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Towards Data-Driven LPV Controller Synthesis Based on Frequency
Response Functions

Tom Bloemers, Roland Tóth and Tom Oomen

Abstract— Synthesizing Linear Time-Invariant (LTI) con-
trollers directly from Frequency Response Function (FRF)
measurements is at the core of many successful industrial
applications. However, increasing performance expectations
necessitate extending these approaches for multiple operating
points, viewing the plant as a Linear Parameter-Varying system.
The aim of this paper is to develop FRF data based controller
synthesis to a larger class of systems by leveraging on recent
developments in LPV system theory. The developed method
is based on a global LPV controller parametrization with a
finite impulse response structure which ensures local stability
and performance of the closed-loop behavior by design. A case
study confirms that the developed control design procedure,
using only measurement data, can be effectively used to design
LPV controllers resulting in stability and high performance
of the closed-loop system on the specified region of operating
conditions in comparison to LTI controllers.

I. INTRODUCTION

Frequency response function (FRF) based controller syn-
thesis enables direct design of controllers based on nonpara-
metric models and provides an automated alternative to clas-
sical controller tuning approaches, including Nyquist designs
[1]. FRF measurements have traditionally been used as a
basis for manual tuning of Proportional-Integral-Derivative
(PID) controllers through loop-shaping, relying on graphical
tools such as a Bode diagram or Nyquist plot. This has been
further developed towards data-driven approaches, using FRF
measurements as a basis, to synthesize linear time-invariant
(LTI) controllers. First these methods were developed for
PID controllers [2], [3]. More recently, developments have
been made towards more general control structures, with the
main focus on robust control [4]–[7]. By these approaches,
a controller is designed such that performance and stability
specifications for a given set of FRF measurements are
achieved. From an identification perspective, this provides
an alternative to control-oriented identification followed by
model based controller synthesis [8].

Many systems encountered in practice exhibit nonlinear
(NL) behavior. Common control design methods for such
systems aim at the design of an LTI controller at an
operating point, such that locally sufficient robustness in
terms of performance and stability are achieved. In practice,
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these controllers are often designed on the basis of an
FRF measurement of the system, obtained at the operating
point, through either manual loop-shaping or through more
advanced model based control synthesis techniques such
as H2, H∞ or µ-synthesis [9], [10]. However, these LTI
based methods can be conservative, resulting in a significant
sacrifice of performance as they try to deal with the non-
linear dynamics through robustness. As an alternative, the
framework of linear parameter-varying (LPV) systems has
been introduced to tackle the control of nonlinear systems
through controller parametrizations that vary the control law
with the operating point changes of the system and relying
on extensions of well established LTI methods, with many
successful applications such as [11]–[13].

In LPV systems, the input-output (IO) map is considered
to be linear as in the LTI framework, but this IO map is
assumed to be a function of a so-called scheduling variable
p, capturing, e.g., the operating point dependent dynamics.
The class of LPV systems is supported by well-developed
identification theory and control design methodologies. LPV
control approaches extend common LTI methods, e.g., H∞-
control [14]–[16], providing either local or global stability
and performance guarantees. When synthesizing an LPV
controller for a nonlinear plant, performance specifications
are often enforced through shaping methods in the frequency
domain. In the identification literature, recent developments
have been made towards nonparametric modeling through
FRF identification of LPV systems. These developments
follow the paths of local identification in [17], [18] and more
recently also a global approach to FRF identification of LPV
systems has been developed [19]. For an overview of FRF
representations of LPV systems see [20].

Although data-driven controller synthesis based on FRF
measurements enables a systematic design approaches within
the LTI framework, at present these methods are limited
when applied to LPV systems. First steps towards data-
driven LPV controller synthesis in the frequency domain are
presented in [21]. Here a gain-scheduled controller is sought
through an optimization problem, where local performance
and stability requirements are characterized in terms of lower
bounds on the bandwidth and both gain and phase margins.
In [22] a gain-scheduled controller is synthesized through
constraints in the Nyquist diagram, where a manual design of
the open-loop transfer is required to guarantee local stability.

Inspired by these methods, the main contribution of this
paper is a synthesis procedure for data-driven LPV controller
design based on local, so-called “frozen” FRF measurements.
The presented methodology can be thought of as an improved



version of [21], [22], in the sense that the desired control
objectives are formulated in terms of a model matching
problem, where control objectives are posed in terms of
frequency domain shaping filters. Through a set of basis
functions, a global parametrization of the dependency of
the controller on the operating points is specified, for which
guarantees on stability and performance are provided in the
local sense. The solution to the problem is obtained via
convex optimization. The capabilities of the approach are
demonstrated on a simulation example of a nonlinear mass-
spring-damper (MSD) system with a duffing spring.

