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ABSTRACT: Some manufacturing processes of polymeric materials, such

as injection moulding or film blowing, cause the final product to be highly

anisotropic. In this study, the mechanical behaviour of drawn Polyethy-

lene (PE) tapes is investigated via micro-mechanical modelling. An elasto-

viscoplastic micro-mechanical model, developed within the framework of the

so-called composite inclusion model, is presented to capture the anisotropic

behaviour of oriented semi-crystalline Polyethylene. Two different phases

namely, amorphous and crystalline (both described by elasto-viscoplastic con-

stitutive models), are considered at the micro-structural level. The initial

oriented crystallographic structure of the drawn tapes is taken into account.

It was previously shown1 that by only considering the oriented crystallographic

structure, it is not possible to capture the macroscopic anisotropic behaviour

of drawn tapes. The main contribution of this study is the development of an

anisotropic model for the amorphous phase within the micro-mechanical frame-

work. An EGP (Eindhoven Glassy Polymer) based model including different

sources of anisotropy namely, anisotropic elasticity, internal stress in the elastic

network and anisotropic viscoplasticity, is developed for the amorphous phase

and incorporated into the micro-mechanical model. Comparisons against ex-

perimental results reveal remarkable improvements of the model predictions

(compared to micro-mechanical model predictions including isotropic amor-

phous domains) and thus the significance of the amorphous phase anisotropy

on the overall behavior of drawn PE tapes.

Keywords: Semi-crystalline Polymers, Oriented Polyethylene, Micro-

mechanical model, Anisotropic amorphous phase
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INTRODUCTION

Polymers have become an important and highly applicable type of materials due to their

interesting chemical, optical, thermal and mechanical properties. Some polymeric materi-

als develop a semi-crystalline micro-structure during the cooling process from the molten

state. The micro-structure of semi-crystalline polymers is composed of different phases, a

crystalline phase and an amorphous phase2.

During some manufacturing processes for polymeric products, such as injection molding

or film blowing, the material is under shear and elongational flow resulting in an oriented

micro-structure after crystallization which leads to anisotropic mechanical behaviour. Semi-

crystalline polymers are used in different industries and in load bearing applications. Load

and lifetime assessments require to predict the orientation dependent thermo-mechanical

behaviour of these materials in a quantitative manner, based on the inherently hierarchical

heterogeneous structure of semi-crystalline polymers, using multi-scale simulations.

The history of micro-mechanical modelling of semi-crystalline polymers dates back to the

1990’s. Parks and Ahzi3 and Lee et al.4,5 were the pioneers in modelling the mechanical

behaviour of semi-crystalline polymers within a micro-mechanical framework. Parks and

Ahzi3 developed a fully crystalline micro-mechanical rigid-viscoplastic model (named Con-

strained Hybrid (CH) model) to describe the deformation behaviour and texture evolution

of polycrystalline materials. Ahzi et al.7 described large plastic deformation and also tex-

ture evolution of different semi-crystalline polymers with the CH model proposed by Parks

and Ahzi3 and the reformulated version of the CH model by Lee et al.6, in which idealized

fully crystalline materials were considered and the deformation mechanism was assumed to be

crystallographic slip only. A rigid viscoplastic so-called composite inclusion model was devel-

oped by Lee et al.4,5 to describe the large plastic deformation of semi-crystalline polymers as

well as the texture evolution in the crystalline phases by taking into account both crystalline

and amorphous phases. The model by Lee et al.4,5 was extended by van Dommelen et al.2

to include elasticity and as a result, the original rigid-viscoplastic model was reformulated

to an elasto-viscoplastic model. Nikolov and Doghri8 developed a micro-mechanical model

to describe the small deformation behaviour of Polyethylene. The material was considered
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as a composite consisting of a number of rigid viscoplastic crystalline lamellae together with

their adjacent amorphous layers which were described as a viscoelastic material. Nikolov et

al.9 extended this model8, where the crystalline phase was modelled by an elasto-viscoplastic

model and the amorphous phase was described using a new physically derived viscoelastic

model. Adequate agreements were obtained between simulations and experimentally ob-

tained tensile stress-strain curves at small deformations.

Sedighiamiri et al.10 modified the model developed by van Dommelen et al.2 by extending

the slip kinetics for semi-crystalline PE. The relation between the shear rate of each slip

system and the corresponding resolved shear stress was described with an Eyring flow rule.

Also, the flow rule of the amorphous phase was based on an Eyring model. Sedighiamiri et

al.11 added a non-Schmid effect to the constitutive relation for each slip system, to predict

the yield kinetics in different deformation modes and failure of semi-crystalline PE. The

yield kinetics of initially isotropic PE was well described with this model. Sedighiamiri et

al.1 also investigated the possibility of using the previously developed models10,11 for initially

oriented semi-crystalline PE. In addition, it was studied whether oriented systems could be

used for characterizing the properties of different crystallographic slip systems. Based on

wide angle X-ray scattering measurements, the initial orientation distribution was obtained.

Uniaxial tensile tests were performed on dog-bone-shaped samples which were cut from a

tape at different angles to investigate the orientation effects. It was concluded that for more

accurate quantitative predictions, it is required to describe the amorphous phase using an

anisotropic model which takes into account the amorphous phase orientation.

