

Model analytics and management

Citation for published version (APA):
Babur, Ö. (2019). Model analytics and management. [Phd Thesis 1 (Research TU/e / Graduation TU/e),
Mathematics and Computer Science]. Technische Universiteit Eindhoven.

Document status and date:
Published: 20/02/2019

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/5ff061d3-8bbe-4535-a43e-3b1d7b74aaf4

Time:
 Wednesday

20 February 2019
at 16:00

Location:
Auditorium, Senaatszaal
Eindhoven University of

Technology

A reception will be
held after the

defense ceremony

You are cordially invited to the
public defense of my

dissertation

Model

Analytics and

Management

Invitation

Önder Babur

o.babur@tue.nl

Model
Analytics and
Management

Önder Babur

M
o

d
e

l A
n

a
ly

tic
s

 a
n

d
 M

a
n

a
g

e
m

e
n

t
 Ö

n
d

e
r
 B

a
b

u
r

Model Analytics and Management

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische Universiteit
Eindhoven, op gezag van de rector magnificus, prof.dr.ir. F.P.T. Baaijens,
voor een commissie aangewezen door het College voor Promoties, in het

openbaar te verdedigen op woensdag 20 februari 2019 om 16.00 uur

door

Önder Babur

geboren te Ankara, Turkije

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de promotiecom-
missie is als volgt:

voorzitter: prof.dr. J.J. Lukkien
promotor: prof.dr. M.G.J. van den Brand
copromotor: dr.ir. L.G.W.A. Cleophas
commitee: prof.dr. M.R.V. Chaudron (Chalmers | University of Gothenburg)

prof.dr. M. Pechenizkiy
Prof.Dr.-Ing. I. Schaefer (Technische Universität Braunschweig)
dr. A. Serebrenik
prof.dr.ir. B. Tekinerdogan (Wageningen University & Research)

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd in overeenstem-
ming met de TU/e Gedragscode Wetenschapsbeoefening.

Model Analytics and Management

Önder Babur

Promotor: prof.dr. M.G.J. van den Brand
(Eindhoven University of Technology)

Copromotor: dr.ir. L.G.W.A. Cleophas
(Eindhoven University of Technology)

Additional members of the reading committee:

prof.dr. M.R.V. Chaudron (Chalmers | University of Gothenburg, Sweden)
prof.dr. M. Pechenizkiy (Eindhoven University of Technology)
Prof.Dr.-Ing. I. Schaefer (Technische Universität Braunschweig, Germany)
dr. A. Serebrenik (Eindhoven University of Technology)
prof.dr.ir. B. Tekinerdogan (Wageningen University & Research)

The work in this thesis has been carried out under the auspices of the research school IPA (Insti-
tute for Programming research and Algorithmics).
IPA dissertation series 2019-03.

Part of the work in this thesis has been carried out as part of the European Union’s FP7 project -
Multiscale Modelling Platform: Smart design of nano-enabled products in green technologies -
under grant agreement No. 604279.

A catalogue record is available from the Eindhoven University of Technology Library
ISBN: 978-90-386-4707-4

Cover design: the original graphics of the cover with license CC BY-SA 3.0 is originally down-
loaded from Internet with the following URL. A minor modification on the color scheme has
been performed.

https://commons.wikimedia.org/wiki/File:SocialNetworkAnalysis.png
Social network visualization. Published in: Grandjean Martin (2015). "Introduction à la

visualisation de données, l’analyse de réseau en histoire" Geschichte und Informatik, 18/19,
2015, 109-128.

c© Önder Babur, 2019.

Printed by ProefschriftMaken

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronically, mechanically, photocopying, recording
or otherwise, without prior permission of the author.

https://commons.wikimedia.org/wiki/File:SocialNetworkAnalysis.png

In loving memory of my mother

Acknowledgements

It has been a long and difficult journey for me to get to the point of completing my PhD. After
moving around in Europe — Master’s degree and a bit of working in Germany, then research
internship in Spain — I was very lucky to get in touch with Mark van den Brand, who offered me
a PhD position at Eindhoven University of Technology. I realize that was the time when I finally
found the right place to be, the right people to work with and a sense of belonging. I’m grateful
to Mark to have such a positive impact on my career and personal life. I’m forever in debt to
him for being the mentor he has been all the time, with constant encouragement, guidance and
delightful conversations too; especially the ones about food and wine!

The first two years, I had the chance to work with Tom Verhoeff as my daily supervisor in
the context of our project MMP. I thank him dearly for bearing with me in the alien territories of
multiphysics modelling and simulation. The turning point that led to the successful completion
of this thesis, however, is when I decided to change my topic and came up with the idea of model
analytics and management. In the beginning, I encountered quite a few obstacles, but I believed
in my idea and persevered with my research. Loek Cleophas, who took over the role of my daily
supervisor, had a huge impact in my success. I am very happy and grateful having had him by
my side. I also thank Alexander Serebrenik, who supported me with a critical stance (despite not
being my supervisor) and Ramon Schiffelers for providing me a nice environment at ASML to
collaborate.

I have been very happy and felt at home at the MDSE group. During my five years, I have
had the company of many colleagues, some of whom have already left. I thank them sincerely
for constituting the warm welcoming environment in the group, in alphabetical order: Alexan-
der Aroyo, Alexander Fedotov, Aminah Zawedde, Ana-Maria Sutii, Anton Wijs, Arash Khab-
baz Saberi, Bogdan Vasilescu, Dan Zhang, Dragan Bosnacki, Erik de Vink, Erik Scheffers, Fei
Yang, Felipe Ebert, Frank Peter, Gerard Zwaan, Guilherme Amaral Avelino, Ion Barosan, Jae-
won Oh, Jan Friso Groote, Joost Gabriels, Josh Mengerink, Jouke Stoel, Jurgen Vinju, Kees
Huizing, Kousar Aslam, Lou Somers, Luc Engelen, Luna Luo, Maarten Manders, Mahmoud
Talebi, Margje Mommers-Lenders, Maurice Laveaux, Mauricio Verano Merino, Miguel Botto
Tobar, Muhammad Osama, Neda Noroozi, Olav Bunte, Omar Alzuhaiby, Priyanka Karkhanis,
Raquel Alvarez Ramirez, Reinier Post, Rick Erkens, Rob Faessen, Rodin Aarssen, Ruurd Kuiper,
Sander de Putter, Sangeeth Kochanthara, Sarmen Keshishzadeh, Serguei Roubtsov, Sjoerd Cra-
nen, Thomas Neele, Tim Willemse, Tineke van den Bosch, Ulyana Tikhonova, Weslley Torres,
Wieger Wesselink, Yanja Dajsuren and Yuexu Chen.

ii

Throughout my PhD, I have got in touch and collaborated with several colleagues. First of
all, I appreciate the contribution of Bedir Tekinerdogan, Mehmet Akşit and Maurice van Keulen
for acquiring our community building project, and the committee of 4TU.NIRICT for giving us
the opportunity. I am more than happy to have worked with our colleagues from Technische
Universität Braunschweig, David Wille, Christoph Seidl and Ina Schaefer. I’m also grateful
for Wilbert Alberts for supporting our collaboration at ASML. Last but not least, regarding the
workshops MOMA3N and AMMoRe, thanks to the fellow colleagues Michel Chaudron and
Davide Di Ruscio for support & co-chairing, and the program committee members for reviewing.

Besides doing research, I have been involved in supervising and working with students. I
would like to explicitly thank Aishwarya Suresh, James Hay and Jia Zhang for their direct and
indirect contributions in the thesis.

Furthermore, I would like to extend my sincere gratitude to the members of my reading com-
mittee for reviewing this dissertation and providing their valuable feedback: Michel Chaudron
from Chalmers & University of Gothenburg, Mykola Pechenizkiy, Ina Schaefer from Technis-
che Universität Braunschweig, Alexander Serebrenik, and Bedir Tekinerdogan from Wageningen
University & Research.

I also would like to thank SURFSara for their generosity in supplying the computing infras-
tructure for the experiment performed in this thesis.

Thanks to IPA, I occasionally enjoyed a nice environment with fellow PhD students and
researchers in the Netherlands. Moreover, I was lucky to visit a lot of places around the world
for conferences and research visits, from Iceland to South Africa and Singapore. I treasure these
experiences, which helped me grow on a personal level as well.

Finally, I would like to thank my wife, Burcu, for the love and support she has provided me
all this time. Although I am very proud of having written this dissertation, keeping her company
is by far the greatest achievement in my life.

Önder Babur
Eindhoven, February 2019

Table of Contents

Acknowledgements i

1 Introduction to Model Analytics and Management 1
1.1 Introduction . 1
1.2 The Expanding Universe of MDE . 2
1.3 Treating MDE Artifacts as Data . 3
1.4 Relevant Domains for Model Analytics and Management 4
1.5 Research Questions . 6
1.6 Outline and Origin of Chapters . 7

2 SAMOS: A Framework for Model Analytics 11
2.1 Introduction . 11
2.2 Preliminaries: Information Retrieval, Vector Space Model, Clustering 12
2.3 An Architecture for Model Analytics . 14
2.4 Case Studies . 19
2.5 Discussion . 21
2.6 Conclusion . 24

3 Structural Comparison of Models 25
3.1 Introduction . 25
3.2 Motivation for Structural Comparison . 26
3.3 Extending SAMOS with Structural Features . 26
3.4 Case Studies with n-grams . 32
3.5 Discussion . 34
3.6 Conclusion . 38

4 Model Analytics for Variability Mining 39
4.1 Introduction . 39
4.2 Motivating Example and Overall Workflow . 41
4.3 Background . 45
4.4 Clustering for Variability Mining . 47
4.5 Variability Mining for Block-based Languages 49

iv Table of Contents

4.6 Implementation . 53
4.7 Case Study . 54
4.8 Related Work . 59
4.9 Conclusion and Future Work . 61

5 Managing a Feature Model Repository 63
5.1 Introduction . 63
5.2 Analyzing Feature Models . 65
5.3 Case Studies . 67
5.4 Discussion and Future Work . 73
5.5 Conclusion . 74

6 Metamodel Clone Detection with SAMOS 75
6.1 Introduction . 75
6.2 Metamodel Clones . 77
6.3 Other Model Clone Detector Tools . 78
6.4 Using and Extending SAMOS for Clone Detection 81
6.5 Case Studies and Comparative Evaluation . 89
6.6 Overall Discussion and Future Work . 102
6.7 Related Work . 103
6.8 Conclusion . 105

7 Model Analytics for Industrial MDE Ecosystems 107
7.1 Introduction . 107
7.2 Objectives . 108
7.3 MDE Ecosystems at ASML . 109
7.4 Model Clones: Concept and Classification . 113
7.5 Using and Extending SAMOS for ASOME Models 113
7.6 Case Studies with ASML MDE Ecosystems . 116
7.7 Discussion . 134
7.8 Related Work . 137
7.9 Conclusion and Future Work . 140

8 Towards Distributed Model Analytics 141
8.1 Introduction . 141
8.2 Background: Apache Spark . 142
8.3 Distributed VSM Computation . 142
8.4 Preliminary Results and Discussion . 144
8.5 Conclusion . 146

9 Conclusions 147
9.1 Contributions . 147
9.2 Obstacles for Model Analytics and Management 149
9.3 Future Work . 150
9.4 The Future of SAMOS as a Mature Open Framework 151

Summary 169

Curriculum Vitae 171

Chapter 1

Introduction to Model Analytics and Management

With the increased adoption of Model-Driven Engineering, the number of related artifacts in use,
such as models, metamodels and model transformations, greatly increases. To confirm this, we
present quantitative evidence from both academia — in terms of public repositories and datasets
— and industry — in terms of large domain-specific language ecosystems. To be able to tackle
this dimension of scalability in MDE, we propose to treat the artifacts as data, and apply various
techniques — ranging from information retrieval to machine learning — to analyze and manage
those artifacts in a holistic, scalable and efficient way.

1.1 Introduction
Model-Driven Engineering (MDE) promotes the use of models, metamodels and model transfor-
mations as first-class citizens to tackle the complexity of software systems. As MDE is applied
to larger problems, the complexity, size and variety of those artifacts increase. With respect
to model size and complexity, for instance, the aspect of scalability has been pointed out by
Kolovos et al. [100]. Regarding this aspect, a good amount of research has been done for han-
dling a small number of (possibly very big and complex) models, e.g. in terms of comparison,
merging, splitting, persistence or transformation. However, scalability with respect to model va-
riety and multiplicity (i.e. dealing with a large number of possibly heterogeneous models) has so
far remained mostly under the radar.

In this thesis, we advocate this aspect of scalability as a potentially big challenge for broader
MDE adoption. We highlight evidence and concerns which cross-cut the dichotomies of industry
vs. academia and of open source vs. commercial software. We thus show that scalability proves
to be an issue overall. Furthermore, we mention several related domains and disciplines as
inspiration for tackling scalability, with pointers to some related work. Yet we note the inherent
differences of MDE artifacts, e.g. models, compared to common types of data such as natural
language text and source code. This might make it difficult to directly apply techniques such as
clone detection from other domains to MDE.

2 Introduction to Model Analytics and Management

1.2 The Expanding Universe of MDE
The aforementioned scalability issue emerges partly due to some recent developments in the
MDE community. Firstly, there have been efforts to initiate public repositories to store and man-
age large numbers of models and related artifacts [32, 169]. Further efforts include mining pub-
lic repositories for MDE-related items from GitHub, e.g. Eclipse-based MDE technologies [101]
and UML models [82] (the Lindholmen dataset). In the latter, the number of UML models can
go up to more than 90k. The sheer number of models inevitably calls for techniques for search-
ing, preprocessing (e.g. filtering), analyzing and visualizing the data in a holistic and efficient
manner.

Mini Study: Number of models in public repositories. Kolovos et al. present a study on
the use of MDE technologies in GitHub1 [101]. Among a rich set of empirical results, they
report the number of search results for Ecore metamodels in GitHub (as of early 2015) to be
∼15k, and show a rapidly increasing trend in the number of commits on MDE-related files.
We were triggered by the fact that the same exercise of searching Ecore files, with the query
reported in the paper yielded (as of September 2017) more than 67k results; a fourfold increase.
We did a preliminary exercise in [26] for Ecore metamodels. Here we repeat the study (as of
November 2018) for a wider range of model types; Ecore metamodels, UML models and MPS
language models in GitHub, and feature models in S.P.L.O.T.2. Figure 1.1 depicts a strong
upward trend for all model types across the repositories. Note that these search results might
not be 100% accurate (searching based on file extensions and few keywords only), and do not
account for deletions of models in the repositories (in which case the actual numbers ought to
be even higher). We believe these metrics are a very strong indication that there are increasingly
more (meta-/)models in public repositories.

MDE in the Industry. Even within a single industry or organization, a similar situation
emerges with the increased adoption of MDE. We have been collaborating with high tech compa-
nies in the Netherlands. One of those companies maintains a set of MDE-based domain-specific
language (DSL) ecosystems. Just a single one of those ecosystems currently contains dozens of
metamodels, thousands of models and tens of thousands lines of codes of transformations. With
the complete revision history, the total number of artifacts goes up to tens of thousands. Another
company, which applies MDE in six different projects, reports a similar collection of thousands
of artifacts based on various technologies (e.g. different transformation languages). Similar sto-
ries in terms of scale hold for our other industrial partners, with growing heterogeneous sets of
artifacts involving multiple domains. Note that for systems with implicit or explicit (e.g. as a
Software Product Line) variability, variants can be considered another amplifying factor besides
versions for the total number of MDE artifacts to manage.

Along with conventional forward engineering approaches, we observe an increasing trend in
our partners with legacy software: automated migration into model-driven/-based engineering
using process mining and model learning. All the presented facts let us confirm the statement
by Brambilla et al. [46] and Whittle et al. [190] that MDE adoption in (at least some parts of)
the industry grows quite rapidly, and we conclude that tackling scalability will be increasingly
important in the future.

