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Finite-range effects in Efimov physics beyond the separable approximation

P. M. A. Mestrom,* T. Secker, R. M. Kroeze,† and S. J. J. M. F. Kokkelmans
Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands

(Received 18 October 2018; published 7 January 2019)

We study Efimov physics for three identical bosons interacting via a pairwise square-well potential, analyze
the validity of the separable approximation as a function of the interaction strength, and investigate what is
needed to improve this approximation. We find separable approximations to be accurate for potentials with
just one (nearly) bound dimer state. For potentials with more bound or almost bound dimer states, these states
need to be included for an accurate determination of the Efimov spectrum and the corresponding three-body
observables. We also show that a separable approximation is insufficient to accurately compute the trimer states
for energies larger than the finite-range energy even when the two-body T matrix is highly separable in this
energy regime. Additionally, we have analyzed three distinct expansion methods for the full potential that give
exact results and thus improve on the separable approximation. With these methods, we demonstrate the necessity
to include higher partial-wave components of the off-shell two-body T matrix in the three-body calculations.
Moreover, we analyze the behavior of the Efimov states near the atom-dimer threshold and observe the formation
of non-Efimovian trimer states as the potential depth is increased. Our results can help to elaborate simpler
theoretical models that are capable of reproducing the correct three-body physics in atomic systems.

DOI: 10.1103/PhysRevA.99.012702

I. INTRODUCTION

Over the last decade, impressive experimental and theoret-
ical progress has been made in the investigation of Efimov
physics [1–4]. Already in 1970, Efimov predicted that three
particles interacting via short-range interactions exhibit an in-
finite sequence of three-body bound states scaling universally
when the s-wave two-body scattering length a diverges [1,2].
The Efimov effect has been predicted to occur universally over
a range of different physical systems, such as nucleons [5,6],
magnons [7], and atoms [8]. Efimov physics was first ob-
served experimentally in an ultracold atomic gas in 2006 [9],
by tuning the interaction strength using a Feshbach resonance.
Since then, experiments in ultracold quantum gases have
been successfully performed with different atomic species
determining the three-body parameter a− [9–23], which is
the scattering length where the ground Efimov state emerges
from the three-body continuum. These results combined gave
rise to a species-independent value of a− ≈ −9rvdW within
±20% deviation [4], where rvdW is the van der Waals length
defined by rvdW ≡ (mC6/h̄

2)1/4/2. Most importantly, it was
demonstrated that the three-body parameter is fixed to the
range of the interparticle interactions, which for the atomic
trimers is related to the long-range behavior of van der Waals
potentials via the dispersion coefficient C6 which depends
on the atomic species. The origin of this unexpected van
der Waals universality of a− was successfully interpreted in
recent theoretical works [24–29], in which the dominance of

*p.m.a.mestrom@tue.nl
†Present address: Department of Physics, Stanford University,

Stanford, California 94305, USA.

the long-range behavior of the interaction potential on the
three-body parameter was evidenced.

Despite this success of van der Waals and finite-range
models in general, there are still unexplained issues. For ex-
ample, the experimentally determined three-body parameters
near narrow Feshbach resonances are in disagreement with
theoretical expectations [30] and also at positive scattering
lengths several nonuniversal Efimov-related effects have been
observed [9,10,12–17,31–38] (see also Ref. [39] for a careful
analysis of the experimental data). An additional challenge is
to construct the simplest two-body models that are capable
of reproducing the correct three-body physics. Separable po-
tentials are often used for this purpose [26,27,29,40–42]. A
potential operator is separable when it can be written as

Vsep = λ|g〉〈g|, (1)

where λ represents the interaction strength. Atomic inter-
actions are local, finite-range potentials, and therefore not
separable. Nevertheless, separable potentials are extremely
useful for studying three-body physics because the three-body
equations for such an interaction are much easier to solve than
those for a local finite-range potential. The simplest separable
potential is the contact interaction. This zero-range model has
proven to be successful in predicting the universal scaling
laws in Efimov physics that apply at large scattering lengths
[3]. In order to fix the three-body parameter of the Efimov
spectrum that is still free in the zero-range model, separable
models that give rise to finite-range effects can be used
[26,27,29,40,41]. These separable finite-range interactions are
also relevant for constructing many-body theories of quantum
gases [43] due to ease of implementation. Recently, they were
used to study the resonantly interacting Bose gas [44]. These
developments raise the question of to what extent separable
approximations for local potentials can be used for predicting
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three- and many-body properties. In this work, we investigate
when the separable approximation breaks down on the three-
body level and what is needed to improve on the separable
approximation.

The necessity to go beyond theories based on separable
interactions has been shown by a recent numerical study on
the potential resonances of the Lennard-Jones potential [39],
revealing that the first excited Efimov trimer does not intersect
the atom-dimer threshold. The authors of Ref. [39] attributed
this noncrossing of the first excited Efimov resonance to
strong d-wave interactions near a = 1rvdW [45]. Using the
separable approximation for the van der Waals potential,
Refs. [41,42] considered only s-wave interactions and found
that the first excited Efimov state does intersect the atom-
dimer threshold. This contradiction suggests that a single-term
separable approximation involving only s-wave interactions is
insufficient in this particular case.

Here we study the effects of the nonseparability of local
finite-range potentials on the Efimov spectrum using the two-
body square-well interaction given by

VSW (r ) =
{−V0, 0 � r < R,

0, r � R,
(2)

where r is the relative distance between the two particles and
R is the range of the potential. The advantage of the square-
well potential lies in the fact that it is one of the simplest
extensions of zero-range interaction models, incorporating
finite-range effects in a well-defined way. Additionally, many
relevant two-body properties, such as the off-shell two-body T

matrix, are known analytically. This simplifies three-body cal-
culations beyond the separable approximation of the off-shell
two-body T matrix when computing the Efimov states from
the momentum-space representation of the Faddeev equations
[46]. Another reason to study the square-well potential is that
it does not belong to any of the classes of potentials that have
been studied extensively in the context of Efimov physics [40].

We restrict ourselves to the case of identical spinless
bosons and solve the three-body Faddeev equations for dif-
ferent potential depths V0, which translates to a scattering
length at a certain number of bound states in the two-body
system. Efimov physics occurs near every potential resonance
of the square-well interaction. For interactions strengths V0

near these potential resonances, we solve the three-body
Faddeev equations in the momentum-space representation by
expanding the three-body wave function in spherical harmon-
ics and functions that are related to the two-body bound and
scattering states of the two-body potential. This expansion
is directly related to a separable expansion of the potential
itself and the corresponding two-body T matrix. We discuss
several existing expansion methods and analyze their advan-
tages and disadvantages in calculations of the energies of
the Efimov states. Our approach has the additional advantage
that we can explicitly exclude or include d-wave interactions
to study their effects, which is not easily possible in the
position-based hyperspherical framework. Such effects have
also not been investigated by momentum-space based studies
that only involve s-wave separable interactions as a model
for local finite-range potentials [40–42]. We go beyond the
separable approximation by fully expanding the square-well
potential in separable terms, and we analyze the validity of the

separable approach by comparing our results corresponding
to the square-well potential with those corresponding to its
separable approximation.

This paper is organized as follows. In Sec. II we introduce
the off-shell two-body T matrix. In Sec. III we review the
Faddeev equations corresponding to bound states, three-body
recombination, and atom-dimer scattering. In Sec. IV we
outline and compare three methods for expanding the off-shell
two-body T -matrix in terms that are separable in the incoming
and outgoing momenta. These methods are used to calculate
the properties of the Efimov spectrum for the square-well
potential in Sec. V. Finally, we present the conclusions of our
work in Sec. VI.

II. THE OFF-SHELL TWO-BODY T MATRIX

The Faddeev equations involve the two-body transition
operator T that we introduce in this section. It satisfies the
Lippmann-Schwinger equation

T (z) = V + V G0(z)T (z), (3)

where G0(z) = (z − H0)−1 is the free Green’s function, V is
the two-body interaction potential, H0 is the two-body kinetic
energy operator in the center-of-mass frame, and z is the
complex energy of the two-particle system. The two-body
T matrix is then defined as 〈p′|T (z)|p〉 where p and p′ are
relative momenta of the two-particle system. Throughout this
paper we use plane wave states that are normalized according
to 〈p′|p〉 = δ(p′ − p).

The two-body T matrix is in general evaluated off the
energy shell, which means that p′2 �= p2 �= 2μz. Here the
reduced mass of the two-body system is indicated by μ which
equals m/2 for two identical particles of mass m. Since the
energy and momentum of each two-particle subsystem is not
conserved in a three-body system, the off-shell two-body T

matrix, which we will call the off-shell T matrix for short,
must be calculated in order to compute the energies of the
Efimov states by using the Faddeev equations.

As we will see in Sec. III we can reduce the dimensionality
of the three-body integral equations by expanding the off-shell
T matrix. For spherically symmetric interactions, the T matrix
can be expanded in terms of Legendre polynomials Pl as

〈p′|T (z)|p〉 =
∞∑
l=0

(2l + 1)Pl (p̂′ · p̂)tl (p, p′, z). (4)

We can further expand the off-shell partial-wave components
tl (p, p′, z) as a sum of terms that are separable in p and p′,
namely

tl (p, p′, z) = −
∞∑

n=1

τnl (z)gnl (p, z)gnl (p
′, z), (5)

assuming real energies z < 0. There exist many ways in which
this separable expansion can be done, and whether the form
factors gnl (p, z) are energy-dependent or not depends on the
particular method used. In Sec. IV, we will come back to the
details of the separable expansion.

