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Summary

Modelling and Analysis of Multi-Scale Streaming Applications

Embedded systems are computing systems that provide a number of spe-
cific functionalities within an electronic device such as a smartphone. Some
embedded systems run programs that process continuous streams of data re-
ceived from several sources such as sensors, a network or other devices. For
instance, video applications on smartphones process the data received from the
camera or online video streaming services. These programs are referred to as
streaming applications. In domains such as multi-media processing, streaming
applications have strict real-time performance requirements, often specified in
terms of minimum throughput and maximum latency. For cost and power
reasons, multiple streaming applications in a system may be realized on a
multi-processor system, and share its heterogeneous computing elements such
as processors and memory. To ensure that every individual application will
have a guaranteed performance, the applications are designed based on a model
of computation (MoC) that accurately captures their timing behaviour in the
system. In a design iteration, an application that is modelled by an analyzable
MoC, can be analytically evaluated for its real-time performance. Synchronous
dataflow (SDF) is an analyzable MoC that is widely used to model and design
streaming applications. In particular, these models are used to find optimal
processor and memory shares for the applications to have executions with the
required performance.

Today’s competitive market on embedded systems has led to the emergence
of more and more complicated streaming applications. For instance, new dig-
ital cameras utilize advanced filtering applications to produce high quality
images. Complex applications are characterized by their dynamic execution
behaviour. These applications include operations that change their compu-
tation loads and/or data dependencies, depending on their operating modes
or input data. In a multi-scale application, the operations with changing be-
haviours act at multiple scales of data granularity. For instance, a filtering
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application may have dynamic operations at frame, line and pixel levels. SDF
can only provide a conservative abstraction for dynamic applications, as it does
not have a means to express dynamism. Scenario-Aware Dataflow (SADF) is
an extension of SDF that can express dynamism. In this model, scenarios
describe SDF behaviours that correspond to particular modes or input data
types. The dynamism is expressed via (non-) deterministic scenario transi-
tions. In SADF, the set of all meaningful application behaviours is modelled
as a set of scenario sequences, which can be represented using a formal lan-
guage. The full range of analysis methods for SADF models is not developed
yet, and the existing ones do not scale for multi-scale applications. This thesis
provides an approach to model multi-scale applications using SADF. In addi-
tion, it provides a number of scalable analysis methods for SADF models of
multi-scale applications.

We observe that the timing behaviour of multi-scale applications follows
a periodic pattern of small, static behaviours that is composed of a few be-
haviours associated with the coarser grain operations and many repetitions of
behaviours associated with finer grain operations. We perceive each distinctive
small behaviour as a scenario. Consequently, the behaviour of the application
is described as a periodic sequence of scenarios, some of which are repeated
many times. Such behaviours can be modelled by an SADF. To compactly rep-
resent the repeated (sub-) sequences we introduce a representation for SADF,
where the language of the sequences is represented as a regular expression with
an explicit repetition construct.

A modular compositional model can facilitate the modelling process of
complex applications by allowing individual component models to be composed
in a recursive manner to generate a hierarchical model of a complex application.
A complex application, such as a multi-resolution filter is structured as parallel
pipelines of multi-scale components, each with a possibly different periodic
pattern. Composing models with periodic patterns results in a model with a
periodic pattern with a common hyper-period. This common periodic pattern
is hard to derive by hand. We propose an efficient algorithmic method that
given the periodic scenario sequences of the components by regular expressions,
generates a sequence of composite scenarios in a compact regular expression
representation.

For SADF with expression representation, we provide a compositional ap-
proach for exact, worst-case throughput and maximum latency analyses. The
proposed throughput analysis shows an enhanced scalability for multi-scale
dataflow models compared to the state of the art. Scalability improvement is
achieved by the proposed expression representation to recognize the repeated
patterns and the fact that the throughput analysis on repeated scenarios can



vii

be done in logarithmic time in the number of repetitions instead of linear time
as in the state of the art methods. The proposed latency analysis, which is
similarly scalable, is the first exact latency method for SADF models. The
latency is recursively computed by decomposing the regular expression and
computing the latency of sub-expressions in a bottom up approach.

The execution traces of applications can be used to understand the be-
haviour of the applications and find the opportunities for performance im-
provement or detect anomalies. Re-using elements of the latency analysis, we
provide a technique to quickly generate execution traces of a particular sce-
nario in the pattern without performing a detailed simulation of the sequence
that is followed by that scenario. This is very helpful in case of multi-scale
applications, as their periodic sequence is often very long.

Distributing the available storage space on an embedded platform to the
buffers in a streaming application is a complicated design challenge. The ca-
pacities of buffers in an application affect the throughput of the application.
Since storage space is a scarce resource on embedded platforms, optimal points
in the space of throughput-storage space trade-offs should be found. We pro-
vide the first throughput-buffering trade-off analysis for applications modelled
as SADF. We use our scalable throughput analysis in a guided design space
exploration to obtain the trade-offs. At every exploration step, the exploration
prunes the exploration space without losing any optimal points. Consequently,
the analysis terminates in a reasonably short time.

Processor sharing is used to reduce cost and energy. Budget scheduling is a
common strategy to share the processing power of a platform among real-time
applications since it bounds the interference between the timing behaviour of
individual applications. As the final contribution in this thesis, we provide a
means to determine conservative, but tight timing bounds for scenarios of an
SADF that are mapped onto a shared multi-processor platform.

In conclusion, this thesis presents a number of contributions that can be
used within an automated framework to realize multi-scale applications on
multi-processor systems.
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Chapter 1

Introduction

1.1 Real-Time Streaming Applications

Embedded systems are information processing systems embedded into enclos-
ing products [1]. Embedded systems have a large-scale market that includes
multi-media, automotive and health-care. Smartphones, smart TVs, digital
cameras and game consoles are examples of embedded systems in the multi-
media domain. In the automotive domain, embedded systems include a wide
range of systems from controllers of individual parts such as the engine and the
transmission system to complicated automatic control features such as cruise
and traction control systems.

Embedded systems use peripherals such as sensors and actuators to interact
with their environment. A digital camera uses an image sensor to capture
images, a light sensor to detect the brightness of the environment, control
buttons to get user inputs and a microphone to record audio. In addition, it
has mechanisms to move the lens and control the shutter speed, and a display
to show picture previews. Embedded systems of this kind can also be classified
as cyber-physical systems, as they constantly interact with physical processes.
Timing management between the cyber and physical parts is one of the major
challenges in these systems. For instance, recording a video using a digital
camera with enabled automatic focus feature requires calculations to detect
the contrast of the frames at specific, often short time intervals, and a special
motor which is able to adjust the lens elements shortly after the end of the
detection intervals to facilitate automatic focus.

Embedded systems use their processing capabilities to run various algo-
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2 CHAPTER 1. INTRODUCTION

rithms that are needed to use or control their peripherals. In a digital camera,
the light rays pass through the lens, directed into a colour filter and finally hit
the image sensor. The image sensor produces an array of analog signals called
colour filter array. The signals contain the colour information of every pixel
in the sensor. This signal array is first transformed into a digital stream of
pixel data using an A/D converter. A number of image processing algorithms
are needed to correct or compensate for artifacts that are caused by physi-
cal phenomena in the optics or colour filter limitations, e.g., lens distortion
compensation and colour interpolation. Then, different algorithms are needed
to extract some features to be used in the automatic focus control and image
enhancing, e.g., edge detection. A typical digital camera executes a high stack
of algorithms to transform the stream of raw data generated from an image
sensor to a stream of frames in a format that can be displayed on the screen
or stored in an SD memory [2].

The algorithms used in embedded devices are implemented as embedded
computer programs called streaming applications [3]. A digital camera im-
plements its algorithms as a pipeline of various streaming applications that
include image filtering applications, image enhancing applications and video
tracking applications [4]. Smartphones offer wireless data communication
through several standards such as cellular network standards, Bluetooth and
Wifi. The program used to establish a connection through each of these com-
munication protocols is a streaming application. Other streaming applications
in smartphones include applications of online video and audio streaming ser-
vices such as YouTube, Spotify etc. They execute algorithms that convert the
compressed data received from their servers to audio or video content that is
playable on smartphones.

Many streaming applications require real-time computing, which means
that the processes on their input stream must be guaranteed to be within a
specified time constraint [5]. Otherwise, the application may cause inconve-
nience to the user or in some cases it may not be useful anymore. For instance,
game consoles constantly perform graphical processes depending on the inputs
generated from the controller. Suppose a person is playing a graphics-intensive
video game. If the processing rate drops below 25 frames per second (fps), he
will experience frequent screen freezes, which often makes game play impossi-
ble. The rate at which the data streams are flowing in a streaming applications
is called the throughput. Multi-media and communication applications are
among streaming applications with a minimum throughput constraint [6]. In
contemporary digital cameras, the user can opt for recording videos at 60fps.
To achieve this frame rate, all streaming applications in the pipeline must be
guaranteed to provide at least 60fps.
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Processing data takes time. Consequently, streaming applications intro-
duce a processing delay between the output and input streams. Digital cam-
eras suffer from something called lag time. When you press the shutter button,
the camera may seem to take a photo instantly; however, this is not actually
what happens. There is a delay between the time when you press the but-
ton and when the photo is actually taken. Lag time is a result of what your
camera does when you press the shutter button. The camera will first need
to run control applications to focus the shot and then it will need to open
the shutter to let the light in. Once the light comes in through the shutter
and hits the image sensor, the image is taken. Then, it takes additional time
before it becomes visible as a preview. All of these processes result in a lag
time which could make you miss your shot. In other applications the delay
might be caused because the application needs an initial amount of data be-
fore it can start processing and producing an output stream with a certain
rate. For instance, video tracking and object recognition applications need to
buffer a certain number of frames before they can start functioning. This is
because object recognition and tracking algorithms executed in such applica-
tions require computations that span over a window of several frames [7]. The
initial waiting time for an application before getting the output stream with
a specific throughput is called the latency.

For some applications the maximum latency is a requirement. Image-
guided surgery is a surgical procedure where the surgeon uses tracked surgical
instruments in conjunction with real-time x-ray images from the anatomy of
the patient to perform safer and less invasive operations compared to the tra-
ditional methods. The surgery unit used in this type of surgery has a video
application that transforms the data produced by the x-ray detector to the
image frames shown on the screen. To maintain the hand-eye coordination
of the surgeon, the maximum latency of the frames is bound to 150ms at a
frame rate of 60fps [8]. The latency is a crucial constraint also in any feedback
control system such as automatic focus systems in digital cameras [9] or cruise
control systems in modern cars [10].

1.2 Design Challenges

The performance of a streaming application, i.e., its throughput and latency,
depends on how it is implemented. Every implementation has a timing be-
haviour that represents how the execution of the application progresses over
time, for instance, at what time intervals its various functions are being exe-
cuted or at what time instants it accesses system resources such as memory
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Figure 1.1: Structure of an H.263 decoder application.

and processors. The timing behaviour is affected by characteristics of both the
application and the underlying computer system [5]. Obtaining a design that
guarantees a certain timing performance is a challenging task, since the timing
behaviour is affected by many factors, some of which may be non-deterministic.
In this section we discuss some of these challenges and their state of the art
solutions.

1.2.1 Concurrency

Computing systems with multiple processors allow system designers to exploit
the inherent task parallelism in concurrent applications to achieve the required
performance [11]. We illustrate the task parallelism by an H.263 decoder ap-
plication, which will be used in the remainder as a running example. H.263 is a
video compression standard designed as a compressed format for efficient video
transmission in video-conferencing. An H.263 decoder is an application that
transforms the encoded video stream after it is transmitted (Figure 1.1) [12].
The decoder accepts a video stream of encoded frames as input. The frames
require the following tasks: Variable Length Decoding (VLD), Inverse Quanti-
zation (IQ), Inverse Discrete Cosine Transformation (IDCT) and Reconstruc-
tion (RC). The VLD task decodes the frames into small blocks of data items
called macro blocks, where every macro block contains six smaller blocks of
data. It also generates a motion vector for each macro block, which defines the
relative motion of a macro block from one frame to another. The IQ and IDCT
kernels process the blocks. When all blocks in a frame are processed, the RC
executes to reconstruct the decoded frame from the blocks. The RC kernel
also performs motion compensation on the frames using the motion vectors of
all macro blocks in the frame.

Usually the decoding (VLD), the block computations (IQ and IDCT) and
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the reconstruction (RC) tasks are each mapped to a separate processor to ex-
ploit the concurrency. For instance, when the RC is executing on the blocks
of the current frame, the remaining tasks can be executing on the blocks of
the subsequent frames. Concurrent execution can also happen within a single
frame. For instance, when the IQ starts operating on the blocks generated
from a VLD execution on a macro block from a frame, the VLD can start de-
coding another macro block from the same frame, simultaneously. As another
advantage, each task can be mapped to a processor that is fit for the task.
For example, the IDCT in the H.263 decoder application is usually processed
using vector processors [12].

The challenges in a concurrent implementation are rooted in the concept of
concurrency, i.e., when more than one thing is happening at a time. Suppose
in an H.263 decoder IDCT and RC are running on separate processors and use
a buffer, where IDCT could write its output data, i.e., the processed blocks,
and RC could read the blocks and reconstruct the frames. Things can easily
go wrong. For instance, when RC starts reading from the buffer before IDCT
writes all blocks of the first frame on the buffer, or when IDCT completes
processing a new block and overwrites one of the old blocks, while RC has
not read that old block yet. As easy as it may sound, synchronization and
communication between tasks can be challenging, especially in applications
with varying, possibly complicated data dependencies [13]. Careless concurrent
implementations are prone to concurrency issues such as deadlocks and race
conditions. A deadlock occurs when multiple tasks are waiting for each other,
but never proceed. In a race condition, the output of an application becomes
unexpectedly dependent on the execution order of its concurrently running
tasks [14]. Deadlocks and race conditions should be avoided at all costs since
they lead to a type of non-deterministic behaviour that violates performance
guarantees required by real-time applications.

Models of Computation (MoCs) can be used to obtain a correct behaviour
of the applications by providing a formal reasoning about their concurrent be-
haviour. Kahn Process Networks (KPNs) [15] are one of the popular MoCs
because of its useful properties. It models applications by a collection of in-
dividual processes (tasks) that are communicating through unbounded First-
In-First-Out (FIFO) channels. KPNs enforce a set of communication rules in
the network to be able to mathematically prove the property of determinism,
the property that the application output is deterministic regardless of the ex-
ecution order of the (concurrent) processes in the network. A KPN rule states
that processes read and write atomic data items (also called tokens), from and
to channels. Another rule states that writing to a channel is non-blocking,
i.e. it always succeeds and does not stall the process, whereas reading from a
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channel is blocking, i.e. a process that reads from an empty channel stalls and
can only proceed when the channel contains sufficient tokens. For instance, in
the H.263 decoder, this rule prohibits the start of the RC task before all the
processed blocks of a frame are accumulated in the buffer.

KPN is an example of many MoCs proposed for concurrent computa-
tion. Each model occupies a different spot in the space of expressivity and
analysability. For instance, in KPNs, the sizes of the buffers cannot be de-
termined at design time in general, and therefore they require a run-time
scheduler that schedules the processes, manages the buffers and avoids dead-
locks [16, 17]. In the next sub-section, we discuss that by further restricting
the behaviour of the network in some MoCs, for instance by adding more
communication rules, properties such as deadlock freedom and boundedness
of buffers can be proved for the network at design time. Furthermore, their
timing behaviour then becomes predictable.

1.2.2 Timing Predictability

An application with a guaranteed performance requires a computer system
that is predictable with respect to its timing requirements. In such a system it
is possible to define a reasonable maximum response time (timing bound) for
every action that is happening in the system, such as the execution of com-
putational tasks, data communications, external interrupts, memory accesses,
etc. This enables bounds on performance, such as upper bounds on latency or
lower bounds on throughput, to be provided. However, such a system ties the
designers’ hands in use of many mechanisms in general-purpose computing that
provide a good average performance in an easy programming model, but make
the system’s performance less predictable. For instance, snooping cashing [18]
dynamically manages cache coherence for a good average performance, but at
the cost of less predictable delays since the time required for memory access
depends on the state of several caches, which is hard to predict. Real-Time
Operating Systems (RTOSs) in general computing provide scheduling mecha-
nisms for tasks, but they also abstract the detailed behaviour of a task, i.e.,
how it accesses memory, and its flow of control [5]. The detailed behaviour of
tasks can influence the execution time of the task and consequently, the system
schedule that is managed by the RTOS. When realizing a real-time applica-
tion, the designer should use or provide mechanisms to ensure a predictable
execution of the application, and he cannot rely on any available abstractions
or mechanisms that introduce unpredictable timing behaviour.

All mechanisms used in a predictable system such as resource managers
and schedulers should be formally verified for performance robustness. Simi-
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Figure 1.2: SDFG of an H.263 decoder application.

lar to the formal verification of a correct concurrent computation, performance
verification approaches require performance models of the application and the
underlying system [19]. Synchronous Dataflow (SDF) [20] is a Model of Com-
putation (MoC) that is widely used to model and design concurrent streaming
applications [6] [21] [22]. SDF is supported with analysis methods that can be
used to verify the throughput and the latency of an application that behaves
according to an SDF model.

SDF describes the application by a directed graph. Figure 1.2 shows a
Synchronous Dataflow Graph (SDFG) of an H.263 decoder. In this graph,
nodes depict actors. Actors represent the application tasks and actor firings
correspond to task executions. Directed edges in the graph represent channels.
Channels represent dependencies between actor firings to ensure a correct ex-
ecution according to the data dependencies or control decisions. The depen-
dencies are enforced by production and consumption of entities called tokens.
When an actor starts firing, it consumes tokens from its input channels, and
when it completes the execution, it produces tokens on its output channels,
depicted as black dots. As a result, an actor firing cannot start before having
received enough tokens on all of its input channels. All firings of an actor
consume and produce constant numbers of tokens per channel, called the con-
sumption and production rates. The rates are given as edge annotations in
the graph (rates of 1 are not shown to avoid cluttering). For instance, when
actor VLD fires, it produces 6 tokens on the channel from VLD to IQ. When
SDF is used as a timing performance model, the actors are assigned execution
times.

Compared to KPNs, SDF has a limited expressivity. This is because all
firings of an actor in SDF are the same in terms of actor rates and execution
time, where as executions of a KPN process might be different from one an-
other. In exchange for the limited expressivity, SDF provides properties that
are very useful in the design of real-time streaming applications. Timing pre-
dictability is one of these properties. In an SDFG given worst-case execution
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times for every actor in the graph, the worst-case throughput and maximum
end-to-end latency of the graph can be obtained at design time, together with
a static periodic schedule for every actor firing. SDF can also be analysed
for deadlocks and boundedness of its buffers at design time. Using a more
complete analysis such as a throughput-buffering trade-off analysis, all Pareto
(optimal) points in the space of throughput and buffer sizes can be obtained
for an SDF [6]. Besides being an analytical performance analysis model, SDF
can also be used as a concurrent programming language that can be compiled
to generate a concurrent program code [23].

1.2.3 Multiple Applications

Often multiple streaming applications in a system are realized on a single com-
puter system and share its computing elements such as processors and memory
for cost and power reasons [6]. This complicates the design process, because
applications may influence each other’s timing behaviour, for instance, when
an application claims a shared resource and prevents other applications from
having an access to it when they need to. To solve this problem, embedded
system designers use resource arbitration policies that bound this influence, to
be able to ensure performance robustness [6]. Even then, a challenging ques-
tion is how much resource should be allocated to every application to satisfy
its constraints and whether the resource usage can be optimized.

The system memory is used to realize buffers for the applications. The
capacities of the buffers influence the throughput of the application by altering
the task schedules. For instance, consider the H.263 decoder (Figure 1.1),
operating on frames of size 352×288 pixels (also called CIF size). Every frame
contains 2376 macro blocks. The buffer between IDCT and RC must have
enough capacity to store 2376 macro blocks, otherwise the application cannot
execute, i.e., it deadlocks. This is because IQ will not start executing after
the buffer becomes full and consequently, the decoding of the first frame never
completes. If the buffer can store exactly 2376 macro blocks, the IDCT and RC
always execute sequentially even if they are running on different processors.
This is due to the fact that IDCT will not start processing the blocks of
the next frame until all blocks in the buffer are reconstructed into a frame
and the buffer is emptied. By increasing the capacity of the buffer by one
block, the IDCT on the first block of the next frame can run in parallel with
RC execution in the current frame. By further increasing the capacity, more
IDCT executions can be executed in parallel with RC, as RC takes hundreds
of times as much time to complete as a single execution of IDCT. Increasing
the capacity block by block, will increase the throughput, assuming that this
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buffer is the limiting factor for the throughput (i.e., when other tasks have
shorter execution times compared to RC and other buffers are large enough).
If we keep increasing the capacity, at some point the RC on the next frame
will be fully parallelized with IDCT executions. From this moment, increasing
the capacity of this buffer will not affect the throughput as the application has
reached its maximum throughput.

The capacities of the buffers should be be optimized for the required
throughput, since the buffers are implemented using costly and power con-
suming memory blocks. Moreover, to have an application with a predictable
performance in a multi-processor system, every buffer is implemented such that
it has an exclusive access to a number of memory blocks. This may quickly
fill up the memory if the buffers are sized with generosity. The significance of
the buffer minimization problem is higher when there are multiple applications
running on the same system, because the over-allocation of memory reduces
the number of applications that can run on the system. Applications that
are modelled by SDF graphs can be analysed for optimal buffer requirements
given a throughput constraint. This allows the designers to realize multiple
applications on a multi-processor system with a minimum memory usage [6].

A similar challenge holds for processor sharing. Budget scheduling is a
common strategy to share the processing time of processors among real-time
applications, since it bounds the interference between the timing behaviour
of individual applications [24]. A budget scheduler allocates time budgets to
applications in every processor to run their tasks. A higher budget results in a
faster execution, and possibly a higher throughput and lower latency. A chal-
lenge is to determine budgets for every application such that the constraints of
all applications are satisfied. Conservative throughput bounds can be obtained
for an SDF graph in which the actors are bound to multiple processors [25].

1.2.4 Dynamism

Applications may be subject to dynamic behaviours. For instance, input
frames in an image recognition application may be taken from various scene
types in different weather conditions. Moreover, the frames may contain a
different number of objects every time [26]. A similar scenario holds for a
video game running on a game console. The video game is supposed to run
smoothly with different combinations of physics and actions happening at the
same time. An application with a guaranteed performance should be able to
deliver the required performance for any possible combination of these varying
conditions. Varying conditions create a dynamic timing behaviour that should
be carefully studied to ensure performance robustness.
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Dynamic applications are often characterized as tasks that change their
execution time and/or data dependencies at run-time [27]. For instance, video
tracking applications include tasks with execution times that are determined
by the number of tracked objects in the input video [28]. In a stereo audio
decoding application, the decoding task alternates between decoding the data
from left and right audio channels [27]. This results in a timing behaviour that
changes at run-time either deterministically (as in the stereo audio decoder)
or non-deterministically (as in the video tracking application).

Dynamism complicates the design process because verifying the behaviour
of the application in any possible combination of varying conditions leads to an
explosion in test cases. An easy solution to achieve a guaranteed performance
in dynamic applications is to rely on static worst-case assumptions, where every
task is assumed to have a worst-case execution time and data dependencies [25].
However, this approach results in pessimistic performance estimations, and
pessimistic estimations cause in turn over-allocation of the resources. For
instance, SDF can provide a good abstraction only for static applications, as
it does not have a means to express dynamism (the actor rates and actor
execution times are constant).

Cyclo-Static Dataflow (CSDF) [27] is an extension of SDF that enables the
design of streaming applications with periodically varying task behaviours.
In this model the actor rates and execution times can periodically change.
For instance, a stereo audio application that alternates between right and left
channel processing can be modelled with CSDF. Throughput [29], end-to-end
latency [30], and resource sharing analysis techniques [29] are generalized for
applications modelled as CSDF.

For some dynamic applications, changing behaviours occur not only on the
task level but also in the structure. Moreover they might be non-deterministic.
As an example of such dynamic applications, consider an MPEG-4 Simple Pro-
file decoder [31]. Similar to the H.263 decoder, the MPEG-4 decoder has a
VLD that decompresses the encoded input frames into a stream of macro
blocks. In this decoder however, the frames are classified in I-frames and P-
frames. Decoding of I and P-frames is partly different as they are encoded
differently. I-frames are encoded independently from previous frames, but
P-frames need a reference to a previous frame as they exploit temporal cor-
relation in the form of motion vectors between subsequent frames. Therefore,
the decomposed macro blocks from a P-frame are decoded and then made
into a decoded frame using both MC (motion compensation) and RC (recon-
struct). I-frame macro blocks lacking motion vectors are reconstructed using
RC only. MPEG-4 is a dynamic application with behaviour that changes in
non-deterministic patterns based on the input frame type and the number of



1.2. DESIGN CHALLENGES 11

motion vectors present. Observe that the structure of the application changes
when decoding I and P-frames. For example, MC is not needed for I-frames
while it is a part of the decoding process for P-frames.

Such dynamic applications, require a design that can recognize the dy-
namism and provide implementations that can deal with different conditions
in a different way, while guaranteeing a robust performance. CSDF cannot
express this type of dynamism. Scenario-Aware Dataflow (SADF) [32] is an
extension of SDF and CSDF that can handle enough dynamism to model ap-
plications such as the MPEG-4 decoder, while still being amenable to analysis.
In this model, scenarios represent modes of operation. For instance, MPEG-4
has naturally two modes of operation, namely I-frame and P-frame modes. In
the P-frame mode, moreover, actor reading and writing rates and their exe-
cution times change between executions due to different numbers of motion
vectors present in the data. In SADF, modes are described by (parameter-
ized) SDF models. SADF provides additional semantics that captures para-
metric rates and execution times and switching between scenarios. In SADF
scenario transitions can be defined deterministically, non-deterministically or
even probabilistic.

1.2.5 Multi-Scale Behaviour

Applications may include tasks operating at multiple scales of data granular-
ity. For example, an H.263 decoder has tasks acting at the frame level (RC),
macro block level (VLD) and block level (IQ and IDCT). In general, dealing
with such applications is challenging because their behaviour involves many
task executions that correspond to lower level operations. For instance, the
behaviour of the H.263 decoder involves 14256 executions of IQ and IDCT
each, even for small frames of size 352× 288 pixels. The H.263 decoder is an
example of a multi-scale application for which the behaviour under analysis in-
volves different sub-behaviours that occur at multiple granularity levels. This
can be recognized in many other realistic examples, such as applications that
include memory transactions with large blocks of memory that are commu-
nicated through a network-on-chip that operates at the level of much smaller
individual flits [33].

Large numbers of task executions often cause scalability problems in the
design process, for instance when estimating their performance, scheduling
their tasks or optimizing the resource usage. Consider again the SDFG of an
H.263 decoder shown in Figure 1.2. Observe that the minimum and maximum
actor rates in the graph are a few orders of magnitude different from each other.
This is often a sign that the graph is modelling a multi-scale behaviour. The
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existing throughput analysis techniques on the SDFG of the H.263 decoder
need to execute the actor firings involved in at least one frame-level (coarsest
level) behaviour of the H.263 decoder. For 352 × 288 frames, the frame-level
behaviour includes more than 30000 actor firings. This potentially causes
scalability issues for throughput analysis techniques.

Multi-scale applications cause serious scalability issues for resource opti-
mization algorithms. For instance, a buffer-sizing approach on CSDF models
of multi-scale image processing applications such as a multi-resolution convo-
lution filter encounters scalability issues when applied to large image sizes [8].
This is partly due to the fact that the throughput analysis that is repeatedly
performed while exploring the throughput buffer size space is adversely af-
fected by the multi-scale nature of the application. Another orthogonal reason
is that considering multiple granularity levels at the same time causes design
space explosion, as the number of design choices at the finer levels grow very
quickly.

An easy solution to such scalability problem is to consider a combination of
the finer level behaviours in a multi-scale application as one coarse behaviour.
For instance, in the H.263 decoder, we could consider the 14256 IDCT execu-
tions as one coarse execution of the IDCT task. However, this may result in
very pessimistic assumptions and cause over-allocation of the resources. For
instance, if we take this approach when finding the optimal buffer sizes for
the H.263 decoder, we could only explore the buffer capacities that can hold
integer multiples of 14256 macro blocks. This results in over-allocation of sys-
tem memory, because allocating 14256 blocks does not allow for pipelining and
2× 14256 is much more than needed.

1.2.6 Composite Behaviour

A common practice in the domain of streaming applications is to design com-
plex applications by composing multiple pre-designed components. A complex
image processing application that transforms the image sensor data to an im-
age format in a digital camera, is a good example for this practice. The
image data flows through a pipeline of various image filtering, enhancing and
compression modules before it is stored in memory. In such a pipeline, every
component uses the output of the previous component in the pipeline and pro-
duces output that is used as input in the next component in the pipeline. Such
a structure creates an application with a composite behaviour that involves
complicated data dependencies caused by the interaction between different
components.

Understanding the timing behaviour of such an application and deriving
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an implementation that has a robust performance is hard due to complicated
data dependencies. Usually each component is separately designed and verified
for its performance. Then, the main challenge is to ensure that separately
designed components can also deliver the performance in combination. This
can be done by composing the component models in a recursive fashion to
create a hierarchical model of the application for a performance analysis.

Compositionality of SDF models has been addressed in a number of works
(e.g. [34] and [35]) by introducing the concept of hierarchical SDF graphs. A
hierarchical SDF graph contains composite SDF actors. In a composite actor,
an SDFG that receives tokens as input and produces tokens as outputs is
abstracted by an ordinary (atomic) SDF actor. Such abstraction is not always
compositional, i.e., it may lead to deadlock and/or rate inconsistencies [35].
Tripakis et al. [36] introduced a compositional abstraction for SDF actors,
called deterministic SDF with shared FIFOs profiles. The introduced shared
FIFO semantics allows for modular analysis, compilation and code generation
for applications modelled as hierarchical SDF graphs. An approach to compose
SADF models is recently addressed by Skelin et al. [37].

1.3 Problem Definition

As explained in Section 1.2, to tackle the challenges incurred in designing real-
time streaming applications, the applications are designed based on a MoC.
The model enables an iterative design process where the application is first rep-
resented at a necessary abstraction level. Then model elaborations iteratively
refine the initial design and include the necessary details to implement the
application such that it satisfies the required performance. The ability to ef-
ficiently construct models combined with associated analysis, verification and
synthesis techniques makes model-based design a successful design method.
Model-based design results in a complete solution by enabling concurrent im-
plementation, automatic refinement and resource optimization [38].

SADF is a MoC that shows enough expressivity and analysability proper-
ties to be used in the design of real-time streaming applications. This model
allows concurrent implementations to be verified for correctness, deadlock free-
dom and buffer boundedness in design time. An application that is designed
based on an SADF model can also be verified for its timing properties. More-
over, it provides a means to express (non-deterministic) dynamism, while being
able to guarantee functional correctness and performance robustness.

Applications with both dynamic and multi-scale behaviours are common
in the embedded systems domain and they are often composed to form more
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complex applications. SADF can be used to express applications with such
properties. However, the analysis techniques for SADF models are not fully
developed. For instance, latency analysis is not worked out for this MoC,
neither is a buffer sizing approach. Moreover, the existing throughput analysis
for SADF and the method for composing them, do not scale for multi-scale
applications. The lack of basic analysis methods prevents applications with
such properties to be designed using a model-based approach.

This thesis addresses the problem of modelling and analysis of streaming
applications with dynamic, multi-scale and composite behaviours. The mod-
elling solution aims at finding a procedure to obtain SADF models for multi-
scale applications and a method to compose them in a hierarchical manner
to ease the procedure of modelling applications with composite behaviours.
The analysis covers the most important performance metrics for streaming
applications, i.e., the throughput and latency, besides obtaining throughput-
buffering trade-offs. Since the analyses are repetitively used in model-based
design methods, they should be fast enough such that the design methods ter-
minate in a reasonable time. Moreover, they should be exact to avoid resource
over-allocations.

1.4 Contributions

We make the following contributions in this thesis.

Contribution 1. Modelling multi-scale applications by SADF

We observe that the timing behaviour of multi-scale applications follows
a periodic pattern of small (involving only a few task executions), static be-
haviours that is composed of a few behaviours associated with the coarser grain
operations and many repetitions of behaviours associated with finer grain op-
erations. We perceive each distinctive, small behaviour as a scenario. Conse-
quently, the behaviour of the application is described as a periodic sequence
of scenarios, some of which are repeated many times. Such behaviours can be
modelled by an SADF. To compactly represent the repeated (sub-) sequences
we introduce a representation for SADF, where the language of the sequences
is represented as a regular expression with an explicit repetition construct in-
stead of the traditional finite state machine. This modelling approach was first
published in the following article.

H. Alizadeh Ara, A. Behrouzian, M. Hendriks, M. Geilen, D. Goswami, and
T. Basten. Scalable analysis for multi-scale dataflow models. Transactions on
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Embedded Computing Systems, 17(4), 2018.

Contribution 2. Providing an approach to quickly generate the execution
traces for SADF models of multi-scale applications

The execution traces of applications can be used to understand the be-
haviour of the applications and find opportunities for performance improve-
ment or detect anomalies. Re-using elements of the latency analysis, we pro-
vide a technique to quickly generate execution traces of a particular scenario
within a pattern without performing a detailed simulation of the sequence that
is followed leading up to that scenario. This is very helpful in case of multi-
scale applications, as their periodic sequence is often very long. This trace
generation method was published in the following paper.

H. Alizadeh Ara, A. Behrouzian, M. Geilen, M. Hendriks, D. Goswami, and
T. Basten. Analysis and visualization of execution traces of dataflow applica-
tions. In Proceedings of the 2nd Embedded computing and Architecture (IDEA)
Workshop on Integrating Dataflow, pages 19–20. ESR-2017-01, 2016.

Contribution 3. Providing scalable throughput and latency analyses for
multi-scale dataflow models

For SADF with regular expression representation, we provide a composi-
tional approach for exact, worst-case throughput and maximum latency anal-
yses. The proposed throughput analysis shows an enhanced scalability for
multi-scale dataflow models compared to the state of the art. Scalability im-
provement is achieved by the proposed regular expression representation to
recognize the repeated patterns and the fact that the throughput analysis on
repeated scenarios can be done in logarithmic time in the number of repeti-
tions instead of linear time as in the state of the art methods. The proposed
latency analysis, which is similarly scalable, is the first exact latency method
for SADF models. The latency is recursively computed by decomposing the
regular expression and computing the latency of sub-expressions in a bottom
up approach. The throughput and latency analysis was published in the fol-
lowing article.

H. Alizadeh Ara, A. Behrouzian, M. Hendriks, M. Geilen, D. Goswami, and
T. Basten. Scalable analysis for multi-scale dataflow models. Transactions on
Embedded Computing Systems, 17(4), 2018

Contribution 4. Composing dataflow models of cyclo-static applications
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A modular compositional model can facilitate the modelling process of com-
plex applications by allowing individual component models to be composed in
a recursive manner to generate a hierarchical model of a complex application.
A complex application, such as a multi-resolution filter is structured as paral-
lel pipelines of multi-scale components, each with a possibly different periodic
pattern. Composing models with periodic patterns results in a model with
a periodic pattern with a common hyper-period. This common periodic pat-
tern is hard to derive by hand. We propose an efficient algorithmic method
that given the periodic scenario sequences of the components by regular ex-
pressions, generates a sequence of composite scenarios in a compact regular
expression representation. This composition approach was published in the
following paper.