The paper is organized as follows: in Section II, the class
of considered models and controllers are defined and the
problem setting is formulated. In Section III, the proposed
stability and performance criteria are stated and a convex
optimization approach to synthesize LPV FIR controllers is
derived. Section IV demonstrates the proposed methodology,
through a simulation example, by designing a fixed-order
LPV FIR controller for a nonlinear system. Finally, conclu-
sions are drawn in Section V.

Notation: R denotes the set of real numbers. For a given
vector x ∈ Rnx , xj denotes the j-th component of x. The
imaginary unit is denoted by i =

√
−1 and <{·} and ={·}

represent the real and imaginary part of a complex variable
respectively. The set of real rational proper and stable transfer
functions is denoted by RH∞.

II. PROBLEM FORMULATION

Given a single-input single-output (SISO) nonlinear dy-
namical system in continuous-time:

F :

{
ẋ = f(x, u)

y = h(x, u)
(1)

for which we would like to design a gain-scheduled LPV
controller based on data without actually identifying or
modeling the underlying dynamics. In practice, it is often
possible to gather measurement data from systems like (1).
Hence, consider a set of local linear models of (1) at
the operating points1 (x0, u0) ∈ X0 × U0, which can be
thought of as discrete-time linearizations of (1) at these
points [23], [24]. For the sake of simplicity here we assume
that there is no noise or unmeasured disturbances perturbing
the data collection. Furthermore, we consider that X0 ⊂ X
and U0 ⊂ U, where x : R → X ⊆ Rnx is the state
variable, u : R → U ⊆ Rnu and y : R → Y ⊆ Rny

are the input and output signals of (1), respectively. These
discrete-time linear models are denoted Gp(eiω), dependent
on a so-called scheduling variable p = µ(x0, u0), which
expresses the operating condition in terms of the scheduling
map µ(x0, u0). Assume that Gp(eiω) are stable and their
FRF measurements are available for a given set of operating
points {p(τ)}Np

τ=1 ∈ P ⊂ P = µ (X0,U0) and a set of discrete
frequencies ω ∈ Ω ⊂ [0, π].

Controller design for (1) is considered in terms of
the interconnection in Figure 1 and the performance

1(x0, u0) is an operating point of (1) if 0 = f(x0, u0).
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Fig. 1. LPV representation of the closed-loop interconnection. Gp is
a linear system corresponding to the local frozen behavior of F at the
operating point p and Kp is an LPV controller scheduled by p.
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Fig. 2. Interpretation of the closed-loop implementations of the LPV
controller with the plant. Here Kp is the discrete-time LPV controller
scheduled by a time-varying p, whereas F represents the continuous-time
nonlinear system (1) from which p is measured.

specifications are expressed by a model matching filter
M ∈ RH∞. Here, the objective is to design a controller
that depends on the scheduling variable, such that (a) for
all operating conditions the closed-loop system is stable
in the local sense and (b) for all operating conditions,
the error between the set of closed-loop systems and the
model matching filter is below an acceptable threshold. More
specifically, the goal is to design a controller Kp dependent
on p such that

(a) ∀p ∈ P the closed-loop transfer function in Figure 1

Tp(e
iω) =

Lp(e
iω)

1 + Lp(eiω)
, (2)

with Lp(eiω) = Gp(e
iω)Kp(e

iω), is stable, i.e., the poles
of the transfer function Tp lie within the unit circle;

(b)
sup
ω∈Ω
|Tp(eiω)−M(eiω)| < γ, (3)

is below a given threshold γ ≥ 0, ∀p ∈ P.

While (a) describes the natural local stability expectation, (b)
expresses the performance objective. The resulting controller
Kp here is more than just a robust design because its pa-
rameters depend on p and can be thought of as a data-driven
gain-scheduled controller. During the controller design p is
considered to be constant (see Figure 1), but during imple-
mentation p is time-varying. The controller implementation
is illustrated in Figure 2. Naturally, the question then arises:
how to synthesize such a controller with respect to a sampled
data structure P and Ω.

III. DATA-DRIVEN LPV CONTROLLER
SYNTHESIS

In practice, when a model of (1) is not known, only (i)
measurements of (1) at a finite set of points P and at only
frequencies Ω are available. Hence, requirements (a) and (b)
can only be satisfied locally at constant operating conditions
p ∈ P .



