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Abstract: This paper presents a comparison between two high-order modeling methods for solving
magnetostatic problems under magnetic saturation, focused on the extraction of machine parameters.
Two formulations are compared, the first is based on the Newton-Raphson approach, and the second
successively iterates the local remanent magnetization and the incremental reluctivity of the nonlinear
soft-magnetic material. The latter approach is more robust than the Newton-Raphson method, and
uncovers useful properties for the fast and accurate calculation of incremental inductance. A novel
estimate for the incremental inductance relying on a single additional computation is proposed to avoid
multiple nonlinear simulations which are traditionally operated with finite difference linearization or
spline interpolation techniques. Fast convergence and high accuracy of the presented methods are
demonstrated for the force calculation, which demonstrates their applicability for the design and analysis
of electromagnetic devices.

Keywords: spectral element method; isogeometric analysis; incremental inductance

1. Introduction

Electrical machine design often aims at achieving the highest power density, as it leads to weight
and cost savings. High power density can be reached by different means, such as using efficient cooling
methods [1] or by considering permanent magnets and slotted iron structures, where the latter benefits
from a high magnetic permeability, and hence, a higher magnetic field within the same volume. However,
the BH-characteristics of soft-magnetic materials exhibit strong nonlinearity when exposed to high field
strengths which are necessary to reach increased power density. Motor topologies in current research,
such as reluctance [2–4] or flux-switching machines [5], entirely rely on these phenomena. It is, therefore,
of high importance to be able to rigorously calculate global electromagnetic quantities, such as forces
and inductances, in presence of nonlinear material characteristics, as well as obtaining accurate local
field distribution. Although local effects might not impair the global machine parameters calculation,
it can affect the outcome of shape [6,7] and topology [8] optimizations. The attempts in improving
the computational efficiency of the aforementioned machine design have focused the research on fast
semi-analytical modeling techniques [9], and towards numerical methods ever more accurate. The
high-order methods, which exploit higher-order elements, allow the increase of the degree of smoothness
of the solution. Consequently, a faster convergence is achieved resulting in fewer degrees of freedom
(dof) for the same error compared to low-order methods such as the Finite Elements Method (FEM).
Recently, two high-order methods have gained attention namely, the Spectral Element Method (SEM) and
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Isogeometric Analysis (IGA) [10,11]. They are applied to modeling of magnetic devices such as actuators
and electrical machines in [12–15].

In this paper, the high-order methods are applied to the modeling of magnetostatic problems under
magnetic saturation. Although the implementation is addressed to isotropic and non-hysteretic properties
for soft-magnetic materials, more complex material models can be included [16]. Two iterative approaches
are considered to build the nonlinear material solvers. The first is based on the Newton-Raphson (NR)
approach, and the second linearizes the model at each iteration with the help of an incremental reluctivity
and remanence of the iron. The second approach allows the accurate estimation of the incremental
inductance using a unique additional static computation. The nonlinear magnetostatic distributions of
both high-order modeling methods are compared to the results obtained with standard magnetostatic
simulation in FEM. Smoother results are obtained from the novel incremental inductance estimate, and
faster convergence, i.e., higher accuracy per dof, is verified for the force computation. The post-processing
routines, the fast convergence and excellent accuracy of SEM and IGA methods, are demonstrated on
simple benchmarks, although these general results are applicable to any electrical machine geometry
without shape limitation, in magnetostatic regime under saturation.

2. Modeling Methods

The presented work uses three different modeling methods for field computation applied to electrical
machine analysis in which nonlinear isotropic iron is considered. Although they share the same Galerkin
formulation [10], each of these methods uses different basis functions, quadrature rules, and space
discretization techniques, which are briefly defined in the next section. A convergence analysis for
different hp-refinements is performed, from which the reference space discretization is chosen for each
modeling technique, and used for further comparison.