H. Alizadeh Ara, M. Geilen, A. Behrouzian, T. Basten, and D. Goswami.
Compositional dataflow modelling for cyclo-static applications. In Proceedings
of the 21st Euromicro Conference on Digital System Design (DSD), pages
121–129. IEEE, 2018

Contribution 5. Providing a throughput-buffering trade-off analysis for
scenario-aware dataflow models

As discussed in Section 1.2.3, the capacities of buffers in an application af-
fect the throughput of the application. Since storage space is a scarce resource
in computer systems, optimal points in the space of throughput-storage-space
trade-offs should be found. We provide the first throughput-buffering trade-off
analysis for applications modelled as SADF. We use our scalable throughput
analysis in a guided design-space exploration to obtain the trade-offs. At every
exploration step, the exploration prunes the exploration space without losing
any optimal points. This is done by an approach that at every step identi-
fies the buffers which do not affect the throughput anymore. The exploration
on these buffers is stopped and, consequently, the analysis is terminated in a
reasonably short time. This trade-off analysis method was published in the
following paper.

H. Alizadeh Ara, M. Geilen, A. Behrouzian, and T. Basten. Throughput-
buffering trade-off analysis for scenario-aware dataflow models. In Proceedings
of the 26th International Conference on Real-Time Networks and Systems,
pages 265–275. ACM, 2018

Contribution 6. Obtaining tight timing bounds for dataflow applications
mapped onto shared resources
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As mentioned in Section 1.2.3 budget scheduling is a common method to
share the processors among several applications. To obtain the required pro-
cessor budgets for every application, we need analysis techniques to estimate
the performance of the application after the budget is allocated. Tighter es-
timations result in a better resource allocation. The final contribution of this
thesis provides an analysis method to determine conservative but tight timing
bounds for the scenarios of an SADF that is mapped onto a shared multi-
processor system. We obtain tighter bounds with respect to the state of the
art by finding less conservative, but still guaranteed estimations on the re-
sponse times of tasks in the application. This method of obtaining timing
bounds was published in the following paper.

H. Alizadeh Ara, M. Geilen, T. Basten, A. Behrouzian, M. Hendriks, and
D. Goswami. Tight temporal bounds for dataflow applications mapped onto
shared resources. In Proceedings of the 11th Symposium on Industrial Embed-
ded Systems (SIES), pages 1–8. IEEE, 2016

1.5 Thesis Overview

This thesis is organized as follows. The next chapter provides the notations and
preliminaries required to follow this thesis. Chapter 3 explains the modelling
procedure for multi-scale applications. This chapters shows how a multi-scale
application is modelled as an SADF, the language of which is represented
by a regular expression. In this chapter, we also provide a means to quickly
generate the execution traces of such SADF models. Chapter 4 provides the
scalable throughput and latency analysis for regular expression-based SADF
models of multi-scale applications. In Chapter 5, we propose an algorithmic
method to compose the SADF models of cyclo-static multi-scale applications
into an SADF with a compact regular expression, enabling scalable analyses
of such applications. In Chapter 6 we discuss our throughput-buffering trade-
off analysis for SADF models. Chapter 7 provides tight timing bounds for
scenarios of SADF models. Chapter 8 concludes the thesis.
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Chapter 2

Preliminaries

In this chapter, we first introduce some notation and give the necessary back-
ground on the (max,+) algebra. We proceed with providing the details of
the SDF model, elaborating on scenarios of SDF models and showing how
scenario sequences can be represented by formal languages. Afterwards, we
provide the definition of the SADF model, its throughput and latency. We
explain the (max,+) characterization of SDF scenarios. This sets the stage
for discussing the existing throughput analysis for SADF models. After that,
we show how buffer requirements of applications are modelled in SADF mod-
els. Finally, we introduce open SADF models, as they are essential to model
compositional dataflow behaviours.

2.1 Notations

Throughout the thesis the symbols IR, IR≥0 and IN denote the sets of real
numbers, non-negative real numbers and natural numbers, respectively. Sym-
bol IN0 denotes the union of the natural numbers and the number 0 and, IR−∞
the union of the set of real numbers with −∞. The set of all vectors with size
n, the elements of which belong to IR−∞ is denoted by IRn

−∞. Symbol IRn×m
−∞

denotes the set of all matrices with n rows and m columns with elements that
belong to IR−∞. We use lower-case letters for scalars, bold upper-case letters
for matrices and bold lower-case letters for vectors. A bar accent (s̄) is used
to denote finite or infinite sequences. Superscript ·T on vectors and matrices
denotes the transposition operator.

19
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2.2 (max,+) Algebra

(max,+) algebra [44, 45] supports two commutative and associative binary
operators, namely maximum (⊕) and addition (⊗): x⊕y = max{x, y} and x⊗
y = x + y, where x, y ∈ IR−∞. In (max,+) algebra, x ⊕ −∞ = −∞⊕ x = x
and, x⊗−∞ = −∞⊗ x = −∞.

Let vectors x and y belong to IRn
−∞ and, A and B be matrices that belong

to IRm×n
−∞ . Let [x]i and [y]i denote the ith element of x and y respectively. The

inner product of x and y is defined as xTy = ([x]1⊗ [y]1)⊕([x]2⊗ [y]2)⊕· · ·⊕
([x]n ⊗ [y]n). Operator ⊕, on vectors with the same size, operates element-
wise. Matrix multiplications and additions are defined using the above inner
product and addition of vectors, analogous to ordinary linear algebra. Let C
be a matrix of an appropriate size. For readability, we write Ax and AC
instead of A⊗ x and A⊗C.

Let [A]ij and [B]ij denote the element on row i, column j of their cor-
responding matrices. We write A ≤ B to denote that for every i and j,
[A]ij ≤ [B]ij (considering that −∞ ≤ x for any x ∈ IR−∞). If A ≤ B, it can
be proven that AC ≤ BC, CA ≤ CB and A⊕C ≤ B ⊕C, for any matrix
C. Subtraction of a scalar c ∈ IR from a matrix A, i.e. A− c or A⊗ (−c), is
to subtract c from all elements of A. The norm of a matrix ‖A‖ or a vector
‖x‖ is equal to the maximum entry in the matrix or the vector. I denotes an
identity matrix in (max,+) algebra. For any matrix A, IA = AI= A. An
identity matrix is square, the diagonal elements are 0 and the other elements
are −∞.

Consider a square matrix M ∈ IRn×n
−∞ . The scalar e is an eigenvalue of

M , if there exists a vector x ∈ IRn
−∞ with ‖x‖ > −∞ such that Mx = ex.

The adjacency graph (also called the precedence graph [44]) of matrix M is
a weighted directed graph with n nodes labelled 1, 2, · · · , n. For every entry
[M ]ij 6= −∞, the adjacency graph contains an edge from node j to node i
with the weight of [M ]ij . The cycle mean of a cycle in this graph is defined
as the sum of the edge weights of the cycle, divided by the number of edges
in the cycle. The largest eigenvalue of a square matrix equals the Maximum
Cycle Mean (MCM) among all cycles of its adjacency graph. Critical cycles of
the adjacency graph are defined as the cycles with the maximum cycle mean.

Symbol
⊕

denotes the summation quantifier in (max,+) algebra. Sum-
mation over an empty set equals −∞. Let n ∈ IN0. Mn denotes raising M to
the power of n. M0 = I. The star closure of a square matrix M is a matrix
M∗ such that M∗ =

⊕
k≥0M

k. M∗ exists if and only if M has no positive
eigenvalues.



2.3. SYNCHRONOUS DATAFLOW 21

P,1 Q,3
2 c1

c2 c3

Figure 2.1: An example SDFG.

2.3 Synchronous Dataflow

Synchronous dataflow [20] describes an application by a directed graph. Fig-
ure 2.1 shows an example SDFG. In this graph, nodes depict actors. Actors
represent individual tasks. In SDF, actor firings correspond to task execu-
tions. The letters inside the nodes are used to refer to actors. Directed edges
in the graph represent channels and they are referenced by the annotations
below them. Channels model dependencies be tween actor firings caused by,
for instance, data dependencies or control decisions. For example, channel c1
models a firing dependency of Q on P. The classical SDF is un-timed, i.e.,
actor firings do not take time.

To perform timing analysis we use a natural extension of SDF [46] where
actor firings take some time, which is referred to as the execution time. We as-
sume there exists a known upper bound for the execution time of every actor.
This is a valid assumption in case the application is realized on a computer
architecture that provides timing predictability, such as PRET [47] or Comp-
SOC [48]. These architectures use predictable components such as predictable
processor arbiters and predictable memory controllers. Consequently, they can
ensure that within a certain time bound the actor will complete its execution.
This upper bound is called the worst-case execution time of the actor. In Fig-
ure 2.1, the numbers inside the nodes show the worst-case execution times of
the actors. For all examples in the thesis, we assume that the given execution
times are the worst-case execution times.

The dependencies between actor firings are captured by a mechanism that
allows actor firings to produce and consume some entities on the channels called
tokens. Channels may initially contain tokens, referred to as initial tokens. In
Figure 2.1, initial tokens are shown by black dots on top of the channels. When
an actor starts firing, it consumes tokens from its input channels, and when its
execution time expires, it produces tokens on its output channels. All firings
of an actor consume and produce constant numbers of tokens per channel,
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Figure 2.2: An execution trace of the example SDFG.

called the consumption and production rates. The rates are given as edge
annotations in the graph (rates of 1 are not shown to avoid cluttering). For
instance, every firing of actor P consumes one token from channel c2 and after
one time unit, it produces one token on channel c2 and two tokens on channel
c1. An actor can start firing only if it is enabled. In an enabled actor, the token
numbers on all input channels are equal to or greater than the consumption
rates of the actor on the corresponding channels.

An execution of an SDFG is a sequence of actor firings which may overlap
in time. An SDFG execution models an execution of the application. In
a self-timed execution, actors start firing as soon as they are enabled. The
timing behaviour of an SDFG can be studied by simulating an execution that
corresponds to at least one full execution cycle of the application [49]. During
the simulation, tokens are assigned time-stamps that show their availability
times. These time-stamps can be stored and used for timing analysis after the
simulation.

Consider Figure 2.1 with initial tokens that are available from time 0. These
tokens are assigned the time-stamp 0. We illustrate an execution that involves
one firing of P and two firings of Q. Figure 2.2 shows a trace of this execution.
P is enabled at time 0, because it needs only the initial token available on c2,
but Q is not enabled because it needs at least one token on c1, which is not
there. In a self-timed execution, at time 0, P consumes the token on channel
c2 and starts firing. This firing ends at time 1 and produces a token on c2 and
two tokens on c1, all with time-stamp 1. Now Q is enabled. The first firing of
Q consumes a token produced by the firing of P on c1 and the initial token on
c3. This firing starts at time 1, i.e., immediately after P produces tokens on c1.
When the first firing of Q ends after three time units, it produces a token on
channel c3 with time-stamp 4. This token, together with the token remaining
on channel c1, are consumed by the second firing of Q at time 4. At time 7,
the second firing of Q ends and leaves a token on channel c3 with time-stamp
7. In our particular example, actors fired one after another because of the
token dependencies. However, in general, in a self-timed execution, multiple
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actor firings of the same actor and/or different actors can happen at the same
time. For instance, if we allow another execution of P, it would start at time
1, immediately after the first firing of P completes and produces a token on
c2. This firing would be in parallel with the first firing of Q.

Observe that in Figure 2.1, after the completion of the second firing of Q,
the number of tokens on the channels is the same as before the execution. An
iteration of an SDFG is the smallest, non-empty set of actor firings that does
not change the number of tokens on any of the channels. Performance metrics
for an SDFG are often defined per iteration. For instance, the throughput of
an SDFG is defined as the average number of iterations executed per time unit
in a self-timed execution [49, 50].

An SDFG is formally defined by a tuple (A,C). The set A contains a finite
number of actors. An SDFG defines an execution time e(a) ∈ IR≥0 for every
actor a ∈ A. The set C ⊆ A × A is the set of channels. Let c ∈ C be a
channel from an actor a1 ∈ A to an actor a2 ∈ A (a1 and a2 can be the same
actor). Channel c is an output channel of a1 and an input channel of a2. Each
of actors a1 and a2 associate a number from IN0 to channel c, namely the
output rate Outa1(c) and input rate Ina2(c), respectively. Channel c contains
a non-negative number It(c) of initial tokens.

Since in SDF the rates and execution times of actors are fixed, this model
can be a good abstraction only for applications with a relatively static ex-
ecution behaviour. SDF abstractions of dynamic applications may become
pessimistic, because they accumulate the worst-case rates and execution times
in all varying behaviours in one graph, which may not be realistic. In the next
section we discuss an extension to SDF that refines the behaviour of a dynamic
application into several SDFGs and provides a less conservative abstraction.

2.4 Synchronous Dataflow Scenarios

Scenarios are a means to model dynamism in the behaviour of applica-
tions [51]. They describe different, deterministic modes of operation in an
application. An application may continue on one mode or switch to another in
a non-deterministic manner. Recall the MPEG-4 decoder application discussed
in Section 1.2.4. In this application, the decoding of I-frames and P-frames
is done differently, resulting in two different modes of operation. Each mode
of operation executes a set of tasks. A task may execute in both modes (e.g.
VLD), possibly with different data dependencies and execution times, or may
not execute in one mode or another. For example, MC actor does not execute
for an I-frame scenario.
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Figure 2.3: Scenario φ.

P,2 Q,2
2 c1

c2 c3
a b

3

Reps: [P,Q] 7→ [3, 2]

ITs: c2(α), c3(β)

FTs: c2(α), c3(β)

Reward: 2 (firings of Q)

Figure 2.4: Scenario ψ.

As the MPEG-4 application is quite complicated for our illustration pur-
poses, we proceed with a simpler example. Let’s consider an example applica-
tion that involves two tasks with dynamic behaviours, described by two SDF
scenarios, namely φ and ψ. An SDF scenario specifies a finite non-empty set of
actor firings in an SDFG. Scenarios are represented by a repetition vector that
shows the exact number of times (repetitions) that each actor in the graph
fires. Figure 2.3 shows an example SDF scenario φ. The table on the right
side of this figure shows the repetition vector for the scenario. This scenario
includes one execution of P and two executions of Q, which we denote as fol-
lows [P,Q] 7→ [1, 2]. Scenario φ corresponds to one iteration of its SDFG. In
general, a scenario may correspond to a partial iteration or also more than one
iteration. For instance, it is possible to define a scenario that includes only
one execution of P, i.e. [P,Q] 7→ [1, 0].

Executing a scenario is to execute all actor firings defined by the scenario.
A scenario execution leaves a number of tokens on the channels, called final
tokens. Initial and final tokens in a scenario are labelled. In Figure 2.3, the
initial tokens are labelled with annotations next to them. For instance, α
labels the initial token on channel c2. In the table of Figure 2.3, Initial Tokens
(ITs) and Final Tokens (FTs) show the locations and labels of all initial and
final tokens. For instance, c3(β) in the row that corresponds to FTs means
that the final token that will appear on channel c2 after an execution is labelled
β. ITs and IFs are a means to convey (timing and dependency) information
from an executed scenario to the scenario that will be executed next. For
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Figure 2.5: The execution trace of the scenario sequence (φψ)ω.

instance, assume scenario ψ (shown in Figure 2.4) will execute after scenario
φ. The final tokens in φ take the place of the initial tokens with the same
labels in ψ. If the ITs and IFs in a transition from scenario a to scenario b
do not match, it is said that the transition is inconsistent, and consequently,
the model is invalid. This also holds for self-transitions, in which the scenario
does not change. ITs and IFs should match within the scenario for which a
self-transition is possible.

Consider an infinite scenario sequence in which ψ and φ execute alternat-
ingly, starting with φ. Expression (φψ)ω represents this sequence (ω denotes
indefinite repetition). Figure 2.5 shows the execution trace of actors for this
scenario sequence. The initial tokens in φ are shown with nodes labelled 0
along the lanes annotated with α and β on the left. We assume the initial to-
kens in φ are available from time 0. After the execution of φ, the final tokens
α and β are produced at times 1 and 7, respectively (nodes labelled with 1).
These tokens are consumed in ψ as initial tokens, and the final tokens α and
β in ψ are produced at times 7 and 11, respectively. Note that even though
the scenarios are executed sequentially, their actors are executed in parallel.

The time-stamps of the initial tokens in scenarios of a scenario sequence
carry a notion of state for the timing behaviour of the application. In fact
these time-stamps summarize the timing behaviour from the starting point,
i.e., from the time the application starts executing, and they are the only
timing information needed from the past to proceed with the execution of the
upcoming scenarios. The time-stamps of the initial tokens are often collected
in a column vector called the state vector (also called schedule [31]). We
denote the state vector by γ. Every time a scenario executes, the state vector
changes from an initial state to a final state. Let’s consider γi (i > 0) as the
state vector after the execution of the ith scenario in the sequence and γ0 as the
initial state vector. For the execution in Figure 2.5 we have γ0 = [ 0 0 ]T ,
γ1 = [ 1 7 ]T and γ2 = [ 7 11 ]T . The elements in the first and the second
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row of the state vector show the time-stamps of α and β, respectively. The
state vector can be analyzed for performance. For instance, the growth rate of
the state vector during the execution of a sequence determines the throughput
of the application.

A scenario execution in the model, corresponds to a certain amount of
real-world progress. The progress can be defined depending on what we are
interested to analyse. For instance, in the MPEG-4 decoder application, if we
are interested to analyse the number of decoded frames per time unit, the unit
of progress can be defined as the decoding of one frame. To imply the amount
of progress earned in executing a scenario, we assign scenarios with real-valued
rewards. In the MPEG-4 decoder model provided by Geilen et al. [31], both
I and P-frame scenarios have a reward of 1, as the actor firings included in
those scenarios correspond to the task executions required for decoding one
frame. For some scenarios, we may be interested in the number of firings of a
specific actor, because that actor produces output every time it fires. In such a
case, the repetition of that actor in the scenario can serve as the reward of the
scenario. For instance in scenarios φ and ψ, we are interested in the number
of firings of actor Q. Therefore, these scenarios both have the reward of 2. In
Figure 2.5, the outputs produced by the firings of actor Q are shown by the
nodes along the outputs lane. The outputs are numbered for referencing.

In some applications we may want to specify a restriction of the scenario
transitions that are allowed to take place, to exclude inconsistent transitions or
any other unrealistic behaviours. For instance, in the MPEG-4 decoder we may
want to exclude sequences of frame types cannot occur because of encoding
restrictions, such as any sequence starting with a P-frame type (P-frames need
a reference to the previous frame which is non-existent if the P-frame is the first
frame). This leaves us with a set of possible scenario sequences the application
may follow. At the same time, we may allow for non-deterministic scenario
transitions, leading to an infinite number of possible scenario sequences. For
instance, in the MPEG-4 decoder, we may allow non-deterministic transitions
between I and P-frame types. The scenario sequences are infinitely long when
used to model streaming applications such as the MPEG-4 decoder, because
the stream of frames is unbounded. Therefore, in general we deal with infinite
sets of infinite scenario sequences that need to be analysed for the worst-case
behaviour to guarantee a minimum performance.
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Figure 2.6: An example FSM.

2.5 Regular Languages

In the theory of languages [52], an alphabet is a finite, non-empty set of letters.
A sequence of letters makes a word. The empty word does not have any letters.
Words can be of finite or infinite length. A set of words forms a language.
The language that does not contain any words is called the empty language.
A language that can be represented as a finite state automaton is called a
regular language. We use regular languages to describe finite or infinite sets of
infinite scenario sequences. The letters correspond to scenarios and the words
correspond to scenario sequences. We use the following two ways to represent
a regular language.

2.5.1 Finite State Machines

A Finite State Machine (FSM), also called finite state automaton, is a tuple
(W,w0, η), with a set W of states, an initial state w0 ∈ W and a labelled
transition relation η ⊆W ×S×W , where S is an alphabet, in our case, the set
of letters that represent scenarios. Figure 2.6 shows a graphical representation
of an FSM. This graph has two nodes, representing two states, namely states
w0 and w1. Directed edges show state transitions of η. State transitions are
labelled with letters. An infinite run in an FSM is an infinite sequence of
transitions, starting from the initial state w0. The initial state is shown with
an extra ring in the node. An infinite run of an FSM corresponds to an infinite
word that the transitions followed by the run are labelled with. For instance,
a run that corresponds to taking the transition from w0 to w1 and back to w0

alternatingly, forms the word (φψ)ω.

An infinite word is said to be recognized by an FSM, iff there exists an
infinite run in the FSM that can form that word. FSMs may have acceptance
conditions in the form of a set Wa ⊆ W of accepting states. Acceptance
conditions, when present, place additional constraints on which words are rec-
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ognized. The acceptance condition applied in this thesis is the one from Büchi
Automata [53]. We say that a run of an FSM is accepted if some accepting state
is visited along the run infinitely often. For instance, assume in Figure 2.6, w1

is the only accepting state. The accepting state is labelled with letter A. The
run that forms the word ψω is not accepted as it never visits w1, whereas the
run that forms the word (φψ)ω is accepted, because it visits w1 infinitely often.
FSMs in the thesis have no acceptance conditions unless mentioned otherwise.
If an FSM has no acceptance conditions, then all infinite runs recognized by
the FSM are accepted. An FSM represents or recognizes the language that
includes all words accepted by the FSM. We use L(M) to denote the language
represented by an FSM M . As commonly done in non-deterministic FSMs, for
convenience, ε is used to label empty transitions. Empty transitions change
the state without adding a letter to words. An ε-free FSM does not have any
ε transitions.

2.5.2 Regular Expressions

A regular expression is an algebraic formula that can represent a regular lan-
guage. We first introduce regular expressions that represent sets of finite
words, as a means to define regular expressions that represent sets of infinite
words. We define a regular expression ρ of finite words over a finite alphabet
S by the following syntax.

ρ ::= ∅ | ε | s | ρ1ρ2 | ρ1 + ρ2 | ρn | ρ∗

where s ∈ S, and n ∈ IN is a natural number. A regular expression ρ can be
the empty expression ∅ which represents the empty language, the empty string
ε, a single letter s ∈ S, a sequential composition (also called concatenation)
of two regular expressions, a choice between two regular expressions, a regular
expression that sequentially composes ρ with itself for n times (e.g. ρ2 = ρρ),
and a Kleene iteration ∗ of a regular expression ρ, which is defined as ρ∗ =
ε + ρ + ρ2 + ρ3 + · · · . Although it does not add expressiveness, we add the
syntax ρn to the commonly used syntax to be able to compactly represent
the sequential composition of n times ρ. As an example, φψ10 represents the
language that includes only the finite word that consists of letter φ followed
by ten repetitions of the letter ψ. L(ρ) is used to denote the language defined
by ρ.

ω-regular expressions formalize regular languages that describe sets of in-
finite words. We use the following syntax for ω-regular expressions σ, where ρ
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is a regular expression describing a language of finite words.

σ ::= ρω | ρσ | σ1 + σ2

The expression ρω defines a regular language by indefinite concatenation of
finite words from the language of a regular expression ρ. A concatenation ρσ
denotes the sequential composition of a regular expression ρ and an ω-regular
expression σ. Finally, + denotes a choice between two ω-regular expressions.
We use L(σ) to denote the language recognized by σ. A language can be repre-
sented by both an ω-regular expression and an FSM. We say that an ω-regular
expression and an FSM are equivalent if they represent the same language [54].
ω-regular expressions and FSMs with Büchi acceptance conditions define the
same class of languages.

We use the term regular expressions generally if it is clear from the context
that we are dealing with finite or infinite words. Otherwise, we use the term
ordinary regular expressions with regular expressions that describe languages
of finite words and ω-regular expressions with regular expressions that describe
languages of infinite words.

2.6 Scenario-Aware Dataflow

Scenario-aware dataflow [32] is a dataflow model composed of a set of SDF
scenarios, and a set of possible scenario sequences. Figure 2.7 shows an SADF
with two scenarios, namely φ and ψ, and a set of possible scenario sequences
represented by an FSM. Figure 2.7a shows the scenario graphs of these sce-
narios and Table 2.7c shows their specifications. The structure of the scenario
graphs are the same, but the actor execution times and some rates are different
for every graph.

In this section, we provide formal definitions for SADF and its two im-
portant performance metrics: the throughput and latency. The definition of
SADF is adapted from the definition provided by Geilen et al. [55]. They use
an FSM representation of the language of scenario sequences in their SADF
definition. We use the language itself instead of a specific representation of
it, since we use different representations of the language, namely FSMs and
regular expressions.

An SADF is defined by a tuple (S, g, r, i, f, o, L). The set S contains a
finite number of scenarios. Every scenario s ∈ S has an associated SDFG g(s).
The function r(s) maps every actor of g(s) to a non-negative number that
corresponds to its repetition count. The graph g(s) has a number i(s) ∈ IN of
labelled initial tokens distributed over its edges. After scenario s executes, it



30 CHAPTER 2. PRELIMINARIES

P Q
c1

c2 c3
a b

r1 r2

(a) Scenario graphs.

w

ψ

φ

ψ

w0 w1

(b) FSM.

Scenarios φ ψ

ETs e(P ) = 1, e(Q) = 3 e(P ) = 2, e(Q) = 2

Rates r1 = 2, r2 = 1 r1 = 2, r2 = 3

Reward 2 (firings of Q) 2 (firings of Q)

Reps [P,Q] 7→ [1, 2] [P,Q] 7→ [3, 2]

ITs c2(α), c3(β) c2(α), c3(β)

FTs c2(α), c3(β) c2(α), c3(β)
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Figure 2.7: An SADF with two scenarios.

leaves a number f(s) ∈ IN of labelled final tokens on some edges of g(s). Note
that scenario specifications such as the label and location of the initial and final
tokens are assumed to be known and captured in g for every scenario s ∈ S. We
made the maps i(s) and f(s) explicit in the definition to help the readability
in developing formulas in the remainder of the thesis. The function o(s) maps
every scenario to its reward, which is the number of outputs produced by an
actor specified in the scenario.

The language L describes a set of infinite scenario sequences. When
the language of an SADF is described by an FSM we refer to it as a
Finite-State-Machine Scenario-Aware Dataflow (FSM-SADF). For instance,
the SADF shown in Figure 2.7 is an FSM-SADF. The FSM-SADF introduced
by Geilen et al. [55] does not consider acceptance conditions for the FSM.
Our definition, which is based on regular languages, allows more fine-grained
specifications of the set of scenario sequences than the FSM-based definition
of Geilen et al. [55], because some regular languages can only be translated to
FSMs that have acceptance conditions.

The throughput can be defined for a given infinite scenario sequence of an
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SADF. Let s̄ = s1s2s3 · · · denote a sequence of scenarios sn. We quantify the
throughput of a given scenario sequence of an SADF by the average number
of outputs produced per time unit during the execution of that sequence as
follows.

Thr(s̄) = lim inf
i→∞

Σin=1o(sn)

‖γi‖
(2.1)

In this equation, the denominator of the fraction represents the progress
of time, measured as the norm of the state vector γi, and the nominator is
the total number of outputs produced until and including scenario si. Tak-
ing the average over an infinite sequence ā of numbers is typically defined
using limn→∞ an. Such limit does not necessarily exist for the sequence
āi = Σin=1o(sn)/ ‖γi‖, since the sequence of scenarios can be such that ā al-
ways fluctuates between infimum and supremum values. We use the operator
lim infi→∞ to be conservative. Using the definition above, the throughput of
the sequence (φψ)ω is 0.4. This means actor Q fires and produces an output 4
times every 10 time units on average. This can be observed from the execution
trace in Figure 2.5. The firings of actor Q during the period 1 to 11 exactly
repeat during the period 11 to 21 and so on, and during every period 4 outputs
are produced). The worst-case throughput of an SADF F is obtained among
the set of all possible sequences represented by the language L, as follows.

Thr(F ) = min
s̄∈L

Thr(s̄) (2.2)

In Section 2.8 we discuss a throughput analysis based on this definition,
provided by Geilen et al. [55]. The throughput of the example shown in Fig-
ure 2.7 is 2/6, since the sequence ψω which is recognized by the FSM shown in
the figure, turns out to be a sequence with the minimum throughput among
all other recognized sequences. Three firings of actor P takes 6 time units in
every execution of ψ, during which 2 outputs are produced.

Eq. 2.2 requires that Thr(s̄) is the worst-case throughput of scenario se-
quence s̄, considering that the actual execution time of actors may be less that
their worst-case execution time. Geilen et al. [55] and Wiggers et al. [24] show
that in a self-timed execution, if a dataflow actor executes in less time than
the worst case, then the throughput will be no worse than if it had used its
entire worst-case execution time. This property is known as the monotonicity
property of dataflow models. In Chapter 6, we use the monotonicity prop-
erty of SADF models to provide an efficient approach for the SADF buffer
sizing problem. Monotonicity of a particular implementation of an application
with bounded resources depends on the implemented resource arbitration pol-
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icy. For instance, actor executions on a processor with TDMA arbitration is
monotonic, whereas under round-robin arbitration it is not monotonic.

Next we define the latency. The outputs produced by an steaming appli-
cation are often buffered and used in a periodic fashion. For instance, the
frames decoded by an H.263 decoder are displayed to the user in a certain
frame rate. We are often interested to know the minimum waiting time before
the outputs produced by an application can be used with a certain rate. To
define the latency of a scenario sequence, we that imagine the outputs that
are produced during the execution of a scenario sequence are consumed by
an external actor S that is periodically scheduled with period µ. Every firing
of this actor consumes one output. For the external actor to have a feasible
schedule, an output should be produced no later than the start time of the
external actor for all firings. If the throughput of the application is lower than
1/µ, such a periodic schedule will be eventually disrupted, as the outputs will
be produced later than the start times of actor S. If the throughput is not
lower than 1/µ, there exists a feasible periodic schedule for the external ac-
tor. That is, there exists a waiting time λ such that for all k it holds that
pk ≤ λ+kµ, where pk denotes the time of kth output produced during the sce-
nario sequence. Figure 2.5 shows such a periodic schedule for an actor S that
consumes the outputs produced during the sequence (φψ)ω. In this figure, the
waiting time λ is 4.5 and the period of the tasks is equal to 1/0.4 = 2.5. Note
that a shorter waiting time is not feasible in this example, since the second
firing of S would then not find its output token in time.

We define the latency of a scenario sequence relative to a given period µ
as the shortest waiting time of the periodically scheduled external actor that
consumes outputs with period µ. This means the latency is defined as the
smallest λ such that pk ≤ λ+ kµ holds for all k. Given an initial state γ0, we
can determine the production times pk of all outputs in a scenario sequence.
The latency of a scenario sequence s̄ with an initial state vector γ0, relative
to period µ is defined as follows.

λ(s̄,γ0, µ) = max
k≥0

pk − µk (2.3)

According to Figure 2.5, given initial state γ0 = [ 0 0 ]T , the latency
of (φψ)ω relative to period 2.5 is 4.5. Considering the production times of
outputs and the firing start times of the external actor S, the first start time
of S cannot happen earlier than 4.5. Since the second firing of S requires
output number one which is produced at 7 the earliest.

Similar to the throughput case, the worst-case latency over the language
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L is defined as follows.

λ(L,γ0, µ) = max
s̄∈L

λ(s̄,γ0, µ) (2.4)

Geilen et al. [31] provide a similar latency definition except that according
to their definition, there is no notion of outputs produced by actor firings, and
instead, the execution of any scenario is regarded as production of one output.

2.7 (max,+) Characterization of SDF Scenar-
ios

The timing behaviour of any actor firing in an SDF scenario can be character-
ized by the timing relation between the time-stamps of the tokens produced
by the actor firing, and the time-stamps of the initial tokens. This relation
is naturally captured by maximization and addition operations. For instance,
consider the firing of actor P in scenario φ. Let symbols tα and tβ respectively
denote the time-stamps of the initial tokens α and β, and t denote the time-
stamps of the tokens produced by the firing of P. According to the scenario
graph, in a self-timed execution, P starts firing as soon as α becomes available.
This firing completes and produces tokens, 1 time unit after the start. There-
fore, t = tα+1. Alternatively, we could write this relation in (max,+) algebra
as a linear equation t = (1⊗ tα)⊕ (−∞⊗ tβ). The expression −∞⊗ tβ = −∞
implies the fact that t is not affected by tβ . This way of representing the time-
stamp of a token, i.e. with a linear (max,+) equation in terms of variables tα
and tβ , is called the symbolic time-stamp representation.

Symbolic time-stamp t can be represented also by a vector inner product
t = gT t, where g contains suitable constants and t contains the symbols that
denote the time-stamps of the initial tokens. In this equation, gT is referred
to as the symbolic time-stamp vector and t is referred to as the symbolic state
vector. For instance, the symbolic time-stamp of tokens produced by the firing
of P can be represented as t = [ 1 −∞ ][ tα tβ ]T , where [ 1 −∞ ] is the
symbolic time-stamp vector assigned to all tokens produced by the firing of
P, and [ tα tβ ]T is the symbolic state vector. Note that the symbolic state-
vector is the same in the symbolic representation of any token in a scenario,
and it does not carry any timing information. The essential timing information
of every token is captured by its symbolic time-stamp vector.

This section shows how scenario executions can be characterized by
(max,+) algebra equations using the symbolic time-stamp representation. Ev-
ery scenario is characterized by two linear matrix equations, namely the state
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equation and the output equation (similar to state-space equations in linear
system theory [56]). In a scenario sequence, the state equations of the sce-
narios determine the state vector after the execution of the scenario and the
output equations of the scenarios relate the production times of outputs to the
state vector. In the remainder of this section we discuss these two equations
and show how they can be obtained for a scenario.

2.7.1 The State Equation

The relation between the time-stamps of the final tokens and the time-stamps
of the initial tokens in the execution of a scenario can be represented by a
linear matrix equation in (max,+) algebra. For a scenario s, if we collect the
time-stamps of the initial tokens in vector t and the time-stamps of the final
tokens in vector t′, this relation can be expressed as the following equation [31].

t′ = Gst (2.5)

Eq. 2.5 is called the state equation. We refer to Gs as the state matrix (also
called scenario matrix) of s. For instance, in scenario φ and ψ, we can collect
the time-stamps of the initial tokens in vector t = [ tα tβ ]T and the time-

stamps of the final tokens in vector t′ = [ t′α t′β ]T and describe scenarios φ
and ψ by the following matrices.

Gφ =

[
1 −∞
7 6

]
, Gψ =

[
6 −∞
8 4

]
An entry t at column k and row m in Gs specifies that there is at least a

time difference of t time units between the time-stamp of token k before the
execution of s and the time-stamp of token m after s is executed. For instance
the entry 7 on the first column of the second row of Gφ implies that the time-
stamp of final token β is at least 7 time units later than the time-stamp of the
initial token α. This is a valid statement since the dependency path from α to
β goes through one firing of P (with execution time of 1) and two firings of Q
(with execution time of 3); therefore there is at least 1 + 2× 3 = 7 time units
difference between the availability of the initial token α and the production of
the final token β.