The goal of this study is to model the mechanical behaviour of hot drawn PE tapes. Not

only are these tapes highly anisotropic with a significant effect of the loading angle on

the overall deformation behaviour, also a large strain rate dependency exists, specifically

when the sample is cut in the draw direction of the tape. The model, presented in this

study, therefore extends the model developed by Sedighiamiri et al.10,11, which was used

for isotropic high density Polyethylene (HDPE) and oriented PE tapes possessing a highly

oriented crystallographic structure1. In this work, an anisotropic model, including different

sources of anisotropy, namely anisotropic elasticity, an internal stress in the elastic network

and anisotropic viscoplastic flow, is developed and incorporated into the micro-mechanical

4



model. Poluektov et al.15 extended previous work16,17 to quantitatively study the long term

and short term mechanical behaviour of anisotropic PET. For that purpose, an internal

stress was incorporated into the constitutive description of the amorphous phase. The same

approach is followed in this study. However, the anisotropic model developed in this study

has an additional anisotropic viscoplastic flow rule which is developed using the anisotropic

effective stress of Hill18,19. The effect of the amorphous phase anisotropy is significant and

comparisons between the model predictions and experimentally obtained results show sig-

nificant improvements.

The next section gives the experimental results for oriented PE tape under different loading

angles and different strain rates, reported by Sedighiamiri et al.1. In Section , the micro-

mechanical framework, including the original isotropic model for the amorphous phase, is

explained. Based on the results with this model and comparisons to experimental results, the

motivation for extending the constitutive model for the amorphous phase is discussed. Sec-

tion explains various sources of anisotropy in oriented PE tapes and describes the anisotropic

model for the amorphous phase, including an internal stress into the elastic network, an

anisotropic viscoplastic flow rule and anisotropic elasticity. In Section , the material prop-

erties for the individual micro-structural phases are given and the Hill parameters and pre-

stretch factor for the amorphous phase are quantified. Comparisons between the simulations

and experimental results are made. Section summarizes the conclusions drawn from this

study.

EXPERIMENTAL RESULTS

In this study, the mechanical anisotropy of hot-drawn Polyethylene tapes, in which the

crystalline domains show a preferred orientation distribution is modelled. Sedighiamiri et

al.1 conducted tensile experiments on oriented high density Polyethylene tape with a draw

ratio of 4 (λ = 4) at different loading angles (φ = 0◦, 20◦, 50◦) and under different strain rates.

Wide angle X-ray scattering (WAXS) experiments were conducted and the weight fraction of

the crystalline phase of the oriented Polyethylene tape was determined to be 66%. Additional

WAXS experiments were conducted to obtain the crystallographic orientation distribution.
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Uniaxial tensile tests were performed on dog-bone-shaped samples which were cut from the

tapes at different angles to investigate the orientation effects. Three different strain rates,

within the quasi-static range, were applied (ε̇ = 0.0001 s−1, 0.001 s−1, 0.01 s−1). Figure 1

shows a schematic representation of the samples cut from the oriented tapes at different

angles with respect to the machine direction, together with the experimentally obtained

stress-strain curves at room temperature.

Figure 1.

A strong degree of dependence on both loading angle and strain rate is observed in the

stress-strain curves.

MICRO-MECHANICAL MODEL

In this section, the micro-mechanical model, used in this study, including the original

isotropic model for the amorphous phase, is presented11. The model has four key com-

ponents which constitute the basis of the model:

• Two-phase composite inclusion;

• Inclusion interaction law;

• Constitutive model of the crystalline phase;

• Constitutive model of the amorphous phase.

Each of the aforementioned aspects of the micro-mechanical model will be explained in detail

in the following.

Two-phase composite inclusion

Lee et al.4,5 proposed a framework for modelling the rigid/viscoplastic mechanical behaviour

of semi-crystalline materials. This framework uses a layered two-phase composite inclusion

as the basis of the model, whereby an aggregate of inclusions constitutes the whole material.

This approach is used in this study. Each crystalline lamella and the corresponding attached

amorphous layer, as shown in Figure 2(a), is considered as an inclusion.
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Figure 2.

The volume-averaging relations for the deformation gradient tensor and Cauchy stress tensor

apply:

FI = fa
0F

a + (1− fa
0 )F

c, (1)

σ
I = fa

σ
a + (1− fa)σc, (2)

where FI is the inclusion-averaged deformation gradient, σI is the inclusion-averaged Cauchy

stress, fa
0 and fa are the initial and current volume fraction of the amorphous phase, re-

spectively. The following relation holds for the current volume fraction of each constituent

phase2:

fπ =
fπ
0 J

π

fa
0 J

a + (1− fa
0 )J

c
; π = a, c, (3)

where J represents the corresponding volume change ratio (det(F)). The superscripts a, c

and I refer to the amorphous phase, the crystalline phase and the inclusion, respectively.

Compatibility of deformation gradients and traction equilibrium are considered at the in-

terface between the constituents. If nI is the unit normal vector on the interface in the

deformed configuration, traction equilibrium is obtained by:

σ
a · nI = σ

c · nI = σ
I · nI , (4)

The compatibility condition is obtained by:

Fa · xI
0 = Fc · xI

0 = FI · xI
0, (5)

where, xI
0 denotes an arbitrary vector in the interface plane in the reference configuration.