Appendix A presents the off-shell T matrix for the square-
well potential and relates it to the inherent potential reso-
nances. There we also introduce the notation used in this
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paper for variables made dimensionless by scaling with the
constants R, m, and h̄; e.g., lengths, momenta, and energies
are expressed in finite-range units as ā = a/R, p̄ = pR/h̄,
and Ē = EmR2/h̄2, respectively.

III. THE FADDEEV EQUATIONS

Here we review the Faddeev equations associated with
bound states, three-body recombination, and atom-dimer scat-
tering. We use these equations to find the Efimov spectrum
and the corresponding three-body parameters in Sec. V. We
solve the three-body equations in the momentum-space repre-
sentation for three identical zero-spin bosons. Our three-body
potential is the sum of three two-body interaction potentials,
each of which is the square-well potential defined in Eq. (2).

Section III A presents the eigenvalue equation from which
the bound trimer states are calculated. By expanding the three-
body wave function in spherical harmonics and form factors,
we obtain an integral equation that is solved numerically.
When deeper two-body bound states exist, the eigenvalue
equation will only have solutions for complex three-body
energies E. However, without making the three-body energy
complex, we can still estimate the energies of the three-body
quasibound states as discussed in Sec. III B. At the thresholds,
i.e., E = 0 and E = E2b, we can also extract information
about the trimer states from three-body scattering properties
such as the three-body recombination rate and the atom-dimer
scattering length. Three-body recombination is an inelastic
scattering event in which three free particles collide and a
two-body bound state is formed. The free particle carries away
part of the total momentum as the total momentum of the
three-particle system is conserved. We present the equations
to calculate the corresponding decay rates from the three-
body transition operators for recombination in Sec. III C. The
three-body transition operators for atom-dimer scattering are
presented in Sec. III D. The atom-dimer scattering length can
be calculated from the elastic atom-dimer transition operator
and also gives the inelastic decay rate when more strongly
bound dimer states exist.

A. Three-body bound states

Following Faddeev [46], the three-body bound states |�〉
can be calculated from

|�〉 = −
3∑

α=1

1

E − H0
|�α〉, (6)

where the vectors |�α〉 are determined by the following set of
coupled equations:

|�α〉 = Tα (E)G0(E)(|�β〉 + |�γ 〉), αβγ = 123, 231, 312.

(7)

Here Tα (E) is the two-body T -operator for scattering be-
tween particles β and γ in the presence of particle α, i.e.,
Tα (E) = Vα + VαG0(E)Tα (E), where G0(E) = (E − H0)−1

now contains the kinetic energy operators for all three par-
ticles in the center-of-mass frame. Now we define qα as the
relative momentum of particle α with respect to the center of
mass of the two-particle system (βγ ) and pα as the relative
momentum between particles β and γ . In momentum space,
the operators T and Tα are then related by

〈pα, qα|Tα (E)|p′
α, q′

α〉 = 〈qα|q′
α〉〈pα|T

(
E − 3

4m
q2

α

)
|p′

α〉.
(8)

For three identical spinless bosons the set of equations
given in Eq. (7) reduces to a single integral equation. In
the momentum-space representation, we obtain the following
three-body equation:

〈p, q|�(E)〉 =
∫

dq′ t
(
p, 1

2 q + q′, E − 3
4m

q2
)

E − 1
m

(q2 + q · q′ + q ′2)

×
〈
q + 1

2
q′, q′

∣∣∣∣�(E)

〉
, (9)

where we have dropped the index α and have defined the
symmetrized two-body T matrix, t (p, p′, z), as [47]

t (p, p′, z) = 〈p|T (z)|p′〉 + 〈p|T (z)| − p′〉, (10)

which only includes partial-wave components with even val-
ues of the angular momentum quantum number l. The next
step is to apply a partial-wave expansion [48,49] to Eq. (9)
for total angular momentum L = 0, which is allowed by
conservation of total angular momentum, i.e.,

〈p, q|�(E)〉 =
∞∑
l=0

(2l + 1)Pl (p̂ · q̂)�̃l (p, q,E), (11)

so that Eq. (9) reduces to

�̃l (p, q,E) =
∫

dq′ 1

E − 1
m

(q2 + q · q′ + q ′2)

[
2�lPl

(
q̂ ·

̂1

2
q + q′

)
tl

(
p,

∣∣∣∣1

2
q + q′

∣∣∣∣, E − 3

4m
q2

)]

×
∞∑

l′=0

(2l′ + 1)Pl′

(
̂

q + 1

2
q′ · q̂′

)
�̃l′

(∣∣∣∣q + 1

2
q′

∣∣∣∣, q ′, E
)

, (12)

where �l = 1
2 [1 + (−1)l]. Therefore all components

�̃l (p, q,E) with odd l are equal to zero. This set of
equations is an infinite set of two-dimensional integral
equations. Most papers in which the energies of the Efimov

trimers are calculated by using the Faddeev equations
[27,40–42] use a separable approximation of the s-wave
partial-wave component t0(p, p′, E) and neglect the
interactions involving l = 2, 4, 6, . . ., so that Eq. (12) reduces
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to a single one-dimensional integral equation. However,
we transform Eq. (12) to an infinite set of one-dimensional
integral equations by substituting the separable expansion
given by Eq. (5) into Eq. (12). For this purpose, we also
define the quantities φ̃ln(q,E) such that the functions
τnl (E − 3q2/(4m))φ̃ln(q,E) are the expansion coefficients of
�̃l (p, q,E) with respect to the basis {gnl (p,E − 3q2/(4m))},
i.e.,

�̃l (p, q,E) =
∞∑

n=1

gnl (p,Zq )τnl (Zq )φ̃ln(q,E), (13)

where Zq = E − 3q2/(4m). With those definitions, it can be
derived that the resulting three-body equation is

φ̃ln(q,E) = −
∫

dq′ 2�lPl

(
q̂ · ̂1

2 q + q′)
E − 1

m
(q2 + q · q′ + q ′2)

×τnl (Zq ′ )gnl

(∣∣∣∣1

2
q + q′

∣∣∣∣, Zq

)

×
∞∑

l′=0

∞∑
n′=1

(2l′ + 1)�l′Pl′

(
̂

q + 1

2
q′ · q̂′

)

×gn′l′

(∣∣∣∣q + 1

2
q′

∣∣∣∣, Zq ′

)
φ̃l′n′ (q ′, E). (14)

Here we have also assumed that an orthonormality condition
for the form factors gnl (p, z) exists, which is the case for
the separable expansions considered below. This infinite set
of coupled one-dimensional integral equations reduces to a
finite set of equations when a finite number of terms is used
to expand the off-shell components tl (p, p′, z). Equation (14)
is solved by discretizing the momenta q and q ′, so that this
coupled set of equations can be written as one matrix equation.
The matrix representation of the collection of integral opera-
tors in Eq. (14) is called the kernel in the following. The kernel
has an eigenvalue equal to 1 at energies where a bound trimer
state exists. Solutions can be found by varying the three-body
energy E and the scattering length a, where the latter is varied
through changing the depth of the square well.

B. Three-body resonances

The previous section has dealt with three-body bound
states consisting of three identical spinless bosons that only
exist below the two-body ground-state energy E2b,0. For
E2b,0 < E < 0 the solutions to Eq. (7) correspond to three-
body resonances. Therefore solutions only exist for complex
energies, E = ER − i/2 � where ER and � are real.

Numerically, we do not search in the complex energy plane
to find an eigenvalue that equals one, but insert real energies
into Eq. (14) and search for eigenvalues whose real part equals
one. This method is expected to work well if the complex
part of the eigenvalue is small compared to the real part, so
that the real part ER of the Efimov resonance is not much
affected by the complex part of the eigenvalue of the kernel.
Since the functions τnl (Zq ′ ) contain singularities on the in-
tegration contour when considering energies E > E2b,0, we
have to deform our integration contour near the singularities.
This method is equivalent to plugging in complex energies

E ± iε where ε → 0. The deformation of the contour can be
performed most easily by splitting the integral into a principal
value integral along the real axis and a complex part that is
proportional to the residue of the integrand.

The validity of this approach to calculate the Efimov res-
onances is tested by comparing the corresponding results at
E = 0 with the results obtained for three-body recombination
of which the formalism is discussed in Sec. III C. An advan-
tage of the eigenvalue approach over the recombination rate
analysis discussed below is that such a simple method would
also be applicable for negative energies.

C. Three-body recombination

The value of the three-body parameter a− can also be
calculated from the maxima of the low-energy three-body re-
combination rate K3 [8], which rapidly grows near resonance
with increasing scattering length as a4 [8,50,51]. The rate of
decrease in the number density n of a thermal cloud of atoms
due to three-body recombination is given by

dn

dt
= −1

2
K3n

3, (15)

where the definition of K3 is consistent with Ref. [52].
Several approaches can be adopted to calculate the three-

body recombination rate. One method is to use the adiabatic
hyperspherical approach [8,53] which solves the three-body
Schrödinger equation in position space to obtain the S-matrix
elements for three-body recombination. In this paper we use
the Alt-Grassberger-Sandhas (AGS) equations [54],

Uα0 = G−1
0 +

3∑
β = 1
β �= α

TβG0Uβ0, (16)

to find the transition amplitude for three-body recombination.
Here α = 1, 2, 3 labels the three possible configurations for
the atom-dimer state, and all operators depend on the three-
body energy for which we take the complex energy E + i0,
indicating that the real three-body energy E is approached
from the upper half of the complex energy plane. In the
following, we also assume the energy dependence of the
operators to be implicit for notational compactness.