In a scenario sequence, we can use the state matrices of the scenarios to
determine the state vector of any scenario in the sequence. For instance,
consider the sequence (φψ)ω. Given γ0 = [ 0 0 ]T , we can find the state
vector γ1 and γ2 as follows.
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γ1 = Gφγ0 =

[
1 −∞
7 6

] [
0
0

]
=

[
1⊗ 0⊕−∞⊗ 0

7⊗ 0⊕ 6⊗ 0

]
=

[
1
7

]
γ2 = Gψγ1 =

[
6 −∞
8 4

] [
1
7

]
=

[
6⊗ 1⊕−∞⊗ 7

8⊗ 1⊕ 4⊗ 7

]
=

[
7
11

]
In general, for any sequence s̄ = s1s2 · · · , we can compute the state vector

γi as follows.
γi = Gsiγi−1 (2.6)

A systematic way of obtaining the state matrix of a scenario can be found
in a work of Geilen [31]. The author uses a symbolic simulation of the sce-
nario (as opposed to the concrete simulation in Section 2.3) to obtain the
state matrix. In the symbolic simulation, tokens are represented by their
symbolic time-stamps using the symbolic time-stamp vectors. We explain
how this matrix can be obtained for scenario φ using the symbolic simula-
tion. Consider the symbolic state vector t = [ tα tβ ]T . Using this sym-
bolic state vector, the time-stamp of the initial tokens α and β can be rep-
resented by time-stamp vectors [ 0 −∞ ] and [ −∞ 0 ], respectively (e.g.
tα = [ 0 −∞ ][ tα tβ ]T ). After P completes firing, the two tokens pro-
duced on channel c1 and the final token α are assigned the time-stamp vector
[ 0 −∞ ] + 1 = [ 1 −∞ ], as they are produced 1 time unit after the ini-
tial token α becomes available. Observe explicitly that addition to a symbolic
time-stamp is represented by the addition to the symbolic time-stamp vec-
tor. The first firing of Q consumes a token from c1 and initial token β, and
starts at [ 1 −∞ ]⊕ [ −∞ 0 ] = [ 1 0 ]. Observe explicitly that max of
symbolic time-stamps is represented by the max of the symbolic time-stamp
vectors. It completes and produces a token on channel c3 with time-stamp
[ 1 0 ] + 3 = [ 4 3 ]. The second firing of Q, consumes another token from
c1 and the token on channel c3, and produces the final token β with time-
stamp ([ 1 −∞ ]⊕ [ 4 3 ]) + 3 = [ 4 3 ] + 3 = [ 7 6 ]. If we collect the
time-stamp vectors of the final tokens α and β, i.e., [ 1 −∞ ] and [ 7 6 ],
in the first and second row of a matrix, respectively, we obtain Gφ.

It is worthwhile to mention that the state matrix can also be defined for
SDF and CSDF models. The state matrix of an SDF or a CSDF captures the
essential timing information in one iteration of the graph. This matrix can
be directly used for timing analysis. For instance, the eigenvalue of the state
matrix of an SDF or a CSDF shows the average time required to execute an
iteration. This time is called the cycle time, which equals the reciprocal of the
throughput of the graph.
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2.7.2 The Output Equation

In SDF scenarios we may need to capture the production times of outputs,
for instance to compute the latency. The output production times might be
directly accessible through the state vectors. For example in Figure 2.5 it is
observed that the production of every other output is synchronized with the
production of the final token β, i.e. it is reflected in the second element of
the state vector. However, this is not always the case. In general, given a
time-stamp vector t of the initial tokens, the output production times in a
scenario s can be computed in a vector p using the following matrix equation
(similar to the one introduced by Skelin et al. [57]).

p = Hst (2.7)

Eq. 2.7 is called the output equation. We refer toHs as the output matrix of
the scenario s. It has as many rows as there are outputs produced in scenario s.
Each row of this matrix expresses the relation between the time-stamps of the
initial tokens and the production time of an output in s as the inner product of
each row and the time-stamp vector of initial tokens. We assume the rows are
ordered such that the first row corresponds to the first output (consequently p
has the same order). For scenarios φ and ψ, the output matrices are as follows.

Hφ =

[
4 3
7 6

]
Hψ =

[
4 6
8 4

]
In a scenario sequence, we can use the output matrices of the scenarios to

compute the production times of outputs during any scenario in the sequence.
For example, let p0, p1, p2 and p3 denote the production times of the first four
outputs produced during the execution of the sequence (φψ)ω. Using Hφ and
Hψ, the output production times can be computed as follows.[

p0

p1

]
= Hφγ0 =

[
4
7

]
,

[
p2

p3

]
= Hψγ1 = HψGφγ0 =

[
9
11

]
The computed production times can be confirmed by noticing the times

at which the outputs are produced in Figure 2.5. We can obtain the output
matrix of a scenario, similar to its state matrix. The output matrix is created
by vertically augmenting the symbolic time-stamp vectors that correspond to
production of outputs. For instance, in scenario φ, symbolic time-stamp vec-
tors [ 4 3 ] and [ 7 6 ] correspond to production of outputs. By vertically
augmenting these vectors we obtain Hφ.
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Figure 2.8: (max,+) automaton of the SADF shown in Figure 2.7.

2.8 FSM-SADF Throughput Analysis

This section discusses the FSM-SADF throughput analysis provided by
Geilen et al. [55]. The analysis is based on the throughput definition given
by Eq. 2.2. To determine the throughput, we need to find a worst-case sce-
nario sequence among all possible scenario sequences, a sequence that deter-
mines the minimum of the throughput values. Recall that in the definition of
throughput for scenario sequences (Eq. 2.1), the progress of time is measured
as the norm of the state vector γi, which corresponds to an element with the
maximum value. According to Eq. 2.6, every element of γi, is determined by
some element of γi−1 and delay by the corresponding dependency in the state
matrix. This element in γi−1 can in turn be traced back to a single element
in γi−2 and finally back to γ0. This means that the relation between time
progress and scenario sequences can be studied on individual elements of state
vector and their individual dependencies expressed by the entries in the state
matrices.

Figure 2.8 shows a graph which captures these dependencies for the ex-
ample of Figure 2.7. This graph is called the analysis (max,+) Automaton
(MPA). The nodes in this graph represent the elements of the state vector
in each of the states of the FSM. The nodes on the left and right sides are
associated with the state vector elements corresponding to α and β, and the
nodes on top and bottom sides are associated with the FSM states w0 and w1,
respectively. For every FSM edge labelled s, we take the state matrix Gs, and
for every non −∞ element in Gs we draw an edge between the corresponding
state vector elements and label it with the value of that element (i.e. the
delay) and with the reward of s (e.g., label 7, 2 has a delay of 7 and reward
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Figure 2.9: An example FSM with acceptance conditions.

of 2). The edges that correspond to scenarios φ an ψ are shown with red and
blue colours for clarity.

A formal definition of the MPA corresponding to an SADF is provided in
the form of a graph M(R,E) with nodes R and edges E as follows.

R = {(w, i) | w ∈W, 1 ≤ i ≤ n(w)}
E = {((w1, i), [G(s)]i,j , o(s), (w2, j)) | (w1, s, w2) ∈ η, 1 ≤ i ≤ n(w1),

1 ≤ j ≤ n(w2), [G(s)]i,j 6= −∞}

In this equation, n(w) is the size of the state vector in state w. Cycles
of the MPA show the cyclic dependencies between state vector elements in
execution of scenario sequences. The ratio of a cycle equals the sum of the
delays on the edges of the cycles, divided by the sum of the rewards on the
edges of the cycle. A cycle with the maximum ratio corresponds to scenario
sequences that determine the infimum of the throughput values. Therefore,
the throughput can be obtained by a Maximum Cycle Ratio (MCR) analysis
on the MPA. The MCR of the MPA of the example SADF is 6/2. Therefore
the throughput is 2/6 rewards per time unit. Critical cycles of an MPA are the
cycles with the maximum cycle ratio. The MPA in Figure 2.8 has one critical
cycle, which is from node (α,w0) to itself.

The throughput analysis discussed above is provided for FSM-SADF mod-
els, following the definition of Geilen et al. [55]. Hence, acceptance conditions
are not considered for the FSM. One needs to be careful when using this analy-
sis with our SADF definition, when using regular expressions instead of FSMs.
A language may not necessarily have an FSM representation without consid-
ering acceptance conditions. The throughput analysis on SADF models with
such languages can still be used without considering acceptance conditions.
However, the analysis may be conservative in some cases. For instance, for
the SADF shown in Figure 2.7, assume the language of the model is given
by regular expression ψ∗(ψφ)ω instead of the FSM shown in that figure. The
FSM representation of the language of this regular expression is shown in Fig-
ure 2.9. Observe that w1 and w2 are the accepting states. This means that
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the language of the FSM are the sequences of the runs that visit w1 and w2

infinitely often. As a result, sequence ψω does not belong to this language,
because it corresponds to a run that never visits either of the accepting states.
If we do not consider the acceptance condition of the FSM representation of
the language of ψ∗(ψφ)ω, we also include sequences such as ψω in the lan-
guage. Since ψω happens to be the sequence with the worst-case throughput
among all sequences, the throughput analysis will compute the conservative
throughput value of 2/6, whereas the exact throughput is 4/10 outputs per
time unit, which corresponds to sequence (ψφ)ω.

In general, the throughput analysis on SADF models with languages that
are represented by a concatenation ρσ of an ordinary regular expression ρ and
an omega-regular expression σ, may be conservative. Regular expression ρ
represents a language of finite words. The sequences of this language con-
stitute the prefixes of the sequences in the language of ρσ. Therefore, the
sequences of ρ do not affect the throughput, as they are finite sequences, while
the throughput is entirely determined by the infinite part from σ. An MPA
that is constructed from the FSM of SADF models with such languages with-
out considering acceptance conditions, includes cycles that are related to ρ;
therefore the analysis becomes conservative if the included cycles contribute
to the worst-case throughput.

Conservative throughput analysis for SADF models that have FSMs with
acceptance conditions can be avoided by straightforward static analysis of the
FSM. In an SADF, we can transform every FSM with acceptance conditions
to an FSM without acceptance conditions which has the same throughput (not
the same language). This can be done by removing the states that can only be
visited a finite number of times in any recognized sequence. For instance, in
Figure 2.9, if we remove state w0 and then perform the throughput analysis,
the analysis result would be 4/10 which is the exact throughput.

It is good to mention that the FSM-SADF throughput analysis can also
be used to analyse the throughput of SDF and CSDF models. A scenario that
represents exactly one iteration of an SDFG or a CSDF graph is formed and
assigned the reward of 1. Then, an FSM-SADF model is created using this
scenario and an FSM that repeats this scenario. The MCR analysis on the
MPA of this FSM-SADF is the same as obtaining the eigenvalue of its one and
only state matrix.
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Figure 2.10: Modelling a buffer capacity on the scenario graphs of Figure 2.7.

2.9 SADF Buffer Requirements

In an SDFG, the channels that model data dependencies are called buffer
channels. In the scenario graphs of Figure 2.7, channel c1 is considered a
buffer channel between a source actor P and a destination actor Q. SDF
channels do not have control over the number of tokens that accumulates
on them. A limited capacity buffer can be represented by modelling back-
pressure, i.e., by blocking the firings of the source actor when the buffer does
not have enough capacity to hold the tokens produced by source actor firings.
To model back-pressure, it is common to draw a channel between the source
and destination actors, in the direction that is opposite to the direction of the
buffer channel [29]. We call these channels capacity control channels or capacity
channels for short. Channel←−c1 in Figure 2.10 models a limited capacity buffer
in the scenario graphs of Figure 2.7. The capacity channels have a number
of tokens on them. The capacity of a buffer channel is the sum of the tokens
on the buffer channel and the tokens on the capacity channel. In Figure 2.10,
there is a buffer with 2 tokens capacity between P and Q. We consider a set
B ⊆ C of buffer channels with limited capacities for an SDFG G(A,C). Let
b ∈ B be a buffer channel from an actor P to an actor Q (P 6= Q). To model

limited capacity buffers, we need to add to G, a capacity channel
←−
b from Q

to P, such that OutQ(
←−
b ) = InQ(b) and InP (

←−
b ) = OutP (b).

For an SADF, without loss of generality, we assume that a buffer with a
certain capacity in one scenario graph is also a buffer with the same capacity
in all other scenario graphs. To ensure that a buffer capacity that is occupied
by a scenario cannot be used in an other scenario at the same time, the tokens
that model the capacity of the buffers are assigned the same labels in all
scenarios. For instance, δ1 and δ2 label the buffer capacities in Figure 2.10.
We define a set U of common buffers for an SADF. Every common buffer u ∈ U
corresponds to a buffer channel in the scenario graph of every scenario s ∈ S.
For an SADF, we define functions bs(u) to map every common buffer u ∈ U
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to the corresponding buffer channel in g(s) of every scenario s ∈ S. Similarly,
we define functions cs(u) that map every buffer u ∈ U to the capacity channel
of its corresponding buffer in g(s). For the SADF in Figure 2.10, we define
U = {uc1}. The common buffer uc1 is mapped to buffer channel c1 in both
scenarios.

To realize an application, we need to allocate and distribute storage space
to its buffers. To formalize the distribution of the storage space over the
buffers in an SADF, we define storage distributions. Similar to the definition
provided by Stuijk et al. [29], a storage distribution of an SADF on a set
U of common buffers is a mapping d : U → IN0 that associates, with every
buffer u ∈ U the capacity of the buffer. The total allocated storage space,
i.e. the size of a distribution, is defined as |d| =

∑
u∈U d(u). For simplicity

and without loss of generality, in this definition we assume that all tokens
represent the same amount of storage space. This can be easily generalized by
considering different weights for tokens in different buffers. We write d1 � d2

if and only if for every u ∈ U , d1(u) ≤ d2(u). In the remainder, an SADF F
that incorporates a storage distribution d is denoted by Fd. In Fd, for every
u ∈ U , there exists d(u)− It(bs(u)) tokens on channel cs(u) in every scenario
graph g(s). The SADF shown in Figure 2.10 incorporates a distribution d that
allocates two tokens to uc1 , i.e., d(uc1) = 2. We denote this distribution by
〈uc1〉 7→ 〈2〉. The size of this distribution is 2 tokens.

Given a storage distribution, a scenario execution may deadlock due to
insufficient capacities allocated to a buffer. In a scenario which is in a deadlock
situation, no actor is able to fire anymore. For instance, in Figure 2.7, using
distribution d(uc1) = 2 leads to a deadlock when executing scenario ψ, because
in this scenario every firing of Q needs to consume 3 tokens from channel c1,
which can hold at most 2 tokens according to the given distribution. Hence,
after the first firing of P, which fills the buffer c1, neither P nor Q can fire, and
consequently the scenario execution deadlocks.

2.10 Open SADF

In an SDFG, channels are defined between two actors. In some cases we may
need to model execution dependencies between an actor and an external source.
For instance, when we want to compose application models such that an ac-
tor in one application consumes the tokens produced by an actor in another
application. For such cases, we define open channels. An open channel has
only one end connected to an actor. An SDFG that contains at least one open
channel is called an open SDFG. An open scenario is defined using an open
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Figure 2.11: Scenario φo.

SDFG. An open SADF includes at least one open scenario. Figure 2.11 shows
an open SDF scenario, namely φo. Channel ci is an open input channel and
co is an open output channel in the scenario graph of φo. A token consumed
from an input channel is called an input token and a token produced on an
output channel is called an output token. Note that the number of outputs,
i.e., the reward, is enough to compute the throughput of an open SADF. Nev-
ertheless, we need the notion of input and output tokens to model interactions
with external sources.

Open SDF scenarios can also be characterized by (max,+) algebra equa-
tions. For open SDF scenarios, the state and output equations include also
the relations with the time-stamps of the input tokens. Let γ and u be vec-
tors that contain the time-stamps of the initial and input tokens, respectively.
After scenario s is executed, the time-stamps of final and output tokens are
collected in vectors γ′ and y, respectively. The (max,+) characterization of a
scenario s is described as follows [57].[

γ′

y

]
=

[
Gs Ks

Hs Ls

] [
γ
u

]
(2.8)

Gs, Hs, Ks and Ls are system matrices that describe the timing dependency
relations in scenario s.

System matrices of an open scenario can be computed using the sym-
bolic simulation method provided in Section 2.7. For instance, consider sce-
nario φ with the open SDFG shown in Figure 2.11. This scenario consumes
1 input token and produces 2 output tokens. Let ι label the input token
and o1 and o2 label the output tokens, and tι, to1 and to2 denote the time-
stamps of these tokens, respectively. For scenario φo, we can obtain the sym-
bolic time-stamps using the vector [ tα tβ tι ]T . For instance, the sym-
bolic time-stamps of the tokens produced by firing of P can be obtained as
t = [ 0 −∞ 0 ][ tα tβ tι ]T . By symbolically simulating all actor fir-
ings in scenario φ and collecting the time-stamps of all final and output tokens
we can obtain the following system of equations.
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
t′α
t′β
to1
to2

 =


1 −∞ 1
7 6 7
4 3 4
7 6 7


 tα
tβ
tι


By letting γ′ = [ t′α t′β ], γ = [ tα tβ ], u =

[
tι
]

and y = [ to1 to2 ],
the (max,+) matrices of scenario a are obtained as follows.

Gφo =

[
1 −∞
7 6

]
Kφo =

[
1
7

]
Hφo =

[
4 3
7 6

]
Lφo =

[
4
7

]
Observe that matrix Gφo and Hφo are the same as Gφ and Hφ defined in
Section 2.7. We use the (max,+) characterization of open SDF scenarios
when composing multiple SADF models.
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Chapter 3

Modelling Multi-Scale
Applications

As discussed in Section 1.2.5, dataflow models of multi-scale applications have
actors acting at multiple granularity levels. For instance, a dataflow model of a
video processing application with operations on frame, macro block and block
level is multi-scale. The state of the art timing analysis methods [6, 58, 55]
for both static and dynamic dataflow types aggregate the actor firings across
all granularity levels into one, often large iteration (see Section 2.3 for the
definition of SDF iteration). This iteration is repeated without exploiting
the structure within such an iteration. This poses scalability issues to these
analyses, because the behaviour of the large iteration contains a large number
of actor firings, which need to be simulated for the analysis, e.g. the symbolic
simulation in Section 2.7.1 required to extract state matrices of dataflow graphs
for the throughput analysis.

In this chapter, we provide a modelling approach that takes a fresh per-
spective of what is happening inside the large iteration. We model the large
iteration as a sequence of multiple small SDF scenarios. The state matrices of
theses scenarios can be quickly generated as they contain only a small number
of actor firings. Then, we show that the state matrix of the iteration, which is
now modelled by a sequence of scenarios, can be compositionally constructed
from the state matrices of its scenarios. Scenario sequences of multi-scale ap-
plications contain a lot of repetitions. Constructing the state matrices of a
repeated sequence of scenarios amounts to raising matrices to the power of the
number of repetitions, which scales logarithmically with the number of repe-

45
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kernel

image

Figure 3.1: A 5x5 convolution filter.

titions, whereas constructing the same state matrix using a simulation, scales
linearly in the number of actor firings in the repeated sequence. We show
our approach for modelling dynamic and static applications using two prac-
tical examples respectively in Sections 3.1 and 3.2. As another advantage of
representing multi-scale applications by sequences of scenarios, in Section 3.3,
we present a method to compute the start and completion times of a selec-
tive set of actor firings to efficiently generate execution traces of multi-scale
applications. This chapter is based on publications [39] and [40].

3.1 Modelling a Convolution Filter

Convolution is one of the most important operations in signal and image pro-
cessing. It is mostly used for feature extraction and is the core block of Convo-
lutional Neural Networks (CNNs). Figure 3.1 shows a convolution filter that
uses a kernel of 5 by 5 pixels and applies padding at the border of the frame.
We assume that a single frame is an image with a width of W pixels and a
height of H pixels. The video stream is delivered to the filter pixel-by-pixel,
pixels being ordered frame-by-frame, line-by-line – within a frame, from top
line to bottom line and from left pixel to right pixel. The filter produces
filtered video with pixels in the same order.

The filter shows a specific pattern of data dependencies (it needs to collect
the required input data for the convolution kernel) depending on the location
of the kernel. Initially the centre of the kernel is located on the top left pixel
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of the frame (Figure 3.1) to produce the first output pixel. The kernel slides
to the right, pixel by pixel, for a whole line and then starts from the left
side of the next line. This continues until the centre of the kernel reaches
the bottom right pixel of the frame. Then it continues with the next frame.
When the kernel is on the initial location, it needs to have read 9 input pixels
(kernel elements with gray colour in Figure 3.1) and use border padding for
the elements that fall out of the image (kernel elements with diagonal pattern
in Fig 3.1). Since the input data is ordered line-by-line, the filter needs to
read 2 lines and 3 pixels from the input buffer before it can carry out the
first convolution computation. Then the kernel slides one pixel to the right
and it needs to read only one extra input pixel to do the second convolution
computation. We summarize the behaviour of the filter in terms of reading
input pixels and producing output pixels by the following pattern of phases.

1. frame rush-in phase: read pixels one by one without producing any
output yet for 2 lines of the image, or 2W pixels;

2. line rush-in phase: read two pixels without producing output;

3. line computation phase: one pixel is read and one pixel is produced
for a whole line minus two pixels: W − 2 pixels;

4. line rush-out phase: two more pixels are produced without reading
new input (using padding);

5. repeat phases 2–4 for H − 2 lines;

6. frame rush-out phase: produce two more lines of output without new
input (using padding): 2W pixels.

This phase pattern can be described by a repetitive sequence, composed
of three different data dependency modes. Let ri (rush-in) denote a mode in
which one input pixel is read but no output pixel is produced, cm (compu-
tation) be a mode that reads one input pixel and produces one output pixel
and finally, ro (rush-out) denote a mode in which no input is read but one
output is produced. Each of the phases in the pattern is composed of a con-
stant repetition of one of theses modes. For instance the frame rush-in phase
is composed of 2W repetitions of mode ri . This phase can be represented in
a compact way by regular expression (ri)2W . By representing the rest of the
phases in a similar way, the repeated phase pattern can be described by the
following regular expression.

σconv =

(
(ri)

2W
(

(ri)
2
(cm)

W−2
(ro)

2
)H−2

(ro)
2W

)ω
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rd ii l wrr r r r

x y z

1 2 3 4

Scenario ri cm ro

ETs e(rd) = 2, e(ii) = 2, e(rd) = 2, e(ii) = 4, e(rd) = 0, e(ii) = 3,
e(l) = 1, e(wr) = 0 e(l) = 5, e(wr) = 2 e(l) = 4, e(wr) = 2

Rates r1 = 1, r2 = 1, r1 = 1, r2 = 1, r1 = 0, r2 = 0,
r3 = 0, r2 = 0 r3 = 1, r4 = 1 r3 = 1, r4 = 1

Reward 0 (firings of wr) 1 (firings of wr) 1 (firings of wr)

Reps [rd, ii, l,wr] 7→ [rd, ii, l,wr] 7→ [rd, ii, l,wr] 7→
[1, 1, 1, 0] [1, 1, 1, 1] [0, 1, 1, 1]

ITs c1(x), c2(y), c3(z) c1(x), c2(y), c3(z) c1(x), c2(y), c3(z)

FTs c1(x), c2(y), c3(z) c1(x), c2(y), c3(z) c1(x), c2(y), c3(z)

Figure 3.2: SDF scenarios of the convolution filter modes.

Since the modes in the convolution filter correspond to fixed data depen-
dency relations, they can be described using SDF scenarios. We use the SDFG
shown in Figure 3.2 to describe the modes in the filter. The rd actor mod-
els reading of the input pixels. The ii and l actors model the starting of the
convolution computations or the initiation interval and computation latency
respectively. The wr actor models the production and writing of the output
pixels. The scenario specifications are shown for every mode in the table in
Figure 3.2. The specific data dependencies in every mode are modelled by
adjusting some channel rates. For instance, in mode cm, the channel from rd
to ii has a rate of 1 on both ends. This ensures that the convolution computa-
tions in this mode start only after the reading is complete. The rates on this
channel in scenario ro are both 0. This allows the convolution computations
to start without reading a new pixel in mode ro. The repetition of actors in
every scenario is designed to project the behaviour of the corresponding mode.
For instance, mode cm involves one firing from every actor in the graph, as it
represents reading an input, performing a computation and, writing an output.
The execution times of actors are obtained from an FPGA implementation;
they are reported in clock cycles.

Observe that x, y and z label the initial and final tokens on self-edges of
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actors rd, ii and wr, respectively. In the implementation we model in this ex-
ample, input pixels are streamed sequentially. To ensure that the filter reads
only one new pixel at a time during the execution of the filter sequence, we
put a self-edge with one token on actor rd. The token on the self-edge has the
same label both as initial token and final token, in all scenarios. In Section 2.4,
we showed that during the execution of a sequence of scenarios, actors may
execute in parallel. The only dependencies that determine when actor firings
start are those expressed by consumption and production of tokens. Conse-
quently, subsequent scenarios can be executed in parallel when there are no
such dependencies. For instance, as shown in Figure 2.5, during the execution
of sequence (φψ)ω, actors of both φ and ψ scenarios are executing at the same
time. The exception is when an actor in scenario φ or ψ is waiting for an
initial token to become available, and the availability of this initial token is
bound to the production of a final token in the preceding scenario which has
the same label as the initial token. For instance, the first firing of actor P in
every ψ scenario in the sequence starts once the final token α in the preceding
φ scenario is produced, due to the dependency of actor P on the availability of
initial token α. As the output pixels in the convolution filter are sequentially
streamed, we use the same technique to prevent concurrent executions of actor
wr by putting a self-edge with one token on this actor.

This model represents a pipelined implementation of a convolution com-
putation on a single FPGA accelerator with a certain initiation interval and
latency. The sequential nature of the execution due to the single resource is
modelled in the scenario graphs. Similar to sequential reading and writing of
pixels, we prohibit concurrent executions of the convolution computations, by
putting a self-edge with one token on actor ii. If we wish to allow multiple
convolution computations at a time, using multiple accelerators in FPGA im-
plementations for instance, we can put more than one token on the self-edge of
ii. For example, by putting n tokens on the self-edge of ii, we allow maximally
n concurrent executions of ii. One could also allow an arbitrary number of
concurrent executions by removing the edge altogether.

To obtain the state matrices of the scenarios, consider the symbolic state
vector γconv = [ tx ty tz ]T , where tx, ty and tz denote the time-stamps of
tokens x, y and z, respectively. Using a symbolic simulation that involves 10
actor firings (the 4 firings included in mode cm plus the 3 firings included in
each of the modes ri and ro), we can obtain the state matrices of all scenarios
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in the filter as follows.

Gri =

 2 −∞ −∞
4 2 −∞
−∞ −∞ 0

 , Gcm =

 2 −∞ −∞
6 4 −∞
13 11 2

 ,
Gro =

 0 −∞ −∞
−∞ 3 −∞
−∞ 9 2


Similar to the state matrices that correspond to the timing behaviour of

modes, we can define a state matrix that corresponds to the timing behaviour
of a pattern of modes, such as the frame pattern. For the frame pattern, such
a matrix, called the frame-level state matrix, abstracts all actor firings during
the production of every individual pixel of the frame, in the relation between
the initial state vector and the state vector after the last scenario of the frame
pattern is executed. Let fi denote the state vector after the production of
the ith frame and f0 denote the initial state vector. We define this relation as
follows.

fi = Gframefi−1

Now we show how to compute Gframe . Let γconv
i denote the state vector

after the execution of the ith scenario in the sequence of the language repre-
sented by σconv and, γconv

0 denote the initial state vector. By repeatedly using
Eq. 2.5 on this sequence, we can obtain the following set of equations.

γconv
1 = Griγ

conv
0

γconv
2 = Griγ

conv
1 = GriGriγ

conv
0

...

γconv
2W = G2W

ri γ
conv
0

γconv
2W+1 = GriG

2W
ri γ

conv
0

γconv
2W+2 = G2

riG
2W
ri γ

conv
0

γconv
2W+3 = GcmG

2
riG

2W
ri γ

conv
0

...

γconv
2W+(W+2)(H−2)+2W = G2W

ro

(
G2

roG
W−2
cm G2

ri

)H−2
G2W

ri γ
conv
0
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The last equation above computes the state vector after production of the
first complete frame, i.e., f1. Since this pattern repeats for the next frames,
we obtain

fi =
(
G2W

ro

(
G2

roG
W−2
cm G2

ri

)H−2
G2W

ri

)
fi−1.

This equation shows that Gframe can be computed by multiplying the ma-
trices of scenarios in the order that is the reverse of the appearance order of
their corresponding modes in the frame pattern. Let’s consider a small 9× 11
frame (W = 9, H = 11) to be able to show the execution traces of the filter.
Gframe is computed as follows.

Gframe = G2W
ro

(
G2

roG
W−2
cm G2

ri

)H−2
G2W

ri = G18
ro

(
G2

roG
7
cmG

2
ri

)9
G18

ri

=

 198 −∞ −∞
434 432 −∞
440 438 198


Gframe can be used for analysis, similar to the state matrix of a CSDF or

an SDF graph. For example, the frame-level throughput is obtained from the
eigenvalue of this matrix. The eigenvalue of Gframe shows that the growth
rate of the state vector during indefinite repetition of the frame pattern is 432
clock cycles per frame. Moreover, the critical cycle of the adjacency graph of
this matrix reveals a critical dependency on the second column of the second
row of Gframe . This element corresponds to the time difference between the
time-stamp of token y, before and after the production of a frame. This critical
dependency is also observed in the execution trace of the filter in Figure 3.3.
Note that except for the first ii firing, firings of ii start immediately after the
previous ii firing completes. This means that firings of ii create a critical cycle.
As shown in the first complete frame, with the first ii firing starting at 2 and
the last firing completing at 434, we conclude that this critical cycle is 432
clock cycles long. Hence, the throughout is equal to 99/432 pixels per time
unit or 1/432 frames per time unit.

The matrix Gframe can be efficiently computed. As we just saw, when a
scenario (or a scenario sequence) corresponds to a matrixG, then n repetitions
of that scenario correspond to the matrix Gn, which can be computed from
G, in O(log n) time. When analysing the throughput of the convolution filter
with a conversion to single-rate SDF [59], the state of the art CSDF [6, 60] and
FSM-SADF [55] analyses, a simulation that goes through all variations in the
phase pattern is needed to obtain the essential timing information (e.g. the
frame-level state matrix). For a 2048 × 2048 frame, this simulation contains
1.67·107 firings (3 firings for every pixel in the rush-in and rush-out phases and
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Figure 3.3: Execution of the convolution filter on a 9× 11 frame.

4 firings for every pixel in the computation phase). The run-time of a timing
analysis that evokes such a simulation on today’s computers is in the order of
seconds. However, this is still too much for trade-off analysis methods such as
buffer sizing, since the timing analysis techniques might be called more than
300 thousand times during the analysis [29]. In contrast, using our approach,
which includes only 10 actor firings and less than a 100 matrix multiplications,
the same result is computed in less than 1 millisecond.

3.2 Modelling an H.263 Decoder

In Section 1.2.2 we provided an SDF model for an H.263 decoder, applied to
video streams of small frames of size 352 × 288 pixels. An iteration of this
graph contains a large number (30889) of actor firings, as the application is
multi-scale. Similar to the convolution filter, we can decompose the iteration
into a sequence of SDF scenarios by recognizing distinct sub-behaviours with
fixed data dependencies inside the iteration. For instance, we can recognize
the following two sub-behaviours. The first sub-behaviour is associated with
decoding a single macro block. We describe this behaviour as a scenario called,
macro block or mb scenario for short. Scenario mb contains one firing of VLD
and 6 firings from each of the actors IQ and IDCT. The second behaviour is
associated with the decoding of the last macro block in a frame which enables
the reconstruction task. We describe this behaviour using a scenario called,
decode and reconstruct or drc for short. Scenario drc includes one firing of
VLD, 6 firings from each of the actors IQ and IDCT and one firing of RC.
The scenario graphs and specifications of these two scenarios are given in
Figure 3.4. In the scenario specifications, a reward of 1 is associated with the
production of a complete frame, which is modelled by one firing of RC. The
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VLD IQ IDCT RC
6

x y

r2r1

c1 c2

Scenario mb drc

ETs e(VLD) = 44, e(IQ) = 93, e(VLD) = 44, e(IQ) = 93,
e(IDCT) = 78, e(RC) = 0 e(IDCT) = 78, e(RC) = 43832

Rates r1 = 0, r2 = 0, r1 = 1, r2 = 1,

Reward 0 (firings of RC) 1 (firings of RC)

Reps [VLD,IQ,IDCT,RC] 7→ [VLD,IQ,IDCT,RC] 7→
[1, 6, 6, 0] [1, 6, 6, 1]

ITs c1(x), c2(y) c1(x), c2(y)

FTs c1(x), c2(y) c1(x), c2(y)

Figure 3.4: SDF scenarios of the H.263 decoder sub-behaviours.

actor execution times are given in cycles of an ARM7 processor. We adapted
the execution times to 352×288 frames from the results provided by Stuijk [6]
for 176× 144 frames using a linear extrapolation.

Using these two scenarios, the frame-level behaviour of the decoder can be
formed as a sequence of scenarios which repeats scenario mb for 2375 times and
then continues with scenario drc. The language that contains only this sce-
nario sequence can be represented by the regular expression ((mb)2375(drc))ω.
Considering a state vector γH .263 = [ tx ty ]T , the state matrices of the sce-
narios can be obtained as follows (by simulating 27 actor firings, which is the
sum of the actor repetitions in both scenarios).

Gmb =

[
44 −∞
−∞ 0

]
, Gdrc =

[
44 −∞

44047 43832

]
Now we can find the state matrix of the H.263 decoder as follows.

GH.263 = GdrcG
2375
mb =

[
44 −∞

44047 43832

]([
44 −∞
−∞ 0

])2375

=

[
104544 −∞
148547 43832

]
The eigenvalue of this matrix reveals that the cycle time of the H.263 decoder
is 104544, that is about 105 kilocycles per frame.
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3.3 Generating Execution Traces

An execution trace of a dataflow behaviour is a visualization of the start and
completion times of actor firings in that behaviour. In this and the previous
chapter, we used the execution traces of scenario sequences to explain several
concepts. The execution trace of a scenario sequence provides tangible infor-
mation about a particular behaviour in the application, which not only helps
with a better understanding of that particular behaviour, but also facilitates
performance debugging and detecting anomalies via visual inspection.

Since behaviours of multi-scale applications involve many actor firings, sim-
ulating and storing the start and completion times of all actor firings in their
behaviour becomes very time consuming. Besides, the execution trace of some
parts of the execution may not be informative, for instance because they con-
tain a lot of repeated behaviours. In fact, with multi-scale applications we are
often interested in viewing a particular part of the execution. For example, in
the convolution filter, we may be interested in viewing the execution trace of
actor firings around the production of the first or last output pixel in a frame.