Inclusion interaction law

The semi-crystalline polymer is considered as an aggregate of randomly or preferentially

oriented inclusions for isotropic and anisotropic materials, respectively. Figure 2(b) depicts a

schematic representation of an aggregate of uniformly distributed inclusions. A local-global

interaction law is defined to relate the mechanical behaviour of each composite inclusion

to the imposed boundary conditions of the aggregate of inclusions. In this work, a hybrid

interaction model, which is basically an intermediate approach between the Taylor and Sachs
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interaction laws and referred to as the Û-inclusion model, is used2. In the hybrid interaction

law, six auxiliary deformation-like unknowns, Û, are introduced for which the following

local-global relation holds:

UI i · nI
0

i
= Û · nI

0

i
, i = 1, . . . , N I (6)

where N I is the number of inclusions and U is the right stretch tensor, such that F = R ·U,

where R is the rotation tensor. Using the global (macroscopic) Cauchy stress tensor σ, and

the global rotation tensor, R, the following local-global relations hold:

σ
I i · xI i = σ · xI i, i = 1, . . . , N I , (7)

RI i = R, i = 1, . . . , N I , (8)

in combination with the following consistency conditions:

σ =

NI∑

i=1

f I i
σ

I i, (9)

U =

(
J

J∑

)1/3 NI∑

i=1

f I
0

i
UI i, (10)

where, J and J∑ are given by:

J =

NI∑

i=1

f I
0

i
JI i, (11)

J∑ = det




NI∑

i=1

f I
0

i
FI i



 . (12)

In relation (7), xI i denotes an arbitrary vector in the interface plane of each composite

inclusion.

Before detailing the constitutive relations for the crystalline and amorphous phases, it is

necessary to mention that for the both phases, the deformation gradient is assumed to be

multiplicatively decomposed into its elastic and plastic components, depicted by subscripts

e and p, respectively23:

F = Fe · Fp. (13)
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This decomposition suggests a local unstressed intermediate configuration obtained by elastic

unloading from the final deformed configuration. The velocity gradient is given by:

L = Le + Fe · Lp · Fe
−1, (14)

where the elastic velocity gradient, Le, and plastic velocity gradient, Lp, are defined by:

Le = Ḟe · Fe
−1, (15)

Lp = Ḟp · Fp
−1. (16)

Crystalline phase constitutive model

The crystalline domain of HDPE has an orthorhombic structure with anisotropic properties,

including a high elastic modulus in the chain direction. The elastic stress-strain relation for

the crystalline phase is given by:

Sc = 4Cc : Ec
e, (17)

where the elastic second Piola-Kirchhoff stress, Sc, is defined by:

Sc = Jc
eF

c
e
−1 · σc · Fc

e
−T , (18)

where Fc
e denotes the elastic deformation gradient tensor in the crystalline phase and σ

c is

the Cauchy stress tensor. In Equation (17), the elastic Green-Lagrange strain, Ec
e, is defined

by:

Ec
e =

1

2

(
Fc

e
T · Fc

e − I
)
, (19)

where I is the second order identity tensor. In Equation (17), 4Cc denotes the elasticity

tensor which, in matrix form using the Voigt notation (where the stress components are

ordered as σ
˜
T = [σ11 σ22 σ33 σ12 σ13 σ23]), can be represented by:

C =




c11 c12 c13 0 0 0

c12 c22 c23 0 0 0

c13 c23 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66




. (20)
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The plastic behaviour of the crystalline phase is assumed to occur by crystallographic slip up

to moderate strains25–28. In the micro-mechanical model, the slip mode is considered to be

merely fine slip. A rate dependent crystal plasticity model is used to describe the viscoplastic

part of the deformation in the crystalline lamellae. The contribution of all physically distinct

slip systems is taken into account:

Lc
p = Ḟc

p · Fc
p
−1 =

Ns∑

α=1

γ̇αPα
0 , (21)

where Ns is the number of physically distinct slip systems, Pα
0 is the nonsymmetric Schmid

tensor given by:

Pα
0 = sα0 ⊗ nα

0 , (22)

where, sα0 is the unit slip direction and nα
0 is the unit slip plane normal of slip system α,

both in the reference configuration. In Equation (21), γ̇α is the shear rate of slip system α.

When a single relaxation process is considered, γ̇α is defined using an Eyring flow rule11:

γ̇α = γ̇α
0 exp

(
−∆Uα

RT

)

︸ ︷︷ ︸
a

sinh

(
τα

τ c0

)

︸ ︷︷ ︸
b

exp

(
µασα

n

τ c0

)

︸ ︷︷ ︸
c

, (23)

where γ̇α
0 is the reference shear rate, τα0 is the reference shear strength, τα is the resolved

shear stress. Part (a) of equation (23) describes the temperature dependence of the slip

kinetics where, ∆Uα is the activation energy of each slip system, R is the universal gas

constant and T is the absolute temperature. The stress dependence of the plastic flow is

captured in part (b) of the equation. Finally, part (c) captures the effect of the normal

stress of each slip plane (σα
n) on the plastic flow, where the parameter µα is the coefficient of

normal stress dependency. Experimental results of tensile yield kinetics for initially isotropic

Polyethylene at different temperatures and strain rates show that two relaxation processes

contribute to the viscoplastic flow behaviour11. Based on these observations, two different

flow processes are distinguished, as shown in Figure 3.

Figure 3.

