;(P)) or F(Ext;(Q)). Expectedly ProB shows

F(Eeh(P)) = ¢
F(Ext(Q)) I~ ¢

The CSPy; script of this example is presented in Appendix B.1.

4.4.2 One-place Buffer

A specification of a one-place buffer is
COPY = left?r — rightlr — COPY .

The implementation (SYSTEM) presented in [GRAO05] is proved to be equiv-
alent (in the failures-divergences model) to that specification. Since it uses
parallel composition, it is of interest to check whether or not there are actu-
ally any concurrent events in the implementation; there might be concurrent
7 events at least. There are no concurrent events in the implementation if the
bag never grows beyond size one. This property can be built into the controller
by modifying it as follows.

Co(X) = size(X) <2 &(s72 — Co(X W [z])
O sh?x — Co(X W [[z]))
O e?z — Cy(X U [[z])
O eh?x — Co(X U [z])
O term — SKIP)

Here, size(X) denotes the sum of the frequencies of all elements in the bag X

> X#a.

r€dom X

4.4 Examples 51

Checking Hr((T(SYSTEM); term — SKIP) |s.,.| C2([])) =r COPY with
FDR proves that there are no concurrent events in the implementation.

The CSPy, script of this example is presented in Appendix B.2.

4.4.3 Dining Philosophers

The well-known example of the dining philosophers reveals a disadvantage of
our approach: poor performance within FDR. Indeed the size of the transition
system of the controller grows rapidly. In this example, N is the number of
philosophers. The number of events available is 3N + 2N?2. The set of all lists
containing event labels and with maximum length n has Y " (3N + 2N?)"
elements, which is 20,440 for N = 3 and n = 3 or 551,881 for N = 3 and
n = 4. Reducing these sets to create specifications like the one presented in
the first example does not solve this problem. The set of all lists with maximum
length n and at most one renamed eat event in it contains 19,756 elements for
N =3 and n = 3 and 517,420 in the case of N = 3 and n = 4. So checking the
assertion that the eat event never occurs concurrently with another eat event
with N = 3 takes about 90 minutes.

The CSPy; script of this example is presented in Appendix B.3.

4.4.4 Van Glabbeek’s Owl

In [vGV97], van Glabbeek and Vaandrager give examples of processes that
show different behavior when their events are split into n events compared to
when their events are split into n + 1 events. This might come as a surprise
or even sound like a contradiction to the claim made in this chapter that
splitting of events does not corrupt the semantics of a process. In fact, it
is not a contradiction but just another wording of our claim and relates to
the possibility of concurrency and conflict at the same time. The splitting of
the events gives us more information about the internal structure of a process
revealing phenomena such as conflict and concurrency.

The owl example presents the two Event Structures £ and F' shown in
Figure 4.2 (see, e.g., [Win86] for an introduction to Event Structures). The
dotted lines denote conflict and the solid lines stand for causality. Any other
events may be performed concurrently. Thus, both owls model two parallel
processes starting with a or b respectively and then evolving as specified by
causality and conflict. The conflicting events in both owls are identical:

Conf ={(c,c),(c,d),(c,e),(d,e)}.

F' can be obtained from E by exchanging the event labels d and e. Both
Event Structures give rise to the same labeled transition system shown in Fig-
ure 4.3. These Event Structures can be translated into CSP by numbering the
events from top left to bottom right (zero to eleven) and then assembling pro-

52 Simulating Truly Concurrent CSP

Figure 4.2: Two indistinguishable Event Structures (taken from [vGV97]).

cesses according to the conflict and causality relation expressed by the Event
Structure. Processes equivalent to F and F' are then obtained by renaming the
events accordingly. The corresponding CSPy; script is shown in Appendix B.4.

The CSPy; encodings OWL_E and OWL_F of the owls are trace equivalent
and so are their transformed versions (as observed by Glabbeek and Vaan-
drager). The use of FDR reveals the following pairs of possibly concurrent
events for both owls.

Conc ={(a,b), (a,c), (b, c),(c,c),(c,d),(c,e),(d,e)}

Now, interestingly, Conf C Conc for both owls.

However, inserting another event between the start and end events in the
transformed versions, reveals a difference of the two owls. Analogously to
propositions 2 and 3 this is a safe operation (in the sense that it does not alter
the processes’ semantics in an irreversible way). Hiding this additional event
again reestablishes the behaviors of the split owls. The additional event reveals
how conflict is resolved in situations where conflict and concurrency overlap.
Verifying the owl example with FDR proves the results presented by Glabbeek
and Vaandrager.

The learning of this example is that there is even more information hidden
in a process than revealed by T (but which can be extracted by repeated
splitting, for example).

4.5 Restricting T 53

Figure 4.3: Labeled transition system of owls E and F (taken from [vGV97]).

4.5 Restricting T’

As we have shown in the preceding sections, the transformation 7T is suitable
for simulating truly concurrent processes in the standard interleaving semantics
of CSP. T is designed to fulfill two main purposes. First, we are striving for
a method to enable static computation of possibly concurrent events. Second,
we aim to use CSP for the construction of truly concurrent systems aided by
a runtime coordination environment formally based on T'.

While T satisfies the first purpose, it fails to satisfy the second. It is
suitable for computing sets of possibly concurrent events, but it is not suitable
to serve as a semantic model of a CSP-based coordination environment because
it preserves only the traces (and divergences) of its input processes but not their
failures.

It is, for example, not a satisfying situation proving the process
P =(a— SKIP)O ((b — STOP) \ {b}) (4.7)

deadlock free and then encountering deadlock when simulating FEzt(P) (com-
pare with process P, equation 4.5 on page 43) to coordinate a truly concurrent
system, for example. Deadlock occurs, if the hidden b event internally resolves
the external choice in its favor (because T exposes the start of the internal
transition introduced by the hiding of b). This behavior violates law 2.3 and
is clearly undesirable. The problem here is that hiding of initial events does
not distribute over external choice in the failures-divergences semantics.

54 Simulating Truly Concurrent CSP

As shown in the preceding sections, the construction
Ezt(P) = Hr(Con(T(P)))

places the transformed process (7'(P)) into parallel with a control process
(C([[])) recording all of its events without changing its behavior and uses hid-
ing and renaming (Hr(P)) to reestablish equality of alphabets (Xp = X gy (p)).
We think of Ezt(P) as simulating P but enabling it to benefit from true con-
currency and also (or maybe even more importantly) to exhibit concurrency
information of P. The intuition is that Ezt splits each event in its argument,
relabels the start event back to the original, hides the end event and does so
whilst faithfully translating the process combinators. Lemma 1 allows us to
eliminate the controller process without changing the semantics of Ezt. Thus,
in the following we use Hr(7T(P)) instead of Ezt(P). The construct Hr(T(P))
is what we understand as the formal model of a coordination environment:
T simulates the truly concurrent version of P but only the starting points of
non-hidden events are available on the external interface of the system.

Theorem 1 states Ext(P) =7 P and hence also Hr(T(P)) =7 P. lIts
proof (see Appendix A.1) proceeds by induction on the construction of P.
Two cases are of special interest: External choice and timeout because these
are the cases that do not preserve failures but only traces. Both cases use
distributivity of hiding over external choice which is only true in the traces
model. As a consequence, we can make T a failures preserving transformation
by restricting its domain to processes that do not introduce internal transitions
that conflict with visible events.

The two subsets of CSP being presented in the following satisfy
Hr(T(P))=P

for all processes P of these subsets. Interestingly, all processes shown in Sec-
tion 4.4 fall into one of these subsets.

4.5.1 Prohibiting Internal Choice, Hiding and Timeout

As outlined above, Hr(T(P)) preserves the failures of any process P that does
not combine external with internal influences. Thus, prohibiting nondetermin-
ism (caused by internal transitions) yields a suitable subset of CSP.

Theorem 2 FEvery process P of the syntax
SKIP | STOP | (z:X — P(z)) | P;Q | PO Q| P|a| Q| P[M]
is a fized point of Hro T.

The proof of this theorem is shown in Appendix A.3. Like Theorem 1, it
proceeds by induction on P.

4.5 Restricting T 55

Although this subset excludes the operators that are designed to model
nondeterminism (internal choice, hiding and timeout), processes in this subset
are not necessarily deterministic. For example the process

P=a— STOP O a— SKIP

is a nondeterministic process because it offers only a for external synchroniza-
tion and whether P evolves to STOP or to SKIP after performing a is decided
nondeterministically (according to law 2.8). Such processes can also be intro-
duced by renaming, for example. However, this kind of nondeterminism is not
a problem because T does not introduce internal transitions in this situation.

We also argue that the timeout operator must be excluded because it com-
bines external and internal influences. By allowing SKIP and external choice
in this subset, we also implicitly allow the timeout operator (although in very
limited cases). This is due to the law SKIP-resolve [Ros05, p.145]

P 0O SKIP = P> SKIP (4.8)

Fortunately, this particular case does not suffer from the problem outlined
above because no internal transition is exposed in this case.

Hr(T(P O SKIP))

= T(Q OR)
Hr(T(P) O T(SKIP))

= T(SKIP)
Hr(T(P) O SKIP)

= neutrality of SKIP w.r.t. hiding and renaming
Hr(T(P)) O SKIP

= induction hypothesis

P O SKIP

The subset presented in this section is of particular practical relevance
because it relies on external influences only (besides termination). Subsets
like this are frequently found in literature in the contexts of other CSP-based
approaches to coordination (as discussed in Section 9.1.2). This subset offers
coordination facilities similar to those implemented by the occam language
[Bar92].

Note that both processes P and @ of the example presented in Section 4.4.1
fall into this subset of CSP. Neither P nor () contains 7 transitions (whose
exposition could destroy failures). Hence, not only

Ext(P) =1 P and Ext(Q) =1 Q

hold but also
Ext(P) =P and Ezt(Q) = Q.

56 Simulating Truly Concurrent CSP

The examples presented in sections 4.4.3 and 4.4.4 fall into this subset as well.

4.5.2 Prohibiting External Choice and Timeout

Like the exclusion of internal choice, hiding and timeout, prohibiting external
choice and timeout also yields a subset of CSP that is transformed in a failures-
preserving way by 7T'. This is shown by the following theorem.

Theorem 3 Fvery process P of the syntax
SKIP | STOP | (z:X — P(z)) | P;Q | P |a| Q| P\ A| PN Q| P[M]

is a fized point of Hro T.

Proof 3 The proof immediately follows from the proof of Theorem 1 by drop-
ping the cases External Choice and Timeout.

The interesting point here is that prefix choice is included even though it
is equivalent to replicated external choice:

z:X - Plz)=0z:X ex — P(x).

The point is that this subset excludes the pathological case presented in equa-
tion 4.7. It is impossible to hide a subset of the initial events (of the replicated
external choice) in a manner that would not cause the choice to be resolved.
Hence, exposing that transition in 7' preserves this behavior.

This subset is also of great practical relevance because it still allows us
to model systems offering conflicting (alternative) events for external synchro-
nization, while resolving nondeterministic choices internally. It even allows
visible and hidden events to be conflicting as, e. g., in

(z:{a,b} — SKIP) \ {b}.

However, this subset prevents T from generating constructs that illegally re-
solve choices.

The processes SYSTEM and COPY of the example presented in Sec-
tion 4.4.2 fall into this subset of CSP. Thus, their transformed versions are
failures-divergences equivalent.

4.6 Discussion

In this chapter, we have presented the syntactical transformation 7" that makes
durations of events and internal transitions explicit by splitting events and re-
labeling them. The construction Ezt(P) simulates the behavior of P (in the
traces semantics) while allowing us to determine possibly concurrent events.

4.6 Discussion 57

The controller C' (used in Ezt)) synchronizes with the transformed process. It
maintains a bag X whose contents represent the events and internal transi-
tions of the original process that are possibly concurrent after the trace that
has lead to the current state. Thus it can be used in various ways to query
concurrency information of a process, as shown in Section 4.4. In Section 4.4.1,
the controller process C of proposition 4 is used to emit the recorded concur-
rency information using a fresh channel. That example has also demonstrated
application of our approach with ProB. The concurrency information can also
be exploited using guards. A very simple application of this is shown in the
one-place-buffer example (Section 4.4.2). Finally, we have shown two subsets
of CSP which Fxt simulates in their failures-divergences semantics.

The language considered here overlooks several useful derived operators,
like chaining, interleaving, and linked parallel (a generalization of chaining).
The reason is simplicity of presentation. Recall that interleaving is the special
case of parallel composition without synchronization. Hence it is included by
T(P |p| @). However, interleaving is deliberately excluded to preserve the
possibility to handle it as a ‘de-parallelizing’ operator in future extensions of
the work presented here.

Chaining (respectively linked parallel) is excluded because it can be rebuild
using the supported operators renaming and parallel composition. The timeout
operator, by contrast, is included even if it can be expressed as a combination of
internal and external choice because it is also concerned with the abstraction of
time (which is an important concern for systems engineering). It is noteworthy,
that there are more elaborately defined subsets including the timeout operator.
For example, the subset presented in Section 4.5.1 could be extended with the
timeout operator given that for every timeout P > () the left-hand process P
is free of timeouts. Timeouts in P would be exposed by T and illegally resolve
the timeout in favor of P.

The interrupt operator is also not supported by 7. This operator is es-
pecially interesting, because the interpretation of an event heavily influences
its transformation by 7. The issue is whether or not a single event x that
is split into two events (s.z and e.z) may be aborted. If a single event can
be aborted, the event can no longer be interpreted as an action or operation
that transforms some state into a well-defined successor state. Furthermore,
it would violate the e-non-refusability property (2). If a single event cannot
be aborted, the transformed interrupt must take care of unfinished events,
which renders the transformation reasonably complicated. A transformation
involving the after operator, for example, would violate our ultimate goal to
support standard CSP tools such as FDR and ProB (which no dot support the
after operator). However, the interrupt operator is included in the extended
transformation presented in Chapter 5.

The following two questions were frequently posed after presentations in-
volving the material presented here.

Why can’t concurrent events be deduced by ordering in traces?

Why hide end and not start of transformed events?

58 Simulating Truly Concurrent CSP

The answer to the first question is that interleaving semantics simply does not
distinguish choice from concurrency. The answer to the second question is that
only hiding of the end events allows us to observe conflict. Hiding the start
events instead introduces nondeterminism as shown by the following example.

Let Hr'(P) = P\ {|s|}e.x < z].

Hr'(T(a — STOP O b — STOP))

_ T(P O Q)
Hr'(T(a — STOP) O T(b — STOP))

= T(a — P)
Hr'(s.a — e.a — STOP O s5.b. — e.b — STOP)

= Definition of Hr’
(s.a — e.a — STOP O s.b. — e.b — STOP) \ {|s|}[e.x « z]

= Introduction of nondeterminism by hiding of initial events
(e.a — STOP M e.b — STOP)[e.x «— x]

= Renaming

a— STOPMb— STOP

To put it differently, the transformation T is designed in such a way that
it reveals some information inherent to a process. This particular informa-
tion (which is not captured by the standard interleaving semantics of CSP) is
obtained by splitting events and observing their start events.

Perhaps the most important aspect of our approach is that it allows reuse
of existing CSP tools such as FDR [Ros94], ProB [LF08] and the CSP-Prover
[TRO5], because it exploits semantics of CSP already implemented by those
tools.

The contents of sections 4.1 to 4.4.3 is published in [KS10a] and also avail-
able as a technical report [KS10b].

5 Conflict, Internal Actions and
F D Preservation

In the previous chapter we have shown how concurrency and conflicts inherent
to a process can be revealed in the standard interleaving semantics of CSP.
To that end, we presented a syntactical transformation of processes named 7T'.
For the sake of simplicity, the original transformation 7T is designed to reveal
a rather low level of concurrency. T is embedded in the construction Fxt that
reestablishes the semantics of 7T’s input processes.

Although FEzt in general preserves only the traces of its input processes,
two subsets of CSP are identified lifting Ezt from preserving the traces of its
input processes to their failures and divergences. Unfortunately, none of the
two subsets of CSP includes the timeout operator because the transformation
of combined internal and external influences destroys the failures of a process.
Moreover, T" does not yet support the interrupt operator.

As presented in Section 4.3, s-e-precedence (proposition 1), e-non-refusability
(proposition 2), and s-e-conflict freedom (proposition 3) are basic properties of
T. These properties enable us to regard a pair (s.z, e.z) or (sh.z, eh.z) as an
action (an operation that is required to terminate eventually). This notion of
an action motivates us to extend the transformation 7' such that it can serve
as formal foundation of a truly concurrent CSP coordination environment sim-
ulating a coordination process at runtime and associating events with actions.
Any extension of T serving this purpose must maintain the three properties
mentioned above, of course.

In this chapter, T is extended to support the interrupt operator. The main
challenge of transforming interrupt under event splitting is that a process may
be interrupted in between of a pair of start and end events. If this happens,
the end event may be refused after the start event, violating e-non-refusability.
The intuition of our solution to this problem is that these operators are trans-
formed such that the interrupted process performs remaining end events before
the interrupting process takes over control. More elaborate transformations of
external choice and timeout are presented such that Ext preserves also their
failures. The transformations of these three operators proceed in a unique way.
Due to the lifting from traces to failures-divergences, the extended transfor-

59

60 Conflict, Internal Actions and 7D Preservation

mation presented in this chapter is suitable as a formal model of CSP as a
coordination language for concurrent systems. Like the transformations pre-
sented earlier it can also be used with standard CSP tools such as FDR or
ProB.

In Section 5.1 we present the general structure underlying the transfor-
mation of external choice (Section 5.2), timeout (Section 5.3) and interrupt
(Section 5.4). This chapter closes with a discussion in Section 5.5 after pre-
senting the transformations of these operators.

5.1 Simulation, Monitoring and Interruption

As motivated formally in Section 4.5, the trouble with the transformation of
external choice and timeout presented in Section 4.1 is that internal transitions
resolve these process operators in their transformed versions because of the ex-
position of hidden events. Exposing hidden events is an important fact of our
simulation because hidden events still model actions (although not under exter-
nal influence) and consequently have to be taken into account when computing
simultaneity of actions or when coordinating actions. In the following, transfor-
mations of the operators external choice, timeout, and interrupt are presented.
The transformations are based on a construction that transforms the operands
of the process operator under consideration, separates their alphabets, puts the
results into parallel, and uses the interrupt operator to transfer control from
one transformed operand to the other if an event is performed that would have
resolved the original process operator. Note that it is well-known that the
interrupt operator cannot be simulated by any construct that does not use the
interrupt operator itself. However, there are constructions using the interrupt
operator to simulate timeout, external choice and interrupt itself as we show
in this section.

To simulate the behavior of the transformed operators in a manner that
makes observable the internal simultaneity of the resulting construct, we pro-
ceed as with the Fzt construction (see page 43)). First, the operands of the
original operator are transformed separately. The results are then combined
and monitored by a control process (as C' in Ext, see page 42). To distinguish
the events performed on either side of the transformed operator we define >’
such that ¥NY' = () and #(3) = #(X'). For syntactical compactness we write
Y=YUY and z € ¥, 2’ € ¥ and T € ¥ in the following. We extend the
channels

s,sh,e eh : XpUIT UYL, UT

to support the primed events as parameters. Furthermore, we define
Yr={s.x,shx,ex ehx|zelpUl},
Y= {s.a',sh.a’' ex' eh.a’ | 2 € ¥ UI'}, and
S ={|s,sh,e,ehl|}

5.1 Simulation, Monitoring and Interruption 61

such that X7 N'Y, = 0 and Y7 UY, = Sy, As defined in Section 4.2,
H = {]| sh, e, eh,term |}. The renaming part of Hr is also extended to deal
with primed events:

Hr(P)=P\H[s.T« T|T€ p|.
The actual renaming is performed by the bijective renaming functions

prime : LU Y — X' UX, and
unprime : X' U, — XUy

to map each member z € ¥ to ' € ¥’ and vice versa. These functions require
YNY =0 and #(3) = #(X') and ensure

unprime o prime = id .

A similar approach is used by Roscoe for proving Lemma 3 and Theorem 6
presented in [Ros08b], for example.

The three operator transformations presented in the sequel make use of
the fresh channels ty, ¢, i, 71 to monitor successful termination and to enforce
interruption. The hiding set

];-IZZ = {t07 t17 7;07 Zl}

is then used to hide these events in the final composition.

The transformations of external choice, timeout and interrupt are quite
similar. To stress this, we define the following two auxiliary process operators.

Pod Py = (((Py:to — SKIP) A iy — SKIP)

i
((Py;t, — SKIP) A iy — SKIP)[prime])

Powt Py = (Po || Pr)lunprime] \ H,

The 220 operator composes its two operands sequentially with t; — SKIP to
signal successful termination of P;,i € {0,1}. These processes are combined
with 4; — SKIP for interruption. The two results are then interleaved. This
auxiliary operator is designed to be nested within the 242 construct such that
the other operand of 14! can act as a ‘controller’ process enforcing any desired
interleaving of P; while maintaining the possibility of graceful termination
using the subprocesses

ty — 11 — SKIP, and
t, — 99 — SKIP.

Accordingly, the 142 operator synchronizes its operands over A, unprimes the
result (to reunite the alphabets) and hides the control events from the set H,.
The transformations shown in the following subsections use this nesting. Each

62 Conflict, Internal Actions and 7D Preservation

operator ® € {0O,>, A} is transformed using the construction

r(Pe Q)= (T(P)T(Q)) s,um, Co -

This construction is based on control processes Cg designed to simulate the
original operators while maintaining the properties s-e-precedence (1), e-non-
refusability (2) and s-e-conflict-freedom (3) presented in Section 4.3.

5.2 Transforming External Choice

The following transformation of external choice transforms each of the choice’s
operands and embeds the result in a construction using 22 and 14 as outlined
above.

T(PB Q)= (T(P)T(Q)) tg,um, Co

The control process Cp initially records any event performed by the trans-
formed operands of the external choice. Only after occurrence of the first visible
event it restricts the behavior in such a way that the other operand cannot
perform any event apart from remaining hidden end events. After termination
of one of the transformed operands the control process enforces interruption
of the other transformed operand thus allowing the whole construction to ter-
minate successfully. It is defined as Cg = Cgo([[]]), where

Cho(X) = 5?2 — Coa(X W [[z])
0 572" — Coa(X W [2'])
Ot — CD,t(X7 i1)
O tl — CD,t(Xv 20)
0 sh?T — Coo(X W [7])
0 eh?T — Coo(X U [7])
Coi1(X) =37 — Cor(X W [z])
Oty — CD,t(Xa Z’1)
O e?z — Coa(X U [z])
O eh?Z — Coy(X U [[7])
Co2(X) =357 — Coa(X W[2])
] tl — CD,t(X7 ZO)
0?2’ — Cop(X U [2'])
O eh?T — Coo(X U [Z])
Co(X,ev) = eh?T — Co (X J[Z], ev)
OX =[] & ev — SKIP.

The subprocess Cp (X, ev) takes the interrupt event as an argument. Due
to synchronizing on X7 U H,, it allows remaining hidden end events to be

5.2 Transforming External Choice 63

performed and enforces the interrupting event after termination of the last
pending action.

The proof for the transformation of external choice uses a construct similar
to the one introduced by Roscoe in [Ros08a] for proving Lemma 1 of that paper.
There, a construction is presented that simulates the external choice operator
by discriminating the alphabets of its operands and uses the interrupt operator
to turn one of the operands off after the other has performed an event. Roscoe’s
construction does not deal with termination because he considers a subset of
CSP that excludes SKIP in that paper. So we cannot directly reuse Roscoe’s
construction. However, the fresh control events from H, and the use of an
additional parallel composition (as by the definitions of 12? and 14?) allow the
following construction to terminate successfully if one of the operands of the
simulated external choice terminates successfully. The process T(P O @) is
then reduced to this construction by steps that maintain the critical properties
of T (those presented in Section 4.3).

Co = (x:Ep — 00) O (tO — an — SK[P)
01 == (I,ZE/Q — 01) | (tl — ZO — SK]P)
PO Q= (P Q) s,ut(Co0 C)

The following lemma states that O’ simulates the external choice operator.

Lemma 3 Using the definitions above, the O' operator faithfully simulates the
external choice operator:
rPOQ=POQ.

Proof 4 O’ does not introduce divergence, neither does it prevent divergence.
prime separates the alphabets of P and () from each other. Thus, there is no
nondeterminism introduced by O in monitoring P and Q. Cy O Cy initially
does not refuse any of the events offered by P or Q[prime]. After synchronizing
on any event x :initials(P), X is constantly refused and after synchronizing
on x :initials(Q[primel), Xp is constantly refused. Furthermore, termination
of O is possible only after termination of either P or @ by synchronizing on
to or t; respectively. Since these events are hidden (as well as the subsequent
i, i events) and termination is the only possibility afterwards, O' simulates
the behavior of the external choice operator.

The proof is based on the observations that O’ neither introduces nor pre-
vents divergence, yields the same initials and refusals as external choice, and
behaves like P if an event x:initials(P) is chosen while it behaves like @ if an
event z :initials(Q) is chosen. More formally

Vx:initials(P) - (P O Q)/(z) = P/{(z)
Va:initials(Q) - (PO Q)/{z) = Q/{x).

Synchronization on ¥ U Hy, enforces that the controller process must perform
the same events as the interleaved operands of O’ do. To see that successful

64 Conflict, Internal Actions and 7D Preservation

termination of P (or @) is simulated faithfully, consider the case P = SKIP.
In this case %, is immediately available on the left and also offered by the
controller process. Hiding of #) and the subsequent 4; event allows interruption
of () and termination of (2. Hence,

SKIP O’ Q = Q > SKIP

as required by law 4.8 (SKIP-resolve). Cg is designed such that the following
lemma holds:

Lemma 4 Cqg enforces traces and failures as required by Co O Ci:

Hr((T(P) T(Q)) [5um,| Co)

Hr(T(P) T(Q)) [sum,| (GO C1)

Proof 5 By definition of T and Hr, the left-hand process diverges if and only
if either P or () diverges. Furthermore, the order of s and sh events is indepen-
dent of synchronization on e and eh because of properties 1, 2 and 3 (compare
with lemma 2). Thus, we may apply Hr to the first operand of the parallel
composition exclusively, eliminate the e events from the synchronization set
and the right hand operand, and rename the s events from the synchronization
set and the right hand operator back to their original names. This yields syn-
chronization with Co O Cy over X U Hy,. The events from Hy, are not touched
by this step, so termination is not affected.

The lemmas above are finally used in proving the following theorem.

Theorem 4 T faithfully transforms the external choice operator:

Hr(T(POQ)=P0OQ.

First observe that the transformation maintains the properties
s-e-precedence (1), e-non-refusability (2) and s-e-conflict-freedom (3). Prop-
erty 1 is maintained by the interleaving of the transformed operands and syn-
chronization on Y7 U H,. This construction prevents any e event prior to
its corresponding s event. Property 2 is maintained by synchronization on
Y7 U Hy and construction of Cp. The controller process freely allows exposed
T transitions to be performed. After the first s event is performed it evolves
to either Cpy or Cps. These processes, again, allow internal actions to be per-
formed but restrict visible events to those belonging to the process originally
performing the first visible event. This is the only process that can perform
e events. The transformed process can only terminate after every pending e
event was performed. Thus, e-non-refusability is preserved. Although s and
e events are conflicting within Cp it is easy to see that synchronization on

Y U Hy preserves s-e-conflict-freedom. The proof of Theorem 4 is shown in
Appendix A.4.

5.3 Transforming Timeout 65

5.3 Transforming Timeout

Timeout is transformed in a way very similar to the transformation of external
choice. The only difference is that the hidden timeout transition guarding the
transformed right hand operand resolves the timeout to the right. In the
following construction, we use to_s as introduced in the previous chapter: the
i-th timeout operator introduces the fresh hidden event to_i.

T(Pv Q)= (T(P)W sh.to_i — eh.to_i — T(Q)) l5,um, ! O

The following control process G, reuses the Cg; subprocess that we have used
to build the control process presented in the previous section. We define

Gy = Goo([]), where

CD,()(X) = s7r — C>,1<X Lﬂ [[I]])

O sh?to_i’ — Cpo(X)

Oty — ODJ(X; 21)

O sh?x — Coo(X W [z])

O eh?z — Cuo(X U [z])
Goa(X) =57 — Cou(X W [[z])

Ot — Cou(X,0)

De?r — G (X U [z])
Con(X) = eh?x — Coo(X U [z])

DX =[] & eh?to_i’ — Cp3(X)
Cos(X)=357" - G3(X W[z

O tl — CD,t<X7 ZU)

Oe?s’ — Cos(X U [2]).

(. initially accepts the hidden timeout transition (sh.to_i) and any event of-
fered by the transformed left hand operand of the timeout. After occurrence
of the hidden timeout transition it restricts the behavior in such a way that
the left hand operand cannot perform any event apart from remaining hidden
end events and after occurrence of the first originally visible event the timeout
transition is constantly refused. Like the external choice control process, after
termination of one of the transformed operands, the timeout control process
enforces interruption of the other one thus allowing the whole construction to
terminate successfully.

The proof follows the same principle as the proof of T(P O (). We first
present a construction using 220 and !4? simulating the timeout operator and
then we reduce Hr(T(P > @)) to this construction. The construct uses the
definitions that were introduced in Section 5.2 to prove the correctness of the
transformation of external choice. The only difference is that Cy and C) are
not composed by external choice but using timeout.

Pl Q= (P Q) sy (Cor Cr)

66 Conflict, Internal Actions and 7D Preservation

The following lemma also follows the principles used in proving the transfor-
mation of external choice correct. First we need the lemma that >’ simulates
timeout.

Lemma 5 Using the definitions above, the v operator faithfully simulates the
timeout operator:

Py Q=P>Q.