2.1. Finite Element Method

The Finite Element Method is the most popular and established method for solving a wide variety of
problems described by partial differential equations. The results presented in this paper are based on the
commercial software Altair/Flux2D [17]. It uses a space discretization based on triangular or quadrilateral
meshes. First and second-order elements allow the expression of the problem in a large but sparse matrix
and to obtain a relatively fast solution in 2D. The solution obtained by means of FEM is known to be very
dependent on the mesh refinement, requiring both time and experience. Additionally, a curved geometry
is approximated by linear or quadratic elements which influence the solution accuracy or comes at the cost
of a high number of mesh elements, or h-refinement. Several coarse meshes will be used for comparing
convergences obtained with the higher-order methods with the same number of dof, while a much denser
mesh will be used to generate the reference solution for this method. Higher-order methods aim at offering
more geometrical flexibility for design compared to FEM, as well as demonstrating a faster convergence
while maintaining an acceptable overall computational effort.

2.2. Spectral Element Method

In both high-order methods, the geometry is discretized into two dimensional (2D) conforming
patches and continuity is imposed on their interfaces. In the first benchmark, introduced in Figure 3a,
the C-core geometry is discretized in 40 patches, and p-refinement is used to increase the order of the
basis functions up to the eleventh order. Each patch is mapped to a parent element, where calculations
are conducted [18]. In the parent element [−1, 1]2, Legendre polynomials are used as basis functions, the
Lagrangian interpolation polynomials are used to change the representation to a nodal form, and obtain the
gradients on the grid. Corresponding nodes of the grid are the Lobatto-Gauss-Legendre (LGL) roots [10,19].
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These nodes have the particularity to include end-points {-1,1}, hence, the Gauss-Lobatto quadrature is
applied for numerical integration. The order of the Legendre polynomials directly links to the number
of nodes in each parametric direction of the element. Complex shapes can be modeled, notwithstanding
proper mapping transformations and operators of the contravariant fluxes are found [10,20].

2.3. Isogeometric Analysis

Isogeometric Analysis (IGA) has introduced a new paradigm in employing the same basis functions
to represent exactly complex geometrical shapes, compute and visualize the solution [21]. These basis
functions are structured through a tensor-product of B-splines which is the same functional description
used in CAD models, and therefore, motivates their use. The physical domain containing the geometry
is mapped to a rectangular computational domain on which the basis functions and their gradients are
known and where the integrals are calculated through numerical Gaussian quadrature [22]. Contrarily to
the Gauss-Lobatto quadrature, the end-points are not present in the quadrature nodes. The set of basis
functions, which is mapped onto the physical domain, can be enriched by means of hp-refinements.
Essential boundary conditions are imposed through L2 projection [11]. Mathematical derivations
introducing the framework of IGA can be found in [23] and its application to electromagnetic problems
with linear material characteristics have been discussed in [14].

3. Problem Formulation

The Galerkin method is used to pass from the strong form of the problem deriving from Maxwell’s
and constitutive equations, to the variational formulation, which is implemented [10]. The general 2D
magnetostatic problem formulation with linear material characteristics with respect to the nodal magnetic
vector potential, A, is given as a set of linear equations in matrix form:

SA = Irhs, (1)

A|ΓD = 0, (2)

∂A
∂n
|ΓN = 0, (3)

where,

Si,j =
∫

Ω
ν(x) grad ωj · grad ωi dx, (4)

Icoil, i =
∫

Ωcoil

Jcoil ωi dx, (5)

Ipm, i =
∫

Ωpm
ν(x) M · curl ωi dx, (6)

in which ω are the set of basis functions considered depending on the method used. The right-hand side,
Irhs, sums the different sources contributions described in (5) and (6). In the 2D Cartesian formulation, A
represents the z component of the magnetic vector potential at the nodes, which naturally satisfies the
divergence-free property. The magnetic flux density derives from the curl of the potential such as

B = curl A =

 ∇y A
−∇x A

0

 . (7)
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The relative reluctivity ν(x) = (µ0µr(x))−1 depends on the material defined for each patch. The imposed
current density source Jcoil is considered uniformly distributed in the conductor, which is valid for
magnetostatic problems such as considered in this paper. Therefore, the skin and proximity effects are
neglected. For a permanent magnet, the source is derived from the curl of the magnetization vector,
which in most cases, is uniformly distributed such that |M| = µ−1

0 Brem. As expressed in (6), the action
of the curl operator is transferred to the basis functions ω in the spirit of the Galerkin procedure, i.e.,
by multiplying by the test functions, integrating by parts and using the Green formula. This general
formulation can be used to describe the non-uniform magnetization arising from nonlinear soft-magnetic
material characteristics as well.