1https://github.com/
2http://www.splot-research.org/

https://github.com/
http://www.splot-research.org/

1.3. Treating MDE Artifacts as Data 3

2003 2005 2007 2009 2011 2013 2015 2017

Total # of Ecore metamodels in GitHub

Year

m

od
el

s

0
20

00
0

40
00

0
60

00
0

(a) Ecore metamodels in GitHub

2005 2007 2009 2011 2013 2015 2017

Total # of UML models in GitHub

Year

m

od
el

s

0
20

00
0

40
00

0
60

00
0

80
00

0

(b) UML models in GitHub

2006 2008 2010 2012 2014 2016 2018

Total # of MPS language models in GitHub

Year

m

od
el

s

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

(c) MPS language models in GitHub

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Total # feature models in S.P.L.O.T.

Year

m

od
el

s

0
20

0
40

0
60

0
80

0
10

00

(d) Feature models in S.P.L.O.T.

Figure 1.1: Total number of various types models in public repositories over the years.

1.3 Treating MDE Artifacts as Data
Based on the observations above, we advocate a perspective where MDE artifacts are treated
holistically as data, processed and analyzed with various scalable and efficient techniques, pos-
sibly inspired by related domains. Tackling large volumes of artifacts has been commonplace
in other domains, such as text mining for natural language text [85], and repository mining for
source code [91]. While we might not be able to apply those techniques as-is on MDE-related
artifacts, the general data analytics workflow remains as a rough guideline with several steps
of data collection, cleaning, integration and transformation, feature engineering and selection,
modelling (e.g. as statistical models, neural networks), and finally deployment, exploration and
visualization.

To exemplify the different nature of MDE data and hence the different requirements on its
analysis, take the problem of clone detection. Clone detection on source code is already several
steps away from text mining, as code clone detection usually involves steps such as a language-

4 Introduction to Model Analytics and Management

specific parsing of the code into abstract syntax trees (AST), normalization of identifiers, and
structural transformations [143]. Model clone detection, on the other hand, possess further chal-
lenges. To cite Deissenboeck et al., "Algorithms from code clone detection are only of minor
interest for model clone detection, as they usually work on either a linear text or token stream
or on the tree structured AST of the code, which both are not transferable to general directed
graphs." [65]. Furthermore, Störrle points out inherent differences of models compared to code,
including CASE tool integration and tool-specific representations, internal identifiers and dif-
ferent layouts with no semantic implications, abstract vs. (possibly multiple) concrete syntaxes,
etc. [167]. The case of clone detection reinforces our argument that techniques from related do-
mains such as data mining and repository mining might not be directly translatable to the MDE
domain.

1.4 Relevant Domains for Model Analytics and Management
Despite the different nature of models as discussed above, we can get inspired by the techniques
from other disciplines and try to adapt them for the problems in MDE. As a preliminary overview,
in this section we list and discuss several such domains. While there is related MDE research for
some of the items on the list, we believe a conscious and integrated mindset would mitigate the
challenges for scalable MDE.

Descriptive Statistics. Several MDE researchers have already performed empirical studies
on MDE artifacts with a statistical mindset. For instance, Kolovos et al. assesses the use of
Eclipse technologies in GitHub, giving related trend analyses [101]. Mengerink et al. present
an automated analysis framework on version control systems with descriptive analysis capabil-
ities [120, 121]. Di Rocco et al. perform a correlation analysis on metrics for various MDE
artifacts [67]. In all these approaches, authors advocate using metrics to study the nature, inter-
relation and evolution of MDE artifacts to support, e.g. maintenance tasks. Descriptive statistics
could in the most general sense be exploited to gain insight over large numbers of MDE artifacts
in terms of general characteristics, patterns, outliers, statistical distributions, dependence, etc.

Information Retrieval. Techniques from information retrieval (IR) can facilitate indexing,
searching and retrieving of models, and thus their management and reuse. The adoption of IR
techniques on source code dates back to the early 2000s [114], and within the MDE community
there has been some recent effort in this direction (e.g. by Bislimovska et al. [43]). Further IR-
based techniques involving repository management and model searching scenarios can be found
in [22, 35]. In this thesis, we adopt such approaches, which we elaborate and demonstrate in
Chapter 2 and the rest of the thesis in detail.

Natural Language Processing. Accurate Natural Language Processing (NLP) is needed to
handle realistic models with noisy text content (e.g. in element names), compound words, and
synonymy/polysemy. Given the variety of different domains, formalisms/notations and so on, it
might be problematic to blindly use NLP tools on models, e.g. just WordNet synonym check-
ing [86] without proper part-of-speech tagging and word sense disambiguation. We need to find
the right chain of NLP tools applicable for models (in contrast to source code and documenta-
tion), and reporting accuracies and disagreements between tools (along the lines of the recent
report in [126] for repository mining). Note that NLP offers further advanced tools, such as

1.4. Relevant Domains for Model Analytics and Management 5

statistical language modelling (see e.g. a recent high-impact study on source code which inves-
tigated the naturalness of source code [83]) and machine translation, open to be investigated for
applications in MDE.

Data Mining. Following the perspective of approaching MDE artifacts as data, we need scal-
able techniques to extract relevant units of information from models (features in data mining
jargon), and to discover patterns including clusters, outliers/noise and clones. Several example
applications can be found in [22, 35, 17] for domain clustering EMF metamodels, and in [127]
for classifying forward vs. reverse engineered UML models. To analyze, explore and eventually
make sense of the large datasets in MDE (e.g. the Lindholmen dataset [82]), we can investigate
what can be borrowed from comparable approaches in data mining for structured data.

Graph Databases and Graph-based Methods. Given that quite some commonly used mod-
els, such as UML, are based on an underlying graph, graph databases can be used to store, query
and reason about models. There has already been some effort using graph databases, such as
Neo4EMF [38] as a persistence layer for (potentially very big) models, and Mogwaï [61] as a
fast and complex querying mechanism for models. Another related idea is presented by Clariso
et al. [55], who advocate using graph kernel based methods for several MDE tasks such as model
searching and clustering.

Machine Learning. The increasing availability of large amounts of MDE data can be ex-
ploited, via machine learning, to automatically infer certain qualities and predictor functions
(e.g. performance). There has been a thrust of research in this direction for source code (e.g. for
fault prediction [51]), and it would be noteworthy to investigate the emerging needs of the MDE
communities and feasibility of such learning techniques for MDE. The approaches in [30] for
learning model transformations by examples, and in [31] for automatic model repair using rein-
forcement learning are some of the few pieces of such work in MDE.

Visualization. We propose visualization and visual analytics techniques to inspect a whole
dataset of artifacts (e.g. cluster visualizations in [35], in contrast with visualizing a single big
model in [100]) using various features such as metrics and cross-artifact relationships. The goals
could range from exploring a repository to analyzing an MDE ecosystem holistically and even
studying the (co-)evolution of MDE artifacts.

Distributed/Parallel Computing. With the growing amount of data to be processed, employ-
ing distributed and parallel algorithms in MDE is very relevant. There are conceptually related
approaches in MDE worthwhile investigating, e.g. distributed model transformations for very
large models [39, 49] or model-driven data analytics [80]. Yet we wish to draw attention here to
performing computationally heavy data mining or machine learning tasks for large MDE datasets
in an efficient way. We also put some effort in this direction by incorporating Apache Spark in
our analysis workflow, which will be presented in Chapter 8.

We propose this non-exhaustive list as a preliminary exploitation guideline to help tackling
scalability in MDE. Although the aforementioned domains themselves are quite mature on their
own, it should be investigated to what extent results and approaches can be transferred into the
MDE technical space.

6 Introduction to Model Analytics and Management

1.5 Research Questions
Having set the scene, we move to our main objectives. Of course, in this thesis we cannot
address all of the points above, but rather take a focused (yet relatively generic) perspective. We
formulated our main research question as follows.

RQ: How can we analyze, compare and visualize large sets of models in a generic
and scalable way?

The keywords generic and scalable are important, and are to be interpreted as, correspondingly,
(conceptually) applicable to multiple types of models and able to tackle large sets of models in
reasonable execution time. This central research question is split into three major parts. Each of
these questions is addressed in the remainder of this thesis.

One of the notable domains which were listed to get inspiration from, Information Retrieval,
advocates the fragmentation of textual data into a wide range of features (e.g. bag of words) for
convenient comparison. Fragmentation naturally leads to an approximate representation of the
entities, in contrast to e.g. keeping the full entity intact and using holistic pairwise comparison.
We follow a similar approach and identify ways of fragmenting models into features to capture
model information: model element identifiers, types, attributes, but also encoding parts of the
structure of the underlying graph of the models. We further need a general framework for repre-
senting the set of models, now fragmented into smaller units, to do analyses on the model level.
To investigate the suitable model fragments (i.e. features) and model representations to be used
in scalable model analytics, we pose the following research question.

RQ1: How (i.e. with which features) can we represent models and their relevant
information for scalable analyses?

Once we have the different types of features extracted from models, the next set of challenges
involve the methods for comparing features among themselves, and also for comparing the whole
sets of fragments representing each model. Different fragments and types of information might
require techniques for accurate comparison. For instance, complex model element names need
advanced Natural Language Processing to tackle cases where seemingly different names might
be semantically very similar. On the other hand, structural chunks of the model graph would
involve considerations on how to compare sets, sequences, ordered or unordered trees and so on.
As the next step, the leap from the low level of comparing individual features to the higher level
of comparing models raises questions on how to define and search for model similarities while
maintaining a balance between scalability and accuracy. These analyses for the whole dataset
could then be used holistically to get an overview, identify clusters, outliers and so on. These
points are captured in the following research question.

RQ2: What techniques can we use to compare models (represented as fragments) in
order to discover e.g. similarities, clusters and outliers?

The techniques and the overall framework we develop allows us to gain insights and see pat-
terns in large sets of models. This valuable information can be exploited in various applications.
These range from model recovery, which initiated our research, to model searching, repository
management and clone detection, where we performed increasingly more mature case studies.
The following research question is related to this aspect of our study.

RQ3: How can we exploit the information we acquire through these large scale
model analyses, in order to improve the state-of-the-art MDE practices for model
analytics and management?

1.6. Outline and Origin of Chapters 7

1.6 Outline and Origin of Chapters
The remainder of this thesis is structured as follows. For each chapter that is based on earlier
publications, the origins of the chapter are given. The introduction chapter is partially based on
the following paper that appeared in the workshop Grand Challenges in Modelling at STAF’17:

[26] Ö. Babur, L. Cleophas, M. van den Brand, B. Tekinerdogan, M. Aksit.
Models, More Models, and Then a Lot More. Software Technologies: Ap-
plications and Foundations - STAF 2017 Collocated Workshops, Revised
Selected Papers, page 129-135. Springer, Cham, 2017.

Chapter 2: SAMOS: A Framework for Model Analytics In this chapter, we explain the
fundamental concepts underlying our approach, and introduce our framework, SAMOS, with its
basic settings (RQ1,2). The chapter has the most important role of introducing the big picture in
terms of our research, hence answering our central research question. In terms of the applications
(RQ3), we present two case studies involving model searching in GitHub and model managemen-
t/exploration in a model repository. This chapter is based on the following publications.

[23] Ö. Babur, L. Cleophas, M. van den Brand. Towards Statistical Compar-
ison and Analysis of Models. Proceedings of the 4th International Con-
ference on Model-Driven Engineering and Software Development (MOD-
ELSWARD), page 361-367. Scitepress, 2016.

[22] Ö. Babur, L. Cleophas, M. van den Brand. Hierarchical Clustering of
Metamodels for Comparative Analysis and Visualization. Proceedings of
the 12th European Conference on Modelling Foundations and Applica-
tions (ECMFA), Held as part of STAF, page 3-18. Springer, Cham, 2016.

[17] Ö. Babur. Statistical Analysis of Large Sets of Models. Proceedings of
the 31st IEEE/ACM International Conference on Automated Software En-
gineering (ASE), page 888-891. ACM, 2016.

Chapter 3: Structural Comparison of Models In this chapter, we extend our basic model
analytics framework with a lot of advanced capabilities. The notable extension incorporates
model structure for comparison, in terms of linear chunks of n-grams. We provide a quantitative
case study to compare the clustering accuracy of n-grams as part of the validation. This chapter
mostly addresses RQ1,2 and provides a baseline for the future applications. It is based mainly on
the following publication:

[19] Ö. Babur, L. Cleophas. Using n-grams for the Automated Clustering of
Structural Models. Proceedings of the 43rd International Conference on
Current Trends in Theory and Practice of Informatics (SOFSEM), page
510-524. Springer, 2017.

Chapter 4: Model Analytics for Variability Mining In this chapter, we extend our technique
to variability mining from state chart models (RQ1,2). We identify outliers and clusters in the
input dataset of the variability mining algorithm, and use this information in a preprocessing step
to remove and group input data for improving the quality of the output variability models (RQ3).
This chapter is based on the following joint publication with colleagues from TU Braunschweig,
who contributed to the variability mining and evaluation parts of the work. Our contribution is
in the novel idea, the model clustering and the evaluation parts.

8 Introduction to Model Analytics and Management

[198] D. Wille, Ö. Babur, L. Cleophas, C. Seidl, M. van den Brand, I. Schaefer.
Improving Custom-tailored Variability Mining Using Outlier and Clus-
ter Detection. Science of Computer Programming, page 62-84. Elsevier,
2018.

Chapter 5: Managing a Feature Model Repository In this chapter, we identify the short-
comings of an uncurated public feature model repository and use the model clustering facilities
of SAMOS to find domains and clones in the repository (RQ3). We extend SAMOS for the fea-
ture model type with extended extraction and comparison capabilities needed for feature models
(RQ1,2). The chapter is based on the following paper in the workshop Analytics and Mining of
Model Repositories (AMMORE) held at MODELS’18.

[24] Ö. Babur, L. Cleophas, M. van den Brand. Model Analytics For Feature
Models: Case Studies for S.P.L.O.T. Repository. Proceedings of MOD-
ELS Workshops co-located with ACM/IEEE 21th International Confer-
ence on Model Driven Engineering Languages and Systems (MODELS),
page 787-792. CEUR, 2018.

Chapter 6: Metamodel Clone Detection with SAMOS In this chapter, we extend our tech-
nique with additional capabilities (RQ1,2) to use in (meta-)model clone detection. Model clone
detection has emerged as a major application area for our approach through our studies (RQ3).
We provide mutation and scenario-based evaluation and extensive comparative studies with state-
of-the-art model clone detectors. This chapter is based on the following publications.

[18] Ö. Babur. Clone Detection for Ecore Metamodels Using n-grams. Pro-
ceedings of the 6th International Conference on Model-Driven Engi-
neering and Software Development (MODELSWARD), page 411-419.
Scitepress, 2018.

[27] Ö. Babur, L. Cleophas, M. van den Brand. Metamodel Clone Detection
with SAMOS. Journal of Visual Languages and Computing (JVLC), Ac-
cepted for publication. Elsevier.

[28] Ö. Babur, L. Cleophas, M. van den Brand. Metamodel Clone Detec-
tion with SAMOS (extended abstract). The 17th edition of the BElgian-
NEtherlands software eVOLution symposium (BENEVOL’18), Accepted
for publication. CEUR, 2018.

Chapter 7: Model Analytics for Industrial MDE Ecosystems In this chapter, we apply our
techniques in the context of our industrial partner, ASML. Using and extending our framework
SAMOS, we explore a variety of techniques in the domain specific MDE ecosystems at ASML
(RQ1,2). We present case studies involving clone detection on ASML’s data and control models,
cross-DSL conceptual analysis and language-level clone detection on multiple ecosystems, and
finally architectural analysis on a single ecosystem. We discuss how model analytics can be used
to discover insights on MDE ecosystems and opportunities to improve them (RQ3).

[29] Ö. Babur, A. Suresh, W. Alberts, L. Cleophas, R. Schiffelers, M. van
den Brand. Model Analytics for Industrial MDE Ecosystems. In Model
Management and Analytics for Large Scale Systems, Submitted as a book
chapter. Elsevier.

1.6. Outline and Origin of Chapters 9

Chapter 8: Towards Distributed Model Analytics In this chapter, we present our preliminary
work for plugging SAMOS on top of a distributed computing backend (RQ2). Thanks to the
increased scalability and performance, SAMOS is extendable to cope with bigger datasets and
more expensive computations, with an eye towards big data. The following publication captures
our approach presented in this chapter.