The extended slip rate considering both processes I and II is given by11:

γ̇α =




γ̇c,I
0 exp

(
−∆Uc,I

RT

)
sinh

(
τ

τc,I
0

)
γ̇∗,c,I+II
0 sinh

(
τ

τc,I+II

0

)

γ̇c,I
0 exp

(
−∆Uc,I

RT

)
sinh

(
τ

τc,I
0

)
+ γ̇∗,c,I+II

0 sinh
(

τ

τc,I+II

0

)



 exp

(
µσn

τ c0

)
, (24)

10



where τ I+II
0 represents the shear stress dependence when both processes I and II are activated:

τ c,I+II
0 = τ c,I0 + τ c,II0 . (25)

Also, the temperature dependent pre-exponential initial shear rate, γ̇∗ I+II
0 , includes contri-

butions of two processes:

γ̇∗,c,I+II
0 = 2 exp



−
τ c,I0 ln

[
2

γ̇c,I
0

exp
(

∆Uc,I

RT

)]
+ τ c,II0 ln

[
2

γ̇c,II
0

exp
(

∆Uc,II

RT

)]

τ c,I0 + τ c,II0



 . (26)

It should be noted that super script (α) which refers to each slip system is omitted in relations

(24)-(26) to avoid confusions.

Amorphous phase constitutive model

In this section, the initial isotropic model for the amorphous phase is described. The model

is developed based on the EGP (Eindhoven Glassy Polymer) model12,13 for amorphous poly-

mers. A single mode model with two relaxation processes (α and β which will be referred to

I and II, respectively) is adopted. The mechanical analogue of the single mode EGP model

is shown in Figure 4.

Figure 4.

The total Cauchy stress is additively composed of the driving stress (σa
s ) and the hardening

stress (σa
r ):

σ
a = σ

a
s + σ

a
r . (27)

The driving stress is dependent on the elastic deformation gradient and is composed of

hydrostatic and deviatoric contributions indicated by superscript h and d, respectively, given

by:

σ
ah
s = −paI; pa = −Ka(Ja

e − 1), (28)

σ
ad
s = GaB̃ad

e , (29)

where Ka is the bulk modulus, Ga is the shear modulus. The isochoric elastic left Cauchy-

Green deformation tensor is defined by:

B̃a
e = Ja

e
− 2

3Fa
e · Fa

e
T . (30)
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The hardening stress is dependent on the total isochoric deformation gradient:

σ
a
r = GrB̃

ad (31)

where Gr is the hardening modulus. A constitutive relation for the plastic deformation rate

tensor is introduced in order to fully describe the deformation behaviour of the amorphous

phase. The plastic deformation rate tensor is defined by:

D̃a
p = sym

(
Fe · Lp · Fe

−1
)
. (32)

In this model, the plastic stretching tensor is given by:

D̃a
p =

σ
ad
s

2η
, (33)

where η is the viscosity of the amorphous phase given by:

η =
τ

γ̇a
p

, (34)

and τ is the effective stress given by:

τ =

√
1

2
σ

ad
s : σad

s . (35)

In Equation (34), γ̇a
p is the plastic shear rate which for two relaxation processes is given by:

γ̇a
p =




γ̇a,I
0 sinh

(
τ

τa,I
0

)
γ̇a,I+II
0 sinh

(
τ

τa,I+II

0

)

γ̇a,I
0 sinh

(
τ

τa,I
0

)
+ γ̇a,I+II

0 sinh
(

τ

τa,I+II

0

)


 exp

(
−µ pa

τa,II0

)
, (36)

where,

γ̇a,I+II
0 = 2 exp



−
τa,I0 ln( 2

γ̇a,I
0

) + τa,II0 ln( 2

γ̇a,II
0

)

τa,I+II
0



 , (37)

τa,I+II
0 = τa,I0 + τa,II0 . (38)

The superscripts I and II denote two relaxation processes, τ is the effective stress, µ is

the pressure dependency coefficient and τa0 is the shear strength of the amorphous phase.

In Equation (36), pa is the hydrostatic pressure of the amorphous phase. Kanters et al.14

compared this approach with one that involves separate kinematics for the two relaxation

processes and found that there is only a small difference between the aforementioned ap-

proaches.
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Initial results

The mechanical behaviour of oriented tape is first predicted with the micro-mechanical model

described in the previous section using an isotropic elasto-viscoplastic constitutive model for

the amorphous phase. Based on wide angle X-ray scattering measurements, the initial orien-

tation distribution was generated. The pole figures of the crystallographic and morphological

orientations were generated to be consistent with the experimentally obtained pole figures1.

As a quantitative measure for the orientation, the Hermans orientation factor was used20:

fH =
3 < cos2Φ > −1

2
, (39)

where Φ represents the angle between the crystallographic axis and a reference axis. The

Hermans orientation factor varies between -0.5 and 1, where fH = −0.5 represents an or-

thogonal orientation, fH = 0 is obtained for a random orientation and fH = 1 indicates a

perfectly uniaxial orientation. Hermans factors are used to check if the generated samples

properly represent the material. Figure 5 depicts pole figures of the crystallographic and

lamellar orientations of oriented polyethylene tape with a draw ratio factor of 4 (λ = 4).

Figure 5.

Table 1 reveals that the Hermans factors of the created samples are close to the experi-

mental ones. In1, the volume fraction of the crystalline phase was estimated to be 60%.

Table 1: Hermans orientation factors for crystallographic orientations, obtained experimen-

tally and from the generated samples.

fa fb fc

Experiment -0.40 -0.29 0.70

Simulation -0.37 -0.34 0.71

Before starting the simulations, the material properties of the crystalline lamellae and the

amorphous domain are first presented.