A. Controller parametrization

The controller parametrization is first introduced in the
frequency domain, whereas later on when the the implemen-
tation aspects are discussed, a time domain interpretation is
given. The controller is parametrized as a discrete-time fixed
nb-order FIR structure

Kp(e
iω) =

nb∑
`=0

b`(p)e
−iω` (4)

with the frequency independent coefficients b`(p) being
parametrized with a priori chosen set of basis functions
{φ`j(p)}nj=1 as

b`(p) =

n∑
j=1

c`jφ
`
j(p). (5)

The set {φj(p)}nj=1 can be chosen as affine, polynomial,
rational, or piecewise linear basis functions in p, defin-
ing the function class to which the scheduling depen-
dence of the controller is restricted to. We denote by
θ =

[
c01 . . . cnb

1 . . . c0n . . . cnb
n

]
the controller co-

efficients.

B. Performance

The closed-loop performance requirements are defined in
terms of an ideal transfer function M(eiω). To measure the
satisfaction of the shaped local control behavior with respect
to M(eiω), a weighted H∞-norm is considered in terms of

min
θ

γ

s.t. |W (eiω)
(
Tp(e

iω, θ)−M(eiω)
)
| < γ

∀ω ∈ Ω

∀p ∈ P

(6)

where W (eiω) is an additional weighting filter used to
specify the relative importance over the range of frequencies.
This is in line with typical control design methodologies
including design requirement (b). Without a parametric form
of the model, optimization problem (6) is nonconvex in
the design variable θ, and can therefore be difficult to
solve. A linearizing transformation is performed through
multiplication by 1 + Lp(e

iω, θ). This results in the model
matching problem

min
θ

γ

s.t. |W (eiω)
(
(1−M(eiω))Lp(e

iω, θ)−M(eiω)
)
| < γ

∀ω ∈ Ω

∀p ∈ P
(7)

which is a second order cone optimization problem that is
convex in θ. Note that in general, the optimization problem
posed in (7) is not equivalent to (6). If there exists a θ such
that Tp(eiω, θ) = M(eiω) ∀p ∈ P , then (7) and (6) are
equivalent. However, if such a θ does not exist, then the
optimal solution θ? of (7) represents the optimal solution
of (6) only if the weighting filter in (6) is substituted with
W (eiω)

(
1 + Lp(e

iω, θ?)
)
.
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Fig. 3. Graphical interpretation of the simplified Nyquist stability criterion.
The line restricts the Nyquist curve to lie to the right of the critical point
(−1, 0i). The Nyquist curve Lp(eiω , θ) is shown for a constant operating
condition p and fixed θ.

C. Stability

To ensure local stability of the closed-loop, a Nyquist
constraint is introduced, which will amount to requirement
(a). To this end, the Nyquist theorem is presented first, after
which a simplified version is given. Next, a set of constraints
are derived, which guarantee local stability of the closed-loop
system in Figure 1.

Let C denote the closed contour that encircles the exterior
of the unit disc, i.e., the area of instability. Furthermore, we
denote by P the number of unstable poles of Lp(eiω, θ), Z
is the number of zeros encircled by C, i.e., the number of
unstable closed-loop poles of Tp(eiω, θ) and let N denote
the number of clockwise encirclements of Lp(eiω, θ) around
the point (−1, 0i).

Theorem 1 (Nyquist stability criterion [25]): The closed-
loop Tp(eiω, θ) is stable, if and only if Lp(eiω, θ) makes N =
Z − P clockwise encirclements around the point (−1, 0i),
and Lp(eiω, θ) does not pass through the point (−1, 0i).
The proof is based on Cauchy’s argument principle and the
reader is referred to [25] for the proof. In case the plant
and controller are stable, i.e., P = 0, then the following
simplified Nyquist criterion holds

Corollary 1 (Simplified Nyquist theorem): Assume that
Lp(e

iω, θ) has no unstable poles. Then the closed-loop
system Tp(e

iω, θ) is stable if and only if the Nyquist contour
does not encircle nor cross the point (−1, 0i).

Proof: The proof follows from Theorem 1 by taking
Z = P = 0.
Under the condition that Gp(eiω) is stable with the choice
of an FIR controller structure, Corollary 1 is exactly the
condition required for local stability. In order to ensure that
the Nyquist contour does not encircle nor cross the origin,
the Nyquist curve evaluated for ω ≥ 0 is constrained to
lie below a line going through the origin. This is graphically
displayed in Figure 3. This results in the following corollary.