[25] Ö. Babur, L. Cleophas, M. van den Brand. Towards Distributed Model
Analytics with Apache Spark. Proceedings of the 6th International Con-
ference on Model-Driven Engineering and Software Development (MOD-
ELSWARD), page 767-772. Scitepress, 2018.

Chapter 9: Conclusions This final chapter concludes this thesis. We revisit the research ques-
tions, discuss obstacles for model analytics and management research, and give directions for the
future of our framework and research.

Note that most of the chapters were deliberately kept as similar as possible to how they appear
in the corresponding papers, for the sake of understandability, consistency and completeness.

Other Publications Omitted from the Thesis The context of the EU FP7 project involving
Multiscale Modelling Platform (MMP) ignited the spark which led to the ideas and research in
this thesis. Though along the way, we drifted away from the original MMP domain. Therefore we
opted not to put our publications in this thesis as explicit chapters. In our project, we investigated
(and attempted to model) MMP frameworks and tools in terms of their architectures, features and
so on. Our studies resulted in a publication in the Multiscale Modelling and Simulation workshop
held at ICCS’15, a technical report on hundreds of MMP tools. We further contributed a book
chapter in Handbook of Software Solutions for ICME, partly thanks to our activities as a member
of the working group Open Simulation Platforms in European Materials Modelling Council.

[21] Ö. Babur, V. Simulauer, T. Verhoeff, M. van den Brand. A Survey of
Open Source Multiphysics Frameworks in Engineering. Procedia Com-
puter Science - 51, page 1088-1097. Elsevier, 2015.

[20] Ö. Babur, T. Verhoeff, M. van den Brand. Multiphysics and Multiscale
Software Frameworks: An Annotated Bibliography. Computer science
reports; Vol. 1501, 38 pages. Technische Universiteit Eindhoven, 2015.

[81] A. Hashibon, Ö. Babur, M. Hanzich, G. Houzeaux, B. Patzák. Platforms
for ICME. Handbook of Software Solutions for ICME, page 533-564.
Wiley-Blackwell, 2016.

The research in this thesis resulted in our proposal for a 4TU.NIRICT community build-
ing project Model Management and Analytics getting funded3. We pursued, and are currently
continuing on activities which initiated from that project and are published on our portal4:

• First Dutch Symposium on Model Management and Analytics, 2017 at Wageningen Uni-
versity and Research, The Netherlands,

• Special Session on Model Management and Analytics, 2018 at the 6th International Con-
ference on Model-Driven Engineering and Software Development (MODELSWARD),

3https://www.4tu.nl/nirict/en/Research/Model-Management-and-Analytics/
4https://modelanalytics.wordpress.com/

https://www.4tu.nl/nirict/en/Research/Model-Management-and-Analytics/
https://modelanalytics.wordpress.com/

10 Introduction to Model Analytics and Management

• First International Workshop on Analytics and Mining of Model Repositories, 2018 at
the 21st International Conference on Model Driven Engineering Languages and Systems
(MODELS),

• Book on Model Management and Analytics for Large Scale Systems, to be published by
Elsevier in 2019.

Chapter 2

SAMOS: A Framework for Model Analytics

Many applications in Model-Driven Engineering involve processing multiple models or meta-
models, ranging from model analysis and management to synthesis. Good examples include the
comparison and merging of metamodel variants into a common metamodel in domain model re-
covery, and model versioning. There are numerous techniques that address this challenge in the
literature, ranging from graph-based to linguistic ones. Most of these involve pairwise compar-
ison, which might work, e.g. for model versioning with a small number of models to consider.
There is, however, the problem of scalability when there is a large number of models to compare.
Besides, generally little attention has been given to the initial data analysis, visualization and
filtering activities necessary for large scale operations, especially when there are outliers and
sub-groupings. We would like to develop a generic approach for model comparison and analysis
for large datasets, by using techniques from information retrieval, natural language processing
and machine learning. We propose representing models in a vector space model, and applying
clustering techniques to analyze, compare and visualize them. We demonstrate our approach on
two Ecore datasets: a collection of 50 state machine metamodels extracted from GitHub as top
search results; and ∼100 metamodels from 16 different domains, obtained from the AtlanMod
Metamodel Zoo.

2.1 Introduction
Model-Driven Engineering (MDE) promotes the use of models and metamodels as first-class ar-
tifacts to tackle the complexity of software systems [100]. As MDE is applied to larger problems,
the complexity, size and variety of models increase. With respect to model size, the issue of scal-
ability for models has been pointed out by Kolovos et al. [100] as a limiting factor. However,
scalability with respect to model variety and multiplicity (i.e. dealing with large and heteroge-
neous sets of models) is also an important issue, and has been diagnosed by Klint et al. [98] as
an interesting aspect to explore. There are many approaches to fundamental operations such as
model comparison [159] and matching [99]; applied to problems such as model merging [47],
versioning [13] and clone detection [65]; utilizing a wide range of underlying techniques from
graph-based to linguistic ones. However those mainly focus on pairwise (or sometimes three-

12 SAMOS: A Framework for Model Analytics

way, for model versioning) and ’deep’ comparison of models in the setting of a very small
number of models. Rubin et al. [147] further discuss the inadequacy of pairwise comparison
for multiple models, including the effect of comparison order, and propose an N-way model
merging algorithm. Indeed, many problems in MDE might involve processing a large number of
models. Some examples are domain model recovery from several candidate models [98], meta-
model recovery [90], automated domain modeling [139], family mining for Software Product
Lines (SPL) from model variants [84, 155], and model clone detection [65].

An initial requirement for large scale model comparison comes from our earlier efforts for
domain model recovery. For our project involving the development of a flexible multiphysics and
multiscale engineering modelling simulation framework, we were interested in the general case
where a common (meta-)model would be reverse engineered out of several candidate (meta-)
models. Our scenarios included, for instance, constructing (1) a standardized metadata schema
that can support a number of input formats or schemas, and (2) a common metamodel or ontology
to orchestrate the interoperability of a heterogeneous set of tools. Our plan was to manually
construct (or ideally reverse engineer) those models for individual tools using sources such as
design documents and source code; and then perform a manual (or ideally automatic) merge
into a big domain model. The study in [20] indicated the overwhelming number of tools in the
domain, which made it really difficult to extend our manual model merging efforts in [21] to
cover the whole domain. So it became evident that an automated model analysis step would
be required at least as a first exploratory step towards automated domain model recovery from
multiple sources.

As another concrete setting that occurred to us during the inception phase of our approach,
consider the case where a common model (such as a 150% model in SPL terminology) is reverse
engineered out of several candidate model variants. We argue that, as the number and variety
of input models get larger, the initial data analysis and filtering step gets more relevant. This
in turn calls for inspecting the dataset to get an overview and identify potential relations such
as proximities, cluster formations and outliers. This information can be used for filtering noisy
data, for grouping models, or even for determining the order of processing for pairwise model
merging or 150% model generation.

Note that we further found more and more application scenarios for large scale model com-
parison and analytics, which will be elaborated in the rest of the thesis. To name a few, we
identified the need for large-scale model analytics for (1) model searching, (2) model repository
management and exploration, (3) clone detection in model repositories and industrial MDE/DSL
ecosystems, and (4) empirical studies and repository mining for models.

So in general, we are interested in cases where we need to process a lot of models, in a
scalable and efficient way. As an upfront disclaimer, for a big part of this thesis we focus particu-
larly on metamodels; however our approach is generic and thus applicable for the general model
comparison and clustering problems. We will demonstrate this in additional case studies in the
following chapters; for instance in Chapter 5 for feature models and in Chapter 7 for industrial
domain-specific models. The rest of the chapter and thesis uses this convention and refer to both
metamodels and models simply as models.

2.2 Preliminaries: Information Retrieval, Vector Space Model,
Clustering

We discuss here the underlying concepts of the SAMOS framework [17, 22, 23] inspired by
Information Retrieval (IR) and Machine Learning (ML). IR deals with effectively indexing, an-
alyzing, searching and comparing various forms of content including natural language text doc-

2.2. Preliminaries: Information Retrieval, Vector Space Model, Clustering 13

uments [113]. As a first step for document retrieval in general, documents are collected and in-
dexed via some unit of representation (vocabulary in short): this unit can be bag of words (simply
all words, all except stop words, or only some domain-specific terms of interest). Alternatively
more complex constructs can be used such as n-grams. N-grams originate from computational
linguistics and represent a linear encoding of (text) structure, for example "Julius Caesar" as a
single entity rather than each word separately.

Index construction can be implemented using a vector space model (VSM) with the following
major components: (1) a vector representation of occurrence or frequency of the vocabulary in
a document (named term frequency for the latter), (2) optionally zones (for instance ’author’
or ’title’), (3) weighting schemes such as inverse document frequency (idf), and zone weights,
(4) NLP techniques for handling compound terms, detecting synonyms and semantically related
words.

As an example, Manning et al. present a very simplistic representation of Shakespeare’s
plays (originally intended for boolean retrieval) [113]: the vocabulary consists of some important
terms, and the vector space is populated with the incidence (i.e. not the frequency) of those terms
in the respective plays. Table 2.1 depicts an excerpt from Manning’s example.

Anthony
and
Cleopatra

Julius
Caesar

The
Tempest Hamlet Othello Macbeth ...

Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
...

Table 2.1: A simple term incidence matrix representation of Shakespeare’s plays (excerpt
from [113]).

As exemplified, the VSM allows transforming each document into an n-dimensional vec-
tor, thus resulting in an m× n matrix for m documents. Over the VSM, document similarity
can be defined as the distance between vectors, such as Manhattan, Euclidean or cosine, to
be chosen considering the underlying problem domain and dataset. Following the example, a
very simple dot product of the VSM in Table 2.1 would give us the m×m pair-wise distance
matrix, where (computed for the limited example shown in the table) for instance “Anthony
and Cleopatra”·“Julius Caesar”=3, “Anthony and Cleopatra”·“Othello”=1 and “Anthony and
Cleopatra”·“The Tempest”=0.

Such a distance matrix can in turn be used for identifying similar groups of documents via
an unsupervised ML technique called clustering [113, 89]. Among many different clustering
methods, there is a major distinction between flat clustering and hierarchical clustering. Flat
clustering needs a pre-specified number of clusters and results in a flat assignment of each doc-
ument into one cluster. k-means is a simple but effective example of this. It aims to identify
cluster centers and minimizes the residual sum of (squares of) distances of the points assigned
to each cluster. Hierarchical clustering, on the other hand, does not require a pre-specified num-
ber of clusters, and outputs a hierarchy of proximities; it thus is more flexible and informative
than flat clustering. Hierarchical agglomerative clustering (HAC) builds a nested tree structure
(dendrogram) of the data points representing proximities and potential clusters, which is suitable
for visualization and manual inspection. The HAC algorithm calculates the pairwise distances

14 SAMOS: A Framework for Model Analytics

of all the points in the dataset. In a bottom-up manner, it starts with each data point in a sepa-
rate cluster and recursively merges similar points/clusters into bigger clusters. There is a further
parameter for HAC for determining how this merge is decided with respect to the inter-cluster
distance: single-link assumes cluster distance is the maximum similarity of any individual points
in two clusters, while complete and average-link are the correspondingly minimum and average
similarity. HAC will be used in SAMOS as we will see in the next section. In summary, the
whole process described in this section is what we refer to as a traditional workflow of document
clustering in IR.

2.3 An Architecture for Model Analytics

Set	
 of	
 (meta-­‐)models	

EMF	
 Dynamic	
 API	

(Meta-­‐)metamodel	

Unigrams	

NLP	

TokenizaBon	

Filtering	

Synonym	

DetecBon	

Matching	
 	

scheme	

Raw	
 VSM	

WeighBng	

scheme	

Weighted	
 VSM	

Distance	

CalculaBon	

Hierarch.	

Clustering	

Dendrogram	

Manual	
 	

inspecBon	

Figure 2.1: Overview of our architecture for SAMOS.

We present our approach and the framework SAMOS (Statistical Analysis of MOdelS),
which is a state-of-the-art tool for large-scale analysis of models [17]. We treat models as data,
and apply the IR document clustering workflow (introduced in Section 2.2) to models. In this
section, we elaborate our approach by a small example. A simple pipeline architecture for our
approach is given in Figure 2.1 with the main components as:

1. Data input

(a) Obtaining a set of models with the same type, e.g. Ecore metamodels in this chapter,
to be analyzed,.

2.3. An Architecture for Model Analytics 15

2. Creating VSM representation

(a) (Feature Extraction) Generating the unigram vocabulary (i.e. the element identifiers)
from the input metamodels and the unigram types (similar to zones in IR) from the
meta-metamodel (the generic Ecore meta-metamodel in our case, rather than lower
level domain-specific ones),

(b) (Extraction/Postprocessing) Expanding the unigrams with tokenization, and then fil-
tering e.g. stopwords,

(c) (Feature Comparison) Detecting synonyms and relatedness amongst tokens,
(d) (Feature Comparison) Utilizing a synonym and type matching mechanism and

threshold,
(e) (VSM Computation) Utilizing an idf and type-based weighting scheme,
(f) (VSM Computation) Calculating the term frequency matrix.

3. Statistical Analysis

(a) (Distance Calculation) Picking a distance measure and calculating the vector dis-
tances,

(b) (Clustering) Applying hierarchical clustering over the VSM,
(c) (Visualization) Visualizing the resulting dendrogram for manual inspection.

The components in the pipeline can be plugged in and out (e.g. different extractors for dif-
ferent model types) and/or switched on and off as required (e.g. synonym checking disabled for
certain types of analysis). These will be seen later in the thesis. For consistency, we will provide
a configuration of these components here and in each chapter of the thesis.

A Small Example Dataset. Here we introduce a small dataset of Ecore-based metamodels.
Ecore is a language used by Eclipse Modelling Framework (EMF) as a common meta-metamodel
to support further language development and Eclipse-based software for MDE. Conceptually
Ecore metamodels are similar to UML class diagrams. We extract a subset of the metamodel
elements (see Section 2.3.1) as representative features. Here we gather 4 metamodels related
to state machines, selected from our first case study (Section 2.4.1). The dataset, depicted in
Figure 2.2, consists of two plain finite state machine (FSM) metamodels; one hierarchical FSM
metamodel; and one data flow metamodel.

2.3.1 Representation as VSM
Generating the unigram vocabulary. From the input metamodels and Ecore meta-metamodel,
we construct a typed unigram vocabulary. We adopt a bag of words representation for the
vocabulary, where each item in the vocabulary is considered individually, discarding the con-
text and order. The type information comes from Ecore ENamedElements, i.e. identifiers: we
get the set {EPackage, EDataType, EClass, EAttribute, EReference, EEnum, EEnumLiteral and
EDataType}. Next, we use the EMF API (in Java) to recursively go over all the content for each
metamodel element to extract the union of unigrams. The first metamodel in Figure 3.1 would
yield Metamodel 1 = { (EPackage, FSM), (EClass, StateMachine), (EReference, transitions),
(EReference, states), (EAttribute, name), . . . }. Note that several parts of Ecore are deliberately
not included in the unigram generation such as EAnnotations and OCL constraints. These are
hardly relevant in our case studies and might require further techniques; thus they are left as
future work.

16 SAMOS: A Framework for Model Analytics

(a) Metamodel 1 (b) Metamodel 2

(c) Metamodel 3 (d) Metamodel 4

Figure 2.2: Example dataset.

Vocabulary expansion with tokenization, and then filtering. As identifiers in the metamod-
els typically are compound names (similar to source code identifiers), we apply tokenization
and turn compound names into their tokens to include the vocabulary. We use the Identifier
Name Tokenization Tool1 for implementing this functionality. The types of the original iden-
tifiers are retained in the tokens. The expansion of (EClass,StateMachine) for instance would
yield (EClass,State) and (EClass,Machine) unigrams. Afterwards we apply a set of filters for
the tokens: removal of stop words such as ’of’ and ’from’, removal of overly short tokens (< 3
characters) and ones consisting of only digits. Note that having done this tokenization step, we
use term and token interchangeably for this chapter. It is also noteworthy to mention that tok-

1https://github.com/sjbutler/intt

https://github.com/sjbutler/intt

2.3. An Architecture for Model Analytics 17

enization reduces the vector space for large datasets significantly: e.g. from 7507 to 5842 for
case study 2 (Section 2.4.2). This contributes to the scalability of the approach with respect to
the growing size of the dataset.