For identical particles, it is convenient to define the opera-
tor Ŭα0 ≡ TαG0Uα0(1 + P ), where P is the sum of the cyclic
and anticyclic permutation operators. We derive from Eq. (16)
that the operator Ŭα0 satisfies the inhomogeneous equation

Ŭα0 = Tα (1 + P ) + TαG0P Ŭα0, (17)

which we solve by direct matrix inversion in the momentum-
space representation. If there is one eigenvalue of the operator
TαG0P close to one, the solution of Eq. (17) is dominated by
the corresponding eigenvector and the transition amplitude is
large. This shows that the search for eigenvalues close to one
should give good approximations where the maxima in the
three-body recombination rate can be found, as suggested in
Sec. III B.

In order to calculate the three-body recombination rate,
we need to relate the operators Ŭα0 to the on-shell transition
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amplitudes. From Eq. (16) we derive that

Uα0(1 + P ) = G−1
0 (1 + P ) + P Ŭα0, (18)

so that the zero-energy on-shell transition amplitude can be
calculated from

lim
E→0

α〈qd , ϕd |Uα0(E)|q0, p0〉

= 1
3 lim

E→0
α〈qd , ϕd |P Ŭα0(E)|q0, p0〉. (19)

The state |qd , ϕd〉α consists of a two-body bound state
|ϕd〉 formed by particles β and γ and a free particle α

whose relative momentum is qd with respect to the center
of mass of the dimer. The requirement that the transition
amplitude α〈qd , ϕd |Uα0(E)|q0, p0〉 is evaluated on the en-
ergy shell implies that E = E2b,d + [3/(4m)]q2

d = p2
0/m +

[3/(4m)]q2
0 , where E2b,d is the bound-state energy of the

dimer state labeled by the quantum number d.
Since we are only interested in the values of the three-body

parameter a−, it is sufficient to calculate the recombination
rate at zero energy, which leads to a couple of simplifications
in the numerical implementation. At positive energies the cal-
culation of the transition amplitudes α〈qd , ϕd |Uα0(E)|q0, p0〉
is hard due to the singularity resulting from the free Green’s
operator G0. For zero energy there is no singularity, which
makes the calculation of the transition amplitudes much sim-
pler. Furthermore, in the zero-energy limit three identical
particles can only recombine for zero total angular momentum
[55], which also simplifies the calculation.

The three-body recombination rate at zero energy
is determined from the on-shell transition amplitudes
α〈qd , ϕd |Uα0(E)|q0, p0〉 by the following formula [56,57]:

K3(0) = 24πm

h̄
(2πh̄)6

Nd∑
d=1

∫
dq̂d

× lim
E→0

qd · |α〈qd , ϕd |Uα0(E)|q0, p0〉|2, (20)

where Nd is the number of dimer states |ϕd〉 supported by
the potential. Energy conservation determines the final rela-
tive momentum qd by |E2b,d | = 3

4m
q2

d . Appendix B provides
more details about the way we calculate K3(0) exploiting the
separable expansion of the two-body T matrix.

The zero-energy three-body recombination rate behaves
universally at scattering lengths a that are much larger than the
range of the two-body interaction potential [3,52,58–60]. For
large negative scattering lengths the behavior of K3 is given
by

K3(0) = 6C−
sinh(2η∗)

sin2[s0 ln(a/a−)] + sinh2(η∗)

h̄a4

m
, (21)

where C− ≈ 4590 and s0 ≈ 1.00624 [3,60]. The inelasticity
parameter η∗ determines the probability to decay to deeply
bound molecules according to (1 − e−4η∗ ) [61]. This pa-
rameter thus controls the width of the Efimov resonances.
Finite-range corrections to the universal expressions for K3(0)
have been investigated in Refs. [61–63]. After calculating
K3(0) from Eq. (20) we fit the data near the three-body
resonance with Eq. (21) to obtain the value of a− and the loss
parameter η∗.

D. Atom-dimer scattering

The (n + 1)th Efimov trimer merges with the atom-
dimer threshold at a scattering length a = a∗,n where n =
0, 1, 2, . . .. These values can be determined from the max-
ima of the low-energy inelastic atom-dimer scattering rate β

[3,60], which decreases the atom density nA and dimer density
nD in a trap according to

dnD

dt
= dnA

dt
= −βnDnA. (22)

The loss rate coefficient β is related to the imaginary part of
the elastic atom-dimer scattering length aad [3,60] by

β = −6πh̄

m
Im(aad ). (23)

To determine the three-body parameter a∗ at positive scat-
tering lengths we therefore calculate the elastic atom-dimer
scattering amplitude at zero energy. This amplitude diverges
whenever a trimer state merges with the atom-dimer threshold.
Again our starting point is the AGS approach [54]. Similarly
to Eq. (16), the transition operators for atom-dimer rearrange-
ment are determined by the following system of equations:

Uγα = (1 − δγα )G−1
0 +

3∑
β = 1
β �= γ

TβG0Uβα, (24)

where we assumed the dependence on the three-body energy
E to be implicit, for which the limit to real values is taken
from the upper half of the complex energy plane. The total
transition amplitude for atom-dimer scattering from the in-
coming atom-dimer state |qi , ϕi〉 to the outgoing atom-dimer
state |qf , ϕf 〉γ is given by

3∑
α=1

γ 〈qf , ϕf |Uγα (E)|qi , ϕi〉α ≡ γ

〈
qf , ϕf

∣∣Ui
γ (qi , E)

〉
, (25)

which we use to define the states |Ui
γ (qi , E)〉. The energies are

evaluated on the energy shell, which means that E = E2b,i +
[3/(4m)]q2

i = E2b,f + [3/(4m)]q2
f . The summation over the

initial atom-dimer configurations in Eq. (25) is needed to
properly account for the identical nature of the particles.
From general scattering theory [64], it can be derived that
the s-wave atom-dimer scattering length aad is related to the
on-shell transition amplitude for elastic atom-dimer scattering
by

aad = 8

3
π2mh̄ lim

E→E2b,i

3∑
α=1

γ 〈qf , ϕi |Uγα (E)|qi , ϕi〉α, (26)

where i labels the considered dimer state. The momenta qi and
qf also go to zero in the limit E → 0 since we are considering
the on-shell transition amplitude. Note that even though the
magnitudes of the momenta qi and qf are the same on the
energy shell, the orientations of these vectors do not need to
be the same.

From Eq. (24) we derive that the states |Ui
γ (qi , E)〉, de-

fined by Eq. (25), are determined from∣∣Ui
γ (qi , E)

〉 = PG−1
0 |qi , ϕi〉γ + P

∣∣Ũ i
γ (qi , E)

〉
, (27)
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where we have defined some new states |Ũ i
γ (qi , E)〉 ≡

Tγ G0|Ui
γ (qi , E)〉. The states |Ũ i

γ (qi , E)〉 are therefore deter-
mined from the inhomogeneous equation∣∣Ũ i

γ (qi , E)
〉 = Tγ P |qi , ϕi〉γ + Tγ G0P

∣∣Ũ i
γ (qi , E)

〉
, (28)

which we again solve by direct matrix inversion in the
momentum-space representation. To reduce the dimension-
ality of this equation we expand it in terms of spherical
harmonics and we also expand the T operator in separable
terms. The resulting equations to calculate the s-wave atom-
dimer scattering length can be found in Appendix B.

Universal expressions also exist for the atom-dimer scatter-
ing length and the corresponding loss rate coefficient β [3,60].
These are given by

aad = {1.46 + 2.15 cot [s0ln(a/a∗) + iη∗]}a, (29)

β = 20.3 sinh(2η∗)

sin2 [s0 ln(a/a∗)] + sinh2(η∗)

h̄a

m
, (30)

which are valid for large positive scattering lengths. So we
calculate aad from Eq. (B5) after which the data are fitted with
Eq. (29) to obtain the value of a∗ and the loss parameter η∗.

IV. SEPARABLE EXPANSIONS
OF THE OFF-SHELL T MATRIX

In the previous section we discussed the three-body equa-
tions that we solve to find the Efimov spectrum and the
corresponding three-body parameters. We simplified the equa-
tions by approximating the two-body interaction in separable
terms. Here we discuss several approaches that can be used to
expand the partial-wave components of the off-shell T matrix
in a series of terms that are separable in the initial and final
momenta. First, we analyze two expansion methods that can
be used to expand the partial-wave components of the off-shell
T matrix in separable terms without having cross terms as in
Eq. (5). Both expansions, i.e., the spectral representation and
the Weinberg expansion, converge to the right two-body T

matrix. These two methods have properties that are similar
with respect to the two-body bound states. The difference
in computation time in three-body calculations using either
method depends on the details of these calculations. Addi-
tionally, we discuss the EST expansion method resulting in
a separable expansion including cross terms. Nevertheless,
this method is capable of producing a single-term separable
approximation for the two-body T matrix that can give rea-
sonable results for the three-body parameter [27,40].

Throughout this section, we only present separable ex-
pansions of tl (p, p′, z) for real momenta p and p′ and real
energies z � 0. Since we only solve the Faddeev equations
for three-body energies E � 0, the energy variable z in
tl (p, p′, z) only takes on values smaller than or equal to zero.
Singularities of the kernel of the three-body integral equations
that are located on the real energy axis are handled via the
residue theorem as discussed in Sec. III B, so that we do not
need to deform our integration contour. Finally, we note that
the methods considered in this section are valid when regular
scattering theory is valid, which implies that the potential is of

short-range nature; i.e., it should fall off sufficiently fast with
increasing interparticle separation [64].

A. Method I: The spectral representation

The first method that we describe can be used when the off-
shell T matrix is known. Since we only consider real energies
z � 0, the partial-wave components tl (p, p′, z) are real. The
form factors gnl (p, z) can be defined as the solutions of the
following integral equation:

−
∫ ∞

0
tl (p, p′, z)gnl (p

′, z)dp′ = τnl (z)gnl (p, z). (31)

The index n labels the eigenvalues and corresponding eigen-
vectors. Since the kernel tl (p, p′, z) is symmetric in p and
p′, the eigenvalues τnl (z) are real [65]. Furthermore, the
eigenvectors gnl (p, z) corresponding to different eigenvalues
are orthogonal and eigenvectors corresponding to the same
eigenvalue can be orthogonalized [65]. The orthonormaliza-
tion condition is given by∫ ∞

0
gn′l (p, z)gnl (p, z)dp = δn′n (32)

for real energies z. The spectral representation of tl (p, p′, z)
is then given by Eq. (5).