The proof proceeds exactly as the proof of Lemma 3 except that the con-
troller process may timeout and subsequently accept events performed by @
while refusing the events of P.

A lemma similar to Lemma 4 is needed to establish the correctness of
T(Pr> Q). C is designed to enforce behavior conforming to the timeout op-
erator.

Lemma 6 C, enforces traces and failures as required by Cy > Ci:

Hr((T(P) W sh.to_i — eh.to_i — T(Q)) |s,um,| C)

Hr(T(P) W sh.to_i — eh.to_i — T(Q)) |sup,| (Co> C1)

Proving this lemma is done analogously to proving Lemma 4. The im-
portant difference is that the timeout controller process C, enforces behaviors
conforming to the timeout operator. To see that this holds we remove the
sh, e and eh events from C, except those modeling the timeout transition
(sh.to_i and eh.to_i), inline Cq,, and apply the renaming performed by Hr.
The resulting process is

>,,0 = (z:3 — C|>,,1) O (to—i — 0;73) O (ty — 4 — SKIP), where
= (2:2— C/1) O (ty — iy — SKIP) and
b= (2" — C5) O (L — i — SKIP)

This process accepts events from 3, the #; event signaling successful ter-
mination and the timeout event to_i. The timeout transition is disabled after
performing the first event from ¥ and performing the timeout transition dis-
ables the events from Y and enables the events from Y. Hiding the timeout
transition by applying Hr turns this construct into Cy > Cf.

We can now state the following theorem:

Theorem 5 T faithfully transforms the timeout operator:

Hr(T(PrQ))=Pr Q.

The proof of this theorem is shown in Appendix A.5. It uses the lemmas
above and proceeds very much as the proof of Theorem 4.

5.4 Transforming Interrupt 67

5.4 Transforming Interrupt

The principle used to construct the transformations for external choice and
timeout also applies to the transformation of the interrupt operator. First,
its operands are transformed, embedded into processes that signal successful
termination and enable interruption of the operands using the internal control
events from the set H,. Finally, there is a control process synchronized with
the two transformed processes monitoring their evolutions and enforcing the
simulation.

T(P A Q)= (T(P) W T(Q))Xs,um! On

Cx is the interrupt control process that records any events performed by T'(P)
and T(Q) (and also records the members of Hy). It recurses as long as the
recorded events either originate from P or belong to internal actions of). It
is defined as Ca = Cao([[]]) The first occurrence of a visible primed event
causes this process to continue with Ca ;. In case of successful termination of
P it records %, and then behaves as Cha o to enable graceful termination of the
whole construct.

Cap(X) = 572 — Cro(X W [z])
O sh?T — Cpo(X W [7Z])
O e?r — Cao(X U [z])
0O eh?T — Cap(X U [7])
0 s?2" — Ca (X W[2])
Ot — Caa(X)

Caa(X) =2?T — Cay(X U [[Z])
03572 — Car(X W [z])

OX =[] &t — i — SKIP
Cra(X) = eh?s’ — Cro(X U [2'])
0X =[] & i — SKIP

Ca,1 refuses any s and sh events but allows any currently running action
of P to finish. P is blocked while @) progresses. Interruption of P (using the
event i) is performed only after finishing of any of P’s actions and termination
of Q. Chao refuses any s’, ¢’ and sh’ events but allows any currently running
action of () to finish. Only then @) is interrupted. Note that it is safe to refuse
the €’ events, because no s’ was performed so far.

To prove the correctness of T'(P A @) we need to remove the e, eh and
sh events from Cap and apply the renaming of Hr to obtain the controller
process of a construction simulating the interrupt operator without splitting
the events in its arguments. The resulting process is

Cho=(2:X— Cro) O (2":X" — CAy) O (o — i — SKIP), where
C/A,l = (21X — Ca1) O (4 — ip — SKIP).

68 Conflict, Internal Actions and 7D Preservation

Using this process, the auxiliary operator

PN Q=(PwQ) syl Cho

faithfully simulates the interrupt operator:

Lemma 7 A’ faithfully simulates the interrupt operator:

PNQ=PAQ.

Again, the proof of this lemma is similar to the proof of Lemma 3 and exploits
the structure of C ;. Furthermore, a lemma similar to Lemma 4 is needed to
establish the correctness of T'(P A Q).

Lemma 8 Ca enforces traces and failures as required by Cp

Hr((T(P)w T(Q)) [s,0m,| Cn)

Hr(T(P) T(Q)) I'sum,| Cao

These lemmas allow us to establish correctness of the transformation of the
interrupt operator.

Theorem 6 T faithfully transforms the interrupt operator:

H(T(PAQ)=PAQ.

In [Ros08b], Roscoe motivates (in the context of proving Lemma 3 of that
paper) that the interrupt operator cannot be simulated in a similar way to
external choice (i.e., by using a construction of parallel composition and re-
naming). The reason is that the interrupt operator turns its left-hand operand
off after the first occurrence of an event of its right-hand operand, while con-
structs using parallel composition and renaming will still allow internal actions
of the left-hand operand to be performed. However, our solution presented
above prevents internal actions from being started after the interrupting event
but ensures that pending hidden end events (of currently running actions) may
still be performed before the right-hand operand proceeds.

5.5 Discussion

The constructions presented in this chapter extend our approach to simulating
truly concurrent CSP presented in Chapter 4. The transformations of exter-
nal choice, timeout and interrupt lift 7 from traces preserving to failures-
divergences preserving. This is of great interest from a practical point of view
because it allows us to take T as formal semantics of a CSP-based coordina-
tion environment mapping events to actions (pairs of s and e events enclosing

5.5 Discussion 69

terminating user-defined operations). This lifting is necessary as soon as dead-
lock is a possible threat (which is not revealed in the traces model) and the
coordination process is not within one of the failures-divergences preserving
subsets presented in Section 4.5.

Interestingly, the transformations exhibit an unexpectedly high degree of
concurrency. In particular, the enhanced version of T exhibits a higher degree
of concurrency than its earlier version.

The timeout transition to_i, for example, is possibly concurrent to every
internal action of the first operand of the transformed timeout operator that
may occur initially. Consider the following processes P and @).

P =(a— SKIP ||| b — SKIP) > ¢ — SKIP
Q = (a — SKIP ||| b — SKIP) \ {a, b} > ¢ — SKIP

Using the transformation presented in Chapter 4, Ext preserves the failures-
divergences semantics of P but only the traces semantics of). The events
a and b are possibly concurrent in both processes. The extended version of
T presented in this chapter, finds a and b to be possibly concurrent in P
but determines {a, b, to_0} to be possibly concurrent in ¢ (because a and b
are hidden and do not resolve the timeout). The example script shown in
Appendix B.5.

This high degree of concurrency is caused by our modeling of independent
internal progress (by performing exposed and split 7 events) of operands of
the transformed operators. This choice of modeling is justified by the obser-
vation that these operators combine processes allowing them to await some
external trigger (constantly offering an event) and to perform internal actions
at the same time. The standard interleaving CSP semantics do not impose any
restrictions here. Hence, the transformations of external choice, timeout and
interupt separate visible events of the operands of the transformed operator
(according to the notion of conflict) while allowing a very high degree of con-
currency on hidden events. For example, the visible events of the right-hand
operand of a timeout are separated from all (visible or hidden) events of its
left-hand operand. While it seems very natural to separate ¢ from a and b
in the example processes P and () shown above, it is not obvious, whether ¢
should still be separated if it were hidden. The solutions presented here are
the ones that we believe to fit best to the implementation of a CSP-based
coordination environment.

Semantically, T supports the CSP that is described by Roscoe in [Ros05]
and implemented by FDR 2.83 [GRAO05] (except the functional parts of CSPy,
and derived operators such as linked parallel, for example).

6 Designing a CSP-based
Coordination Environment

The purpose of the transformation 7' is to serve not only as a static means
to compute possibly concurrent events but also as formal foundation of a co-
ordination environment. In Chapter 4 and Chapter 5 we have focused on
properties and static applications of T'. In this chapter, we present the idea of
a coordination system based on T

Our approach to using CSP as a formal coordination language is motivated
by the need to reduce the complexities caused by the growing parallelism of
today’s computing systems. Unfortunately, concurrent software is generally
much more complex than sequential software, inherently hard to specify and
verify and leaves even the skilled programmer vulnerable to error. These com-
plexities can be avoided to a certain degree by using CSP for modeling and
reasoning about such a system. The benefit of CSP is that it provides a con-
venient intermediate-level formalism for the design of concurrent systems by
allowing processes to be combined in parallel in such a way that the designer
abstracts synchronization mechanisms and implementation details of actions.

The trouble is that unlike, say, the B-method [Abr96], derivation of exe-
cutable code from CSP processes is not very well developed. Although CSP is
equipped with a refinement calculus that allows us to refine systems down to
implementation models by eliminating nondeterminism, the resulting models
are still on a relatively high level of abstraction and not yet ready to have
executable code derived from it. They still lack mechanisms that assign locks
(or some other synchronization primitive) to the competing processes. Neither
do they provide hints about how to implement such mechanisms. Since every
implementation of a concurrent program must deal with these low-level details,
it is desirable to bridge this gap by implementing software libraries that deal
with the issues that are abstracted away on the higher level of a CSP design.

In this chapter, we present the concept of a coordination environment that
allows us to use (even nondeterministic) processes for the coordination of truly
concurrent systems and to systematically undo the abstractions built into CSP.
Events, for example, are regarded as abstractions of actions being performed
by the system. In particular, internal transitions introduced by the hiding of

71

72 Designing a CSP-based Coordination Environment

events are understood as internal actions of the system. To emphasize the
distinction between visible and hidden events, we use the term event for vis-
ible events and internal transition for hidden events. Actions relate to both
of them if not stated otherwise. Whenever the coordination environment per-
forms an event, it performs the terminating action associated with that par-
ticular event. When it performs an internal transition, it performs the action
associated with the event whose hiding has introduced that internal transi-
tion. Actions can implement arbitrary computations, even communication,
including shared-memory communication and message-passing. The coordina-
tion environment presented in this chapter simulates a process by interpreting
its truly concurrent semantics within the standard interleaving operational se-
mantics of CSP. It performs (non-atomic) actions between the (atomic) start
and end events of a split event.

Our approach allows us to use CSP for the design and implementation
of concurrent systems by adding a coordination environment to a (sequential)
host language. The use of CSP enables us to profit from the mature verification
support of CSP for verifying coordination processes at design time. By sim-
ulating the coordination process at runtime, it is ensured that the properties
proved on the CSP level also hold on the implementation level.

The rest of this chapter is structured as follows. Abstractions built into CSP
and their relevance for coordination are discussed in Section 6.1. The model of
a coordination environment is presented in Section 6.2. Important properties
of coordination processes are investigated in Section 6.3. Section 6.4 presents
proof obligations relating the coordination process with UDFs,; e.g., a proof
obligation to ensure data independence of concurrent actions. A categorization
of CSP operators into coordination concerns is presented in Section 6.5 This
chapter closes with a discussion in Section 6.6.

6.1 Unraveling Abstractions

This section explains, how the abstractions built into CSP can be unraveled
to coordinate concurrent systems. The arguments presented here are based on
the following assumptions:

1. CSP offers a rich set of operators to facilitate the concise modeling of
concurrent systems. This set is intendedly non-minimal and offers differ-
ent operators to describe semantically equivalent processes. The idea is
that the operators model abstractions of different implementations. The
coordination environment must be able to unravel these abstractions ac-
cordingly.

2. Once a process is proved to satisfy the interaction behavior of the compo-
nents of a system, the process should be directly usable as a coordination
process without being refined further (even if the process is a nondeter-
ministic one).

3. Coordination processes still abstract from data being used in the imple-
mentation.

6.1 Unraveling Abstractions 73

4. Although the standard CSP semantics are interleaving ones, a coordina-
tion environment must be able to profit from true concurrency if that is
offered by the underlying computing hardware.

5. Coordination processes define the external and internal interactions of a
system.

The first assumption is based on the discussion of the purpose of the various
CSP operators given by Hoare in [Hoa06]. The second and third assump-
tion stem from our ultimate goal to support mechanized verification of the
coordination processes. The last two assumptions are those underlying 7": im-
plementations of concurrent systems must deal with simultaneity of actions,
even with respect to internal actions.

In the following, we explain how a coordination environment can deal with
the CSP operators that are commonly used to model nondeterminism. Then,
we discuss issues related to the ‘deterministic’ process operators of CSP.

6.1.1 Timeout, Hiding and Nondeterminism

The operators timeout, hiding, and internal choice offer abstractions that allow
us to develop concise models of concurrent systems. Yet, these abstractions
have to be undone for the implementation of a conforming system. For exam-
ple, although

Pr@=(POQ)NQ

holds, the timeout operator offers a convenient abstraction of a process that
switches automatically to @) if P fails to perform a visible event within a certain
time interval. Note that T discriminates these two representations by intro-
ducing the exposed hidden to_i for a timeout only. A timed implementation

allows the construct
STOP > P

to delay P for some time because STOP cannot do anything. This is a use-
ful idiom for implementing timers that perform some action after a specified
delay. From an implementation point of view this is fundamentally different
from (P O Q)M @ which can be understood as a process deciding to offer
either the initials of P and () for synchronization or just the initials of @.
Thus, our approach unravels the abstractions built into the timeout operator
differently than that built into its semantically equivalent versions. On the im-
plementation level, P > @ is implemented as a timeout (e.g., using a timer),
while (P O @) M @ models a combination of internal and external influences
(independent of time).

In the semantic framework of CSP, timeout is introduced by hiding of
initial events over external choice as, for example, in

(a—>PDb—>Q)\{b}.

This process is commonly understood as offering its environment the possibility
to synchronize on a. If that does not happen within a certain amount of

74 Designing a CSP-based Coordination Environment

time, it internally performs b and continues as (). As explained above, our
understanding of a timeout is somewhat different. Analogously, we deal with
hiding different from its treatment on the semantic level of CSP. There, hiding
abstracts events such that the following equality holds:

(a = STOP) \ {a} = STOP.

Nevertheless, in the operational semantics (a — STOP) \ {a} performs an
internal action before evolving to STOP. Our approach adopts this under-
standing and takes internal actions into account. A coordination process like
P\ A removes A from the externally visible events and specifies that the sys-
tem cannot synchronize with its environment on any event from A. However,
within P, the events in A are available for synchronization, of course.

A similar argument applies to
a—POa—Q=a—(PNQ).

The left-hand side models a system that offers two similar actions for synchro-
nization but its future depends on the external decision which one of the two
exclusive actions is chosen. The right-hand side models a system offering a
single action to its environment and which then decides internally if it contin-
ues as P or as (). Accordingly, P N @ is understood as a system performing
an internal action to make the decision between P and (). Thus, when used
in a coordination process, the internal (nondeterministic) choice gives rise to
a single internal action whose outcome determines which one of the processes
is chosen. There are more reasons for allowing the internal choice to be used
in a coordination process. For example, it is quite often the case that non-
deterministic models of a system are sufficient to express certain properties
(e.g., deadlock-freedom). Once a process is proved to express the interaction
requirements of a system it is clearly desirable to take it as the coordination
process and to implement the missing details on the level of some programming
language instead of further refining the CSP model.

Our approach takes CSP as specification and modeling language, conse-
quently allowing nondeterminism on these levels. This nondeterminism is to
be resolved by the implementation, of course. This is done by internal actions.
It is important to note that resolving nondeterminism at runtime solely pro-
duces implementations that conform to their specification. This is due to the
law ‘resolution of nondeterminism’:

POQCP and PRQCQ.

Hence, the implementation satisfies all those properties of the coordination
process that are expressible via refinement (because of transitivity of refine-
ment). It also satisfies those expressed in LTL, because LTL properties are
universally quantified over the possible behaviors of the coordination process,
thus including the runtime behavior of the system no matter how nondeter-
minism is resolved on the implementation level.

6.1 Unraveling Abstractions 75

6.1.2 Duration, Conflict and Concurrency

In CSP, events are assumed to be instantaneous and atomic. However, in [Hoa85],
Hoare proposes to unravel this abstraction by splitting an event into start and
end events to model duration of the original event. We adopt this idea: events
are split into start and end events (as defined by 7') and the action that real-
izes the original event is performed between these two. It is important to note
that actions can be of arbitrary granularity (i.e., just a few basic operations
of a processing unit or a long running service) and may even be internally
concurrent. The only requirement is that they are guaranteed to terminate
eventually.

Furthermore, we believe that concurrency must be distinguished from choice
for the purposes of a coordination language. Designers of concurrent systems
should be able to specify which parts of a system may be executed simulta-
neously (truly concurrent) and which are mutual exclusive. For example, the
processes

P=a—b—STOPOb— a— STOP
Q =a— STOP |4| b — STOP

are equivalent in the standard CSP models (e.g., traces, stable failures and
failures-divergences) but we think of them as describing different systems. P
describes a system that must perform a and b exclusively while () may perform
a and b at the same time. This observation is of theoretical and practical
importance for a CSP-based approach to coordination. The theoretical issue
is that the standard semantics for CSP are interleaving ones and thus do not
distinguish choice from concurrency. The practical issue is that a concurrent
program should be able to profit from the gains promised by concurrency
instead of being limited to purely sequential runs (due to interleaving).

As discussed in Chapter 2, there are two ways of understanding a CSP
event. Either as synchronous communication between parallel processes (or
components) or as an abstraction of some sequential action (not necessarily
related to communication). The former understanding gives rise to imple-
mentations of channels that can be used by software developers to build their
programs using CSP-style communication. Operators like hiding or internal
choice are not supported by these approaches. As explained above, our ap-
proach interprets events as arbitrary actions that are performed between the
start and end events of a split event in the coordination process. As we have
shown in the preceding sections, 7' realizes this by splitting an event into start
and end event. It also allows us to determine pairs of possibly concurrent events
taking hidden events into account and to distinguish choice from concurrency.
On the implementation level, an action is represented by an atomic operation
performing the start event, then the execution of the code implementing the
action, and another atomic operation performing the end event.

Each of our solutions to the unraveling of the abstractions built into CSP
presented in this section, is justified by the standard semantics of (untimed)
CSP. An important feature is that nondeterminism is supported on the design

76 Designing a CSP-based Coordination Environment

level but resolved on the implementation level. The advantage is simplicity
of reasoning about the design (e.g., deadlock-freedom is often provable on a
quite abstract design level).

6.2 Design Decisions

The ideas presented in the previous section are supported by the transforma-
tion T presented in chapters 4 and 5. The transformation splits events into
start and end events, and introduces fresh events modeling internal transitions
for resolving internal choices and timeouts. The rationale behind these inter-
nal transitions is to detect simultaneity even of visible and hidden events (and
their actions). 7' gives rise to a coordination environment that simulates the
truly concurrent version of a CSP coordination process at runtime and starts
a user-defined function (UDF) after performing the start event of a split event
and performs the respective end event after termination of the UDF. A UDF
is the implementation of a terminating action provided by the user.

The intent of the coordination environment is to enable coordination of
a concurrent system in a noninvasive way separating interaction and data
independently from a specific target language.

The notion of noninvasiveness means that existing implementations of com-
ponents do not need to be modified to be coordinated. The coordination is done
on top of the component implementations provided by the user encapsulating
the coordinated components, taking their operations as UDFs implementing
the actions of the final system.

The separation of interaction and data is important with respect to the
modeling of the coordination process (which may involve data but which does
not necessarily relate to data being communicated or computed by the actions
of the system) and with respect to the final combination of the coordination
process with the UDF's of the system. The first aspect means that the variables
used in a coordination process may be independent of the actual values being
communicated and processed by the system (unlike in CSP || B [ST04], for ex-
ample). The second aspect means that the UDFs being mapped to possibly
concurrent events may not modify data being shared amongst themselves. It
is assumed that the coordination does not invoke UDFs outside their precondi-
tions. On the CSP level we completely abstract from the data being processed
by the system.

The design-flow associated with our approach allows the concurrency struc-
ture and the UDFs to be developed and verified independently up to the point
when the system is assembled to a concrete executable concurrent system (by
combining the coordination process with the UDFs implementing the actions).
Only then, sets of possibly concurrent events must be identified and it must
be proved that the UDF's associated with these events do not introduce data
races. Furthermore, it must be proved that the UDFs are coordinated such
that they are only invoked in states satisfying their precondition. This issue is
discussed in Section 6.4. The following subsections present our understanding

6.2 Design Decisions 77

of how a coordination environment should perform actions and enable actions
to be chosen internally or by the environment.

6.2.1 Interpreting T

The coordination environment simulates a coordination process P by inter-
preting T'(P) and presenting Hr(7T(P)) to the outside environment (recall
that Hr hides the events in {| sh, e, eh|} and relabels the s events back to their
original names). Table 6.1 presents the initial events of the processes as visible
to the coordination environment. For example, T'(SKIP) offers v exclusively
and T(P M Q) offers the start event of the internal action resolving the choice.
T(P \ A) illustrates the renaming of s events to sh events. None of the sets
contains € events. In these equations M; and >; denote the i-th operators of
their kind in the coordination process.

An implementation of a coordination environment supporting our approach
(as the one presented in Chapter 7) must ensure that the processes offer the
initial events as shown in Table 6.1. From these initial states the processes
evolve according to the operational semantics as presented in Section 2.2. Fur-
thermore, it must deal with v events and also internal transitions due to the
hiding of v'. Such internal transitions are introduced by processes like

SKIP: Q) .

In the operational semantics, sequential composition turns the v event offered
by SKIP into a 7 transition leading to Q).

Table 6.1: Initials of transformed processes.

initialsp (STOP
initialsy (SKIP {\/}
initialsp(x: A — P(z)) ={s.x | v € A}
initialsp (P ; Q) = initialst(P) \ {v'}
initialsy(P O Q

initialsy (P M; Q
initialst (P >; @
initials (P AN Q
initialsT (P 4] @

{sh.ic_i}
initialsy(P) U {sh.to_i}
initialsy (P) U initials7(Q)
((initialsT(P) N initialst(Q)) N A)
U (indtials(P) \ A) U (initials7(Q) \ A)
initialsy (P \ A) = (initials7(P) \ {s.z | z € A})
U {sh.z | z € initials(Q) N A}
initialsy(P[M]) = initialsy(P) \ {z | = € dom M}
U{M(z) | z € initialsr(Q) N z € dom M}

) =
)=
)=
) =
) = initials(P) U initials7(Q)
)=
) =
)=
) =

78 Designing a CSP-based Coordination Environment

6.2.2 Performing Actions

The purpose of the coordination environment is not only to coordinate concur-
rent parts of a system but also to execute UDFs when performing actions and
to assign the execution of UDF's to threads. This is done while performing an
event or a 7 transition made visible by T

The simulation of the original process P is defined by the operational firing
rules of CSP unrolling 7'(P) while hiding the end events of all actions and also
the start events of internal actions. The important point is that the events
(except v') are regarded as actions which are associated with UDF's and that
these UDF's are executed between the atomic steps of the actions start and its
end.

The following cases are to be considered when performing an action. The
action either corresponds to a (a) synchronized event, (b) to a hidden event,
(c) to a renamed event, or (d) to any other event.

The first case (a) is commonly considered to be a problem when matching
actions with events. The argument against performing actions for synchronized
events is the following question:

‘which of the synchronized components should perform the action?’

Our answer to this question is that synchronization primarily affects the order
of events and not the ownership of actions. Thus, a single action is performed
after the start event in an arbitrarily chosen context (either one of the threads
that performed the preceding actions, possibly another).

In the second case (b) the original event (being subject to hiding) defines
the action to be performed. In the third case (c¢) the renamed event (not
the original one) defines the action to be performed. Although this decision
seems to be at odds with case (b), because both renaming and hiding can
be regarded as a substitution of the original event’s name (in a user-defined
way or by 7 respectively), the different treatments are necessary for uniquely
identifying the UDFs to be executed. The reason is that hidden events cannot
be synchronized on but renamed events are available for synchronization.

In the last case, the event directly identifies the UDF to be performed. It
is noteworthy, however, that v* is not associated with a UDF. It solely models
termination of a process, is commonly considered to be outside the alphabet
of a process, and it is the only event not being split by T'.

As an example, the single UDF to be performed by the following coordina-
tion process P (being algebraically equivalent to SKIP) is the one identified
by event a.

P = ((b = SKIP)[b < a] |{sy| @ — SKIP) \ {a}
This design decisions described above allow us to relinquish the idea that

a sequential process models a single thread of control. A sequential process
defines the order of its actions but these can be performed by different threads.

6.3 Supported Processes 79

This gives us great freedom in distributing the actions amongst processing units
of the final system. Load balancing could, for example, be realized by statically
creating a task queue and distributing the actions dynamically at runtime. Any
of these informal descriptions above conforms to the formal definition of T'.

6.2.3 Choosing Events

There must be some additional component added to the coordination environ-
ment dealing with the execution of hidden events. Visible events are available
for external synchronization and chosen externally. But how to resolve conflicts
of internal actions?

As a solution, we propose to use event listeners that are called when the
internal representation of the initial events of the coordination process (as
shown in Table 6.1) changes. These event listeners are UDF's that may choose
amongst the visible and hidden events (s, sh € initialsy(P)) and perform a
selected event. They enable the user of our coordination environment to inject
a strategy for dealing with conflicts between s and sh events. These event
listeners reside above the component performing 7'(P) but they solely deal
with 5 events.

€ events are not visible to the user of our coordination environment. They
are performed immediately so that T(P) can proceed and offer any causally
dependent 5 events.

This leaves it open to the programmer to decide if hidden events have
priority over visible ones as, e.g., in the tau-priority model [Ros05] and how
conflicts of internal actions are resolved. Although it seems reasonable in
many cases to give hidden events priority over visible events, it is obviously
unsatisfying in the presence of timeouts because the timeouts would always be
resolved to the right-hand side due to the hidden event introduced by T'.

It is important to notice that this does not contradict the noninvasiveness of
our approach. By making hidden events on the outermost process available for
event listeners internal to the coordination environment, we provide a general
way for resolving nondeterminism.

6.3 Supported Processes

The approach presented here supports all finite alphabet CSP processes except
the ill-formed recursive process P = P (which is sometimes understood as div).
This includes divergent and infinite state processes. The limitation to processes
whose alphabet is finite matches the assumption that there are only finitely
many UDF's assigned to the events of a process.

The divergent process

P =pPe(e— P)\{e},

80 Designing a CSP-based Coordination Environment

for example, models a process that runs forever without any interaction with its
environment. This is not a problem in its own right, because, as we will see in
Chapter 8, such situations may naturally arise when modeling active processes
that do not depend on external stimuli. In such a situation one would use
hiding to express urgency (again, as in the tau-priority model) and implement
internal actions that perform the system’s business logic. The internal action
could, for example, scan log files and generate reports.

The process
Q=pnQ e(e— Q MSKIP)\ {e}

is also a divergent one, although @ may eventually decide to terminate grace-
fully. The reason for accepting such processes is that the internal actions
resolving the choices can be used to implement local fairness conditions (as
introduced in Section 3.3). Consequently, the process () shown above does not
necessarily diverge and might be guaranteed to terminate eventually under
certain fairness assumptions. The same applies to other processes contain-
ing process control constructs such as internal or external choice, timeout or
interrupt allowing the process to eventually exit from cycles of internal actions.

Both tools FDR and ProB can be used to verify that P unavoidably di-
verges while () may eventually terminate. FDR proves this in the traces model

because
TPl ={0} and T[Q]={0.(V}}.

In the failures-divergences model P = () because both processes may diverge
initially. The same result can be obtained using the LTL model checking
capabilities of ProB. In ProB’s LTL syntax, the formula

¢ =F G [tau]

states that a process unavoidably diverges (all of its executions eventually end
up in an endless cycle of 7 events). Now

Pl¢ but QFo.

The counterexample found by ProB expectedly shows that) may eventually
perform v'.

Another interesting example is the infinite state process
R=puR e(a— R'||| b— SKIP).

Infinite state processes such as R are likely to eventually run out of mem-
ory, crashing the whole system. It is obviously questionable if any reasonable
program conforming to such a design exists. However, infinite state processes
can be simulated and there is good reason for supporting them: there are en-
vironments that turn these systems into finite state systems. For example, R
is clearly well-behaved in an environment that ensures that all of its traces ¢
satisfy

t{a} <t 1{b}+N.

6.4 Integrating Specifications of UDF's 81

In this context, it is important to observe that CSP,; scripts modeling
infinite state systems cannot in general be checked by FDR because compilation
of the script to the internal LTS will not terminate. The ProB LTL model
checker, however, performs on-the-fly model checking and quite often succeeds
in model checking infinite-state systems [PLO0S].

6.4 Integrating Specifications of UDFs

CSP can be used as a coordination language independent of the target lan-
guage. Compared to approaches that integrate CSP with state-based for-
malisms (e.g., CSP||B, CSP-OZ or Circus, see Section 9.1.2), our approach
is a rather abstract one in the sense that it does not lift the implementation
level data types to the CSP level. However, although our coordination envi-
ronment abstracts from data and state-based properties, UDFs will deal with
data. Hence, assigning UDFs to events undoes this abstraction. This gives
rise to proof obligations for the final system that are discussed in this section.

We do not consider a particular implementation language for the UDFs
(realizing the coordinated components’ operations) here. Neither do we dictate
the use of a particular specification language. Hence, we present the proof
obligations in a purely mathematical way. The proof obligations ensure that
UDFs do not introduce data races and that they are not called outside their
preconditions.

The proof obligations presented in the following allow us to turn a verified
sequential system into a concurrent one by identifying parts of the program
that make up the UDFs, adding a suitable CSP script and mapping events
to UDFs. Provided that the additional proof obligations can be discharged
successfully, modular verification remains valid on that program. This implies
that the sequential parts do not have to be modified at all. The coordina-
tion environment is the entry point to the final program and solely requires
implementation of the mapping from events to UDF's.