NLP techniques for synonym and relatedness detection. For the synonym and relatedness
detection, we use another array of techniques after normalizing all the tokens into lower case.
First of all, we use a Porter Stemmer (Java implementation2) for comparing word stems (e.g.
’located’, ’location’ and ’locations’ have the common stem ’locat’ and therefore are consid-
ered synonyms. Next we measure the normalized Levenshtein distances of the tokens, and con-
sider close words (< 0.1 difference) as synonyms. This allows for approximate string matching,
tackling e.g. small typos. Finally, tokens which have a WordNet3 Wu-Palmer (WuP) similarity
score [199] above a certain threshold (0.8 for the examples here) are considered synonyms. We
use the WS4J Java library4 for this calculation.

Unigram matching scheme. We further use a type matching and synonym matching scheme.
When comparing two typed unigrams, we add a reducing multiplier of 0.5 for non-exact type
matches and use the similarity score as a reducing multiplier for synonym matching. As an
example a typed unigram (EAttribute,name) would yield 1 when matched against itself, while
yielding 0.5∗0.88 = 0.44 against (EReference,label), where 0.88 is the WordNet WuP similarity
score of ’name’ and ’label’.

Idf and type weighting scheme. The similarity calculation described above gives a score in
the range [0,1] for each metamodel-token pair. On top of this, we apply a weighting scheme on
the term incidence matrix, which includes two multipliers: an inverse document frequency (idf)
and a type (zone) weight. The idf of a term t is used to assign greater weight to rare terms across
metamodels. Idf as the normalized log is defined as:

idf (t) = log10

(
1+

total metamodels
metamodels with the term t

)
(2.1)

Furthermore, a type weight (specific to the model type to be processed) is given to the un-
igrams representing their semantic importance. We claim, for instance, that classes are seman-
tically more important than attributes, thus deserve a greater weight. We have used this experi-
mental scheme for this chapter:

typeWeight(t,w) : {EPackage→ 1.0,EDataType→ 0.2,EClass→ 1.0,
EReference→ 0.5,EAttribute→ 0.3,EEnum→ 1.0,

EEnumLiteral→ 1.0,EOperation→ 0.5,EParameter→ 0.1}

A part of the resulting matrix where all the preprocessing steps above have been done, and
the term incidences have been multiplied by idf and weights, is given in Table 2.2.

2http://tartarus.org/martin/PorterStemmer/
3https://wordnet.princeton.edu/
4https://github.com/coriane/ws4j

http://tartarus.org/martin/PorterStemmer/
https://wordnet.princeton.edu/
https://github.com/coriane/ws4j

18 SAMOS: A Framework for Model Analytics

Metamodel FSM State Machine source label Initial Channels . . .
M1 0.35 0.15 0.15 0.09 0.05 0.15 0 . . .
M2 0 0.15 0.15 0.09 0.05 0.15 0 . . .
M3 0 0.15 0.15 0.09 0.04 0.15 0 . . .
M4 0 0.15 0.15 0 0.04 0.15 0.18 . . .

Table 2.2: Idf and type weighted term incidence matrix.

M1 M2 M3
M2 0.61
M3 0.56 0.10
M4 0.72 0.81 0.79

Table 2.3: Pairwise
distance matrix.

M
4

M
1

M
2

M
3

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Cluster Dendrogram

hclust (*, "average")
as.dist(1 - cosine(as.matrix(t(test3))))

H
ei
gh
t

Figure 2.3: Dendrogram of the examples.

2.3.2 Clustering
Picking a distance measure and calculating the distance matrix. As the next step of our
approach, we reduce the metamodel similarity problem into a distance measurement of the cor-
responding vector representations of metamodels. In earlier preliminary work, we had suggested
to pick Manhattan distance [23]. In common natural language text retrieval problems however,
cosine distance is used most frequently. Based on the empirical comparisons between the two
and the fact that cosine distance is a length normalized metric in the range [0,1] while Manhattan
is not, we choose to use cosine distance for the study in this chapter. With p and q being two
vectors of n dimensions, cosine distance is defined as:

cosineDistance(p,q) = 1− p ·q
‖ p ‖‖ q ‖

= 1− ∑
n
i=1 piqi√

∑
n
i=1 p2

i

√
∑

n
i=1 q2

i

. (2.2)

To be used by the hierarchical clustering, we calculate the pairwise distance matrix of all
the models. The distance matrix for the example dataset is given in Table 2.3. We use the lsa
package in R5 for this computation [191].

Hierarchical clustering and visualization. We apply agglomerative hierarchical clustering
over the VSM to obtain a dendrogram visualization. We used the hclust function in the stats
package [135] with average linkage to compute the dendrogram. The interpretation of this di-
agram depicted in Figure 2.3 is as follows: the red and green dotted line at heights 0.3 and
0.6 (manually inserted by us) denote horizontal cuts in the dendrogram. Metamodel 4, which
stays far above the cut, can be considered as a clear outlier. Depending on the requirements and

5https://www.r-project.org/

https://www.r-project.org/

2.4. Case Studies 19

Component Setting Description

Extraction

model Ecore extractor for Ecore metamodels
unit type-name pairs further units NA at this point

structure unigram structural features NA at this point
postprocessing on token expansion and filtering of stop words

Comparison
basic NLP on stemming, Levenshtein

advanced NLP on WordNet semantic relatedness (WuP)
type matching relaxed 0.5 multiplier for non-exact types

VSM
frequency max max. valued occurrence for similarity

idf norm. log normalized log for idf
weighting on type-based weighting scheme applied

Analysis
distance cosine cosine distance (angular)

clustering hclust hierarchical clustering with average linkage
cut manual manual identification of clusters

Table 2.4: SAMOS configuration for the case studies.

interpretation of the user, Metamodels 1-3 can be considered to be in one single cluster (i.e. den-
drogram cut at height=0.6) or just Metamodels 2 and 3 (i.e. cut at height=0.3).

2.4 Case Studies
We introduce two case studies to demonstrate the feasibility of our approach. Note that in the
strict sense, these are illustrations rather than case studies as formally described by Runeson et
al. [148]. Table 2.4 summarizes the SAMOS configuration for the case studies presented in this
chapter.

2.4.1 Case Study 1 - GitHub Search Results
Dataset design. For this case study, we searched GitHub6 on 2016/02/11 for Ecore metamodels
using the search terms ’state machine extension:ecore’ and extracted the top 50 results out of
1089 (code) results in total, sorted by Best Match criteria. The search facility of GitHub has an
internal mechanism for indexing and retrieving relevant text files. Although the intention of this
search is to obtain various types of state machine metamodels, we expect to get a heterogeneous
dataset, and apply clustering to give an overview of the results.

Objectives. This case study aims to demonstrate the applicability of our approach in a large
dataset of a single domain (i.e. state machines), with possible duplicates, outliers, and subdo-
mains. We are interested in large (i.e. > 3 data points) groups of closely similar (e.g. cosine
distance < 0.8) metamodels and wish to exclude the outliers. The fact that we obtain metamod-
els through searching in GitHub also relates to a secondary objective of metamodel searching
and exploration (e.g. for reuse, in the sense of traversing a repository/search results and finding
the desired metamodels).

Results. Figure 2.4 shows the resulting dendrogram. We have visually identified and labelled
the clusters from 1 to 5. Cluster 1 consists of two very similar (distance < 0.1) groups of duplicate

6https://github.com

https://github.com

20 SAMOS: A Framework for Model Analytics

2"

1" 2" 3" 4"

5"

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

22 2 32
17 16 14 12 11 8 10 15 9 13

47
43 42 40 38 37 35 36 50 48 49

1
45 46

39 41
29 33 31 26 27

30
28 24 25 18 21 19 20

23 44
34

7 6 5 3 4

Figure 2.4: Dendrogram of the first dataset.

metamodels (distance = 0) as basic FSMs with states, transitions and associations. In Cluster
2, there are two groups of UML-labelled metamodels with controller elements, triggers, etc.
Cluster 3 has metamodels with specializations such as initial and final states, while Cluster 4 has
hierarchical state machines with composite states. Metamodel 23 is a false positive; it is labelled
NHSM (non-hierarchical state machine), nevertheless is erroneously put in Cluster 4. Cluster 5
has duplicate metamodels labelled as AUIML with agents, messages, etc. and is clearly separate
from the rest of the clusters. Outliers include a metamodel with identifiers in French (22), a train
behaviour metamodel (2), the dataflow metamodel as given in the example dataset (34) and so on.
The models 45, 46, 39 and 41 are deliberately not considered as a cluster due to the requirements
we set above regarding cluster size and maximum distance.

2.4.2 Case Study 2 - AtlanMod Metamodel Zoo
Dataset design. For this case study, we used a subset of the Ecore metamodels in the AtlanMod
Ecore Metamodel Zoo7. The Zoo is a collaborative open repository of metamodels in various
formalisms including Ecore, intended to be used as experimental material by the MDE commu-
nity. The repository itself has a wide range of metamodels from different domains; e.g. huge
metamodels for programming languages or small class diagram examples for specific problems.
We manually selected a subset of 107 metamodels, from 16 different domains. The domain
labels are mostly retained as labelled in the repository. Table 2.5 depicts the domain decomposi-
tion. The cell below each domain shows the total number of metamodels in that domain, and the
corresponding identifiers used in the resulting dendrogram in Figure 2.5.

Objectives. This case study aims to demonstrate the applicability of our approach in a large
dataset of multiple domains and subdomains. The domains are chosen to be in a wide range,
hence the clustering is meant to show the groups and subgroups in the dataset in a bird’s eye
point of view. The fact that the metamodels reside in a well-known repository also leads to a
side-objective of model repository management and exploration.

7http://web.emn.fr/x-info/atlanmod/index.php?title=Ecore

http://web.emn.fr/x-info/atlanmod/index.php?title=Ecore

2.5. Discussion 21

Bibliography Conference Business Process Bug Tracker Multi-agent ADL
8(1-8) 14(9-22) 6(23-28) 3(29-31) 2(32-33) 15(34-48)

Build Tool Data Warehouse Database Office Performance SBVR
5(49-53) 6(54-59) 5(60-64) 10(65-74) 3(75-77) 4(78-81)

Soft. Process State Machine Petri Net Use Case Total
3(82-84) 8(85-92) 11(93-103) 4(104-107) 107

Table 2.5: Number of metamodels in each domain in case study 2

Results. Figure 2.5 shows the resulting dendrogram. We have visually identified and labelled
the clusters from 1 to 16. Let us summarize a part of this dendrogram. Cluster 1 (multi-agent)
is recognizable as a separate small cluster from the rest of the dataset. Clusters 2 (petri nets)
and 3 (state machines) reside as sibling branches. Similarly, clusters 4 (bibliography) and 5
(conference) are clearly detectable as sibling clusters. Cluster 6 and to some extent 8 are a
mixture of individual metamodels from different domains, therefore are erroneous according to
our initial categorization. Cluster 7 contains build tools. Cluster 9 (database) is in close proximity
to the big cluster 10 (Office), the latter of which can be decomposed into two subclusters (left
subtree as Word, and right as Excel). Clusters 11-16 correspond to various remaining domains
with varying percentages of false positives.

As an external measure of cluster validity, we employ the F0.5 measure. Given k as the cluster
labels found by our algorithm, l as the reference cluster labels and cluster pairs as all the pairs
of data points in the same cluster, Fβ can be defined as:

Precision(k, l) =
| cluster pairs in k∩ cluster pairs in l|

| cluster pairs in k|
(2.3)

Recall(k, l) =
| cluster pairs in k∩ cluster pairs in l|

| cluster pairs in l|
(2.4)

Fβ(k, l) =
(1+β2)∗Precision(k, l)∗Recall(k, l)
(β2 ∗Precision(k, l))+Recall(k, l)

(2.5)

The reason for selecting this measure is that the Fβ [112] measure is more common than
e.g. purity or the Rand index in the software engineering community, and that we value precision
higher than recall; hence the F0.5 variant. According to this formula, and using the R package
clusteval [136] for the co-membership table computation, we obtain an F0.5 score of 0.73 for
our manual clustering, which can be considered quite high for such a heterogeneous dataset.

2.5 Discussion
This chapter introduces the basics of our approach used in this thesis for model analytics. Based
on the two case studies, we confirm our previous claim that a statistical perspective on the com-
parative analysis and visualization of large datasets seems promising. We make a step towards
the handling of large datasets. Using VSM allows a uniform representation of metamodels for
statistical analysis, while the accompanying idf and type-based weighting scheme yields a suit-
able scaling in the vector space. Using a distance measure and hierarchical clustering over VSM,
many characteristics and relations among the metamodels, such as clusters, subclusters and out-
liers, can be analyzed and visualized via a dendrogram. We explore two scenarios, namely model
searching and repository exploration, for which we can utilize our approach.

22 SAMOS: A Framework for Model Analytics

1"

0.0 0.2 0.4 0.6 0.8 1.0

3233999495 989697 102101100103 9192 87908889 47 8123 6151617182219202113141112 910 51448586 59353504952 821061076064 5562616373727174 656769686670 302931 238384 7576 80817879 4146433642 37403839 2627 242528 35484777 344557585659 54104105

Figure 2.5: Dendrogram of the second dataset.

2.5. Discussion 23

Particularly for the first case study, it is clearly noticeable that there are distinct outliers
and groupings in the search results. This information can be used for instance by a domain
model recovery tool to improve the quality of the domain model. Furthermore, the model search
functionality, either in GitHub or a specialized model search engine such as [111], can improve
the navigation or precision of the search results. The second case study, on the other hand, deals
with a heterogeneous set of domains and allows identifying domains, subdomains and also the
proximities between related ones. This grouping information can be used for domain model
recovery as well as model repository management scenarios.

An advantage of our approach is the scalability and tool support. The algorithm complexities
range from linear (e.g. VSM construction) to polynomial (hierarchical clustering) with respect
to the size of the dataset and of the metamodels in it. Indeed this technique, and more advanced
versions thereof, have already been in widespread use in IR for document retrieval and clustering
of large collections of data. Moreover, R provides a plethora of efficient and flexible statisti-
cal libraries for analysis. (Meta-)metamodel-based construction of the unigram vocabulary and
tokenization provides a good amount of reduction in the vector space, improving over basic
IR indexing. Finally we would like to repeat and emphasize that, although we used the term
"metamodel" clustering throughout the chapter (because of the datasets we chose), we regard the
metamodels as instances of the Ecore meta-metamodel, thus simply as models. Thus we deal
with the generic problem of model comparison and clustering.

2.5.1 Threats to Validity
There are several threats to validity for this study. First of all, the NLP techniques employed
might not be accurate enough and need to be improved with features such as context-sensitivity
and a domain-specific thesaurus. The fact that we regard metamodel identifiers as bag of words
and unigrams, thus ignoring structural relations such as containment and inheritance and seman-
tics, could reduce the accuracy and applicability of our approach in some scenarios. Ignoring
the multiplicities and modifiers (e.g. abstract) of model elements also might lead to a similar
shortcoming. Furthermore, the datasets we used are assembled by us; actual datasets that are
used in domain model recovery or SPL extraction should be investigated to compare the results.
The visualization and manual inspection approach could limit our approach (as it is now) for
larger datasets (e.g. > 1000 items) and further reduction and visualization techniques might be
needed. Last but not least, the quantitative comparison of the accuracy of different combinations
of parameters and components in virtually every step of our approach, and automation of this
process would relieve the user from the effort of trial-and-error exploration of the parameters.

Note that we tackled a number of these threats in our follow-up studies, which are presented
in this thesis, notably in Chapters 3 and 6. Examples of these would include; incorporating struc-
tural and full attribute information in the models for comparison, automated cluster extraction,
extension to various new datasets of large sizes and consisting of new model types, and finally
quantitative as well as comparative evaluation of the different settings.