Crystalline phase properties

The crystalline domains of PE possess an orthorhombic structure. Table 2 gives the lattice
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parameters of the crystalline lamellae29,30.

Table 2: Lattice parameters of PE crystals, all in Å29,30.

a b c

7.39 4.95 2.54

The elastic properties of the crystalline phase were obtained from Tashiro et al.31 and are

given in Table 3. The yield kinetics of the slip systems were determined such that the exper-

Table 3: Elastic properties of the crystalline lamellae of Polyethylene, all in GPa31.

C11 C22 C33 C12 C13 C23 C44 C55 C66

7.99 9.92 315.92 3.28 1.13 2.14 3.62 1.62 3.19

imentally obtained response of both the oriented and the original isotropic material11 could

be described for a range of strain rates. Here, the slip kinetics of the various slip systems

were chosen to be parallel. Table 4 gives the values of slip kinetics used in this study.

Table 4: Slip kinetics of the crystalline lamellae of oriented PE11.

Process I Process II

Slip system γ̇∗,c,I
0,Tref

[s−1] ∆U c,I [kJ/mol] τ c,I0 [MPa] γ̇∗,c,II
0,Tref

[s−1] ∆U c,II [kJ/mol] τ c,II0 [MPa]

(100)[001] 6.5× 10−20 560 0.06 2.2× 10−3 110 0.7

(010)[001] 1× 10−27 1293 0.06 2.2× 10−3 110 0.7

{110}[001] 1× 10−27 1293 0.06 2.2× 10−3 110 0.7

(100)[010] 5× 10−26 867 0.06 2.2× 10−3 110 0.7

(010)[100] 1× 10−27 1293 0.06 2.2× 10−3 110 0.7

{110}[110] 1× 10−27 1293 0.06 2.2× 10−3 110 0.7

Amorphous phase properties

The isotropic elastic material properties of the amorphous phase are defined as Ga = 65 MPa

and Ka = 3000 MPa11. The viscoplastic (Eyring) properties for the amorphous domain are

given in Table 711. Figure 6 shows the total (sum of α and β relaxation processes) yield

14



Table 5: Viscoplastic properties of the amorphous domain of PE.

Process I Process II

γ̇a,I
0,T [s−1] ∆Ua,I [kJ/mol] τa,I0 [MPa] γ̇a,II

0,T [s−1] ∆Ua,II [kJ/mol] τa,II0 [MPa]

2.1× 10−39 582 0.069 2.2× 10−6 110 0.805

kinetics of the slip systems and amorphous phase at room temperature.

Figure 6.

A comparison between the experimental results and model predictions obtained with the

oriented crystallographic structure and an isotropic amorphous phase is given in Figure 7

for the three loading angles and three strain rates. All the model predictions in this study

are converted from true stress-strain to engineering stress-strain curves in order to make a

direct comparison to the experimental results.

Figure 7.

The discrepancy between the experimental results and simulations increases by increasing

the strain rate and decreasing the loading angle. It should also be emphasized that in the

simulations conducted in this study, the generated crystallographic orientation distribution

well represents the crystallographic texture considering the WAXS measurements. However,

as opposed to isotropic polymeric materials which have a higher compressive yield stress

than their tensile yield stress, oriented polymers may show a considerably higher tensile

yield strength in comparison to their compressive yield strength33,34. The yield behaviour

and Bauschinger effect in injection molded Polyethylene at different loading angles and un-

der different strain rates were studied by Senden et al.34. Senden et al.35 modelled a strong

Bauschinger effect in oriented Polycarbonate using an EGP based model including a viscous

hardening branch. Consequently and considering the aforementioned observed Bauschinger

effect in oriented Polyethylene, it was concluded that the amorphous phase orientation is

not negligible and should be taken into account.

ANISOTROPIC MODEL FOR THE AMORPHOUS PHASE

There are different sources of anisotropy in oriented Polyethylene:
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• Anisotropy associated to the crystalline lamellae:

– Anisotropic elastic properties of each crystalline lamella;

– Anisotropic viscoplastic properties of each crystalline lamella due to crystallo-

graphic slip processes;

• Anisotropy associated to the amorphous phase:

– Anisotropic elasticity;

– Internal stress due to the oriented elastic network;

– Anisotropic viscoplastic flow;

• Difference in properties between oriented crystalline lamellae and amorphous domains.

In this study, an anisotropic model is developed for the amorphous phases in the micro-

mechanical model. The three sources of anisotropy are incorporated in the model. In the

following, each of these aspects is elaborated in detail.

Internal stress in the elastic network

Polymeric materials normally show a pressure dependent behaviour. For isotropic polymers,

the yield stress in compression is slightly higher than under tensile conditions33. On the con-

trary, for oriented polymers, the yield stress in tensile loading may be considerably higher

than in compression33,34. Senden et al.34 studied the yield behaviour of injection moulded

Polyethylene and showed a considerably higher yield strength in tension compared to com-

pressive yield strength. Also, it was shown by Senden et al.33,35 that by increasing the level

of pre-stretch, the difference between tensile and compressive yield stress increases. The in-

ternal stress was found to be the main reason for the observed orientation dependent thermal

shrinkage of PET films15. Furthermore, Poluektov et al.15 showed that for oriented PET,

it is necessary to include an internal stress into the elastic network of the amorphous phase

in order to obtain a realistic macroscopic response for the creep compliance. Based on the

aforementioned observations, an internal stress is incorporated into the elastic network for

the amorphous phase of oriented Polyethylene. The internal stress, although different from
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the classical kinematic hardening, will act as kinematic hardening. In order to include an

internal pre-stress in the elastic elements (describing the molecular network) of the model, a

pre-stretch deformation (Fa
d) is applied to the hardening branch. Figure 8 depicts schemat-

ically how the pre-stretch deformation gradient is applied to the elastic network branch.