The mapping of events to UDFs is formally defined as a partial injective
function such that its inverse is a total injection. It is

udf 3w F and its inverse is udf 71 F— 3.

Hence, a UDF uniquely identifies an event but events do not necessarily identify

a UDF.

Expressing causality is straightforward. It is, for example, obvious that
prefixing should relate to the sequential rule of Floyd /Hoare-style calculi. More
specifically, we need to ensure that the postcondition (Post) of every UDF
implies the preconditions (Pre) of subsequent UDFs. More formally,

Va,b: EPU[,t:Z?(P)'
t 7 (e.a) " (5.0) € traces(T(P)) = (Postuas(a) = Prewdsm)) -

82 Designing a CSP-based Coordination Environment

In contrast to other formalisms, this also takes pre- and postconditions of
UDFs related to hidden events (which are exposed by our transformation 7')
into account.

The proof obligation for proving absence of data races is based on our
definition of possible concurrency presented in Chapter 4 and a so-called frame
property describing the modification behavior of a UDF with respect to another
UDF. Refer to [Miil02] for a more in-depth presentation of framing.

Let F be the type of all UDFs and Var the type of all modifiable enti-
ties (references to objects and primitive types). Then a data race is formally
expressed using the following functions:

shared : ' x FF — P Var

shared(f, g) = (writes(f) N rw(g)) U (writes(g) N rw(f))
writes, reads, rw : F— P Var

rw(f) = writes(f) U reads(f)

Definition 3 (Data Race) Two UDFs f and g suffer from a data race if
their frames overlap and one modifies data also read or written by the other.

race(f, g) = shared(f, g) # 0

Let conc : X X 3 — Bool be the predicate telling us whether or not two
events are possibly concurrent in a given process P (i.e., conc(z,y) < (z,y) €
conc(P)). This predicate is combined with udf~! to the following predicate
telling us whether or not two UDF's are possibly concurrent:

conc’ : F x F — Bool, where conc”(f,q) = conc(udf*(f),udf *(g)).
The proof obligation ensuring freedom of data races is

Vf,g€F:conct(f,g) = - race(f,g).

A system violating this condition can be corrected by either adjusting the
coordination process (by removing possible simultaneity) or modifying the
UDFs (by making the frames distinct).

In general, determining the sets reads and writes of arbitrary UDFs is a
hard problem (due to aliasing). Dealing with this issue is beyond the scope
of the work presented here. However, it is noteworthy that specialized logics
such as separation logic [Rey02] offer a prospective alternative for specifying
(and verifying) properties such as the data independence of UDFs.

6.5 Categorizing Coordination 83

Besides these data related proof obligations, termination of the UDF's has to
be proved to obtain total correctness. Furthermore, it must be proved that the
UDFs resolving nondeterministic choices always return a valid process name.

6.5 Categorizing Coordination

Aiming to support ‘full’ CSP implies that coordination processes do not only
define concurrency concerns but also timing, conflict and causality. The pro-
cess operators supported by T (except hiding and renaming) fall into these
categories.

Table 6.2 shows our categorization of the CSP operators according to the
aspects that they coordinate. It is important to note that the categories conflict
and concurrency denote possible conflict and possible concurrency as defined
in Section 4.3.

Interestingly, the interrupt operator falls into the two categories of conflict
and concurrency. This is due to the design decision of the model presented
in this chapter that the interrupt operator is by no means an operator that
eliminates concurrency from its operands. Thus, the interruption event may
occur concurrently with each event of the first operator but is also possibly
conflicting with those events. The reason is that the conflict expressed by
the interrupt operator is only resolved when the right-hand process of the
composition performs an event.

Table 6.2: Coordination categories of CSP operators.

timing PrQ
conflict POQ PAQ
causality a— P P:;Q PMaQ

concurrency Pl||Q P Q PlaQ PAQ

Prefix and sequential composition express causality but, perhaps surpris-
ingly, internal choice as well. Our understanding of internal choice is that a
user-defined operation (modeled as an hidden event ic_i) resolves the choice.
This internal action is likely to depend on the current state of the system and
hence on the state changes made by preceding actions (if any). In this sense,
it clearly expresses causality. The benefit of a coordination environment sup-
porting this understanding of an internal choice is that it allows us to keep the
coordination processes reasonably abstract and simple (by law 2.2 ‘resolution
of nondeterministic choice’ P 1 @ C P).

Other approaches to using CSP as coordination facility (e. g., CSP || B [ST04],
CSP+B [LB05]) tend to focus on communication. The occurrence of an event
a.z is interpreted as an operation that inputs or outputs the data value z. By
contrast, we treat these communication decorations as mere syntactic sugar.

84 Designing a CSP-based Coordination Environment

Given a channel a : X, the input decoration
a?’r — P(z)
is interpreted as replicated external choice (which is semantically equivalent)
Oz:X ea.x — P(x).

T does not restrict the interpretation of the atomic events a.x, a.z’ where
z,r’ € X and z # 2’ in any way. They may abstract actions communicating
some value but they may as well represent independent actions.

6.6 Discussion

The coordination environment presented in this chapter unravels the abstrac-
tions built into CSP to support a wide range of coordination constructs. The
coordination itself is defined by 7. Actions are performed (by executing a
UDF) between the split start and end events created by 7. T allows us to
simulate truly concurrent CSP within the framework of standard interleav-
ing CSP. This is beneficial because these semantics are well-developed, well-
documented and supported by a number of industrial-strength tools such as
FDR and ProB.

Nondeterminism introduced by the internal choice operator is resolved by
implementing a UDF that returns the name of the chosen succeeding process.
Nondeterminism introduced by hiding is resolved by attaching listeners to the
coordination environment that may deal with hidden events. CSP animators
(e.g., ProB [LF08], Probe [Ros05] and PAT [SLDO08]) commonly implement a
similar approach. They offer the user the choice to perform internal (7) events
to unroll a process. The only semantic difference between visible events (those
from ¥) and hidden ones is that the latter cannot be used for synchroniza-
tion, neither with other processes nor with the environment (which can also
be regarded as a process although an unspecified one). Our coordination envi-
ronment also realizes this understanding of hidden events. Hidden events are
propagated to the outermost process (regarding the process hierarchy imposed
by the nesting of process operators) but not available for synchronization.

Our approach does not necessarily map the UDF's implementing two causally
dependent actions to the same thread. It merely maintains the order of UDF's
as defined by the events of the CSP script coordinating the system. This
is comparable to Linda’s feature of distributing tasks at runtime and can be
exploited for load-balancing purposes.

The coordination environment could even be constructed without explicitly
dealing with the initial events of processes and the operational firing rules by
implementing the transformation 7' and reusing a CSP animator such as ProB
to simulate the coordination process. Yet, this approach would yield the initials
as defined by nitialsy, shown in Table 6.1.

7 Coordinating Java Threads

The general concepts of a CSP coordination environment are presented in
Chapter 6 in a target language independent way. In this chapter we present
a Java implementation of a CSP coordination environment targeting the de-
velopment of provably correct concurrent software. It is based on the under-
standing that an event models a (non-atomic) action as justified by the theory
developed in the previous chapters. The implementation internally realizes the
transformation 7' (as presented in Chapter 5).

The coordination environment contains a simulation kernel that interprets
a coordination process as defined by Hr o T and a mapping from events to ter-
minating user-defined functions (UDFs). The UDFs are executed between the
start and end events of an action which is modeled by an event of the coordina-
tion process. Although T makes internal actions visible (to support reasoning
about internal concurrency), the internal actions are not available for external
synchronization (because they are hidden again by Hr). The implementation
presented here coordinates Java objects and allows us to derive verified con-
current Java programs from a coordination process and the implementation of
a single Java interface realizing the UDFs.

Even though concurrency was available right from the first public release
of Java in 1996 it is still hard to master and lagging in verification support
[BCCT05]. Specifying and verifying concurrency related properties in Java is
still an active field of research, as put out in [dB07, Loc08, WPM™*09], for
example. As motivated in the preceding chapters, our approach is based on
the observation that problems in concurrent programming are due to com-
plexities that arise whenever concurrency primitives are coupled with complex
sequential dependencies. Whenever threads have to access shared resources,
for example, deadlock is a possible threat to the programmer. The purpose of a
coordination language is thus to hide the Java concurrency primitives from the
programmer and to make even complex concurrent Java programs amenable
to (automated) formal verification. Even though our simulation kernel is im-
plemented in Java 5, it does not use the new concurrency facilities from the
java.util.concurrent package (compare with Section 3.2) but rather threads,
and the primitives Object.wait, Object.notify and Object.notifyAll. The objec-
tive of this decision is to provide an alternative to the existing concurrency
abstraction and not just an extension.

85

86 Coordinating Java Threads

One of the very basic properties of the coordination environment presented
here is noninvasiveness. It does not require the use of some predefined classes
in the code of the user’s components. This means that our approach does
not require the modification of verified sequential parts of a program by using
some predefined classes, for example. Instead, our coordination environment
provides two interfaces for linking the coordination with the operations of the
system. The mapping of events to operations of the components is provided
by the user by implementing an interface provided by our implementation.

The rest of this chapter is organized as follows. First, we present the gen-
eral design decisions underlying our implementation. Selected implementation
details of the coordination environment are presented in Section 7.2. In Sec-
tion 7.3 we relate our approach to coordination to modular verification of the
UDFs. We then go on to discuss classes of processes that are supported by
the Java coordination environment in Section 7.4. This chapter closes with a
discussion in Section 7.5.

7.1 General Design Decisions

The following very basic questions have to be answered when realizing a co-
ordination environment conforming to the model presented in the previous
chapter.

m How are coordination processes defined?
m How is T realized?

m How are the firing rules realized?

Our coordination environment supports a subset of CSPy;. To that end, we
implement a simple CSPy, parser and generators to either output Java code
representing the coordination process or to launch the simulation immediately
(without generating code).

Our implementation offers classes realizing the process operators, their
transformation and their firing rules. Thus, T is not applied statically but
dynamically at runtime. Note that it is also perfectly valid to transform a
coordination process statically and to reuse an external simulator to unroll
the transformed process. Unfortunately, at the time of writing, there are no
suitable frameworks (or tools) available for such an integration.

Another very basic design decision is the following: our coordination envi-
ronment implements events as objects that are aware of their origin (the pro-
cess operators that created it). Performing an event is only possible through
the object representing it. This allows us to discriminate instances of equally
named events. When being performed, the event object delegates to the rele-
vant implementations of firing rules.

7.2 Implementing the CSP Coordination Environment 87

7.2 Implementing the CSP Coordination Environ-
ment

In this section, we present the implementation of the CSP coordination envi-
ronment as modeled in Chapter 6. The coordination environment simulates
a coordination process at runtime and executes user-defined Java code when
performing an event. It implements the operational semantics of the process
operators as defined by the simulation transformation presented in Chapter 5.
This transformation in turn builds on the operational semantics given in Sec-
tion 2.2. This way, the simulation kernel limits the set of possible executions
to those specified by the simulated coordination process.

In the following, we present the most important Java classes of the coordi-
nation environment and explain how UDFs are assigned to actions. We also
discuss how the implementation deals with events, internal transitions, and
processes.

7.2.1 The Environment

The coordination environment provides the final class CspEnvironment encap-
sulating the coordination process. This class manages the events offered by the
coordination process, listeners that deal with changes of offered events, and the
mapping of events to UDFs. The mapping of events to UDFs is defined by
an implementation of the CspFEventFExecutor interface. The environment im-
mutably references a single instance of a CspProcessStore holding the process
configurations that describes the coordination process to be simulated.

The CspEnvironment provides a start method taking a process name that
determines the coordination process instance. When started, the environment
retrieves the coordination process from its store and adds the events offered
by the process to its set of offered events. Then it informs the event listeners
about that change. From that point on, interaction with the coordination
environment is done by choosing events from the set of offered events and
performing them.

To create an executable system one has to instantiate a CspFEnvironment
with a CspProcessStore and a CspEventFExecutor. One can then create a co-
ordinated system as shown in Figure 7.1. A CspSimulator may be used to
connect a CspEnvironment to the outside world. One useful example is the
SwingCspSimulator that provides a simple Swing GUI to chose and perform
events.

The example code shown in Figure 7.1 assumes the existence of suitable
CspEventExecutor and Filter classes (filters are convenience objects helping
event listeners to find the events that they act upon). The instances may
be configured to fit the needs of the final system. Then a process store is
created and must be filled with process configurations. A CspEnvironment is
created using the CspEventFExecutor and CspProcessStore instances. To deal

88 Coordinating Java Threads

with possibly hidden events, a CspEventConsumer takes the Filter instance as
argument and is registered as a listener for event changes at the environment.
Finally, the environment is run using a Swing GUI.

CspEventExecutor cee = ... ;
Filter filter = ... ;
// setup cee and filter

CspProcessStore store = new CspProcessStore ();

// register process configurations

CspEnvironment env = new CspEnvironment(store, cee);
env.registerListener (new CspEventConsumer (filter));
CspSimulator s = new SwingCspSimulator (”my_example”, env);
s.run ();

Figure 7.1: Code stub of a coordinated Java program.

7.2.2 Assigning UDFs to Events

The CspEventExecutor interface realizes the mapping from events to UDFs.
Thus it must be implemented to enrich the system with the required function-
ality. It is this interface that allows UDFs to be injected into the CSP model,
decoupling functional aspects from concurrency. The interface is shown in
Figure 7.2.

The first method provided by the CspFEventFExecutor interface deals with
executing the UDF for arbitrary (visible or hidden) user-defined events. The
second method is solely called by the hidden events introduced by internal
choice. This method is naturally required to return a valid process name
known by the environment. This is expressed as a postcondition stating that
the returned value is the name of one of the allowed successors of the internal
choice. The third method is called exclusively when performing a hidden action
introduced by a timeout process. The parameters are assumed to be non-
null and final (immutable). The implementations of the methods must be
guaranteed to terminate (which is the default in JML).

Note that it is perfectly valid for an instance of CspFuventEzecutor to do
nothing at all when an action is performed or some process times out. This
equals the nop operation (no operation performed).

As shown in Figure 7.3 the code responsible for performing an action is

environment . getCspEventExecutor (). execute (first (), name);

7.2.3 Events and Hidden Transitions

Externally, the simulation kernel offers the events as specified by the control
process P. Internally, it transforms the processes on-the-fly and performs

7.2 Implementing the CSP Coordination Environment 89

public interface CspEventExecutor {
void execute (CspProcess process, String event);
/x@ ensures \old(internalChoice).isValid(\result) @/
String resolve (ProcessInternalChoice internalChoice);
void timedOut (ProcessTimeout timeout);

Figure 7.2: The CspEventFxecutor interface maps events to UDFs.

T(P). The operational firing rule for prefix (e — P), for example, is

(a — P) % P.

Since the simulation also realizes 7', this firing rule is implemented for the
process T'(P) = s.a — e.a — T(P). Only s.a is offered for external synchro-
nization. After s.a is performed, the UDF related to a is performed, then e.a
is performed immediately (recall that the e events are always conflict-free to
every other event in 7). Then, the process evolves to T'(P). Again, from the
outside this process appears to be P, because the {| sh |} events are hidden.
This principle applies to all events because every event in Xp is split by 7'.
This behavior is implemented by the class UserCspFvent which deals with the
events from {|5|}. Recall that this set contains the start events of P’s events
as well as the start events of the exposed internal transitions (introduced by
internal choice, timeout and hiding). The relevant firing rules are those dealing
with X U 7.

Note that v' has to be treated differently from other events because of
its very special role in CSP. It deals with termination exclusively. Thus, the
transformation 7' deals with v* differently from other events and so does its
Java implementation. v is handled by the class TickEvent.

The common superclass is CspEvent. This class defines that events are
named and can be hidden. Recall that even v' is sometimes hidden (by se-
quential and parallel composition, for example). CspEvent also provides the
abstract method perform. According to T, this method is implemented differ-
ently in the subclasses: v is performed atomically while other events perform
two atomic transitions.

7.2.4 Processes and Process Operators

The abstract class CspProcess defines that processes have a name and offer
events to their environment. It provides the following abstract methods.

abstract void doStart(CspEvent cspEvent);
abstract void doEnd(CspEvent cspEvent);
abstract void doTick(TickEvent tickEvent);

90 Coordinating Java Threads

Implementations of these methods discriminate visible from hidden events and
realize the firing rules that are triggered when an event (as specified by the
argument) is performed.

Subclasses of CspProcess are available for the process operators supported
by T, namely prefixing, sequential and generalized parallel composition, inter-
nal and external choice, renaming, hiding, timeout and interrupt.

The environment must also care for multiple instances of a process because
instantiation occurs naturally in CSP. Process names can be reused to form
different processes, however, their instances evolve independently. There are,
for example, two copies of P evolving independently in P ||| P.

CSP processes are represented in Java as CspProcessConfig objects. These
objects are stored in a CspProcessStore and used to create instances of CspProcess.
Process configurations reference other process configurations by name. This
indirection allows us to reuse process configurations and to have stateful pro-
cesses. Fresh copies of processes are obtained by looking up the process con-
figuration for a given process name and trigger it to create a fresh process
instance. Processes must not discard instances of stateful processes, of course.

STOP and SKIP are the only predefined processes that can be referenced
by a coordination process. Process stores can be obtained from the CSPy,
parser. They can also be created programmatically (e.g., by implementing a
CspProcessStoreFactory). Generation of CspProcessStoreFactory implementa-
tions from CSP); scripts is also supported. Limitations of the CSP,, parser are
discussed in Section 7.4.

7.2.5 Performing Actions

The purpose of the simulation kernel is not only to coordinate concurrent
parts of the system but also to execute UDFs when performing actions and
to assign the execution of UDFs to threads. This is done while performing a
visible non-v" event or an internal action. Those are represented as instances
of UserCspEvent. A simplified implementation skeleton of UserCspFEvent is
shown in Figure 7.3.

Events have in common that they may result from synchronization or hiding
of other events. Thus, the base class provides a member

delegates :: List<CspEvent> .

Note that this also applies to v/, although v can neither be hidden nor syn-
chronized on. If, for example, P in P |4] @ may terminate, it offers the v/
event which is then hidden by the parallel composition because it may only
terminate after P and () have terminated. This example also motivates our
way of dealing with the offering of events. Events ‘bubble’ from their origin
to the outermost process (with respect to the process hierarchy implied by the
nesting of process operators). This hierarchy is made available at runtime by

7.2 Implementing the CSP Coordination Environment 91

class UserCspEvent extends CspEvent {
// ... constructors

void doStart (){
for (CspEvent e : delegates)
((UserCspEvent)e).doStart ();
}

for (CspProcess p : offeredBy){
p.doStart (this);

}

}
// ... doEnd() analogous to doStart()

void performUserDefinedFunction () {
// hidden events delegate to the events they are hiding
environment . getCspEventExecutor (). execute (first (), name);

}

public final void perform () {
synchronized (environment) {
doStart ();
}

environment . assignToThread (
new Runnable () {
public void run() {
performUserDefinedFunction ();

synchronized (environment) {
doEnd ();
environment . offerEvents(last ().events ());

Figure 7.3: Implementation skeleton of the UserCspFEvent class.

the member
delegates :: List<CspEvent> .

For example the construct P O () is represented by three processes P, () and
P O Q. Since

initials(P O Q) = initials(P) U initials(Q)

we regard P and () as subprocesses of P O () offering their initial events to the
surrounding process. Thus, given an event a € initials(P O @), the offeredBy
list ends with P O) and the previous entry is either P or). This applies
analogously to all process operators.

Our implementation handles the nesting of process operators and the of-
fered (initial) events of processes in an explicit way. This causes a considerable
runtime overhead but allows us to resolve conflicts of actions when an action is

92 Coordinating Java Threads

started and to leave concurrent actions on offer while an action is performing.
The semantic foundation of this functioning is provided by the transformation
T and the operational semantics of CSP as explained in Chapter 6. The initial
events of the CspProcess subclasses are computed according to the equalities
listed in Table 6.1.

Our implementation of the external choice operator, for example, clears its
initial events after performing the start event originating from a visible event
and offers its environment the initials of whatever process takes over after
termination of the corresponding action. This is due to the conflict expressed
by the firing rule for visible events on external choice

Ry Q—Q
= TET - T ET
POQ - P POQ %

By contrast, performing an action offered by the implementation of the parallel
composition operator removes it from the set of initial events (in doStart) and
then adds the initial events of the subsequent process (after doEnd). This is
due to the firing rules for visible events on parallel composition

a a /
PTP' a€ X\ A QT)Q a€ X\ A
Plal @ — P[4l @ Plal@— P lal @
PP Q-5 Q
e a
Plal @ — P 4] @

€A

The first two firing rules allow non-synchronized events to be performed inde-
pendently from the events offered by the other operand of the parallel com-
position. Note that this firing rule applies to the s and e events. After any
s.a € X7 (p), the subsequent e.a becomes available either on the side perform-
ing s.a independently or on both sides in the side of a synchronized event.

As shown in Figure 7.3, both the doStart and doEnd methods of the
UserCspEvent class first inform the delegate events to perform their doStart
or doEnd code respectively. This finally ends up in calls to the doStart and
doEnd methods of the CspProcess class from which the events originate. Thus,
these methods implement the firing rules of the atomic start and end events

as defined by T'.

Atomicity of start and end events must be ensured. This can be achieved
using a single semaphore (or monitor) in the coordination environment. The
CspEvent implementations synchronize on the CspFEnvironment instance itself
to ensure atomicity of start and end events of actions as explained below.

The public final perform method implements execution of the whole action.
This includes the start and end events as well as the execution of the UDF
realizing the action. The calls of doStart and doFEnd are performed exclusively
in blocks synchronizing on the CspEnvironment instance they belong to. The
former call is executed within the thread performing the selected event. Then
the environment assigns the execution of the event’s UDF and the subsequent
doEnd-call to a thread. Note that different strategies are valid here offering

7.2 Implementing the CSP Coordination Environment 93

a large potential for optimizations. Load balancing could, for example, be
realized by statically creating as many threads as CPUs available and putting
the UDFs into working queues of the threads. Also note that the doEnd-calls
are never performed by the thread which has decided to perform the event.

According to the model presented in Section 6.2.2, the following special
cases have to be considered when performing an action: the action corresponds
(a) to a synchronized event, (b) to a hidden event, (¢) to a renamed event, or
(d) to any other event. In the last case, the event has no delegates and simply
walks the hierarchy of processes offering that very event when performing its
start and end events. This is the base case described above. In case (a), the
event has at least two delegate events. These perform the start and end events
as required by the firing rules of their offering processes but do not execute
the UDF. This is done by the synchronized event to ensure that the UDF is
executed a single time per synchronized event. Cases (b) and (c) deal with
events that have a single delegate (the hidden or renamed source event). The
difference is that in case (b) the UDF is performed by the delegate event while
in (c) the UDF is performed by the outermost event and not its delegate. These
are the special cases formally defined by T

7.2.6 Choosing Events

Besides the implementation classes of events and processes, the CspEnvironment
class is the most important one amongst the classes realizing the simulation
kernel. There is a single instance of CspEnvironment per system encapsulating
access to events and hiding processes from the user. Before starting the CSP
simulation kernel, event listeners (implementing the Listener interface) must
be attached to the CspEnvironment instance. This is the only way to inter-
act with the external world (e.g., a user or network connections). Thus when
starting the environment, the outermost process offers its initial events (which
depends on the initial events of its child-processes) to the environment which
then informs the listeners in turn. Subsequently the listeners are informed
after every change of the set of events offered by the outermost process. This
set changes only when an event is performed. If a client holds a reference to
an event that is no longer available, it cannot be performed, of course. It is
on this level that a program may decide about performing internal actions (7
events).

Visible events can be chosen arbitrarily from the set of offered events as de-
fined by the standard CSP semantics. For this purpose, our simulation kernel
offers the abstract class CspSimulator which is itself an event Listener that
encapsulates the CspEnvironment and defines ways to deal with event changes.
For example, its subclass ConsoleCspSimulator interacts synchronously with a
user, while the SwingCspSimulator provides asynchronous access to the events
offered by the CspFEnvironment. However, simulation can be realized by cus-
tom listeners attached to the environment without using a CspSimulator at
all.

94 Coordinating Java Threads

0, 0,

Lol

public class RaceExample { " "
private int x; T T

public void increment (){ x++;} / ! !

public void decrement (){ x——;} - -

} A} L4
g

Figure 7.4: Left: simplistic example of a class possibly introducing a data race on
z. Right: an object reference graph giving rise to a data race on Os.

7.3 Modular Verification

Noninvasiveness is a feature that enables the components (which are subject
to coordination) to be oblivious to coordination. However, obliviousness to
coordination gives rise to proof obligations as discussed in Section 6.4. The
very simple class RaceErample shown in Figure 7.4 shows a class that offers
two methods modifying a class member variable. Its methods increment and
decrement modify the same variable z and must not be executed concurrently
to prevent data races.

A more complicate situation arises, if the shared data is only reachable via
a chain of references. Figure 7.4 shows an object reference graph such that
O3 is transitively reachable by Oy and O;. Now given two methods fy and f
operating on Oy and Oy, these methods give rise to a data race (according to
definition 3) if both read sets follow the dashed bold lines and at least one of
them modifies O3 (or one of O3’s members also read by the other method).

The issue of possibly conflicting memory accesses of concurrent actions
requires to also take the implementations of the basic actions of the system
into account. Since verification of sequential Java programs is a hard problem
in its own right, we touch this topic only superficially.

Although it might come as a surprise to the reader that we do not require
the program to work in a message-passing style which is the commonly un-
derstanding of CSP-like communication, we leave the style of communication
to the programmer without restricting ourselves. Besides using shared mem-
ory communication it is, for example, perfectly valid to have a UDF access a
remote bean or to use JCSP [WMO00] internally to communicate with other
UDFs. Using other concurrency facilities such as JCSP would of course in-
troduce new proof obligations. Using JCSP, for example, would require the
two UDF's to always occur concurrently because otherwise the communication
cannot happen and would block the UDF forever. This way, the assumption
of UDFs to be terminating would be violated. In consequence, the respective
event will run indefinitely, preventing progress of any behavior dependent on
that event.

7.4 Supported Processes 95

Modular Verification targets the problem of specifying and verifying com-
ponents independently such that their specifications and proofs remain valid
under composition. In an object-oriented context, modular verification requires
specification languages to be capable of expressing features such as subtyping
and inheritance. One important problem supporting modular verification is
the so-called frame problem concerning the modification behavior of methods
[Miil02].

The Java Modeling Language (JML) [LBRO6] enriches Java with a speci-
fication language for specifying invariants on objects as well as pre and post-
conditions and loop invariants of methods. It is supported by a number of
verification tools (see e. g., [BCCT05]). JML is based on Java logical operators
enriched with a set of operators to express quantification, normal and abrupt
termination of methods, modifies-clauses and abstract (i. e., specification) vari-
ables. It supports modular verification to a great extent. Unfortunately, its
support for concurrency-related specifications is still lagging [BCC*05]. The
problem with concurrency-related properties is that they often cross-cut soft-
ware modules and tend to introduce dependencies in the program that are hard
to grasp and hard to specify. Thus, concurrency complicates the problem of
modular verification. The Hoare-Triple

{z=0}z:=z+1{z=1},

for example, is valid in a sequential context but invalid if z is a shared variable
modified concurrently by another thread.

Modular verification is still a subject of ongoing research in a purely se-
quential context but it is even harder in a concurrent context.

As pointed out by Welch in [WMO00] it is important to make Java concur-
rency amenable to formal verification and hide the monitor-based primitives
from the programmer. However, unlike the other CSP-based frameworks, we
do not focus on communication but regard events as abstractions of arbitrary
actions. The proof obligations presented in Section 6.4 integrate verification
of the system’s concurrency structure with the modular verification of the sys-
tem’s UDFs.

Determining reads and writes of arbitrary Java methods is a hard problem
in general (due to polymorphism, dynamic binding and aliasing) but this issue
is beyond the scope of this thesis.

7.4 Supported Processes

Our simulation kernel is equipped with a simple CSP,, parser. The parser
does not yet support full CSP); but supports a limited although semantically
complete subset of CSPy,. Its input syntax restrict models to be made up
of single-operator processes only, excluding input/output decorations (!,7) on
events and being free of any functional constructs. Thus, the simulation en-

96 Coordinating Java Threads

vironment supports the CSP part of CSPy; but omits any syntactical sugar
offered by CSP,.

It is easy to see that these requirements regarding the form of the current
input language supported by our simulation kernel do not impose a limit on
the processes it supports. The reason is that any CSPy, specification that can
be verified by FDR or ProB is internally transformed into this form during
the compilation phase (in the case of FDR) or while animating the process (in
the case of ProB). Transforming arbitrary CSPy, processes into the required
form is done by performing the following steps involving computation of ¥ and
unfolding the functional parts of the model.

1. Externalize local definitions (let ... within) and lambda expressions.
2. Replace productions and extensions by their explicit values.

3. Create a copy for each possible instantiation of a parameterized process
definition.

4. Replace usages of parameterized processes with the newly introduced
copies.

5. Replace input decorations on events with replicated external choice.

6. Create copies of processes using variables for each possible instantiation
of the variables.

7. Replace processes using variables by replication on the process operator
determining the value of the variable in the original process (using the
newly introduced copies).

8. Split each process into single operator processes.

This transformation can be implemented using the Haskell CSPy; toolkit [Fon10],
for example. The first four steps are simple ones as long as the sets and
datatypes used in the script are finite. The fifth one conforms to the semantics
of CSP because of the equivalency of input and replicated external choice, as
discussed in Section 6.5. However, it is important to note that events do not
necessarily relate to data-flow between processes in our approach. Step 6 is
similar to the steps 2 and 3 and the last one concerned with computing 3. The
last two steps are simple syntactical transformations.