2.5.2 Related Work
Only a few comparison techniques consider multiple input models without pairwise comparisons,
such as N-way merging using weighted set packing in [147]. Feature model extraction [158] and
concept mining [1] use NLP to cluster concepts. Another technique builds domain ontologies as
the intersection of graphs of APIs [137], but does not focus on the scalability dimension of the
problem. Metamodel recovery [90] is another approach which assumes a once existing (but
somehow lost) metamodel, and does not hold for our scenario. A technique similar to ours is

24 SAMOS: A Framework for Model Analytics

applied specifically for business process models using process footprints [69], and thus lacks the
genericity of our approach. Note that a thorough literature study beyond the technological space
of MDE, for instance regarding data schema matching and ontology matching/alignment, is out
of scope for this chapter and is therefore omitted.

Clustering, on the other hand, is an older technology; see [113] for a treatment of clustering
in the context of information retrieval. It is considered in the software engineering community
mostly within a single body of code [104] or model [170]. A recent approach, which we encoun-
tered after publishing our early work, is presented by Basciani et al. [33, 34]. They share most
of our objectives and some of the techniques we use (i.e. vector representation and clustering),
though focusing on repository management. Bislimovska et al. propose information retrieval
techniques for indexing and searching WebML models [43].

2.6 Conclusion
In this chapter, we have presented a new perspective on the N-way comparison and analysis of
large sets of models for detecting relations such as groupings and outliers among them. We
have proposed a generic pipeline architecture, using the IR techniques, and VSM enhanced with
NLP techniques to uniformly represent multiple models, and applying hierarchical clustering for
comparative analysis and visualization of a large dataset. The pipeline architecture provides a
baseline for our approach, allowing new components to be plugged in/out and switched on/off for
new application scenarios. We demonstrated our approach on two real datasets; one of top search
results from GitHub and another from the AtlanMod Metamodel Zoo. The results, qualitatively
for both case studies and quantitatively for the second case study, indicate that our generic and
scalable approach is a promising first step for analyzing large datasets of models. The discovered
information of groups and outliers effectively serves towards the goal of model management in
terms of model searching and repository exploration/management.

Chapter 3

Structural Comparison of Models

Our model analytics approach provides a scalable framework for dealing with large sets of mod-
els. In the previous chapter, however, we followed a simplistic approach of representing models
with their vertex element information only. In models, particularly in structural models, infor-
mation is captured not only in model elements (e.g. in names and types) but also in the structural
context, i.e. the relation of one element to the others. Our previous approach solved the scalabil-
ity problem of model analytics while sacrificing structural information. This is in contrast with
existing model comparison approaches, which can handle very few (typically two) models by
applying sophisticated structural techniques. In this chapter we address both aspects and extend
SAMOS with features for incorporating structural context in the form of n-grams. We present a
case study, where we compare the n-gram accuracy on two datasets of Ecore metamodels in At-
lanMod Zoo: small random samples using up to trigrams and a larger one (∼100 models) up to
bigrams. We have observed (1) n-grams do not universally improve accuracy over unigrams, (2)
higher n does not lead to monotonically higher accuracy, (3) yet n-grams with n > 1 on average
perform better than with n = 1.

3.1 Introduction
In the previous chapter, we introduced our scalable model analytics framework, SAMOS. While
SAMOS focuses on scalability, the previous version (as in Chapter 2) ignores the structural
context in models: it extracts model element information (i.e. vertices in the underlying model
graph) while discarding the relations (i.e. edges). In this chapter, we aim to extend SAMOS
with features for incorporating the structural context in a generic way; acting as a compromise
between contextless techniques (i.e. SAMOS in Chapter 2) and expensive pairwise ones such as
in [118] and EMFCompare1).

We have extended SAMOS with a type of structural feature, called n-gram, which captures
structure in terms of linear chunks. n-grams [112, 179] are used in computational linguistics
to build probabilistic models of natural language text, e.g. for estimating the next word given a

1https://www.eclipse.org/emf/compare/ (see [35] for a performance comparison of their clustering approach
vs.. EMFCompare

https://www.eclipse.org/emf/compare/

26 Structural Comparison of Models

sequence of words, comparing text collections based on their n-gram profiles, or other advanced
types of language identification. In essence, n-grams represent a linear encoding of structural
context. In the rest of the chapter, we elaborate our extended extraction and comparison schemes
for n-grams. For n-grams, we compare the clustering efficiency on two datasets as subsets of the
Ecore metamodels in AtlanMod Metamodel Zoo2: random samples (20-30 models x 50 runs)
using up to trigrams (i.e. n = 3) and a larger one (107 models) up to bigrams. We conclude that
n-grams lead to higher accuracy on average, though not monotonically with increasing n.

3.2 Motivation for Structural Comparison
Model comparison taking structure information into consideration has been studied in many pair-
wise comparison approaches (see [159] for an overview). In this section we would like to moti-
vate the problem from the perspective of SAMOS and model clustering. Our previous approach
with SAMOS proposes extracting model element names as independent features (i.e. unigrams)
to be used in a VSM. This effectively ignores all the structural context of the model. Figure 3.1(a)
illustrates one of the shortcomings of using just unigrams for model clustering. An approach as
in the previous chapter would treat those three models as the same.

A"

A"

B"

C" D"

A" B"

C" D"

A" B"

C" D"

A" B"

C" D"

Unigrams:"{A,"B,"C,"D}"

Model"1" Model"2" Model"3"

(a) Three models and their unigrams.

A"

A"

B" C"
A" B"

C" D"

A" B" C"I"

A" B’" C"

M
od

el
"1
"
M
od

el
"2
"
M
od

el
"3
"

(b) Insertion and renaming.

Figure 3.1: Motivating examples for using n-grams.

Another point can be made, given the case that we extract model fragments from three differ-
ent models (Figure 3.1(b)). The case depicts that the second fragment has the vertex I inserted,
while the third fragment has B replaced by its synonym B′. Ideally we would like our clustering
technique to treat these three model fragments as strongly similar beyond the unigram similarity
of independent A,B/B′ and C.

One way of encoding the structural context would be in the form of n-grams of model ele-
ments; simpler and cheaper to compare than e.g. subgraphs. Similar ideas has been mentioned
in [35] (in the form of character n-grams within the element names), and in [23] (n-grams of
model elements from the underlying graph, as we would like to apply in our work), although just
for n = 2 in the latter. We would like to investigate the general case of using n-grams and their
effect on clustering accuracy.

3.3 Extending SAMOS with Structural Features
In this section we describe our extension to SAMOS for clustering structural models based on n-
gram representations. We extend and detail the basic feature extraction and comparison scheme

2http://web.emn.fr/x-info/atlanmod/index.php?title=Ecore

http://web.emn.fr/x-info/atlanmod/index.php?title=Ecore

3.3. Extending SAMOS with Structural Features 27

in Chapter 2. We introduce a generic n-gram setting which allows more sophisticated and ac-
curate comparison with SAMOS. Here we also integrate automated clustering, in contrast to the
previously used manual approach.

3.3.1 Models as Labelled Graphs
We consider Ecore metamodels as M = 〈V,E〉, where V is the set of type-name pair vertices
v = (t1,n1) and E is the set of edges (t2,vs,vt) with consecutively the edge type (i.e. label
of the edge on the underlying labelled graph), source and target of the edges. We consider
only a subset of Ecore, and ENamedEntity subclasses such as EPackage, EClass, EAttribute
as vertices; and structural containment, reference type and supertype relations as edges. Thus
we omit several parts including EAnnotations, OCL constraints and various attributes such as
abstract for classes, multiplicities for ETypedElements, types of EAttributes and so on. This
restriction yields the domains for the corresponding types: t1 ∈ {EPackage,EClass, . . .} and
t2 ∈ {contains, typeof ,supertype}. Traversing the model and filtering/extracting the desired el-
ements is relatively straightforward using the EMF Java API. Figure 3.2 shows a simple graph
representation of an Ecore metamodel.

EPackage(

EPackage(

BIBTEX(

EPackage(

BIBTEX(

EClass(
LocatedElement(

EA7ribute(
loca<on(

EClass(

Bibtex(

EReference(

entries(

EClass(

Entry(

EA7ribute(

key(

EPackage(

Types(

EDataType(

Integer(

contains(

contains(

contains(contains(contains(

contains(contains(

typeof(

supertype(

typeof(

EDataType(

EString(

typeof(

EDataType(

EInteger(

v0(
v0(

v1(

v2(

v3(

v4(

v5(

v6(

Figure 3.2: Graph representation of an Ecore metamodel.

Regarding whether and how we would like capture the structural context, SAMOS in short
offers the following three major settings:

• Ignore the model structure completely, use nodes as is: i.e. the unigram setting [22] as in
Chapter 2,

• Encode structure in linear chunks: i.e. the n-gram (with n > 1) setting [19] as discussed in
this chapter,

• Encode structure in fixed depth subtrees (omitted here, to be introduced in Chapter 6) [27].

3.3.2 Revisiting Unigrams
Following the simplified graph representation in Figure 3.2, the features as studied in the previous
chapter are simply the set of vertices (type-name pairs, i.e. TypedName features in SAMOS) of

28 Structural Comparison of Models

the extracted graph: we coin the term unigram for those. All the structural information captured
in E (the set of edges) is discarded.

Checking the similarity of unigrams is just vertex similarity. As discussed before, the frame-
work implements type/synonym matching, and weighting schemes. For checking the similarity
for compound-word names, vocabulary expansion of the unigrams by tokenization (as in Chap-
ter 2) is applicable and effective to be used with regular synonym checking mechanisms for
simple words.

To exemplify, follow the graph in Figure 3.2, where the vertices are simplified to domain type
and name information with the rest of the attributes being hidden. Examples of type-name pair
features to be extracted in our approach are v0 to v6.

• v0 = (EPackage, BIBTEX),

• v1 = (EClass, LocatedElement),

• v2 = (EAttribute, location),

• v3 = (EClass, Bibtex),

• v4 = (EReference, entries),

• v5 = (EClass, Entry),

• v6 = (EAttribute, key).

We have seen how we can extract basic information from metamodels. Next we move on to
capturing structural context in features.

3.3.3 Extracting n-grams
We define n-grams using paths of length n− 1 on the extracted model graph: an n-gram is a
sequence of vertices v1, . . . ,vn with n≥ 1 where for each (vi,vi+1) there exists some e ∈ E with
type t such that e = (t,vi,vi+1). We further add the restriction that the involved paths have to be
simple paths, thus having no cycles. With this basic definition, there exists an upper bound for
the longest n-gram that can be extracted from non-cyclic paths in the model.

Note that this is a simplified first-attempt formulation of n-grams where edge labels are con-
sidered only for the calculation of paths, and are not part of the n-gram itself. We treat edges
simply as relations, to denote that there is structural association between the vertices. For clone
detection in Chapter 6, we extend this simple formulation to include the edges as well.

The above formulation treats the graph in a naive and general-purpose manner. We imple-
mented two alternatives for n-gram extraction in our framework: the regular one and a domain-
specific one. In Table 3.1, we list some illustrative results of the regular n-gram extraction from
the example in Figure 3.2. We will refer to and use (a slightly modified version of) this regular
extraction in some chapters later, notably clone detection (Chapter 6).

As an alternative, we also propose a domain-specific extraction exploiting the actual seman-
tics of the Ecore meta-metamodel. Involving the three types of edges, the following shows how
we tackle Ecore models:

• Rule 1: Edges of type contains are processed regularly in the path traversal.

3.3. Extending SAMOS with Structural Features 29

n n-grams

2
(v0, v1)
(v1, v2)
(v5, v1)

3
(v0, v1, v2)
(v3, v4, v5)
(v5, v1, v2)

4 (v0, v3, v4, v5)
(v0, v5, v1, v2)

Table 3.1: Regular n-gram extraction: some examples.

n n-grams Rules

3

(v0, v1, v2) 1
(v0, v3, v4) 1,2
(v0, v3, v5) 1,2
(v3, v5, v6) 1,2
(v3, v5, v2) 1,2,3

4 (v0, v3, v5, v1) 1,2,3
(v0, v3, v5, v2) 1,2,3

Table 3.2: Domain-specific n-gram extraction: some examples.

• Rule 2: EReference types can be considered a placeholder for basic associations (e.g. sim-
ilar to UML associations). We thus fork the path traversal upon encountering typeof. One
way we include the n-gram up to the EReference vertex and terminate the traversal in order
to retain the information encoded by the relation label, if any. The other way we further
advance the traversal, jumping over that vertex.

• Rule 3: For supertypes we exploit the inheritance semantics and fork the path traversal
recursively for every supertype. This way we cover for instance the implicit associations
of a subclass with the attributes of its superclass.

Some examples of the domain specific examples are in turn given in Table 3.2. Note the
application of Rules 2,3 for a domain-specific extraction. We have used this extraction in the
case studies presented in this chapter.

3.3.4 Defining Vertex and n-gram Similarity
We used a type and name based similarity score to calculate the similarity between the Typed-
Name features in the previous chapter. As aggregate features (such as n-grams) consist of uni-
grams, we first repeat the vertex comparison for TypedName features with the following multi-
plicative vertex similarity formula:

vSim(v1,v2) = nameSim(v1,v2)∗ typeSim(v1,v2) (3.1)

nameSim is the NLP-based similarity between the names; while typeSim is between the do-
main types of the vertices. The framework, as introduced in the previous chapter, allows relaxing
the similarity multipliers: e.g. by inserting a reducing multiplier of 0.5 for non-matching types.

30 Structural Comparison of Models

Algorithm 1 Maximum similar subsequence.
function mss(P1,P2)

n1 ← size(P1)
n2 ← size(P2)
declare array score[n1 +1][n2 +1]
declare array length[n1 +1][n2 +1]
for i = n1−1 to 0 do {decrementing}

for j = n2−1 to 0 do {decrementing}
if vSim(Vi,Vj)> 0 then

score[i][j] = score[i+1][j+1]+ vSim(vi,v j)
length[i][j] = length[i+1][j+1]+1

else
score[i][j] = max(score[i+1][j],score[i][j+1])
length[i][j] = max(length[i+1][j], length[i][j+1])

end if
end for

end for
m,n← i, j, where score[i][j] = max(score)
return (score[m][n], length[m][n])

With the basic similarity calculation of simple features defined, we move to n-grams. Given
two n-grams P1, P2 with size n containing n vertices v1..n

1 ,v1..n
2 each, we can think of the following

similarity schemes:

• strict matching with all vertices equal: 1 if for every 1≤ i≤ n, vi
1 = vi

2, 0 otherwise.

• semi-relaxed matching: sum of vertex similarities, times context multiplier:

nSim(P1,P2) = ctxMult(P1,P2)∗
n

∑
i=1

vSim(vi
1,v

i
2) (3.2)

ctxMult(P1,P2) =
1+ |nonzero vSim matches between P1,P2|

1+n
(3.3)

• relaxed matching, and using the maximum similar subsequence:

nSim′(P1,P2) = ctxMult ′(P1,P2)∗ score(mss(P1,P2)) (3.4)

ctxMult ′(P1,P2) =
1+ length(mss(P1,P2))

1+n
(3.5)

The function in Equation 3.4, which we call maximum similar subsequence (mss), is a slight
modification of the longest common subsequence algorithm, particularly the standard imple-
mentation with dynamic programming [40]. We extended the matching of equal elements to
incorporate the relaxed vertex similarity schemes. The function is given in Algorithm 1. We
don’t provide a formal proof for the correctness of the algorithm, but have extensively evaluated
and tested it in our case studies and internship assignments through our research project.

Context multipliers given in Equations 3.3 and 3.5 are introduced so that larger percentages
of matches contribute to higher similarity. We have implemented variations of this multiplier in

3.3. Extending SAMOS with Structural Features 31

the framework, i.e. normalization (adding 1 to numerator and denominator, inspired by [116])
and power (1 for linear and 2 for quadratic, inspired by the implicit quadratic multiplier in [147]).
According to the formulation the multiplier in Equation 3.5 is a normalized linear one. The third
scheme (Equations 3.4, 3.5) is used for the rest of the chapter.