In the previous two sections we showed that we can represent the behaviour
of multi-scale applications by sequences of small scenarios expressed as regular
expressions, and consequently, gain scalability in the timing analysis methods.
In this section, we exploit this representation and provide an approach to
efficiently compute the start and completion times of actor firings for which we
wish to generate their execution traces, at any selected part of their behaviour,
without having to simulate all actor firings that lead up to those actor firings.

In Section 2.7, we showed how the availability times of tokens in a scenario
can be represented by symbolic time-stamps in the form of t = gT t. In the
same way, we can represent the start and completion times of actor firings.
For instance, consider scenario cm in the convolution filer example. Actor
rd starts firing as soon as the initial token x becomes available. The start
time of this firing can be expressed as srd = [ 0 −∞ −∞ ]γconv . Simi-
larly, the completion time of this firing can be expressed as crd = srd + 2 =
[ 2 −∞ −∞ ]γconv . Such a representation can be obtained for all actor
firings in a scenario. When the start or completion time of an actor firing is
represented in the form of t = gT t, we refer to it as the symbolic start time or
symbolic completion time, respectively.

Let vectors s and c contain the start and completion times of all actor
firings in a scenario, respectively. After obtaining the symbolic start and
completion times of the firings in a scenario s, we can represent the relation
between the vector of start/completion times of actor firings and the state



3.3. GENERATING EXECUTION TRACES 55

vector by the following equation.[
s
c

]
= Tsγ (3.1)

We refer to Ts as the tracing matrix of scenario s. Each row of the upper
part of this matrix relates the start time of an actor firing to the state vector.
Any row in the lower part of this matrix relates the completion time of an
actor firing to the state vector. For scenario cm, this matrix is constructed
by simulating the scenario symbolically, and collecting the symbolic start and
completion times of all firings in a matrix, as follows.

srd
sii
sl
swr
crd
cii
cl
cwr


= Tcmγ

conv =



0 −∞ −∞
2 0 −∞
6 4 −∞
11 9 0
2 −∞ −∞
6 4 −∞
11 9 −∞
13 11 2



 tx
ty
tz



We can use the tracing matrices in combination with the state matrices
to obtain the start and completion times of all actor firings in any selected
scenario si in a sequence s̄ = s1s2 · · · , without having to simulate all actor
firings involved in the scenarios before si. This is done using the state matrices
to obtain the initial state vector of the execution of scenario si. Then, using
matrix Tsi we obtain the start and completion times of all actor firings in si.
The state vector after execution of a repeated sequence of scenarios can be
computed in logarithmic time in the number of repetitions.

Consider the convolution filter example. We would like to compute the
start and completion times of actor firings in the first cm scenario that appears
in the sequence, i.e., the scenario in which the first output pixel is produced.
Considering frames of size 9×11 pixels, this scenario executes after scenario ri
is executed for 20 times (2 lines and 2 pixels). This means we can obtain the
state vector just before the execution of scenario cm as follows (see Section 3.1).

γconv
20 = G20

ri γ
conv
0 =

 40 −∞ −∞
42 40 −∞
−∞ −∞ 0

 0
0
0

 =

 40
42
0


Now we can use Tcm and γ20 to obtain the start and completion times of
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Figure 3.5: The execution trace of the first cm scenario.

actor firings during the execution of this scenario as follows.

srd
sii
sl
swr
crd
cii
cl
cwr


= Tcmγ

conv
20 = TcmG

20
ri γ

conv
0

=



0 −∞ −∞
2 0 −∞
6 4 −∞
11 9 0
2 −∞ −∞
6 4 −∞
11 9 −∞
13 11 2



 40
42
0

 =



40
42
46
51
42
46
51
53


We used the computed start and completion times to generate the execu-

tion trace of the first cm scenario of the frame pattern, shown in Figure 3.5.
Observe that this execution trace is consistent with Figure 3.3.



Chapter 4

Scalable Timing Analysis

In the previous chapter, we introduced a method to model multi-scale appli-
cations. A multi-scale application is modelled by an SADF, the language of
which is represented by a regular expression. Using this model, we showed
how to efficiently compute the throughput when the language contains only
one scenario sequence. In this chapter, we provide a scalable throughput analy-
sis for SADF models with arbitrary regular expressions. Moreover, we provide
the first latency analysis of SADF models. This chapter is based on publica-
tion [39].

4.1 Throughput Analysis

We explain our throughput analysis by first recalling how we computed
the throughput of the convolution filter in Chapter 3. Recall the language
defined for the SADF model of the convolution filter in Section 3.1. It
defines only one sequence, which is indefinite repetition of the sequence
ri2W ((ri)

2
(cm)

W−2
(ro)

2
)H−2(ro)

2W
. This finite sequence, which we refer to

as the frame sequence, corresponds to the production of a complete frame of
size W×H. We computed the throughput in three steps. First, we represented
the worst-case behaviour of the frame sequence by a state matrix, which we
called the frame-level state matrix Gframe . Second, we calculated the total
number of output pixels produced during the execution of the frame sequence,
which is WH. Finally, we obtained the throughput by calculating the ratio of
the total number of output pixels in the frame sequence over the cycle time of
the frame sequence which is obtained from an MCM analysis on Gframe .

57
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w

frame

(a) The compact FSM.

Scenario frame

Reward 9× 11 = 99 output pixels

State matrix

 198 −∞ −∞
434 432 −∞
440 438 198


(b) Scenario specifications.

Figure 4.1: The compact SADF model of the convolution filter.

By taking the first two steps, in fact we abstracted the frame sequence in a
single scenario with state matrix representation Gframe , which produces WH
outputs. Let’s call this abstract scenario, the frame scenario. Note that the
frame scenario is only characterized by its state matrix Gframe , and it does not
have an SDFG representation. Nonetheless, the state matrix representation is
enough to compute the throughput. The final step can be seen as computing
the MCR of an MPA, created from an SADF that repeatedly executes the
abstract frame scenario. We refer to this SADF as the compact SADF model
of the convolution filter, as it executes only one scenario. This SADF is shown
in Figure 4.1, considering 9× 11 frames. Observe that the repeated execution
of the frame scenario is represented by an FSM with one state, and that the
frame scenario is characterized by its state matrix (computed in Section 3.1)
and the number of output pixels it produces. The MPA of the compact SADF
model of the convolution filter has only three states as Gframe is of size 3× 3.
Hence, the MCR analysis on this MPA quickly terminates.

Abstracting the worst-case behaviour of the frame sequence by the frame
scenario is the key to a scalable throughput analysis, compared to when the
throughput analysis given by Geilen et.al [55] is directly used with the language
of the convolution filter. For the latter case, we first need to convert the
regular expression (ri2W ((ri)

2
(cm)

W−2
(ro)

2
)H−2(ro)

2W
)ω into an equivalent

FSM representation. The number of states in FSM representations of this
regular expression is at least the number of scenarios in the frame sequence,
which is 2W + (W + 2)(H − 2) + 2W . Consequently, the number of states in
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the MPA obtained from the FSM is of the same order as the number of FSM
states. Therefore, performing the final MCR analysis on this MPA is slower,
compared to when performed on the MPA created from the compact SADF
model of the convolution filter, which has only three states.

In general, to characterize a scenario that abstracts a finite sequence s̄ of
scenarios, we need to compute the number of outputs produced during s̄, and
the state matrix representation of s̄. The total number of outputs produced
during a finite scenario sequence is computed by adding up the outputs pro-
duced in every scenario in the sequence. For a sequence s̄ = s1 · · · sn, the total
number of outputs produced during the execution of this sequence is

o(s̄) = o(s1) + · · ·+ o(sn). (4.1)

As discussed in Section 3.1, we compute the state matrix of a scenario
sequence by multiplying the state matrices of scenarios in the order that is
the reverse of the appearance order of their corresponding scenarios in the
sequence. Let G(s̄) denote the state matrix of a sequence s̄ = s1 · · · sn. Then
we obtain

G(s̄) = Gsn · · ·Gs1 . (4.2)

We generalize the notion of abstracting a sequence of scenarios by a single
scenario to abstracting a set of scenario sequences by a single scenario. We
illustrate this by an example. To create an interesting example, let’s consider
another language for the SADF shown in Figure 2.7, instead of the FSM shown
in that figure. Assume the new language is given by the regular expression
((φ11 + ψφ10)∗φ∗)ω. In this regular expression, the sub-expression φ11 + ψφ10

can be abstracted into a single scenario, i.e., a single scenario can be found,
which represents the worst-case behaviour among all scenario sequences defined
by the sub-expression. The sub-expression defines the set that contains the two
sequences: φ11 and ψφ10. First, both sequences in the set produce the same
number of outputs, since o(φ11) = 11× 2 = 22 and o(ψφ10) = 2 + 10× 2 = 22.
Second, for each of the sequences, the worst-case behaviour can be defined in
the form of state matrices, as G(φ11) = G11

φ and G(ψφ10) = G10
φ Gψ. Since

every sequence in the set produces the same number of outputs, and each
sequence has a state matrix to represent its worst-case behaviour, a single
scenario that produces the same number of outputs and has the worst-case
behaviour among all the sequences can be defined to represent the worst-case
behaviour of this set. Let’s call it scenario υ. We define that scenario υ
produces 22 outputs, i.e., o(υ) = 22. Later we show that the state matrix
of scenario υ is defined as the maximum of the state matrices of the two
sequences, i.e., Gυ = G(ψφ10)⊕G(φ11) = G10

φ Gψ ⊕G11
φ .
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Figure 4.2: The given and compact FSMs.

The set of scenario sequences defined by the sub-expression φ∗ cannot be
abstracted by a single scenario. This is because this sub-expression expresses
a non-deterministic choice between an infinite number of sequences. Hence,
neither the number of outputs nor a worst-case state matrix can be defined
for this sub-expression. We address such cases using their FSM representa-
tions, as we did in Section 2.8. We first replace the sub-expression φ11 +ψφ10

with scenario υ in the given regular expression ((φ11 + ψφ10)∗φ∗)ω, and we
obtain regular expression (υ∗φ∗)ω. To compute the throughput we convert
this regular expression to an ε-free FSM (e.g. by the method provided by
Brüggemann-Klein [61]), and use the throughput analysis of Geilen et al. [55]
(see Section 2.8). Similar to the convolution filter example, after abstracting
the set of sequences by a single scenario, we obtain an SADF that has a com-
pact FSM compared to the FSM representation of the given regular expression.
For the sake of comparison we show these two FSMs in Figure 4.2. As shown
in the figure, the number of states has reduced from 11 to only 1. This in turn
reduces the run-time of the final MCR analysis to compute the throughput.
Note that the FSM obtained by the Brüggemann-Klein algorithm always has
some acceptance conditions. Therefore, the throughput analysis may be con-
servative in a few cases (see Section 2.8). In this example there is only one
state, which is accepting. Since this is equivalent to not having an acceptance
condition, the analysis is exact.

To compute the throughput of an SADF, we propose to transform the given
SADF to an FSM-SADF with a compact FSM, and then use the throughput
analysis given by Geilen et al. [55]. We define scenarios for the transformed
FSM-SADF from ordinary regular expressions that represent finite sets of sce-
nario sequences in the given SADF as long as the execution of every sequence
in the set produces the same number of outputs. We refer to these expressions
as abstractable expressions. For instance, φ11 + ψφ10 is an abstractable ex-
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(a) Regular expression σconv .
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 2 −∞ −∞
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  2 −∞ −∞
6 4 −∞
13 11 2

  0 −∞ −∞
−∞ 3 −∞
−∞ 9 2


(b) Scenario specifications.

Figure 4.3: The matrix-level representation of the convolution filter in Sec-
tion 3.1.

pression. An abstractable expression does not contain Kleene iterations since
they represent infinite sets, e.g., φ∗ is not abstractable. Moreover, such a reg-
ular expression does not contain choices between two scenario sequences that
produce different numbers of outputs. For instance, φ2 +ψ is not abstractable
because o(φ2) = 2× 2 = 4 6= o(ψ) = 2.

We provide a formal definition to transform a given SADF to a compact
SADF by replacing all abstractable sub-expressions with new scenarios. As
we showed with examples, before performing the transformation, we need to
compute the state matrices of the scenarios of the given SADF, and repre-
sent its language with a regular expression. These two steps result in a new
representation for the given SADF which we refer to as the matrix-level repre-
sentation. This representation of SADF defines scenario names, state matrices
of scenarios (instead of the ordinary SDFG representations), number of out-
puts produced in scenarios and a regular expression. In the following, we first
define the new SADF representation, then we define the transformation to a
compact SADF.

Definition 4.1. Consider an SADF F (S, g, r, i, f, o, L). A tuple
M (S,G, o, σ) is defined as the matrix-level representation of F . The set S
is the set of scenario names for every scenario in F . Function G(s) maps
every scenario of F to its state matrix. The output function o(s) maps every
scenario of F to the number of outputs produced in that scenario. Regular
expression σ represents the language L of F .

Recall the convolution filter model in Section 3.1. The scenarios of this
model is shown in Figure 3.2 and its language is given by the regular expression
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σconv . Using the definition above, this model is transformed into the matrix-
level representation shown in Figure 4.3. The scenarios, rewards and state
matrices are given in the table of Figure 4.3b and the regular expression is
given in Figure 4.3a.

Definition 4.2. Given an SADF M(S,G, o, σ), the compact transformation
of M is an SADF M c(Sc,Gc, oc, σc) defined as follows.

The inductively defined function c is used to compute the compacted reg-
ular expression σc = c(σ), by replacing all abstractable sub-expressions with
a single new scenario.

c(σ) : c(ρω) = (c(ρ))ω

c(ρσ) = c(ρ)c(σ)

c(σ1 + σ2) = c(σ1) + c(σ2)

c(ρ) : c(s) = s

c(ρ1ρ2) =

{
sρ1ρ2 if ρ1 and ρ2 are abstractable

c(ρ1)c(ρ2) otherwise

c(ρ1 + ρ2) =

{
sρ1+ρ2 if ρ1 + ρ2 is abstractable

c(ρ1) + c(ρ2) otherwise

c(ρn) =

{
sρn if ρ is abstractable

(c(ρ))n = c(ρ)c(ρ) · · · c(ρ) otherwise

c(ρ∗) = (c(ρ))∗

Recall that σ represents an ω-regular expression, and ρ is an ordinary reg-
ular expression. The functions c(σ) and c(ρ) are obtained for each syntactic
composition defined for the construction of regular expressions σ and ρ, respec-
tively. As an example, according to equation c(ρω) = (c(ρ))ω, in an ω-regular
expression that is composed as σ = (ρ)ω, function c is applied to the regular
expression inside ω, in this case, ρ. That is, σc = c(σ) = (c(ρ))ω. For an
ordinary regular expression, c(s) = s means that a single scenario is already
a compact scenario and cannot be further compacted. Therefore, a single sce-
nario remains the same after the compaction. As an example of the application
of function c on the sequential composition of two ordinary regular expressions,
i.e., c(ρ1ρ2), consider the example regular expression ((φ11 +ψφ10)∗φ∗)ω made
earlier in this chapter. Let ρ1 = ψ and ρ2 = φ10. Since ψφ10 is an ab-
stractable regular expression, c(ρ1ρ2) = c(ψφ10) returns a compact scenario
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which is called sψφ10 . Note that using the definition for c(ρn), φ10 itself can
be compacted in a scenario called sφ10 .

Generally, we use sρ to name a scenario that abstracts a set of scenario
sequences recognized by a sub-expression ρ. Observe that c(σ) does not do
any compression except on its ordinary sub-expressions ρ, while c(ρ) takes an
ordinary regular expression in a recursive fashion and defines new scenarios
from abstractable ones. Sc is defined by collecting all scenarios from σc. Note
that Sc might contain the same scenarios as in S due to c(s) = s. For every
scenario sρ ∈ Sc, the state matrix Gsρ = Gc(sρ) represents the worst-case
timing relations (between the initial and final tokens) among all sequences
recognized by ρ. We compute the state matrix function Gc and the output
function oc as follows.

Gc(s) = G(s) = Gs if s ∈ S oc(s) = o(s) if s ∈ S
Gc(sρ1ρ2) = Gc(sρ2)Gc(sρ1) oc(sρ1ρ2) = oc(sρ1) + oc(sρ2)

Gc(sρ1+ρ2) = Gc(sρ1)⊕Gc(sρ2) oc(sρ1+ρ2) = oc(sρ1) = oc(sρ2)

Gc(sρn) = (Gc(sρ))
n oc(sρn) = noc(sρ)

Since an abstractable expression represents a language, the sequences of
which produce the same number of outputs, a choice between two abstractable
regular expressions ρ1 and ρ2 can form an abstractable expression only if they
both represents languages, the sequences of which produce the same number
of outputs. Therefore, oc(sρ1+ρ2) = oc(sρ1) = oc(sρ2).

We need the following two propositions later to prove that our throughput
analysis is correct. The first proposition states that the state matrix Gc(sρ)
of any abstracted scenario sρ represents the worst-case state matrix among
all scenarios defined by ρ, and that oc(sρ) represents the correct number of
outputs.

Proposition 4.1. Consider an SADF M(S,G, o, σ) and its compact trans-
formation M c(Sc,Gc, oc, σc). The following statements hold.

1. ∀sρ ∈ Sc,Gc(sρ) =
⊕

s̄∈L(ρ)G(s̄).

2. ∀sρ ∈ Sc and ∀s̄ ∈ L(ρ), o(s̄) = oc(sρ).

Proof. We prove 1 by structural induction on ρ. The base case, ρ = s, is
trivial. The induction steps are in the following.

Gc(sρ1+ρ2) = Gc(sρ1)⊕Gc(sρ2) =
⊕

s̄∈L(ρ1)

G(s̄)⊕
⊕

s̄∈L(ρ2)

G(s̄)
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=
⊕

s̄∈L(ρ1)∪L(ρ2)

G(s̄) =
⊕

s̄∈L(ρ1+ρ2)

G(s̄).

Gc(sρ1ρ2) = Gc(sρ2)Gc(sρ1) =
⊕

s̄1∈L(ρ1),s̄2∈L(ρ2)

G(s̄2)G(s̄1)

=
⊕

s̄1s̄2∈L(ρ1ρ2)

G(s̄1s̄2).

Gc(sρn) = Gc(sρ)G
c(sρn−1) = Gc(sρ)G

c(sρ)G
c(sρn−2) = · · · = (Gc(sρ))

n.

The proof of 2 is straightforward.

The second proposition states that the SADF transformation in Defini-
tion 4.2 is conservative with respect to timing behaviour.

Proposition 4.2. Consider an SADF M(S,G, o, σ) and its compact trans-
formation M c(Sc,Gc, oc, σc). Let ρ be a sub-expression in σ and ρc be the
compact transformation of it, i.e. ρc = c(ρ). The following statement holds.

∀s̄ ∈ L(ρ), ∃ s̄c ∈ L(ρc) s.t. G(s̄) ≤ G(s̄c) and o(s̄) = o(s̄c).

Proof. We prove this by structural induction on ρ. The base case is when
ρ is abstractable. Then for any given s̄ we choose s̄c = sρ. According to
Proposition 4.1,

G(s̄c) = Gc(sρ) =
⊕

s̄′∈L(ρ)

G(s̄′) ≥ G(s̄) and o(s̄c) = oc(sρ) = o(s̄).

The induction steps are explained in the following.

• In case ρ = ρ1ρ2, let s̄ = s̄1s̄2 be such that s̄1 ∈ L(ρ1) and s̄2 ∈
L(ρ2). According to the induction hypothesis, s̄c1 and s̄c2 exist such that
G(s̄1) ≤ G(s̄c1), G(s̄2) ≤ G(s̄c2), o(s̄1) = o(s̄c1), and o(s̄2) = o(s̄c2). We let
s̄c = s̄c1s̄

c
2. Then we have G(s̄) = G(s̄2)G(s̄1) ≤ G(s̄c2)G(s̄c1) = G(s̄c).

Similarly we have o(s̄) = o(s̄2) + o(s̄1) = o(s̄c2) + o(s̄c1) = o(s̄c).

• In case ρ = ρ1 + ρ2, then s̄ ∈ L(ρ1) ∪L(ρ2). Without loss of generality
let s̄ ∈ L(ρ1). According to the induction hypothesis, s̄c exist such that
G(s̄) ≤ G(s̄c) and o(s̄) = o(s̄c).

• In case ρ = (ρb)
∗, let s̄ = s̄1s̄2 · · · s̄n such that s̄i ∈ L(ρb). Ac-

cording to the induction hypothesis, there exist s̄ci such that G(s̄i) ≤
G(s̄ci ) and o(s̄i) = o(s̄ci ). We let s̄c = s̄c1s̄

c
2 · · · s̄cn. Then we have

G(s̄) = G(s̄n) · · ·G(s̄2)G(s̄1) ≤ G(s̄cn) · · ·G(s̄c2)G(s̄c1) = G(s̄c) and
o(s̄) = o(s̄n) · · · o(s̄2)o(s̄1) = o(s̄cn) · · · o(s̄c2)o(s̄c1) = o(s̄c)
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• In case ρ = (ρb)
n, the proof is similar to the previous case.

We can now prove the following result.

Theorem 4.1. An SADF M(S,G, o, σ) and its compact transformation
M c(Sc,Gc, oc, σc) have the same throughput.

Proof. We divide the proof into two parts, first proving that for every scenario
sequence s̄ ∈ L(σ) there exist a scenario sequence s̄c ∈ L(σc) such that
τ(s̄c) ≤ τ(s̄) and then proving that for every s̄c there exists an s̄ such that
τ(s̄) ≤ τ(s̄c). We prove the first part by structural induction on σ.

• For the base case i.e. in case σ = ρω, let s̄ = t̄1t̄2t̄3 · · · such that t̄i ∈
L(ρ). According to Proposition 4.2, for any t̄i, there exists a sequence
t̄ci such that G(t̄i) ≤ G(t̄ci ) and o(t̄i) = o(t̄ci ). We let s̄c = t̄c1t̄

c
2t̄
c
3 · · · . To

show that Thr(s̄c) ≤ Thr(s̄) let s̄i = t̄1t̄2 · · · t̄i and s̄ci = t̄c1t̄
c
2 · · · t̄ci . We

know that for any i, G(s̄i) ≤ G(s̄ci ) and o(s̄i) = o(s̄ci ). Hence we have

Thr(s̄) = lim inf
i→∞

Σin=1o(s̄i)

‖G(s̄i)γ0‖
≥ lim inf

i→∞

Σin=1o(s̄
c
i )

‖G(s̄ci )γ0‖
= Thr(s̄c).

• In case σ = ρσ2, let s̄ = s̄1s̄2 such that s̄1 = L(ρ) and s̄2 ∈ L(σ2).
Note that the throughput of s̄ is equal to the throughput of s̄2, since
s̄1 is only a finite prefix of s̄ and it does not affect the throughput.
According to the induction hypothesis there exists a sequence s̄c2 such
that Thr(s̄2) ≥ Thr(s̄c2). Hence we have Thr(s̄) = Thr(s̄2) ≥ Thr(s̄c2).

• In case σ = σ1 + σ2. Consider σc1 and σc2 such that c(σ1 + σ2) = c(σ1) +
c(σ2) = σc1 + σc2. Without loss of generality, let s̄ belong to L(σ1).
According to the induction hypothesis there exists s̄c1 ∈ L(σc1) such that
Thr(s̄) ≥ Thr(s̄c1).

For the second part of the proof let s̄c = sc1s
c
2s
c
3 · · · where sck ∈ Sc. Ac-

cording to [62], for any scenario sequence s̄c there exists a periodic scenario
sequence s̄co = (sc1s

c
2 · · · scn)ω for some n, such that Thr(s̄co) ≤ Thr(s̄c). There-

fore, to prove the second part, it suffices to show that there exist a sequence s̄
such that Thr(s̄) ≤ Thr(s̄co). The throughput of a periodic sequence is limited
by the critical cycle in a graph ((max,+) automaton) that encodes the depen-
dencies between all initial and final tokens in the sequence (See Section 2.8).
The nodes in this graph represent the initial/final tokens in each of the scenar-
ios. The state matrices are used to connect the nodes to each other. For every
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ALGORITHM 1: Compute the throughput of an SADF model

Input: An SADF F (S, g, r, i, f, o, L)
Output: throughput Thr(F )

1 M(S,G, o, σ)← convertToMatrixRepresentation(F );
2 Mc(Sc,Gc, oc, σc)← transformToCompactSADF(M);
3 Ac ← convertToFSM(σc);
4 Thr(F )← computeThrFromMatrixRepresentation(Sc,Gc, oc, Ac);

non −∞ element in the matrix there exists an edge between the correspond-
ing initial/final tokens, labelled with the value of that element and with the
number of outputs produced in that scenario. The critical cycle is composed
of critical edges and has the lowest output/time ratio.

The critical cycle of the graph for s̄co = (sc1s
c
2 · · · scn)ω specifies a pair

((i, j)k, ok) for each scenario sck, such that [G(sck)]ij is the critical element
(the element corresponding to the critical edge) in the state matrix of sck,
and ok = o(sck). Let ρk be the sub-expression abstracted by sck. It fol-
lows from Proposition 4.1 that s̄k = argmaxt̄k∈L(ρk)[G(t̄k)]ij exists such that
[G(s̄k)]ij = [G(sck)]ij and o(s̄k) = ok. If we let s̄ = (s̄1s̄2 · · · s̄n)ω, there exists a
cycle in the graph of s̄ with the same cycle ratio as s̄co. Hence, the graph of s̄ has
a critical cycle which has at most the same ratio as s̄c, i.e. Thr(s̄) ≤ Thr(s̄co).
Note that if the periodic sub-sequence s̄co is in the language of a sub-expression
in σc, then s̄ belongs to the language of a sub-expression in σ.

We provide an algorithm for the throughput analysis of SADF models.
Algorithm 1, first converts the given SADF to its matrix-level representation
using Definition 4.1 (Line 1). In Line 2, it performs the SADF transforma-
tion defined by Definition 4.2. Then it converts the regular expression of the
transformed SADF to a compact ε-free FSM (Line 3). The final analysis is
preformed on the transformed FSM-SADF in Line 4. Note that since in our
examples we associate rewards with integer numbers of outputs produced in
scenarios, the rewards are always integer-valued. Nevertheless, our throughput
analysis is also applicable to real-valued rewards.

Next we discuss the complexity of this algorithm. We assume a regular
expression σ is given by some syntax tree tσ. The leaves of the syntax tree are
labelled by scenarios s ∈ S, and the inner nodes are either a binary operator
labelled + (representing choices) or · (representing sequential compositions),
or they are a unary operator and labelled by ∗, ω or a natural number n (for
the constant repetition). Computing c(σ), Gc and oc can be done by a reversed
preorder traversal of tσ. The time complexity of computing c(σ) and oc is linear
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in the size (the number of nodes) of tσ. For a + or · node, computing Gc has
a constant complexity and for an n node it has a logarithmic complexity in
the value of n. It is common to use Polish Notation (PN) to represent σ.
If we represent the value n with log(n) digits (binary or decimal) and use a
character to represent each scenario, then the complexity of the transformation
by Definition 4.2 is linear in the length of the representation of σ.

For deterministic cases of SADF i.e. SDF and CSDF, the transformed
SADF will always have a regular expression that represents indefinite repeti-
tion of a single scenario. Such a regular expression can be transformed to an
ε-free FSM with only one state, in constant time. Therefore the throughput
computation for deterministic cases of SADF is always linear in the length
of the regular expression. For non-deterministic cases of SADF, if for all sub-
expressions ρn in σ, ρ are abstractable, then the transformed SADF will have a
conventional regular expression (without a repetition construct). A sequential
algorithm is provided by Hagenah et al. for conversion from a conventional
regular expression to an ε-free FSM that takes O(k log2(k)) time, where k is the
length of the regular expression [63]. If in the worst-case, the length of the reg-
ular expression for the transformed SADF is equal to the length of the regular
expression in the given SADF, then the throughput computation will have a
polynomial complexity. For sub-expressions ρn that are not abstractable, the
conversion to FSM is pseudo-polynomial in n, which makes the throughput
computations pseudo-polynomial.

4.2 Latency Analysis

This section provides a compositional latency analysis for an SADF, of which
the language is given by a regular expression. We first provide a latency
analysis for a set of finite SADF scenario sequences given by an ordinary
regular expression, as a means to compute the latency of the set of infinite
scenario sequences of an SADF. A naive method to compute the latency of
a finite scenario sequence is to compute the production times of all outputs
and use Eq. 2.3 where k has an upper bound. Consider again the scenario
sequence for producing a 9×11 frame in the convolution filter example in Sec-
tion 3.1, i.e., (ri)

18
((ri)

2
(cm)

7
(ro)

2
)9(ro)

18
. Scenario cm is the first scenario

that appears in the sequence that produces output. This scenario follows the
scenario sequence that corresponds to the frame rush-in and the line rush-in
phases. To proceed, we provide the output matrices: Hcm =

[
13 11 2

]
and Hro =

[
−∞ 9 2

]
. Assuming the initial state vector [ 0 0 ]T , which
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is denoted by 0, the outputs are produced at

p0 = HcmG
20
ri 0 = 53,

p1 = HcmGcmG
20
ri 0 = 57,

...

p98 = HroG
17
ro

(
G2

roG
7
cmG

2
ri

)9
G18

ri 0 = 440.

Using Eq. 2.3, the latency of producing pixels in one frame relative to
period 5 is 53. We derived the period 5 from the throughput of 99/432 >
0.2 = 1/5 computed in Section 3.1. According to Figure 3.3 the first output
determines the latency. In the beginning of the execution the convolution filter
goes through the frame and line rush-in phases where there are no outputs
produced. However, after getting past theses phases, outputs are produced
more frequently. Assuming that the first start time of the external actor (see
the definition of latency in Section 2.6) is 53, the next outputs will be available
before the next starts of the external actor with µ = 5.

Although computing the production times of all outputs one by one is a
solution to determine the latency of a sequence, it would scale only linearly
in the total number of scenarios in the sequence. Therefore, we provide a
compositional method to efficiently compute the latency of a finite SADF
scenario sequence. In this section s̄ denotes a finite sequence unless stated
otherwise. For readability, we leave the period µ implicit and write λ(s̄,γ0)
instead of λ(s̄,γ0, µ). For all examples in this section we assume µ = 5 and
γ0 = 0.

A scenario sequence is either a single scenario or the sequential composition
of two sub-sequences. In case s̄ is a single scenario s̄ = s that produces o(s) > 0
outputs during its execution, we can use the output matrix to capture the
output production times and use them to compute the latency. For instance,
for scenario cm we can obtain the latency as follows.

λ(cm,γ0) = p0 − 5× 0 = Hcm0− 0 =
[

13 11 2
]
0 = 13

In general, for a scenario s, the kth element of Hsγ0 corresponds to the
production time of the kth output in the scenario. Therefore, we can obtain
the latency as follows.

λ(s,γ0) = max
0≤k<o(s)

pk − µk = max
0≤k<o(s)

(Hsγ0)k − µk

Alternatively, we can define the compensation vector,

µ(s) = [ 0 −µ −2µ · · · −(o(s)− 1)µ ] ,
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Figure 4.4: Execution traces for two example scenario sequences.

that captures the number of periods occurring till the corresponding output.
Then we compute the latency of s in matrix form as

λ(s,γ0) = µ(s)Hsγ0 = [HT

s µ
T (s)]

T
γ. (4.3)

Observe that Eq. 4.3 uses the following vector.

λ(s) = HT

s µ
T (s) (4.4)

We refer to λ(s) as the latency vector of scenario s. The latency vector λ(s)
is a column vector that expresses the timing relations between the availability
times of initial tokens and the production times of outputs relative to the
required period µ, during the execution of the scenario. According to Eq. 4.3
the latency equals the inner product of the latency vector and the initial state
vector, i.e.,

λ(s,γ0) = λT (s)γ0. (4.5)

Let’s consider an example of this case in which s = cm. Using the above
equation, the latency is computed as follows.

λ(cm) = HT

cmµ
T (cm) =

[
13 11 2

]T [
0
]

=
[

13 11 2
]T
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λ(cm,0) =
[

13 11 2
] [

0 0 0
]T

= 13

Figure 4.4a shows the execution trace of cm followed by the execution of
the external actor S that needs this output. The output is produced at 13.
Therefore the latency is 13 since the start of actor S cannot happen earlier.

Now let s̄ be the sequential composition of two scenario sequences, i.e., s̄ =
s̄1s̄2. We work out an example where s̄1 = cm and s̄2 = ro i.e. s̄ = (cm)(ro).
We need to compute the maximum of the latencies of both scenarios to obtain
the latency of s̄. The latency of cm is 13 (using Eq. 4.3). Since ro follows cm,
the initial state vector for ro is γ1 = Gcmγ0 =

[
2 6 13

]T
. This can be

observed in Figure 4.4b by circles marked with number one in the x, y, z rows.
To compute the latency of ro as the second scenario in the sequence (cm)(ro),
we also need to account for the output produced in cm, because the first firing
of the external actor S consumes this output. Therefore, we need to compute
the latency of ro with the state vector γ1 and subtract 5 from the result to
compensate for the output produced by cm. Using Eq. 4.3, the latency of ro
with γ1 is 15. By subtracting 5 from 15 we obtain the latency of 10 for ro.
The latency of the entire sequence is the maximum of 13 and 10, which is 13.

In general, in a sequence s1s2, to compute the latency of the second sce-
nario s2, we need to compute the latency of s2 with the state vector γ1 and
subtract o(s1)µ from the result to compensate for all outputs already produced
in s1, i.e., we compute λ(s2,γ1)− o(s1)µ. Alternatively, and equivalently, we
can consider the compensation term −o(s1)µ in computing the latency of the
second scenario by normalizing the state vector γ1 as follows.

γ̂1 = γ1 − o(s1)µ = Gs1γ0 − o(s1)µ = (Gs1 − o(s1)µ)γ0

We normalized the state vector by multiplying the initial state vector by the
following matrix.

Ĝ(s) = Gs − o(s)µ (4.6)

We define the normalized state matrix Ĝ(s) as the state matrix of scenario
s that is normalized for its outputs. Note that the normalization depends on
µ. Now the latency of the sequence s1s2 can be obtained as follows, assuming
that λ(s1) and λ(s2) are the latency vectors of s1 and s2, respectively.

λ(s1s2,γ0) =λ(s1,γ0)⊕ λ(s2, Ĝ(s1)γ0) = λT (s1)γ0 ⊕ λT (s2)Ĝ(s1)γ0

=
[
λT (s1)⊕ λT (s2)Ĝ(s1)

]
γ0 (4.7)

Hence the latency vector for s̄ = s1s2 is

λ(s1s2) =
[
λT (s1)⊕ λT (s2)Ĝ(s1)

]T
= λ(s1)⊕ ĜT (s1)λ(s2). (4.8)
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Again considering the sequence (cm)(ro), we compute the normalized state
matrix of cm (Eq. 4.6) and the latency vector of ro (Eq. 4.4) as follows.