Figure 8.

The pre-stretch deformation gradient (i.e. affecting the initial state) in the elastic spring in

the driving branch of the model is obtained by equilibrating the amorphous phase. Once

the elastic pre-stretch in the driving branch is obtained, the initial plastic state is obtained

so that the total deformation gradient of the driving branch is equal to identity (see Fig.

8). When the material is under deformation (Fa), the deformation gradient tensor Fa
r of the

hardening branch is obtained by:

Fa
r = Fa · Fa

d, (40)

where, Fa is the deformation gradient of the amorphous phase and Fa
d is the imposed pre-

stretching deformation gradient.

Anisotropic viscoplastic flow

As mentioned before, strong tension-compression asymmetry is observed in the deformation

behaviour of oriented polymers33,34. Senden et al.35 modelled the mechanical behaviour of

Polycarbonate using an EGP based model including a viscous strain hardening contribu-

tion. Also, the cyclic uniaxial deformation of PC was modelled and a strong Bauschinger

effect was properly captured. This indicates the presence of anisotropy in the visco-plastic

flow. Besides, in preliminary simulations using the anisotropic constitutive model for the

amorphous phase, combining with an internal stress, it was discovered that the viscoplastic

flow rule should also be modified from isotropic to anisotropic so that the anisotropic rate

dependence of the oriented material is also accurately modelled. The constitutive relation

for the plastic deformation rate tensor is written as:

D̃a
p = γ̇a

pN, (41)

where, γ̇p is the plastic shear rate given by Equation (36). For the isotropic flow rule, the

effective stress was given by Equation (35). In order to modify the flow rule of the model
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to anisotropic flow, the equivalent stress (τ) is replaced with Hill’s anisotropic effective

stress18,19 which is given by34,36:

σ2
H = F (σ∗

22 − σ∗
33)

2 +G (σ∗
33 − σ∗

11)
2 +H (σ∗

11 − σ∗
22)

2

+2L(σ∗
23)

2 + 2M(σ∗
13)

2 + 2N(σ∗
12)

2, (42)

where σ
∗ is the driving stress tensor in the local coordinate system:

σ
∗ = Ra · σa

s ·RaT , (43)

where, Ra is the rotation tensor. The anisotropy parameters in Equation (42) are defined

by:

F =
1

2

(
1

R2
22

+
1

R2
33

− 1

R2
11

)
, L =

3

2 R2
23

,

G =
1

2

(
1

R2
11

+
1

R2
33

− 1

R2
22

)
, M =

3

2 R2
13

, (44)

H =
1

2

(
1

R2
11

+
1

R2
22

− 1

R2
33

)
, N =

3

2 R2
12

.

The Rij factors in relation (44) are the ratios between the corresponding anisotropic yield

stress in ij direction to the reference yield stress. Introducing all Rij parameters to unity

reduces the anisotropic flow rule to the isotropic case with σH =
√
3τ . Accordingly, the

plastic shear rate, given in Equation (36), is updated as:

γ̇p =




γ̇a,I
0 sinh

(
σH√
3τa,I

0

)
γ̇a,I+II
0 sinh

(
σH√

3τa,I+II

0

)

γ̇a,I
0 sinh

(
σH√
3τa,I

0

)
+ γ̇a,I+II

0 sinh
(

σH√
3τa,I+II

0

)


 exp

(
−µ pa

τa,II0

)
. (45)

In equation (41), N indicates the tensorial direction of flow and is given by:

N = RaT ·N∗ ·Ra, (46)

where, N∗ is given by:

N∗ =
1√
3

∂σH

∂σ∗
. (47)

The components of this tensor, N∗, are obtained as:

N∗
11 =

1

σH
(σ∗

11 (G+H)− (Gσ∗
33 +Hσ∗

22)) ,
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N∗
22 =

1

σH
(σ∗

22 (F +H)− (Fσ∗
33 +Hσ∗

11)) ,

N∗
33 =

1

σH
(σ∗

33 (F +G)− (Fσ∗
22 +Gσ∗

11)) , (48)

N∗
12 =

2

σH
(Nσ∗

12) , N∗
13 =

2

σH
(Mσ∗

13) ,

N∗
23 =

2

σH

(Lσ∗
23) .

Anisotropic elasticity

Due to drawing, the polymer chains in the amorphous phase become preferentially oriented

in the draw direction of the tape and as a result, a higher stiffness of the amorphous phase

in the draw direction of the tape can be expected. Hence, the elastic isotropic behaviour of

the amorphous phase needs to be modified to the anisotropic case as well.