3.3.5 Other Modifications to the Framework
Compared to the previous chapter (and hence [22]), one major modification to the framework
is in the used NLP techniques. The previous technique uses tokenization and filtering to ex-
pand unigrams. For instance, the unigram with the compound name (EClass, LocatedEle-
ment) would be expanded to two separate unigrams (EClass, Located) and (EClass, Element).
Afterwards synonym checking is performed on the names of expanded unigrams using algo-
rithms for single-words. While this works efficiently for unigrams, adopting this directly for
n-grams has some problems. Expanding an n-gram of size n, with compound-word names of
average t tokens leads to a combinatorial explosion (by tn) of features in the VSM. An exam-
ple would be the bigram (EClass, LocatedElement)-(EAtribute, geographicalLocation) expand-
ing into {(EClass, Located)-(EAttribute, geographical), (EClass, Located)-(EAttribute, Loca-
tion),(EClass, Element)-(EAttribute, geographical),(EClass, Element)-(EAttribute, Location)}.
For unigrams, it has been reported in the previous chapter that tokenization helps reducing the
vector space as larger datasets tend to have a higher percentage of common tokens. For n-grams,
however, this is not the case given the limited dataset: there are not enough common tokenized
n-grams in the Ecore dataset used in this chapter and as a result the vector space explodes. For
this reason, we have integrated a compound-word vertex similarity measure synmulti. Given two
vertices with compound names l1 and l2, the similarity is the total sum of maximum synonym
matches for each token pair (synsimple, as informally explained in Chapter 2 e.g. with synonym
checking and so on), divided by the largest of the token set sizes:

synmulti(l1, l2) =
∑i argmax

j
(synsingle(T i

1 ,T
j

2))

max(|T1|, |T2|)
(3.6)

Ti = f ilter(tokenize(li)) f or i = 1,2 (3.7)

This technique, supported by a cached lookup for synonyms or an in-memory dictionary,
greatly improves the performance of checking synonyms (for n-grams with n > 1) over the ’tok-
enize & expand’ approach used in Chapter 2.

Another parameter we have built into the framework, is the calculation of term frequencies,
rather than binary occurrence/incidences. During our experimental runs we have encountered the
fact that allowing synonym checks and relaxed type checks leads to multiple non-zero matches
across n-grams of different models. Hence two different calculation strategies are integrated into
the framework when populating the VSM. Given a model M consisting of n-grams {M1, . . . ,Mn},
and its vector space representation S, the value for the vector space cell S j is:

• incidence: valueAt(M,S j) = argmax
i

(nSim(Mi,S j)),

• frequency: valueAt(M,S j) = ∑
n
i=1 nSim(Mi,S j).

We have empirically evaluated both calculations and observed higher accuracy with the latter
strategy in the scope of the experiments in this chapter. The readers should thus assume the latter
is applied throughout this chapter. As a brief summary of the extensions, we introduced the fea-
ture type n-gram which captures structural information, implemented a domain-specific way of

32 Structural Comparison of Models

extracting those from Ecore metamodels, defined similarity calculations on vertices and n-grams,
adapted the NLP component for compound words, and integrated frequency-based VSM com-
putation into SAMOS. A final modification to the framework is the use of automatic extraction
of clusters from the dendrogram. This will be detailed in the next section, along with the case
studies.

3.4 Case Studies with n-grams
In order to quantitatively compare the accuracy of using n-grams with n = 1 versus n > 1, we
have designed two case studies. Before moving on to the case studies themselves, we would
like to list exhaustively the parameters of the framework for these experiments. Note that we
have deliberately aimed to disable the features which are of relatively less importance for this
work; to minimize the overall set of parameters and focus on the ones related to the application
of n-grams. The framework settings are detailed below. Readers are also referred to Table 3.3
for a concise summary of these settings.
• n-gram extraction scheme: domain-specific scheme (Section 3.3.3), with n = {1,2,3} for

the first experiment, and n = {1,2} for the second one.
• NLP features: compound-word synonym checking using internal tokenization/filtering

(Section 3.3.5) with basic NLP processing such as stemming and Levenshtein distance.
• Type matching: relaxed for model elements with different types, i.e. allowing non-exact

type matches.
• n-gram similarity: the above vertex similarity settings (synonym and type matching), with

relaxed matching for equal order n-grams and maximum similar subsequence (Section
3.3.4, Equations 3,4).

• VSM calculation: raw VSM with term frequencies (Section 3.3.5).
• Hierarchical clustering: hclust function is used with average linkage and cosine distance

(from the lsa package3) to obtain the dendrogram.
The last step of the framework, i.e. clustering, is enhanced in this work with the automatic

extraction or ’cutting’ of the dendrogram. For this we design two scenarios. In scenario 1,
the user is assumed to be able to guess the number of clusters in the dataset, say n, with ±20%
accuracy. For all the integers in the range: [f loor(0.8∗n),ceiling(1.2∗n)], we apply the standard
cutree function of R to perform a straight horizontal cut on the dendrogram. As an external
measure of cluster validity, we employ the F0.5 measure (see previous chapter and [22] for details
and the cluster labels for ground truth).

For scenario 2, we assume that the number of clusters cannot be guessed; rather a dynamic
cut using the cutreeDynamic function in the dynamicTreeCut4 package in R has to be per-
formed. Dynamic cut aims to overcome the simplification of a constant cutoff value, by means
of advanced flexible and adaptive cutting algorithms. For this function we use the permutation
of the following parameters for cutreeDynamic:

• maximum cut height ∈ {0.6,0.7,0.8,0.9}; where to cut the tree into subtrees, with height
corresponding to the cosine distance in the range [0.0, 1.0].

• minimum cluster size = 2; not to end up with isolated single data points as clusters,

• deep split ∈ {0,1,2}; the extent to which subtrees should be further cut into smaller sub-
trees, i.e. clusters.

3https://cran.r-project.org/package=lsa
4https://cran.r-project.org/package=dynamicTreeCut

https://cran.r-project.org/package=lsa
https://cran.r-project.org/package=dynamicTreeCut

3.4. Case Studies with n-grams 33

Component Setting Description

Extraction

model Ecore extractor for Ecore metamodels
unit type-name pairs further units NA at this point

structure n-grams n-grams with n = 1,2,3
postprocessing off no postprocessing

Comparison
basic NLP on compound-word similarity w/ internal NLP

advanced NLP off WordNet disabled
type matching relaxed 0.5 multiplier for non-exact types

struct. matching mss maximum similar subsequence for n-grams

VSM
frequency sum sum of frequencies

idf off idf disabled
weighting off weighting disabled

Analysis
distance cosine cosine distance (angular)

clustering hclust hierarchical clustering with average linkage
cut automatic horizontal and dynamic cut

Table 3.3: SAMOS configuration for the case studies.

Run Unigram Bigram Trigram
1 0.693 ± 0.049 0.637 ± 0.154 0.783 ± 0.036
2 0.913 ± 0.064 0.891 ± 0.034 0.868 ± 0.049
3 0.796 ± 0.057 0.799 ± 0.136 0.781 ± 0.121
4 0.542 ± 0.064 0.688 ± 0.185 0.757 ± 0.045
5 0.576 ± 0.152 0.547 ± 0.118 0.634 ± 0.012
6 0.691 ± 0.052 0.679 ± 0.094 0.707 ± 0.037
7 0.958 ± 0.027 0.956 ± 0.026 0.936 ± 0.044
8 0.872 ± 0.180 0.872 ± 0.180 0.872 ± 0.180
9 0.912 ± 0.08 0.892 ± 0.077 0.936 ± 0.035
10 0.512 ± 0.12 0.582 ± 0.137 0.460 ± 0.031
.

Avg. 0.665± 0.203 0.682 ± 0.197 0.700 ± 0.175

Table 3.4: F0.5 measures of the runs with regular cut.

3.4.1 Case Study 1 - Random Small Datasets
This case study aims to measure the accuracy of n-grams for relatively small datasets using up
to trigrams (n = 3). we already specified a subset of the AtlanMod Zoo metamodels, as used
previously in Chapter 2. As a reminder, the subset consists of 107 metamodels from 16 different
domains (ranging from conference management to state machines). From that subset, we extract
further random subsets of smaller sizes. The only restriction is that we pick individual cluster
items of size ≥ 2 from each domain/cluster, in order to avoid having a dataset with too many
isolated outliers. We run this random procedure 50 times, obtaining 50 datasets of size 20-30.
Doing this, we aim to avoid coincidental results for specific corner cases. For each dataset we
run the framework with the same settings for unigrams, bigrams and trigrams.

We list the F0.5 measures of the runs in the format mean± standard deviation for the random
runs: in Table 3.4 for the regular cut scenario and Table 3.5 for the dynamic cut scenario. In both
tables, the last row gives the averages over 50 runs. One immediate observation is that bigrams

34 Structural Comparison of Models

Run Unigram Bigram Trigram
1 0.693 ± 0.061 0.771 ± 0.060 0.726 ± 0.074
2 0.706 ± 0.055 0.758 ± 0.093 0.822 ± 0.107
3 0.548 ± 0.250 0.524 ± 0.142 0.574 ± 0.125
4 0.464 ± 0.143 0.693 ± 0.188 0.589 ± 0.135
5 0.520 ± 0.141 0.469 ± 0.084 0.515 ± 0.047
6 0.694 ± 0.090 0.813 ± 0.068 0.865 ± 0.069
7 0.671 ± 0.148 0.938 ± 0.061 0.749 ± 0.058
8 0.887 ± 0.079 0.958 ± 0.040 0.928 ± 0.097
9 0.742 ± 0.089 0.880 ± 0.071 0.814 ± 0.025
10 0.517 ± 0.117 0.542 ± 0.197 0.493 ± 0.137
.

Avg. 0.599± 0.200 0.679 ± 0.205 0.672 ± 0.182

Table 3.5: F0.5 measures of the runs with dynamic cut.

and trigrams do not universally improve accuracy over unigrams; counterexamples for this are
run 10 in Table 3.4 and run 8 in Table 3.5. Secondly, it also cannot be claimed that picking higher
n (e.g. trigrams vs bigrams) leads to monotonically higher accuracy. Indeed the goal of having
so many random runs is to come up with an approximate judgment on n-gram accuracy for Ecore
metamodels. Bigrams and trigrams perform differently (in comparison with each other) for the
two scenarios; nevertheless in the average case for both scenarios, n-grams with n > 1 perform
better than with n = 1.

We further supply the line chart of the cumulative mean F0.5 measure over the 50 runs in
Figure 3.3 for the two scenarios. The points on the diagram correspond to the cumulative mean
F0.5 values of all the random runs up to k (x axis). This indicates a conclusive stabilization
after a few runs. This improves our confidence in the measurement, eliminating the chance of
e.g. alternating averages over the number of runs.

3.4.2 Case Study 2 - Larger Dataset
With the first case study giving us some insight, we turn to cluster the whole 107-model dataset.
We restrict the upper bound for n-grams to bigrams, as trigrams reduce the performance to the
point where at least multi-core processing, or high performance computing would be required.
Nevertheless, as shown in Figure 3.4, bigrams lead to a considerable increase in the accuracy
of the clustering algorithm. The results are given in a boxplot of the F0.5 measures with all the
parameter permutations for unigrams (left plot) and bigrams (right plot). It is fairly easy to see
that bigrams improve the worst case, mean and median; while there is a negligible decrease in the
best case (right plot only). Our findings here reinforce our confidence on the average behaviour
of bigrams, as pointed out in the first case study.

3.5 Discussion
The two case studies indicate using n-grams with n> 1 is a promising technique for incorporating
structural context into model clustering. Our technique allows the extraction of model elements
together with (part of) their context in the form of n-grams to overcome some difficulties of
using just unigrams and losing the context information for model elements (Section 3.2). We

3.5. Discussion 35

0.65

0.70

0.75

0.80

0 10 20 30 40 50
Random runs

F 0
.5

N-GRAMS

Cumulative average for F0.5

UNIGRAM
BIGRAM

TRIGRAM

(a) For regular cut.

0.60

0.65

0.70

0.75

0 10 20 30 40 50
Random runs

F 0
.5

N-GRAMS

Cumulative average for F0.5

UNIGRAM
BIGRAM

TRIGRAM

(b) For dynamic cut.

Figure 3.3: Cumulative averages for F0.5 over random runs.

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7 regular cut

F 0
.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

F 0
.5

UNIGRAM BIGRAM

dynamic cut

UNIGRAM BIGRAM

Figure 3.4: Unigram vs bigram F0.5 measures.

36 Structural Comparison of Models

have relaxed many of the framework parameters and in principle strived for reasoning based on
average measurements in order to avoid getting stuck on corner cases and specific parameter
settings. The clustering accuracy is shown in two case studies to improve over unigrams on
average. Consequently we deduce that:

• On average, n-grams with n > 1 lead to higher accuracy than n = 1.

• The accuracy does not monotonically increase along with increasing n.

• Given the increasing complexity of clustering with larger n, using unigrams remains the
most scalable but inaccurate approach, while bigrams can be considered as a safe middle
ground for relatively large datasets.

• Depending on the type of the input models, size and nature of the dataset, and for accuracy-
oriented tasks, n-grams with n> 2 can be employed. However, a preliminary consideration
and experimentation should be performed as the accuracy is not guaranteed to increase on
average.

Our approach incorporates structural comparison to the N-way model comparison or clustering
setting. It can be considered a compromise between the work in [22], which ignores context,
and approaches such as [118] which can exploit full structural context for pairwise model com-
parison. There are further advantages of using this technique, stemming from the underlying
framework. For example, the individual steps of the workflow such as the graph-based n-gram
extraction and clustering algorithms are generic and extendible for other types of structural mod-
els (e.g. UML class diagrams). Furthermore using R brings in strong tool support in terms of
clustering, analysis and visualization techniques.

Complexity of Using n-grams. The complexity of hierarchical clustering is O(m2 logm)[113],
with m being the number of data points (i.e. models in our case). The complexity of VSM
construction for n-grams is proportional to |n-grams|2 ∗ comparen; i.e. the number of extracted
n-grams and cost of comparing each n-gram. comparen is O(n2) with the maximum similar
subsequence implementation in Section 3.3.4. The number of extracted n-grams in turn is pro-
portionate to the size of the input dataset N, average size of models (underlying graph) s and a
factor fn which depends on the n chosen. The formal complexity analysis of fn would involve
measuring the average number of attributes, references and supertypes, plus the graph-theoretic
path calculations up to n. This may be difficult to calculate in the domain-specific extraction
scheme (Section 3.3.3) we adopt for this chapter. Another approach would be to have a larger
and more representative dataset of Ecore models and deduce it empirically using regression on
the above mentioned metrics. We leave these as future work, and report here a rough empirical
observation on our dataset.

We can safely assume that the number of n-grams for one model is O(s) in the case of
unigrams; where s is the model size. For a rough comparison of the n-gram sizes, we crawled
17000+ Ecore models from GitHub5 and ran our n-gram extraction algorithm on them for n =
1,2,3. Figure 3.5 shows the number of bigrams and trigrams (y axis) versus unigrams (x axis)
per model. Here we note some simple observations. Unigrams per model tend to be on average
in the range of 100s, with bigrams in the 1000s and trigrams growing up to 10000s. There are of
course cases with many unigrams and disproportionately few bigrams/trigrams, i.e. presumably
flat models with few supertypes/references, and also cases with the opposite; presumably smaller-
sized models with complex inheritance hierarchies and cross-references.

5https://github.com

https://github.com

3.5. Discussion 37

(a) # bigrams vs unigrams (b) # trigrams vs unigrams

Figure 3.5: Empirical observation on the number of n-grams per model.

Threats to Validity. While we aimed for a transparent methodology avoiding coincidental con-
clusions for corner cases, there are some threats to validity for our work. Firstly, using n-grams
should be validated on other and larger datasets of different model types (e.g. UML class dia-
grams). Secondly, we take only the average accuracies into consideration to conclude the useful-
ness of using n-grams with n > 1, while individual cases (Section 3.4.1) are shown to reduce the
accuracy. A meta-analysis is required to find out the reasons, and if possible come up with some
heuristics for picking an optimal n considering certain characteristics of the dataset (e.g. size or
homogeneity/compactness of clusters and complexity of models in terms of inheritance).

3.5.1 Related Work
Structural comparison has been studied in the context of pairwise model comparison in a lot
of studies, e.g. in [118]. These techniques in general develop elaborate pairwise techniques
involving graph comparison or isomorphism and aim to reach high accuracy for a small number
of models to compare (typically two). On the other hand, there are a few techniques which
consider multiple models without pairwise comparisons, such as N-way merging in [147].