Ĝ(cm) = Gcm − o(cm)× µ =

 2 −∞ −∞
6 4 −∞
13 11 2

− 1× 5

=

 −3 −∞ −∞
1 −1 −∞
8 6 −3


λ(ro) = HT

roµ
T (ro) =

[
−∞ 9 2

]T [
0
]

=
[
−∞ 9 2

]T
The latency according to Eq. 4.7 is computed as follows.

λ((cm)(ro),γ0) =[ 13 11 2
]
⊕
[
−∞ 9 2

]  −3 −∞ −∞
1 −1 −∞
8 6 −3

 0
0
0

 = 13

From Figure 4.4b, we can obtain the output production times and compute
the latency according to Eq. 2.3 as λ((cm)(ro),0) = (13− 0)⊕ (15− 5) = 13.
This confirms the result computed earlier from Eq. 4.7.

Note that using Eq. 4.7, the latency of a sequence composed of two scenarios
is obtained by first computing a vector that is then multiplied by the initial
state vector. This vector generalizes the concept of the latency vector of a
scenario to a sequence of scenarios. In general, for any finite sequence s̄ =
s1 · · · sn the latency vector λ(s̄) is defined as follows.

λ(s̄) =
⊕

0<k≤n

(
ĜT (s1 · · · sk−1)λ(sk)

)
(4.9)

In Eq. 4.9, the normalized state matrix Ĝ(s̄) of a sequence s̄ is the state matrix
of the sequence that accounts for all outputs produced in the sequence, i.e.,

Ĝ(s̄) = G(s̄)− o(s̄). (4.10)

In Eq. 4.9, for k = 1, s1 · · · sk−1 represents the empty scenario sequence
ε and Ĝ(ε) is defined to be the identity (max,+) matrix I. We show that
the latency of a sequence equals the inner product of the latency vector of the
sequence as defined in Eq. 4.9, and the initial state vector.
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Proposition 4.3. The latency of any finite scenario sequence s̄ = s1 · · · sn is
equal to the inner product of its latency vector and the initial state vector, i.e.,

λ(s̄,γ0) = λT (s̄)γ0. (4.11)

Proof. First we distribute the max term in the definition of the latency
(Eq. 2.3) into n max terms each of which corresponds to the latency of outputs
produced during a single scenario in the sequence.

λ(s̄,γ0) = max
0≤k<o(s̄)

(pk − kµ)

= max
0≤k<o(s1)

(pk − kµ)⊕ max
o(s1)≤k<o(s1s2)

(pk − kµ)⊕ · · ·

⊕ max
o(s1···sn−1)≤k<o(s̄)

(pk − kµ)

= max
0≤k<o(s1)

(pk − kµ)⊕ max
0≤k<o(s2)

(pk+o(s1) − kµ)− o(s1)µ⊕ · · ·

⊕ max
0≤k<o(sn)

(pk+o(s1···sn−1) − kµ)− o(s1 · · · sn−1)µ (4.12)

Recall that the production times of outputs in scenario si within a scenario
sequence, can be computed in vector HsiG(s1 · · · si−1)γ0. Using the com-
pensation matrix µ(s) we can rewrite each of the max terms in the following
form.

max
0≤k<o(si)

(pk+o(s1···si−1) − kµ)− o(s1 · · · si−1)µ

=
[
po(s1···si−1) − 0 po(s1···si−1)+1 − µ po(s1···si−1)+2 − 2µ · · ·

po(s1···si−1)+o(si)−1 − (o(si)− 1)µ
]
− o(s1 · · · si−1)µ

= µ(si)HsiG(s1 · · · si−1)γ0 − o(s1 · · · si−1)µ = µ(si)HsiĜ(s1 · · · si−1)γ0

By substituting the max terms in Eq. 4.12 with their matrix forms above,
we obtain

λ(s̄,γ0) =

 ⊕
0<k≤n

(
µ(sk)HskĜ(s1 · · · sk−1)

)γ0

=

 ⊕
0<k≤n

(
λT (sk)Ĝ(s1 · · · sk−1)

)γ0 = λT (s̄)γ0.
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Now we show how to compositionally compute the latency vector of a
sequence composed of two subsequences. We show that the latency vector of
s̄ = s̄1s̄2 can be computed from the latency vectors of s̄1 and s̄2 similar to the
sequential composition of two scenarios (Eq. 4.8) as follows.

λ(s̄1s̄2) = λ(s̄1)⊕ ĜT (s̄1)λ(s̄2) (4.13)

Proposition 4.4. Consider a finite sequence s̄ = s1 · · · smsm+1 · · · sn. Let
s̄1 = s1 · · · sm and s̄2 = sm+1 · · · sn. The latency vector λ(s̄) can be computed
by Eq. 4.13.

Proof.

λT (s̄) = λT (s1 · · · smsm+1 · · · sn)

=

[ ⊕
0<k≤m

λT (sk)Ĝ(s1 · · · sk−1)

]
⊕

[ ⊕
m<k≤n

λT (sk)Ĝ(s1 · · · sk−1)

]

= λT (s̄1)⊕

[ ⊕
m<k≤n

λT (sk)G(s1 · · · sk−1)− o(s1 · · · sk−1)

]

= λT (s̄1)⊕

[ ⊕
m<k≤n

λT (sk)G(sm+1 · · · sk−1)G(s1 · · · sm)

− o(sm+1 · · · sk−1)− o(s1 · · · sm)

]

= λT (s̄1)⊕

[ ⊕
m<k≤n

λT (sk) [G(sm+1 · · · sk−1)− o(sm+1 · · · sk−1)]

[G(s1 · · · sm)− o(s1 · · · sm)]

]

= λT (s̄1)⊕

 ⊕
m<k≤n

λT (sk)G(sm+1 · · · sk−1)− o(sm+1 · · · sk−1)


[G(s1 · · · sm)− o(s1 · · · sm)]

= λT (s̄1)⊕

 ⊕
m<k≤n

λT (sk)Ĝ(sm · · · sk−1)

 Ĝ(s̄1) = λT (s̄1)⊕ λT (s̄2)Ĝ(s̄1)

By taking the transposition of both sides of the above equation we obtain
Eq. 4.13.
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Next we show that we can use Eq. 4.13 to efficiently compute the latency
of repetitive sequences. To compute the latency vector of a finite sequence
that repeats n times i.e. s̄n, we can recursively use Eq. 4.13 as follows.

λ(s̄n) = λ(s̄s̄n−1) = λ(s̄)⊕ ĜT (s̄)λ(s̄n−1)

= λ(s̄)⊕ ĜT (s̄)
(
λ(s̄)⊕ ĜT (s̄)λ(s̄n−2)

)
= λ(s̄)⊕ ĜT (s̄)λ(s̄)⊕ · · · ⊕ (ĜT (s̄))n−1λ(s̄)

=
(
I⊕ ĜT (s̄)⊕ · · · ⊕ (ĜT (s̄))n−1

)
λ(s̄)

=

 ⊕
0≤k<n

(ĜT (s̄))k

λ(s̄) (4.14)

Computation of Eq. 4.14 looks linear in n; however, it can be computed
with the worst-case complexity of O(log n). Let’s assume A(V ) is the adjacency
graph ofG where V is the number of vertices of A. When n > V , and there are
no positive cycles in A, computing

⊕
0≤k<nG

k is to compute the longest paths

from all nodes to all nodes in A, which has worst-case complexity of O(V 3)
using the Floyd-Warshall algorithm [64]. When n > V , and there is a positive
cycle in A,

⊕
0≤k<nG

k can be computed with the complexity of O(log n),

because
⊕

0≤k<nG
k = (I⊕ G)n−1 and rasing a matrix to a power can be

computed with log complexity. When n ≤ V , the complexity of computing⊕
0≤k<nG

k is linear in n. For multi-scale dataflow models, typically n � V
since, n indicates the number of repetitions of an execution and V indicates the
number of initial tokens in the dataflow model. In the convolution example,
the scenario repetitions can be as large as the number of lines or columns of
the input frame, e.g., 1000 but the number of initial tokens is just 3.

We introduce an approach to compute the latency of a set of sequences
based on the compositional latency analysis provided for a single sequence.
Since we are dealing with a set of sequences, we first generalize the latency
vector concept defined for a single sequence to a set of sequences. To obtain
the worst-case latency of the set of sequences, we define the latency vector λ(ρ)
of an ordinary regular expression ρ as the maximum of the latency vectors over
all sequences in the language of ρ as follows.

λ(ρ) =
⊕
s̄∈L(ρ)

λ(s̄) (4.15)

The goal is to perform compositional latency analysis for a language of
scenario sequences similar to the way we did for a single sequence case. Recall
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that to compute the latency of a sequence s̄2 that follows sequence s̄1, we had
to compute a normalized state matrix that accounts for the outputs produced
during s̄1. In the case of expressions, to compute the latency of ρ2 that follows
ρ1, we need to obtain the worst-case normalized state matrix over all sequences
recognized by ρ1. Therefore we define the normalized matrix Ĝ(ρ) of a regular
expression ρ as the maximum of normalized matrices over all sequences in the
language of ρ, i.e.,

Ĝ(ρ) =
⊕
s̄∈L(ρ)

Ĝ(s̄). (4.16)

Note that we can not use Eq. 4.16 to compute Ĝ(ρ) since L(ρ) may be an
infinite set. Therefore we provide a recursive method to compute it and later
we prove that the computation corresponds to the definition. The computation
is defined as follows.

Ĝ(ρ) : Ĝ(ρ1ρ2) = Ĝ(ρ2)Ĝ(ρ1) (4.17)

Ĝ(ρ1 + ρ2) = Ĝ(ρ1)⊕ Ĝ(ρ2) (4.18)

Ĝ(ρ∗) = Ĝ∗(ρ) (4.19)

Ĝ(ρn) = Ĝn(ρ) (4.20)

Now we provide a method to efficiently compute the latency vector of an
ordinary regular expression ρ for every syntactic composition in an ordinary
regular expression as follows.

λ(ρ) : λ(ρ1ρ2) = λ(ρ1)⊕ ĜT (ρ1)λ(ρ2) (4.21)

λ(ρ1 + ρ2) = λ(ρ1)⊕ λ(ρ2) (4.22)

λ(ρ∗) = (Ĝ∗(ρ))Tλ(ρ) (4.23)

λ(ρn) =
⊕

0≤k<n

(ĜT (ρ))kλ(ρ) (4.24)

Note that if for an ordinary regular expression ρ the star closure Ĝ∗(ρ) in
Eq. 4.23 or Eq. 4.19 does not exist, it means that the production of outputs
during at least one sequence in the language of that expression cannot keep
up with the consumption of the outputs with period µ i.e. the throughput is
too low and therefore the latency does not exist.

Now we provide proof of correctness for latency vector computations for
ordinary regular expressions. We first show that using Eqs. 4.17-4.20 we can
compute the normalized matrix of any recursive combination of ordinary reg-
ular expressions.
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Proposition 4.5. For any ordinary regular expression ρ, Ĝ(ρ) computed by

Eqs. 4.17-4.20 satisfies Ĝ(ρ) =
⊕

s̄∈L(ρ) Ĝ(s̄).

Proof. We prove this by structural induction on ρ. The base case ρ = s is
trivial. For the induction steps we obtain

Ĝ(ρ1ρ2) =
⊕

s̄1s̄2∈L(ρ1ρ2)

G(s̄1s̄2)− o(s̄1s̄2)

=
⊕

s̄1∈L(ρ1),s̄2∈L(ρ2)

G(s̄2)G(s̄1)− o(s̄1)− o(s̄2)

=
⊕

s̄2∈L(ρ2)

G(s̄2)− o(s̄2)
⊕

s̄1∈L(ρ1)

G(s̄1)− o(s̄1) = Ĝ(ρ2)Ĝ(ρ1),

Ĝ(ρ1 + ρ2) =
⊕

s̄∈L(ρ1)∪L(ρ2)

Ĝ(s̄) =
⊕

s̄∈L(ρ1)

Ĝ(s̄)⊕
⊕

s̄∈L(ρ2)

Ĝ(s̄)

= Ĝ(ρ1)⊕ Ĝ(ρ2),

Ĝ(ρn) = Ĝ(ρρn−1) = Ĝ(ρ)Ĝ(ρn−1) = Ĝ(ρ)Ĝ(ρ)Ĝ(ρn−2) = · · ·

= Ĝn(ρ),

Ĝ(ρ∗) =
⊕

s̄∈
⋃
n≥0

L(ρn)

Ĝ(s̄) =
⊕
n≥0

⊕
s̄∈L(ρn)

Ĝ(s̄) = I⊕ Ĝ(ρ)⊕ Ĝ2(ρ)⊕ · · ·

= Ĝ∗(ρ).

Proposition 4.6. For any ordinary regular expression ρ, λ(ρ) computed by
Eqs. 4.21-4.24 satisfies λ(ρ) =

⊕
s̄∈L(ρ) λ(s̄).

Proof. We prove this by structural induction on ρ. The base case ρ = s is
trivial. For the induction steps we obtain

λ(ρ1ρ2) =
⊕

s̄1s̄2∈L(ρ1ρ2)

λ(s̄1s̄2) =
⊕

s̄1∈L(ρ1),s̄2∈L(ρ2)

[
λ(s̄1)⊕ ĜT (s̄1)λ(s̄2)

]
=

⊕
s̄1∈L(ρ1)

λ(s̄1)⊕
⊕

s̄1∈L(ρ1),s̄2∈L(ρ2)

[
ĜT (s̄1)λ(s̄2)

]
= λ(ρ1)⊕

⊕
s̄1∈L(ρ1)

ĜT (s̄1)
⊕

s̄2∈L(ρ2)

λ(s̄2) = λ(ρ1)⊕ ĜT (ρ1)λ(ρ2),
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λ(ρ1 + ρ2) =
⊕

s̄∈L(ρ1)∪L(ρ2)

λ(s̄) =
⊕

s̄∈L(ρ1)

λ(s̄)⊕
⊕

s̄∈L(ρ2)

λ(s̄)

= λ(ρ1)⊕ λ(ρ2),

λ(ρn) = λ(ρρn−1) = λ(ρ)⊕ ĜT (ρ)λ(ρn−1)

= λ(ρ)⊕ ĜT (ρ)
(
λ(s̄)⊕ ĜT (ρ)λ(ρn−2)

)
= λ(ρ)⊕ ĜT (ρ)λ(ρ)⊕ · · · ⊕ (ĜT (ρ))n−1λ(ρ)

=
(
I⊕ ĜT (ρ)⊕ · · · ⊕ (ĜT (ρ))n−1

)
λ(ρ)

=

 ⊕
0≤k<n

(ĜT (ρ))k

λ(ρ),

λ(ρ∗) =
⊕

s̄∈
⋃
n≥0

L(ρn)

λ(s̄) =
⊕
n≥0

⊕
0≤k<n

(ĜT (ρ))kλ(ρ) = (ĜT (ρ))∗λ(ρ)

= (Ĝ∗(ρ))Tλ(ρ).

Finally we provide the latency analysis for an FSM-SADF with a given ω-
regular expression σ. We use the same latency vector definition (Eq. 4.15) for
regular expressions where s̄ denotes in this case, an infinite scenario sequence.
We use the fact that the latency vector of an indefinite repetition of an ordinary
regular expression i.e. ρω directly follows from Eq. 4.24 when k does not have
an upper-bound. This enables us to provide the following computations for
the latency of an FSM-SADF.

λ(σ) : λ(ρω) = (ĜT (ρ))∗λ(ρ) (4.25)

λ(ρσ) = λ(ρ)⊕ ĜT (ρ)λ(σ) (4.26)

λ(σ1 + σ2) = λ(σ1)⊕ λ(σ2) (4.27)

Proposition 4.7. For any expression σ, λ(σ) computed by Eqs. 4.25-4.27
satisfies λ(σ) =

⊕
s̄∈L(σ) λ(s̄).

Proof. We prove this by structural induction on σ. For the base case σ = ρω

we obtain

λ(ρω) =
⊕
k≥0

(ĜT (ρ))kλ(ρ) = (ĜT (ρ))∗λ(ρ).
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The proofs of the latency vector computations for the sequential composition
ρσ and the choice σ1 + σ2 are similar to the proofs of Eq. 4.21 and Eq. 4.22
respectively.

For the filter example on 9× 11 frames, we can use the recursive computa-

tion to obtain λT
(

((ri)
18

((ri)
2
(cm)

7
(ro)

2
)9(ro)

18
)ω
)

=
[

53 51 2
]
, and

the latency is 53 when γ0 = 0. The latency vector signifies that there are
at least 53, 51 and 2 time units time differences between the output(s) that
contribute to the worst-case latency (in this case the first output) and the
availability time of initial tokens x, y and z respectively. This can be observed
also from Figure 3.3.

4.3 Evaluation

We implemented the scalable throughput and latency analysis as two algo-
rithms in the SDF3 tool [65]. We applied our analysis to dataflow models of
several realistic applications listed in Table 4.1: H.263 decoder, MP3 decoder,
Down-Sampler (DS), Up-Sampler (US), sampler (DS→US), Convolution Fil-
ter (CF), sub-sampled convolution filter (DS→CF→US) and Multi-Resolution
Convolution Filter (MRCF). The number x following the applications denotes
that the input image size is x× x. Parameter L is the length of the represen-
tation of the regular expression. For SDF and CSDF graphs, parameter F is
the total number of actor firings within one iteration of the application, and
for FSM-SADF it is the sum of all actor firings in one iteration of all scenarios.

The SDFG of the H.263 decoder is given in Section 1.2.2. This graph
models the behaviour of the decoder on CIF size frames. We adapted the
graph to model its behaviour for 16CIF (1408 × 1152) images. We applied
our scalable analysis on this application by expressing its behaviour as an
SADF sequence of two different scenarios as explained in Section 3.2. The
MP3 decoder is modelled as an FSM-SADF [31]. To apply our analysis, we
formalized its FSM by a regular expression. The convolution filter is modelled
as shown in Figure 3.2.

The up-sampler uses a 3×3 kernel to generate four pixels out of every input
pixel. The generated pixels form two pixels in one line and two pixels in the
next line. To preserve the line-by-line output of data, the two bottom pixels
are first stored as the kernel moves along the first line. After the first line
is output, the stored pixels from the second line are output to form another
complete line. The structure of operations is as follows.
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Table 4.1: The list of applications used for analysis

Nr. Application Expression Length Nr. of Firings

1 CF (8) 37 312
2 CF (32) 45 4344
3 CF (128) 53 66552
4 CF (512) 61 1.05 · 10+6

5 CF (2048) 69 1.67 · 10+7

6 DS (512) 75 8.52 · 10+5

7 DS (1024) 81 3.40 · 10+6

8 US (128) 59 2.13 · 10+5

9 US (512) 69 3.40 · 10+6

10 DS→US (2048) 98 2.66 · 10+7

11 DS→CF→US (2048) 113 3.07 · 10+7

12 3-level MRCF (2048) 168 7.12 · 10+7

13 H.263 (16CIF) 26 3.04 · 10+5

14 MP3 decoder 12 3169
15 Example (Figure 2.7) 6 8

1. frame rush-in phase: read pixels one by one without computing any
output yet for one line of the image, or W pixels;

2. line rush-in phase: read one pixel without producing output;

3. line computation phase: one pixel is consumed and two pixels are
produced (and 2 others are stored) for a whole line minus one pixel i.e.
W − 1 pixels. During this phase W − 1 pixels are consumed and 2W − 2
pixels are produced;

4. line rush-out: two pixels are produced without reading new input;

5. memory flush: one line of output is flushed from memory: 2W pixels;

6. repeat phases 2–5 for H − 1 lines;

7. frame rush-out phase: produce 2 more lines of output without new
input: 4W pixels.

We can use the same scenario graphs used in the model of the convolution
filter (Figure 3.2) with a suitable expression to express the behaviour of the
up-sampler. For example the following expression models the pattern we just
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explained for the up-sampler.

σus = (ri)
W
(

(ri) ((cm)(ro))
W−1

(ro)2W+2
)H−1

(ro)4W

For the computation phase, we used an alternation of ro and cm to express the
behaviour in which one pixel is consumed and two pixels are produced. We
also used ro for the memory flush and rush-out phases. For the down-sampler
we use a 4 × 4 kernel to generate one pixel out of every 4 input pixels. To
reduce the number of output pixels by four, the down-sampler produces an
output only for every other input line and only for every other input pixel.
Again if we use the same scenario graphs we used in the filter example, the
pattern in which our down-sampler behaves can be described by the following
expression, assuming W and H are even numbers.

σds = (ri)W
(

(ri)W ((ri)(cm))
W/2

)H/2−1

(ri)W (ro)W/2

The sampler is an up-sampler down-sampler pipeline, where the up-sampler
consumes the outputs produced by the down-sampler. In the sub-sampled con-
volution filter, first the image is down-sampled, then the convolution is applied
to the down-sampled image and finally the filtered image is up-sampled. A
block diagram of a multi-resolution filter is provided by Keinert et al. [66].
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Table 4.2 shows the analysis results for the mentioned applications. In
this table the Regular Expression Method (REM) is the method provided
in this chapter. It uses the regular expression representation of SADF to
recognize repeated sequences and transforms the SADF to an FSM-SADF
with a fewer number of FSM states, compared to when the given expression
is represented by an FSM. Then it uses the method of Geilen et al. [55] as the
final throughput analysis. We use the same SADF representations to compute
the latency. SOTA represents the state of the art throughput analysis methods
(exact CSDF analysis [29], exact FSM-SADF analysis [55] and approximate
CSDF analysis [67]). There is no existing latency analysis. The run-times
(RT) reported in this table are obtained on an Ubuntu server with a 3.8Ghz
processor and they are measured in milliseconds; the experiments that took
more than 10 minutes were terminated, indicated with hyphens for the result
and run-time. The REM throughput analysis results in this table are exact,
as the FSM representations of the applications in this table do not require
acceptance conditions. The results confirm that the REM method is scalable
to applications operating on large image frames. Observe that the run-time
of the state of the art methods scale linearly in F . This causes scalability
problems for, for example, buffer sizing algorithms on complex applications
such as multi-resolution filters. The approximate analysis often takes more
than the exact analysis to terminate or it is very pessimistic. The analysis
run-time for the approximate method is mainly due to transformation to a
conservative SDF. According to De Groote et al., the transformation has a
quadratic time complexity in the maximum number of CSDF phases, which
for our examples is in the order of F [67]. We used the REM method on
the MP3 decoder and the example in Figure 2.7 to show the applicability,
in general, of the method to SADF models. However, we do not gain much
with our throughput analysis compared to the existing methods, because these
models do not contain repetitive structures that exhibit multi-scale behaviour.

4.4 Related Work

The prime performance property of interest for dataflow models of computa-
tion is throughput. The earliest works on throughput analysis of SDF [20, 46]
use a conversion of the graph to its equivalent Homogeneous Synchronous
Dataflow (HSDF) graph. HSDF is the single-rate version of SDF. This en-
ables the use of MCM or MCR [68] analysis techniques to obtain the through-
put of the graph. This method can also be applied to CSDF by first using
a conversion to HSDF [67]. Apart from the fact that the conversion step it-
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self is time consuming, such conversions often result in a very large HSDF
(especially for CSDF graphs) which poses scalability issues even for efficient
MCM analysis techniques such as Karp’s algorithm [69]. Approaches to pro-
vide an accurate but more scalable throughput analysis for SDF and CSDF are
provided by Ghamarian et al. and Stuijk et al., respectively [49, 29]. In both
cases, the analysis can be directly applied to the original graph, which removes
the costly conversion step of the earlier works. They both include a simulation
phase based on the operational semantics of dataflow. It still simulates all
actor firings in each iteration, but stores only one state per iteration. The al-
gorithm builds a global state-space representation of the self-timed execution
of the dataflow graph by the simulation. It is known that the self-timed exe-
cution of a consistent and strongly-connected (C)SDF consists of a transient
phase followed by a periodic phase in which actors fire in a periodic fashion.
Throughput is extracted from the periodic phase of the self-timed execution–
the transient phase is often very short in practice, but can be arbitrarily large
in the worst case.

Theelen et al. provide a throughput analysis for SADF [32]. The analysis
is built upon a state-space representation of the graph. The state-space rep-
resentation captures the behaviour of the graph across sequences of scenarios.
Since transitions are at the level of individual firings of actors, the resulting
state space becomes very large with larger models and leads to tractability
issues. The SADF analysis [55] uses a symbolic simulation method to get the
(max,+) representation of each scenario. This representation abstracts the
actor firing dependencies within the scenarios. Then such a representation
together with the FSM is used to generate either a state-space of all reachable
states (state vectors) or a (max,+) automaton. In the analysis techniques
for FSM-SADF, a (partial) iteration of the graph in a particular scenario is
captured in a single transition of the state-space or automaton, instead of
the individual actor firings. This leads to improved scalability. The analysis
is ultimately mapped on a MCR analysis on a directed graph of the state-
space or directly on the automaton. Irrespective of the size of the resulting
directed graph or the automaton and the complexity of the final MCR anal-
ysis, the process of generating the state space of the time-stamp vectors or
the automaton scales linearly in the number of FSM states. We use the same
symbolic simulation method to obtain (max,+) representations for scenarios
as Geilen et al. [55]. Then we use a transformation on the given SADF to
generate a new FSM-SADF with fewer number of FSM states, leading to fur-
ther scalability improvements for multi-scale dataflow models compared to the
analyses of Geilen et al.

Besides exact throughput analysis, it is possible to approximate through-
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put. An approximate conversion method [67] can be used to generate pes-
simistic and optimistic HSDF abstractions of an SDF, but with the same size
as the original graph, the same number of actors and edges. Throughput
analysis over the approximate HSDF is done for the sake of shorter analysis
run-time. We compare our technique to the conservative approximate method
of De Groote et al. [67] in Section 4.3. Our technique turns out to be better
scalable, despite being exact.

A second performance property of interest is latency. Geilen et al. provide
a definition for latency which we also use as a basis in this thesis (where it is in
fact generalized) [55]. They sketch a possible way to compute the latency for
FSM-SADF without providing an algorithm. The proposed approach requires
the generation of the state-space which scales linearly in the number of FSM
states. Moreira et al. [70] use the same latency notion as Geilen et al. [55].
They provide an algorithm to compute the latency. Their approach promotes
the use of static periodic schedules as a conservative approximation of self-
timed schedules. Therefore, the analysis gives an upper bound on the latency.
Moreover, it can only be applied to SDF, CSDF, i.e., the deterministic cases
of SADF where the language has only one scenario sequence. We provide an
algorithm for latency analysis of an arbitrary SADF model. We show that
when we represent the set of possible scenario sequences of an SADF with a
regular expression, the latency computation time using our algorithm scales
linearly in the length of the regular expression.

4.5 Conclusion

We provided a scalable throughput and latency analysis for multi-scale ap-
plications that are modelled by scenario-aware dataflow graphs. We showed
that such models often have a cyclic behaviour with a large number of actor
firings in the cycle. We overcame the scalability issue of existing exact analysis
techniques by exploiting the repetitive structures within the large cycle. Our
analysis scales logarithmically in the number of repetitions for such repetitive
structures whereas the state of the art analysis scales at least linearly. We
implemented our analysis and applied it to several realistic applications. The
results show that our analysis provides accurate analysis in a shorter time
compared to the existing dataflow analysis methods.



Chapter 5

Compositional Modelling

In Chapter 3 we used SADF models to represent real-time streaming appli-
cations. In this chapter, we propose a method to generate SADF models
of cyclo-static applications, compositionally, from the SADF models of their
modules. This chapter is based on publication [41].

5.1 Introduction

Modular design is a design method that regards a system as several smaller,
independently created modules that are interacting with each other through
common interfaces. Modular design facilitates the creation of systems by com-
posing pre-defined, reusable modules that can be designed separately. For
instance, video encoders/decoders are typically constructed from a number
of functional modules such as quantizers, transformers, sub-samplers, multi-
plexers, etc. A complex real-time streaming application with a predictable
performance can be created with a modular model, constructed by composing
the models of its modules. A composed model has the same type of interface
as the modules have. This allows the composite models to be composed in
an iterative manner to generate a hierarchical model of a complex system. A
concise representation and scalable analysis methods for the model are very
important, because the models can grow quickly.

In Chapter 3, we provided an approach to obtain SADF models of stream-
ing applications with long periodic patterns. Composing models with periodic
patterns results in a model with a periodic pattern with a common hyper-
period. For instance, consider the composition of two convolution filters as

85
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Convolution 

Filter 2

Convolution 

Filter 1

Figure 5.1: Two producer-consumer composed convolution filters.

shown in Figure 5.1. In this figure, Filter 2 consumes the data produced by
Filter 1. Such a composition is called the Producer-Consumer (PC) composi-
tion. Recall that the behaviour of a convolution filter is described by a pattern
of multiple phases (see Section 3.1). The composite behaviour composes the
different phases of both filters according to the data dependencies between the
two filters. This leads to the creation of composite phases. A composite phase
describes a behaviour in which the dependency relations of two phases, one
from each module, are combined.

In Figure 5.1, in the first composite phase, when Filter 1 is in the frame
rush-in phase, Filter 2 is not active, since it does not receive any inputs.
After consuming two lines of input pixels, Filter 1 goes to the line rush-in
phase, while Filter 2 is still inactive due to the same reason. This constitutes
the second composite phase. In the third composite phase, while Filter 1 is
producing (intermediate) outputs in the computation phase, Filter 2 goes to
the frame rush-in phase, consuming the outputs produced by Filter 1. In the
next phase, Filter 1 goes to the line rush-out phase while Filter 2 is still in the
frame rush-in phase, and so on. This pattern repeats after Filter 2 completes
its frame rush-out phase. The pattern of the composite phases is called the
hyper-period pattern.

The hyper-period patterns of complex applications are often very long and
computing them is not trivial. For instance, consider the block diagram of a 3-
level multi-resolution filter shown in Figure 5.2 [66]. Input images are fed to the
highest level. At each level, the image is decomposed into a difference image
and a down-sampled image. The difference image is fed to a filter module and
the down-sampled image is used as the input image of the lower level. After
filtering, the filtered images from all levels are added up to reconstruct the
output image. This application has complicated data dependencies between
different modules due to its non-trivial topology. This leads to the creation of
many composite phases. Moreover, the filter, up-sampler and down-sampler
modules have different periodic patterns. For instance, the down sampler
pattern involves skipping the production of outputs for every other input line
while the up sampler pattern shows the production of two lines per every
input line. Composing modules with different periodic patterns results in a
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Figure 5.2: A multi-resolution filter [66].

long hyper-period pattern. Hence, the manual composition is tedious and
error-prone.

In this chapter, we propose an efficient algorithmic method to compose
SADF models of applications with periodic behaviours by generating the
hyper-period patterns automatically in a concise regular expression representa-
tion. Our approach can be iteratively used to generate SADF models of appli-
cations that are composed of more than two modules. This approach involves
two steps: computing the hyper-period of the composition and the timing be-
haviour of its composite phases. The timing behaviour of the composite phases
is computed from the (max,+) characterizations of the composing modules,
straightforwardly. We provide an efficient algorithm for computing the hyper-
period pattern. The algorithm supports composition with producer-consumer
and feedback synchronization on data dependencies between scenarios of dif-
ferent modules. The algorithm exploits the scenario repetitions in the regular
expressions to identify repetitive patterns in the composition. This technique
is used to efficiently and directly generate a concise regular expression for the
hyper-period pattern. We show that our approach is fast enough to automat-
ically generate concise models of several complex realistic image processing
applications such as the multi-resolution filter.

5.2 Producer-Consumer Composition

This section defines the producer-consumer composition of two SADF models
and provides an efficient algorithm to generate the composition. Figure 5.3
shows an example of this composition. The producer (on the left) and con-
sumer (on the right) SADF models communicate through a shared link. That
is, all scenarios in the producer SADF produce output tokens on the shared
link and all scenarios in the consumer SADF consume input tokens from this



88 CHAPTER 5. COMPOSITIONAL MODELLING

P,2

P,3

SADF 1 SADF 2

z

z

Q,3 R,2

x

y

y

Q,1 R,3

x

2

s
h
a
re

d
 li

n
k

c1

c2 c3

c3

c2

c1

c1

c1

g1

g2

g3

g4

(a) Composed SADF models.

Scenario a b c d

Graph g1 g2 g3 g4

Reward 2 (firings of R) 1 (firings of R) 1 (firings of P) 1 (firings of P)

Reps [Q,R] 7→ [1, 2] [Q,R] 7→ [1, 1] [P] 7→ [1] [P] 7→ [1]

ITs c2(x), c3(y) c2(x), c3(y) c1(z) c1(z)

FTs c2(x), c3(y) c2(x), c3(y) c1(z) c1(z)

(b) Scenario specifications.

SADF SADF 1 SADF 2

Scenarios {a, b} {c, d}

Regular Expression (ab10)ω (cd)ω

(c) SADF specifications.

Figure 5.3: An example of a producer-consumer composition.
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link. Observe that the scenario graphs are open (see Section 2.10). To compose
two SADF models we need to compose periodic sequences of the producer and
consumer. The composition is a periodic sequence of composite scenarios. A
composite scenario combines a finite sequence of scenarios from the producer
with a finite sequence from the consumer such that its execution does not leave
any tokens on the shared link. In other words, a composite scenario can be
created from a non-empty pair of finite scenario sequences from the producer
and consumer, such that the total number of outputs produced by the pro-
ducer sequence equals the total number of tokens consumed by the consumer
sequence. For instance, scenario a from SADF 1 can be composed with se-
quence cd from SADF 2, since a produces two outputs and c and d consume
one input each.

A pair (s̄,t̄) of sequences is called a composable pair if the number of tokens
produced by s̄ is the same as the number of tokens consumed by t̄. A compos-
able pair can form a composite scenario. We denote the composite scenario
by s̄→t̄ and derive its (max,+) characterization. To do this, we first need to
introduce the (max,+) characterizations of finite sequences of open scenarios,
s̄ and t̄. Recall that in Section 3.1, we obtained a (max,+) characterization for
a finite sequence of non-open scenarios, by repeatedly substituting the initial
state vectors with final state vectors in the state equations of the scenarios.
For a finite sequence of open scenarios, a (max,+) characterization can be
computed in a similar way, with an additional step of augmenting input and
output matrices of all scenarios in the sequence.

Consider the sequence ab in SADF 1 shown in Figure 5.3 as an example. As
explained in Section 2.10, we can obtain the following equations for scenarios
a and b.

γ′a = Gaγa ⊕Kaua γ′b = Gbγb ⊕Kbub

ya = Haγa ⊕Laua yb = Hbγb ⊕Lbub

To compute the (max,+) characterization of the sequence ab, we need to
substitute γb in the equations of the right side with γ′a as follows.

γ′b = Gbγb ⊕Kbub = Gb (Gaγa ⊕Kaua)⊕Kbub

yb = Hbγb ⊕Lbub = Hb (Gaγa ⊕Kaua)⊕Lbub

By distributing the multiplications over additions in the above equations and
augmenting the input and output vectors, we can derive the (max,+) charac-
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terization of the sequence ab in the form of Eq. 2.8 as follows. γ′b
ya
yb

 =

 GbGa GbKa Kb

Ha La −∞
HbGa HbKa Lb

 γa
ua
ub


In the rest of the thesis, Gs̄,Ks̄,Hs̄ and Ls̄ denote the (max,+) matrices of
a finite scenario sequence s̄.