3.1. Successive Iterations (SI)

Beyond a certain level of magnetic excitation, the soft-magnetic iron material saturates, which
decreases the relative permeability. In the meantime, the magnetic moments in the iron align locally with
the field excitation direction, which creates an overall non-uniform magnetization. This non-uniform
magnetization in the iron can be captured with the help of the spline interpolant of the discrete BH
values of the material characteristic, such as the one shown in the Figure 1. The modulus of the
flux density, Bmod, is calculated at each node together with the incremental reluctivity ν(x, B) and the
non-uniform magnetization vector

Miron(x, B) = αBrµ−1
0 , (8)

where Br is the remanent flux density in the iron, which is zero in the linear region. A graphical
representation of the algorithm is given on Figure 1. The parameter α = BB−1

mod represents the directional
cosines of the flux density vector and helps orienting the magnetic remanence of the iron. As a result, an
iterative model is proposed, where the solution is used to calculate the magnetic flux density distribution B
in the soft-magnetic regions followed by the magnetic remanence and incremental reluctivity. Finally, the
stiffness matrix entry from (4) is modified in the soft-magnetic regions, and an additional magnetic source
term is added to the right-hand side:

Si,j =
∫

Ωiron

ν(x, B) grad ωj · grad ωi dx, (9)

Iiron, i =
∫

Ωiron

ν(x, B) Miron(x, B) · curl ωi dx. (10)

At each iteration, the solution vector is stored and the difference with the previous solution regarding
the L2 norm is calculated per patch. The maximum value is represented in the convergence comparison
presented in Figure 2. The SI method presents some similarities with the locally convergent version of the
fixed-point method discussed in [24,25]. The developed model is linearly convergent, robust, and contains
a physical interpretation. Moreover, the non-uniform magnetic source term is useful to obtain additional
parameters and insights of the electrical machine efficiently, such as the incremental inductance, which is
detailed in section IV-B.
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Figure 1. Graphical representation of the SI algorithm. Underlying BH-curve corresponds to the
soft-magnetic material Cogent M800 50Hz 50A.

Figure 2. Comparison of the convergence of the residual in Benchmark I.

3.2. Newton-Raphson

A NR solver is considered to allow quadratic convergence to the solution. Such method is based on a
first-order Taylor expansion of the residual which is to be minimized. The derivation details specific to
a magnetic application can be found in [16]. The solution in the n−th iteration is approximated with a
linearization dA and the solution A from the previous iteration:

An = An−1 + dAn−1, (11)

where the increment dA is calculated as
JdAn−1 = r. (12)
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Rewriting (1), the residual r is expressed as

r = Irhs − S1dAn−1. (13)

From (12), the Jacobian is defined as the derivative of the residual with respect to the solution vector

J =
∂r
∂A

= S1 + S2, (14)

with

S1 i,j =
∫

Ω
ν(x, B) grad ωj · grad ωi dx, (15)

S2 i,j =
∫

Ωiron

2
∂ν(x, B)

∂B2 grad ωj ·B · grad ωi dx, (16)

B =

[
B2

y −BxBy

−BxBy B2
x

]
. (17)

The NR method is implemented in the high-order method framework and the convergence is compared
with the SI method in Figure 2. An important distinction between the SI and NR methods lies in the
pre-processing of the BH-curve and the definition of the reluctivity ν(x, B):

ν = νinc =
∂H
∂B

, with SI, (18)

ν = νapp =
H
B

, with NR. (19)

Moreover, in the SI method, it may be necessary to ensure that the outputs of the algorithm are bounded
by their physical limits with:

νr ∈ [νinc(0+), 1], (20)

Br ∈ [0, Bsat], (21)

indeed, BH-curves may include an elbow within the very first data points which should not be considered.
In the NR method, the BH-curve should be monotonic and may be linearly extended for higher values of the
field. The NR method is especially valuable for time-domain problems [26], where the computational time
becomes more critical. Additionally, to further enhance the convergence speed, relaxation methods [27,28]
or hybrid methods [29] can be considered.