Recent approaches such as [23, 22, 35] propose using hierarchical clustering for a large set
of (meta-)models. Both use similar Information Retrieval (IR) techniques for extracting term
vectors out of models and using various similarity measures such as cosine distance. The use
of structural relations among model elements is proposed in [23, 35] encoded as bigrams of
model elements; in [35] via the external pairwise comparison operation provided by EMFCom-
pare; while ignored in [22] altogether with the exclusive use of unigrams (i.e. n = 1). A final
application of n-grams is given by Bislimovska et al. [43] in the context of model indexing and
searching.

38 Structural Comparison of Models

3.6 Conclusion
In this chapter, we have extended SAMOS to incorporate structural context into clustering. We
have indicated a shortcoming of previous approaches, i.e. ignoring the context of model elements,
and have proposed a flexible technique, which can be considered as the compromise between
structure-agnostic clustering approaches and advanced pairwise structural techniques. We have
evaluated our approach on an Ecore dataset from AtlanMod Metamodel Zoo. With carefully
devised case studies, avoiding coincidental conclusions for corner cases, we show that n-grams
improve the clustering accuracy on average. Picking an n > 1 is shown to increase complexity
and using larger n is suggested for smaller datasets and precision-oriented tasks, though after
preliminary consideration as precision is not guaranteed to increase monotonically along with
n. In the end, a more accurate and structure-sensitive setting is desirable in our model analytics
studies.

Chapter 4

Model Analytics for Variability Mining

To satisfy demand for customized software solutions, companies commonly use so-called clone-
and-own approaches to reuse functionality by copying existing realization artifacts and mod-
ifying them to create new product variants. Lacking clear documentation about the variability
relations (i.e., the common and varying parts), the resulting variants have to be developed, main-
tained and evolved in isolation. In previous work, Wille et al. introduced a semi-automatic mining
algorithm allowing custom-tailored identification of distinct variability relations for block-based
model variants (e.g., MATLAB/Simulink models or statecharts) using user-adjustable metrics.
However, variants completely unrelated to other variants (i.e., outliers) can negatively influ-
ence the usefulness of the generated variability relations for developers maintaining the variants
(e.g., erroneous relations might be identified). In addition, splitting the compared models into
smaller sets (i.e., clusters) can be sensible to provide developers separate view points on differ-
ent variable system features. In the previous chapters, we proposed statistical clustering capable
of identifying such outliers and clusters. The contribution of this chapter is the integration of
our clustering approach as a preprocessing step to the variability mining algorithm from Wille
et al. This allows users to remove outliers prior to executing variability mining on suggested
clusters. Using models from two industrial case studies, we show feasibility of the approach and
discuss how our clustering can support our variability mining in identifying sensible variability
information.1

4.1 Introduction
To satisfy demand for customized products, companies often develop variants of their software
that are specifically tailored to new requirements. These variants form product families with
largely similar functionality, in which only small parts are newly implemented or slightly adapted
compared to other variants [71]. For example, in the automotive domain different variants of

1Disclaimer: This is joint work with Wille et al. from Technical University of Braunschweig. The original and fully
detailed publication is shortened in this thesis, where we focus on our contribution while only briefly summarizing the
parts by our collaborating partners. Please refer to the original publication [198] for the further details.

40 Model Analytics for Variability Mining

software for electronic control units (ECUs) are needed as additional functionality, such as driver
assistance systems or comfort features, can be selected by customers.

Developing each of the software variants in isolation is a tedious task and in most cases infea-
sible because of the size and complexity of developed systems [71]. Thus, strategies for reuse of
existing functionality from previous variants are needed. A common strategy is using so-called
clone-and-own approaches that copy the code base from an existing variant and modify it to
changed requirements. This approach allows easy reuse of implementation solutions for existing
features; only the additional functionality has to be realized [71]. However, clone-and-own can
have severe consequences during different maintenance tasks as relations between variants are
often not documented and no managed reuse strategy exists [71]. Thus, keeping an overview
of a growing set of variants becomes almost impossible. For example, duplicate variants might
exist that are maintained by different teams completely unaware of the redundant solutions and
the unnecessary costs involved. Overall, managing large sets of variants that were created us-
ing clone-and-own is a tedious, error-prone and costly task [71, 94, 132]. Software product
lines (SPLs) allow to introduce managed reuse by maintaining a single code base that allows
derivation of all contained variants using suitable generation facilities [56, 60, 133]. One of the
benefits is that errors can be fixed in a single location and afterwards affected variants only have
to be regenerated. Thus, developers do not have to manually search and fix errors in each variant
individually. While these SPLs are a possible solution to clone-and-own related problems, adopt-
ing such a reuse strategy without abolishing existing variants is a complex and time-consuming
task as variability relations (i.e., common and varying parts) between all variants have to be
identified to support generation of all variants from a single code base.

Block-based languages, such as The Mathworks MATLAB/Simulink [177] or IBM Ratio-
nal Rhapsody [88] statecharts, are commonly used during development of software in domains
with high complexity (e.g., the automotive domain). By providing suitable strategies to ab-
stract from complex problems, these languages allow solving these problems on a less complex
and more manageable level [64]. While different approaches exist in literature to merge such
model variants into a single model containing annotations about the origin of the different parts
(e.g., [77, 123, 144, 146]), these approaches do not make variability relations visible to develop-
ers. Such relations explicitly categorize parts into mandatory parts (i.e., common to all variants),
alternative parts (i.e., mutually exclusive across all variants), or optional parts (i.e., only part
of certain variants). To overcome these limitations, Wille et al. introduced their family mining
approach in previous work, which is capable of semi-automatically reverse-engineering such
explicit variability relations for block-based model variants [84, 192, 193, 194]. The approach
allows for custom-tailored variability mining as it uses user-adjustable metrics and, thus, pro-
vides the possibility to integrate domain knowledge in the executed comparisons between model
elements (e.g., knowledge about the influence of certain elements on the model functionality).
The identified variability is stored in a single aggregated 150% model by merging all imple-
mentation artifacts from the analyzed models and annotating them with information about their
origin (i.e., their parent models) and their explicit variability relations. Overall, the identified
variability information allows developers to understand relations between the variants and to get
an overview of the existing functionality. While such information eases maintenance of the vari-
ants (e.g., variants containing an erroneous part can be easily identified), it most importantly
allows to gradually introduce managed reuse strategies from the SPL domain without abolishing
variants that were created using clone-and-own approaches [15, 197].

However, as their approach is dependent on the variants that are compared, problems can
arise when relations between these possibly large sets of models are unknown. For example,
outliers (i.e., models completely unrelated to other models) can negatively influence the results,
as undesired or unexpected variability might be identified. In addition, it could be more sensible

4.2. Motivating Example and Overall Workflow 41

to split a large set of variants into multiple smaller clusters to compare only variants that are
functionally close to each other. This way, variability information specifically showing the details
of these variants can be provided to developers maintaining them and unnecessary details of
unrelated variants can be neglected. In previous work, we developed a statistical clustering
technique that is capable of identifying clusters of closely related model variants and ruling out
outliers [17, 19, 22, 23]. These were introduced in this thesis in Chapters 2 and 3.

In this chapter, we adapt our clustering techniques to remove outliers prior to executing the
variability mining approach of Wille et al. on selected clusters of closely related variants. In
particular, we make the following contributions:
• We adapt our clustering technique to identify sensible clusters and to remove outliers from

the input models prior to applying the variability mining approach.
• We evaluate whether our adapted clustering technique is able to improve the results of the

variability mining algorithm. For our feasibility case study we use industrial-scale IBM
Rational Rhapsody statechart model variants related to the body comfort system (BCS)
of a car.

This chapter is structured as follows: Section 4.2 gives a clear motivation of the problem solved
by this chapter. Section 4.3 explains background on block-based languages and the existing clus-
tering and variability mining algorithms. Section 4.4 and Section 4.5 describe our cluster and
outlier detection approach together with a brief summary of the variability mining approach for
block-based languages. Section 4.7 evaluates our solution to demonstrate its feasibility. Sec-
tion 4.8 discusses related work and Section 4.9 concludes with an outlook to future work.

4.2 Motivating Example and Overall Workflow
To give a clear motivation of the problems that we solve in this chapter, we introduce a running
example. We first motivate the need for automatic and fine-grained variability mining between
large sets of model variants (cf. Subsection 4.2.1) and then discuss challenges with sets of models
consisting of multiple subclusters and containing outliers (cf. Subsection 4.2.2). From these
observations, we derive our workflow to solve these challenges (cf. Subsection 4.2.3) in the
remainder of the chapter.

4.2.1 Fine-grained Variability Analysis of Model Variants
To explain the challenges in analyzing the variability between large sets of related model variants,
we present in Figure 4.1 two statechart implementations for the central locking system (CLS)
feature of the body comfort system (BCS) of a car depending on the used power window (PW).
The ManPW variant (cf. Figure 4.1(a)) is equipped with a manual power window that requires the
user to push the up or down button until the window is completely opened or closed, whereas
the AutoPW variant (cf. Figure 4.1(b)) uses a power window automatically closing or opening the
window after pushing one of the corresponding buttons.

The only major difference between the implementations manifests itself when the user locks
the car and the transition from state cls_unlock to state cls_lock is executed. The implementa-
tion of the ManPW variant distinguishes between cases where the window is closed (pw_pos == 1)
or still open (pw_pos != 1). In case the window is already closed, the system also disables the
power window (pw_enabled = false). Otherwise, the user still can manually close the window
after locking the car (e.g., when sitting inside the locked car). In case of the CLS implementation
for the AutoPW variant no distinction is needed and the car automatically disables the power win-
dow and closes the windows when locking the car by generating a command (GEN(pw_but_up)).

42 Model Analytics for Variability Mining

cls_unlock cls_lock
key_pos_lock [pw_pos != 1] / cls_locked=true;

key_pos_unlock / cls_locked=false;
pw_enabled=true;

key_pos_lock [pw_pos == 1] / cls_locked=true;
pw_enabled=false;

(a) ManPW variant of the CLS feature

cls_unlock cls_lock
key_pos_unlock / cls_locked=false;

pw_enabled=true;

key_pos_lock / cls_locked=true;
pw_enabled=false; GEN(pw_but_up);

(b) AutoPW variant of the CLS feature

Figure 4.1: Differing statechart implementations of the central locking system (CLS) feature for
a body comfort system (BCS) of a car depending on the applied power window (PW).

Manually identifying the fine-grained variability relations (i.e., the common and varying el-
ements) between the two implementations of the CLS feature (e.g., to apply bugfixes to the vari-
ants) might be feasible. However, in industry a large variety of different implementations exists.
After the initial clone-and-own process these models evolve independently from each other and
developers without initial knowledge about these relations can only reverse-engineer them with
large manual effort. In addition, implementations of related features are not directly accessible
because they are mostly encapsulated in hierarchical model elements in large implementations
consisting of hundreds or thousands of model elements (e.g., the variants presented in Figure 4.1
are part of a BCS implementation for a car). In these cases a manual approach fails as time-wise it
is infeasible to manually analyze and compare large sets of such complex models in detail. Thus,
we argue that automatic variability mining is inevitable to provide developers with detailed vari-
ability information of the analyzed variants.

4.2.2 Selecting the Right Variants for Variability Analysis
With the large number of models that were created using clone-and-own approaches, further
challenges arise as relations between them are not well documented if at all. As a consequence,
selecting the right variants for comparison depends on domain knowledge that might not be avail-
able (e.g., after experts left the company or when no documentation exists) and has to be regained
using tedious manual techniques. In Figure 4.2 and 4.3, we present two scenarios that show the
drawbacks of selecting variants for variability analysis without knowledge of the concrete im-
plementation. Both tables show product variants V consisting of different feature combinations
that were implemented to realize their functionality (marked with Xs). These features are part
of the same BCS as in the previous example in Figure 4.1 and comprise exterior mirrors (EM),
finger protection (FP) for the windows, a human machine interface (HMI), a PW (either ManPW or
AutoPW), a remote control key (RCK), a CLS, heatable exterior mirrors (Heat), an alarm system
(AS) and corresponding status LEDs. All variants share the EM, FP, HMI and PW features as the
core implementation of the BCS.

4.2. Motivating Example and Overall Workflow 43

4.2.2.1 Outliers

V1 XX X XX

V5 X X X X X X XX X X X X
V4 X X XXX X X X X X
V3 X X X XXX X XX X
V2 X XXX X X X

V LEDAS LED_ASHeatManPWPW AutoPWHMI CLS LED_HeatRCKEM FP

Figure 4.2: A basic implementation of a BCS forming an outlier (variant V1 – highlighted) in
contrast to a set of highly related more sophisticated BCS implementations (variant V2 – V5).

In Figure 4.2, we show a scenario where two product lines of the BCS exist. A very ba-
sic variant exists (i.e., V1), only consisting of the core implementation and the ManPW feature.
Apart from the core implementation, the other four variants realize a more sophisticated BCS
(i.e., V2 – V5) for a more expensive car and contain the RCK and CLS together with the possible
combinations of the Heat and AS features (plus their corresponding LEDs). In this scenario, V1
can be regarded as an outlier because it has almost no relation to the other four variants (apart
from the common core implementation). When comparing variants V1 – V5 unexpected or un-
desired variability might be identified as, for example, developers implementing the RCK and
CLS features for the more sophisticated variants V2 – V5 might not be aware of the basic variant
V1. As a result, the developers are not only confused by the identified unexpected variability
relations but also the maintenance of these variants is hampered. On the one hand, unexpected
high-level variability exists because the developers would regard the RCK and CLS features as part
of the core implementation. However, in contrast to the developers’ expectations, a variability
mining algorithm would identify the RCK and CLS features as optional when comparing variants
V1 – V5, because V1 does not contain these features. In addition, low-level changes to feature
implementations (e.g., their states and transitions) might exist because of necessary feature inter-
actions. For example, the RCK and CLS features might require changes to the HMI feature (e.g., to
realize additional control buttons) that are not present in V1. A variability mining algorithm
would also identify these low-level changes only present in certain variants and, thus, classifies
them as optional. While this is a correct representation of the variability between all developed
variants, such variability details confuse developers unaware of these relations. In addition, the
identified variability information is bloated with details that are only relevant when considering
the variability of all developed variants (i.e., V1 – V5). However, the work of developers might
get hampered by details concerning the relation to variant V1 because they need to analyze vari-
ability that is irrelevant for maintaining variant V2 – V5. Thus, identifying such possible outliers
and ruling them out prior to the variability mining allows to provide developers with information
specifically focused on their current task.

4.2.2.2 Clusters

In Figure 4.3, we show another scenario where the manufacturer decided to add two variants V6
and V7 with the ManPW feature in addition to variant V1 from the outlier scenario. Both have
the same features as V1 but in addition contain the CLS and the Heat feature. The four variants
V2 – V5 are exactly the same as from the outlier scenario. In this scenario, we can identify two
clusters C1 and C2 of variants that are closely related amongst each other but only have minor
similarities across the two clusters (i.e., the common core implementation and similar features
across the variants). However, larger differences exist because of feature implementations that

44 Model Analytics for Variability Mining

V4 X X XX XX X X XX

V2 X XX X XX X
V3 X X XX XX X XX X

V5 X X X X X X XXXXX X

V1 XXX X X

V7 X XX XX X X
V6 X XXX X XC1

C2

VC LEDAS LED_ASHeatManPWPW AutoPWHMI CLS LED_HeatRCKEM FP

Figure 4.3: Two clusters of basic implementations (cluster C1: V1 – V3) and more sophisticated
implementations (cluster C2: V4 – V7) for a BCS – the distinct differences are highlighted.

set of
model variants

Clustering Variability
Mining

150% model
C2

%

150% model
C1

%

Section 4 Section 5

C1 C2

outliers

found clusters
& outliers

Figure 4.4: Overall workflow for the combined clustering and variability mining approach

are only present in one cluster (highlighted in the table). Similar to the outliers scenario it might
be desirable to identify variability for specific single clusters instead of the complete product
family. This way only expected relations are shown to the developers of the corresponding
product lines. Thus, the developers can concentrate on variability information that is specifically
focused on their work with specific variant clusters.