7.4.1 Example

As an example, consider the CSPy; script shown in Figure 7.5. It contains a
specification SPEC and an implementation model IMPL which is proved to
be a refinement of SPEC in the failures-divergences semantics. Now assuming,
that only IMPL is to be used as coordination model, we demonstrate the trans-
formation of IMPL into a process accepted by our coordination environment.
The script does not contain any local or anonymous definitions, so we begin
with replacing the production {|lock, release|} by its explicit representation

A = {lock.0, lock.1, release.0, release.1} .

7.4 Supported Processes 97

ID={0 .. 1}

channel lock, release, read, write : ID

SPEC = || x : ID @ read.x —> write.x — SPEC

LOCK = |7| x : ID @ lock.x — release.x —> LOCK

P(id) = lock.id — read.id —> write.id — release.id —>
P(id)

IMPL = ((|]|| x : ID @P(x)) [|{]|lock, release|}|]

LOCK) \ {]|lock, release]}
assert SPEC [FD= IMPL

Figure 7.5: Simple CSP); example of a specification SPEC and refinement IMPL.

In a second step copies of P are created for each possible value of id. We obtain
the following two processes PO and P1.

PO = lock.0 — read.0 — write.0 — release.0 — PO
P1 = lock.l — read.l — write.1l — release.l — P1

In the next step replicated interleaved instantiation of P is replaced by the new
copies PO and P1.

IMPL = ((||] x : {PO,P1} @x) [| A |] LOCK) \ A

Now the variable z used in LOCK is eliminated by introducing the fresh pro-
cesses LOCKO and LOCK1 and modifying the replication index set of LOCK
accordingly.

LOCK = |7| x : {LOCKO,LOCKl} @ x
LOCKO = lock.0 — release.0 — LOCKO
LOCKl = lock.l — release.l — LOCK1

Splitting the processes into single operator processes strictly follows the oper-
ator precedence and introduces a fresh process for each process operator. The
IMPL process, for example is split into IMPL, IMPL’ and IMPL”.

IMPL = IMPL" \ A
IMPL' = IMPL’’ []A|] LOCK
IMPL"” = ||| x : {P0O,P1} @ x)

The resulting CSPy; script is shown in Appendix B.6. It is ready for use
with our implementation of the coordination environment. The Java code
shown in Appendix B.7 turns the coordination process into an executable Java
program (assuming that a suitable CspEventEzecutor implementation exists).
The excerpt shows that the CSP process is transformed into Java code creating
the process configuration objects in a process store. The process store and a
suitable event executor are then passed to the constructor of this system’s CSP
environment, which is then run by a Java Swing based simulator.

98 Coordinating Java Threads

— / R:R/ RII
p=pifey 2T o
P P Q =ec— @ R=a— R
= € —
Q" = Q' N SKIP R’ =b — SKIP

Figure 7.6: Unfolded versions of the divergent processes P and () and the infinite
state process R.

7.4.2 Turning Bad Processes into Good Ones

In Section 6.3 we discussed that even infinite state or possibly divergent pro-
cesses may be used as coordination processes if they are well-behaved under
certain fairness assumptions. Representations of the divergent processes P and
() and the infinite state process R presented in Section 6.3 that are suitable for
coordinating a program are shown in Figure 7.6, for example. Both processes
may diverge, but only () terminates if fairness is assumed.

Fairness can be realized by appropriate CspEventExecutor implementations
in many cases. The CspFEventExecutor resolving the internal choice in () may
resolve the internal choice to SKIP eventually. This way, it can prevent di-
vergence and allow the program to terminate eventually. The same applies to
other processes containing process control constructs such as internal or exter-
nal choice, timeout or interrupt allowing the process to eventually exit from
cycles of internal actions.

Infinite state processes such as R are likely to eventually run out of memory,
crashing the whole system. Although R represents an infinite state process,
it depends on the environment of R how many states within the process are
actually reachable. Thus, there are environments (fair ones) such that infinite
state processes such as R are reasonable coordination processes (compare with
Section 6.3). Furthermore, if the choice about how many states are actually
reachable is under internal control (e.g., consider R \ {a}), suitable fairness
conditions can be realized by implementing the CspFventEzecutor or Listener
accordingly.

7.5 Discussion

In this chapter, the implementation of a CSP-based coordination environment
for Java is presented. It hides Java concurrency from the user and is intended
to be used for prototyping and developing safety-critical concurrent software.
The coordination environment is realized by a concurrent CSP simulation ker-
nel implemented in Java based on the transformation 7' (as described in Chap-
ter 5). It offers abstractions to implement the mapping of events (z € ¥p) to
actions, to resolve internal choices, to act upon hidden events, and to define
time intervals for timeouts. Its most important properties are summarized
below.

7.5 Discussion 99

m The implementation is noninvasive.
m [t interprets a coordination process P at runtime.

m [t applies T on-the-fly.

To develop a coordinated Java program, it suffices to model a CSPy; co-
ordination process, implement a suitable CspEventEzrecutor and to setup the
code combining these two. This can be done by obtaining the CspProcessStore
either from the CSP,; parser or from a generated CspProcessStoreFactory and
instantiating a CspFEnvironment. The environment is connected to the outside
world by a CspSimulator. This development process is entirely noninvasive.

Our approach allows us to separate concurrency issues from sequential ones,
and to reuse the concurrent design of the system at runtime. It also enables
us to use state-of-the-art CSP tools such as FDR [Ros05] and ProB [LFO0§]
for the automated verification of concurrency aspects of the software, while
enabling verification of sequential aspects using state-of-the-art software veri-
fication systems such as Krakatoa [FMO07] or KeY [ABB*05].

The use of CSP makes it especially well suited for systems with highly
communicative concurrent components. Conformance of the implementation
with its CSP model is ensured by the proof obligations mentioned above and
the CSP law ‘resolution of internal choice’.

Our approach imposes no restrictions on which events can trigger user
code, as other frameworks sometimes do. Any event can be mapped to a
UDF, regardless of its use within the CSP model. Other approaches either
do not use symbolic events but rather channels as the inter-process commu-
nication primitive (see Section 9.3 for a presentation of such approaches) or
they impose restrictions on which events may trigger UDFs. For example,
PAT [SLDO0S] allows events to trigger user-defined functions but restricts this
to non-synchronized events.

The architecture of the implementation of our coordination environment
allows us to benefit from load balancing because the actions are not stati-
cally assigned to threads but may be dynamically distributed among threads
to improve the performance of the system. The most serious drawback of our
coordination environment is its runtime overhead due to the explicit interpre-
tation of the coordination processes.

An early version of the coordination environment named CSP/J is de-
scribed in [KB10]. In that paper, the coordination approach is compared to the
extraction of CSP models from a compiler intermediate representation of a con-
current program (as described in [KH09] and applied in [KBGG09, GBGK10]).
Our approach to coordinated Java programs is applied to the development of
a workflow server which is presented in the next chapter. In [BK11] we report
on an approach to the modeling of adaptive systems in CSP which builds on
the coordination environment presented here.

8 Using CSP for the Modeling
and Coordination of Workflows

Don't fear mistakes, there
are nonel!

(Miles Davis)

The modeling and management of workflows often plays a mission-critical
role in today’s industries. Consequently, there are a wide range of modeling
techniques for workflows and systems supporting the management of work-
flows. Such systems are often based on semiformal modeling techniques such
as the Business Process Modeling Notation (BPMN), the Business Process
Modeling Language (BPML), or the Unified Modeling Language (UML). The-
oreticians claim, however, that more rigorous languages such as Petri Nets or
process algebras should be used instead. Unlike semiformal modeling tech-
niques, the process calculus CSP comes with mature tool support enabling the
verification of processes at design time. Surprisingly little work has been done
on using CSP for modeling business processes.

This chapter provides a case study of using CSP for the specification, verifi-
cation and implementation of business processes. It is based on the observation
that CSP is well suited not only for specifying business processes and verifying
workflows but also for executing workflows using the coordination environment
presented in Chapter 7. As part of the case study, we model and implement a
workflow server, which is specified in CSP and realized using the coordination
environment presented in the previous chapter. The server accepts workflows
that are modeled in CSP and defined as coordinated Java programs. This
allows us to verify the implementation of the workflow server, and to verify
business process models at design time. Hence, we present a comprehensive
approach to using CSP for specifying, verifying and implementing workflows
enabling the use of FDR and ProB for verifying workflow definitions.

The coordinated Java implementation of our workflow server is presented
in Section 8.1. Its verification is presented in Section 8.2. Section 8.3 presents
our approach to the modeling of workflows in CSP and defines soundness of
workflows in CSP. Our workflow server supports workflow definitions that are
themselves implemented in Java using our CSP-based coordination approach.

101

102 Using CSP for the Modeling and Coordination of Workflows

These are described in Section 8.4. A model for building compensable work-
flows is developed in Section 8.5. The chapter closes with a discussion of our
approach to the modeling and management of workflows in Section 8.6.

8.1 A CSP-based Workflow Server

In this section, we present a CSP-based workflow server. The server is realized
as a coordinated Java program using the coordination environment presented
in Chapter 7. We present its CSP coordination process and sketch its most
important Java classes and the UDF's that they implement. We first give an
overview of the server’s architecture and then go on to describe its control
processes.

To simplify the architecture and the implementation of the workflow server
presented here, we focus on its coordination with respect to the management
of workflow definitions. We disregard other important aspects such as user
management, access control and persistency for now. The workflow server
presented here manages a set of workflow definitions, i.e., it loads, activates
and deactivates definitions and allows us to create new instances of workflows.
To this end, the server loads workflow definitions from a filesystem directory
and polls for new definitions regularly. Before activation, workflow definitions
are verified with respect to soundness (definition 4) and user-defined properties.
This behavior is realized by concurrent processes modeled in CSP.

The most important components of the workflow server are its CSPy; co-
ordination script and its CspFEventFExecutor implementation class. The coor-
dination script defines the server’s main control process (its control interface)
and utility processes (dealing with the server’s internals). It is shown in Ap-
pendix B.9. The coordination process specifies the possible execution traces
of the system and divides its sequential parts into events. It is simulated at
runtime by our coordination environment. The workflow server’s CspFventFzx-
ecutor implementation realizes the mapping of events to UDFs and executes
the server’s internal logic. The workflow server’s main routine starts the coor-
dination environment simulating the server’s coordination process. The main
routine is implemented analogously to the code shown in Figure 7.1.

When started, the workflow server first initializes its environment. If that
fails, it prints out an error report and deadlocks. A simplified version of the
workflow server’s control process looks as follows

WfServer = (init — (Run M reportError — STOP)) \ {init} .

This process starts with performing the hidden init event. The associated in-
ternal action performs the initialization of the server’s environment. It creates
the process definitions directory if it does not yet exist and checks whether
FDR is executable, for example. The subsequent internal choice is resolved to
the Run process only if initialization succeeded. If that process is started, the
workflow server starts its internal control processes.

8.1 A CSP-based Workflow Server 103

To enable graceful shutdown of the workflow server when it is running, we
use the interrupt operator in its coordination process as shown below.

Run = Running A\ shutdown — cleanup — SKIP

The effect is that whatever events the Running process offers, the shutdown
event is alway offered as well. When it is chosen, the Running process is
aborted. House keeping code (e.g., cleaning up temporary files) is then ex-
ecuted by the CspEventErecutor when performing the cleanup event before
termination of the workflow server.

Furthermore, these excerpts show that the server’s startup does not involve
concurrent actions. The init event models a single action preparing the server’s
runtime environment. However, we expect the server’s Running process to
involve concurrency. Hence, the shutdown event is potentially concurrent to
every other action of ther workflow server. The shutdown event is a mere
control event and is not associated with a UDF. As explained in Section 5.4,
the transformation T ensures that cleanup is not concurrent with any of the
(hidden or visible) events in Running.

The Running process of the workflow serveris defined as follows.
Running = (DefLock || (ServerControl ||| LoaderEntrly)) \ L
where

DefLock = lockDefs — unlockDefs — DefLock and
L = {lockDefs, unlockDefs} .

Running encloses the server’s main utility processes, ServerControl and Load-
erEntry. The parallel composition of these processes is synchronized with the
DefLock process on the events lockDefs and unlockDefs. The DefLock process
models a lock protecting the active workflow definitions of the server. These
events are hidden in the Running process because they are not of any interest
outside this process.

The process ServerControl implements the administrative interface of the
workflow server, allowing us to print internal statistics and to start and deacti-
vate workflows. The control process is specified as a replicated external choice
over the respective utility processes PrintStats, DeactivateDef and StartWF.
Note that these processes are static and do not include dynamically generated
events. One might expect that the processes that deal with workflow defi-
nitions offer an event for each definition that is known to the server. Since
the set of possible workflow definitions is unknown in advance and — even
worse — is infinite, modeling these in the server’s specification would render
the model intractable by FDR. Thus, the code executed for event selectDef
offers the workflow definitions and has to deal with exceptions. The chosen
workflow definition is stored and made available to the subsequent events. The
PrintStats process simply prints out some general statistics of the server, e. g.,
the loaded and running workflow definitions.

104 Using CSP for the Modeling and Coordination of Workflows

The most interesting utility process is the LoaderEntry process which checks
for new workflow definitions to load them. Except for the lockDefs and the
unlockDefs events, all of its events are hidden. Thus, outside the Running pro-
cess that hides the visible events of DefLock, the LoaderEntry is invisible. This
decouples most of the internals of the Loader process from the main control
process of the workflow server but still allows us to protect the loaded defi-
nitions by synchronization on lockDefs and unlockDefs. The Running process
shown above combines the processes DefLock, ServerControl and LoaderEntry
accordingly. The Loader process polls on a directory to automatically load
process definition jars into the workflow server in a constant interval. This is
realized using the idiom

STOP > P

as introduced in Section 6.1.

As discussed above, the internal choice operator allows us to check the
results of the previous events. The UDF associated with the poll event, for
example, stores a result value which is then used to decide how to resolve
the internal choice in NewDefs. If a new process definition is detected by
poll, the internal choice resolves to NewDef, otherwise the process continues
as Loader. The same principle is used whenever an error occurs. The error
is not handled by the current event but is checked later on when the internal
choice is resolved. For example, the loadCSP event might cause an error. In
this case, the subsequent process, NewDef’, will resolve to ReportError and
not to CheckDef. The idiom

ReportError 1 P

is used several times in the coordination process shown in Appendix B.9.

The UDF associated with the startCheck event launches FDR in a sepa-
rate operating system process but does not produce an immediate verification
result. Subsequent events are associated with UDFs that check if FDR ever
comes up with a verification result. The status of the external verification
performed by FDR is checked later on in the checkResult event. If FDR is still
running, the result is not yet available. In this case, the process waits for a
specified interval and then checks again if the result is available. If FDR does
not produce a result within a given time interval, it is aborted. This case is
treated as an ordinary verification error.

Since methods that are attached to events are limited to parameterless
methods, temporary values must be stored in objects that are visible to all of
the relevant methods. Consequently, we structured the code related to events
executed by the workflow server in classes that are to be used by the events
that occur in sequential contexts and model a logic entity. Values produced
by the UDF's are stored in member variables of fresh objects. These fields are
read by subsequent UDFs. The last UDF using the values sets the reference
pointing to the parameter objects to null (thus discarding the temporary values
processed by the preceding UDFs).

8.2 Verifying the Server 105

LockEvents = diff (Events,{lockDefs ,unlockDefs})

assert DefLock [F= Running’\LockEvents
assert Running’\ LockEvents [F= DefLock

assert Running :[deadlock free [F]]

assert WISPEC [F= Wf{Server

Figure 8.1: Assertions for the untimed server processes.

The workflow server’s implementation of the CspFEventExecutor interface
holds a map of from (visible and hidden) events to instances of the FEven-
tHandler interface. An FventHandler is a parameterized object that is used
to perform the code related to a single event. This is especially suitable for
modeling and implementing wizard-like control flows, e. g., the DeactivateDef
process. The code concerned with this utility is encapsulated in a single class
and the event handlers call the methods implementing the business logic. Inter-
mediate data, e. g., the selected process definition, is held in member variables
(the references to the parameter objects relevant for the UDFs).

8.2 Verifying the Server

Our approach allows us not only to reason about workflow definitions but also
to verify the coordination process of the workflow server itself. One critical
issue is the locking of loaded workflow definitions. To ensure that the lock
is released after use, we checked the first two assertions shown in Figure 8.1.
These assertions state that the two processes are equal in the stable failures

model:
DefLock =5 Running’ \ (X \ {lockDefs, unlockDefs}) .

Since both assertions hold, one possible reason for deadlock of the workflow
server is ruled out. Furthermore, we checked the stronger assertion of deadlock-
freedom of the Running process. This one holds as well. Due to synchroniza-
tion with the DefLock process, the events lockDefs and unlockDefs are suitable
for enclosing a critical region for accessing the server’s workflow definitions.

We also check if the server’s behavior is a refinement of the following spec-
ification

WfSPEC = CannotRun M ((1n P e M z: WfEvents @ v — P) A Shutdown) ,

where WfFEvents = X\ {init, shutdown, cleanup}. The last assertions encodes
this in CSPy and is successfully verified with FDR. Hence, the workflow
servereither does not start at all or performs events different from those in
WfEvents while running and terminates only if the shutdown event is eventu-
ally performed.

106 Using CSP for the Modeling and Coordination of Workflows

Unfortunately, the WfServer is not livelock-free. Divergence is considered
to be catastrophic, so the question is whether there is something wrong here.
The answer is that divergence arises because of the high level of abstraction
of CSP. In this case, the abstraction of time leads to the theoretically catas-
trophic behavior, which does not occur in the implementation of the workflow
server. As described by Roscoe in [Ros05], the tock event is commonly used
to model the passage of time in CSP. A modified version of the workflow
server’s coordination process extended with the tock event to model passage
of time, is shown in Appendix B.10. The process Timed synchronizes with
the Poll process on the events poll and checkResult. These two events are at
the beginning of a possible recursion. Thus, the Timed process enforces a tock
event before each occurrence of either of these events. The resulting process
is combined with the other components of the workflow server to form the
final Ttmed WfServer process. This model is divergence-free, showing that the
abstraction of time actually caused the divergence. The last two assertions
show that even without any visible behavior except the passage of time, the
workflow server can always terminate successfully. As previously shown, this
is due to the shutdown event.

Note that imposing a fairness condition on the interrupt operator in Run
yields a similar result.

To verify absence of race conditions in the UDF's implementing the workflow
server, we apply the transformation 7" to the server’s coordination process and
identify possibly concurrent actions. The transformed process is shown in
Appendix B.11. The transformed version does not contain the parts modeling
startup and shutdown of the server, because these parts do not contain any
concurrent events (as discussed in Section 8.1). However, the event shudown
is not mapped to an UDF to prevent data races when the server shuts down.
Cleanup code is exclusively performed in the UDF related to the cleanup event.

The transformed coordination process does not use the extended opera-
tor transformations presented in Chapter 5, because timeout is only used in
the idiom STOP > P and external choice is only used to combine processes
that cannot perform internal transitions initially. Under these conditions, the
extended transformations collapse with the simplified ones presented in Chap-
ter 4.

We use a modified controller to verify that there are never more than two
concurrent actions active at a time. The actions in Protected, those that are
always enclosed by the events lockDefs and unlockDefs in the coordination
process,

Protected = {activateDef , selectDef , deactivateDef , start Wf}

are guaranteed to be never concurrent amongst themselves. This is ensured by
deadlock-freedom of the process ConcurrentActions and the refinement

SPEC T+ ConcurrentActions .

8.3 Modeling Business Process in CSP 107

Note that the server’s administrative control interface is sequential in its co-
ordination process. Replacing the OfferMenu process with

OfferMenu = ||| = : { PrintStats, DeactivateDef , StartWf} e x

introduces a higher level of concurrency but still ensures exclusive access to
the workflow definitions of the actions in Protected.

The UDFs of the workflow server are implemented by a few lines of Java
code (about five lines on average) that serve a well-defined purpose. Con-
currently executed UDFs do not access shared objects. Despite our ultimate
goal to create fully verified systems, the UDF's are not formally verified. This
remains to be done as further work.

8.3 Modeling Business Process in CSP

Like the Petri Net oriented workflow community, we claim that a rigorous
mathematical method should be used for modeling business processes and also
for the modeling and implementation of workflow server. CSP is especially well
suited for modeling business processes because it offers a mature formalism that
incorporates the concept of processes as a first-order citizen, offers a rich set
of control constructs, and is supported by a wide range of tools supporting the
exploration and verification of processes.

We propose to map basic tasks, activities and events of business processes
to CSP events and to define the control constructs in terms of process oper-
ators. The ordering of the events in the traces of the resulting process then
specifies the ordering amongst the tasks of a business process. According
to our simulation of truly concurrent CSP as presented in chapters 4 and 5,
simultaneity and conflict of actions can also be effectively modeled in CSP.
Hence, causality can be expressed via prefixing or sequential composition, for
example. For purposes of intuition, we present two simple workflow patterns
[vdADtHWO02, vdAtHKBO03] in CSP.

WP 1 Sequence: An activity in a workflow process is enabled after the
completion of another activity in the same process. Example: After the activity
order registration the activity customer notification is executed. [vdADtHWO02]

Let z,y € ¥ model actions of a workflow. Both prefixing and sequential
composition yield the desired behavior:

P=xz—y— P
Q=z— SKIP; y — Q'

WP 5 Simple Merge: A merge is a point in the workflow process where
two or more alternative branches come together [...]. Example: After the
payment is received or the credit is granted the car is delivered to the customer.

[vdAtHKB03]

108 Using CSP for the Modeling and Coordination of Workflows

Merging is formalized by process sharing in CSP. Assume that P, P; are
alternatives. No matter, which of them was executed, the path is merged to
continue with process). Then we have:

Py;@Q and Pi;@Q.
For example, @) is merged in
(P P1);Q and Py; QM P Q.

It is noteworthy that the patterns are given in a way that is deeply influenced
by Petri Nets. Modeling such control structures in CSP seems rather trivial,
because of its higher level of abstraction compared to Petri Nets. For example,
as shown above, merging of alternative paths is not an issue and provided by
CSP ‘for free’.

Furthermore, since process terms describe connected processes by defini-
tion, there is no need to define a special class of workflow processes in CSP
(as, e.g., Workflow Nets [vdA00]). Any well-formed CSP process term is a
well-formed workflow as well. However, we have to address the soundness of
workflows. Informally, a sound workflow is a process that is deadlock-free and
always able to eventually terminate. This implies that a sound workflow must
also be livelock-free. It is therefore obvious that the processes div or STOP,
for example, should not denote sound workflows. Since successful termination
is handled by SKIP in CSP, we define the soundness of workflows with respect
to SKIP:

Definition 4 (Soundness of Process Definitions) Every process P satis-
fying the following equality is a sound workflow:

P\ Sp = SKIP

This equality states that SKIP refines P \ ¥p in the failures-divergences model
and vice versa. We use FDR to check both refinements.

According to the above definition, SKIP is the simplest sound workflow.
Process definitions such as

P = SKIP 11 STOP 1 diwv or Q=a—Q

are not sound according to definition 4. The reason is that P may not terminate
successfully but lead to deadlock or livelock. () models unguarded recursion
and cannot terminate.

Disregarding the common requirement of termination of a workflow, there
are cases in which nonterminating or even divergent workflows are reasonable.
Running an office should in general be an example of a nonterminating work-
flow. Divergent processes can be used to model nonterminating server processes
that do not require any user interaction as described in the next section, for
example. Furthermore, appropriate implementations of the CspFEventFExecutor
interface can be used to coordinate diverging processes in a way that allows the

8.3 Modeling Business Process in CSP 109

Figure 8.2: A sound Workflow Net.

processes to eventually escape the sequence of internal transitions (as discussed
in Section 7.4). Consider the following process definition:

R=uR e ((a — R')11SKIP) \ {a}

R is obviously divergent but a coordinated implementation would not neces-
sarily have to be nonterminating as well. The reason is that the code resolving
the internal choice could implement some kind of fairness constraint eventually
leaving the nonterminating recursion. Thus, R could be regarded as a valid
business process definition as well. To allow such definitions, one commonly re-
sorts to strong fairness assumptions [vdA00]. Nevertheless, all these processes
are ruled out by definition 4.

To underpin the applicability of our approach, we model the marked Work-
flow Net, which is shown in Figure 8.2, in CSP. In [vdA05], v. d. Aalst presents
that very Workflow Net as a challenge for people who prefer other formalisms
to Petri Nets to show how that process can be easily modeled in their for-
malisms. The workflow spawns two threads of control after its initial task a is
performed. One thread performs the tasks b,d and f, while the other performs
¢, e and g, where e is causally dependent on d. When both threads have
completed, the final task ~ may be performed.

Our CSP model of that process is shown in Figure 8.3. The process terms
can be easily derived from the Petri Net system. Process P contains events
for each transition: event a models the firing of transition ¢ and so on. An
event modeling a transition ¢ with more than one output places (#(te) > 1)
is followed by a parallel composition, the joining of paths is naturally modeled
using CSP synchronization.

channel a,b,c,d,e,f g h

P = a-—> (L0 [|{e,g,h}|] RO)
L0 = b—>d—> (L1 [|{n}|]R1)

RO = c¢—>RI

LI = f->h-—> SKIP

Rl = e—>g—>h-—>SKIP

Figure 8.3: CSP model of the workflow shown in Figure 8.2.

110 Using CSP for the Modeling and Coordination of Workflows

The Workflow Net shown in Figure 8.2 can produce the following ten firing
sequences:
abcdefgh, abcdegfh, abedfegh, abdcefgh, abdcegfh,

abdcfegh, abdfcegh, acbdefgh, acbdegfh, acbdfegh. .

Let SPEC be a process that produces exactly these traces (and any of its sub-
traces of course) and then terminates successfully. The CSPy, script shown in
Appendix B.8 encodes P, its specification SPEC and assertions to prove

SPEC =1 P and P\ X =SKIP.

FDR discharges these assertions instantly. Hence, P produces the same traces
as the Workflow Net and is a sound workflow process as well.

Note that we do not claim that it is easier to model business processes
in CSP than modeling them in any other formalism. Instead, we claim that
CSP is as suitable for modeling business processes as any other formalism
commonly used for this purpose. Nevertheless, the advantage of CSP is its
mature verification support.

8.4 Workflow Definitions

The workflow server accepts workflow definitions that are also modeled and
implemented using our coordination approach. This means that the workflow
is modeled in CSP and that this model is provided as a CSPy; script. Our
workflow server accepts workflow definitions bundled as a Jar file. The Jar file
must contain the following three components:

1. A properties file defining the names of the CspFventFExecutor and the
CspSimulator implementation classes of the workflow.

2. The CSPy; model of the workflow.

3. Its implementation classes, e.g., implementations of a custom CspSimu-
lator and an CspEventEzrecutor.

Note that the CSP coordination environment also supports the translation
of a CSPy, file into a Java source file. However, our workflow server does not
support workflow definitions that are obtained in this way. The reason is that
the CSPy; model of the workflow is checked prior to activation of a workflow
definition. Consequently, the workflow server creates the instances of the pro-
cess operators at runtime to ensure that the workflow instance belongs to the
model accompanying the workflow’s implementation classes. The workflow
server could, of course, generate the Java code from the CSP,, script by itself
to speedup the creation of workflow instances.

When the Loader process detects new Jar files, the definition is loaded.
Loading of a workflow definition is performed in three steps:

1. Load the workflow definition Jar into the server.
2. Verify the CSP model of the workflow.

8.5 Compensation 111

3. Load its CspSimulator and CspFEventFExecutor implementation classes.
Only if all these steps succeed is the workflow definition activated.

The first step makes the Jar accessible to the subsequent steps. The second
step begins by loading the wf . properties configuration resource from the Jar.
It is used to locate the other required elements within the Jar. The CSPy; script
is then dumped to a temporary file. The necessary assertions for checking the
soundness of the script (definition 4) are also added to the file. The script
is sound if FDR successfully checks all of its assertions. In the last step, the
CspFEventFExecutor and the CspSimulator classes referenced in the properties
file of the workflow definition are finally loaded. If any of these steps fails, the
workflow definition is not activated. Otherwise, the workflow definitions are
locked and the workflow definition is activated.

Active workflow definitions are used to create new workflow instances. This
is done by the StartWf utility process. The code snippet to create a new
coordinated system as shown in Figure 7.1 is not only used in the workflow
server’s main routine, but also in the startup code of workflows, which creates a
new workflow instance of a given workflow definition. The UDF implementing
the event startWf, triggers code the creates a new CspEnvironment with the
definition’s initial process, CspFventFExecutor and CspSimulator. Since process
definitions do not interfere with the workflow server’s processes, creating new
processes affects neither the validity of the assertions proved on the server’s
specification nor of those proved on the process definition.

8.5 Compensation

Transaction commonly use locks to prevent intermediate changes to interfere
with other transaction and perform a complete rollback of intermediate changes
in an error occurs. In the context of long running transactions, i.e., a day or
a week instead of seconds, it is often more advantageous to publish interme-
diate values and to compensate effects of such intermediate changes as much
as possible if the transaction fails. So the main difference between rollback
and compensation is that compensation deals with non-local changes, but its
aim is also to undo the effects of the preceding work items that resulted in or
were affected by the error. The effectiveness of this recovery strategy is largely
governed by the richness of the events captured in the execution log and some
events (e.g., resource allocation) cannot be undone. The advantage of com-
pensation is that it provides a more flexible means of remedying the effects of
the error. In general, compensation handlers are responsible for well-defined
parts of the transaction and are to be executed in reverse order after an error
occured. Now, because workflows can be regarded as long running transac-
tions, the error handling concept of compensation is an important subject for
our approach to the modeling and management of workflows.