Corollary 2: Suppose that Lp(e
iω, θ) has no unstable

poles and that the image of Lp(eiω, θ) lies below the line

z = x+ iα(x+ 1) (8)



in the complex plane, with x ∈ R and α > 0 ∈ R. Then
the closed-loop system Tp(e

iω, θ) is stable and Lp(e
iω, θ)

satisfies that

=
{
Lp(e

iω, θ)
}
< α

(
<
{
Lp(e

iω, θ)
}

+ 1
)
. (9)

This corollary states that the Nyquist curve lies below
a line in the complex plane with slope α and provides a
sufficient condition for the closed-loop in Figure 1 to be
locally stable for each operating point p. Note that these
stability concepts give no guarantees for stability of the
closed-loop behavior in Figure 2 for varying p. For that the
available information in the frozen FRFs is insufficient and
concepts like the global FRF forms presented in [19], [20]
might provide stability concepts in the future, but currently
theoretical tools are missing for global stability analysis
purely on frequency domain data. However, if the scheduling
variation is sufficiently slow, stability can be guaranteed
in the global sense based on purely local conditions as
motivated in [23], however there is no exact characterization
of how slow that scheduling variation needs to be.

D. Fixed-order LPV controller synthesis

By combining the conditions for performance (7) and
stability (9) introduced in the previous subsections, a convex
optimization problem for data-driven synthesis of fixed-order
LPV FIR controllers is formulated

min
θ

γ

s.t. |W (eiω)
(
(1−M(eiω))Lp(e

iω, θ)−M(eiω)
)
| < γ

=
{
Lp(e

iω, θ)
}
< α

(
<
{
Lp(e

iω, θ)
}

+ 1
)

∀ω ∈ Ω

∀p ∈ P.
(10)

The optimization problem (10) is convex in θ, due to the FIR
structure (4) and linear parametrization (5), but has an infinite
number of constraints. A practical solution to solve (10) is
to sample the frequency space Ω = {ωk}Nω

k=1 scheduling
space P = {p(τ)}Np

τ=1 which is in line with the availability of
such data in practice. Then, (10) is solved as a second-order
cone optimization problem. Likewise, (10) can also be posed
as a set of linear matrix inequalities. It is important that Ω
expresses all relevant frequencies, so the sampled condition
(9) implies local stability [5]. Additionally, P can be chosen
such that the sampled version of (3) actually implies the
performance bound. Results to optimally determine such a
set of operating points can be found in [26].

E. Controller implementation

While the controller is designed with fixed p, during
implementation each b` is evaluated with p obtained from
the system at sample k, what we can denote as b`(p(k)).
Based on this, the controller is implemented according to
the interconnection given in Figure 2, for which the signal
relations are as follows

u(k) =

nb∑
`=0

b`(p(k))e(k − `). (11)

As was discussed earlier, b`(p(k)) is parametrized through
basis functions {φj(p)}nj=1. For example, b` can be chosen
to have polynomial dependence on the scheduling variable
p:

{φj(p)}nj=1 = {1, p(k), p2(k), . . . , pn−1(k)}. (12)

With a polynomial dependence of order n, (11) results in the
following signal relations

u(k) =

nb∑
`=0

(
c`1 + c`2p(k) + · · ·+ c`n+1p

n(k)
)
e(k − `).

(13)

IV. EXAMPLE

Consider a 2nd-order mass-spring-damper system with
nonlinear a spring, specifically a Duffing spring, obeying the
continuous-time dynamical relations

mẍ(t) + bẋ(t) + k1x(t) + k2x
3(t) = F (t), (14)

where x denotes the displacement of the mass m,
F (t) ∈ U denotes the actuation force acting on the mass, b is
the damping coefficient and k1, k2 are the spring coefficients.
Furthermore, we consider the operating range of the Duffing
spring to be limited to x(t) ∈ [−

√
2,
√

2] = X.
An LPV form of (14) is obtained by introducing the

scheduling variable p(t) = µ(x(t)) = mc + wcx
2(t) such

that

mẍ(t) + bẋ(t) + k1x(t) + k2p(t)x(t) = F (t), (15)

with p ∈ P = [−1, 1] and x2 ∈ [0, 2]. Here mc and
wc are used for centering and normalization, respectively.
Furthermore, we assume that the system is actuated and
sampled under a zero-order hold setting at a sampling time
of Ts = 0.005 [s]. FRF data, shown in Figure 4, is obtained
at frozen operating points p ≡ {p(τ)}Np

τ=1 = P , gridded
on an equidistant regular grid P consisting of Np = 11
points and a frequency grid {ω(k)}Nω

k=1 = Ω consisting of
Nω = 400 logarithmically spaced frequency points in the
range Ω ⊂ [0, π].