The elastic stress-strain relation in the amorphous phase is given by:

Sa
s =

4Ca : Ea
e , (49)

where Sa
s is the elastic second Piola-Kirchhoff stress in the driving branch. The driving

Cauchy stress is then given by:

σ
a
s =

1

Ja
e

Fa
e · Sa

s · Fa
e
T , (50)

with Fa
e the elastic deformation gradient tensor in the amorphous phase. In equation (49),

the elastic Green-Lagrange strain, Ea
e , is defined by:

Ea
e =

1

2

(
Fa

e
T · Fa

e − I
)
, (51)

where, I is the second order identity tensor. In equation (49), 4Ca denotes the stiffness tensor

of the amorphous phase which in matrix form, using the Voigt notation, has a similar matrix

representation as the stiffness of the crystalline lamellae (Equation (20)). For an orthotropic
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material, the compliance matrix, which is the inverse of the stiffness matrix, is given by:

Sa =




1
E11

− ν21
E22

− ν31
E33

0 0 0

− ν12
E11

1
E22

− ν32
E33

0 0 0

− ν13
E11

− ν23
E22

1
E33

0 0 0

0 0 0 1
G12

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G23




, (52)

where Eij are the elastic moduli in different directions, νij are the Poisson’s ratios, Gij are

the shear moduli and the axes 1,2 and 3 correspond with the orthotropy axes.

RESULTS AND DISCUSSION

In this section, the material properties for the crystalline and amorphous phases of oriented

PE are determined. Simulations are conducted using the the extended micro-mechanical

model (including the anisotropic model for the amorphous phase) and the results are con-

fronted with experimentally obtained stress-strain curves. Significant improvements in the

model predictions are obtained and the comparisons with experimental results show the

quantitative impact of the amorphous phase anisotropy.

Material properties

In this section, the material properties including the elastic properties and yield kinetics

of the amorphous phase are determined. The lattice parameters, elastic properties and the

yield kinetics of the crystalline lamellae, were given in the Section (see Tables 2, 3 and 4).

Amorphous phase properties

In order to recover the elastic properties for the amorphous phase, the isotropic case will be

perturbed starting from the Young’s modulus and Poisson’s ratio, extended from the shear

modulus and bulk modulus of the amorphous phase in isotropic PE (Ga = 65 MPa and

Ka = 3000 MPa11). The Young’s modulus in the draw direction of the tape is gradually

increased in order to take into account the effect of drawing on the stiffness of the amorphous
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phase in the draw direction. It was assumed that the main effect of the drawing process

on the stiffness of the amorphous phase appears in the actual draw direction and thus the

other two stiffness properties (E11, E22) are considered almost equal to the stiffness of the

un-oriented amorphous phase (in isotropic PE). The results and comparison to experiments

showed the assumption (regarding effects of drawing on the stiffness) to be reasonable. The

Poisson’s ratios are determined to best capture the experimental results and taking into ac-

count the symmetry of the compliance matrix. The shear moduli are also assumed to be the

same as the shear modulus of isotropic PE. The elastic material properties of the amorphous

phase are given in Table 6 and the viscoplastic (Eyring) properties for the amorphous domain

are given in Table 7. The yield kinetics of the amorphous phase can have a large effect on

Table 6: Anisotropic elastic properties of the amorphous phase of oriented PE.

E11, E22 (MPa) E33 (MPa) ν13, ν23 ν31, ν32 ν12, ν21, G12, G13, G23 (MPa)

200 600 0.1 0.3 0.3 65

Table 7: Viscoplastic properties of the amorphous domain of oriented PE.

Process I Process II

γ̇a,I
0,T [s−1] ∆Ua,I [kJ/mol] τa,I0 [MPa] γ̇a,II

0,T [s−1] ∆Ua,II [kJ/mol] τa,II0 [MPa]

8.4× 10−29 582 0.32 7× 10−4 110 3.2

the rate sensitivity of the semi-crystalline polymer. The parameter τ0 of the amorphous yield

kinetics was increased to increase the rate dependency of the oriented amorphous phase and

as a result, the rate dependency of the drawn PE. The various parameters of the oriented

amorphous phase were determined in order to describe the entire stress-strain curve, includ-

ing the post-yield response for all strain rates and loading angles. The yield kinetics of the

amorphous phase and different slip systems of the crystalline lamellae at room temperature

are shown in Figure 9.

Figure 9.

It should be emphasized that for determination of elastic and viscoplastic properties of the

amorphous phase, the experimental results at strain rates of ε̇ = 10−4 s−1 and ε̇ = 10−3 s−1

are used.
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Simulations and comparison to experiments

In order to understand the effect of the Hill parameters and the pre-stretch factor on the

deformation behaviour of the oriented tape at different loading angles, parameter sensitivity

analyses were performed and the effects of the mentioned parameters were investigated.

According to the sensitivity analyses, the effect of the Hill parameters and also the pre-

stretch factor on the deformation behaviour of the oriented tape (under each loading angle)

was realized. Based on the physical meaning of the parameters and the observations in the

parameter sensitivity analyses, the set of Hill parameters and pre-stretch factor, as given in

Table 8, is adopted. As for the elastic and viscoplastic properties of the amorphous phase, the

Table 8: Hill anisotropy parameters and pre-stretch factor for the oriented tape (λ = 4).

Parameter R11 R22 R33 R12 R13 R23 λ0

Value 1 1 1.7 1 0.35 0.35 1.2

Hill parameters and pre-stretch factor are also identified based on the experimental results

under strain rates of ε̇ = 10−4 s−1 and ε̇ = 10−3 s−1. The identified properties are then used

to capture the stress-strain curves at strain rate of ε̇ = 10−2 s−1. Simulations are conducted

for the oriented tape on an aggregate of 200 inclusions. Figure 10 shows the simulation

results along with the experimental stress-strain curves.