As explained above, every well-formed CSP process is also a well-formed
workflow, and a workflow P is sound if and only if P \ ¥ = SKIP. Thus
v handles termination of a workflow and a sound workflow is guaranteed to

112 Using CSP for the Modeling and Coordination of Workflows

eventually terminate. To assign a workflow-specific meaning to events, 3 is
partitioned into the set of activities (workflow tasks) T C ¥ and the workflow
control events I' C ¥. The main problem in modeling and implementing com-
pensation is how to stack-up compensation handlers and possible parameters
as the long-running transaction progresses. In the presence of parallelism, for
example, an exception might cause cancellation and subsequent compensation
of multiple processes. The overall soundness condition must not be violated by
compensation. So, if P is a divergence-free (but possibly unsound) workflow
that either terminates successfully or eventually performs an event indicating
an error, and F'(P) is its compensable version, then

F(P)\ ¥ = SKIP

must hold. The requirement of divergence-freedom stems from the fact that
divergence cannot (in theory) be cured by any CSP construction.

In the sequel, a compensable sequential process is called a milestone. We
require that the first event emitted by a milestone is parameterized such that
it determines the compensation handler of that milestone. Let I be a set of
milestone identifiers, [€ I*, m : I a milestone channel such that {| m |} C T,
fail € T' an event indicating an error of P, Sppy = Xp U {abort, commit}
where abort and commit are fresh events relative to ¥ p. Compensation of P
is modeled using the following compensation process F'(P):

F(P) = ((P;commit — SKIP) A\ abort — SKIP) [s, ., C(())
C(l) = commit — SKIP
O (z: (e \ ({| m [} U{fail}))) — C(1)
0O m?id — C((id) " 1)
O fail — abort — Comp(l)
Comp(l) = SKIP <1 = () % Handler(head(l)) ; Comp(tail(l))

Furthermore, we assume that Handler(id) yields a compensation handler H
such that Xy NYp =0 and H \ ¥y = SKIP. Due to the synchronization
on Sp(py, F(P) records all visible events performed by P, in particular the
error and milestone events. Since abort ¢ Xp, the controller aborts P (in-
cluding its running subprocesses) by refusing X p U {commit} and accepting
abort exclusively. It then executes the compensation handlers in reverse order
to the occurrences of their respective milestones. If P terminates successfully
F(P) also terminates successfully as shown by the following theorem (using
ProB-like LTL syntax where [.| denotes occurrence of an event).

Theorem 7 Given divergence-free P such that P = O([V'] V [fail]), the fol-
lowing holds:
F(P)\ S = SKIP.

The proof exploits the F'(P) construction and considers the cases of suc-
cessful termination and failure of the workflow. It is shown in Appendix A.6.

8.6 Discussion 113

The following properties hold by construction of F'(P):

m [f P iseither a sound workflow or divergence-free and eventually performs
an error event then F'(P) is a sound workflow;

m The compensation handlers are executed in reverse order to the occur-
rences of their respective milestones if and only if an error occurs;

m P cannot make any progress while the compensation handlers are run-
ning.

Thus, this construction cures any chaotic behavior except divergence.

Note that this approach relies on the fact that events are mapped to user-
defined functions by our CSP-based coordination environment. It is further
assumed that these functions store the relevant data needed for compensation.
The compensation handlers are started only after termination of the actions be-
ing performed at the occurrence of an error (maintaining the e-non-refusability

property 2).

8.6 Discussion

In this chapter, we have presented a workflow server modeled in CSP and
implemented as a coordinated Java program. Prototyping the workflow server
has shown that our coordination environment is well suited for developing
highly concurrent Java software. The organization of code in small parts that
are to be attached to events (the UDFs) was a great help in designing and
coding the system. As a result, the implementation of the workflow server
consists only of approximately 500 lines of Java code and about 100 lines of
CSPy; specification. Developing the workflow server prototype has shown that
careful sequential designs allow us to determine sources of data races easily.
The coordination process of the workflow server is verified using FDR and the
server uses FDR internally to verify workflows before activation.

The CSPy; encoding of the workflow server’s coordination process is shown
in Appendix B.9. Its timed variant, used for the verification of livelock-
freedom, is shown in Appendix B.10. The transformed processes are shown
in Appendix B.11.

The server supports workflows that are modeled in CSP. Workflow defini-
tions are given as coordinated Java programs. The workflow server uses FDR
to verify workflow definitions. To support compensation of workflows, we pre-
sented an approach to the modeling of compensable workflows in standard CSP.
It is based on milestones and a protocol process recording the milestones. The
model of compensation presented above is published in [Klel0].

Since this thesis is primarily concerned with the control-flow perspective
of systems, other important aspects of a workflow server such as persistency,
distribution, fault tolerance, authentication and access control are not yet sup-
ported. However, it underpins the applicability of our approach to coordina-
tion.

114 Using CSP for the Modeling and Coordination of Workflows

The workflow server described in this chapter is an updated and extended
version of the workflow server presented in [KG10]. The version presented in
that paper is based on a preliminary version of the coordination environment
presented in Chapter 7 which was called CSP/J.

9 Related Work

In this chapter, related work is presented. We begin with a presentation of
approaches to coordinating concurrent (component) systems in Section 9.1.
The presentation includes formal approaches as well as informal ones. Re-
lated work also covers the area of interleaving versus non-interleaving (truly
concurrent) semantics for CSP being discussed in Section 9.2. In Section 9.3,
CSP-like concurrency frameworks are presented. In that section, we focus on
Java frameworks because Java is the target language of the implementation
accompanying this thesis (as presented in Chapter 7). In Section 9.4, related
work concerning the modeling of business processes and the implementation
of workflow systems is presented. This also extends to formal approaches to
compensation, because this issue arises naturally in the context of workflows.

0.1 Coordination

Approaches to coordination are driven by the idea to reduce the complexity
of the development of concurrent systems by abstracting from concurrency
primitives necessary for implementing such systems and offering some high-
level constructs for this purpose. Such approaches are either motivated by
practical needs or theoretical interest. For example, Linda [ACG86] is driven
by practical needs and offered the implementation of a coordination language
prior to its formal investigation. Circus [WCO02] is located at the other end of
the spectrum being a combination of CSP and Z [ASMS80, Spi92] targeting the
formal specification of a concurrent system and offering a refinement calculus
for deriving implementations from Circus designs.

In this section, we present a number of approaches that we consider to
belong to this spectrum, situated between Linda and Circus. We first present
approaches using other formalisms than CSP, then we discuss some of those
using CSP.

115

116 Related Work

9.1.1 Non-CSP Approaches

In [CJY95], Ciancarini et al. present a number of formal semantics for Linda.
They consider the issue of true concurrency and present operational semantics,
multistep operational semantics, and a Petri Net-based (hence truly concur-
rent) semantics, for example. Although they do not touch the topic of verifying
Linda programs, their work enables the use of Petri Net tools for the verifi-
cation of Linda programs, for example. However, Linda primarily targets the
implementation of concurrent systems as opposed to modeling and verifying
such systems. Our approach differs in various points from the approaches
described above. In contrast to Linda, it builds on ordinary shared memory
communication (as built into the underlying language) instead of a special
memory model (the so-called tuplespace). Moreover, our approach supports
verification because it is based on the mature formal method CSP which is
supported by a number of industrial-strength tools.

In [CDS00], Cleaveland et al. present the graphical modeling language
GCCS which is a graphical front-end to Milner’s Calculus of Communicating
Systems (CCS) [Mil89] (see e. g., [Hoa06] for a comparison of CCS with CSP).
The purpose of GCCS is to enable formal verification of designs using stan-
dard CCS tools and to derive implementation stubs from the designs. They
understand GCCS as a coordination language because it is supported by code
generators for multiple target languages. The generated code then implements
the coordination conforming to the GCCS design and is to be extended with
user-defined operations implementing the sequential computations of the sys-
tem. CCS is taken ‘as is’. It is not discussed if true concurrency is an issue in
that setting. Unlike our approach, internal transitions are not considered.

Another formal approach to the modeling and verification of distributed
component based systems is described by Baier et al. [BBKKO09]. Their ap-
proach is based on the model checker Vereofy which supports multiple input
languages capable of modeling concurrent systems. However, their approach
does not extend to implementing such systems but remains on the modeling
level.

Reference Nets [Kum02] provide an object-oriented High-Level Petri Net
formalism where instances of Petri Nets carry references to other instances of
Petri Nets instead of tokens. In that model, the firing of a transition moves
a reference from one place to another. The concept of synchronous channels
allows Petri Net instances to communicate when a transition fires. Reference
Nets extend this to the execution of arbitrary (terminating) Java code. Thus,
in that model, a Petri Net can be regarded as the coordination process of a
system and the code attached to transitions relates to our understanding of
actions. Unlike our approach, Reference Nets do not support verification
of the coordination process and lack proof obligations relating the ordering
of Petri Net transitions (as defined by their firing sequences) to the pre- and
postconditions of their associated implementations, for example.

Timed Communicating Object-Z (TCOZ) [MD98] is a formal method based
on the Unifying Theories of Programming (UTP) of Hoare and He [HH9S]. It

9.1 Coordination 117

combines Timed-CSP [DS95] with Object-Z [DRS95] and enables the concise
modeling of concurrent object-oriented real-time systems. Again, the idea
is to specify state and operations of components (Object-Z) separately from
interaction of components (Timed-CSP). In that sense, it takes Timed-CSP
as a coordination language for components modeled in Object-Z. However,
it is not supported by verification tools. TCOZ can now be considered a
dead language because it is superseded by the Process Analysis Toolkit (PAT)
[SLDO8]. PAT’s input language CSP# implements concepts taken from TCOZ
in a simplified manner suitable for automated verification. In contrast to our
approach, PAT targets the modeling and verification of CSP based systems
instead of implementation.

9.1.2 CSP-based Approaches

In [STO04], Schneider and Treharne present a combination of CSP and B [Abr96]
that is now known as CSP || B. The idea of CSP || B is to separate the speci-
fication of a component into state related and interaction properties. The B
method is used to express requirements on state of the components and their
coordination is expressed in CSP. CSP events are associated with operations,
hence assuming atomicity of operations.

The main difference between CSP || B and our approach is that CSP || B
provides a deep semantic integration of CSP and B whereas our approach
provides a rather loose semantical coupling of the coordination model with
the coordinated actions (or components). In our approach, a proof obligation
relates ordering of events with pre- and postconditions of actions. In CSP || B,
the pre- and postconditions of operations (specified in B) are embedded in
the CSP semantics. As a consequence, divergence can also be introduced be
performing an operation outside its precondition. Another consequence of the
deep integration is that hidden events cannot coordinate operations. Note
that our approach allows even synchronized events to be hidden. The CSP || B
approach enables the verification of coordinated B machines. In [STE05],
Schneider et al. show how CSP || B models can be decomposed into so-called
chunks for subsequent verification with FDR. However, their approach does not
support the generation of code implementing the coordination. This remains
to be done manually.

In [LBO05], Butler and Leuschel also propose an approach combining CSP
and B, sometimes referred to as CSP+B. It is closely related to the CSP || B
approach but there are some subtle differences on the semantic integration of
CSP and B between these two approaches. For example, executing an oper-
ation whose precondition is not met yields divergence in CSP || B but simply
cannot happen in CSP+B because the latter approach interprets preconditions
as guards on the CSP level. Schneider et al. develop a denotational semantics
for CSP || B targeting FDR, while Leuschel and Butler present an operational
semantics for CSP+B which is natively supported by the ProB tool. ProB is
capable of animating and verifying CSP+B specifications. Neither of the two
approaches deals with truly concurrent semantics. They assume operations on

118 Related Work

B machines to be atomic. Again, implementation of the CSP part of a model
must be done manually.

The rCOS formalism (standing for refinement of component and object
systems) introduced by He et al. [HLLO5] is a contract based formalism tai-
lored for the specification and verification of guarded service components. In
[CHLO6], the rCOS formalism is extended with the notion of processes and
coordination. To that end they introduce CSP-like parallel composition and
hiding operators and define a semantics based on traces, failures and diver-
gences in a CSP-like manner. The resulting denotational semantics appears
to be quite similar to that developed for CSP || B. Again, the CSP-like opera-
tors remain to be implemented manually and coordination does not extend to
internal actions.

In [Fis97], Fischer introduces CSP-OZ, a formalism combining CSP and
Object-Z. In that formalism, Object-Z is used to specify the state space of Java
objects and CSP expressions specify the valid order of method calls on them.
In [Fis00], Fischer introduces Jass (Java with Assertions), a Java annotation
language with a pre-compiler adding the option of design by contract to Java,
and presents a translation of CSP-OZ specifications into Jass. To specify sets of
valid traces of method calls on Java object, Jass provides trace assertions (that
are derived from the CSP part of a CSP-OZ class). Trace assertions are CSP
expressions enriched with Java fragments that are used to check if the history
of the program adheres to its specified traces. In Fischer’s approach, events
are mapped to method calls. This is very similar to our notion of an action
that allows user-coded functions to be attached to events. The advantage
of Fischer’s approach is that it combines verification of properties relating to
concurrency and state and also supports the derivation of executable code.
Its drawback is that, unlike in our approach, the traces cannot be statically
verified owing to the complexities of the Java programming language. Instead,
the assertions are checked at runtime.

Circus [WCO02] targets the specification of both data and behavioral aspects
of concurrent and reactive systems by combining Z [ASM80, Spi92] and CSP.
It supports stepwise development through refinement. The main reason for the
selection of Z and CSP as the basis for the design of Circus is their notion of
refinement. The semantic model proposed for Circus is based on the Unifying
Theories of Programming (UTP) of Hoare and He [HH98]. The semantics al-
lows precise description of different programming paradigms in an incremental
fashion, hence leaving room for extension. Circus supports the development of
safety-critical concurrent systems and is equipped with verification tools, for
example the model checker developed by Freitas [Fre05]. However, compared
to approaches based on the B method Circus is a rather academic approach.
For example, we are not aware of any code generators for Circus.

By mapping an event to an action, our approach assumes the precondition
of the action to hold in the states the process is willing to perform the respective
event. This approach is similar to Reference Nets that allow arbitrary Java
code to be performed when a transition fires. By contrast, integrations of CSP
with state-based formalisms such as CSP || B or CSP-OZ use the predicates

9.2 Truly Concurrent Semantics for CSP 119

specifying pre- and postconditions of operations as pre- and postconditions of
the events as well.

From a formal point perspective, the latter approach is much more of an
integration than the former one. Our approach is based on the assumption
that the CSP part of the specification completely describes the ordering of the
system’s actions.

9.2 Truly Concurrent Semantics for CSP

Our work relates particularly to other approaches that consider ‘non inter-
leaving’ or ‘truly concurrent’ semantics of process algebra. In particular, it is
influenced by the work of Kwiatkowska and Phillips [KP95] and Taubner and
Vogler [TV89]. In a sense, our approach combines the two by simulating the
concurrency relation developed in the former, while maintaining the concurrent
events in a structure that generalizes the steps defined in the latter.

In [KP95], Kwiatkowska and Phillips have proposed a (denotational) ‘fail-
ures with divergence and conflict’ semantics for CSP. Furthermore, they dis-
tinguish possible conflict from guaranteed conflict. Analogously, they define a
concurrency relation co. Our definitions 1 and 2 (and proposition 3 in partic-
ular) relate to their notions of possible concurrency and guaranteed conflict-
freedom. In contrast to their work, rather than define a new semantics of CSP
we have used the standard denotational semantics to simulate ‘truly concurrent
CSP’. In our approach, concurrency is encountered whenever the controller’s
bag X grows beyond one element with frequency one. In particular, a single
event is concurrent with itself if and only if there is a trace ¢ such that its
cardinality in the bag is greater than one after ¢t. By contrast, each trace is by
definition concurrent with itself in the semantics given by Kwiatkowska and
Phillips.

Another important difference with that work is in refinement of concurrency
information. In their semantics, only the refinement

a—b—STOPOb— a— STOP T a— STOP |y| b — STOP

holds but not conversely. Using the modified controller C'1 to incorporate
concurrency information in the traces of a process yields the opposite refine-
ment relation, as shown in Section 4.4.1. Thus, in our approach, a process
refines another with a higher level of concurrency.

In [TV89], Taubner and Vogler present a non-interleaving semantics of CSP
based on the notion of ‘step’. In their semantics, a step is a finite bag of events
from ¥ ,. Traces and failures are lifted from sequences of events to sequences
of steps, and refusals are defined over sets of steps. The empty step is called
the null-step, and refusal of the null-step corresponds to divergence. A non-
divergent process may never refuse the null-step. Their semantics generalizes
the interleaving semantics of CSP in the sense that the special case of singleton
steps is exactly the interleaving semantics.

120 Related Work

That approach, like ours, realizes possible concurrency in the sense that
whenever a step is possible, all of its sub-steps are also possible. One distin-
guishing feature of their semantics is that it lacks the commonly used 7 event
to model internal actions. While the authors present this as a theoretical ad-
vantage because they succeed in establishing the common CSP laws in their
semantics, it might be considered a disadvantage from a practical perspective.
For that reason, our approach aims to detect any concurrent events, whether
they are visible or hidden. The code related to an externally visible event a
is likely to interfere with the code of a hidden a that is executed concurrently.
Therefore, our controller registers even externally invisible events. Compared
with their semantics, ours appears more verbose because it records not only
the steps but also the creation of the steps (filling the bag).

On the level of traces our approach can be regarded as generalizing theirs:
the controller can be modified to ensure that it refuses new s events after an
e event until its bag is empty; that yields traces such that the state of the
bag before the first e after each nonempty sequence of s events are exactly the
steps in their semantics. Our approach, like the step-failures semantics, can
be used to optimize systems at runtime by predicting maximal parallelism. It
also takes into account duration of user-defined functions related to events.

9.3 CSP-like Concurrency Frameworks

The programming language occam [Bar92] implements an early version of
Hoare’s CSP and provides primitives like guards, sequential composition, al-
ternatives, parallelism, channels and timers. Process operators like internal
choice, timeout, interrupt and hiding, are not supported.

CSP++ [Gar05], is a mature framework which realizes CSP concurrency on
top of POSIX threads for C++. The framework defines a whole development
life-cycle starting with a CSP), specification that is refined down to a CSP
implementation model. The implementation model is finally translated into
C++ using the CSP++ framework. This framework implements channels
as a communication primitive and allows us to bind user-coded functions to
events that are executed when the event is performed. The CSP++ framework
implements an occam-style subset of CSP supporting sequential composition,
external choice, interleaving and parallel composition. Unlike our coordination
environment, Gardner’s framework does not allow user-coded functions to be
attached to events that are used in synchronization sets between processes.
Nevertheless, CSP++ was tailored to be applicable in practice and comes with
an IDE that helps in writing CSPy; models and to attach user-coded functions
to events [GMOCT09]. The IDE also interfaces with FDR and ProBE to
support verification and animation of CSP,; models.

JCSP [WMO00, Wel00] is a well-known Java library offering CSP concepts as
a foundation for developing concurrent systems in an event-based style. In this
framework, processes communicate over channels which are basically buffers.
JCSP realizes CSP’s synchronous communication between Java threads by

9.3 CSP-like Concurrency Frameworks 121

blocking the send operation until the value is read by its receiver. This is
realized using the Java primitives synchronize, wait and notify. Processes
(implemented as Java threads) are not allowed to invoke each other’s methods
but they may be combined to wait passively on a number of alternative events.
The external generation of such an event triggers the processes into action
according to the CSP semantics of the process operator combining the events.
JCSP implements the channel concept and offers a set of process operators
that resemble the occam programming language rather than full CSP.

JCSProB [YP07, YP09] is an implementation strategy for CSP+B targeting
the creation of multi-threaded Java programs. Yang and Poppleton motivate
their approach as follows:

The main issue in developing an implementation strategy for ProB
is how to implement the concurrency model of the B+CSP spec-
ification in a correct and straightforward way. Furthermore, we
need an explicit formal definition, or even automatic tool support,
to close the gap between the abstract specification and concrete
programming languages. [YP07, p.3]

Hence, their ultimate goal is the same as ours. However, they do not sup-
port ‘full’ CSP and do not consider consider concurrently executed operations.
Furthermore, noninvasiveness is not an issue. They implement the CSP+B
concurrency model as a Java framework inspired by JCSP. Their approach
supports multi-threaded Java, implements the channel concept, and supports
occam-like process operators.

Hilderink et al. have developed another CSP library for Java, called CTJ
[HBB99, HBB00]. Like JCSP, CTJ implements occam-like process operators
and channels for Java, and neither supports hiding nor resolution of nondeter-
minism. Unlike JCSP, it builds up a completely new thread architecture to
deal with concurrency. This makes it more flexible but adds the overhead of
proprietary concurrency primitives to Java monitors. Link drivers implement
internal or external communication means such as shared memory or TCP/IP
connectors and can be plugged into channels. This makes processes highly
independent of their physical location on the total system. Furthermore, there
is a tool to support the channel skeleton code creation. In summary, the CTJ
framework focuses on process/thread scheduling and channel link drivers. The
idea of link drivers is related to our concept of an event chooser that also
allows the implementation of different communication means. In [CS02],
Cavalcanti and Sampaio present an approach for the development of concur-
rent Java programs using the CTJ framework from CSP-OZ specifications.
The CTJ framework is also ported to C and C++ (CTC and CTC++). The
obvious advantages of CTJ over our approach are that it is apparently widely
used and supports distributed systems. The advantage of our approach is that
it supports a richer CSP in terms of process operators and allows us to use a
CSP process directly as coordination processes of the final system.

The JACK framework presented by Freitas [Fre02] aims to fully implement
CSP, but some process operators such as renaming, timeout and interrupt are
not yet supported. It thus provides a richer set of process operators than the

122 Related Work

previously mentioned approaches. Besides JACK, little work has been done
on implementing full CSP, such as the one described by Roscoe in [Ros05],
which is the version that we focus on. Again, this framework implements the
channel concept and has to deal with restrictions on communications. Unlike
CTJ, JACK uses a strong type system to define channels, alphabets, types,
and communication patterns. JACK provides backtracking facilities to deal
with infinite state CSP models. In addition, concepts such as guards are
implemented, making the framework quite complex.

CSP software frameworks as the ones mentioned above focus on message
passing concurrency. They implement CSP-like channels as inter-thread com-
munication facilities but realize only a limited set of CSP operators. Fur-
thermore, they require the implementation of specific process classes. This
makes it harder (compared to our approach) to prove conformance of a system
implemented using one of these frameworks to a coordination script.

Unlike the frameworks described above, ours does not incorporate the chan-
nel concept. Instead, events are merely symbols used for synchronization, and
hence to enforce a specific ordering of the UDFs. The interpretation of events
— and whether or not an event is seen as an indivisible symbol rather than
a channel with possible input or output parameters — is essential for an im-
plementation strategy for CSP, of course. Even the idea of a channel can be
refined further. A channel can be seen either as a remote method invocation
or as a communication link. The former is basically a synchronous commu-
nication, while the latter relates to asynchronous communication. Channels
are commonly implemented as blocking queues to facilitate inter-thread com-
munication (hence using a natively asynchronous mechanism and enforcing
synchrony by blocking communication partners until the communication has
completed). While an event relates to a method invocation in Jass, the other
frameworks mentioned above implement channels. Our approach deliberately
does not implement any of these two options but regards the events being the
extension of a channel as abstractions of arbitrary actions.

Since sequential processes in CSP are viewed as executions of computa-
tional entities exhibiting their specific observable behavior in terms of events,
it is natural to map a single sequential process to its own thread. This is the
general idea underlying CSP++, JCSP, CTJ and JACK. Our approach does
not necessarily map two causally dependent threads to the same thread. It
merely maintains the order of UDF's as defined by the events of the CSP script
coordinating the system. This is comparable to LINDA’s feature of distribut-
ing tasks at runtime. Hence it enables us to implement load-balancing by
distributing UDFs amongst threads.

9.4 Modeling and Managing Business Processes

In this section, we first present a number of modeling techniques for business
processes focusing on their practical relevance and support for formal verifi-

9.4 Modeling and Managing Business Processes 123

cation. We then go on to present related work dealing with compensation in
Section 9.4.2.

9.4.1 Modeling Techniques

Popular modeling techniques for business processes are the Unified Modeling
Language (UML) (as treated in [EW02]), Business Process Modeling Nota-
tion (BPMN) (as treated in [WGO08]), Workflow Graphs (as defined in [SO96])
and Workflow Nets (see, e.g., [vdA00]). Of these, only the latter two were
equipped with a formal semantics when they were first applied to business
process modeling.

Petri Nets are widely used for modeling workflows and even for defining
semantics of other (semi-formal) workflow modeling techniques. In [EW02],
for example, Eshuis and Wieringa present an approach to the verification of
workflows modeled as UML Activity Diagrams by transforming them into Petri
Nets. As shown in [vdAHV02], Workflow Graphs can also be verified in terms
of Petri Nets.

YAWL (Yet Another Workflow Language) [vdAtHO02] is designed to ease
the modeling of common workflow patterns [vdAtHKBO3]. It is semantically
founded on Petri Nets. YAWL is supported by a specialized execution engine
[vdAADtHO4]. It also offers support for standard languages from the area of
business processes and web services choreography. It is still actively developed
and maintained.

Reference Nets have been successfully applied for modeling and manag-
ing workflows. For example, the modeling of workflow patterns in Reference
Nets is shown by Moldt and Roélke in [MRO3]. The Reference Net Workshop
[KWD™04] supports graphical editing and animation of Reference Nets. The
workflow server that is conceptually the closest to ours is the Renew [KWD104]
workflow plugin described by Jacob et al. in [JKMUNO02]. The workflow plugin
realizes a workflow server using Reference Nets. Like our system, this plugin
is built using the same means which it promotes for building the workflow def-
initions. Although far more developed in terms of features such as persistency
and user management, this workflow server lacks the capability of built-in
workflow verification. The reason is that there are so far no verification tools
for Reference Nets.

The graphical nature of Petri Nets is often claimed an advantage for the
modeling of workflows. However, we think that CSP offers a more elegant way
for expressing complex workflows due to its higher level of abstraction.

After the publication of common workflow patterns by v. d. Aalst et al.
in [vdAtHKBO3], several attempts were made to model these patterns using
different formalisms. Examples are the m-calculus by Puhlmann and Weske in
[PWO05] and Orc by Cook et al. in [CPMO06]. In [WG07], Wong and Gibbons
show how to model and verify business processes in CSP. In particular, they
present CSP models for a number of workflow patterns. They use the CSP
refinement calculus to verify implementation models of a workflow with re-

124 Related Work

spect to its specification model. They did not, however, attempt to implement
and execute the CSP-based workflows. Nor did they transfer the notions of
soundness from the theory of workflows to CSP. In [WG08], Wong and Gib-
bons contributed to the modeling of business processes using CSP by defining
the semantics of BPMN in CSP.

Regarding the possibility of using graphical tools to develop the CSP part of
workflow definitions, e. g., gCSP [JOLB04], our CSP-based approach to model-
ing workflows lacks none of the benefits that are claimed for Workflow Graphs
or Petri Nets. For example, existing BPMN models of business processes can
be translated into CSP and thus ported to our workflow server. This can be
realized using the BPMN to CSP translator presented by Wong and Gibbons
in [WGO08], along with their BPMN semantics defined in CSP, for example.

In [FV08], Friborg et al. use CSP for the modeling of scientific workflows.
Their approach is supported by the PyCSP framework [BVA07], a Python con-
currency framework in the tradition of JCSP. Unlike the other approaches that
build on managed workflows, they use PyCSP for implementing the workflows
as standalone systems. Such an approach is also possible with our coordination
environment. However, it lacks the benefits provided by a dedicated workflow
server.

9.4.2 Compensation

Exception handling patterns for workflows are discussed by Lerner et al. in
[LCOT10]. However, their patterns are semi-formally defined as UML activity
diagrams and in BPMN.

A more general approach to exception handling is known as compensation.
This approach defines reversibility of long-running transactions without the rig-
orous protection (locking) of intermediate values. Workflows can be regarded
as long-running transactions which possibly publish intermediate values that
have to be undone if a certain fault occurs. Since these intermediate values
may be used by other transactions, rollback does not work in such a situation.
Instead, compensation handlers are used to recover from faults in long-running
actions and to undo as many of the changes of the failed transaction as pos-
sible. The Structured Activity Compensation (StAC) [BF04] language, for
example, explicitly targets the modeling of compensation. [BMMO5] presents
a general semantic framework for compensation in flow composition language.
Semantics of compensable processes are also considered by Butler et al. in
[BHFO05].

Rabbi et al. define Compensable Workflow Nets in [RWM10] and intro-
duce a graphical modeling language for compensable workflows. Compensable
Workflow Nets are defined as a subclass of colored Petri Nets [Jen95]. In par-
ticular, they adopt the common definition of Workflow Nets (and their sound-
ness), as defined in [vdA0O]. They construct Compensable Workflow Nets by
replacing ordinary (non-compensable) workflow tasks with sound (but more
complex) Workflow Nets representing compensable tasks. This corresponds

9.5 Summary 125

to refinement in Petri Net theory. They propose a model checking approach
for the verification of Compensable Workflow Nets. In summary, they define
compensation on the granularity of tasks, while we define it for milestones.

Compensation is not a native feature of CSP, but extensions of CSP with
compensation such as cCSP [BRO05] exist. In [ZCW11], Chen et al. present a
theory of failures-divergences refinement for cCSP. To that end, they extend the
syntax of cCSP with operators representing deterministic and nondeterministic
choice, generalized parallel composition and recursion. They also propose to
extend FDR to support the semantics of cCSP. However, tool support for their
approach is not yet available.