4. Post-Processing

In electrical machine design optimization, global quantities such as forces (attraction, propulsion,
ripples) or inductances (self, mutual, magnetizing or incremental) are often present in the objective function
or constraints. Therefore, it is important to ensure such quantities are computed both efficiently and
accurately.
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4.1. Force Calculation

In the FEM software, the electromechanical force is computed through the Virtual-Work (VW) method
which relies on the differentiation of the magnetic co-energy Wm with respect to the displacement:

FVW = −∂Wm

∂x
, (22)

Wm =
∫

Ω
dWmdV, (23)

dWm =
∫ H

0
B(H)dH. (24)

Because the BH-curve of the soft-magnetic material is nonlinear, this method tends to linearize this relation
around the operating point. Its implementation is more cumbersome and requires the evaluation of volume
integrals, using the nodal solution obtained iteratively. Additional evaluations are normally required to
obtain the co-energy differentiation approximation around the operating point, although more efficient
implementations have been proposed in [30,31].

Another method is the use of the Maxwell’s Stress Tensor (MST), T, and is implemented for the
considered high-order methods. By combining the Lorentz force equation, Ampere’s law and the
Green-Ostrogradski theorem, the electromagnetic force can be written as:

FMST = µ−1
0

∮
S
T · n dS, (25)

Ti,j = (BiBj −
1
2

δi,jB2). (26)

This formulation requires only one computation, and the numerical quadrature is reduced to an enclosing
contour instead of all interior points, which reduces the computational load. It can be seen that some
freedom exists in the choice of the enclosing contour. Hence, two integration paths are proposed, and can
be seen in Figure 3a: the first path, pictured in magenta, takes the contour (CT) directly surrounding the
solid of interest. The other path, in dashed green, only considers the top of the airgap (AG), because other
lines lie on the Dirichlet boundary, where the solution and gradients vanish exactly.

4.2. Flux Linkage and Inductances Calculation

A direct evaluation of the magnetic vector potential in the coil region is used to obtain the flux linked
by the coil, which is energized with a non-zero current source I = JcoilScoil = I0:

φ =
1

Scoil

∫
Vcoil

A(x)dV, I = I0. (27)

While the apparent and incremental inductances are equal for linear materials, a distinction should be
made in case of nonlinear iron characteristics.

Lapp =
φ

I0
, (28)

Linc =
∂φ

∂I
(I0). (29)

Only the incremental inductance represents the saturation in the material and constitutes a useful parameter
for order-reduction models [32], cross-coupling effects modeling and sensorless control [33]. When the
magnetic circuit is energized by the I0 current, a secondary magnetic source is induced in the nonlinear
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iron, as described in the SI method by Equation (10). Furthermore, by removing the current source, it is
possible to compute the fluxes generated solely by the remanent magnetization in the iron:

φrem =
1

Scoil

∫
Vcoil

A(x)dV, I = 0. (30)

This method presents some analogies with the frozen permeability method which has been used
in [34] for separating the different flux linkage contributions. Consequently, disregarding which of the SI
or NR method is chosen, after the final iteration which determines φ, a unique simulation is needed to
compute φrem and therefore the proposed incremental inductance estimate can be calculated with:

Linc =
φ− φrem

I0
. (31)

Indeed, the flux linkage characteristic is nonlinear with respect to current, similarly as the BH-curve, and
the tangent of the flux linkage meets the intercept φrem. On the contrary, in the FEM software, there is no
direct option for the incremental inductance calculation. Therefore, to approach (29), a finite difference
method must be considered which solves a two or three steps scenario and linearize the flux linkage
around each operating current point (±1.0× 10−4 A). Such a method results in a parameter estimation
which is less smooth and accurate, as well as more computationally cumbersome.