B. Method II: The Weinberg expansion

Another method to obtain a separable expansion is based
on the Hilbert-Schmidt theorem for symmetric integral equa-
tions [48,49,66]. This approach has been used first by Wein-
berg [67] to eliminate the divergence of the Born series and
is also known as the quasiparticle method or the Weinberg
series. The starting point of this method is to define the vectors
|g(z)〉 as the eigenfunctions of the operator V G0(z) with
eigenvalue η(z), i.e.,

V G0(z)|g(z)〉 = η(z)|g(z)〉. (33)

For z < 0 the eigenfunctions of the operator V G0 are related
to the two-body bound-state wave functions |φ(z)〉 of the
energy-dependent potential V/η(z) by

|φ(z)〉 = NnormG0(z)|g(z)〉, (34)

where Nnorm is a normalization constant. Now Eq. (33) can
be rewritten in the momentum representation. By using the
partial-wave expansion of the potential, namely

〈p′|V |p〉 =
∞∑
l=0

(2l + 1)Pl (p̂′ · p̂)Vl (p, p′), (35)

and writing the functions 〈p|g(z)〉 as 〈p|gnlm(z)〉 =
Ym

l (p̂)gnl (p, z), we end up with

−4π

∫ ∞

0
Vl (p, p′)

1
p′2
2μ

− z
gnl (p

′, z)p′2 dp′ =ηnl (z)gnl (p, z).

(36)

We label the eigenvalues ηnl (z) in decreasing order of their
absolute values. The form factors gnl (p, z) are orthogonal
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ḡ2,0(p̄, 0)
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FIG. 1. The dimensionless form factors ḡnl (p̄, z̄) ≡
gnl (p, z)

√
mh̄/R of the square-well potential calculated at

z = 0 for l = 0 and n = 1, 2, 3 using the Weinberg expansion
method.

through the orthonormalization condition given by∫ ∞

0
gn′l (p, z)gnl (p, z)

1
p2

2μ
− z

p2dp = δn′n. (37)

The eigenvalues ηnl (z) and form factors gnl (p, z) are real for
real, negative energies z [49]. Furthermore, the partial-wave
components tl (p, p′, z) can be represented in separable terms
by Eq. (5) where the expansion coefficients are given by
[48,49]

τnl (z) = 1

4π

ηnl (z)

1 − ηnl (z)
, (38)

while the energy-independent components of the potential can
be expanded as

Vl (p, p′) = − 1

4π

∞∑
n=1

ηnl (z)gnl (p, z)gnl (p
′, z). (39)

Equations (38) and (39) can be derived from the two-body
Lippmann-Schwinger equation, Eq. (3), combined with the
definition of the form factors, Eq. (36), and the corresponding
orthonormality condition given by Eq. (37).

For the square-well potential, the eigenfunctions gnl (p, z)
and eigenvalues ηnl (z) can be found analytically for energies
z � 0 [49]. Figure 1 shows these form factors for n = 1, 2, 3
and l = 0 calculated at z = 0. Clearly, the form factors are
oscillating functions which converge to zero as the magnitude
of p increases. Furthermore, for z � 0 all eigenvalues ηnl (z)
will be positive, so that Mercer’s theorem [68] applies to the
symmetrized kernel of Eq. (36). From this theorem it can
be proven that the series in Eq. (39) converges absolutely
and uniformly and so does the series of Eq. (5). We have
confirmed for the square-well potential that the Weinberg
expansion indeed converges to the analytical T matrix given
by Eq. (A1) for all negative energies relevant for the three-
body calculations. However, for large negative energies the
convergence of the Weinberg expansion is slow, because the
eigenvalues ηnl (z) decrease with increasing |z| [48]. The slow

convergence for large negative z poses no problem however
since that energy regime is not of great relevance for the
calculation of the weakly bound Efimov states.

Another method that we would like to mention is the
unitary pole expansion (UPE), which was first suggested by
Harms [69] and which is just a special case of the Weinberg
expansion discussed above. The energy-dependent form fac-
tors defined by the Weinberg expansion can be made energy-
independent if one fixes the energy z in Eq. (33) at some
constant Eb. This means that the form factors are defined by

V G0(Eb )|g(Eb )〉 = η(Eb )|g(Eb )〉. (40)

For Efimov physics we are mainly interested in energies close
to zero, so that it is natural to choose Eb = 0. The single-
term approximation of the UPE is called the unitary pole
approximation (UPA) [70,71]. In this paper we will not use
the UPE because this expansion cannot be written in the form
of Eq. (5) for z �= Eb.

C. Method III: The EST expansion

The final method that we consider here is the EST method
[72], which can also be used to approximate the partial-wave
components tl (p, p′, z) by a separable expansion. Since one
disadvantage of this method is that it is difficult to obtain the
next separable term in the expansion of tl (p, p′, z) [73], most
calculations involving the EST method take only the first sep-
arable term into account. This single-term approximation is a
generalization of the unitary pole approximation. It provides
a separable potential that reproduces one eigen- or scattering
state of the original Hamiltonian at a specific energy Ẽ. For
energies Ẽ < 0, this separable approximation is identical to
the UPA. For energies Ẽ � 0 the definition of the form factors
|g〉 is given by

|g〉 = V |ψ (+)
Ẽ

〉, (41)

where |ψ (+)
Ẽ

〉 is the considered scattering state. The separable
potential Vsep = λ|g〉〈g| will then reproduce the same scatter-
ing state |ψ (+)

Ẽ
〉 as the nonseparable potential V if the strength

λ is chosen to be

λ = (〈ψ (+)
Ẽ

|V |ψ (+)
Ẽ

〉)−1. (42)

The EST method has been used earlier to calculate the
energies of Efimov states corresponding to the potential
resonances of some van der Waals potentials [27,40,42].
In those references the separable potential is chosen such
that it reproduces the zero-energy s-wave scattering state of
the considered two-body van der Waals potentials. Choosing
Ẽ = 0 results in a scattering length of the separable potential
that is the same as the one of the original potential V . This
suggests that this method is especially useful for calculations
of the three-body parameter a−. This is an important advan-
tage of the EST approach over other separable approximations
such as the single-term approximation of methods I and II.

Once we have calculated the form factors from Eq. (41),
we can find the separable approximation to the two-
body T matrix. The separable approximation Vsep(p, p′) =
λg(p)g(p′) for the partial-wave component V0(p, p′) and
the ansatz t0(p, p′, z) = τ (z)g(p)g(p′) can be substituted in
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the Lippmann-Schwinger equation for t0(p, p′, z), which is
calculated from Eq. (3), from which we can obtain a solution
if τ (z) satisfies

τ (z) =
(

1

λ
− 4π

∫ ∞

0

1

z − p2

2μ

|g(p)|2p2 dp

)−1

. (43)

The value of λ can be calculated from Eq. (42), but if we
specify the s-wave scattering length, we can immediately
obtain it from Eq. (43) in the limit z → 0. Using Eq. (A3a)
the resulting expression is

λ = 1

4π2μ

(
h̄

|g(0)|2
a

− 2

π

∫ ∞

0
|g(p)|2 dp

)−1

. (44)

For the square-well potential, the zero-energy s-wave scatter-
ing state is also an eigenstate of the Hamiltonian correspond-
ing to the separable potential if

g(p) ∝ 1

p̄

q̄0 cos(q̄0) sin(p̄) − p̄ cos(p̄) sin(q̄0)

q̄2
0 − p̄2

, (45)

which follows from Eq. (41). The function τ (z) can then
simply be calculated from Eqs. (43) and (44).

In the rest of this paper we do not consider the full EST
expansion, but we only consider the single-term EST approx-
imation that reproduces the zero-energy s-wave scattering
state of the original potential, and we will refer to it as the
single-term EST approximation.

D. Comparison of the separable expansions

The methods described above each have some useful prop-
erties. First of all, methods I and II share the convenient
property that each two-body bound state with angular mo-
mentum quantum number l corresponds to only one specific
form factor gnl (p, z). This is obvious from the expansion
coefficient τnl (z) that only has a simple pole exactly at the
two-body binding energy of the nth dimer state with quantum
number l. Therefore one can study the effect of these deeper
bound states on the weakly bound Efimov trimers by including
and excluding the corresponding terms in the expansion of
tl (p, p′, z). This statement also applies to method III when
one goes beyond the separable approximation. Note, however,
that such an expansion also leads to cross terms in the form
factors, which make this method potentially more elaborate.

When the potential is approximated by one separable
term using method I or II (or the UPA), this approximated
potential results in a weakly bound s-wave dimer binding
energy which is consistent with the full potential V . These
separable approximations can thus be used for calculating the
Efimov states at small positive scattering lengths close to the
atom-dimer threshold, and the results of such calculations can
be compared with calculations involving the full potential.
However, the single-term EST approximation (method III)
supports a dimer state whose binding energy deviates from
the one corresponding to the potential V at small positive
scattering lengths. This can be seen from Fig. 6 of Ref. [27]
and Fig. 2 of Ref. [41] in which van der Waals potentials are
considered. Therefore we will not use this specific single-term
EST approximation to study whether the first excited Efimov
state crosses the atom-dimer threshold.
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FIG. 2. Comparison of the off-shell partial-wave component
t̄0(p̄, p̄, −p̄2) ≡ t0(p, p, − p2

2μ
)mh̄/R corresponding to the square-

well potential with the single-term EST approximation (method III).
The depth of the square well is chosen such that the first (a) and third
(b) s-wave dimer states are almost bound and ā = −15.