Since one of our goals is the reuse of existing CSP tools (e.g., FDR and
ProB), we model compensation in plain CSP. This distinguishes our approach
from other approaches (e.g., [BR05, BMMO05]) that build compensation into
the language. However, it introduces a considerable overhead in modeling the
compensable workflow, similar to the approach presented in [RWM10].

9.5 Summary

In this chapter, we have presented other approaches to coordination, truly
concurrent CSP, the implementation of CSP, modeling and management of
workflows, and compensation. Regarding the practice of coordination, Refer-
ence Nets come quite close to our approach. On the theoretical level, CSP || B
and CSP+B are those related most closely. We are not aware of other ap-
proaches to truly concurrent CSP that are supported by verification tools. In
particular, none of them can be used with FDR or ProB. Other implementa-
tions of CSP are very different from our coordination environment because it
does not build on the channel concept but on the assumption that an event
models an arbitrary action of a system not necessarily concerned with commu-
nication. We have also presented related work concerning the application of
CSP to the theory of workflows. However, implementation support is lagging
in comparison to Petri Net-based workflow systems. This is the slot targeted
by our workflow server: like the Reference Net-based approach to the model-
ing and management of workflows, our approach uses coordination processes
for the workflow server and for the workflows themselves but offers verifica-
tion support for the coordinated systems (the implementation of the workflow
server and the workflows). Moreover, we have discussed other approaches to
compensable workflows.

]. 0 Conclusion

It is easier to resist at the
beginning than at the end.

(Leonardo da Vinci)

This chapter summarized and evaluates the most important results of the
preceding chapters. We begin with a summary of the thesis in Section 10.1.
The main contributions of the thesis are highlighted in Section 10.2. Pointers
to future work are given in Section 10.3. In Section 10.4, we relate the contents
of this thesis to other publications of ours.

10.1 Summary

In this thesis, we have presented our CSP-based approach for the construction
of provably correct concurrent systems. CSP is chosen because it offers an
intermediate-level formalism for reasoning about complex concurrent systems.
Another reason for choosing CSP is its maturity in terms of theoretical work
and tool support that ranges from refinement checking over animation and
LTL model checking to theorem proving.

The main idea of our approach is to use CSP to coordinate the operations
of the basic components of a system that are implemented in an arbitrary
sequential host language. Our approach targets the following goals.

Support for full CSP.

Support for true concurrency.

m Coordinations of operations in a noninvasive manner.

m Take advantage of CSP’s mature tool support.

The main challenges in using CSP as a coordination language are how to
unravel the abstractions built into CSP for the construction of executable con-
current implementations. For example, CSP events are designed to be in-
stantaneous and atomic. Associating events with truly concurrent operations
requires theoretical justification. Furthermore, CSP deals with internal transi-
tions that most likely relate to internal operations of a system (operations that

127

128 Conclusion

are not available for external synchronization). This assumption must also be
justified formally.

As a solution, we have developed a syntactical transformation of processes
that allows us to simulate truly concurrent processes in the standard interleav-
ing semantics of CSP and to statically compute pairs of possibly concurrent
events. The transformation serves as formal foundation of a target language
independent coordination environment that allows us to compose sequential
terminating actions to a concurrent system. The coordination environment
simulates a coordination process at runtime thus ensuring that properties ver-
ified on that process are also satisfied by the final system. Data independence
of actions is ensured by proof obligations relating concurrency of actions with
the frames of their corresponding implementations. Our approach is supported
by a Java implementation of the coordination environment and the case study
of a workflow server implemented using the Java coordination environment.

The theoretical background of the thesis is developed in chapters 4, 5 and 6.
Chapter 4 develops a construction that replaces each process with an equiva-
lent version explicitly realising the possibility of concurrency. The construction
transforms a process meanwhile splitting its events and synchronizes the trans-
formed process with a controller C'. The controller maintains a bag X whose
contents represent the events of the original process that are possibly concur-
rent after the trace that has lead to the current state. This bag can be used in
various ways to query concurrency information of a process. The construction
is capable of simulating the traces semantics of its input process. Restricting
the syntax of the input processes yields subsets of CSP such that the simulation
preserves the failures-divergences semantics of its input process.

In Chapter 5, we extend the transformation to overcome the limitations
of its initial version. Chapter 5 lifts the transformation of processes to be
failures-divergences preserving even in the general case. Extended transforma-
tions are presented for the operators external choice, timeout and interrupt.
An interesting result is that the three operators external choice, timeout and
interrupt also incorporate internal concurrency. This is, of course, due to the
models presented in Chapter 5 but justified by the observation that these op-
erators combine processes that await some external trigger (constantly offering
an event) and may perform internal actions at the same time.

Chapter 6 presents a generic model of a coordination environment based on
the transformation T. It unravels the abstractions built into CSP. The coor-
dination environment aims to separate the concurrency structure of a system
from the implementations of its basic components and to coordinate these by
simulating a CSP process at runtime. Dividing the system into basic actions
of components and coordination structure makes a concurrent system easier
to understand and amenable to more specialized verification methods. Cor-
rectness of coordinated systems can be ensured by proving that concurrent
events are not mapped to user-defined functions whose frames overlap and one
modifies data being read by the other.

An implementation of such a coordination environment in Java is presented
in Chapter 7. It simulates a coordination process at runtime to guide the

10.2 Contributions 129

execution of a concurrent program implemented in Java. Events are associ-
ated with user-defined functions which are executed whenever the respective
event is performed. Hidden events are dealt with by listeners. The coordi-
nation environment assigns UDFs to threads according to some configurable
strategy. Our approach is capable of handling infinite state and divergent pro-
cesses. Compared to other coordination languages, ours has the advantage of
its strong integration with formal methods. However, this comes at the cost
of the runtime overhead of explicitly managing processes and events caused by
simulation of CSP.

In Chapter 8 the theory and practice of workflows being deeply influenced
by Petri Nets is transferred to CSP. Soundness of workflows given in CSP is
defined. Our approach to the modeling and management of workflows pre-
sented in that chapter is based on the observation that CSP is well suited not
only for modeling business processes and verifying workflows but also for exe-
cuting them using our CSP-based coordination environment. The approach is
supported by the prototypical implementation of a CSP-based workflow server
using the coordination environment both for the server itself and for the execu-
tion of workflows. In that chapter, we have also presented a construction that
allows compensation of workflows and yields a sound workflow given a work-
flow that either terminates successfully or signals an error before behaving
chaotically (including deadlock but excluding divergence). The construction
ensures that the compensation handlers are executed in reverse order to the
occurrences of their respective milestones if and only if an error occurs. It
also ensures that the workflow is aborted before the compensation handlers
are run. The approach supports verification of compensable workflows using
the standard CSP tools FDR and ProB. It is also supported by the CSP-based
workflow server implementation.

10.2 Contributions

The main contribution of this thesis is a target language independent CSP-
based framework for the construction of provably correct concurrent systems.
To that end, we have presented a simulation of truly concurrent CSP encoded
in standard CSP. It allows processes to be analyzed with respect to their inter-
nal concurrency using the standard CSP tools FDR and ProB. Furthermore,
this transformation provides the semantical foundation of a coordination en-
vironment for the runtime coordination of concurrent components. The trans-
formation is also used within the proof obligation ensuring data independence
of the coordinated concurrent operations of components.

True Concurrency True concurrency is realized by a syntactical transforma-
tion of processes splitting the events of a process. The simulation is presented
in different flavors realizing different levels of concurrency. For example, we
identified subsets of CSP such that internal actions are never conflicting with
actions that are available for external synchronization. These subsets realize
a rather low level of concurrency. Our transformation of full CSP (including

130 Conclusion

the interrupt operator, which is particularly important in practice) realizes a
higher level of concurrency. Internal actions that are in conflict with actions
awaiting external synchronizations may occur concurrently without resolving
the conflict. This complicates the transformation but allows us to reestablish
the failures-divergences semantics of original process. Our approach to truly
concurrent CSP is tailored for use with the standard CSP tools FDR and ProB.

Coordinating Concurrent Components We have presented a coordination
environment based on the simulation of truly concurrent CSP. It starts a user-
defined function (UDF) after the start event of a split event and performs its
end event after termination of the UDF. The coordination environment builds
on ordinary (unprotected) shared memory communication of UDFs. We have
presented proof obligations for ensuring data independence of concurrent UDF's
and for relating pre- and postconditions of UDFs to traces of the coordination
process. Although being transformed into truly concurrent processes, coordi-
nation processes can still be verified using standard CSP tools.

Hiding Java Concurrency Primitives As a proof of concept, our coordina-
tion environment is implemented in Java. It enables the automated verification
of concurrency aspect of the system on the CSP level using state-of-the-art CSP
tools such as FDR and ProB, while enabling verification of sequential aspects
using state-of-the-art software verification systems such as Krakatoa or KeY.
It is noninvasive, i.e., it allows us to compose a concurrent system of purely
sequential Java implementations. Hence, it hides Java concurrency from the
programmer and makes the development of multi-threaded Java programs less
error-prone.

Workflows with CSP We have shown how the soundness of workflows can
be expressed and verified in CSP. Workflows can also be executed using our
approach to CSP-based coordination as shown by our prototype of a CSP-
based workflow server.

Compensation We have also presented a way of encoding compensable work-
flows in plain CSP. Compensation is based on so-called milestones that identify
parts of a workflow that require special care when undoing the effects of that
part (the milestone).

10.3 Future Work

The work presented offers many opportunities for further work in different
directions. General directions are obviously theoretical extensions as well as
practical ones. In this section, we present the most advantageous possible
extensions.

10.3 Future Work 131

The theory can be extended in various ways, supporting further operators
and specialized verification techniques. In terms of supported CSP operators, it
would be interesting to extend the simulation to support the exception operator
[Ros08a]. This operator makes CSP even more expressive and is supported by
the latest version of FDR (at the time of writing). Also, there are more useful
derived operators that are not yet explicitly supported by our transformation,
e.g., chaining or linked parallel (a generalization of chaining). It is planned
to realize interleaving according to the ‘de-parallelize’ operator proposed by
Taubner and Vogler in [TV89]:

Pl @ corresponds to Pr<iyQ

where A C ¥ and <14 is an operator ensuring

Va,y: A - (z,y) ¢ conc(Pr<iyQ).

We also propose to extend our coordination environment to the coordina-
tion of distributed systems. Coordination environment can either be composed
as a tree, where the root environment coordinates its child environments, or
as a more general graph, where environments interact cooperatively.

Another interesting issue is the extraction of concurrency information in
different ways. The method described here uses FDR to perform this by mod-
ifying the controller and checking whether or not the modified version violates
the equality or querying fresh non-conflicting events. Unfortunately, FDR does
not perform very well on such assertions because the bags grow rapidly and
the functional part of CSPy, does not provide the most efficient way to model a
process for analysis with FDR. One possible solution is to implement a special-
ized procedure that works on the original process P, to compute conc(P). This
procedure could be an extension of FDR’s procedure to compute the traces of
P that performs the transformation as well as synchronization with the con-
troller internally before computing the traces. Such a procedure would be of
great benefit for discharging the proof obligation for absence of data races, for
example. This may be achieved by integration with a verifier for the specifi-
cations of UDFs as, e.g., the Boogie verifier [BCD*05], which is designed to
support the development of custom static source code verifiers.

It might also be worthwhile to try the approach with the CSP-Prover [TR05],
in view of the performance penalty caused by the controller process (see Sec-
tion 4.4.3) during verification with FDR. Mechanizing the theory presented in
chapters 4 and 5 requires extension of the CSP-Prover with respect to sup-
ported CSP operators. In addition to overcoming FDR’s and ProB’s limi-
tations regarding the size (of the state-space) of the coordination processes
encountered at verification-time, it would allow us to mechanically check the
proofs presented in this thesis.

Another prospective research direction is static compilation. The approach
presented here builds on dynamic computation of the LTS that coordinates the
system. The ultimate goal of static compilation would be to create a system

132 Conclusion

that by construction conforms to the coordination process without the dynamic
overhead due to the simulation of CSP at runtime.

10.4 Related Publications

The formal background of the work presented here is published in [KS10a,
KS10b]. The coordination environment based on the simulation of truly con-
current CSP is presented in [Klell]. A preliminary version of the Java im-
plementation of the coordination environment is presented in [KB10]. [KG10]
reports on our CSP-based approach to workflows and our workflow server. Our
approach to compensation is presented in [Klel0].

10.5 Acknowledgements

This thesis and the underlying research is a result of the DFG project VATES
(Grant JA 379/17-1) and would not have been possible without it. I thank
Stefan Jahnichen for supervising this thesis and for giving me the opportunity
to work in his research group at Technische Universitdat Berlin. I am also very
grateful to Michael Leuschel for acting as referee and for his invaluable support,
especially with FDR and ProB. My heartfelt gratitude to Jeff Sanders for his
support and guidance not only during my stay at the United Nations University
International Institute for Software Technology (UNU-IIST) in Macau.

I am indebted to Bjorn Bartels, Thomas Goéthel, Paula Herber, Christoph
Hoger, Elke Salecker and Henry Sudhof for reading and commenting on drafts
of this thesis. I also thank my former colleagues at Technische Universitét
Berlin for the friendly and relaxed working atmosphere, where there is always
time for inspiring discussions and thrilling foosball matches: Lars Alvincz,
Bjorn Bartels, Thomas Gothel, Steffen Helke (for advice and motivation in

many occasions, and exciting squash matches), Paula Herber, Christoph Hoger,
Florian Lorenzen, Mark-Oliver Reiser, Judith Rohloff, and Henry Sudhof.

I thank my parents, my wife, and my daughter for their love and support.

A Proofs

A.1 Proof of Theorem 1

Proof 6 The proof proceeds by induction on the construction of P.

Prefix choice:

Ezt(z: X — P(x))

Hr(T(z:X — P(z)))

Hr(s?z:X — e.x — T(P(x)))

z:X — Hr(e.x — T(P(z)))

z:X — Hr(T(P(z)))

z: X — Ext(P(z))

z:X — P(z).

Sequential Composition:

Ext(P; Q)

Hr(T(P;Q))

133

Lemma 1

T(z:X — P(z))

step s.x

step e.x

Lemma 1

induction hypothesis

Lemma 1

134 Proofs

= T(P;Q)
Hr(T(P); T(Q))

= distributivity of hiding and renaming over ;
Hr(T(P)); Hr(T(Q))

= Lemma 1
Ext(P); Ext(Q)

= induction hypothesis

P;Q.
External Choice:

Ext(P O Q)

= Lemma 1
HI(T(P O Q)

= T(POQ)
HI(T(P) 0 T(Q))

= definition of Hr
(T(P) D T(Q)\ Hls.x — |z € Sp USg]

=7 distributivity of hiding over O in T
(T(P)\ H O T(Q)\ H)fs.x — |z € SpUTg]

= distributivity of renaming over O
T(P)\H[sx—z|zeXp|O0T(Q)\ H[s.x — z |z € Xg]

= definition of Hr
Hr(T(P)) O Hr(T(Q))

= Lemma 1
Ext(P) O Ext(Q)

= induction hypothesis

POQ.

Parallel Composition:

Ext(P |4l Q)

= Lemma 1
Hr(T(P [a] Q))

= T(P|al Q)
Hr(T(P) |(s.z,e.0lveny] T(Q))

= Lemma 2

Hr(T(P) |{s.zjzeay] T(Q))

= distributivity of hiding and renaming over |(s z|zc A}l

135

Hr(T(P)) |a|l Hr(T(Q))
Lemma 1
Ext(P) |a] Bxt(Q)

induction hypothesis

Plal Q.
Renaming:
Ext(P[M))
Lemma 1
Hr(T(P[M]))
T(P[M])

Hr(T(P)[s.x « s.y,e.x — e.y | (z,y) € M])
hiding of e events by definition of Hr
Hr(T(P)[s.x — s.y | (z,y) € M])

independence of [s.x — s.y | (z,y) € M| and hiding of H

Hr(T(P))[M]

Lemma 1
Ext(P)[M)]

induction hypothesis

P[M].
Hiding:
Ext(P\ A)

Lemma 1
Hr(T(P\ A))

T(P\ A

Hr(T(P)[s.x « sh.x,e.x «— eh.x | z € A))
definition of Hr
T(P)[s.x « sh.x,ex — eh.x |z € A]\ H[s.x — z |z € Xp]
commutativity of hiding and renaming
T(P)\H\{s.x|z € A}[s.xc —z |z € Xp]
commutativity of hiding and renaming
T(P)\ H[sx—z|zeXp|\4A
definition of Hr
Hr(T(P))\ A
Lemma 1

Ext(P)\ A

136 Proofs

= induction hypothesis

P\A.

Internal Choice

Ext(P 1 Q)

= Lemma 1
HI(T(P 1 Q)

- (P11 Q)
Hr(sh.ic_i — eh.ic_i — (T(P) N T(Q)))

= step sh.ic_i
Hr(eh.ic_i — (T(P) 1N T(Q)))

= step eh.ic_i
HI(T(P) N T(Q))

= distributivity of hiding and renaming over I
Hi(T(P)) 1 Hr(T(Q))

= Lemma 1
Ezt(P) N Ext(Q)

= induction hypothesis

PnaQ.
Timeout:
Ext(P> Q)
= Lemma 1
HI(T (P> Q)
- (P> Q)

Hr((T(P) O sh.to_i — eh.to_i — T(Q))

= definition of Hr
(T(P) O sh.to_i — eh.to_i — T(Q)) \ H[s.x — z | z € ¥p UX]

= hiding sh.to_i
((T(P) O eh.to—i — T(Q)) \ H M (eh.to—i — T(Q))\ H)[s.x —z |z €XpUXg]

= hiding eh.to_i
(T(P)D T(Q))\ H N T(Q)\ H)N T(Q)\ H)s.x — | v € Sp Uy

= associativity and idempotency of M
(T(P)D T(Q)\ HN T(Q)\ H)s.x — = | v € Sp U]

= distributivity of renaming over
(T(P)OTQ)\H[sz—z|zeIpUZg|NT(Q)\ Hjs.x —z |z € Xy

= definition of Hr

137

Hr(T(P) 0 T(Q)) 1 Hr(T(Q))

=7 distributivity of hiding and renaming over O in T

(Hr(T(P)) B Hr(T(Q))) N Hr(T(Q))
Hr(T(P)) > Hr(T(Q))
Ext(P) > Ext(Q)

PrQ.

A.2 Proof of equation (4.5)

Proof 7 The proof proceeds by algebraic rewriting

Ezt((a — STOP \ {a}) O b — STOP)
Hr(T((a — STOP \ {a}) O b — STOP))

Hr(T(a — STOP \ {a}) O T(b — STOP))

definition of >

Lemma 1

induction hypothesis

Lemma 1

T(POQ)

TP\ A)

Hr(T(a — STOP)|s.x «— sh.z,e.x — eh.x |z € {a}] O T(b — STOP))
- T(x — P), T(STOP), and renaming

Hr(sh.a — eh.a — STOP O s.b — e.b — STOP)

= hiding of initial events in H over O

(b — STOP) > STOP

((b — STOP) N STOP) O STOP

(b — STOP) N STOP

P> Q=(PNSTOP)O Q

POSTOP =P

138

Proofs

A.3 Proof of Theorem 2

Proof 8 The proof proceeds by induction on the construction of P.

SKIP:

Hr(T(SKIP))

Hr(SKIP)

SKIP .

Prefiz choice:

Hr(T(z:X — P(x2)))

Hr(s?z:X — e.x — T(P(x)))

z:X — Hr(e.x — T(P(z)))

z: X — Hr(T(P(2)))

z:X — P(z).

Sequential Composition:

Hr(T(P;Q))

Hr(T(P);T(Q))

Hr(T(P)); Hr(T(Q))

P;Q.

External Choice:

T(SKIP)

neutrality of SKIP w.r.t. hiding and renaming

T(z:X — P(z))

step s.x

step e.x

induction hypothesis

T(P;Q)

distributivity of hiding and renaming over ;

induction hypothesis

139

Hr(T(P O Q))
T(POQ)
Hr(T(P)0O T(Q))
definition of Hr
(T(P)B T(Q)\ Hls.x — 7]
distributivity of hiding of non-initial events over external choice
(T(PYNH B T(Q)\ H)[s.x — 1]
distributivity of renaming over external choice
T(P)\ H[s.x < x] O T(Q)\ H|[s.x +]
definition of Hr
Hr(T(P)) B Hr(T(Q))
induction hypothesis

POQ.

Parallel Composition:

Hr(T(P |a] Q))
T(P|al Q)
HT(T(P) ‘{s.z,e.zmeA}‘ T(Q))
Lemma 2
Hr(T(P) |(s.zjzeay] T(Q))
distributivity of hiding and renaming over |(, y|zc |
Hr(T(P)) |l Hr(T(Q))
induction hypothesis

Plal Q.

Renaming:
Hr(T(P[M]))
T(P[M])
Hr(T(P)[s.x < s.y,e.x — e.y | (z,y) € M])
hiding of e events by definition of Hr
Hr(T(P)[s.x < s.y | (z,y) € M])
independence of [s.x «— s.y | (z,y) € M| and hiding of H
Hr(T(P))[M]

induction hypothesis

140

Proofs

A.4 Proof of Theorem 4

Proof 9 The proof uses the lemmas and auxiliary definitions presented in sec-
tions 5.1 and 5.2.

HH(T(P D Q)
T(POQ)
Hr((T(P)w T(Q)) g,um, Co)
definition of 1al
Hr((T(P) 0 T(Q)) 55,050, | Ca)lunprime] \ Hy)
H N Hy =0 and Hr(X [unprime]) = Hr(X)[unprime]
Hr((T(P) T(Q)) I5,0m,| Co))lunprime] \ Hy
Lemma 4
(Hr(T(P) T(Q)) Isun,| (Co B Ch))[unprime] \ Hy
distributivity of Hr over 1 because H N () = ()
(Hr(T(P)) 2 Hr(T(Q))) [sup,| (Co B C1))[unprime] \ Hy
induction hypothesis: Hr(T(P)) = P and Hr(T(P)[prime]) = P[prime]
(P Q) |5um,| (Co O Ci))lunprime] \ Hy
definitions of 14l and
(P Q) spus,um, (G O C1)
definition of O’
PO Q
Lemma 3

POQ.

141

A.5 Proof of Theorem 5

Proof 10 The proof uses the lemmas and auziliary definitions presented in
sections 5.1 and 5.35.

HH(T(P> Q)

_ T(P> Q)
Hr((T(P) 0 sh.to_i — eh.to_i — T(Q)) 5,1 Cb)

= definition of 1al
Hr((T(P) W sh.to_i — eh.to_i — T(Q) |, | Co)lunprime] \ Hy)

= H N Hy =0 and Hr(X[unprime]) = Hr(X)[unprime]
Hr(((T(P) @ shoto_i — ehoto_i — T(Q)) |5, | Co))lunprime] \ H

= Lemma 6
(Hr(T(P) 0 sh.to_i — eh.to_i — T(Q)) |gup, | (Co> C1)[unprime] \ Hy

= distributivity of Hr over Q0 because H N =0
((Hr(T(P)) 0t Hr(sh.to_i — eh.to_i — T(Q))) |50y, | (Co v C1)[unprime] \ Hy

= hiding of steps sh.to_i and eh.to_i
((Hr(T(PY) W HE(T(Q))) |50, | (Co v Co))lunprime] \ Hy

= induction hypothesis: Hr(T(P)) = P and Hr(T(P)[prime]) = P[prime]
(P Q) |sum,| (Cov C1))[unprime] \ Hy

= definitions of 14! and ¥
(P2 Q) s pusyyum, L (Co > C1)

= definition of >/
Py Q

= Lemma 5

Pr Q.

A.6 Proof of Theorem 7

142 Proofs

Proof 11 Distributed termination of parallel composition restricts successful
termination of F(P) to the following two cases: successful termination or fail-
ure. Case 1. Assume that P performs o € (Xp \ {fail})* and then terminates
successfully:
(((P; commit — SKIP) A\ abort — SKIP) |5, | C({))) \ X/o
= synchronization on Xp U {abort, commit}
(((P/o;commit — SKIP) A abort — SKIP) |s,. | C({))/0) \ &
= termination of P and 31 : I* - C(())/o = C(l)
(((commit — SKIP) A\ abort — SKIP) |, | C(1)) \ ¥
= step commit because C(l) cannot refuse commit but refuses abort
((SKIP A abort — SKIP) |s, ., | SKIP) \ X
= distributed termination because left hand side refuses abort

SKIP

Case 2. Assume that P performs o ™ (fail) € ¥% such that fail ih o:

(((P;commit — SKIP) A abort — SKIP) |g,. | C({))) \ /o ™ (fail)

= synchronization on all elements in o and 31 : I* - C(())/o = C(I)
(((P/o; commit — SKIP) A abort — SKIP) |s,..,,| C(1)) \ S/ (fail)

= synchronization on fail

(((P/o ™ (fail) ; commit — SKIP) A abort — SKIP)
|Sp(py | abort — Comp(l)) \

= step abort because abort — Comp(l) refuses ¥p and ¥p C Sp(p)
(SKIP |5y, | Comp(D)) \ S

= by assumption X compr) N Sr(p) = 0
Comp(l) \ &

= Viin [: Handler(i) \ ¥ = SKIP by assumption
SKIP

B Examples

B.1 Choice versus Concurrency

CSPy; encoding of the example presented in Section 4.4.1:

-- The original system

channel a, b

P=a->b->S8TOP [] b -> a -> STOP
Q = a —-> STOP [I{}I] b -> STOP

assert P [FD= Q
assert Q [FD= P

—-- Transformed Version
—-— CSPm replacement for bags
add(bag, element) = bag ~ <element>
remove (bag, element) =
if null(bag) then bag else
if head(bag) == element then tail(bag) else
<head(bag)> ~ remove(tail(bag),element)

-- The following datatype represents the renamed original events
datatype RENAMED = r_a | r_b

channel s, e, sh, eh : RENAMED

channel co : Seq(RENAMED)

channel term

143

144 Examples

—-- The controller process with limited bag size
C(bag) = #bag < 3 & (s7x -> C(add(bag,x))

[] sh?x -> C(add(bag,x))

[] e?x -> C(remove(bag,x))

[] eh?x -> C(remove(bag,x))

[] term -> SKIP)

-- Modified controller process with limited bag size
Cil(bag) = #bag < 3 & (co.bag -> (s?x -> Ci(add(bag,x))
[l sh?x -> Cil(add(bag,x))
[1 e?x -> Cl(remove(bag,x))
[1 eh?x -> Cl(remove(bag,x))
[1 term -> SKIP))

-- Hiding, renaming and the extension Ext

Hr(P) = R(H(P))

H(P) P \{Ish, e, eh, term|}

R(P) = P [[s.r_a <- a, s.r_b <- b]]

Ext(P) = Hr((P; term -> SKIP) [|{ls, sh, e, eh, term|}|] C(<>))
Ext1(P) = Hr((P; term -> SKIP) [|{ls, sh, e, eh, term|}|] C1(<>))

-- The transformed processes (T_P = T(P))
T P=s.r_a->e.r_a->s.r_b ->e.r_b -> STOP
[l s.t_b -> e.r_b -> s.r_a -> e.r_a —-> STOP
T_Q =s.r_a > e.r_a -> STOP [|{}|] s.r_b -> e.r_b -> STOP

assert P [FD= Ext(T_P)
assert Ext(T_P) [FD= P

assert Q [FD= Ext(T_Q)
assert Ext(T_Q) [FD= Q

-- Never have a and b concurrently

SPEC = [Ix:{<r_a>,<r_b>,<>}0@co.x -> SPEC

assert SPEC [T= Ext1(T_P) \{a,b}
assert SPEC [T= Ext1(T_Q) \{a,b}

assert Ext1(T_P) [FD= Ext1(T_Q)
assert Ext1(T_Q) [FD= Ext1(T_P)

145

channel conc_a_b

F(P) = P [[co.<r_a,r_b> <- conc_a_b, co.<r_b,r_a> <- conc_a_b]]

MAIN_P
MAIN_Q

F(Ext1(T_P))
F(Ext1(T_Q))

-- G not [conc_a_b]
MAIN = MAIN_Q -- or alternatively MAIN_P

B.2 One-place Buffer

CSPys encoding of the example presented in Section 4.4.2:

—-- Simple demonstration of FDR2

-- A single place buffer implemented over two channels
-- Original by D.Jackson 22 September 1992

-- Modified for FDR2 by M. Goldsmith 6 December 1995

—-- First, the set of values to be communicated

datatype FRUIT = apples | oranges

—- Channel declarations
channel left,right,mid : FRUIT

channel ack

-- The specification is simply a single place buffer
COPY = left ? x -> right ! x -> COPY

-- The implementation consists of two processes communicating over

-- mid and ack
SEND = left ? x => mid ! x -> ack -> SEND
REC = mid 7 x -> right ! x -> ack -> REC

—-- These components are composed in parallel

SYSTEM = (SEND [| {| mid, ack |} |] REC) \ {| mid, ack |}

assert COPY [FD= SYSTEM
assert SYSTEM [FD= COPY

146 Examples

—-- Transformed Version
—-- CSPm replacement for bags
add(bag, element) = bag ~ <element>
remove(bag, element) =
if null(bag) then bag else
if head(bag) == element then tail(bag) else
<head(bag)> ~ remove(tail(bag),element)

-- The following datatype represents the renamed original events

datatype RENAMED = r_ack | r_left_a | r_left_o | r_right_a |
r_right o | r_mid_a | r_mid_o

channel s, e, sh, eh : RENAMED

channel term

—-- The controller process with limited bag size
C(bag) = #bag < 2 & (s?x -> C(add(bag,x))

[1 sh?x -> C(add(bag,x))

[1 e?x -> C(remove(bag,x))

[1 eh?x -> C(remove(bag,x))

[1 term -> SKIP)

-- Hiding, renaming and the extension Ext

Hr(P) = R(H(P))

H(P) = P \{lsh, e, eh, terml|}

R(P) = P [[s.r_ack <- ack, s.r_left_a <- left.apples,
s.r_left_o <- left.oranges, s.r_mid_a <- mid.apples,
s.r_mid_o <- mid.oranges, s.r_right_a <- right.apples,
s.r_right_o <- right.oranges]]

Ext(P) = Hr((P;term -> SKIP) [|{ls, sh, e, eh, term|}|] C(<>))

—-- The transformed processes
-- hiding of {| mid, ack |}
T_SYSTEM = T_SYSTEM’ [[s.x <- sh.x, e.x <- eh.x |

x <- {r_mid_a, r_mid_o, r_ackl}]]

-- parallel: SYSTEM’ = SEND [| {| mid, ack |} |] REC
T_SYSTEM’ = T_SEND [|{s.x, e.x |
x <- {r_mid_a, r_mid_o, r_ack} }|] T_REC

—--prefix: SEND = left ? x -> mid ! x -> ack -> SEND

T_SEND = s.r_left_a -> e.r_left_a -> s.r_mid_a -> e.r_mid_a ->

147

s.r_ack -> e.r_ack -> T_SEND
[] s.r_left_o -> e.r_left_o -> s.r_mid_o -> e.r_mid_o ->
s.r_ack -> e.r_ack -> T_SEND

—--prefix: REC = mid ? x -> right ! x -> ack -> REC
T_REC = s.r_mid_a -> e.r_mid_a -> s.r_right_a -> e.r_right_a ->
s.r_ack —> e.r_ack -> T_REC
[] s.r.mid_o -> e.r_mid_o -> s.r_right_o -> e.r_right_o ->

s.r_ack -> e.r_ack -> T_REC

assert Ext(T_SYSTEM) [FD= COPY
assert COPY [FD= Ext(T_SYSTEM)

MAIN = Ext(T_SYSTEM)

B.3 Dining Philosophers

CSPy; encoding of the example presented in Section 4.4.3:

-- The five dining philosophers for FDR: FDR2 version

—-- The Theory and Practice of Concurrency, Bill Roscoe, Chapter 2
N =23

PHILNAMES= {0..N-1}

FORKNAMES = {0..N-1}

channel sits, eats, getsup:PHILNAMES
channel picks, putsdown:PHILNAMES.FORKNAMES

-- A philosopher sits down, picks up two forks, eats, puts down the

-- forks and gets up, in an unending cycle.