Now we can compute the (max,+) characterization of a composite sce-
nario s̄→t̄. When s̄ and t̄ are composed, the time-stamps of the output tokens
produced by s̄ are assigned to input tokens consumed by t̄ in the order deter-
mined by the sequences. For instance in the composite scenario a→cd, the
time-stamp of the first output of a, i.e., o1 (note that it is logically the first,
not necessarily temporally first) is assigned to the input of c and the second
output, o2 is assigned to the input of d. Since all inputs consumed by t̄ are
fed by outputs produced by s̄, the inputs of the composite scenario are only
the inputs of s̄ and its outputs are only the outputs of t̄, i.e., us̄→t̄ = us̄ and
ys̄→t̄ = yt̄. The (max,+) characterization of a composite scenario s̄→t̄ can
be obtained by substituting the input vector ut̄ with output vector ys̄ in the
(max,+) characterization of t̄. Doing so and considering γs̄→t̄ = [ γs̄ γt̄ ]T

and γ′s̄→t̄ = [ γ′s̄ γ′t̄ ]T we can obtain the following (max,+) matrices for
s̄→t̄, straightforwardly.

Gs̄→t̄ =

[
Gs̄ −∞
Kt̄Hs̄ Gt̄

]
Ks̄→t̄ =

[
Ks̄

Kt̄Ls̄

]
Hs̄→t̄ =

[
Lt̄Hs̄ Ht̄

]
Ls̄→t̄ = Lt̄Ls̄

The hyper-period of periodic producer and consumer sequences is a se-
quence of composite scenarios that is composed of a whole number of periods
of the producer and consumer sequences. The number of producer and con-
sumer periods within the hyper-period depends on the total number of tokens
produced by the producer and consumed by the consumer sequences in their
periods. For instance, one period of (ab10)ω produces 12 tokens and, 6 periods
of (cd)ω consume 12 tokens (2 tokens per period); therefore ab10 and (cd)6

compose the hyper-period of the example in Figure 5.3. Let (s̄)ω and (t̄)ω

denote a periodic producer and consumer, respectively. Assume an execution
of s̄ produces o(s̄) output tokens, and an execution of t̄ consumes i(t̄) input
tokens. The producer and consumer sequences, (s̄)u and (t̄)v, compose the
hyper-period, where u and v are computed using the least common multiple



5.2. PRODUCER-CONSUMER COMPOSITION 91

operation as follows.

u =
lcm(o(s̄), i(t̄))

o(s̄)
, v =

lcm(o(s̄), i(t̄))

i(t̄)
(5.1)

Trivially, the hyper-period can be a single composite scenario that is com-
posed of the producer and consumer sequences in the hyper-period. For in-
stance, we can create the composite scenario (ab10→(cd)6). However, such a
composition hides the periodic patterns of the modules inside possibly a gi-
gantic scenario, which will have an adverse effect on the scalability of analysis.
Moreover, such a gigantic composite scenario may have a very large (max,+)
characterization in terms of the sizes of matrices. For instance, if all phases
of the filters in Figure 5.1 are composed into one scenario, the composite sce-
nario will have millions of inputs and outputs for high resolution frames, which
requires matrices K, H and L to have millions of rows and/or columns.

To preserve the periodic patterns of the producer and consumer in the
hyper-period, we construct the hyper-period from composable pairs of se-
quences that are minimal. A composable pair of sequences is called minimal
if no pair of prefixes from those sequences can make a composite scenario.
For instance (ab, cdc) is not a minimal composite pair, because the prefixes a
(from ab) and cd (from cdc) can form a composite scenario. A minimal pair
of composable sequences makes a minimal composite scenario.

In a naive way, such a hyper-period can be obtained by successively tak-
ing minimal pairs of composable sequences from the producer and consumer
sequences and composing them into a sequence of composite scenarios. For
instance, let’s consider the composition of sequences ab10 and (cd)6. We start
with composing a and cd and, create the first minimal composite scenario
a→cd. Now b10 is left from ab10 and (cd)5 is left from (cd)6. We proceed
with composing b and c then, b and d and create minimal composite scenar-
ios b→c and b→d, which leaves us with b8 and (cd)4. By repeating b and
c and, b and d composition four times more, we have completed the compo-
sition. This method produces a flat representation of the hyper-period, i.e.
(a→ cd)(b→ c)(b→ d)(b→ c)(b→ d) · · · (b→ c)(b→ d). However, a compact
representation (a→cd)((b→c)(b→d))5 is desired as the outcome.

The run-time of this naive approach scales linearly in the length of the
hyper-period. For instance in SADF 1, if b repeats 10000 times instead of 10
times, the naive approach takes approximately 1000 fold more time to ter-
minate, since b and c and, b and d composition will repeat for 5000 times
in the hyper-period. Moreover, since it produces a flat representation of the
hyper-period, it requires an additional step to obtain a concise representation
from the flat representation. This additional step can be performed using the
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method introduced by Nakamura et al. [71]. This method has a time complex-
ity of O(n2 log n), where n is the length of the flat representation. Therefore,
it dominates the complexity of the naive approach. We improve the scalability
of the naive method by detecting repetitive patterns during the composition
and directly generating a repetition representation of the composite sequence.

A repetitive pattern within the hyper-period occurs when repetitive sub-
sequences from both producer and consumer sequences are composed. The
repetitive pattern repeats until there are no repetitions left from at least one
of the subsequences. Recognizing repetitive patterns during the composition
can be done by tracking the remaining repetitions left from all repetitive sub-
sequences of the producer and consumer sequences. To this end, we define a
notion of state that carries the necessary information about the remaining rep-
etitions from their subsequences. We use a representation for the states that
is similar to the representation of the sequences, except that for the states, we
use the notation n/m, where n is the initial number of repetitions and m is
the number of remaining repetitions.

We illustrate the whole procedure by considering the composition of two
convolution filters (Figure 5.1), as their scenario sequences contain many repe-
titions. In Section 3.1, we described the behaviour of the convolution filters by
the repetitive sequence ((ri)

2W
((ri)

2
(cm)

W−2
(ro)

2
)H−2(ro)

2W
)ω. However,

this sequence is rather complicated for the purpose of illustrating the compo-
sition. Instead, we define new scenarios, which are in the coarser granularity
of lines, rather than individual pixels. Let the preparation scenario, p, cor-
respond to the consumption of one line of input pixels in the frame rush-in
phase, let the main scenario, m, correspond to the computation of a line of
output pixels between the frame rush-in and frame rush-out phases, and let
finally the termination scenario, t, correspond to the production of one line
of output pixels in the frame rush-out phase. Using the new scenarios, we
describe the convolution filter pattern by the regular expression (p2mH−2t2)ω.

Now we proceed with the PC composition of two convolution filters consid-
ering input frames of size 960×960 pixels. Since all output pixels produced in
one period of the producer filter are consumed in one period of the consumer fil-
ter, the hyper-period contains one complete period from each filter. Therefore,
the consumer and producer sequences in the hyper-period are initially both
at state (p2/0m958/0t2/0)1/1. This means that the whole producer/consumer
filter sequence is yet to be composed, i.e., no scenarios from the filter sequence
have been composed yet.

When a composite scenario sequence is created, the producer and/or
the consumer states transition. Again consider the initial state
(p2/2m958/958t2/2)1/0 for both filters. When sequence (p→ ε)2 is composed
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(this sequence corresponds to the first composite phase), two p scenarios
are taken from the producer sequence and the producer state transitions to
(p2/0m958/958t2/2)1/0. The consumer state does not change, because the com-
posed sequence contains only empty scenarios from the consumer.

From the state transitions, we can identify repetitive patterns in the
composite sequence. For instance, when the first m→p scenario is created, the
producer state transitions from (p2/0m958/958t2/2)1/0 to (p2/0m958/957t2/2)1/0

and the consumer state transitions from (p2/2m958/958t2/2)1/0 to
(p2/1m958/958t2/2)1/0. Comparing the states before and after this com-
position shows that, for the producer, the remaining repetitions of scenario
m has been changed from 958 to 957 and, for the consumer, the remaining
repetitions of scenario p has been changed from 2 to 1. Since for both producer
and consumer there are differences in the remaining repetitions of exactly
one exponent, that means repetitive subsequences have been composed and
therefore, a repetitive pattern is detected. In this case the composite scenario
m→p is repeated two times, since there are only two repetitions of p in the
consumer sequence. Note that if we create the composite scenario p2m→p, the
producer state transitions from (p2/2m958/958t2/2)1/0 to (p2/0m958/957t2/2)1/0.
No repetitions of this composite scenario can be found in the hyper-period as
there are differences in the remaining repetitions of two exponents.

In general, if after creating a composite sequence, the remaining repetitions
of at most one exponent in the producer state changes from i to i′ and the re-
maining repetitions of at most one exponent in the consumer sequence changes
from j to j′, a repetition of that composite sequence in the hyper-period is
found and the number of repetitions is computed as follows.

r = min

{⌊
i

i− i′

⌋
,

⌊
j

j − j′

⌋}
(5.2)

If the state of the producer/consumer transitions to itself (this happens when
an empty scenario is composed into a composite scenario), the corresponding
term is removed from Eq. 5.2, as the denominator would be zero.

After creating the repetitive pattern in the hyper-period the remaining
repetitions of the producer and consumer subsequences are updated as follows.

i′′ = i− r(i− i′) , j′′ = j − r(j − j′) (5.3)

We provide an efficient algorithm for computing the hyper-period by de-
tecting repetitive patterns via state comparison. Algorithm 2 sketches our
hyper-period computation method. The algorithm accepts the repetition rep-
resentation of the producer and consumer scenario sequences, s̄ and t̄ and,
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ALGORITHM 2: Hyper-period Computation

Input: The pair of sequences (s̄,t̄)
Output: The hyper-period sequence r̄

1 l̄ = r̄ = ε;

2 (s̃, t̃) = computeSequencesInHyperPeriod(s̄, t̄);

3 (Sp, Sc) = initialState(s̃, t̃);
4 repeat
5 append (Sp, Sc) to l̄;
6 σ = createMinimalCompositeScenario(Sp, Sc);
7 append σ to r̄;
8 (S′p, S

′
c) = newState((Sp, Sc), σ);

9 repeat
10 σ̄ = ε; k = 0;
11 repeat
12 (Tp, Tc) = lk;
13 if S′p � Tp and S′c � Tc then
14 σ̄ = getSequence(r̄, (Tp, Tc), (S

′
p, S
′
c));

15 (i′, i) = getRemainingReps(S′p, Tp);

16 (j′, j) = getRemainingReps(S′c, Tc);
17 break;

18 end
19 k = k + 1;

20 until k 6= length(l̄);
21 if σ̄ 6= ε then

22 r = min{b i
i−i′ c, b

j
j−j′ c};

23 replace σ̄ with σ̄r in r̄;
24 i′′ = i− r(i− i′); j′′ = j − r(j − j′);
25 updateState(S′p, i

′′); updateState(S′c, j
′′);

26 end
27 (Sp, Sc) = (S′p, S

′
c);

28 until Sp = Sc = ε or σ̄ = ε;

29 until Sp = Sc = ε;
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Table 5.1: Data of Algorithm 2 running on the example

l̄ Sp Sc r̄

l0 (a1/1b10/10)1/0 (c1/0d1/0)6/6 ε
l1 (a1/0b10/10)1/0 (c1/0d1/0)6/5 a→cd
l2 (a1/0b10/9)1/0 (c1/0d1/1)6/5 (a→cd)(b→c)
l3 (a1/0b10/8)1/0 (c1/0d1/0)6/4 (a→cd)(b→c)(b→d)
l4 (a1/1b10/0)1/0 (c1/0d1/0)6/0 (a→cd)((b→c)(b→d))5

generates the composite sequence r̄. The algorithm stores a sequence l̄ that
contains pairs of producer and consumer states. Initially l̄ and r̄ are empty se-
quences. The algorithm first computes the producer and consumer sequences
in the hyper-period, using Eq. 5.1 (Line 2). Then, it obtains the pair of initial
producer and consumer states and stores them in (Sp, Sc) (Line 3). Lines 5-27
are repeated until the sequences in the hyper-period are completely composed.
Line 5 appends the latest pair of producer and consumer states to l̄. A new
minimal composite scenario is created and appended to the composite sequence
in Lines 6 and 7. After the composite scenario is created, the new pair of states
is stored in (S′p, S

′
c) (Line 8). Then, it is compared with the pairs in l̄, starting

from the first pair, i.e., the oldest pair (Lines 12-19). An element of l̄ is stored
in (Tp, Tc). If Tp compares to S′p and Tc compares to S′c (we denote the com-
parison with operator � in the algorithm), then the sequence σ̄ of minimal
composite scenarios that are appended to r̄ while transitioning from (Tp, Tc)
to (S′p, S

′
c) is identified as a repetitive sequence. The remaining repetitions

from the repetitive producer subsequence at states Sp and S′p are stored in
i and i′, respectively. Similarly, j and j′ respectively store these values for
the consumer at states Sc and S′c. If a repetitive pattern is detected, i.e., σ̄
is non-empty, the repetition count is computed using Eq. 5.2, σ̄r is created
and replaced with σ̄ in r̄ and finally, the remaining repetitions i′′ and j′′ are
computed using Eq. 5.3 and used to update S′p and S′c (Lines 22-25). The
algorithm goes to Line 10 to check for another repetition after the states are
updated. Otherwise the algorithm starts the next iteration (i.e., it goes to
Line 5) with the latest pair of states stored in (Sp, Sc) (Line 27).

To illustrate, consider the example in Figure 5.3. The sequences ab10 and
(cd)6 are obtained as the producer and consumer sequences in the hyper-
period. The initial pair of producer and consumer states is computed and ap-
pended to l̄ (l0 in Table 5.1). Then the composite scenario a→cd is created and
appended to r̄. Now the latest pair of states, ((a1/0b10/10)1/0, (c1/0d1/0)6/5), is
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compared with the first entry of l̄ i.e. l0. The comparison reveals a repetitive
pattern, since in both producer and consumer, the remaining repetitions of
only one exponent has been changed (exponent of a from i = 1 to i′ = 0 and
the outer exponent of consumer from j = 6 to j′ = 5). Therefore, scenario
a→cd repeats with the repetition count of one (using Eq. 5.2). Then the states
are updated to ((a1/0b10/10)1/0, (c1/0d1/0)6/5) using Eq. 5.3. The second iter-
ation starts with appending the latest pair of states to l̄ (i.e. entry l1). Then
the minimal composite scenario b→c is created. Comparing the pair of states
after the creation of this scenario with l0 does not show a repetitive pattern.
However, comparing with l1 shows a repetitive pattern on b→c with repetition
of one. The flow of the third iteration is similar to the second iteration where
b→d is created. In the fourth iteration, the comparison between the latest pair
of states i.e. l3 = ((a1/0b10/8)1/0, (c1/0d1/0)6/4) and the pair l1 shows a repet-
itive pattern (i = 10, i′ = 8, j = 5, j′ = 4). Eq. 5.2 calculates the repetition of
5 for the sequence that is appended to r̄ between the compared pairs of states,
i.e. the sequence (b→c)(b→d). This iteration is the last iteration, since both
states become ε after they are updated using Eq 5.3. Therefore, the computed
hyper-period is (a→cd)((b→c)(b→d))5.

To explain the complexity of Algorithm 2, we assume the producer and
consumer sequences are given by syntax trees and the hyper-period sequence
is outputted as a syntax tree. The leaves of the syntax trees are labelled
by scenarios and the inner nodes are either a binary operator labelled · (se-
quential composition), or they are a unary operator and labelled by ω or a
natural number n (for the repetition). To compute the input sequences in
the hyper-period (Line 2) we need to compute the number of tokens produced
and consumed by the producer and consumer in their periods, respectively.
This can be computed by a reversed traversal of the input trees and it has the
complexity O(ns̄+nt̄) where ns̄ and nt̄ denote the sizes (the number of nodes)
of the input syntax trees. In the iterative part of the algorithm (Lines 5-27),
by creating a new minimal composite scenario, a new leaf on the output tree
is created. Also a new pair of states is added to list l which is looked up in
every iteration. This means the algorithm scales quadratically in the number
of leaves of the output tree. The number of leaves in the output tree is at
least the maximum of the number of leaves in the input sequences. In the
worst-case, when the input sequences do not match, in the sense that their
composition does not produce any repetitive patterns (i.e. when the output
turns out to be a flat sequence), the number of leaves in the output tree may
grow as large as the length of the flattened hyper-period sequence.

It is worth mentioning that in the case of multiple consumers and produc-
ers, Algorithm 2 can be repetitively used to generate the composition. More-
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SADF 3 SADF 4

(ef)ω (gh3g)ω

w

(a) Composed SADF models.

Scenario e f g h

Nr. of Inputs 1 1 0 1
Nr. of Outputs 2 1 1 0

(b) Scenario specifications.

Figure 5.4: An example of a feedback composition.

over, the algorithm can handle the cases with more that one shared channel
between the producer and consumer. In this case, the minimal composite sce-
narios are created such that their execution does not leave tokens on any of
the shared channels.

5.3 Feedback Composition

This section generalizes the results of the previous section to the case where
there are cyclic dependencies between the modules, as opposed to the PC
composition. Figure 5.4a shows an example of such a composition. Observe
that the cyclic dependencies are established by two shared links in opposite
directions between the two modules and the shared link at the bottom contains
an initial token w. We refer to such a composition as a feedback composition.
SADF 3 has scenario sequence (ef)ω, where e and f are distinct scenarios. In
SADF 4, g and h each denote a scenario and (gh3g)ω represents the sequence
of scenarios. To compute the composite scenario sequence, we need to know
the number of inputs and outputs consumed and produced by all scenarios.
We do not provide the complete specifications of the models of the modules, as
we want to discuss only the computation of the hyper-period in the feedback
composition. The table of Figure 5.4b specifies the number of inputs and
outputs for every scenario.

In the feedback composition, the composite scenarios are defined such that
their execution does not change the number of tokens on the shared links. For
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example in Figure 5.4, scenario e and sequence gh2 can create a composite
scenario. We denote this scenario by e↔fg2. The composite scenario e↔fg2

can execute both scenario sequences in the composition and therefore, it is
deadlock free. First, scenario e consumes token w, executes, and produces two
tokens on the link from SADF 3 to 2. At the same time, execution of g produces
a token on the link from SADF 4 to 1. Then, two executions of h consume
the tokens produced by scenario e. After these executions, the shared links
contain the same numbers of tokens as they did before the execution of the
composite scenario, which complies with the definition of composite scenarios.
Observe that this definition is consistent with the definition provided for the
PC composition. In the PC composition, the composite scenarios do not leave
tokens on the shared links because they are initially empty. Moreover, the
PC composition cannot create deadlocks as it does not introduce any cyclic
dependencies.

The (max,+) characterization of composite scenarios in the feedback com-
position can be computed using the method provided by Skelin et al. [57]. In
this method, first the (max,+) characterizations of the modules are generated
by performing the traditional symbolic simulation [31] on the models of the
modules. Then, these representations are used in symbolic simulation of the
composite graph to generate the (max,+) characterization of the composite
scenario. The deadlock freedom of the composite scenario is automatically
checked during the simulation. That is, if there exists an actor firing schedule
for all firings in the composite scenario, the simulation terminates and the
composition is deadlock free.

Similar to the PC composition, the hyper-period combines the whole num-
bers of periods from the two modules. Here, the hyper-period is defined only
if the cyclic dependencies are correctly modelled, whereas the PC composi-
tion is guaranteed to have a hyper-period. For the feedback composition to
have a hyper-period, the module periods must be consistent. That is, positive
numbers p and q must exists such that the outputs produced by p periods of
module 1 are consumed by q periods of module 2 and the outputs produced by
q periods of module 2 are consumed by p periods of module 1. For instance,
a period of SADF 3 consumes 1 + 1 = 2 tokens and produces 2 + 1 = 3 to-
kens. Similarly, one period of SADF 4 consumes 0 + 3× 1 + 0 = 3 tokens and
produces 1 + 3 × 0 + 1 = 2 tokens. Therefore the periods are consistent and
have a hyper-period that contains one period from each module. As shown in
the example above, the consistency of a feedback composition can be simply
checked by solving a balance equation for every shared link, similar to the
consistency check for SDF graphs.

Given a consistent pair of scenario sequences, Algorithm 2 can be used
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to compute the feedback composition, where Lines 2 and 6 are performed
considering the feedback composition rules. Using this algorithm, the hyper-
period of the example shown in Figure 5.4 is computed as (e↔gh2)(f↔hg).

5.4 Experimental Results

We implemented Algorithm 2 in SDF3 [65], the tool developed to analyse
dataflow models and map them onto multi-processor platforms already intro-
duced in Section 4.3. We used this tool to generate modular SADF models
of MRCFs (also introduced in Section 4.3) from the modular models of the
up-sampler, down-sampler and filter modules, each of which is obtained by in-
dividually analysing the behaviour of their FPGA implementations for a given
schedule and window size. We also used the throughput analysis provided
in Section 4.1 to compute the throughput of the generated models. The com-
puted throughput values for MRCFs are exact, as SADF models of cyclo-static
applications do not require acceptance conditions for their FSM representa-
tions (see Section 2.8). The models are generated for square input images with
different frame sizes (FS) and different numbers of layers (L) in the structure
shown in Figure 5.2. Table 5.2 summarizes the experimental results. For each
of these models, we report the throughput (T), in pixels per clock cycle, the
hyper-period expression length (EL), in the number of characters used to rep-
resent the expression, the time needed to compose the models, i.e., composing
time (CT), and the throughput analysis run-time (AT), both in milliseconds.
The times are measured on an Ubuntu server with a 3.8Ghz processor.

To compare the results with CSDF models, we generated CSDF graphs of
this application by composing the CSDF graphs of the modules. The CSDF
analysis runs a dataflow simulation to compute the throughput. For this ap-
plication, the simulation involves a huge number of actor firings (NF), which
has an adverse effect on the analysis time. The results show that the computed
throughput values from both SADF and CSDF models are exactly the same,
as expected, for every configuration, and that the SADF models are quicker to
analyze compared to CSDF models. Moreover, the model construction time
is very short, even for such a complex application and, it is only slightly af-
fected by the size of the image or the number of layers. It is worthwhile to
mention that a fast analysis is particularly important when called frequently
in algorithms such as the throughput-buffering exploration algorithm in the
next chapter.
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Table 5.2: Analysis on SADF and CSDF models of MRCF

FS L T SADF CSDF

EL CT AT NF AT

960 3 0.2495 142 1 1 1.56 · 10+7 1882
2048 3 0.2496 168 1 1 7.12 · 10+7 8571
960 4 0.2495 186 1 1 1.72 · 10+7 2070
2048 4 0.2497 210 2 3 7.86 · 10+7 9228
960 5 0.2495 246 1 2 1.77 · 10+7 2132
2048 5 0.2497 272 2 5 8.06 · 10+7 9685

5.5 Related Work

Compositionality of SDF models has been addressed in a number of works [34,
35] by introducing the concept of hierarchical SDF graphs. In a hierarchical
SDF graph, a composite SDF actor is perceived as an atomic SDF actor. Such
a representation is not compositional, i.e., it might lead to deadlock and/or rate
inconsistencies [35]. The authors of [36] introduced a compositional abstraction
for SDF actors, called deterministic SDF with shared FIFOs profiles. This
allows for modular compilation and code generation for applications modelled
as hierarchical SDF graphs.

Skelin et al. [57] propose a (max,+) algebraic throughput analysis method
for hierarchical SDF graphs. The approach exploits the inherent hierarchy
in the graph when generating a (max,+) characterization of the graph. This
leads to a considerably faster analysis compared to the analysis performed
on the unfolded graph. Another throughput analysis method for hierarchial
SDF graphs is provided by Deroui et al. [72]. The authors use the Interface-
Based SDF (IBSDF) [73] as the composite actor model. This model extends
the semantics of the SDF model to provide a graph composition mechanism
based on hierarchical interfaces. An approximate throughput is obtained by
constructing a periodic ASAP schedule for the IBSDF graph in a bottom-up
approach.

Our work can be considered as a generalization of the works above, since
we allow for composite actors with cyclo-static nature. This adds the extra
complexity of computing the hyper-period of the composite actor from the
periods of its modules. We use SADF to model the composite CSDF actors,
where every scenario is represented by a (max,+) matrix. For conciseness
and scalability of the timing analyses, representing periodic behaviours of the
composite actors by regular expressions is crucial. Computing the hyper-
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period of the composite actors which is the core contribution of this chapter,
involves composing regular expressions in a specific way. We are not aware
of other works that address this problem. We believe it may have interesting
applications in other domains as well.

Another difference between this work and some of the works above is that
the composite actors in this work communicate through channels that are not
necessarily FIFOs. In fact the consumption order of the data on these channels
is determined by the sequence of the consumer scenarios and not necessarily
by the time the data is produced on the channels. This is necessary to ensure
the correct timing of the cyclo-static models.

Other composable abstractions of dataflow models are based on actor in-
terfaces [74]. These interfaces express the relation between sequences of input
tokens and sequences of output tokens. The authors provide a composable re-
finement relation based on the earlier-is-better principle that preserves worst-
case bounds on throughput and latency. The compositional temporal analysis
model based on these bounds is provided by Hausmans et al. [75]. The authors
show that this model can be used for buffer sizing and, it can accommodate
latency constraints. In contrast to the works of Geilen et al. [74] and Haus-
mans et al. [75], we provide a composite model that has a dataflow behaviour
as opposed to an abstraction of it.

5.6 Conclusion

We aimed to generate modular models of complex cyclo-static applications
via model composition. For the sake of compactness and analysis scalability,
we used the SADF MoC as the basic model of the modules. We provided an
approach to automatically generate SADF models of a cyclo-static application
by composing SADF models of its modules. The results show that such models
can be generated in a short time for complex applications. Moreover, the
generated models can be quickly analysed compared to the traditional CSDF
models. In the next chapter we show that the buffer sizing problem can be
addressed using application models that can be quickly analysed for their
timing behaviour.

Generalizing the composition method introduced in this chapter to SADF
models with non-determinism scenario transitions is a future work direction.
One may need to consider the product of two given regular expressions, similar
to the product of two FSMs, with an additional constraint of preserving the
repetitive patterns of the given regular expressions in the product.
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Chapter 6

Throughput-Buffering
Trade-Off Analysis

In real-time streaming applications, buffers represent storage spaces that are
used to store the data communicated between different tasks in the application.
The capacities of the buffers influence the throughput, by altering the waiting
times for tasks that need to read or write data from or to the buffers (see
Section 1.2.3 for a realistic example). The buffers are often realized using
memory blocks or hardware FIFO queues. To minimize the memory usage,
we need to find the minimum capacities for buffers to execute an application
under a given throughput constraint. A throughput-buffering trade-off analysis
computes all optimal points on the space of throughput vs buffer resources,
from which the minimum buffer capacities for a given throughput constraint
can be obtained.

Finding the minimal buffer sizes for SDF and CSDF models to satisfy
a minimum throughput constraint is known to be a complex problem (it is
NP-complete [76]). Heuristic approaches are proposed to obtain near opti-
mal solutions for this problem [77, 78]. Stuijk et al. [29] provide an exact
throughput-buffering trade-off analysis that terminates in a reasonable time
for SDF and CSDF models of realisitc applications. The algorithm uses a
Design Space Exploration (DSE) scheme that prunes the design space (with-
out losing any optimal points) during the exploration. The approach uses a
throughput analysis algorithm to compute the throughput of the model, and
at the same time find the throughput-limiting buffers. Further explorations
are performed only for these buffers. This prunes the exploration space and

103
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makes it smaller as the exploration continues.
In Chapter 4, we provided timing analysis techniques for SADF models.

In this chapter, we provide the first throughput-buffering trade-off analysis for
applications modelled as SADF. Since SADF generalizes SDF, finding optimal
throughput-buffering trade-offs for SADF models is at least as complex as that
for SDF models. We also use a DSE approach. As an enabling contribution,
we propose a novel throughput computation method for SADF models that
obtains the throughput and at the same time determines the buffers that limit
the throughput of the model. This is an important contribution, because
it enables the application of smart exploration schemes in performing efficient
buffer sizing for SADF models. For example, the method of Stuijk et al. [29] or
Hendriks et al. [78] can be generalized to SADF models using this contribution.
We integrate our throughput analysis in a DSE scheme similar to the one
provided by Stuijk et al. [29] to find all optimal throughput-buffering trade-
offs. We prove that the proposed DSE finds all optimal points in the space
of the throughput-buffer size trade-offs. We show the applicability of our
approach using several realistic applications modelled as SADF. This chapter
is based on publication [42].

6.1 The Main Idea

As mentioned, the DSE approach for throughput-buffering trade-off analy-
sis requires that for a given storage distribution, the buffers that limit the
throughput, are identified. In this section we explain the key idea behind a
technique we provide to obtain the throughput limiting buffers in SADF mod-
els. The throughput analysis given by Geilen et al. [31] (see Section 2.8), and
consequently the throughput analysis given in Section 4.1 does not give an in-
dication of the buffer channels that limit the throughput, since state matrices
of the scenarios do not include the notion of actors and channels. Therefore,
those analyses cannot be directly used in the DSE.

The idea is to arm the state matrices introduced in Section 2.7.1 with
information on the buffers. The MPA (see Section 2.8) built from the new
matrices carries the buffer information on every state transition. This enables
us to translate the critical cycles in the MPA back to a set of buffer channels we
refer to as critical buffer channels. We illustrate this procedure on an SADF
model which repeatedly executes scenario κ, shown in Figure 6.1. We call
this model the simple SADF model in the remainder, as it contains only one
scenario. In the SDFG of this scenario, channels a and b are buffer channels,

and ←−a and
←−
b are their capacity channels, respectively (see Section 2.9).
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Reps: [P,Q,R] 7→ [1, 2, 2]

ITs: ←−a (δ1, δ2),
←−
b (δ3)

FTs: ←−a (δ1, δ2),
←−
b (δ3)

Reward: 1

Figure 6.1: Scenario κ.
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Figure 6.2: The dependency graph of scenario κ.

We extract additional information from the symbolic simulation when
transforming scenario κ to its state matrix. We explain this by defining an
dependency graph of the scenario. The dependency graph shows the depen-
dencies between actor firings defined by the scenario. The dependency graph
of scenario κ is shown in Figure 6.2. In this graph large nodes represent ac-
tor firings. A directed edge from firing Ai to firing Bj indicates that the jth

firing of actor B can start when the ith firing of actor A is completed. If
an edge represents a firing dependency that is caused by a capacity channel,
the corresponding buffer is mentioned under the edge. The production and
consumption of the initial tokens by the firings are shown by smaller nodes.

By backtracking the (longest) path from the production of every token to
the consumption of every token, we can obtain the state matrix Gκ, as well
as the set of buffers that affect every element of this matrix. The result is the
Extended Matrix Representation (EMR) of the scenario where every element of
the matrix is a pair that contains the time-stamp component and the buffer-set
component. The EMR Ge

κ for scenario κ is as follows.

Ge
κ =

 (5, {a}) (5, {a}) (3, {b})
(9, {a, b}) 9, {a, b} (7, {b})
(10, {a, b}) (10, {a, b}) (8, {b})


Observe, for instance, that buffer b affects every path to δ2 and δ3 in Figure 6.2.
Therefore, the buffer-set components of the elements in the second and third
row of the matrix Ge

κ, all include b. The MPA of the simple SADF example
can be built from the EMR of scenario κ similar to the way explained in
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Figure 6.3: The EMPA of the simple SADF model.

Section 2.8, except that now the MPA edge labels contain scenario rewards,
time-stamp components, i.e. the delays, and buffer-set components. We refer
to such an MPA as the Extended (max,+) Automaton (EMPA). The EMPA
of the simple SADF is shown in Figure 6.3. The reward component of every
edge label is 1. We do not show the reward components on the edge labels
to avoid cluttering. The critical cycle of the EMPA is coloured in red. Since
buffers a and b are on the critical cycle, they are identified as critical. The
throughput can only increase by increasing at least on of these buffers.

In Section 6.2, we extend the symbolic simulation method provided by
Geilen et al. [31] to directly generate the EMR of scenarios (without the need
to first create the dependency graph). Section 6.3 defines the critical buffers
in SADF models. In Section 6.4, we provide our throughput-buffering trade-
off analysis for SADF. The experimental results are provided in Section 6.5.
Section 6.6 discusses the related work. Finally, we conclude this chapter in
Section 6.7.

6.2 The Extended Matrix Representation

This section introduces the extended matrix representation of a scenario exe-
cution that does not deadlock. Then it provides an algorithm to compute it
for a given SDF scenario. Consider a scenario with a set B of buffer channels
in its scenario graph. The elements of the EMR are pairs (t, B̃). Component
t ∈ IR+

−∞ indicates the relation between the initial and final state vectors (as

in the traditional (max,+) characterization). Component B̃ ⊆ B is the set of
buffer channels that affect the timing relation t.

To generate the EMR, we propose an extended symbolic simulation during
which, tokens are assigned with vectors v = [ (t1, B̃1) · · · (tm, B̃m) ], where

tn are the time-stamps of the token and B̃n are the sets of buffer channels that
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affect their respective time-stamps tn. We refer to v as the Extended Symbolic
Time-stamp Vector (ESTV). To improve readability, we refer to tn and B̃n of
the ESTV of a token τ , as tn and B̃n of τ . We introduce functions tn(τ) and
B̃n(τ) that map token τ to tn and B̃n of its ESTV.

We illustrate the proposed simulation on the example SDF scenario. Fig-
ure 6.4 shows the simulation steps. Figure 6.4a shows the initial distribution
of the tokens and their ESTVs. Figures 6.4b-6.4f respectively show the distri-
bution of tokens after a firing according to the sequence ā = PQRQR of actor
firings. Since the tokens are initial, their time-stamps are not affected by any
buffer and therefore, the buffer-sets of all ESTVs are empty. The time-stamp
components of the ESTVs are not discussed since they are exactly the same
as in the traditional symbolic simulation (see Section 2.7.1).

In Figure 6.4b, P has consumed δ1 and δ2, fired, and produced τ1 and
τ2. To compute B̃n(τ1), we first need to find out, which of the consumed
tokens determine the time-stamp tn(τ1). According to actor firing semantics,
consumed tokens with the latest time-stamp determine the time-stamp of the
produced token. For example, t1(τ1) is determined by t1(δ1), since t1(δ1) = 0
is later than t1(δ2) = −∞. We say that δ1 is the dominating token for t1(τ1).
Since t1(τ1) is dominated by t1(δ1) and, δ1 is on the capacity channel of a, we
can conclude that t1(τ1) is influenced by a. Therefore, B̃1(τ1) = {a}. Similarly
one can conclude that, t2(τ1) is dominated by δ2 and therefore, B̃2(τ1) = {a}.
Since t3(τ1) = −∞, this time-stamp is not affected by anything, and B̃3(τ1)
is empty. Since τ2 is produced by the same firing that produced τ1, they have
the same ESTV vτ2 = vτ1 .