We have numerically confirmed that the separable expan-
sions of methods I and II converge to the analytical expression
given by Eq. (A1). The number of terms that are needed to
achieve convergence depends on the depth of the well (or
equivalently the scattering length and the number of bound
states) and the considered energy. As discussed before, the
separable expansion of tl (p, p′, z) obtained by using method
II converges slowly at large negative energies z below the
depth of the well, whereas the convergence is much faster
for method I (as well as for the UPE) at these energies. There-
fore method I has the best convergence properties. Neverthe-
less, method II has a computational advantage over method I
when performing three-body calculations in which one scans
over the scattering length at fixed three-body energy, such
as the calculation of the three-body recombination rate. The
convergence of the EST method depends on which wave
functions at which energies are chosen to be reproduced by
the approximated potential. It is difficult to make this choice
in general, so that the EST approach lends itself best to yield-
ing a separable approximation for the off-shell components
tl (p, p′, z).

The limitations of the separable approximation become
clear when we analyze the approximation for deep square-
well potentials. Figure 2 compares the full s-wave component
t0(p, p′, z) of the square-well potential supporting almost
one and three s-wave dimer states with the separable EST
approximation (method III). The diagonal of t0(p, p′, z),
i.e., p = p′, is plotted as an example of the behavior of
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FIG. 3. Form factors gnl (p, 0) of the Weinberg expansion corre-
sponding to the first (a) and fifth (b) s-wave two-body bound states
of the potentials VLJ and VSW , i.e., l = 0 and (a) n = 1 or (b) n = 5.
The potentials support exactly one s-wave bound state (a) or five
s-wave bound states (b) and the inverse scattering length 1/a is set
to zero. We defined the length scale r0 = rvdW for VLJ and r0 = R/x

for VSW where x = 5.03 (a) or x = 2.08 (b). These values for x are
chosen such that the second derivatives of both form factors match at
zero momentum.

t0(p, p′, z). The figure considers negative energies because
these are important in the three-body equations. Figure 2(a)
shows that the single-term EST approximation with Ẽ = 0
is a fine substitute for t0(p, p′, z) for the shallow square-
well potential. In this case, the potential does not support
any bound states, so that no poles are present in t0(p, p′, z)
for z � 0. Deeper potentials support two-body bound states,
and this is reflected in the poles of the off-shell T matrix.
Figure 2(b) shows that the EST approximation works well at
small momenta and small negative energies, but it fails for
|p̄z| � 0.5, where p̄z is defined in Appendix A. The failure
of the single-term EST approximation for |p̄z| � 0.5 occurs
when at least one dimer state is bound. Since the three-body
equations involve the off-shell T matrix for all energies z

below the considered three-body energy, we expect that the
single-term EST approximation gives different results on the
three-body level compared to the full square-well potential.

E. Comparison with van der Waals potentials

Here we compare the form factors between the square-
well and a van der Waals potential by using method II (the
Weinberg expansion). The considered van der Waals potential
is the Lennard-Jones potential VLJ (r ) given by

VLJ (r ) = −C6

r6

(
1 − σ 6

r6

)
. (46)

The dispersion coefficient C6 determines the van der Waals
length by rvdW = (mC6/h̄

2)1/4/2.

Figure 3(a) compares the form factors obtained for the
potentials VLJ (r ) and VSW (r ) at the first potential resonance
(i.e., z = 0, 1/a = 0). The x axis is scaled such that the small-
momentum parts of both form factors match well. The main
difference occurs at large momenta, where the form factor
g1,0(p, 0) of the square-well potential drops off to zero much
faster than the one of the Lennard-Jones potential. On the
three-body level, the small-momentum part is expected to be
dominant for the calculation of the Efimov states, especially
when the potential does not support any deeper dimer states.
General features of the Efimov spectrum of both shallow
potentials can thus be compared and we will use this result
in Sec. V A.

For potentials supporting more dimer states, the situation
changes significantly. Figure 3(b) compares the fifth form
factor obtained for the potentials VLJ (r ) and VSW (r ) at the
fifth potential resonance. The small-momentum part can again
be matched reasonably well by scaling the x axis. However,
the large-momentum part of both form factors behaves in a
completely different way. The form factor g5,0(p, 0) of the
square-well potential shows a large peak which does not occur
in the form factor of the Lennard-Jones potential. In general,
the large peak of the square-well form factor gn,0(p, 0) occurs
near p̄  (2n − 1)π/2 (except for n = 1; see Fig. 1). The
energy corresponding to this momentum p̄ is the depth of
the square well for which the nth s-wave dimer state occurs
at energy z = 0. The huge peak arises from the fact that the
zero-energy s-wave scattering wave function is not suppressed
inside the well as was pointed out by Naidon et al. [40].
The presence of the large peak is therefore a feature of the
square-well potential, and it is present in the form factors of
all three considered expansion methods discussed above. As a
result, the large-momentum part of the two-body T matrix is
expected to be non-negligible for calculating the Efimov states
of deep square-well potentials, which we will indeed observe
in Sec. V B.

V. THREE-BODY PROPERTIES INCLUDING
FINITE-RANGE EFFECTS

Now we focus on the Efimov states corresponding to the
potential resonances of the square-well potential. First we
consider a shallow square-well potential supporting only one
s-wave dimer state, and analyze the corresponding Efimov
spectrum. In particular, we focus on the behavior of the Efi-
mov states near the atom-dimer threshold and investigate the
effects of d-wave interactions on the three-body level. After
having analyzed the full Efimov spectrum, we investigate how
good a separable approximation for the square-well potential
is for the determination of the Efimov spectrum. Addition-
ally, we discuss the convergence of the different methods
described above to expand the off-shell T matrix [74]. In
the second part, we consider deeper square-well potentials
and investigate the validity of the separable approximation
for calculating the three-body parameter. For the second and
third potential resonance of the square-well potential, we have
included all partial-wave components that are necessary to
obtain converged results, and analyze the behavior of the
Efimov states near the atom-dimer threshold.
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FIG. 4. Energy of the lowest three Efimov states calculated near
the first potential resonance of the square-well potential by using
method I for Ns = 3 and Nd = 0 and for Ns = 3 and Nd = 3,
where the numbers Ns and Nd indicate the number of separable
terms that are used to approximate the partial-wave components
tl (p, p′, z) for l = 0 and l = 2, respectively. The black dashed curves
indicate the calculation for which the d-wave resonance is artificially
changed from ā = 0 to ā = 1. The blue line is the binding energy
corresponding to the s-wave dimer state. The inset shows the relative
energy difference between the energies of the s-wave dimer state and
the first excited Efimov state as a function of the inverse scattering
length.

A. Shallow square well

Here we focus on the first potential resonance of the
square-well potential. Figure 4 shows the energies of the
lowest three Efimov states as a function of the inverse s-
wave scattering length near this potential resonance. The
corresponding three-body parameters are given in Table II
in Appendix C. Figure 4 shows that not only the ground
Efimov state does not cross the atom-dimer threshold, but
also the first excited Efimov state stays below this threshold.
This can be seen from the inset in Fig. 4 in which the
relative energy difference between the energies of the s-wave
dimer state and the first excited Efimov state is shown as a
function of the inverse scattering length. The noncrossing of
the ground Efimov state with the atom-dimer threshold is also
found for shallow van der Waals potentials [39,41,42] and is
consistent with a variational principle [75] that constrains the
ground-state energy of three identical bosons, interacting via
spherically symmetric pair potentials such as the square-well
potential, to always lie below the ground-state energy of two
of such bosons, more precisely |E3b,0| � 3|E2b,0|.

The first excited Efimov state corresponding to the shallow
square-well potential does not merge with the atom-dimer
threshold. This is also reflected in the s-wave atom-dimer
scattering length shown in Fig. 5. This figure shows only
one atom-dimer resonance that occurs at ā∗,2 = 54.5 and
corresponds to the crossing of the second excited Efimov state
with the atom-dimer threshold. Another interesting feature
occurs at small positive scattering lengths. The value of aad

shows a maximum at ā = 2.07, but it does not diverge. This
indicates that the first excited Efimov state approaches the
atom-dimer threshold closely for decreasing a, but it does not

FIG. 5. The s-wave atom-dimer scattering length as a function
of the s-wave two-body scattering length a for the shallow square-
well potential and several approximations. The red dashed-dotted
curve and the blue dotted curve involve separable approximations of
t0(p, p′, z), whereas the orange dashed curve results from three-body
calculations involving the full s-wave component of the T matrix
and has been obtained using both method I and method II. The green
curve corresponds to calculations using method II and involves both
the s-wave and d-wave components of the off-shell T matrix. We
have confirmed that the inclusion of t4(p, p′, z) hardly changes the
atom-dimer scattering length.

become unbound. As a decreases further, the binding energy
of this trimer, Eb = E2b − E3b, state increases.

The noncrossing of the first excited Efimov state has
also been seen before for the Lennard-Jones potential in
Ref. [39] in which this effect was attributed to strong d-
wave interactions for van der Waals potentials near a = 1
rvdW [39,45]. This hypothesis was not confirmed because
the d-wave interactions cannot be excluded in the adiabatic
hyperspherical representation used by Ref. [39]. Our method
allows us to include or exclude d-wave interactions. Figure 4
additionally compares the calculation in which only s-wave
effects are included versus one in which both s-wave and d-
wave interactions are taken into account. The resulting curves
clearly overlap from which we conclude that the effect of
the d-wave interactions on the Efimov states is small for this
shallow square-well potential. This is not surprising since the
d-wave dimer becomes bound at ā = 0. For single-channel
interactions with a van der Waals tail, −C6r

−6, the d-wave
dimer always becomes bound at a scattering length a =
4π/[�(1/4)]2 ≈ 0.956rvdW as predicted by Gao [76]. This
prediction has been confirmed by Wang et al. [45] using the
Lennard-Jones potential as a two-body interaction.