PHIL(i) = sits'i -> picks!i'!i -> picks!i!((GE+1)%N) -> eats!i —->
putsdown!i! ((i+1)%N) -> putsdown!i!i -> getsup!i -> PHIL(3i)

-- A fork can only be picked up by one neighbour at once!
FORK(i) = picks!i!i -> putsdown'!i!i -> FORK(i)
[picks!((i-1)%N)'i -> putsdown!((i-1)%N)'i -> FORK(i)

148 Examples

PHILS
FORKS

[1{}|] i:PHILNAMES@ PHIL(i)
[I1{}!] i:FORKNAMES®@ FORK(i)

SYSTEM = PHILS[|{|picks, putsdown|}|]FORKS

assert not SYSTEM :[deadlock free]

—-- Transformed Version
—-- CSPm replacement for bags
add(bag, element) = bag ~ <element>
remove (bag, element) =
if null(bag) then bag else
if head(bag) == element then tail(bag) else
<head(bag)> ~ remove(tail(bag),element)

-- The following datatype represents the renamed original events

datatype RENAMED = c_sits . PHILNAMES | c_eats . PHILNAMES |
c_getsup . PHILNAMES | c_picks . PHILNAMES . FORKNAMES |
c_putsdown . PHILNAMES . FORKNAMES

channel s, e, sh, eh : RENAMED
channel co : Seq(RENAMED)

channel term

-— The controller process with limited bag size
C(bag) = #bag < 4 & (s?x -> C(add(bag,x))

[1 sh?x -> C(add(bag,x))

[1 e?x -> C(remove(bag,x))

[] eh?x -> C(remove(bag,x))

[1 term -> SKIP)

-- Modified controller process with limited bag size
Ci(bag) = #bag < 4 & (co.bag ->(s?x —-> Cl(add(bag,x))
[1 sh?x -> Cil(add(bag,x))
[1 e?x -> Cl(remove(bag,x))
[1 eh?x -> Cl(remove(bag,x))
[1 term -> SKIP))

-- Hiding, renaming and the extension Ext
Hr (P) = R(H(P))

H(P) P \{Ilsh, e, eh, term|}

R(P)

P [[s.c_picks <- picks, s.c_putsdown <- putsdown,

149

S.c_sits <- sits, s.c_eats <- eats,

s.c_getsup <- getsup]]
Ext(P) = Hr((P;term -> SKIP) [|{l|s, sh, e, eh, term|}|] C(<>))
Ext1(P) = Hr((P;term -> SKIP) [I{ls, sh, e, eh, term|}|] C1(<>))

—-- The transformed processes
--parallel: SYSTEM = PHILS[|{|picks, putsdown|}|]FORKS
T_SYSTEM = T_PHILS
[I{ls.c_picks, s.c_putsdown, e.c_putsdown, e.c_picks|}|] T_FORKS

T_PHILS
T_FORKS

[1{}|] i:PHILNAMES®@ T_PHIL(i)
[1{}!] i:FORKNAMES@ T_FORK(i)

T_PHIL(i) = s.c_sits!'i -> e.c_sits.i -> s.c_picks!i!i ->
e.c_picks!il!i -> s.c_picks!i! ((i+1)%N) -> e.c_picks!i! ((i+1)%N) ->
S.c_eats!i -> e.c_eats!i -> s.c_putsdown!i! ((i+1)%N) ->
e.c_putsdown!i! ((i+1)%N) -> s.c_putsdown!i!i -> e.c_putsdown!i!i ->

s.c_getsup!i -> e.c_getsup!i -> T_PHIL(i)

T_FORK(i) = s.c_picks!il!i -> e.c_picks!i!i -> s.c_putsdown!il!i ->
e.c_putsdown!il!i-> T_FORK(i)
[1 s.c_picks!((i-1)%N)'i -> e.c_picks!((A-1)YN)'i —>
s.c_putsdown! ((i-1)%N)!i -> e.c_putsdown! ((i-1)%N)!i -> T_FORK(i)

Ext_T_SYSTEM = Ext(T_SYSTEM)
Ext1_T_SYSTEM = Ext1(T_SYSTEM)

assert SYSTEM [FD= Ext_T_SYSTEM
assert Ext_T_SYSTEM [FD=SYSTEM

-- Check if the multiplicity of all elements ‘elems’ is at most
-- ‘num’ in ‘bag’
at_most(bag, elems, num) = null(bag) or
if member (head(bag), elems) then
num > O and at_most(tail(bag), elems, num -1) else

at_most(tail(bag), elems, num)

Seq0 = {<>}

Seql = {<x>|x <- RENAMED}

Seq2 = {x"y | x <- Seql, y <- Seql}
Seq3 = {x"y | x <- Seq2, y <- Seql}

SeqRenamed =

150 Examples

{x | x <= Union({Seq0,Seql,8eq2,8eq3}), at_most(x,{leats|},1)}

-- At most one philosopher is eating at a time
SPEC = [] x : SeqRenamed @ co.x —> SPEC

assert SPEC [T= Ext1_T_SYSTEM\{|sits,putsdown,eats,getsup,picks|}

B.4 Van Glabbeek’s Owl

CSPys encoding of the example presented in Section 4.4.4:

channel a,b,c,d,e

channel ev : {0..11}

OWL = let

sync = {ev.1, ev.2, ev.3, ev.4, ev.7, ev.8, ev.9,ev.10}

PO = ev.0 —> ((P2 ||| P4) [1 (P5 [I]| P1))

P1 = ev.1 -> STOP

P2 = ev.2-> P3

P3 = ev.3 -> STOP

P4 = ev.4 -> STOP

P5 = ev.5 -> (P10 [1 (P9 ||| P7))

P6 = ev.6 => ((P2 ||| P4) [] P1)

P7 = ev.7 -> STOP

P8 = ev.8 —-> STOP

P9 = ev.9 -> P8

P10 = ev.10 -> STOP

P11 = ev.11 -> ((P6 ||| P10) [1 (PO |II| P7))
within PO [Isync|] P11

-- Renaming to create OWL E
RE(P)
ev.4 <- d, ev.5 <- ¢, ev.6 <- c, ev.7 <- e,
ev.8 <- d, ev.9 <- ¢, ev.10 <- d, ev.11 <-b]]
RE (OWL)

P [[ev.0 <- a, ev.l <- e, ev.2 <- c, ev.3 <- e,

OWL_E

-- Renaming to create OWL F

151

RF(P)

ev.4 <- e, ev.5 <-¢c, ev.6 <- c, ev.7 <-d,

P [[ev.0 <- a, ev.1 <- d, ev.2 <- c, ev.3 <- d,

ev.8 <- e, ev.9 <- ¢, ev.10 <- e, ev.11 <-bl]
OWL_F RF (OWL)
assert OWL_E [T= OWL_F
assert OWL_F [F= OWL_E

-- start (se), end (ee), middle (me) events

channel se,ee,me : {0..11}

-- splitting the events of the owl into two events
T_OWL = let
sync = {x.y | x <~ {se,ee}, y <- {1,2,3,4,7,8,9,10}}

PO = se.0 -> ee.0 —> ((P2 ||| P4) [1 (P5 ||| P1))
P1 = se.1 -> ee.1 -> STOP

P2 = se.2 -> ee.2 -> P3

P3 = se.3 -> ee.3 -> STOP

P4 = se.4 -> ee.4 -> STOP

P5 = se.5 -> ee.5 > (P10 [1 (P9 ||| P7))

P6 = se.6 > ee.6 —> ((P2 ||| P4) [] P1)

P7 = se.7 -> ee.7 -> STOP

P8 = se.8 -> ee.8 -> STOP

P9 = se.9 -> ee.9 -> P8

P10 = se.10 -> ee.10 -> STOP

P11 = se.11 -> ee.11 -> ((P6 ||| P10) [1 (P9 ||| P7))

within PO [|sync|] P11

-- Hide middle and end evens to reestablish the OWL
-- R - OWL specific renaming scheme

-- P - OWL process

HR(R,P) = R(P [[se.x <- ev.x| x <- {0 .. 11}]] \{lee,mel})

-- Hiding and renaming reestablishes the original owls.
assert OWL_E [FD= HR(RE,T_0OWL)
assert HR(RE,T_OWL) [FD= OWL_E

assert OWL_F [FD= HR(RF,T_0OWL)
assert HR(RF,T_OWL) [FD= OWL_F

-- splitting the events of the owl into three events
T3_0WL = let
sync = {se.x,me.x,ee.x | x <- {1,2,3,4,7,8,9,10}}

152 Examples

PO = se.0 -> me.0 -> ee.0 -> ((P2 ||| P4) [] (P5 ||| P1))
Pl = se.1 -> me.1 -> ee.1 -> STOP

P2 = se.2 -> me.2 -> ee.2 -> P3

P3 = se.3 -> me.3 -> ee.3 -> STOP

P4 = se.4 -> me.4 -> ee.4 -> STOP

P5 = se.5 -> me.5 -> ee.5 > (P10 [1 (P9 ||| P7))

P6 = se.6 -> me.6 -> ee.6 —> ((P2 ||| P4) [] P1)

P7 = se.7 -> me.7 -> ee.7 -> STOP

P8 = se.8 -> me.8 -> ee.8 -> STOP

P9 = se.9 -> me.9 -> ee.9 -> P8

P10 = se.10 -> me.10 -> ee.10 -> STOP

P11 = se.11 -> me.11 -> ee.11 -> ((P6 ||| P10) [1 (P9 ||| P7))

within PO [|sync|] P11

-- Hiding and renaming reestablishes the original OLW
-- => hidden and renamed 3-split owls are equivalent
assert OWL_E [FD= HR(RE,T3_0OWL)

assert HR(RE,T3_0OWL) [FD= OWL_E

assert OWL_F [FD= HR(RF,T3_0WL)
assert HR(RF,T3_0WL) [FD= OWL_F

channel al,a2,a3,bl1,b2,b3,cl1,c2,c3,d1,d2,d3,el1,e2,e3
-- rename the split events according to van Glabbeek and
-- Vaandrager’s renaming scheme
RSE(P) = P [[se.0 <- al, se.l1 <- el, se.2 <- cl1, se.3 <- el,
se.4 <- d1, se.5 <- cl, se.6 <- cl, se.7 <- el,
se.8 <- d1, se.9 <- c1, se.10 <- d1, se.l1l1l <-bi,
me.0 <- a2, me.l1 <- e2, me.2 <- c2, me.3 <- e2,
me.4 <- d2, me.5 <- c2, me.6 <- c2, me.7 <- e2,
me.8 <- d2, me.9 <- c2, me.10 <- d2, me.11 <-b2,
ee.0 <- a3, ee.l <- e3, ee.2 <- c3, ee.3 <- e3,
ee.4 <- d3, ee.b <- c3, ee.6 <- c3, ee.7 <- e3,
ee.8 <- d3, ee.9 <- c3, ee.10 <- d3, ee.11l <-b3]]

RSF(P) = P [[se.0 <- al, se.l <- d1, se.2 <- cl1, se.3 <- d1,
se.4 <- el, se.5 <- cl, se.6 <- cl, se.7 <- di,
se.8 <- el, se.9 <- c1, se.10 <- el, se.l1l1l <-Dbi,
me.0 <- a2, me.l1 <- d2, me.2 <- c2, me.3 <- d2,
me.4 <- e2, me.5 <- c2, me.6 <- c2, me.7 <- d2,
me.8 <- e2, me.9 <- c2, me.10 <- e2, me.11 <-b2,
ee.0 <- a3, ee.l <- d3, ee.2 <- c3, ee.3 <- d3,

153

ee.4 <- e3, ee.b <- c3, ee.6 <- c3, ee.7 <- d3,
ee.8 <- e3, ee.9 <- c3, ee.10 <- e3, ee.11 <-b3]]

T3_OWL_E
T3_OWL_F

RSE(T3_0WL)
RSF(T3_0WL)

-- However, the two 3-split owls are different

-- as shown by the following counterexample given by

-- Glabbeek and Vaandrager

-— aclc2bcl c3dc2c3e

COUNTEREX = al -> a2 -> a3 -> c1 -> ¢c2 -> bl -> b2 -> b3 ->
cl > c3 ->dl ->d2 -> d3 -> c2 -> c3 -> el -> STOP

assert T3_OWL_E [T= COUNTEREX
assert not T3_OWL_F [T= COUNTEREX

-- more generally, the two 3-split owls are quite different
assert not T3_OWL_E [T= T3_0OWL_F
assert not T3_OWL_F [T= T3_OWL_E

-- however, the 2-split owls are equivalent
assert RSE(T_OWL) [FD= RSF(T_OWL)
assert RSF(T_OWL) [FD= RSE(T_OWL)

B.5 Timeout

CSPy; encoding of the example processes P and () shown in Section 5.5 and

their extended transformed versions.

add(bag, element) = bag ~ <element>
remove (bag, element) =
if null(bag) then bag else
if head(bag) == element then tail(bag) else
<head(bag)> ~ remove(tail(bag),element)

channel a,b,c

datatype EV=A | A | B | B> | C | C’ | TO_O | TO_O’

154 Examples

channel s,e,sh,eh : EV
channel tO, t1, i0,il
H = {t0,t1,i0,i1}

prime(d) = A’
prime(B) = B’
prime(C) = C’
prime(T0_0) = TO_O’
unprime(A’) = A
unprime(B’) = B
unprime(C’) = C

unprime(T0_0’) = TO_O

Par(P,Q) = (((P;t0 -> SKIP) /\ i0 -> SKIP)
11
((Q;t1l -> SKIP) /\ il -> SKIP)
[[x.y <- x.prime(y) | x <- {s,e,sh,eh}, y <- {A,B,C,T0O_0}11)

HR(P) = (P \{le,sh,eh|}) [[s.A <- a, s.B <- b, s.C <= c]]

P = ((a -> SKIP) ||| (b —> SKIP)) [> ¢ -> SKIP
TP = (s.A -> e.A -> SKIP ||| s.B -> e.B —> SKIP)
[1 (sh.TO_O -> eh.T0O_O0 -> s.C -> e.C —> SKIP)

EXTP = HR(TP)
assert EXTP [FD= P
assert P [FD= EXTP

Q = ((a -> SKIP) ||| (b -> SKIP)) \{a,b} [> ¢ -> SKIP
TQ = ((Par((sh.A -> eh.A -> SKIP ||| sh.B -> eh.B -> SKIP),
(sh.TO_O0 -> eh.TO_0 -> s.C —> e.C -> SKIP))
[|Events|] C_to(<>))
[[x.y <- x.unprime(y)
| x <- {s,e,sh,eh}, y <- {A°,B>,C’,T0_0°}]]1) \ H

C_to(l) = #1 < 3 & (87x -> C_to’(add(1,x))
[1 sh?T0_0’ -> C_to’’ (1)
[l t0 -> C_term(1,il)
[1 sh?x:{A,B,C} -> C_to(add(1l,x))
[1 eh?x —> C_to(remove(l,x)))

C_to’(1) = #1 < 3 & (s7x -> C_to’(add(1,x))
[l t0O -> C_term(1,il)

155

[] sh?x:{A,B,C} -> C_to’(add(1,x))
[1 e?x -> C_to’ (remove(l,x))
[1] eh?x -> C_to’ (remove(1l,x)))
C_to’’ (1) = #1 <3 & (eh?x:{A,B,C} —> C_to’’(remove(l,x))
[1 null(1l) & eh?T0_0’ -> C_to’’’(1))
C_to’?°(1) = #1 <3 & (s?x:{A’,B’,C’} -> C_to’’’(add(1,x))
[1 t1 -> C_term(1,i0)
[] sh?x:{A’,B>,C’} -> C_to’’’(add(1,x))
[1 e?x:{A>,B?,C’} -> C_to’’’ (remove(l,x))
[enh?x:{A’,B’,C’} -> C_to’’’(remove(l,x)))
C_term(l,ev) = #1 < 3 & (eh?x -> C_term(remove(l,x),ev)
[] null(l) & ev -> SKIP)

EXTQ = HR(TQ)

assert EXTQ [FD= Q

-— this one should hold but doesn’t because

-- FDR still doesn’t support the Omega semantics.
assert not Q [FD= EXTQ

-- however, these assertions simulate Omega semantics
assert EXTQ;SKIP [FD= Q;SKIP
assert Q;SKIP [FD= EXTQ;SKIP

Split = {A,B,C,T0_O}

channel co : Set(Split)

CON(bag) = #bag < 4 & co.set(bag) -> (
s?x:8plit -> CON(add(bag,x))
[] sh?x:Split -> CON(add(bag,x))
[] e?x:Split -> CON(remove (bag,x))
[] eh?x:Split -> CON(remove(bag,x)))

EXTP’ = HR(TP [|{ls,e,sh,eh|}|] CON(<>))
EXTQ’ = HR(TQ [I|{ls,e,sh,en|}|] CON(<>))
SPEC = |~| x : Set({A,B,C,TO_0}) @ card(x) < 3 & co.x —> SPEC

assert SPEC [F= EXTP’ \{a,b,c}
assert not SPEC [F= EXTQ’ \{a,b,c}

156

Examples

B.6 Unfolded Coordination Process

Unfolde

ID = {0 ..

channel

PO
PO’
PO’
PO’ >
P1
P1’
pP1°>
p1°7°

LOCK
LOCKO
LOCKO’
LOCK1
LOCK1’

IMPL
IMPL’
IMPL?’

d CSPy, version of process IMPL from Figure 7.5.

1}

lock, release, read, write : ID

= lock.0 -> PO’

= read.0 -> PO’

= write.0 -> PO’’’
= release.0 -> PO
= lock.1 -> P1’

= read.l -> P1’°

= write.1l -> P1’7°

= release.l1 -> P1

= |7] x : {LOCKO,LOCK1} @ x
= lock.0 -> LOCKO’
release.0 -> LOCKO

lock.1 -> LOCK1’
release.1l -> LOCK1

IMPL’ \ {lock.0,lock.l,release.0O,release.1}
IMPL’’ [|{lock.0,lock.l,release.O,release.1}|] LOCK
[l x : {PO,P1} @ x)

B.7 Java Representation of a Coordination Process

The Java code shown below turns the CSPy, script shown in Appendix B.6

into a coordinated concurrent program.

final
store.
store.

store.

CspProcessStore store = new CspProcessStore ();
createPrefix (”P0”,”lock.0”,7P0"”);
createPrefix ("P0’” ,”read.0” ,”P0" "7);
createPrefix ("P0’’” ,”write.0” ,”P0’’"");

157

store. (

store. (

.createPrefix(”Pl’”,”read.l”,”Pl””);
(

store

store

store.
store.
store.
store.
store.

store.

store

store.

store.

final

createPrefix ("P0’’"” ,”release.0”,7P0");

createPrefix ("P1” ,”lock .17 ,7P1’");

createPrefix ("LOCKO” ,”lock.0” ,”LOCKO0’");
"LOCKO’” ,”release .0” ,”"LOCK0”) ;
"LOCK1” ,”lock .17 ,"LOCK1’");
"LOCK1’” ,”release.1” ,”LOCK1”);
"IMPL” , "IMPL " ",

createPrefix
createPrefix

createPrefix

CspEnvironment env

.createHiding

—~ o~ —~

.createPrefix (P17 ["write.1” ,”P17777);
createPrefix (”P1777” ["release.1” ,7P1”);
createlnternalChoice ("LOCK” ,”LOCKO,LOCK1") ;

"lock .0,lock.1,release.0,release.1”);
createParallel ("IMPL’” ,”IMPL’’ ,LOCK” ,
"lock .0,lock.1,release.0,release.1”);
createParallel ("IMPL’’” ”P0,P1”,

"lock .0,lock.1,release.0,release.1”);

new CspEnvironment(store, new MyCspEventExecutor());

new SwingCspSimulator (”example” ,env).run ();

B.8 Workflow Challenge

The following CSP,; script shows the encoding of the Workflow Net presented

in Figure 8.2.

channel a,b,c,d,e,f,g,h
P =a -> (LO [l{e,g,h}I] RO)
->d -> (L1 [I{h}|]R1)

LO =D
RO = ¢
L1 = f
Rl =-¢e
T1 = a
T2 = a
T3 = a
T4 = a
T5 = a

-> R1

-> h -> SKIP
-> g ->h >
-> b ->c >
-> b ->c >
-> b ->c >
->b->d4d >
->b->d >

SKIP
d ->
d ->
d ->
c >
c ->

f->g >
g->f >
e —> g —>
f->g >

g—>f >

SKIP
SKIP
SKIP
SKIP
SKIP

158 Examples

T6 =a->b->d->c->f ->e ->g ->h -> SKIP
T7 =a->b->d->f ->c->e ->g ->h -> SKIP
T8=a->c->b->d->e->f->g->h -> SKIP
T9=a->c->b->d->e >g->f ->h -> SKIP

TI0=a->c->b->d->f ->e->g ->h -> SKIP
SPEC=T1 [1 T2 [J T3 [1 T4 [1 756 [1 T6é [1 T7 [1 T8 [1 T9 [] T10

assert SPEC [T= P
assert P [T= SPEC
assert P\Events [FD= SKIP
assert SKIP [FD= P\Events

B.9 Workflow Server Coordination Process

CSPy; encoding of the workflow server’s coordination process as described in
Section 8.1.

channel lockDefs, unlockDefs, poll, loadCSP, startCheck, checkResult,
activateDef, loadClasses, reportError, printStatsCmd,
deactivateDefCmd, selectDef, deactivateDef, startWfCmd, startWf,

init, shutdown, reportWfError

-- This lock process protects the definitions
DefLock = lockDefs -> DefLock’
DefLock’ = unlockDefs -> Deflock

—-- The loader process polls new process definitions from a directory
-- and loads them if they are not yet loaded.

STOP [> Poll

Poll = poll -> NewDefs

NewDefs = NewDef |~| Loader

NewDef = loadCSP -> NewDef’

NewDef’ = ReportError |~| CheckDef

CheckDef = startCheck -> CheckDef’

CheckDef’ = checkResult -> CheckDef’’

CheckDef’’ = CheckDef’’’ |~| CheckedDef

=
o
)
Q.
®
=
Il

159

CheckDef’’’ = STOP [> CheckDef’
CheckedDef = ReportError |~| LoadClasses
LoadClasses = loadClasses -> LoadClasses’
LoadClasses’ = ReportError |~| DefLoaded
ReportError = reportError -> Loader
DeflLoaded = lockDefs -> Defloaded’
DeflLoaded’ = activateDef -> DefLoaded’’
DeflLoaded’’ = unlockDefs -> NewDefs

LoaderEntry = Poll\{poll, loadCSP, startCheck, checkResult,

loadClasses, reportError, activateDef}

-- The PrintStats utility process allows to print internal statistics
-- of the Wf Server
PrintStats = printStatsCmd -> SKIP

—-- The DeactivateDef utility process allows to deactivate
-- workflow definitions.

DeactivateDef = deactivateDefCmd -> Available

Available = SKIP |~| DeactivateDef’

DeactivateDef’ = lockDefs -> DeactivateDef’’
DeactivateDef’’ = selectDef -> DeactivateDef’’’
DeactivateDef’’’ = deactivateDef -> DeactivateDef’’’’
DeactivateDef’’’’ = unlockDefs -> SKIP

—-- The StartWf utility process allows to start a new workflow

StartWf = startWfCmd -> Available’

Available’ = SKIP |~| StartWf’

StartWf’ = lockDefs -> StartWf’’
StartWf’’ = selectDef -> StartWf’’’
StartWf’’’ = startWf -> StartWf’’’’
StartWf’’’’ = unlockDefs -> StartWf’’’’’
StartWf’’’’’ = StartWf’’’’’’|~|SKIP
StartWf’’’’’’ = reportWfError -> SKIP

—— The server control interface offers commands to the server admin
—-- and executes them.
OfferMenu = []x:{PrintStats,DeactivateDef,StartWf}Ox

ServerControl = 0fferMenu;ServerControl

-- When the server is running, its server processes are running

-- in parallel

160 Examples

Running = Running’\{lockDefs,unlockDefs}
Running’ = DefLock [|{lockDefs,unlockDefs}|] Running’’

Running’’ = ServerControl ||| LoaderEntry

-- This is the main sever process:
Shutdown = shutdown -> SKIP
Run = Running /\ Shutdown

WfServer = init -> Run \{init}

controlEvents = {poll, loadCSP, startCheck,checkResult, activateDef,
loadClasses, reportError, printStatsCmd, deactivateDefCmd,

selectDef, deactivateDef, startWfCmd, startWf,reportWfError}

assert DefLock [F= Running’\diff (Events,{lockDefs,unlockDefs})
assert Running’\diff (Events,{lockDefs,unlockDefs}) [F= DefLock

assert Running :[deadlock free [F]]
assert shutdown -> SKIP [F= WfServer\diff (Events,{shutdown})

assert WfServer :[livelock free]

B.10 Timed Workflow Server Coordination Process

Tock-CSP variant of the workflow server’s coordination script (shown in Ap-
pendix B.9).

include ’’wfserver.csp’’ -- include the coordination script

channel tock -- signal discrete time steps

Timed = tock -> Timed’
Timed’ = [J]x:{Timed’’,Timed’’’}@x
Timed’’ = poll -> Timed

Timed’’’ = checkResult -> Timed

TimedPoll = Poll [|{poll, checkResult}|] Timed
TimedLoaderEntry = TimedPoll\{poll, loadCSP, startCheck,

checkResult, loadClasses, reportError, activateDef}

161

TimedRunning = TimedRunning’\{lockDefs,unlockDefs}
TimedRunning’ = DefLock [|{lockDefs,unlockDefs}|] TimedRunning’’
TimedRunning’’ = TimedServerControl ||| TimedLoaderEntry

TimedServerControl = tock —-> OfferMenu;TimedServerControl

TimedRun = TimedRunning /\ Shutdown

TimedWfServer = init -> TimedRun\{init}

assert TimedWfServer :[livelock free[F]]

TimedSpec = SKIP |~| tock -> TimedSpec
SKIP [] tock -> TimedImpl
assert TimedSpec [FD= TimedWfServer\diff (Events,{tock})

assert TimedWfServer\diff (Events,{tock}) [FD= TimedImpl

TimedImpl

B.11 Transformed Workflow Server Coordination Pro-

cess

Transformed version of the processes shown in Appendix B.9.

datatype EVNAME = lockDefs | unlockDefs | poll | loadCSP | startCheck
| checkResult | activateDef | loadClasses | reportError
| printStatsCmd | deactivateDefCmd| selectDef | deactivateDef
| startWfCmd | startWf | reportWfError | to_0 | to_1

| ic_O | ic_1 | ic_2 | ic_3 | ic_4 | ic_5 | ic_6 | ic_7

channel s,sh,e,eh : EVNAME
channel co : Set (EVNAME)

add(bag, element) = bag ~ <element>
remove (bag, element) =
if null(bag) then bag else
if head(bag) == element then tail(bag) else
<head(bag)> ~ remove(tail(bag),element)

162 Examples

-— deadlock if there are more than two concurrent actions
C(bag) = #bag < 3 & (
s?x -> C(add(bag,x))
[] sh?x -> C(add(bag,x))
[1 e?x -> C(remove(bag,x))
[1 eh?x —> C(remove(bag,x)))

-- make concurrent actions explicit
Cl(bag) = #bag < 3 & (co.set(bag) —>(
s?x -> Cl(add(bag,x))
[] sh?x -> Cil(add(bag,x))
[1 e?x -> Cl(remove(bag,x))
[1 eh?x -> Cl(remove(bag,x))))

Ext(P) = P [I{ls, sh, e, ehl}|] C(<>)
Ext1(P) = P [I{ls, sh, e, ehl|}|] C1(<>)

-- transformed workflow server processes
DefLock = s.lockDefs -> e.lockDefs ->

s.unlockDefs -> e.unlockDefs -> DefLock

Loader = STOP [] (sh.to_0 -> eh.to_0 -> Poll)
Poll = s.poll -> e.poll -> NewDefs
NewDefs = sh.ic_0 -> eh.ic_0 -> (NewDef |~| Loader)
NewDef = s.10adCSP -> e.l0adCSP -> sh.ic_1 -> eh.ic_1 ->
(ReportError |~| CheckDef)

CheckDef = s.startCheck -> e.startCheck -> CheckDef’
CheckDef’ = s.checkResult -> e.checkResult -> sh.ic_2 -> eh.ic_2 ->

(CheckDef’’’ |~| CheckedDef)
CheckDef’’’> = STOP [] (sh.to_1 -> eh.to_1 -> CheckDef’)
CheckedDef = sh.ic_3 -> eh.ic_3 -> (ReportError |~| LoadClasses)

LoadClasses = s.loadClasses —-> e.loadClasses -> sh.ic_4 >
eh.ic_4 -> (ReportError |~| DefLoaded)

Defloaded = s.lockDefs -> e.lockDefs -> s.activateDef ->
e.activateDef -> s.unlockDefs -> e.unlockDefs -> NewDefs

ReportError = s.reportError -> e.reportError -> Loader

hideLoader = {poll, loadCSP, startCheck, checkResult, loadClasses,
reportError, activateDef}
LoaderEntry = Poll [[s.x <- sh.x, e.x <- eh.x | x <- hidelLoader]]

163

PrintStats = s.printStatsCmd -> e.printStatsCmd -> SKIP

DeactivateDef = s.deactivateDefCmd -> e.deactivateDefCmd ->
sh.ic_5 -> eh.ic_5 -> (SKIP |~ | DeactivateDef’)

DeactivateDef’ = s.lockDefs -> e.lockDefs —-> s.selectDef ->
e.selectDef -> s.deactivateDef -> e.deactivateDef ->
s.unlockDefs -> e.unlockDefs -> SKIP

StartWf = s.startWfCmd -> e.startWfCmd -> sh.ic_6 -> eh.ic_6 ->
(SKIP |~| StartWf’)

StartWf’ = s.lockDefs -> e.lockDefs -> s.selectDef -> e.selectDef ->
s.startWf -> e.startWf -> s.unlockDefs -> e.unlockDefs ->
sh.ic_7 -> eh.ic_7 -> (StartWf’’’’’’|~|SKIP)

StartWf’’’’’’ = s.reportWfError -> e.reportWfError -> SKIP

OfferMenu = []x:{PrintStats,DeactivateDef,StartWf}ex

ServerControl = 0fferMenu;ServerControl

Running =

Running’ [[s.x <- sh.x, e.x <- eh.x | x <- {lockDefs,unlockDefs}]]
Running’ =

DefLock [|{s.x, e.x | x <- {lockDefs,unlockDefs}}|] Running’’

Running’’ = ServerControl ||| LoaderEntry

—-- there is no need to split the events in WfServer

-- WfServer = init -> Running\{init} /\ shutdown -> SKIP

DeadlockFree = Ext(Running)

ConcurrentActions = Extl(Running)\{l|s,sh,e,ehl|}

assert DeadlockFree :[deadlock free]

Sigma = {x | x <- EVNAME}
Protected = {activateDef,selectDef,deactivateDef,startWf}
Unprotected = diff(Sigma,Protected)
SPECO = co.{} -> SPECO
SPEC1 = |~ |x:Sigma,y:Sigma@
if member(x,Protected) and member(y,Protected) then
co.{x} -> SPEC1 else co.{x,y} -> SPEC1
SPEC = SPECO ||| SPEC1

assert SPEC [T= ConcurrentActions

164 Examples

Bibliography

[ABB*05]

[Abr96]

[ACGS6)]

[ASMSO0]

[Bar92]
[BBKKO9]

[BCC+05]

[BCD+05]

[BF04]

W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese,
R. Hdhnle, W. Menzel, W. Mostowski, A. Roth, S. Schlager,
and P. H. Schmitt. The KeY Tool. Software and System Mod-
eling, 4:32-54, 2005.