5. Results

Two different electromagnetic problems are simulated in SEM, IGA, and FEM. The topologies are
presented in Figure 3, while the dimensions are summarized in Table 1. Benchmark I is a C-core actuator,
with straight corners, comporting a permanent magnet (Brem = 1.38 T). Benchmark II is a quarter magnetic
circuit of a transformer, with round edges.

τc

gap

hc

hit

τiτb

hair

hair

hi

hi

hc

wout wiron wcoil

y
x x

y
hc hi

hi
rin

rout

wout

(a) (b)

Dirichlet NeumannMagnet Coil IronMaterial: Boundary:

Figure 3. (a) Benchmark I: C-core permanent magnet actuator. (b) Benchmark II: Rounded-edge magnetic
circuit quarter.
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Table 1. Parameters for Benchmarks I and II.

Benchmark I Parameter Value Benchmark II Parameter Value

τc 5 mm wiron 10 mm
τi 2 mm hc 10 mm
τb 5 mm wout 12 mm

hair 5 mm rin 2 mm
hc 2 mm rout 5 mm
hi 3 mm wcoil 5 mm
hit 2 mm hi 18 mm

gap 1 mm

5.1. Benchmark I

In Figure 4, different discretizations arising from p-refinements for SEM and hp-refinements for IGA
are used to solve Benchmark I, with both SI and NR methods, and the attraction force −Fy calculated with
both integration contours (AG and CT) are given. It is interesting to note that the force obtained from
both SI and NR methods have extremely close values, because the field distribution matches in the airgap
and on the MST integration contour, although the field distribution differs locally in the iron, as seen on
Figure 5. With IGA, different hp-refinements combinations can result in the same number of dof. For the
range of dof considered in this paper, a mesh size subdivision of 4 per parametric direction offers the
least sensitivity on the force calculation with respect to the order of the polynomial used. Therefore, the
IGA reference discretization using h = 1/4, p = 4 and four Gauss points per direction and generating
2052 dof is chosen to compare the distribution of the magnetic vector potential in Figures 5 and 6. The
same number of dof is taken to generate the reference SEM discretization, which corresponds to p = 7,
and demonstrates good results as well. The mesh of FEM is still relatively coarse for this number of dof,
therefore, a finer second-order mesh with 142841 nodes is generated to obtain the reference discretization
results of Table 2, which demonstrate the slow convergence of FEM. Although not directly demonstrated
in this paper, the convergence of the residual is faster for lower degrees of the basis functions. This might
explain the slight advantage in terms of convergence speed for IGA over SEM in Figure 2. Moreover,
although the convergence of the residual differs depending on the selected solver, the convergence of the
force in the airgap shown on Figure 7, is similar between both solvers and requires around 5 iterations to
be as close as 10−3% of the final value. It can be seen that on coarse grids without subdivision, i.e., h = 1/1,
the SI method is more robust than NR which fails to converge due to conditioning issues.

The values and differences of the attraction force Fy for the reference solutions are gathered in Table 2.
Good agreement can be seen between the high-order methods using the MST, and the VW calculation
in FEM. Moreover, excellent agreement between SEM and IGA is obtained with airgap integration. The
amplitude of the MST diverges at the geometric corners. As the integration is done per line, the airgap
integration presents two singularities when the contour one exhibits eight in total, leading to some
discrepancy, as shown on Figure 4. The airgap integration is favored, as numerical noise is minimized by
taking advantage of having three contributions lying on Dirichlet boundaries, where the fields and their
gradients vanish exactly. Finally, the numerical error of the contour integration is higher in SEM than in
IGA since the corner points are included in the Gauss-Lobatto quadrature.