In order to investigate the effect of strong d-wave inter-
actions that are present for van der Waals potentials at small
positive scattering lengths, we artificially increase the strength
of the d-wave interactions by making the depth V0 of the
square well larger for the d-wave partial-wave component
t2(p, p′, z) in the three-body calculation. In this way the d-
wave resonance is closer to the s-wave resonance. Figure 4
also compares the energies of the Efimov states for calcu-
lations involving the weak (unmodified) d-wave interactions
and the strong (modified) d-wave interactions in which the
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FIG. 6. Energy of the lowest three Efimov states calculated near
the first potential resonance of the square-well potential by using
method I for Ns = 3 and Ns = 1. In both cases Nd is set to zero.
The blue line is the binding energy corresponding to the s-wave
dimer state. The inset shows the relative energy difference between
the energies of the s-wave dimer state and the first excited Efimov
state as a function of the inverse scattering length [78].

d-wave resonance occurs at ā = 1. The increase of the d-wave
interaction strength has almost no effect on the ground Efimov
state because the d-wave dimer state is well separated in
energy. However, the first excited Efimov state is strongly
affected at small positive scattering lengths, where the energy
of this trimer state is decreased. So indeed strong d-wave
effects can be the cause of the noncrossing of the first excited
Efimov state with the two-body threshold for the potential
resonances of the Lennard-Jones potential as seen in Ref. [39].

The way which has so far been used most for calculating
the energies of the Efimov states via the Faddeev equations is
to approximate the s-wave component of the two-body T ma-
trix by one separable term, neglecting all higher-order partial-
wave components, and to solve the resulting integral equation.
This method is believed to work well because the nonsepara-
ble function t0(p, p′, z) is very separable in the energy regime
in which the Efimov states are located. After all, the s-wave
component t0(p, p′, z) is more separable for energies z closer
to the energy of a two-body s-wave bound state [46]. In Fig. 6
we compare the Efimov spectrum corresponding to the full
s-wave component of the T matrix with the one corresponding
to its single-term approximation. This figure shows that the
separable approximation works reasonably well, except for
the first excited Efimov trimer at small positive scattering
lengths, which is strongly affected by the remaining terms
of the two-body T matrix. In both cases the first excited
Efimov state does not cross the atom-dimer threshold as can
be seen from the inset, but it stays much closer to the two-body
threshold at small positive scattering lengths when the off-
shell T matrix is approximated by a fully separable function.
The same conclusion follows from Fig. 5 in which the atom-
dimer scattering length of the shallow square-well potential is
compared with the single-term approximations of methods I
and II. The reason why the use of the separable approximation
fails at large negative energies close to the dimer threshold
is not obvious as the off-shell T matrix is highly separable
in this regime. Instead, the cause of this failure is related

to the Green’s function G0 that is present in the Faddeev
equations, Eq. (7). This Green’s function is represented in
Eq. (14) by the factor 1/[E − (q2 + q · q′ + q ′2)/m]. The
factor q ′2/[E − (q2 + q · q′ + q ′2)/m] in Eq. (14) clearly
suppresses the small-momentum part, i.e., q ′ � h̄/R, in
which τ1,0(E − 3q ′2/(4m)) is the biggest. When the three-
body energy E is not close to zero, this suppression is much
more effective. As a result, the dominance of the first term in
the separable expansion is reduced in the determination of the
three-body bound states and the separable approximation for
t0(p, p′, z) is not sufficient to calculate the first excited Efi-
mov state accurately at energies roughly below −h̄2/(2μR2).

Based on this reasoning, one would expect that the sepa-
rable approximation would also fail in the calculation of the
ground Efimov state at large negative energies. However, the
energy of the ground Efimov state at small positive scattering
lengths is quite similar for both calculations shown in Fig. 6.
We attribute this effect to the variational principle [75] stating
that |E3b,0| � 3|E2b,0|, so that the binding energy of the
ground Efimov state, which is close to this limiting value,
cannot decrease much at small positive scattering lengths for
a decreasing number of terms in the separable expansion.
Even though this variational principle is proven for energy-
independent potentials [75,77], its proof is based on the two-
body ground-state wave function of two identical spinless
bosons interacting via a spherically symmetric potential, and
thus holds for both the square-well potential and its sepa-
rable approximation obtained by the spectral representation
(method I) or the Weinberg expansion (method II).

Table II in Appendix C summarizes the three-body pa-
rameters near the first pole of the s-wave scattering length
calculated from methods I, II, and III. The wave number κ∗

n

corresponds to the energy E∗
n = −(h̄κ∗

n )2/(2μ) of the nth
trimer state at diverging scattering length. The three-body
parameters calculated from method I converge the fastest as
more expansion terms are included. The results of method II
converge less fast because the form factors do not depend on
the scattering length for fixed range R. Furthermore, method
I provides the best single-term approximation, followed by
methods III and II, respectively. This result is not expected
to hold in general, but only for the first potential resonance.
The EST approximation is expected to be the best single-term
approximation for deeper potentials because it reproduces the
correct zero-energy two-body scattering state. Table II also
shows that the relative difference between the calculations
with and without d-wave effects is smaller than 10−3, so that
d-wave effects might need to be considered depending on the
required accuracy. This result only holds for the first potential
resonance. The d-wave effects are larger for deeper potentials
that also support d-wave dimer states as is described in the
next section.

B. Deeper square wells

For the shallow square-well potential, we have found that
a separable approximation for the off-shell T matrix works
quite well in order to determine the three-body parameter.
The validity of the separable approximation for deeper
square-well potentials is nontrivial since we have concluded
from Sec. IV D that the energy dependence of the off-shell
T matrix of square-well potentials supporting more than one
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FIG. 7. Values for the three-body parameter ā−,0 corresponding
to the N th potential resonance of the square-well potential. The
red data points (*) are obtained using the single-term EST approx-
imation, whereas the orange (◦) and blue (�) data points involve
the full expansion of the s-wave component t0(p, p′, z) using the
Weinberg expansion. The green (+) data points correspond to the
full square-well potential. The corresponding data can be found in
Tables III, IV, and V.

two-body bound state is not correctly approximated by using
the single-term EST approximation. For other classes of
finite-range interactions (including van der Waals potentials),
it has been shown that the single-term EST approximation
seems to give reasonable results for the three-body parameter
[40]. The square-well potential does not belong to one of these
classes. Therefore we go beyond the separable approximation
to test its validity.

First, we consider separable T matrices based on the EST
method. The corresponding results are shown in Fig. 7 and in
Table III in Appendix C in which the three-body parameters
are given as a function of the N th potential resonance. The
figure shows that the three-body parameter of the square well
converges as a function of the number of two-body s-wave
bound states when using the single-term EST approximation.
Interestingly, it shows a large jump between the three-body
parameters for N = 1 and N > 1. This is a typical feature for
the square-well potential, which is caused by a quite distinct
shape of the form factor g1,0(p) compared to the other form
factors gn,0(p) for n > 1, that are quite similar for small
momenta p.

The single-term EST approximation for t0(p, p′, z) corre-
sponds to a potential that does not support any deeper two-
body bound states, so that the corresponding Efimov states
are true bound states. The deeper molecular states can be
included by using the Weinberg expansion to approximate
the two-body T matrix. Considering only s-wave interactions,
we include as many terms as are necessary to get converged
results for the three-body parameter a−,0 using the two meth-
ods described in Sec. III B and Sec. III C (indicated by A and
B, respectively). These results are presented in Fig. 7 and in
Table IV in Appendix C. They differ completely from the re-
sults of Table III that were obtained upon using the single-term
EST approximation, even though both methods reproduce the

same s-wave component of the two-body scattering wave
function at zero energy. This difference is caused by the fact
that this separable approximation is not a good substitute for
the s-wave component of the two-body T matrix at larger
negative energies that are still relevant for the three-body
calculations as discussed in Sec. IV D. Figure 7 also shows
that the full expansion of t0(p, p′, z) leads to a three-body
parameter a−,0 of which the convergence as a function of
the depth of the square well is less fast than for the single-
term EST approximation. We attribute this effect to the large
peak of the form factors of the square-well potential (see
Sec. IV E) that is present in every expansion term of the
function t0(p, p′, z).

The standard approach to determine a− is to locate the
maxima in the three-body recombination rate (method B).
Table IV shows that the results obtained by searching for
which scattering length the real part of the relevant eigenvalue
(indicated by ε) equals one (method A) agrees quite well with
method B when the inelasticity parameter η∗ is small in which
case the imaginary part of ε is also small. Even though method
A is not suitable for determining the Efimov states at high
accuracy, it can be used to get a rough estimate. Furthermore,
method A can also be used at negative energies, so that it could
be used to find the full Efimov spectrum.

So far we have only included s-wave bound states, but
other dimer states with even angular momentum quantum
number l should be important as well for the square-well
potential. They enter the three-body equation via the partial-
wave components tl (p, p′, z) which we again expand in sep-
arable terms using the Weinberg expansion. The results of
these calculations for the second and third potential resonance
are shown in Fig. 7 and in Table V in Appendix C. The
three-body parameter for second and third potential resonance
is ā−,0 = −17.4 ± 0.1 and ā−,0 = −25.7 ± 0.1, respectively.
The Efimov resonance is thus indeed (strongly) affected by the
higher angular momentum components. At negative scattering
lengths near the second potential resonance (N = 2), the
square-well potential only supports two dimer states: one
s-wave and one d-wave dimer state. Thus the Efimov state
is pushed upward by this d-wave two-body bound state.
Similarly, the Efimov state near the third potential resonance
also shifts upward by the inclusion of the dimer states with
quantum numbers l = 2 and l = 4. The results of Table V
show that it is insufficient to include only s-wave interac-
tions in the calculation of the Efimov resonances. The higher
partial-wave components labeled by l become important when
the two-body potential supports bound states with angular
momentum quantum number l. These effects are not included
in the single-term EST approximation, so that the three-body
parameter calculated upon using the single-term EST approxi-
mation deviates strongly from the actual three-body parameter
for N = 2 and N = 3.