In Figure 6.4c, Q has consumed τ1 and δ3, fired, and produced τ3 and the
final token δ1 (not to be confused with the initial token δ1). For t1(δ1) and
t2(δ1), τ1 is the dominating token because, t1(τ1) = 2 > t1(δ3) = −∞ and
t2(τ1) = 2 > t2(δ3) = −∞. Since t1(δ1) is dominated by τ1, it is influenced
by all buffers that influence t1(τ1). This means, the buffers that belong to
B̃1(τ1), also belong to B̃1(δ1). Similarly, the buffers that belong to B̃2(τ1) also
belong to B̃2(δ2). Token δ3 is the dominating token for t3(δ1). Since δ3 is on
the capacity channel of buffer b, B̃3(δ1) = {b}. Figures 6.4d-6.4f show the rest
of the simulation steps. Figure 6.4f shows the ESTVs of the tokens remaining
on the channels after the scenario is completely executed. By collecting these
vectors in a matrix, we obtain the extended matrix Ge

κ.

We formalize our symbolic simulation by defining the ESTV of a token ρ
that is produced by a symbolic firing of an actor a with execution time e(a),
consuming a set T of tokens. Identical to the traditional symbolic firing, tn(ρ),
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(5, {a}) (5, {a}) (3, {b})
]

vδ2 =
[

(9, {a, b}) (9, {a, b}) (7, {b})
]

vδ3 =
[

(10, {a, b}) (10, {a, b}) (10, {b})
]

(f) After the second firing of R

Figure 6.4: Token distributions in the symbolic simulation of scenario κ.

is defined as follows.

tn(ρ) = max
τ∈T

tn(τ) + e(a) (6.1)

To define B̃n(ρ), we first need to define the dominating tokens for tn(ρ).
The dominating tokens for tn(ρ) are all consumed tokens with the latest tn.
Therefore, tn of the dominating tokens determines tn(τ). In other words, if
tn(τ) + e(a) = tn(ρ), then τ is a dominating token for tn(ρ). The set Tn(ρ) of
the dominating tokens for tn(ρ) is defined as follows.

Tn(ρ) = {τ ∈ T | tn(τ) + e(a) = tn(ρ)} (6.2)

A buffer b belongs to B̃n(ρ) if at least one of the following two conditions
holds. First, if a token that belongs to Tn is currently located on the capacity
channel of b. Second, if b belongs to B̃n(τ) for any τ ∈ Tn. Let bf(τ, b) be a
function that returns true if token τ is on the capacity channel of buffer b and
false otherwise. The function B̃n(ρ) is defined as follows.

B̃n(ρ) =
{
b ∈ B | ∃τ∈Tn(ρ)[b ∈ B̃n(τ) ∨ bf(τ, b)]

}
(6.3)

Algorithm 3 sketches the proposed symbolic simulation method to obtain
the EMR of a scenario execution that does not deadlock. Line 1 assigns ESTVs
to all initial tokens and stores them in a set Y . In Line 2, a valid actor
firing sequence that complies with repetition vector of the scenario is generated
and stored in ā (such a schedule exists as the execution of the given scenario
does not deadlock). Starting from the first firing in ā, for every firing in the
sequence the following actions are performed. The actor responsible for the
firing is recognized. The actor consumes a set T of tokens from Y and fires.
The consumed tokens are removed from Y (Lines 4-6). The ESTVs of the
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ALGORITHM 3: Compute the EMR of an SDF scenario

Input: An SDF scenario F with I initial tokens
Output: EMR Ge

1 Y = {(δ,ESTV(δ)) | δ ∈ InitialTokens(F )};
2 ā = computeSeqSchedule(F );
3 for j = 1 to length(ā) do
4 a = getActor(ā, j);
5 Fire a, let T ⊆ Y be the tokens consumed by firing a and

ProducedTokens be the tokens produced by firing a;
6 Y = Y \ T ;
7 for n = 1 to I do
8 tn = maxτ∈T tn(τ) + e(a);
9 Tn = {τ ∈ T | tn(τ) + e(a) = tn};

10 B̃n =
{
b ∈ B | ∃τ∈Tn [b ∈ B̃n(τ) ∨ bf(τ, b)]

}
;

11 end

12 v = [ (t1, B̃1) · · · (tI , B̃I) ];

13 V = {(ρ,v) | ρ ∈ ProducedTokens};
14 Y = Y ∪ V ;

15 end
16 Ge = [v(δ)] for all δ ∈ Y ;

consumed tokens and the execution time of the actor are used in Lines 8-
10 to compute the elements of the ESTV v according to equations Eqs. 6.1
and 6.3. v is constructed from its elements in Line 12. In Line 13, the tokens
are produced and assigned with v. These tokens are added to Y in Line 14.
Finally, the ESTVs of the tokens in Y are collected to generate the EMR of
the scenario (Line 16).

6.3 The Critical Buffers of an FSM-SADF

This section defines the critical buffers of an SADF F that incorporates a
storage distribution d, which we denote as Fd. In Section 2.9, we introduced
common buffers of SADF models. A common buffer corresponds to a buffer
channel in the scenario graph of every scenario in the given SADF model. We
denoted the corresponding capacity channel of a common buffer u in a scenario
s, with bs(u). Moreover, with a distribution d we associated a capacity with
every common buffer u in the given SADF model.

A buffer channel can be critical in two distinct cases. The first case is when
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a buffer causes a deadlock in the execution of a scenario. In a deadlock state,
a critical buffer channel creates a cycle of actor firings that are dependent on
each other, but non of them are enabled. In the second case, there are no
scenario deadlocks and the SADF has a positive throughput, however, this
throughput is limited by an actor, the firings of which are delayed because of
waiting for empty space in a buffer. A buffer that limits the throughput of an
SADF model in this way is critical. We first provide a definition for the case
that at least one of the scenarios in Fd deadlocks due to insufficient storage
space. Then we provide a definition for an Fd with a deadlock free execution.

For the deadlock case we use a definition from Stuijk et al. [29]. For
every scenario that deadlocks under the given storage distribution, a Deadlock
Dependency Graph (DDG) is determined. The DDG (D,E) is generated from
the scenario graph when it is in the deadlock state. The set D of nodes contains
a node for every actor in the scenario graph. The set E of edges contains an
edge from an actor P to actor Q, labelled with c, if and only if firing of P is
prohibited by a lack of tokens on a channel c from Q to P. Buffers are critical
when their capacity channels appear in cycle of such dependencies in the DDG.

Definition 6.1. A buffer channel b in the scenario graph of a deadlock sce-

nario is critical if the is an edge labelled with
←−
b in a cycle of the DDG of the

scenario. A common buffer u of an SADF is critical if b = bs(u) is critical for
some deadlock scenario s.

For the deadlock free Fd, we generate the extended (max,+) automaton
(an example is shown in Figure 6.3). The EMPA is obtained by replacing
the matrices G(s) with Ge(s) in the MPA generation method introduced in
Section 2.8. A critical cycle of the EMPA is a cycle with the maximum cycle
ratio. The definition of critical buffers for the deadlock free case is as follows.

Definition 6.2. A buffer channel b in the scenario graph of a scenario in a
deadlock free Fd is critical if it is in a critical cycle of the EMPA of Fd. A
common buffer u of an SADF is critical if b = bs(u) is critical for a scenario
s.

In the next section, we use these two definitions in a DSE to obtain the
throughput-buffering trade-offs for a given SADF model.

6.4 Design Space Exploration

Using the definitions in Section 6.3, we can find the trade-offs between the
distribution size and the throughput, i.e., the Pareto space. Consider an FSM-
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Scenarios s1 s2

ETs e(P ) = 2, e(Q) = 3, e(R) = 1 e(P ) = 1, e(Q) = 5, e(R) = 2

Rates r1 = 3, r2 = 4, r3 = 2, r4 = 6 r1 = 1, r2 = 2, r3 = 4, r4 = 6

Reward 1 1

Reps [P,Q,R] 7→ [4, 3, 1] [P,Q,R] 7→ [6, 3, 2]

ITs ←−a (δ1, δ2),
←−
b (δ3), c(α), d(β) ←−a (δ1, δ2),

←−
b (δ3), c(α), d(β)

FTs ←−a (δ1, δ2),
←−
b (δ3), c(α), d(β) ←−a (δ1, δ2),

←−
b (δ3), c(α), d(β)

(c) Scenario specifications.

Figure 6.5: An FSM-SADF example for buffer sizing.

SADF example shown in Figure 6.5. Figure 6.6 shows the Pareto space ob-
tained for this example. The interesting points on the throughput-distribution
size trade-off space are the points that have the minimum distribution size for
a given throughput, i.e., the Pareto points. Formally, for an SADF, a storage
distribution d with throughput Thr is minimal if and only if there is no storage
distribution d′ with throughput Thr ′ such that |d′| ≤ |d| and Thr ′ > Thr or
|d′| < |d| and Thr ′ ≥ Thr .

The table below the figure lists all Pareto points from the lowest positive
throughput to the maximum achievable throughput. The table shows for ev-
ery Pareto point also the capacity of the buffers ua and ub and the scenario
sequence that limits the throughput. For all distributions for which the SADF
deadlocks the throughput is considered to be 0. Therefore the zero distribu-
tion 〈0, 0〉 is the minimal distribution for zero throughput. Obviously, zero
throughput is not an interesting design point, thus we do not show it in Fig-
ure 6.6. Observe that the smallest distribution with a throughput larger than
zero is 6 + 8 = 14 tokens, as scenario s1 deadlocks with any capacity lower
than 6 tokens for the buffer a and, scenario s2 deadlocks with any capacity
lower than 8 tokens for the buffer b. The sequence (s1s2)ω limits the maximum
achievable throughput to 1/12. The maximal throughput can be achieved with
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Figure 6.6: Throughput-buffering trade-offs for Figure 6.5.



114CHAPTER 6. THROUGHPUT-BUFFERING TRADE-OFF ANALYSIS

the minimum distribution size of 9 + 12 = 21 as shown in the figure.
Algorithm 4 sketches the adapted DSE. The exploration is based on the

monotonicity property of SADF [55]. Monotonicity ensures that an increase
in the capacity of a buffer cannot lower the throughput. The input is an FSM-
SADF F and the output is the set P of all pairs (d,Thr) such that d is a
minimal distribution and Thr is its throughput. In the first line, the maxi-
mal throughput Thrmax is computed by removing all capacity channels from
scenario graphs and using the throughput analysis given in Section 2.7.1 (we
assume that the modelled application has a bounded throughput, otherwise,
its trade-off space is not finite). The set I of the storage distributions that
will be explored by the algorithm is initialized with zero distribution 〈0, . . . , 0〉
and, P is initially empty (Line 2). Lines 4-19 are repeated until all minimal
distributions with Thrmax are in P . A distribution d with the smallest size
is picked and then removed from I (Line 4). Fd is created from d and F in
Line 5. If Fd is deadlock free, the EMPA of the Fd is created in Line 7. Us-
ing an MCR analysis on the EMPA, the throughput and a critical cycle are
obtained and stored in Thr and C, respectively (Line 8). If Fd deadlocks,
then the algorithm generates the DDG of Fd, finds a cycle C in the DDG and
sets Thr = 0 (Lines 10-11). The pair (Thr , d) is added to P in Line 13. A
set U of critical buffers are obtained from C in Line 14 using the definitions
provided in Section 6.3. For every u ∈ U , a new distribution d′ is generated
from d by increasing the capacity of u by one step, then it is added to the
distributions pool I (Lines 16-18). The step size for a buffer is the minimum
number of tokens that if added to the capacity of the buffer, it may break
actor firing dependencies on that buffer. We define the step size of a common
buffer as the minimum of the input and output rates of the corresponding
buffer channel over all scenarios. In Figure 6.5, the step size for ua and ub
are min{3, 4, 1, 2} = 1 and min{2, 6, 4, 6} = 2, respectively. In the final step
(Line 21), all the non-minimal distributions are removed from P , after which
it is returned.

To prove the correctness of the algorithm, we proceed with three lemmas
as follows (by an adaptation from Stuijk et al. [29]). The first lemma states
that at least one of the critical buffers in a deadlocking graph needs to be
increased to resolve the deadlock.

Lemma 6.1. Given a storage distribution di with throughput Thr i > 0, for
any storage distribution dj � di for which Fdj deadlocks in some scenario s,

in any cycle in the DDG of s, there exists a capacity channel
←−
b = cs(u) for

which, di(u) > dj(u).

Proof. Since Thr i > 0, Fdi is deadlock free. Since Fdi is deadlock free, but
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ALGORITHM 4: Find all minimal storage distributions

Input: An FSM-SADF F
Output: The set P of all pairs (d,Thr) s.t. d are minimal

1 Thrmax = computeThrMax(F );
2 I = {〈0, · · · , 0〉}; P = {};
3 repeat
4 d = getSmallestDist(I); I = I \ {d};
5 Fd = createFSMSADF(F, d);
6 if Fd is deadlock free then
7 Md = computeEMPA(Fd);
8 (Thr , C) = computeThrAndACriticalCycle(Md);

9 else
10 Gd = computeDDG(Fd);
11 Thr = 0; C = findACycle(Gd);

12 end
13 P = P ∪ {(d,Thr)};
14 U = getCriticalBuffers(C);
15 foreach u ∈ U do
16 d′ = copyDist(d);
17 d′(u) = d(u) + step(u);
18 I = I ∪ {d′};
19 end

20 until ∃(d,Thr)∈P [Thr = Thrmax ∧ @d′∈I [|d′| = |d|]];
21 P = removeNonOptimalDists(P );

Fdj deadlocks in scenario s, di has resolved any cycle in DDG of scenario s
in Fdj . To resolve a cycle in the DDG of Fdj , the capacity of at least one
buffer channel that its corresponding capacity channel is on the cycle, must

be increased. For every capacity channel
←−
b = cs(u) that the capacity of its

corresponding buffer must be increased, we have di(u) > dj(u).

The second lemma states that at least one of the critical buffers needs to
be increased to increase the throughput in a non-deadlocking SADF model
with a throughput which is less than the maximum achievable throughput.

Lemma 6.2. Given a storage distribution di with throughput Thr i, for any
storage distribution dj � di with throughput 0 < Thr j < Thr i, in any critical
cycle in the EMPA of Fdj there exists a buffer channel b = bs(u) for which,
di(u) > dj(u).

Proof. Since dj has a positive throughput, it is deadlock free and Fdj has an
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EMPA. Since Fdi has a higher throughput than Fdj , we can conclude that any
critical cycle in the EMPA of Fdj has been resolved in the EMPA of Fdi . To
resolve a critical cycle in the EMPA of Fdj the capacity of at least one buffer
channel on the critical cycle must be increased. Note that any critical cycle in
the EMPA of Fdj contains at least one edge with a non-empty set of buffers
channels (otherwise Thr j would be maximal, contradicting Thr j < Thr i). For
every buffer channel b = bs(u) the capacity of which must be increased, we
have di(u) > dj(u).

The third lemma states that from a given distribution, Algorithm 4 explores
at least one distribution which might have a higher throughput compared to
the throughput of the given distribution. Later we use this lemma to prove that
from a given distribution, all distributions which may increase the throughput
are explored by Algorithm 4.

Lemma 6.3. Consider a storage distribution di with throughput Thr i and
a storage distribution dj such that dj � di with throughput Thr j < Thr i.
From dj, Algorithm 4 explores a storage distribution dk for which dj � dk �
di, |dj | < |dk| and Thr j ≤ Thrk ≤ Thr i.

Proof. If Fdj deadlocks, according to Lemma 6.1 and, if it is deadlock free,
according to Lemma 6.2, there exists a buffer u in the set U of critical buffers
such that di(u) > dj(u). Therefore, the capacity of u in dj can be increased
before the capacity of u becomes equal to the capacity of u in di. Since u
is critical, Algorithm 4 increases the capacity of u which results in a new
distribution dk. As the capacity of u is increased but not beyond its capacity
in di, it holds that dj � dk � di and |dj | < |dk|. From the monotonicity
property it holds that Thr j ≤ Thrk ≤ Thr i.

Theorem 6.1. Algorithm 4 obtains all minimal storage distributions in P .

Proof. Let di be a minimal storage distribution with throughput Thr i. We
show that the algorithm explores di starting from any distribution dj � di
already explored by the algorithm. We show by strong induction that di is
explored from any dj , such that |di| − |dj | = n for any non-negative integer
n. The base case, n = 0, is trivial, because |di| = |dj | and dj � di means
that di = dj , i.e., di is explored. Now let’s assume di is explored from any
explored dj such that |di| − |dj | = k and 0 ≤ k ≤ n. We need to show that
the algorithm also explores di from any explored distribution dj such that
|di|−|dj | = n+1. Lemma 6.3 states that from a distribution dj , a distribution
dk � dj is explored such that |dk| > |dj |. According to the algorithm, dk is
generated from dj by increasing the capacity of at least one buffer by a step of
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Table 6.1: Experimental results on SADF models

WLAN MP3 Decoder SUSAN Figure 6.5

nrBuffers 8 46 4 2

nrParetoPoints 2 3 7 6
nrMinDist 2 3 7 6
nrVisitedDist 3 32 12 10

maxThr(×10−4) 2.5 0.0017 0.066 830
distSizeMaxThr 10 179 20 21

minPosThr(×10−4) 2.4 0.0016 0.012 5.80
distSizeMinThr 8 172 8 14

RunTime Alg. 4 3ms 4559ms 11ms 19ms

some size s. Therefore |dk| − |dj | = s. By comparing |di| and |dk| we conclude
that |di| − |dk| = n + 1 − s. Since s ≥ 1, n + 1 − s ≤ n and, according to
induction hypothesis, dk is explored by the algorithm. Since di is explored
from dk, and dk is explored from dj , we conclude that di is explored from dj .
The algorithm starts from the zero distribution. Since 〈0, · · · , 0〉 � di for any
di, the algorithm explores any minimal distribution di.

6.5 Evaluation

We implemented Algorithm 3 and Algorithm 4 in the SDF3 tool [65]. We ap-
plied Algorithm 4 to SADF models of several realistic applications. The set of
SADF application models contain models an MP3 decoder [55], an edge detec-
tion algorithm known as SUSAN [79] and a WLAN [55]. We also transformed
a set of SDF application models to SADF (the SADF contains a single scenario
that is defined as the set of actor firings in one iteration of the SDFG) to apply
our analysis and compare the results with the existing buffer sizing techniques.
The set of SDF applications include an H.263 decoder [29], a Modem [22], a
sample rate converter [22] and a satellite receiver [80].

The buffer sizing results for SADF and SDF models are shown in Tables 6.1
and 6.2, respectively. For every model, we report the number of sized buffers,
Pareto points, minimum distributions, visited storage distributions, the maxi-
mum and minimum positive throughput and the size of minimal distributions
for which the throughput numbers are obtained. We have excluded the trivial
zero storage distribution from the number of Pareto points, minimum distri-
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Table 6.2: Experimental results on SDF models

H.263 Decoder Modem Sample Rate Satellite

nrBuffers 3 35 10 48

nrParetoPoints 36 3 3 2
nrMinDist 146 3 3 2
nrVisitedDist 193 7 5 6

maxThr(×10−4) 0.03 620 10 7.5
distSizeMaxThr 1224 72 44 1586

minPosThr(×10−4) 0.015 320 9.2 9.4
distSizeMinThr 1189 70 42 1588

RunTime Alg. 4 1296s 74ms 545ms 419s
RunTime [29] 349ms 1ms 8ms 514ms

butions and visited storage distributions, as it is not an interesting design
point. Note that the number of minimal distributions might be more than the
number of Pareto points, as there might be distributions with the same size
but different configurations in a Pareto point. The run-time of Algorithm 4
is reported for all models. The run-times include all function calls in the al-
gorithm including the run-time of Algorithm 3, as it is called by Algorithm 4.
For SDF graphs, we compared the results of our buffer sizing algorithm with
the SDF buffer sizing method provided by Stuijk et al. [29]. We observed
that the results are identical. We also report the run-time of both algorithms
and observe that for the SDF graphs their algorithm is generally faster. All
run-times are measured on an Ubuntu server with a 3.8Ghz processor.

Observe that the run-time of Algorithm 4 is affected by a number of param-
eters. First, the input model should have a bounded throughput, otherwise,
its trade-off space is not finite and the algorithm does not terminate. If the
model deadlocks even with unbounded buffers, then the model is incorrect.
This case is detected at the first step of the algorithm, since it computes max
throughput, which will be 0. For all other cases the algorithm returns all
optimal distributions. The complexity analysis for those cases is as follows.

To compute the throughput of a distribution we first need to compute the
EMR of all scenarios. The time complexity of this step is O(|S| · |I|2 · |F |)
where |S|, |I| and |F | are the number of scenarios, initial tokens and actor
firings respectively. Since the distributions are modelled by adding initial
tokens on the capacity channels, computing the EMRs scales quadratically in
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the distribution size (the total number of added tokens equals the size of the
distribution).

The time complexity of an MCR analysis and obtaining a critical cycle
(Karp [69]) on a MPA is O(|R| · |E|), where |R| and |E| are the number of
nodes and edges of the MPA. The MPA of an Fd by definition has a number
of nodes |R| = |W |× |I| and edges |E| = |S|× |I|2, where |W | is the number of
FSM states. Consequently, MCR analysis has a cubic time complexity in the
size of the distribution. Therefore computing the throughput of distribution
has a worst-case cubic complexity in the size of the distribution. The results
confirm that the analysis time is longer for the models with larger distributions
compared to the models with smaller distributions.

6.6 Related Work

The problem of finding the minimum buffer requirements to execute an SDF
with the maximum, minimum or a given throughput has been addressed in a
number of works [81][82][29]. Hwang et al. [81] and Govindarajan et al. [82]
formalize the maximum throughput version of the question as a linear pro-
gramming problem. The formalization provided by Hwang et al. [81] consider
time-constrained and resource-constrained schedules and it is applicable to
acyclic SDF only. Govindarajan et al. [82] provide a heuristic approach to
solve the problem for SDF, as the problem is NP-complete [76]. The approach
taken by Stuijk et al. [29] is based on a DSE. Their approach finds all trade-offs
(Pareto points) in the space of throughput-buffer size using a guided explo-
ration rather than an exhaustive exploration. The exploration is narrowed
down to the buffers that create the so-called storage dependencies while the
SDF is executing with a certain throughput.

Buffer minimization techniques for CSDF graphs are presented in several
works [77][83][84][29]. Denolf et al. [83] present an approach to find the min-
imum buffers required to execute a CSDF graph with a periodic schedule.
However, there is no guarantee that another schedule that realizes the same
throughput with smaller buffer requirements does not exist. A heuristic al-
gorithm given by Wiggers et al. [77] minimizes buffer usage under a given
throughput. Bodin et al. [84] provide a linear programming formalization of
the minimum buffer requirements under a throughput constraint. The authors
give an algorithm to solve the problem approximately.

Our work extends the exact throughput-buffering trade-off analysis for SDF
and CSDF provided by Stuijk et al. [29] to SADF models. We use a guided
exploration of the design space by identifying critical buffers, similar to the so-
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called storage dependencies identified from the state-space of the SDF/CSDF
execution [29]. In this chapter, we provided a method of identifying critical
buffers for SADF models. This method enables the application of the existing
SDF and CSDF heuristic buffer sizing approaches such as the method given
by Hendriks et al. [78], to SADF models.

It is worthwhile to mention that the trade-off analysis of Stuijk et al. [29]
is not directly applicable to SADF models. Even though every scenario can
be separately sized for its buffers using the SDF techniques, the results will
be useful only in a corner case where the scenarios do not share any actors
or buffers. For instance, if the I and P-frame decoding tasks in the MPEG-4
decoder are implemented as two separate applications. This is often not the
case, because it increases the resource usage and reduces the maintainability
of the application. Dynamic reading and writing patterns on buffers lead to
different requirements compared to the strictly regular patterns occurring in
SDF.

6.7 Conclusion

For real-time streaming applications on multi-processor systems, there is a
trade-off between the amount of allocated storage space to the application
and the throughput of the application. A complicated design problem is to
find the minimal capacity requirements for buffers to execute an application
under a given throughput constraint. To formalize the problem, a suitable
model of computation is needed to mathematically describe the application.
Nowadays, applications are dynamic, meaning that their behaviour changes at
run-time. SADF is a suitable model for dynamic applications. In this chapter
we provided a technique to find all optimal throughput-storage space trade-offs
for applications using SADF models. The analysis performs a guided design
space exploration that cuts-off the exploration space during the exploration
without losing any optimal points and consequently, terminates in a reasonably
short time. We showed that our method is practical by applying it to a number
of realistic application models.



Chapter 7

Timing Bounds on the
Worst-Case Execution

Minimizing resource usage is an important challenge when we want to run mul-
tiple applications on a single multi-processor system. In the previous chapter
we provided a method to obtain the minimum storage space to run an appli-
cation represented by an SADF model under a given throughput constraint.
In this chapter we find the minimum time budgets on shared resources to run
an application under the given throughput constraint. This requires an analy-
sis method to estimate the throughput of the application, given the allocated
processor budgets.

In this chapter we present an analysis method that provides tight and
conservative timing bounds for SDF scenarios that are running on shared re-
sources. We consider the resource sharing effects on the timing behaviour of
the application by using an augmented symbolic simulation, where we em-
bed worst-case resource availability curves in the symbolic simulation of the
application model. Such simulation results in a state matrix that bounds
the worst-case execution of the application on the shared resources. We ob-
tain tighter timing bounds on the completion times of tasks than the state
of the art analysis. This is achieved by improving the upper bounds on the
response times of the tasks by identifying the busy periods of the resources.
This enables us to use accumulated response times which are less pessimistic.
Applying the proposed approach to models of realistic applications improves
the timing bounds compared to the state of the art.

This chapter is organized as follows. Section 7.1 provides a brief introduc-
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tion to the subject of this chapter. Section 7.2 gives the required background
on the worst-case timing bounds obtained for application scenarios running
on shared processors. Tighter timing bounds for such scenarios are obtained
in Section 7.3. The results obtained from realistic case studies are reported
and discussed in Section 7.4. The related work is discussed in Section 7.5.
Section 7.6 concludes the chapter. This chapter is based on publication [43].

7.1 Introduction

Nowadays multiple real-time streaming applications are being realized on a
single multi-processor system and share resources. One of the most impor-
tant steps in designing embedded applications on shared systems is allocating
enough resources to the applications to guarantee their real-time constraints.
Often resource allocation strategies have an iterative process in which they
initially allocate resources, they subsequently analyse the timing behaviour
of the application and then adjust resource allocation parameters based on
the analysis results [85]. The timing analysis is one of the core parts of such
strategies and since it is a part of an iterative process, it should be fast enough
to make the whole allocation process practical. Sharing resources introduces
uncertainties (non-determinism) to the timing behaviour of the applications
depending on the scheduling policy. For example when sharing a resource by
Time Division Multiple Access (TDMA) arbitration, clock drifts cause un-
certainties in the relative position of the allocated time slots which in turn
causes uncertainties in the completion times of the tasks. To guarantee that
the allocated resources make an application meet its constraints, we need to
obtain conservative, but tight, timing bounds on the worst-case behaviour of
the system (taking into account the uncertainties) in a reasonable time. We
need the bounds to be tight to avoid over-allocation of resources.

In our setting, the application is realized on a multi-processor system of
which the processors are being shared among several applications. Consider
the SDF scenario shown in Figure 7.1. This scenario is running on a multi-
processor system with two processors, namely P1 and P2. As shown in the
figure, in this system, actors Q and R are executed by P1 and actor P is exe-
cuted by P2. We use a static order schedule to determine the order of actor
executions on a processor. A static order schedule is a finite sequence of actors
that shows the execution order of actor firings that are running on the same
processor. The static order schedules for the example application are given in
the table of Figure 7.1. The schedule for P1 contains only one execution of
actor P, and the schedule for P2 executes the actor sequence RQR. We assume
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z
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P2 P1

Reps: [P,Q,R] 7→ [1, 1, 2]

ITs: c1(x), c2(y),←−c2(z)

FTs: c1(x), c2(y),←−c2(z)

Reward: 1

Sch.: [RQR,P] 7→ [P1, P2]

Figure 7.1: An example SDF scenario running on a two-processor system.

the communication delay between actors on the same processor is negligible.
The communication delay between the actors executing on different processors
can be modelled. For example, a point-to-point connection with a fixed com-
munication delay can be modelled by adding an actor with suitable execution
time between the communicating actors. More complex communication mod-
els such as a network-on-chip connection model given by Moonen et al. [86] can
also be considered. In the example, for simplicity, we do not consider com-
munication delays between actors executing on different processors, as they
complicate the scenario graph.

We assume the processors are shared by budget schedulers to have an in-
dependent bound for each application [87]. A budget scheduler guarantees
the application a minimum amount of budget (processing time) over a peri-
odic time frame called the replenishment interval. Note that such a scheduler
requires a system that supports the preemption of task executions. The chal-
lenge is that in this setting the exact completion times of actor firings cannot
be determined because the precise state of the scheduler is not known when an
actor is able to start its execution. For example, an actor might be enabled at
a time instant where the whole budget allocated to the application has already
been used for the current replenishment interval, and the task has to wait for
the next replenishment interval (worst-case), or the actor might immediately
start executing when it is enabled at the start of the allocated budget (best-
case). Although it is possible to obtain conservative timing bounds using the
worst-case completion times for all task executions separately, the obtained
bounds are too pessimistic as shown by Siyoum et al. [88].

In this chapter, we adapt the symbolic simulation method introduced in
Section 2.7.1 to extract the worst-case timing bounds, in the form of state
matrices, for scenarios running on shared multi-processor systems. To obtain
tighter bounds, we exploit two techniques. First, we use the aggregation of
actor firings. When the firing of an actor a1 enables a firing of actor a2 on the
same processor, the worst-case completion time assumption can be avoided for



124 CHAPTER 7. TIMING BOUNDS ON THE WC EXECUTION

the firing of a2. In the worst-case, the completion time of a2 is equal to the
completion time of an aggregate actor that is enabled at the same time as a1

and has an execution time equal to the sum of the execution times of a1 and
a2. This techniques is already applied by Siyoum et al. [88] for dataflow and
generally for real-time response time analysis.

The second technique is a contribution of this chapter. We compute the
completion time of an actor firing, separately per dependency of the firing. In
this way, per dependency we can decide whether we can use the first technique
or we are forced to use the worst-case assumption. For instance, in Figure 7.1
we compute the completion time of actor Q considering the following dependen-
cies, separately: the availability of tokens x and z, and the completion of the
firing of R. We show that with the availability of x and y we are forced to use
the worst-case assumption to be conservative, however, with the completion
of the firing of actor R, we can use the first technique. In the earlier work [88],
such a decision is made once, considering worst-case among all dependencies.
For instance, for the firing of Q, it considers the worst-case assumption for all
dependencies. We show that our technique improves the upper bounds on the
completion times of actor firings, and consequently, results in a tighter timing
bound.

7.2 Worst-Case Timing Bounds

7.2.1 Worst-Case Response Times

As mentioned in the previous section, the order in which the actors of an ap-
plication get access to a processor is determined by a static order schedule.
Therefore, the order of actor firings in applications can be tracked on proces-
sors. Assume a processor executes an actor a2 after executing an actor a1.
Actor a2 can start firing if the processor has completed the firing of actor a1

and the tokens required by the firing of actor a2 are available. Hence, the
Earliest Start Time (EST) of the firing of actor a2 is equal to the latest of the
following events: the processor completes the firing of actor a1 and all required
tokens for the firing of a2 are available. Note that the firing of a2 may not be
able to start at its EST, because the scheduler may be processing other appli-
cations at that particular time instant. For instance, when the firing of a1 has
used all the budget allocated to the application in the current replenishment
interval, a2 has to wait for the allocated budget in the next replenishment
interval, before it can actually start.

Let āP (k) denote the kth actor that has access to P according to a given
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static order schedule āP . Let tuple (P, k) denote firing k on processor P which
corresponds to actor a = āP (k). From the time (P, k) starts, it requires e(a)
units of processing time to be completed where e(a) is the execution time of
actor a. Since preemption may occur in the system, the actor completes its
firing when the sum of the processing time that it gets after its EST, exceeds
e(a). The total time it takes for an actor to complete its firing after its EST,
is called the response time of the firing. Let s(P, k) denote the EST of firing
(P, k), and ω(a) denote the Worst-Case Response Time (WCRT) of actor a.
We associate a WCRT with an actor (instead of a firing), because later we
see that it only depends on the execution time of the actor. An upper bound
c(P, k) on the completion time of firing (P, k) is calculated as follows.

c(P, k) = s(P, k) + ω(āP (k)) (7.1)

To calculate ω(āP (k)), we have to find the minimum amount of time that
guarantees the application, e(āP (k)) units of processing time on processor P .
Consider processor P1 in Figure 7.1, shared by the TDMA shown in Figure 7.2.
In this TDMA, the green slots are allocated to the application shown in Fig-
ure 7.1. Now consider the first firing on processor P1, i.e., (P1, 1) which is
of actor R, with e(R) = 1. The worst-case alignment of EST with TDMA
schedule, with respect to the positioning of the allocated slots is depicted in
the same figure. In this situation, the actor has to wait 4 time units to start
processing at the next allocated slot; hence, ω(R) = 5 and in the worst-case
it will completely be processed at c(P1, 1) = s(P1, 1) + 5. This means that 5
time units is the smallest amount of time that guarantees the application, 1
unit of processing time using the TDMA in Figure 7.2, assuming the TDMA
schedule is not synchronized with the execution of the application.

To compute the WCRTs of actors, we use the notion of WCRC [88]. A
WCRC is a function ζ(δ) that specifies the minimum amount of processing
time allocated to the application in any time interval of length δ [88]. For a
TDMA scheduler for example, the WCRC has a periodic behaviour of length
w, where w is the size of the time wheel, i.e., ζ(δ + w) = ζ(δ) + ∆ for some
constant ∆. The WCRC of the TDMA arbitration in Figure 7.2 is shown in
the same figure. This figure allows us to determine the WCRC of a firing as
the earliest time that the processor dedicates the required processing time to
the actor. The WCRT of a firing actor can be obtained from the WCRC of
the processor as follows.

ω(a) = inf{δ ∈ R+ | ζ(δ) ≥ e(a)} (7.2)

For instance, actors with execution times of 1, 2 and 3 time units have WCRTs
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Figure 7.2: A TDMA and its corresponding Worst-Case Resource Curve
(WCRC) used for processor P1. Only the green-coloured slots are allocated to
the application.

of 5, 7 and 8 time units, respectively, as illustrated by the blue arrows in the
figure.

7.2.2 The State Matrix With Worst-Case Response
Times

In Section 2.7.1 we explained the computation of the state matrix for the
self-timed execution of a scenario. In a self-timed execution, actors fire as
soon as they are enabled. This section illustrates the computation of the state
matrix for a scenario that is running on shared processors. We use a symbolic
simulation to obtain the state matrix as we did for the self-timed execution.
The firing semantics in this case are different from the semantics in the self-
timed execution in three ways. First, actor firings that are executed on the
same processor are ordered by static order schedules. Second, they start only
if the processor that executes their corresponding actors is available. Third,
the WCRTs are used instead of the actor execution times.