In Figure 6, the magnetic vector potential is shown for Benchmark I, as well as the absolute difference
between FEM and both SEM and IGA solutions obtained with the reference discretizations. The solution
obtained by FEM is expressed on a rectangular 2D grid for each patch. The same procedure is applied
with the high-order methods, where the solution is interpolated on the common grid so that the solutions
can be compared.
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It is tedious to compare the computational effort as the methods are implemented on different
platforms. The commercial FEM software is heavily optimized for solving big sparse linear systems.
Moreover, its simulation time together with the meshing time is difficult to estimate. Otherwise, SEM and
IGA, are implemented in MATLAB with different implementation strategies and no particular optimization
of the code speed has been performed. Therefore, more research is necessary to improve the platforms and
evaluate the computational load of the methods.

Figure 4. Convergence of the attraction force for Benchmark I for different refinements.

(a) (b)

Figure 5. Differences in the magnetic vector potential distribution in [Vs/m] between (a) IGA(SI)-IGA(NR)
and (b) SEM(SI)-SEM(NR) solutions, all using the reference discretizations.
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(a) (b)

(c) (d)

Figure 6. (a) Magnetic potential distribution in [Vs/m] and isolines obtained with IGA, (b), (c), (d), show
the nodal differences between IGA-SEM, IGA-FEM, SEM-FEM reference solutions obtained with SI.
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Table 2. Force comparison for Benchmark I reference solutions.

Method Calculation Fx [N/mm] Fy [N/mm]

FEM VW −1.774× 10−15 −5.329× 10−1

IGA MST - CT −2.852× 10−15 −5.288× 10−1

MST - AG −3.578× 10−15 −5.322× 10−1

SEM MST - CT +3.018× 10−15 −5.447× 10−1

MST - AG +3.795× 10−15 −5.318× 10−1

Difference Regarding Fy from FEM(VW) [%] IGA(AG) [%]

FEM VW - 0.157
IGA MST - CT 0.780 0.624

MST - AG 0.130 -
SEM MST - CT 2.203 2.458

MST - AG 0.213 0.036

Figure 7. Convergence of the attraction force regarding SI and NR solver iterations, for Benchmark I for
different h-refinements, with p = 4 in IGA.

5.2. Benchmark II

For Benchmark II, the flux linkage is calculated for several currents and interpolated by splines, in
the same way as the BH-curve. This interpolant is then differentiated with respect to the current and
constitutes a smooth reference solution. The remanent flux linearization method introduced in this paper
and calculated with Equation (31) perfectly evaluates the original differentiation of Equation (29). This
novel method demonstrates a noticeable gain in both smoothness and accuracy compared to the finite
difference approach used with FEM for the incremental inductance calculation, as shown in Figure 8.
It should be noted that the incremental inductance computed from the remanent flux linearization is
calculated independently from other current levels in the Figure 8. Therefore, for an accurate calculation
of the incremental inductance for I = 10 A, it is not necessary to calculate the apparent inductances for
other current levels, as it is done in the case of finite difference or spline interpolation techniques. Instead
the incremental inductance is computed from the remanent flux φrem. Such accurate insights are beneficial
in highly saturated machine control [35–37], and in field-weakening machine-based applications [34].
Moreover, the computational efficiency of this calculation makes it appealing in repetitive loops present in
design optimization problems.
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Figure 8. Apparent and incremental inductance comparison for Benchmark II.

6. Conclusion

In this paper, two methods using high-order polynomials have been applied to the modeling and
analysis of two benchmark problems with nonlinear material BH-curve. Calculation methods for extracting
electrical machine characteristics in presence of nonlinear material, such as force, flux linkage and
inductances have been discussed. The convergence of the force for different space discretizations has been
shown. A convergence analysis of the residual of the solution obtained from two different formulations
has been presented. SEM and IGA have demonstrated a higher accuracy per degree of freedom when
compared to FEM which demonstrates the applicability of such methods for the design-through-analysis
of electrical machines under magnetic saturation. Finally, a novel incremental inductance calculation
technique has been proposed which increases the accuracy compared to existing methods while being
computationally advantageous.
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