Until now we have only discussed the three-body pa-
rameter a−,0 for square-well potentials supporting several
bound states. Now we turn our attention to positive scattering
lengths. Figure 8 shows the real part of the atom-dimer scatter-
ing length and the atom-dimer loss rate for positive scattering
lengths near the second and third potential resonance of the
square-well potential. The considered dimer state in this scat-
tering process is the (weakly bound) s-wave dimer state that
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FIG. 8. (a) The atom-dimer scattering length aad and (b) the
corresponding inelastic scattering rate for positive scattering lengths
near the N th potential resonance of the square-well potential. The T

matrix is expanded using the Weinberg expansion, and the partial-
wave components with l = 0, 2, 4, 6, and 8 are taken into account.
The inset zooms in on small positive scattering lengths and displays
resonant behavior due to trimer resonances.

corresponds to the considered potential resonance. The values
at which the loss rate β peaks are summarized in Table I.
Figure 8(a) shows that first excited Efimov state merges with
the atom-dimer threshold for both potential resonances. This
trimer resonance enhances the inelastic atom-dimer scattering
cross section as can be seen from Fig. 8(b). We know that this
trimer resonance is related to the first excited Efimov trimer
due to the universal scaling relations between a− and a∗ [3].
For the third potential resonance, we see an additional peak
in β near ā = 1.46 even though the real part of aad does not
change sign. This suggests that the lowest Efimov trimer is
close to the atom-dimer threshold at ā = 1.46, but it does not
become unbound.

Furthermore, the square-well potential shows some inter-
esting behavior at small positive scattering lengths. The insets
in Fig. 8 show an additional trimer resonance near ā = ā�
for both the second and third potential resonance. As the

TABLE I. Values of the scattering lengths at which the atom-
dimer inelastic scattering rate β peaks (see Fig. 8). Positive scattering
lengths near the N th potential resonance of the square-well potential
are considered. The value of ā∗,1 is obtained by fitting the data
with Eq. (29). The loss parameter η∗ resulting from this fit is also
indicated.

N ā∗,0 ā∗,1 η∗ ā�

2 16.2 0.08 1.044
3 1.46 25.8 0.02 1.051

scattering length decreases, the real part of aad changes from
negative to positive values at ā = ā�, which means that an
additional trimer state is being formed as the depth of the
potential is increased. This trimer state is not an Efimov
trimer and it is therefore strongly dependent on the short-range
details of the interaction potential.

VI. CONCLUSION

We have studied Efimov physics for a three-body system of
identical bosons interacting via a pairwise square-well poten-
tial, we analyzed the regime of validity of the corresponding
separable potential approximation, and investigated what is
needed to improve on this approximation. For this purpose, we
solved the Faddeev equations in the momentum-space repre-
sentation. These equations depend on the two-body potential
via the off-shell T matrix that is nonseparable whenever the
considered potential itself is nonseparable. Since the off-shell
T matrix of the square-well potential is nonseparable, we
expanded this T matrix in separable terms for solving the
three-body equations. We described three distinct expansion
methods, namely the spectral representation, the Weinberg ex-
pansion, and the EST expansion, and discussed the advantages
and disadvantages of these methods on the three-body level.
The three expansion methods are not only useful for dealing
with the complete potential, but they also provide separable
approximations for the considered two-body potential.

Our study shows that a separable approximation works
quite well for a shallow square-well potential, in which case
there is only one s-wave two-body state that is bound (a > 0)
or almost bound (a < 0). In this case, the Efimov states are
true bound states. When we artificially move another two-
body quasibound state closer to the three-body threshold, i.e.,
E = 0, the binding energies of the Efimov states shift, which
shows that this quasibound state should be included as well
in the description of the three-body system. In particular,
we have found that strong d-wave interactions at positive
scattering lengths have the effect of lowering the energy of
the first excited Efimov state. This result is consistent with
a recent study [39] in which strong d-wave interactions at
positive scattering lengths are expected to be the cause of
the noncrossing of the first excited Efimov state for a shallow
Lennard-Jones potential.

The Efimov states are not only affected by two-body
states in the continuum, but also by two-body bound states
that are more deeply bound than the one that gives rise to
the considered Efimov spectrum. Consequently, a separable
approximation is insufficient for potentials that support
multiple two-body bound states. For deep square-well
potentials, the single-term EST approximation results in a
three-body parameter a−,0 that strongly deviates from the one
calculated by the Weinberg expansion, which included many
terms in the separable expansion of the s-wave component
of the two-body T matrix. This difference is caused by
the fact that the single-term EST approximation of the full
partial-wave component t0(p, p′, z) only holds at small
energies z, more precisely |p̄z| � 0.5, whereas the three-body
equations involve t0(p, p′, z) at all values of z below the
three-body energy E for which solutions are sought. The
deviation of t0(p, p′, z) with its separable approximation
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at larger negative values of z originates from the existence
of strongly bound dimer states to which the particles can
decay. When the potential becomes deeper, more two-body
states with higher angular momentum quantum numbers l

become bound. Therefore, more partial-wave components
of the off-shell T matrix become important as well for the
determination of the three-body parameter a−,0. As a rule of
thumb, we have found that whenever the potential is deep
enough to (almost) support a two-body bound state with
angular momentum quantum number l, then this partial-wave
component should be included in the three-body calculation.

Furthermore, the separable approximation is insufficient to
determine the three-body physics at large negative energies
even at energies close to a particular two-body threshold
where the off-shell T matrix is highly separable. The failure of
the separable approximation for negative three-body energies
larger than the finite-range energy, i.e., |E| � h̄2/(2μR2), has
been attributed to the Green’s function G0 present in the
Faddeev equations as discussed in Sec. V A. Therefore it is
necessary to go beyond the separable approximation in this
energy regime. Since this effect is related to the Faddeev
equations themselves, we expect that this conclusion also
holds for other potentials that describe atomic interactions
more accurately. Therefore, it is likely that the nonseparability
of the two-body interaction could affect the results of a recent
study for a > 0 in which a separable approximation was used
to study atom-dimer scattering [41].

Even though a separable approximation based on the EST
method gives reasonable results for the three-body parameter
for certain classes of potentials [40], the square-well poten-
tial does not belong to any of those classes. Therefore it
is interesting to analyze the features of the Efimov spectra
corresponding to the square-well potential itself. Our results
for this potential show that the three-body parameter a− is
varying strongly for the lowest three potential resonances.
However, our s-wave approach for deeper potentials up to 14
potential resonances suggests convergence for deep potentials.
This change in the three-body parameter a− also affects the
behavior of the Efimov states near the atom-dimer threshold.
Even though the ground Efimov state does not merge with
the atom-dimer threshold for the three lowest potential res-
onances, the first excited Efimov state only remains bound
for the first potential resonance. Finally, we have found that
additional trimer states are formed at atom-dimer thresholds
corresponding to the second and third s-wave dimer states as
the potential depth is increased.
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APPENDIX A: THE OFF-SHELL T MATRIX OF THE
SQUARE-WELL POTENTIAL

Here we present the analytical expression for off-shell
two-body T matrix of the square-well potential. The method

presented in Ref. [79] can be used to find that the off-shell
partial-wave components tl (p, p′, z) of the square-well poten-
tial are given by

tl (p, p′, z) = R

4π2μp̄p̄′h̄
q̄2 − p̄2

z

q̄2 − p̄2

× [σ (q̄; p̄, p̄′, p̄z) − σ (p̄; p̄, p̄′, p̄z)], (A1)

where

σ (x; p̄, p̄′, p̄z)

= (
p̄2

z − x2
) p̄ĵ l+1(p̄)ĥ(1)

l (p̄z) − p̄zĵ l (p̄)ĥ(1)
l+1(p̄z)

xĵ l+1(x)ĥ(1)
l (p̄z) − p̄zĵ l (x)ĥ(1)

l+1(p̄z)

× p̄′ĵ l+1(p̄′)ĵ l (x) − xĵ l (p̄′)ĵ l+1(x)

p̄′2 − x2
. (A2)

Here we have introduced the dimensionless momenta
p̄ = pR

h̄
, p̄′ = p′R

h̄
, p̄z =

√
2μzR

h̄
, q̄ =

√
q̄2

0 + p̄2
z , and q̄0 =√

2μV0R

h̄
. The Riccati-Bessel functions ĵ , n̂l , and ĥ

(1)
l are

related to the usual spherical Bessel functions by ĵ (z) =
zjl (z), n̂l (z) = −znl (z), and ĥ

(1)
l (z) = ĵ (z) − in̂l (z).

The off-shell s-wave component t0(p, p′, z) is related to
the s-wave scattering length a by

a = 4π2μh̄ lim
p,p′,z→0

t0(p, p′, z) (A3a)

= R

(
1 − tan(q̄0)

q̄0

)
. (A3b)

The scattering length of the square-well potential thus di-
verges for q̄0 = (2N − 1)π/2, where N = 1, 2, 3, . . . labels
these potential resonances and counts the number of s-wave
dimer states that are supported by this potential.