In terms of control specifications, we would like to achieve
reference tracking according to Figure 1 with a rise time of
1 second and an overshoot below 5%. This is expressed in
terms of a model matching filter M(eiω) and a weighting
filter W (eiω) emphasizing the low frequency region, which
are shown in Figure 5. From the FRF data in Figure 4, it can
be observed that locally, the system displays 2nd order be-
havior. For this reason, a 2nd-order FIR controller structure is
proposed. Furthermore, the basis functions {φ`j(p)}nb=2,n=2

`=0,j=1

are chosen to be affine functions of the operating point p,
i.e., {φ`j(p)}nj=1 = {1, p}, ∀` ∈ {0, 1, 2}. To achieve zero
steady-state error, integral action is enforced in the controller.
This is achieved by (i) including an integrator in the plant
FRFs, (ii) following the synthesis procedure described in
Section III, and (iii) adding the integrator back to the
controller. Note that this does not violate the assumptions.

First an LTI FIR controller is synthesized for a nominal
operating point p = 0, for which a magnitude plot is shown



Fig. 4. Magnitude and phase plots of the frozen FRF data of the MSD
system obtained at the operating points {p(τ)}Np

τ=1 ⊂ [−1, 1] are plotted
in blue and the nominal FRF at p = 0 is plotted in orange.

Fig. 5. Magnitude plot of the desired closed-loop behavior captured in
terms of a model matching filter M(eiω) and the weighting filter W (eiω)
emphasizing the low-frequency range, in blue and orange, respectively.

in Figure 7. The performance is assessed on a unit step
response shown in Figure 6. This results in a stable closed-
loop with sufficient performance when the system is in the
neighborhood of the operating point. However, a deviation
from the operating point can lead to degradation in perfor-
mance or even unstable behavior. Utilizing the proposed LPV
approach, an LPV FIR controller is synthesized according to
the presented methodology. A magnitude plot for frozen p is
shown in Figure 7. For comparison, also the magnitude plots
of LTI controllers synthesized at p = {−1, 1} are shown. The
LPV controller is able to adapt the controller coefficients
based on the information of the scheduling variable and
therefore significantly increases the achievable performance
while maintaining local stability for the operating points P ,
as shown in Figures 6 and 7.

Figure 8 shows the magnitude plot of the Tp(eiω) for a
fine grid of P. This shows that over the operating range P,

Fig. 6. Unit step response of the closed-loop system evaluated at randomly
selected frozen operating points in P, using the designed LTI and LPV FIR
controllers in blue and orange, respectively. The shaded areas indicate the
regions that cover trajectories for all frozen values in P for the LTI and
LPV controllers in blue and orange, respectively. The performance of the
LTI controller degrades for deviations from the operating point, whereas the
LPV controller is able to maintain performance and stability

Fig. 7. Magnitude plot of the synthesized LPV and LTI controllers. The
LPV controller is sampled on the grid P , shown in blue. The LTI controllers
correspond to the operating points p = {−1, 0, 1}, shown in yellow orange
and green, respectively. The LPV controller adapts its coefficients to match,
locally, the behavior of the LTI controllers at different operating points.

the variation with respect to p is minimal, indicating that
the performance specifications with respect to the model
matching filter M(eiω) are met over the whole P.

In Figure 9, the step response of the closed-loop nonlinear
system with the synthesized 2nd-order discrete-time LPV
FIR controller implemented according to Figure 2 is shown.
Note that in this case, in (11) p is time-varying, i.e.,

u(k) =

nb=2∑
`=0

(
c`1 + c`2p(k)

)
e((k − `)), (16)

with p(k) = µ(x(k)) = mc + wcx
2(k), where k denotes

discrete-time under a sampling period Ts. It can be observed
that also stability for time-varying scheduling trajectories
p(k) ∈ P is obtained, but a degradation in performance can
be observed in comparison to the local results that are shown
in Figure 6. In general, stability can only be guaranteed for
parameters that vary sufficiently slow.

V. CONCLUSIONS

In this paper, a method is developed to directly synthesize
a fixed-order LPV FIR controller based on measurement



Fig. 8. Bode magnitude plot of the frozen frequency response of the
closed-loop system at a fine grid of P, indicating that the local variations
w.r.t. p are minimal.

data. Through a global parametrization of the controller that
is linear in the parameters, local stability and performance
can be guaranteed with the proposed method. The presented
method is not limited to FIR bases, but can be extended to
any stable orthonormal basis functions. Through a simulation
example it is shown that the synthesized LPV controller is
able to adapt itself to the operating conditions of the system
and therefore provides a significant increase in performance
compared to LTI controllers. The method shows promising
applications in areas where FRF measurements are utilized
to design controllers, and the system behavior varies with
operating conditions, for example, in the high-tech mecha-
tronic industry. Future work includes the extension towards
unstable systems and multi-input multi-output systems while
aiming at a data-driven global stability concept.
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