To illustrate, consider the scenario shown in Figure 7.1. Let’s assume P1

is shared by the TDMA allocation shown in Figure 7.2, and P2 is shared by
another TDMA shown in Figure 7.3. Using the WCRCs of theses TDMAs, we
obtain ω(R) = ω(Q) = 5 and ω(P) = 2. Let tx, ty, tz denote the time-stamps of
the initial tokens labelled x, y, z in Figure 7.1, respectively. Further let tP1 and
tP2 denote the initial availability times of processors P1 and P2, respectively.
In the following, we compute upper bounds for the symbolic completion times
(see Section 3.3) of the firings involved in the scenario.

To apply the availability of the processors in the symbolic execution, we
consider the worst-case availability times of the processors as new elements



7.2. WORST-CASE TIMING BOUNDS 127

ζ (δ)

δ

1

2

3

s(P ,1)

c(P ,1)

2

2

Figure 7.3: The TDMA scheduler used on Processor P2 and its corresponding
WCRC

in the state vector. We consider the state vector [ tx ty tz tP1
tP2 ]T .

Actor P is the first actor in the static schedule of P2. This actor is not enabled
initially because it does not have enough tokens on channel←−c1 . The first firing
on P1, i.e., (P1, 1), is a firing of R. This firing is dependent on the availability
of token y and processor P1. Therefore, the symbolic time-stamp vector of its
EST is computed as

s(P1, 1) =


−∞

0
−∞
−∞
−∞


T

⊕


−∞
−∞
−∞

0
−∞


T

=


−∞

0
−∞

0
−∞


T

.

By adding the WCRT of actor R to s(P1, 1), we obtain an upper bound on the
symbolic completion time of the first firing on processor P1 as follows.

c(P1, 1) = s(P1, 1) + ω(R) =


−∞

0
−∞

0
−∞


T

+ 5 =


5
−∞
−∞

5
−∞


T

.

By the completion of this firing, a token is produced on channel ←−c2 and P1

becomes available again. The availability of P1, the token produced on ←−c2
and tokens x and z are required for the second firing on P1 which is of Q.
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Therefore, the symbolic EST of this firings is computed as follows.

s(P1, 2) =


−∞

5
−∞

5
−∞


T

⊕


−∞

5
−∞

5
−∞


T

⊕


0
−∞
−∞
−∞
−∞


T

⊕


−∞
−∞

0
−∞
−∞


T

=


0
5
0
5
−∞


T

Consequently, we can compute the following upper bound for the symbolic
completion time of the second firing on P1 as follows.

c(P1, 2) = s(P1, 2) + ω(Q) =


0
5
0
5
−∞


T

+ 5 =


5
10
5
10
−∞


T

The completion of this firing produces a token on channel ←−c1 and makes P1

available again. Now, P is enabled, and R is enabled for the second time. Firing
(P2, 1) is of P and requires the availability of P2 and the token produced on
channel ←−c1 by Q. Thus, it completes at

c(P2, 1) = s(P2, 1) + ω(P) =




5
10
5
10
−∞


T

⊕


−∞
−∞
−∞
−∞

0


T+ 2 =


7
12
7
12
2


T

.

Finally, an upper bound on the symbolic completion time of the third firing
on P1 is computed as follows.

c(P1, 3) = s(P1, 3) + ω(R) =




5
10
5
10
−∞


T

⊕


5
10
5
10
−∞


T+ 5 =


10
15
10
15
−∞


T

After symbolically simulating all actor firings in the scenario, we can com-
pute the state matrix by collecting the symbolic time-stamp vectors of the
final tokens and the latest symbolic availability times of the processors in a
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matrix as follows.
t′x
t′y
t′z
t′P1

t′P2

 =


7 12 7 12 2
5 10 5 10 −∞
10 15 10 15 −∞
10 15 10 15 −∞
7 12 7 12 2




tx
ty
tz
tP1

tP2


Using the state matrix above, the lower bound on the throughput of an

application that repeatedly executes the scenario shown in Figure 7.1, can be
computed as 1/15. In the remainder of this section we present an existing
technique [88] to obtain an even tighter, i.e., less conservative lower bound
compared to the bound computed above.

7.2.3 Accumulated Worst-Case Response Times

As explained, using WCRCs to find the response times of the firings assumes
the longest waiting times for actors, i.e., it always starts from the beginning
of the WCRC, where the processor is not allocated to the application. It is
well known that this assumption can be avoided for time intervals in which we
can ensure the processor will be kept busy within those time intervals. Such
time intervals are called the busy periods of the processors [89]. Within a busy
period, the first firing can be assumed to start from the beginning of the curve
and the subsequent firings that follow, continue on the same curve because
they can start as soon as the processor completes the previous firing. One way
to be sure that the processor is kept busy is when a sequence of consecutive
firings are started. A sequence of firings is said to be consecutive if we know
that for each of its firings, the EST is no later than the completion of the
previous firing.

Definition 7.1. A sequence f̄ = (P, k), · · · , (P, k + n) of firings is said to be
consecutive if the earliest start time of firing (P, i) is guaranteed to be at most
the completion time of firing (P, i− 1) for k + 1 ≤ i ≤ k + n.

Consider again the three firings on processor P1. Observe that the location
of the initial tokens are such that as soon as the first firing of R completes, Q
is able to start, and as soon as Q completes, R becomes able to start its second
firing, i.e., s(P1, i) = c(P1, i− 1) for i = 2, 3. Considering the WCRC shown in
Figure 7.2, the first firing starts from the beginning of the curve. The second
firing can start at the same time as the first firing completes. Therefore, it
starts from the point on the curve where (P1, 1) completed, and hence it holds
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that c(P1, 2) = s(P1, 1) + 7. Similarly, the third firing also continues the same
curve and c(P1, 3) = s(P1, 1) + 8 as shown in Figure 7.2. Note that if we fail
to exploit the fact that these firings are consecutive, we obtain the pessimistic
upper bound of 15 time units, given that Eq. 7.2 returns the WCRT of 5 time
units for all three actor firings and the sum of the WCRTs equal to 15 time
units.

From the example, one can realize that the completion time of firings within
a sequence of consecutive firings are computed from the EST of the first firing
and the WCRT for a task with the same execution time as the sum of the
execution times of the individual actor firings. We adapt Eq. 7.1 and Eq. 7.2
to obtain tight upper bounds for the completion times of firings in busy pe-
riods. Consider a sequence f̄ = (P, k), · · · , (P, k + n) of consecutive firings.
Let āP (k, k + i) denote the sequence of actors corresponding to the sequence
(P, k), · · · , (P, k + i) of firings for 0 ≤ i ≤ n. An upper bound on the com-
pletion time of firing (P, k + i), can be calculated by adding the accumulated
worst-case response time, ω(āP (k, k + i)), to the EST, s(P, k) of the first firing
in the sequence, as follows.

c(P, k + i) = s(P, k) + ω(āP (k, k + i)) (7.3)

The accumulated worst-case response time ω(āP (k, k + i)), is equal to the
WCRT of an execution time equal to the sum of execution times of the cor-
responding actors of the firings in āP (k, k + i). ω(āP (k, k + i)) is defined as
follows.

ω(āP (k, k + i)) = inf{δ ∈ R+ | ζ(δ) ≥
k+i∑
l=k

e(āP (l))} (7.4)

Using the above equation on the consecutive sequence RQR, we obtain
ω(R) = 5, ω(RQ) = 7 and ω(RQR) = 8. In the following we show how
accumulated worst-case response times can be used in the symbolic simulation
to obtain a less conservative state matrix for the example scenario, compared
to the one obtained in Section 7.2.2.

7.2.4 Symbolic Simulation With Accumulated Worst-
Case Response Times

Siyoum et al. [88] developed an approach to provide tighter upper bounds on
the symbolic completion times of firings. This approach sets up a condition
to identify consecutive firings on the processors symbolically to avoid using
WCRTs for every individual firing. To calculate the symbolic completion time
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upper bound of a firing, the authors initially assume that it will start a new
sequence of consecutive firings on the processor. If the symbolic EST of the
next firing is not greater than the symbolic completion time upper bound of
the firing, i.e., s(P, k + 1) ≤ c(P, k), then the next firing is appended to the se-
quence of consecutive firings. Then, the accumulated worst-case response time
can be used to calculate its completion time upper bound based on Eq. 7.3.
Otherwise, it is assumed to start a new sequence of consecutive firings and
therefore, its completion time is calculated by Eq. 7.1.

In Figure 7.1, the first firing of actor R starts a sequence of con-
secutive firings on P1. According to the symbolic simulation per-
formed in Section 7.2.2, s(P1, 1) = [ −∞ 0 −∞ 0 −∞ ], and
c(P1, 1) = [ −∞ 5 −∞ 5 −∞ ]. Moreover, s(P1, 2) is computed as
[ 0 5 0 5 −∞ ]. Note that s(P1, 2) has additional dependencies on ini-
tial tokens. Hence, it cannot be guaranteed to be consecutive. This is recog-
nized by the condition that does not hold in this case, i.e.,

s(P1, 2) = [ 0 5 0 5 −∞ ] � c(P1, 1) = [ −∞ 5 −∞ 5 −∞ ].

As the condition is not satisfied, the second firing on P1 starts a new se-
quence of consecutive firings and completes at c(P1, 2) = s(P1, 2) + ω(Q) =
[ 0 5 0 5 −∞ ] + 5 = [ 5 10 5 10 −∞ ]. The third firing on P1

starts at s(P1, 3) = [ 5 10 5 10 −∞ ]. Since s(P1, 3) ≤ c(P1, 2), the
firings are consecutive and the completion of the third firing is calculated
using Eq. 7.3. Therefore, for this firing, c(P1, 3) = s(P1, 2) + ω(QR) =
[ 0 5 0 5 −∞ ] + 7 = [ 7 12 7 12 −∞ ], which is a tighter upper
bound compare to the bound computed in Section 7.2.2. With the symbolic
completion times as computed above we obtain the following state matrix.

t′x
t′y
t′z
t′P1

t′P2

 =


7 12 7 12 2
5 10 5 10 −∞
7 12 7 12 −∞
7 12 7 12 −∞
7 12 7 12 2




tx
ty
tz
tP1

tP2


Using the above state matrix, we can compute the throughput lower bound

of 1/12 for an application that repeatedly executes the scenario shown in
Figure 7.1. Observe that the throughput lower bound computed from the
worst-case accumulated response times is less pessimistic than the throughput
lower bound of 1/15 computed earlier using worst-case response times. In the
next section we propose a new technique to obtain an even tighter lower bound
compared to the bounds obtained in this section, using the existing techniques.
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7.3 Tighter Worst-Case Timing Bounds

In this section we improve the symbolic simulation introduced in the pre-
vious section to obtain state matrices that are still conservative but even
less pessimistic. Our symbolic simulation is based on a new method for
symbolic identification of consecutive firings. We show that the condition
s(P, k + 1) ≤ c(P, k) is too restrictive. It requires all elements of s(P, k + 1)
not to be greater than c(P, k). When this condition is not satisfied, the WCRT
is used according to Eq. 7.1. We show that this often creates overly pessimistic
dependency relations between the availability times of the tokens/processors
and the completion times of the firings. For example, recall that from the
results of Section 7.2.4,

s(P1, 2) =


0
5
0
5
−∞


T

� c(P1, 1) =


−∞

5
−∞

5
−∞


T

.

Note that the entries with the value of 0 in s(P1, 2) correspond to the initial
tokens x and z, which are consumed by firing (P1, 2). This means that at least
every time an initial token is consumed by actors, this condition is not met.
Therefore, for such cases we always have to use Eq. 7.1. In this example, it
leads to the upper bound

c(P1, 2) =


0
5
0
5
−∞

+ 5 =


5
10
5
10
−∞

 .
To understand why this upper bound is pessimistic, we need to take a look

at the meaning behind every individual element of the symbolic time-stamp
t = gT t = maxi(ti+gi). According to the definition, if of all limiting factors of
t, tj is the actual limiting factor, i.e., j = argmax(tj + gj), gj is the maximum
time difference between t and tj . Therefore, the maximum time difference
between c(P1, 2), computed above, and ty, is equal to the second element of
c(P1, 2), i.e., 10, if we know that the availability of y is limiting the completion
of (P1, 2). However, this is too pessimistic, because in case y is indeed the
limiting factor, then (P1, 2) will immediately start when (P1, 1) completes;
we can conclude that in this situation, (P1, 1) and (P1, 2) are consecutive.
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Therefore, the maximum time difference between ty and (P1, 2) cannot be
more than the accumulated response time of ω(RQ) = 7. However, if tz or tx
is the limiting factor, then the maximum time difference between tx and (P1, 2)
or tz and (P1, 2) can be at most the WCRT of ω(Q) = 5. This means that the
symbolic completion time of (P1, 2) is bounded by [ 5 7 5 7 −∞ ]. To
avoid pessimistic upper bounds on the symbolic completion times, we propose
to compute them with respect to each limiting factor ti, separately.

To find the maximum time differences between the completion times of
firings and all ti separately, we have to find the firing dependencies for all
the firings in the scenario. This enables us to separately capture all possible
dependency paths that connect the completion times of firings to all ti. Then,
for each dependency path we can separately determine which firings are con-
secutive in it. To do so, we first find all firings on which the start of a firing
directly depends, namely the firings that produce a token consumed by the
firing as well as the firing that precedes it in the static order schedule on the
processor.

Definition 7.2. The dependency set D(P,k) comprises the firings the comple-
tions of which are required for (P, k) to start, i.e., D(P,k) = {(P ′, k′) | (P, k)
consumes a token produced by (P ′, k′)} ∪ {(P, k − 1)}.

Note that the first firing on the processor, i.e., (P, 1) is dependent on the
initial availability of P which we denote by (P, 0), as if it would become avail-
able after the completion of firing 0 on P . In addition, to be able to represent
the dependency on the availability of initial tokens, we represent them as if
they were produced by completion of firings with negative indices on an arbi-
trary processor, i.e., (P, k) with k < 0. The firings with non positive indices
are referred to as initial dependencies.

During symbolic simulation, for each token that is produced by firings, in
addition to the symbolic time-stamp that shows its production time, we add
extra information regarding the firing that produced them. By keeping track of
the tokens produced and consumed by firings, we can extract the dependency
sets of actor firings. Figure 7.4 shows the dependency graph associated with
the execution of the scenario shown in Figure 7.1. The dependency graph
is the graphical representation of the dependency sets of all actor firings in
the scenario. In this graph, the nodes represent the firings. A directed edge
from (P ′, k′) to (P, k) indicates that (P, k) is dependent on (P ′, k′). The black
edges indicate the firing dependencies on the same processor and the red edges
indicate the dependencies on different processors. For the sake of readability,
the initial dependencies are given their own names instead of firings with non
positive indices.
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Figure 7.4: The dependency graph of the scenario shown in Figure 7.1.

Using the dependency graph we can track the dependencies of each firing
back to the initial dependencies and separately compute the time difference
between them. The key point is that if two nodes are connected only by black
edges, then the time difference between them is equal to the accumulated
worst-case response times of all firings between them including the last node.
For example, the time difference between (P1, 3) and ty (node y in the figure)
is equal to ω(RQR) = 8 (which is less pessimistic compared to 12 obtained
by the method of Siyoum et al. [88]). If the connecting path contains red
edges, we have to separate the path on the red edges, as a consecutive firing
can be guaranteed only on a single processor (we assume TDMA arbitrations
in processors are not guaranteed to be synchronized with each other). For
each separate piece of the path, we compute the accumulated response times.
Finally, the response time is equal to the sum of all computed accumulated
response times. For example, the time difference between (P2, 1) and ty is
equal to ω(RQ) + ω(P) = 7 + 2 = 9. If there is more than one path between
two nodes (which does not occur in our example), then the time difference is
equal to the maximum of time differences in all paths. As an example, using
our method, c(P2, 1) is computed as follows.

c(P2, 1) =


ω(Q)
ω(RQ)
ω(Q)
ω(RQ)
−∞


T

+ ω(P) =


5
7
5
7
−∞


T

+ 2 =


7
9
7
9
2


T

Using the proposed method the state matrix of the scenario in Figure 7.1
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ALGORITHM 5: Compute the state matrix of an SDF scenario
that is running on a multi-processor system

Input: A scenario s running on a set Π of processors, and WCRCs ζP and
static order schedules āP for every processor P in Π

Output: The state matrix Gs

1 D ← ∅;
2 Φ← initialDependencies(s);
3 r′ ← r(s);
4 repeat
5 a← getNextActor(s, āP );
6 P ← getProcessor(s, a);
7 k ← incrementFiringCounter(P );
8 D(P,k) ← computeDependencySet(P, k);
9 D ← D ∪ {D(P,k)};

10 c(P, k) = computeSymbolicCompletionTime((P, k), D,Φ, a, ζP , s);
11 Φ← Φ ∪ {c(P, k)};
12 r′(a)← r′(a)− 1;

13 until r′ has no positive elements;
14 Gs ← collect the time-stamp vectors of final tokens and the latest processor

availability times from Φ;

is obtained as follows.
t′x
t′y
t′z
t′P1

t′P2

 =


7 9 7 9 2
5 7 5 7 −∞
7 8 7 8 −∞
7 8 7 8 −∞
7 9 7 9 2




tx
ty
tz
tP1

tP2


Using this state matrix a lower bound on the throughput of the application
is computed as 1/8, which is a tighter bound compared to the bound 1/12
obtained in Section 7.2.4.

Algorithm 5 sketches the construction of the state matrix based on separate
analysis per dependency for a given scenario s which is running on a set Π
of processors, where every processor P ∈ Π has a WCRC ζP . The algorithm
stores the dependency sets and completion times of all firings in sets D and
Φ, respectively. D and Φ are computed following a symbolic simulation of the
scenario. D is initially empty and Φ is initialized with the symbolic completion
times of initial dependencies (Lines 1,2). The repetition vector is copied to
r′ in Line 3. The algorithm picks actor a, such that a is an enabled actor



136 CHAPTER 7. TIMING BOUNDS ON THE WC EXECUTION

ALGORITHM 6: Compute an upper bound on symbolic completion
times of firings

1 procedure computeSymbolicCompletionTime((P, k), D,Φ, ā, ζP , āP , s);

2 c(P, k)← [ −∞ · · · −∞ ];
3 repeat
4 (P ′, k′)← pick a dependency from D(P,k);
5 if P ′ 6= P ∨ k′ ≤ 0 then
6 c(P ′, k′)← getCompletionTime((P ′, k′),Φ);
7 c̃(P, k)← c(P ′, k′) + getWorstCaseAccumulatedRT(ā, ζP , s);

8 else
9 ā← prepend āP (k′) to ā;

10 c̃(P, k)←
computeSymbolicCompletionTime((P ′, k′), D,Φ, ā, ζP , āP , s);

11 end
12 c(P, k) = c̃(P, k)⊕ c(P, k);
13 D(P,k) ← D(P,k) \ (P ′, k′);

14 until D(P,k) is empty ;
15 return c(P, k);

in the next position of the static order schedule of a processor (Line 5). The
processor which executes actor a is obtained from the scenario in Line 6. The
firing counter on this processor is incremented (Line 7). The dependency set
of the firing is constructed in Line 8 and added to D in Line 9. Line 10 calls
Algorithm 6 to compute the upper bound on the symbolic completion time of
(P, k), which is a firing of a. This algorithm computes the upper bounds by
constructing the dependency graph as follows. First, node (P, k) is created.
Then the dependency nodes of (P, k) are added to the graph by connecting the
nodes representing the firings in the dependency set D(P,k) to this node. Then,
the dependency nodes of the nodes in D(P,k) are added to the graph in a similar
way and so on. This process continues until all source nodes of the graph
(the ones without input edges) are either representing initial dependencies or
firings on other processors. Then, the symbolic completion time of the firing is
obtained by adding the maximum accumulated response times among all paths
that connect the source nodes to (P, k), to the symbolic completion times of
firings represented by source nodes. The calculated symbolic completion time
of the firing is added to the set of symbolic completion times Φ (Line 11). The
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repetition count of actor a in r′ is reduced by one in Line 12. Lines 5-12 are
repeated until vector r′ has no positive elements, i.e. all actor firings in the
scenario are completed. In Line 14, the algorithm constructs the state matrix
by obtaining the time-stamp vectors of final tokens and the latest processor
availability times from the completion times in Φ.

Algorithm 6 computes the upper bound on the symbolic completion time
of firing (P, k) in a recursive fashion from the completion times of its depen-
dencies. The inputs of this algorithm are: firing (P, k), set D of the stored
dependency sets, set Φ of all symbolic completion times of stored firings, se-
quence ā of actors that corresponds to the consecutive sequence of firings which
will be identified recursively by the algorithm (the first invocation always takes
the sequence that includes only the actor of firing (P, k)), the WCRCs of the
processors, the static order schedules āP and scenario s. Initially, the algo-
rithm assumes that c(P, k) completes at −∞, as it has not considered any
dependencies yet. Therefore, c(P, k) is set to a vector of an appropriate size
with all of its elements equal to −∞ (Line 2). The algorithm picks a depen-
dency from D(P,k) (Line 4). A symbolic completion time for (P, k) is computed
from this dependency as follows: if the dependency is either initial, i.e., (P ′, k′)
s.t. k′ ≤ 0 or from a different processor, i.e., (P ′, k′) s.t. P ′ 6= P , the sym-
bolic completion time from this dependency is calculated by adding ω(ā) to
the symbolic completion time of that dependency (Eq. 7.4) (Lines 6-7); if the
dependency is such that P ′ = P , then āP ′(k

′) is identified as a dependency
of āP (k) in the same processor, therefore, considering only this dependency,
āP ′(k

′)āP (k) is a consecutive sequence and āP ′(k
′) is prepended to ā (Line

9). Then, Algorithm 6 is invoked recursively for (P ′, k′) and new ā to obtain
the symbolic completion time from this dependency (Line 10). The symbolic
completion time of (P, k) is the maximum symbolic completion time computed
from all dependencies (Line 12). The algorithm terminates when the comple-
tion times from all dependencies in all invocations are computed.

7.4 Evaluation

We have implemented our timing analysis method in the SDF3 tool. We com-
pared throughput lower bounds obtained by our approach with the state of the
art analysis given by Siyoum et al. [88] for three realisitic applications: H.263
encoder, H.263 decoder and sample rate converter, all available in the SDF3
tool. For each application, we used SDF3 to realize it on a multi-processor
system with four processors such that the total work load is evenly distributed
between processors as much as possible. We set the replenishment intervals
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Figure 7.5: Average improvements in throughput lower bounds compared to
the results given by Siyoum et al. [88]

to 0.01 × Cf ≤ w ≤ 0.1 × Cf where Cf is the cycle time of the application
when all processors are fully allocated to the application. Large replenish-
ment intervals cause huge delays in execution of the application, which is not
desired; small replenishment intervals are less useful because of the context
switch overhead. Figure 7.5 shows the average relative improvements in the
throughput lower bounds of applications for different replenishment intervals
and allocated budgets. For each combination of replenishment interval and
allocated budget, state matrix is constructed by Algorithm 5. Then a lower
bound on throughput is computed by obtaining the (max,+) eigenvalue of
this matrix. As shown in the figure, the improvement ratio decreases when
the application gets smaller or larger processor shares. In these cases using
the accumulated worst-case response times does not have much improvements
over WCRTs. When the application share is too small, the response times of
tasks are very long, therefore the response time improvements which are in the
order of the time wheel size is relatively small. When the application share
is too big, then the penalty of assuming WCRTs is small, and therefore the
improvements are also small. The average analysis run-time for the mentioned
applications on a core i7, windows machine is 320 milliseconds which is 17%
longer compared to that state of the art [88]. The longer run-time is caused by
the calculation of the symbolic completion times per dependency separately,
rather than computing the worst-case once for all dependencies.
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7.5 Related Work

Analysing the timing behaviour of streaming applications is the subject of
many works. The analysis methods in different works depend on the model
considered for the application. As we are interested in data-driven execution,
we consider tasks models with data dependencies. We classify these models
into two different groups: single-rate and multi-rate. In the single-rate mod-
els all tasks have the same input and output rate which means that they all
produce and consume the same amount of data. However, multi-rate models
allow different tasks to have different rates. Representative works that use
single-rate models are [90, 91, 69, 92, 93]. Kim et al. [90] propose an analyti-
cal method to provide tight bounds for applications modelled by a set of task
graphs. The application of real-time calculus and minimum cycle mean analy-
sis to Homogeneous Synchronous DataFlow Graphs (HSDFG) are investigated
by Thiele et al. [91] and Karp et al. [69], respectively. HSDFG are a subset of
SDFG in which all tasks have the same rates. Nielsen et al. [93] address the
problem of finding the critical cycle of the concurrent systems modelled by an
extension of marked graphs, called signal graphs. Hulgaard et al. [92] provide
an algorithm to compute the exact bounds on the time separation of events for
cyclic directed graphs. Application of these approaches to multi-rate models
is also possible by converting these models to single-rate models. However,
we provide an analysis technique that can be directly applied to multi-rate
models. Applications that are multi-rate by nature, can be analysed more
accurately and faster if we use analysis techniques that can be directly applied
to multi-rate models.

There are several approaches that can be directly applied to multi-
rate applications realized on multi-processor systems. Wiggers et al. and
Lele et al. [94, 87] embed the behaviour of the scheduler into the SDFG model
of the application and use existing analysis methods for the self-timed execu-
tion of SDFG. These approaches result in an SDFG which is more complicated
than the model of the application itself. Consequently, it takes much time to
analyse [88]. Wiggers et al. [94] use latency-rate servers to model the resources.
This model gives pessimistic bounds, even for a sequence of consecutive firings.
The method of Lele et al. [87] improves the response times compared to [94]
by exploiting the fact that the completion times of consecutive iterations of
tasks scheduled using budget schedules display a cyclic pattern, as long as the
size of allocated slice and replenishment interval are rational numbers. The
authors construct a dataflow model that precisely models this cyclic pattern,
thus accurately mimicking the worst-case behaviour per iteration, rather than
generalizing over all iterations. However, for a range of combinations of re-
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plenishment interval and allocated budget sizes, the model is not scalable.
It requires additional conservative approximations to become scalable. This
results in poor estimations on the bounds [87]. Stuijk et al. [85] provide an
operational semantics for SDFG realized on deterministic shared resources.
Then, it uses explicit simulation of the resources to find the periodic phase.
The analysis time therefore is longer than the approaches that use a symbolic
analysis method [88, 31]. The tightness of the bounds obtained by explicit
simulation and symbolic simulation is similar but better than the method of
Wiggers et al. [94].

The work most related to ours done by Siyoum et al. [88]. The authors have
combined symbolic simulation in (max,+) algebra with worst-case resource
availability curves. Then, an approach is provided to improve the WCRT of
the tasks for consecutive task executions on the same resource by providing
a rule that allows symbolic identification of the consecutive executions. We
found that this rule is often too restrictive in the sense that it does not allow
the identification of consecutive executions when the task has dependencies
other than those from the previous tasks. In this chapter we provided an
alternative approach that more often identifies consecutive executions.

7.6 Conclusion

We have proposed an analysis technique that provides conservative, but tight
timing bounds for application scenarios running on shared resources. Our
approach uses WCRCs to obtain the WCRT of tasks and then uses them in
the symbolic simulation of the scenario. It results in a state matrix that mimics
the worst-case execution of the application. We obtain tighter bounds than
the state of the art by identifying consecutive firings on the processors. For
consecutive firings, we are able to use the accumulated worst-case response
times that are less pessimistic than worst-case response times per individual
task.



Chapter 8

Concluding Remarks

This chapter concludes the thesis. A summary of the main findings is presented
in Section 8.1. Section 8.2 contains suggestions for future research.

8.1 Conclusions

This thesis has focused on modelling and analysis of the timing behaviour of
dynamic real-time streaming applications. This section summarizes the main
conclusions. Chapters 1 and 2 are not discussed as they do not contain new
research material.

In Chapter 3, we first provided an approach to model (static or dynamic)
multi-scale applications by Scenario-Aware Dataflow (SADF) models. This
approach is based on the observation that the timing behaviour of multi-scale
applications follows a periodic pattern of smaller, static behaviours. This
pattern includes many repetitions of sub-patterns associated with finer scale
behaviours. By perceiving each distinctive, smaller behaviour as a scenario, the
behaviour of the application is described as a periodic sequence of scenarios,
some of which are repeated many times. The language of this sequence is
represented by a regular expression for compactness. We used this technique
to model two realistic real-time applications and showed that the throughput
analysis can be performed in a short amount of time for these models compared
to SDF and CSDF models.

Second, we provided an approach to quickly generate the execution traces of
SADF sequences, the language of which is represented by a regular expression.
We showed that using the regular expression representation, the execution

141



142 CHAPTER 8. CONCLUDING REMARKS

traces of a particular scenario within the sequence can be generated without
performing a detailed simulation of the sequence that is followed leading up
to that scenario. This method reduces the run-time of programs that generate
execution traces of multi-scale applications.

In Chapter 4, we provided a compositional approach for exact, worst-case
throughput and maximum latency analyses for SADF with regular expression
representation. We showed that the proposed throughput analysis for multi-
scale dataflow models scales better compared to the state of the art. The
latency analysis proposed in this thesis is the first exact latency method for
SADF models.

In Chapter 5, we provided a method to compose SADF models of cyclo-
static application modules to automatically generate SADF models for com-
plex applications that are composed of multiple cyclo-static modules. In the
core of our composition method, is an algorithm that, given the periodic sce-
nario sequences of the modules by regular expressions, generates a sequence
of composite scenarios in a compact regular expression representation. We
used this technique to generate SADF models of complex applications such as
multi-resolution filters from the models of its constituent modules in a short
time.

In Chapter 6, we provided the first throughput-buffering trade-off analysis
for applications whose behaviour is captured by SADF models. We developed
a guided design-space exploration to obtain the trade-offs. The exploration
space is pruned without losing any optimal points as the exploration continues.
This is achieved by a novel throughput computation method that identifies the
buffers that limit the throughput. The exploration continues only on these
buffers, and consequently, the analysis is terminated in a reasonably short
time. We applied our analysis on SADF models of several applications and
obtained the optimal trade-off points in a short amount of time.

In Chapter 7, we provided an analysis method to obtain conservative,
but tight timing bounds for application scenarios running on shared multi-
processor systems. Such analysis method is often used in iterative design
schemes to find required processor shares for all applications that are running
on the same multi-processor system. We obtain tighter bounds with respect
to the state of the art by finding less conservative, but still guaranteed upper
bounds on the response times of application tasks that are executed on the pro-
cessors. We showed that our method improves, i.e. increases, the lower bounds
on the throughput obtained for applications running on multi-processor sys-
tems compared to the state of the art. This leads to reduced resource allocation
when used in automated design flows. The level of improvement depends on
the scheduler and application parameters.
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Overall, the goal of this thesis was to provide modelling and analysis tech-
niques for the timing behaviour of real-time streaming applications with dy-
namic, multi-scale, composite behaviours, such that they can be optimally
designed by model-based design procedures. A fast and accurate modelling
and analysis is important in model-based design schemes. We showed that
we can model these applications in such a way that they can be quickly and
accurately analysed. Moreover, we provided a few important analysis tech-
niques that can be used in model-based design schemes to realize real-time
applications on multi-processor systems.

8.2 Future Work

In Chapter 3 we introduced a method to represent real-time streaming ap-
plications using SADF models, and in Chapter 4 we showed that they can
be analysed faster than SDF and CSDF models. Many multi-scale streaming
applications have already been modelled by SDF or CSDF graphs. It is not
straight forward how we can transform existing SDF and CSDF application
models to their equivalent SADF models (equivalent in the sense that they
represent the same timing behaviour), to exploit the scalable analysis. There
exists a transformation from CSDF to SADF [55]; however, the resulting SADF
lacks the properties that the proposed scalable analysis takes advantage of. For
instance, it generates scenarios with a huge number of actor firings which re-
sults in long analysis time. A future work is to find an algorithmic way to
transform SDF and CSDF models to SADF models to which we can apply the
more scalable analysis.

In Section 2.8 we discussed that the throughput analysis of Geilen et al. [55],
and the consequence that the throughput analysis proposed in Chapter 4 may
be conservative when the FSM representation of the language of the SADF
model has acceptance conditions. In the same section we also discussed the
cases for which the analysis may be conservative. In addition, we suggested a
way to obtain exact throughput for those cases by performing a throughput
preserving transformation from an FSM with acceptance conditions to an FSM
without an acceptance condition. A future work is to find an algorithmic
method to perform such a throughput-preserving transformation.

In Chapter 5 we introduced an approach to generate SADF models of cyclo-
static applications, compositionally, from the SADF models of their modules.
A future work is to generalize the proposed composition method to SADF
models with non-deterministic scenario transitions. A naive approach is to
convert the regular expressions of the modules to FSMs, compute the product
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of these FSMs, and convert the product FSM to a regular expression. A major
drawback for this approach is that the repetitive patterns of the given regular
expressions will not be preserved, since the product FSM combines all states
and transitions of the input FSMs in a flat FSM. Therefore, the end result
would be a flat regular expression which takes a long time to generate and
analyse.

In Chapter 6 we introduced a throughput-buffering trade-off analysis. The
analysis uses the proposed extended matrix representation of scenarios with the
throughput computation method of Geilen et al. [55] to obtain the throughput
and at the same time identify the critical buffers. In Chapter 4 we introduced a
scalable throughput analysis. Using the extended matrix representations with
the scalable analysis will benefit the scalability of the throughput-buffering
trade-off analysis. Such an approach requires the generalization of the tech-
nique we proposed for generating the abstract scenarios in Chapter 4. This
means we need to compute the extended matrix representations for abstract
scenarios instead of state matrices.

Another future work for the throughput-buffering trade-off analysis is to
apply this analysis on the models generated by the compositional technique
introduced in Chapter 5. This requires the computation of the extended ma-
trix representations for the composite scenarios, to be able to identify critical
buffers in composite scenarios. A challenge is to deal with shared links which
are included in composite scenarios. Since their behaviour is different form
dataflow channels, we need to investigate under what circumstances they can
become critical.

In Chapter 7 we introduced a technique to compute the state matrices of
application scenarios that are running on a shared multi-processor system. A
future work is to compute the extended matrix representations of scenarios run-
ning on multi-processor systems. We can use such matrices in a design space
exploration scheme to generate optimal trade-offs in the space of throughput,
buffer size and processor shares. This analysis provides more design options
by allowing the buffer space to be traded for processor shares and vice versa.
The augmented symbolic simulation introduced in Chapter 7 can be integrated
with the one introduced in Chapter 6 to generate extended matrix represen-
tations of scenarios that are running on shared multi-processor systems. To
compute the extended matrix representations we need to find the dominating
tokens for every token during the simulation. It is not clear how to identify
these tokens in a shared multi-processor setting since there is uncertainty in
the production times of tokens.
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