APPENDIX B: EXPLICIT FORM OF
THE AGS INTEGRAL EQUATIONS

The three-body equations can be written out explicitly in
the momentum-space representation. We expand the solution
of these equations in a bispherical basis [48,49] consisting
of spherical harmonics and in terms of the form factors
gnl (p,Zq ), so that we end up with a infinite set of one-
dimensional integral equations.

In particular, for three-body recombination we derive from
Eqs. (19), (17), and (20) that K3(0) can be calculated from

K3(0) = 24πm

h̄
(2πh̄)6

∑
nd ,ld

X2
nd ld

× qd

∣∣∣∣∣
∞∑

n=1

τn,0(0)gn,0(0, 0)An
nd ld

(qd, 0, 0)

∣∣∣∣∣
2

, (B1)

where the dimer states are labeled by the quantum numbers nd

and ld . For identical bosons the angular momentum quantum
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number ld is always even. Furthermore, the constant Xnl

relates the form factors of the expansion of tl (p, p′, z) to the
two-body bound state wave function in the momentum-space
representation, 〈p|ϕ〉 = ϕnl (p)Ym

l (p̂), according to

ϕnl (p) = Xnl

gnl (p,E2b,nl )

E2b,nl − p2

2μ

, (B2)

where E2b,nl is the binding energy of the nth dimer state
with angular momentum quantum number l. The factor Xnl is
thus simply a normalization constant, ensuring that 〈ϕ|ϕ〉 = 1.
The momentum qd depends also on the indices nd and ld
via |E2b,nd ld | = 3q2

d /(4m). The amplitudes A
ni

nl (q, qi, E) are
calculated from

A
ni

nl (q, qi, E) = 2Unl,ni ,0(q, qi, E) + 8π
∑
n′,l′

∫ ∞

0
τn′l′ (Zq ′ )

×Unl,n′l′ (q, q ′, E)Ani

n′l′ (q
′, qi, E)q ′2 dq ′,

(B3)

where the functions Unl,n′l′ (q, q ′, E) are defined by

Unl,n′l′ (q, q ′, E)

= 1

4π
�l�l′

√
2l + 1

√
2l′ + 1

×
∫

Pl

(
q̂ · ̂1

2 q + q′)Pl′
(
q̂′ · ̂1

2 q′ + q
)

1
m

(q2 + q′ · q + q ′2) − E

× gnl

(∣∣∣∣1

2
q + q′

∣∣∣∣, Zq

)
gn′l′

(∣∣∣∣1

2
q′ + q

∣∣∣∣, Zq ′

)
dq̂′. (B4)

For atom-dimer scattering in which case the considered
dimer state is an s-wave bound state, we find from Eqs. (25),
(26), (27), and (28) that the s-wave atom-dimer scattering
length can be calculated from

aad = −2

3
πmh̄X2

ni ,0 lim
qi→0

A
ni

ni ,0

(
qi, qi, E2b,i + 3

4m
q2

i

)
.

(B5)

Here the quantum number ni labels the considered s-wave
dimer state whose bound state energy is E2b,i . Remarkably,
the atom-dimer scattering length is also related to the am-
plitudes A

ni

nl (q, qi, E) which we determine from Eq. (B3) for
small values of qi , namely qia/h̄ = 10−5, so that the kinetic
energy at which the atom and dimer scatter is much smaller
than the binding energy of the dimer. The details of deriving
Eq. (B5) can be found in Refs. [48,49].

The set of equations given by Eq. (B3) involves singulari-
ties caused by the factor τnl (Zq ′ ). These poles are treated by
splitting the integral into a principal value integral along the
real axis and a complex part proportional to the residue of the
integrand. In the special case that a dimer in the two-body
ground state scatters with a free particle at zero energy, there
is only one singularity for which only the principal value part
of the singular integral matters because the residue is zero in
the limit qi → 0. Therefore the atom-dimer scattering length
is real in this particular case.

APPENDIX C: ADDITIONAL DATA

This section contains Tables II, III, IV, and V, which
support our conclusions in Sec. V.

TABLE II. Values of the three-body parameters ā−,n and κ̄∗
n

corresponding to the first potential resonance of the square-well
potential using different methods and different number of terms to
expand t0(p, p′, z) and t2(p, p′, z). Method I refers to the spectral
representation, method II refers to the Weinberg expansion, and
method III refers to the single-term EST approximation as discussed
in Sec. IV C. Method I∗ refers to method I in which the d-wave
resonance is artificially shifted from ā = 0 to ā = 1.

Method Ns Nd ā−,0 ā−,1 κ̄∗
0 κ̄∗

1

I 1 0 −3.102 −55.23 0.6647 2.831 × 10−2

I 2 0 −3.092 −54.96 0.6654 2.845 × 10−2

I 3 0 −3.091 −54.94 0.6655 2.846 × 10−2

I 4 0 −3.091 −54.93 0.6655 2.846 × 10−2

I 5 0 −3.090 −54.93 0.6655 2.846 × 10−2

I 3 1 −3.088 −54.91 0.6661 2.848 × 10−2

I 3 2 −3.088 −54.91 0.6662 2.848 × 10−2

I 3 3 −3.088 −54.91 0.6662 2.848 × 10−2

I∗ 3 3 −3.072 −54.78 0.6689 2.854 × 10−2

II 1 0 −3.163 −55.79 0.6536 2.804 × 10−2

II 2 0 −3.104 −55.09 0.6631 2.838 × 10−2

II 3 0 −3.095 −54.98 0.6647 2.844 × 10−2

II 4 0 −3.092 −54.95 0.6652 2.845 × 10−2

II 5 0 −3.091 −54.94 0.6653 2.846 × 10−2

II 10 0 −3.090 −54.93 0.6655 2.847 × 10−2

III 1 0 −3.106 −55.51 0.6610 2.815 × 10−2

TABLE III. Values for the three-body parameters ā−,n and κ̄∗
n

corresponding to the N th potential resonance of the square-well
potential using the single-term EST approximation for t0(p, p′, z).
In Appendix A the depth of the square well is related to the
number N .

N ā−,0 ā−,1 κ̄∗
0 κ̄∗

1

1 −3.106 −55.51 0.6610 2.815 × 10−2

2 −12.58 −260.8 0.1332 5.835 × 10−3

3 −13.80 −290.3 0.1193 5.235 × 10−3

4 −13.12 −274.5 0.1262 5.539 × 10−3

5 −13.38 −280.7 0.1233 5.415 × 10−3

6 −13.54 −284.2 0.1219 5.348 × 10−3

7 −12.86 −269.0 0.1288 5.654 × 10−3

8 −13.03 −272.8 0.1270 5.573 × 10−3

9 −13.08 −273.9 0.1265 5.551 × 10−3

10 −13.13 −275.0 0.1259 5.528 × 10−3

...
...

...
...

...
49 −13.23 −277.3 0.1249 5.482 × 10−3

50 −13.23 −277.3 0.1249 5.482 × 10−3

...
...

...
...

...
∞ −13.24 −277.4 0.1249 5.481 × 10−3
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TABLE IV. Values for the three-body parameters ā−,0 corre-
sponding to the N th potential resonance of the square-well potential
using the Weinberg expansion to expand the s-wave component
t0(p, p′, z). The other partial-wave components of the off-shell T

matrix are not included in these three-body calculations, so that
the values for ā−,0 should not be regarded as the true three-body
parameter of the square-well potential as shown by Table V. Two
methods (A and B) are considered. The relevant eigenvalue ε of
the three-body kernel is also given in this table for method A.
The sign of the imaginary part depends on the integration contour
(limε→0 E ± iε). The loss parameter η∗ is also listed for method B.

N ā−,0 ε − 1 ā−,0 η∗
(A) (A) (B) (B)

1 −3.09 0
2 −16.8 ±0.014i −17.0 0.050
3 −11.0 ±0.074i −19.1 0.134
4 −21.5 ±0.031i −22.8 0.108
5 −24.8 ±0.042i −25.0 0.121
6 −23.1 ±0.019i −23.9 0.078
7 −24.8 ±0.018i −25.2 0.061
8 −22.3 ±0.008i −22.3 0.037
9 −24.1 ±0.010i −24.3 0.045
10 −24.0 ±0.018i −24.6 0.101
11 −23.8 ±0.011i −23.8 0.060
12 −23.8 ±0.013i −24.6 0.083
13 −25.3 ±0.017i −25.6 0.081
14 −24.2 ±0.014i −25.0 0.082

TABLE V. Values for the three-body parameters ā−,0 correspond-
ing to the N th potential resonance of the square-well potential as a
function of the partial-wave components tl (p, p′, z) that are included
in the calculation. The Weinberg expansion is used to expand the
functions tl (p, p′, z). Two methods (A and B) are considered. The
relevant eigenvalue ε of the three-body kernel is also given in this
table for method A. The sign of the imaginary part depends on the
integration contour (limε→0 E ± iε). The loss parameter η∗ is also
listed for method B.

N l ā−,0 ε − 1 ā−,0 η∗
(A) (A) (B) (B)

2 [0] −16.8 ±0.014i −17.0 0.050
2 [0, 2] −18.1 ±0.010i −18.2 0.047
2 [0, 2, 4] −17.3 ±0.012i −17.4 0.059
2 [0, 2, 4, 6] −17.3 ±0.012i −17.4 0.060
2 [0, 2, 4, 6, 8] −17.3 ±0.012i −17.4 0.060
3 [0] −11.0 ±0.074i −19.1 0.134
3 [0, 2] −23.0 ±0.031i −22.2 0.103
3 [0, 2, 4] −27.7 ±0.015i −27.3 0.063
3 [0, 2, 4, 6] −25.9 ±0.004i −25.8 0.021
3 [0, 2, 4, 6, 8] −25.7 ±0.004i −25.7 0.021
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