Figure 10.

Adequate agreements are obtained between the model predictions and experimental results.

Although in some cases (ε̇ = 10−2 s−1, φ = 0◦, 20◦), the model predictions do not match the

experimental results perfectly, comparison with Figure 7 still shows a significant improvement

of the model predictions. Also, the dominant role of the anisotropy of the amorphous phase

is noticeable. It was observed that the initially strongly oriented crystallographic texture

further orients with the chain direction towards the drawing axis during deformation. Figure

11 shows the value of the von Mises effective stress of the amorphous phase and the crystalline

lamella of each composite inclusion at the end of the deformation, under a strain rate of

ε̇ = 10−2 s−1 at different loading angles. The values of the effective stress are shown in pole

figures which depict the distributions of the lamellar normals.
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Figure 11.

Clearly, by increasing the loading angle, the effective stress of both phases decreases. For

loading angles of φ = 0◦ and φ = 20◦, the amorphous phase of the inclusions which are less

aligned with the loading direction (higher angle between the lamellar normal and loading

direction), have higher stresses. It is also seen that for φ = 20◦ and also φ = 0◦, the inclusions

with large amorphous stresses are differently oriented than inclusions with large crystalline

stresses. Figures 12 and 13 show the plastic shear rate of the chain slip and transverse slip

systems at the yield point, normalized by the applied strain rate (ε̇ = 10−2 s−1), in pole

figures that show the distributions of the lamellar normals for loading angles of φ = 0◦ and

φ = 50◦, respectively.

Figure 12.

The transverse slip systems for the sample taken along the draw direction of the oriented

tape (φ = 0◦), are less active compared to the chain slip systems. Also, it can be observed

that for φ = 0◦ the slip system (100)[001] is the most dominant one.

Figure 13.

In contrast to a loading of φ = 0◦, the activity of the transverse slip systems is higher than

the chain slip systems for a loading angle of φ = 50◦. It can also be seen that for φ = 50◦

one chain slip system, (010)[001], and one transverse slip system, (100)[010], are not active.

CONCLUSIONS

The objective of this study was to model and capture the anisotropic mechanical behaviour of

oriented Polyethylene within a micro-mechanical approach. Drawn PE tapes show a highly

anisotropic and highly rate-dependent behaviour. There are different sources of anisotropy in

these materials. As discussed by Sedighiamiri et al.1 and shown in Section , considering the

anisotropic behaviour and oriented distribution of the crystalline lamellae does not suffice to

accurately predict the mechanical behaviour of oriented PE tapes. Accordingly, in this study,

an anisotropic model for the amorphous phase was incorporated in the micro-mechanical

model. Anisotropic elasticity, internal stress into the elastic network and an anisotropic

visco-plastic flow were included for this purpose. The modified model adequately predicts the

experimental results and remarkable improvements were obtained compared to the original
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(partially isotropic) model predictions. It can be concluded that the effect of the anisotropy

of the amorphous phase in oriented PE tapes is significant and it can not be neglected.
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Figure 1: (a): Schematic representation of the samples cut from the oriented tape, (b):

Experimental stress-strain curves for the oriented tape for different strain rates at room

temperature.

Figure 2: (a): Composite inclusion consisting of a crystalline lamella and an amorphous layer;

(b): Schematic representation of an aggregate of randomly distributed composite inclusions.

Figure 3: Schematic representation of two relaxation processes contributing to the yield

kinetics.

Figure 4: Mechanical analogue of the single mode EGP model.

Figure 5: Equal area pole figures of the lamellar and crystallographic orientation distributions

for pre-stretched PE tape with draw ratio of 4.

Figure 6: Total slip kinetics of the crystalline lamellae and the yield kinetics of the amorphous

phase (sum of α and β processes) at room temperature adopted in the initial simulations.

Figure 7: Experimental results and predicted stress-strain curves with the original model for

the oriented PE tape under different loading angles and at different strain rates

Figure 8: Schematic representation of application of pre-stretch in the amorphous model.
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Figure 9: Total yield kinetics of the amorphous phase and crystalline lamellae of the oriented

tape.

Figure 10: Experimental results and predicted stress-strain curves with the fully anisotropic

model for the oriented tape under different loading angles and different strain rates

Figure 11: Equivalent stress of the amorphous and crystalline phases of the oriented tape

at the end of the deformation under a strain rate of ε̇ = 10−2 s−1, shown in pole figures

that show the distributions of the lamellar normals, at different loading angles, (a): φ = 0◦,

amorphous phase, (b): φ = 0◦, crystalline phase, (c): φ = 20◦, amorphous phase, (d):

φ = 20◦, crystalline phase, (e): φ = 50◦, amorphous phase, (f): φ = 50◦, crystalline phase.

Figure 12: The normalized plastic slip rates of the chain and transverse slip systems of the

oriented tape at the yield point and under a strain rate of ε̇ = 10−2 s−1, at loading angle

φ = 0◦ depicted in pole figures which represent the distributions of the lamellar normals.

Figure 13: The normalized plastic slip rates of the chain and transverse slip systems of the

oriented tape at the yield point and under a strain rate of ε̇ = 10−2 s−1, at loading angle

φ = 50◦ shown in pole figures which depict the distributions of the lamellar normals.
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