J. Abrial. The B Book - Assigning Programs to Meanings.
Cambridge University Press, 1996.

S. Ahuja, N. Carriero, and D. Gelernter. Linda and Friends.
Computer, 19(8):26 —34, August 1986.

J. Abrial, S. A. Schuman, and B. Meyer. A Specification Lan-
guage. In A. M. Macnaghten and R. M. McKeag, editors, On
the Construction of Programs, pages 343-410. Cambridge Uni-
versity Press, 1980.

G. Barrett. occam 3 Reference Manual, March 1992.
C. Baier, T. Blechmann, J. Klein, and S. Kliippelholz. A Uni-

form Framework for Modeling and Verifying Components and
Connectors. In J. Field and V. Vasconcelos, editors, Coordi-

nation Models and Languages, volume 5521 of LNCS, pages
247-267. Springer, 2009.

L. Burdy, Y. Cheon, C. R. Cok, M. D. Ernst, J. R. Kiniry,
G. T. Leavens, K. R. M. Leino, and E. Poll. An overview
of JML tools and applications. Int. J. Softw. Tools Technol.
Transf., 7(3):212-232, 2005.

M. Barnett, B. E. Chang, R. DeLine, B. Jacobs, and K. R. M.
Leino. Boogie: A Modular Reusable Verifier for Object-
Oriented Programs. In FMCO, pages 364-387, 2005.

M. J. Butler and C. Ferreira. An Operational Semantics for

StAC, a Language for Modelling Long-running Business Trans-

165

166

BIBLIOGRAPHY

[BHF05]

[BK11]

[BMMO05]

[BROS]

[BVAOT]

[CDS00]

[CGPY]

[CHLOG6]

[CIY95]

[Coa99]

actions. In R. De Nicola, G. Ferrari, and G. Meredith, editors,
Coordination 2004, volume 2949. Springer, 2004.

M. Butler, T. Hoare, and C. Ferreira. A Trace Semantics for
Long-Running Transactions. In A. E. Abdallah, C. B. Jones,
and J. W. Sanders, editors, CSP25, volume 3525 of LNCS,
pages 133-150. Springer, 2005.

B. Bartels and M. Kleine. A CSP-based Framework for the
Specification, Verification and Implemenation of Adaptive Sys-
tems. In 6th International Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems (SEAMS 2011).
ACM, 2011.

R. Bruni, H. Melgratti, and U. Montanari. Theoretical foun-
dations for compensations in flow composition languages. In
Symposium on Principles of Programming Languages, pages
209-220. ACM, 2005.

M. J. Butler and S. Ripon. Executable Semantics for Com-
pensating CSP. In EPEW/WS-FM, pages 243-256. Springer,
2005.

J. M. Bjgrndalen, B. Vinter, and O. J. Anshus. PyCSP - Com-
municating Sequential Processes for Python. In CPA, pages
9229248, 2007.

R. Cleaveland, X. Du, and S. Smolka. GCCS: A Graphical
Coordination Language for System Specification. In A. Porto
and G. Roman, editors, Coordination Languages and Models,
volume 1906 of LNCS, pages 207-212. Springer, 2000.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking.
The MIT Press, 1999.

X. Chen, J. He, and Z. Liu. Component Coordination in rCOS.
Technical Report 335, UNU-IIST, P.O.Box 3058, Macau, May
2006.

P. Ciancarini, K. Jensen, and D. Yankelevich. On the opera-
tional semantics of a coordination language. In P. Ciancarini,
O. Nierstrasz, and A. Yonezawa, editors, Object-Based Models
and Languages for Concurrent Systems, volume 924 of LNCS,
pages 77-106. Springer, 1995.

Workflow Management Coalition. Terminology & Glossary,
Document Number WFMC-TC-1011, Issue 3.0, 1999.

BIBLIOGRAPHY 167

[CPMO6]

[CS02]

[dBO7]

[DRS95]

[DS95]

[EW02

[Fis97]

[Fis00]

[FMO7]

[Fon10]

[Fre02]

[Fre05]

W. R. Cook, S. Patwardhan, and J. Misra. Workflow patterns
in orc. In In Proceedings of Coordination 06, volume 4038 of

LNCS, pages 82-96. Springer, 2006.
A. Cavalcanti and A. Sampaio. From CSP-OZ to Java with

Processes. Parallel and Distributed Processing Symposium, In-
ternational, 2:0208, 2002.

F. de Boer. A Sound and Complete Shared-Variable Concur-
rency Model for Multi-threaded Java Programs. In M. Bon-
sangue and E. Johnsen, editors, Formal Methods for Open
Object-Based Distributed Systems, volume 4468 of LNCS, pages
252-268. Springer, 2007.

R. Duke, G. Rose, and G. Smith. Object-Z: A Specification
Language Advocated for the Description of Standards. Com-
puter Standards and Interfaces, 17, 1995.

J. Davies and S. Schneider. A Brief History of Timed CSP.
Theoretical Computer Science, 138(2):243-271, 1995.

R. Eshuis and R. Wieringa. Verification support for workflow
design with UML activity graphs. In ICSE °02: Proceedings
of the 24th International Conference on Software Engineering,

pages 166-176. ACM, 2002.

C. Fischer. CSP-OZ: A combination of Object-Z and CSP. In
FMOODS ’97: International Workshop on Formal Methods for
Open Object-Based Distributed Systems, pages 423—-438. Chap-
man & Hall, 1997.

C. Fischer. Combination and Implementation of Processes and
Data: from CSP-OZ to Java. PhD thesis, University of Old-
enburg, January 2000.

J. Filliatre and C. Marché. The Why/Krakatoa/Caduceus
Platform for Deductive Program Verification. In CAV, pages
173-177, 2007.

M. Fontaine. Towards Reusable Formal Method Tools. In
AVoCS 2010. Universitat Diisseldorf, 2010.

L. Freitas. JACK: A process algebra implementation in Java.
Master’s thesis, Centro de Informatica, Universidade Federal
de Pernambuco, April 2002.

L. Freitas. Model Checking Circus. PhD thesis, Department of
Computer Science, University of York, October 2005.

168

BIBLIOGRAPHY

[FVO08]

[Gar03]

[Gar05]

[GBGK10]

[GC92]

[GMOC*09)

[GRAO5]

[GV03]

[HBBYY]

[HBBOO]

[HHO8]

[HLLO5]

R. M. Friborg and B. Vinter. CSPBuilder - CSP based Scien-
tific Workflow Modelling. In CPA, pages 347-363, 2008.

W. B. Gardner. Bridging CSP and C++4 with Selective For-
malism and Executable Specifications. In MEMOCODE 03:
International Conference on Formal Methods and Models for
Co-Design, pages 237-245. IEEE Computer Society, 2003.

W. B. Gardner. Converging CSP specifications and C++ pro-
gramming via selective formalism. ACM Trans. Embed. Com-

put. Syst., 4(2):302-330, 2005.

S. Glesner, B. Bartels, T. Go6thel, and M. Kleine. The
VATES-Diamond as a Verifier’s Best Friend. In S. Siegler and
N. Wasser, editors, Verification, Induction, Termination Anal-
ysis, volume 6463 of LNCS, pages 81-101. Springer, 2010.

D. Gelernter and N. Carriero. Coordination languages and
their significance. Commun. ACM, 35:97-107, 1992.

W. B. Gardner, J. Moore-Oliva, J. Carter, A. Gumtie, and
Y. Solovyov. CSP+4: An Open Source Tool for Building
Concurrent Applications from CSP Specifications. Technical

report, University of Guelph, 2009.

M. Goldsmith, B. Roscoe, and P. Armstrong. Failures-
Divergence Refinement - FDR2 User Manual. http://www.
fsel.com/fdr2_manual.html, 2005.

C. Girault and R. Valk. Petri Nets for Systems Engineering -
A Guide to Modeling, Verification, and Applications. Springer,
2003.

G. Hilderink, J. Broenink, and A. Bakkers. Communicating
Threads for Java. In B. M. Cook, editor, Architectures, Lan-
guages and Techniques, pages 243 — 261. IOS Press, 1999.

G. H. Hilderink, A. W. P. Bakkers, and J. F. Broenink. A Dis-
tributed Real-Time Java System Based on CSP. In ISORC "00:
Proceedings of the Third IEFE International Symposium on
Object-Oriented Real-Time Distributed Computing, page 400.
IEEE Computer Society, 2000.

J. He and C. A. R. Hoare. Unifying theories of programming.
In RelMiCS, pages 97-99, 1998.

J. He, Z. Liu, and X. Li. A Theory of Contracts. Techni-
cal Report 327, UNU-IIST, P.O.Box 3058, Macau, July 2005.

http://www.fsel.com/fdr2_manual.html
http://www.fsel.com/fdr2_manual.html

BIBLIOGRAPHY 169

[Hoa81]

[Hoa85]

[Hoa04]

[Hoa06]

[IR05)

[Jen95]

[JKMUNO02]

[JOLB04]

[KB10]

[KBG*11]

[KBGGOY]

Published in Electronic Notes of Theoretical Computer Science,
Volume 160 , pp. 173-195 2006.

C. A. R. Hoare. The Emperor’s Old Clothes. Commun. ACM,
24(2):75-83, 1981.

C. A. R. Hoare. Communicating Sequential Processes. Prentice
Hall, 1985.

C. A. R. Hoare. Communicating Sequential Processes. Prentice
Hall, 2004.

C. A. R. Hoare. Why ever CSP? Electronic Notes in Theoretical
Computer Science, 162:209 — 215, 2006. Proceedings of the
Workshop Essays on Algebraic Process Calculi (APC 25).

Y. Isobe and M. Roggenbach. A Generic Theorem Prover of
CSP Refinement. In Tools and Algorithms for the Construction
and Analysis of Systems, pages 108-123. Springer, 2005.

K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis
Methods and Practical Use, volume 2. Springer, 1995.

T. Jacob, O. Kummer, D. Moldt, and U. Ultes-Nitsche. Im-
plementation of Workflow Systems using Reference Nets — Se-
curity and Operability Aspects. In K. Jensen, editor, Fourth
Workshop and Tutorial on Practical Use of Coloured Petri Nets
and the CPN Tools. University of Aarhus, 2002.

D. S. Jovanovic, B. Orlic, G. K. Liet, and J. F. Broenink. gCSP:
A Graphical Tool for Designing CSP systems. In Communi-
cating Process Architectures 2004, Concurrent Systems Engi-
neering Series 62, pages 233-251. I0S Press, 2004.

M. Kleine and B. Bartels. On Using CSP for the Construc-
tion of Concurrent Programs. In International Conference on
Software Engineering Theory and Practice (SETP-10), 2010.

M. Kleine, B. Bartels, T. Gothel, S. Helke, and D. Pren-
zel. LLVM2CSP: Extracting CSP Models from Concurrent
Programs. In M. Bobaru, K. Havelund, G. Holzmann, and
R. Joshi, editors, 3rd NASA Formal Methods Symposium, num-
ber 6617, pages 500 — 505. Springer, 2011.

M. Kleine, B. Bartels, T. Gothel, and S. Glesner. Verifying
the Implementation of an Operating System Scheduler. In 3rd
IEEFE International Symposium on Theoretical Aspects of Soft-
ware Engineering (TASE °09), pages 285-286. IEEE Computer
Society, 2009.

170

BIBLIOGRAPHY

[KG10]

[KHOY]

[K1e09)]

[Kle10]

[Klell]

[KP95]

[KS10a]

[KS10D]

[Kum02]
[KWD*04]

[LBO5)]

M. Kleine and T. Go6thel. Specification, Verification and Im-
plementation of Business Processes using CSP. In 4th IEEFE
International Symposium on Theoretical Aspects of Software
Engineering, pages 145-154. IEEE Computer Society, 2010.

M. Kleine and S. Helke. Low Level Code Verification Based
on CSP Models. In M. Oliveira and J. Woodcock, editors,
Brazilian Symposium on Formal Methods (SBMF 2009), pages
266-281. Springer, 2009.

M. Kleine. Using CSP for Software Verification. In M. R.
Mousavi and E. Sekerinski, editors, Proceedings of Formal
Methods 2009 Doctoral Symposium, pages 8-13. Eindhoven
University of Technology, 2009.

M. Kleine. Compensable Workflows in CSP. In AVoCS 2010.
Universitat Diisseldorf, 2010.

M. Kleine. CSP as a Coordination Language. In W. De Meuter
and C. Roman, editors, Proceedings of the 13th International

Conference on Coordination Models and Languages (Coordina-
tion 2011), volume 6721 of LNCS. Springer, 2011.

M. Kwiatkowska and I. Phillips. Possible and Guaranteed Con-
currency in CSP. In Structures in Concurrency Theory, Work-

shops in Computing, pages 220-235. Springer, 1995.

M. Kleine and J. W. Sanders. Simulating truly concurrent
CSP. In Brazilian Symposium on Formal Methods (SBMF
2010). Springer, 2010.

M. Kleine and J. W. Sanders. Simulating truly concurrent
CSP. Technical Report 434, UNU-IIST, P.O. Box 3058, Macau,
June 2010.

O. Kummer. Referenznetze. Logos Verlag, Berlin, 2002.

O. Kummer, F. Wienberg, M. Duvigneau, J. Schumacher,
M. Kohler, D. Moldt, H. Rolke, and R. Valk. An Extensi-
ble Editor and Simulation Engine for Petri Nets: Renew. In
J. Cortadella and W. Reisig, editors, ICATPN 2004: Proceed-
ings of the 25th International Conference on Applications and
Theory of Petri Nets, volume 3099 of LNCS, pages 484-493.
Springer, 2004.

M. Leuschel and M. Butler. Combining CSP and B for Specifi-
cation and Property Verification. In A. Tarlecki J. Fitzgerald,
I. Hayes, editor, F'M 2005: International Symposium of For-

BIBLIOGRAPHY 171

[LBRO6]

[LCO*+10]

[Lea02]

[LFO8]

[LMCO1]

[LocO08]

[Low08]

[MDYS]

[Mil89]

[MRO3]

mal Methods Furope, volume 3582 of LNCS, pages 221-236.
Springer, 2005.

G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary Design
of JML: a Behavioral Interface Specification Language for Java.
ACM SIGSOFT Software Engineering Notes, 31(3):1-38, 2006.

B. Staudt Lerner, S. Christov, L. J. Osterweil, R. Bendraou,
U. Kannengiesser, and A. Wise. Exception Handling Patterns

for Process Modeling. IEEE Transactions on Software Engi-
neering, 99(RapidPosts):162-183, 2010.

D. Lea. JSR 166: Concurrency Utilities. http://www.jcp.
org/jsr/detail/166. jsp, 2002.

M. Leuschel and M. Fontaine. Probing the Depths of CSP-
M: A new FDR-compliant Validation Tool. In International
Conference on Formal Engineering Methods, pages 278-297.
Springer, 2008.

M. Leuschel, T. Massart, and A. Currie. How to make FDR
Spin: LTL model checking of CSP using Refinement. In P. Zave
J. N. Oliviera, editor, FME 2001: Formal Methods for Increas-
ing Software Productivity. Springer, March 2001.

A. Lochbihler. Type Safe Nondeterminism - A Formal Seman-
tics of Java Threads. In International Workshop on Foun-
dations of Object-Oriented Languages (FOOL 2008), January
2008.

G. Lowe. Specification of communicating processes: temporal

logic versus refusals-based refinement. Form. Asp. Comput.,
20(3):277-294, 2008.

B. Mahony and J. S. Dong. Blending Object-Z and Timed CSP:
an introduction to TCOZ. In Proc. (20th) International Con-
ference on Software Engineering, pages 95-104, 19-25 April
1998.

R. Milner. Communication and Concurrency. Prentice Hall,
1989.

D. Moldt and H. Rélke. Pattern Based Workflow Design Using
Reference Nets. In W. van der Aalst, A. ter Hofstede, and
M Weske, editors, Proceedings of International Conference on

Business Process Management, Eindhoven, NL, volume 2678
of LNCS, pages 246-260. Springer, 2003.

http://www.jcp.org/jsr/detail/166.jsp
http://www.jcp.org/jsr/detail/166.jsp

172

BIBLIOGRAPHY

[Miil02]

[INPWO2]

[PLOS]

[PWO5]

[PY96]

[Rey02]

[Ros94]

[Ros05]

[Ros08a]

[Ros08b]

[RWM10]

[SLDOS]

[SLDP09)

P. Miiller. Modular specification and wverification of object-
oriented programs. Springer, 2002.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic, volume 2283 of LNCS.
Springer, 2002.

D. Plagge and M. Leuschel. Seven at one stroke: LTL model
checking for High-level Specifications in B, Z, CSP, and more.
STTT, 2008.

F. Puhlmann and M. Weske. Using the m-Calculus for Formal-
izing Workflow Patterns. In Business Process Management,

pages 153-168, 2005.

A. N. Parashkevov and J. Yantchev. ARC - A Tool for Ef-
ficient Refinement and Equivalence Checking for CSP. In In
IEEE Int. Conf. on Algorithms and Architectures for Parallel
Processing ICA3PP 96, pages 68-75, 1996.

J. Reynolds. Separation logic: a logic for shared mutable data
structures, 2002.

A. W. Roscoe. Model-checking CSP, pages 3563-378. Prentice
Hall, 1994.

A. W. Roscoe. The Theory and Practice of Concurrency. Pren-
tice Hall, 2005.

A. W. Roscoe. On the expressiveness of CSP. Draft, October
2008.

A. W. Roscoe. The Three Platonic Models of Divergence-Strict
CSP. In ICTAC, pages 23-49, 2008.

F. Rabbi, H. Wang, and W. MacCaull. Compensable Work-
Flow Nets. In J. Dong and H. Zhu, editors, Formal Methods
and Software Engineering, volume 6447 of LNCS, pages 122—
137. Springer, 2010.

J.Sun, Y. Liu, and J. S. Dong. Model Checking CSP Revisited:
Introducing a Process Analysis Toolkit. In International Sym-
posium on Leveraging Applications of Formal Methods, Verifi-
cation and Validation, pages 307-322. Springer, 2008.

J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards Flexible
Verification under Fairness. Proceedings of the 21th Interna-
tional Conference on Computer Aided Verification (CAV’09),
5643:709-714, 2009.

BIBLIOGRAPHY 173

[S096]

[Spi92]

[STO4]

[STEO05]

[TV89]

[vdAOO]

[vdAO5]

[vdAADtHO04]

[vdADtHW02]

[vdAHV02]

[vdAtHO2]

[vdAtHKBO03)

W. Sadiq and M. E. Orlowska. Modeling and Verification of
Workflow Graphs, 1996.

J. M. Spivey. The Z notation: a reference manual. Prentice
Hall, 1992.

S. Schneider and H. Treharne. Verifying Controlled Compo-
nents. In IF'M, pages 87-107, 2004.

S. Schneider, H. Treharne, and N. Evans. Chunks: Component
Verification in CSP||B. In IFM, pages 89-108, 2005.

Sun. Java 5 concurrency guide. http://java.sun.com/j2se/

1.5.0/docs/guide/concurrency/.

D. Taubner and W. Vogler. Step failures semantics and a com-
plete proof system. Acta Inf., 27(2):125-156, 1989.

W. M. P. v. d. Aalst. Workflow Verification: Finding Control-
Flow Errors Using Petri-Net-Based Techniques. In Business

Process Management, pages 161-183, 2000.

W. M. P. van der Aalst. Pi calculus versus Petri nets: Let
us eat 'humble pie’ rather than further inflate the "Pi hype’.
BPTrends, 3(5):1-11, May 2005.

W. M. P. van der Aalst, L.. Aldred, M. Dumas, and A. H. M. ter
Hofstede. Design and Implementation of the YAWL System.
In CAiSE, pages 142159, 2004.

W. M. P. van der Aalst, M. Dumas, A. H. M ter Hofstede,
and P. Wohed. Pattern Based Analysis of BPML (and WSCI).
Technical Report FIT-TR-~2002-05, Queensland University of
Technology, Brisbane, 2002.

W. M. P. van der Aalst, A. Hirnschall, and H. M. W. Ver-
beek. An Alternative Way to Analyze Workflow Graphs. In
A. Banks-Pidduck, J. Mylopoulos, C. Woo, and M. Ozsu,
editors, Proceedings of the 14th International Conference on

Advanced Information Systems Engineering, volume 2348 of
LNCS, pages 535-552. Springer, 2002.

W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL:
Yet Another Workflow Language. Technical Report FIT-TR-
2002-06, Queensland University of Technology, Brisbane, 2002.

W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kie-
puszewski, and A. P. Barros. Workflow Patterns. Distrib.
Parallel Databases, 14(1):5-51, 2003.

http://java.sun.com/j2se/1.5.0/docs/guide/concurrency/
http://java.sun.com/j2se/1.5.0/docs/guide/concurrency/

174

BIBLIOGRAPHY

[vGVIT]

[WC02]

[Wel00]

(WG07]

[WGO0S]

[Win86]

[WMOO]

[WPM*09]

[YPO7]

[YP09)]

[ZCW11]

R. J. van Glabbeek and F. W. Vaandrager. The Difference
between Splitting in n and n+1. Inf. Comput., 136(2):109—
142, 1997.

J. Woodcock and A. Cavalcanti. The Semantics of Circus. In

Z B, pages 184-203, 2002.

P. H. Welch. Process Oriented Design for Java: Concurrency
for All. In H.R.Arabnia, editor, Proceedings of the Interna-
tional Conference on Parallel and Distributed Processing Tech-
niques and Applications (PDPTA’2000), volume 1, pages 51—
57. CSREA, CSREA Press, June 2000.

P. Y. H. Wong and J. Gibbons. A Process-Algebraic Approach
to Workflow Specification and Refinement. In Software Com-
position, pages H1-65, 2007.

P. Y. H. Wong and J. Gibbons. A Process Semantics for
BPMN. In ICFEM °08: Proceedings of the 10th Interna-
tional Conference on Formal Methods and Software Engineer-
ing, pages 355-374. Springer, 2008.

G. Winskel. Event Structures. In Advances in Petri Nets, pages
325-392, 1986.

P. H. Welch and J. M. R. Martin. A CSP Model for Java
Multithreading. In P. Nixon and I. Ritchie, editors, Software
Engineering for Parallel and Distributed Systems, pages 114—
122. IEEE Computer Society, 2000.

T. Wrigstad, F. Pizlo, F. Meawad, L. Zhao, and J. Vitek. Loci:
Simple Thread-Locality for Java. In ECOOP, pages 445-469,
2009.

L. Yang and M. Poppleton. JCSProB: Implementing Integrated
Formal Specifications in Concurrent Java. In A. A. McEwan,
S. Schneider, W. Ifill, and P. H. Welch, editors, Communicating
Process Architectures, pages 67-88. I0S Press, 2007.

L. Yang and M. Poppleton. Java implementation platform
for the integrated state- and event-based specification in
PROB. Concurrency and Computation: Practice and FExpe-
rience, 22(8):1007-1022, October 2009.

Z. Liu Z. Chen and J. Wang. A theory of failure-divergence
refinement for long running transactions. Technical Report 447,
UNU-IIST, P.O. Box 3058, Macau, Jan 2011.

	Title
	Contents
	Introduction
	Problems
	Proposed Solution
	Motivation
	Outline

	CSP
	Syntax
	Operational Semantics
	Denotational Semantics
	Refinement and Algebraic Semantics
	Tools
	Animators
	Model Checkers
	Refinement Checkers

	Summary

	Further Terminology and Notations
	Coordination Languages
	Java Concurrency
	Infamous Phenomena of Concurrency
	Business Processes and Workflows
	Summary

	Simulating Truly Concurrent CSP
	The Transformation T
	Assembling the System
	Properties
	Examples
	Choice versus Concurrency
	One-place Buffer
	Dining Philosophers
	Van Glabbeek's Owl

	Restricting T
	Prohibiting Internal Choice, Hiding and Timeout
	Prohibiting External Choice and Timeout

	Discussion

	Conflict, Internal Actions and FD Preservation
	Simulation, Monitoring and Interruption
	Transforming External Choice
	Transforming Timeout
	Transforming Interrupt
	Discussion

	Designing a CSP-based Coordination Environment
	Unraveling Abstractions
	Timeout, Hiding and Nondeterminism
	Duration, Conflict and Concurrency

	Design Decisions
	Interpreting T
	Performing Actions
	Choosing Events

	Supported Processes
	Integrating Specifications of UDFs
	Categorizing Coordination
	Discussion

	Coordinating Java Threads
	General Design Decisions
	Implementing the CSP Coordination Environment
	The Environment
	Assigning UDFs to Events
	Events and Hidden Transitions
	Processes and Process Operators
	Performing Actions
	Choosing Events

	Modular Verification
	Supported Processes
	Example
	Turning Bad Processes into Good Ones

	Discussion

	Using CSP for the Modeling and Coordination of Workflows
	A CSP-based Workflow Server
	Verifying the Server
	Modeling Business Process in CSP
	Workflow Definitions
	Compensation
	Discussion

	Related Work
	Coordination
	Non-CSP Approaches
	CSP-based Approaches

	Truly Concurrent Semantics for CSP
	CSP-like Concurrency Frameworks
	Modeling and Managing Business Processes
	Modeling Techniques
	Compensation

	Summary

	Conclusion
	Summary
	Contributions
	Future Work
	Related Publications
	Acknowledgements

	Proofs
	Examples
	Bibliography