4.2.3 Workflow of the Proposed Solution
From the scenarios discussed in Subsection 4.2.2, we identified the need for:

a) Algorithms to identify fine-grained variability information between related model variants
(e.g., created using clone-and-own approaches) to make these relations visible to develop-
ers.

b) Clustering and outlier detection algorithms that are executed prior to the fine-grained vari-
ability analysis to improve the results in situations with unclear relations between models
(e.g., due to missing documentation).

In Figure 4.4, we show the workflow that we derived from these observations. Starting with
a set of model variants, we first execute our clustering step (cf. Section 4.4) to identify smaller
clusters of models that are highly related and to identify and remove outliers. For each of the
identified clusters, we execute the variability mining (cf. Section 4.5) to identify a so-called
150% model to store the identified variability (i.e., common and varying parts) for all compared
models.

4.3. Background 45

4.3 Background
In this section, we give background information on block-based languages (cf. Subsection 4.3.1)
as well as identifying fine-grained variability information for related block-based models
(cf. Subsection 4.3.2) [84, 192, 193, 194]. Our previous work on model clustering with SAMOS
was already discussed in the previous chapters, so is omitted here.

4.3.1 Block-based Languages
A common means to develop solutions for complex problems in industry are model-based lan-
guages as they allow to describe domain knowledge and concrete implementations on an abstract
level with reduced complexity [64]. The corresponding descriptions can be used to automatically
generate executable code for different platforms or to perform model-based testing. Block-based
modeling languages as a subgroup of these languages represent the functionality of software in
the form of directed graphs. In most of these languages, the graph’s nodes execute code written
in a specific programming language (e.g., JAVA or C++) or represent atomic functions defined
by the node’s language (e.g., mathematical operations). Usually, the execution can be passed
from one node to another by triggering edges. These edges often provide means to exchange
data between the nodes and connect the inports and outports of nodes. These ports define the
nodes’ interfaces. A large part of block-based languages provides additional concepts to define
abstractions from complex functionality by using hierarchical nodes encapsulating sub models
with sub nodes defining the functionality on the corresponding hierarchy level. Depending on
the used block-based language the terms used for the model elements (i.e., nodes, edges, . . .)
might differ.

1

In1

In1 Out1 1

Out1

1

In1

1

Out1

1
s

Integrator

(a) MATLAB/Simulink

b1

b1
[t > 3s]

off

on

b1

b1
on blink

b2

b2
blue red

(b) Statechart

Figure 4.5: Example model instances for two block-based modeling languages

In Figure 4.5, we show two concrete model instances for block-based modeling languages.
In Figure 4.5(a), we can see an exemplary MATLAB/Simulink model consisting of blocks linked
with connectors. This model receives a data signal via the In1 block, processes this data using the
functionality specified in the subsystem block (i.e., a hierarchical node), and emits the resulting
value via the Out1 block. Using hierarchical nodes similar to the subsystem in this example,
developers can encapsulate complex functionality into reusable elements (i.e., in this example
the integrator block pipeline). By arbitrarily nesting such hierarchical nodes it is possible to
develop complex systems on a more understandable level by refining abstract functionality with
each added hierarchy level. In Figure 4.5(b), we present an exemplary statechart implementation
for an LED with two colors (i.e., blue and red) consisting of system states. For each hierarchy
level the execution start is unambiguously defined by the initial state (i.e., the black bullet).
Transitions between the states allow to change the system state. For example, by pushing button

46 Model Analytics for Variability Mining

b1 the LED transitions from state off to the parallel state on. This state contains two regions
(separated by a dashed line) that define the states of the LED’s color and its current light mode.
In contrast to hierarchical states these parallel states allow the execution to be in multiple states
at once as they can have more than one region. For example, the LED can be in any combination
of the states {on, blink} and {blue, red} depending on the inputs of the user via the buttons b1
and b2. In case the user pushes button b1 more than 3 seconds the LED is turned off again.

Looking at the presented examples, we can see that although both languages follow differ-
ent purposes, they consist of nodes and edges linking them. However, they differ in the used
paradigm (i.e., data-flow oriented language vs. state-oriented language). In addition, not all lan-
guages provide all discussed elements. While, for example, statecharts allow modeling of parallel
executing using parallel states with multiple regions, MATLAB/Simulink only allows abstraction
from complex functionality using subsystems. As a result, Wille et al. present guidelines to al-
low developers to correctly consider such differences during adaptation of their family mining
for new languages [198].

4.3.2 Family Mining
In previous work, Wille et al. introduced family mining as a reverse-engineering technique to
provide developers with fine-grained variability information between sets of block-based model
variants [84, 192, 193, 194]. In Figure 4.6, we show its workflow consisting of the three phases
Compare, Match, and Merge. Before executing the first phase, it divides the input models into
a single base model (e.g., a smallest model) representing the basis for all comparisons and a
set of compare models that are iteratively compared and merged with this base model using a
pairwise algorithm. During the Compare phase it iterates through the models by analyzing the
data-flow and identify possible variability relations between the model elements. Usually, the
resulting set of comparison elements is ambiguous as for each model element multiple possible
counterparts in the compared model exist. The Match phase analyzes this list of preliminary
relations to identify for each element from a model at most one counterpart in the other model.
The resulting list of distinct relations is then used in the Merge phase to merge the identified
variability relations into a single 150% model. In case more compare models exist that were not
yet processed by the algorithm, another iteration is started where the created 150% model serves
as input for the base model. This way, it iteratively generates a 150% model of all compared
models that can be visualized or further processed to generate an SPL [197].

set of
model variants 150% model

%Compare MergeMatch

base
model

models
n-1 compare

iteration
for each

first iteration

unprocessed compare models existselect

Figure 4.6: Iterative pairwise workflow for the family mining approach

4.4. Clustering for Variability Mining 47

4.4 Clustering for Variability Mining
We have used and extended our clustering technique to preprocess statechart variants for variabil-
ity mining. For the overall workflow of clustering given in Figure 4.7, we detail each of the major
steps in the following subsections. Note that the technique is completely language agnostic, in the
sense that we can design metamodel-based extraction schemes to generate features for clustering
a set of structural (typically graph-based) models conforming to such a metamodel. We have so
far used the framework for other types of models including Eclipse Modeling Framework (EMF),
Unified Modeling Language (UML) and feature models with a corresponding extractor plug-in
for each.

set of
model variants

Extraction

Comparison

NLP Matching

Weighting

...

S15 5 5 4 4 5 5 4 4 4.25 4 3 3 4 3.75 3 3
S14 3.5 5 3 4 3.5 5 3 4 3.5 4.25 2.5 3 3.1667 3.75 2.5 3
S13 5 5 4 4 3.75 3.75 2.6667 2.6667 4.25 3.75 3 3 3.0833 2.75 1.875 1.875
S12 3 2.75 2.5 2.25 2.4167 2.5 1.9583 2 2.8333 2.5417 2 1.75 2.25 2.25 1.5 1.5
S11 3 3 2.5 2.5 3 3 2.6667 2.6667 3 3 2.7083 2.7917 3 3 3 3
S10 1 2 1.875 2.5 1 2.25 2.0417 2.6667 1.5 2.375 2.2083 2.7083 2 3 2.5 3
S9 3 3 2 2.25 2 1.875 0 0 3 3 2.375 3 2.125 1.875 1.125 1.5
S8 1 0.5 1 0.5 0.625 5 0.375 0 1.5 1.3333 1.5 1.3333 1.1667 1.125 1 1.125
S7 5 3.75 3 2 5 3.25 3 2 5 5 2.6667 2.6667 3.25 2.6667 1.5 1.5
S6 3 5 1 2.25 2.5 2.7083 1 1.3333 3.5 5 2.0417 2.6667 2.375 2.6667 1.3333 1.5
S5 5 3.25 3 2 3.75 2.2917 1.875 1.1667 0 2.7083 2.25 1.3333 2.5 1.25 0 0
S4 2.5 2 1 0.5 1.75 1.25 0.625 0 2.5 2 1 0.5 1.5833 1.25 0.375 0
S3 3 2 2.5 2.25 3 2 2.25 2 3 2.25 2.5 2.5 2.25 1.5 1.5 1.5
S2 1 2 1,625 2.5 1 1.3333 1 1.3333 1 2 1.875 2.5 1.25 1.5 1.3333 1.5
S1 3 2 2 2 2 1.1667 0 0.8333 3 1.3333 2 1.3333 1.5 0 0 0
S0 1 0.5 1 0.5 0.625 0 0.5 0 1 0.5 1 0.5 0.5 0 0.375 0

vector space model (VSM)

C1 C2

outliers

found clusters
& outliers

Clustering

 M

ETRAS 7.7M

distance
measure

features

Names
Types

N-grams
...

AbstractClass

Class A

rela�on
Class B

meta-model
extraction
scheme

Figure 4.7: General overview of the clustering workflow

4.4.1 Extracting Features from Statecharts
The first step is to inspect the metamodel of the language (cf. Figure 4.9), and decide on the
features to extract. Depending on the problem at hand, one can, e.g., choose to extract just the
names of the model elements for a domain analysis scenario while ignoring the types of nodes or
the graph-structure, or completely ignore the names and consider the types and graph structure
for a clone detection scenario (specifically type-II clones [141]). Here we are interested to find
variants close to each other in terms of element names, types and structure. The translation of
this into our clustering framework is setting the feature type to typed bigrams (see Chapter 3).

Next, we inspect the metamodel of the language and design an extraction scheme. This is
to be done by a domain expert who decides which parts of the metamodels are relevant for the
problem at hand. Following the metamodel, we use the EMF API to code a simplified extraction
scheme in JAVA including:
• Regions, States, Events: include their names and types.
• Transitions: include TransitionActions, Conditions along with their expressions/state-

ments and types.
• Relations (to be encoded as bigrams):

– Region –> State (containment),
– State –> Event/TransitionAction/Condition (via transitions of State),
– Event/TransitionAction/Condition –> State (via outgoingState of Transition).

48 Model Analytics for Variability Mining

To demonstrate, bigrams extracted from Figure 4.1(a) would include [State,cls_unlock]-
[Event,key_pos_lock], [Event,key_pos_lock]-[State,cls_lock] and so on.

4.4.2 Comparing the Features
Once the features are extracted, we decide on how to process and compare the features to build
the vector space model (VSM). Again, this is done by a domain expert who chooses the pa-
rameters of the framework considering the problem at hand. With reference to the details on
parameters in the previous chapters, we have chosen to simplify the setting by turning off certain
framework settings, e.g., weighting and advanced natural language processing (NLP), such as
using Wordnet for semantic relatedness. However, we do check the types, i.e., when comparing
[State-A] with [Region-A], the resulting similarity is set to 0.5 due to the type mismatch,
despite the exactly same names (see relaxed type matching setting of SAMOS, as discussed in
the previous chapters). See Table 4.2 for the configuration applied in this chapter.

The NLP features of the framework have also been extended to handle the names of the model
elements in the statecharts. Inspecting the example statechart in Figure 4.1(a), one would imme-
diately notice that names are typically given in snake case (token1_token2_...). We have used
the built-in tokenization capabilities of the framework to process those names. We have further
employed a simplifying pass to avoid parsing full expressions/statements in the conditions and
actions for transitions: operators, boolean primitives, parentheses and brackets are given to the
framework as stop-words, so that they are ignored when comparing names. The NLP overall al-
lows the framework to detect similarities of event names (key_pos_lock vs. key_pos_unlock)
or conditional expressions (pw_enabled = true vs. pw_enabled = false). Further NLP used
includes Levenshtein similarity for typos, and stemming for cutting off the affixes.

4.4.3 Vector Space Model Computation and Clustering
The feature comparison scheme explained in the previous section is used to build the term fre-
quency matrix for the VSM. The next step is to choose a distance measure and a clustering tech-
nique, which again depends on the problem at hand. We have used Bray-Curtis distance [66],
as an approximate measure of the normalized (roughly the percentage) distance between two
vectors. p and q being two vectors of n dimensions, Bray-Curtis distance is defined as:

bray(p,q) =
∑

n
i=1 |pi−qi|

∑
n
i=1(pi +qi)

.

Note that while we certainly favor using normalized distances such as Bray-Curtis or nor-
malized Canberra over absolute ones such as Manhattan (which roughly translates to graph edit
distance). See 6 for a more detailed discussion on distance selection.

The hierarchical agglomerative clustering (HAC) algorithm with average linkage (i.e., inter-
cluster distance equals the average pairwise distance of all the contained data points) is used on
top of the vector distances to compute the dendrogram as the result. Inspecting the dendrogram,
we detect outliers and cluster formations in the dataset. In our case study results, we show a
sample dendrogram in Figure 4.11(a) on page 57. The numbers, i.e., the leaves of the dendro-
gram with labels V* represent data points as individual statechart model variants. The joints in
the dendrogram correspond to a height (y axis with possible values in the range [0..1]), which
is the normalized distance between two leaves or subtrees. A possible interpretation of the den-
drogram would be that variants V11611 and V11616 are outliers (marked in red frames), with
variants V000* forming a big cluster (marked in a blue frame). Note that how much further a

4.5. Variability Mining for Block-based Languages 49

cluster can be decomposed into subclusters (e.g., into two subclusters in this case) depends on
the interpretation.

4.5 Variability Mining for Block-based Languages

Build a

Model
Meta-

2 3
Define a

Metric
Family Mining

4
Adapt the

Algorithms
Family Mining

Analyze the

Language
Block-based

1
Figure 4.8: Guideline steps that are needed to adapt family mining for a new block-based lan-
guage. Hand symbols highlight steps that have to be executed manually, while gears indicate
steps that can be automated. Steps with both symbols can only be partially automated.

In this section we briefly sketch the variability mining algorithm by Wille et al., in contrast
to the fully detailed description in our original publication [198]. Wille et al. propose guide-
lines to adapt their corresponding algorithms for block-based languages in four steps as depicted
in Figure 4.8. The approach is not completely language-agnostic as it takes into account details
about the used modeling language in the analysis. Thus, the first three steps are concerned with
gaining knowledge that should be considered in the mining process and providing this knowl-
edge in a form suitable to the algorithm. Step 1 is dedicated to manually analyzing the used
modeling language (cf. Subsection 4.5.1) to identify details that can be used to create a suitable
metamodel representation of the language in Step 2 (cf. Subsection 4.5.2). Such a representation
builds an abstract view on the analyzed model elements and allows users to exchange the meta-
model depending on the language analyzed during family mining. Besides manually building
such a new metamodel, reusing existing metamodel representations of well-known languages is
possible. Based on the gained insights and the user’s domain knowledge a custom-tailored simi-
larity metric can be defined in Step 3 specifically describing the domain’s perception of similarity
for compared models and model elements (cf. Subsection 4.5.3). Afterwards the existing family
mining algorithms (cf. Subsection 4.3.2) can be adapted in Step 4, allowing their execution for
the analyzed language (cf. Subsection 4.5.4).

4.5.1 Analyze the Block-based Language
The foundation of the family mining approach is formed by model-based techniques to abstract
from the concrete block-based language of the compared model variants. Thus, analyzing the
language enables us to create such a metamodel representation for any new language. By identi-
fying the right level of abstraction from the used language, we can create fitting metamodels to
reduce the structures of models to the desired level of abstraction. This allows the family mining
approach to focus only on details that are absolutely necessary to identify variability informa-
tion for such models. Finding the right level of abstraction is a fine line between providing too
little information for the algorithm to produce sensible results and considering too many details
resulting in unnecessarily long execution times. Thus, profound domain knowledge of experts is
needed to create a suitable metamodel for languages that should be analyzed with family mining
(cf. Subsection 4.5.2). As a result, the detailed analysis of languages to gain such knowledge is
considered as a completely manual step.

50 Model Analytics for Variability Mining

First of all, we need to either find existing metamodels for the block-based language if pos-
sible. An analysis of the language allow us to understand the language elements. We need this
insight for selecting relevant language elements and properties to be used by the family mining
algorithm. Language elements or corresponding properties that contribute to the overall func-
tionality (e.g., blocks and their functions in MATLAB/Simulink) of model instances or allow to
distinguish between them (e.g., their names) are regarded as relevant parts because they make the
models comparable. Other language elements or properties that only represent syntactic sugar
and can be transformed to an equivalent representation or do not contribute to the functionality at
all are regarded as “irrelevant”. Overall the relevant elements and their properties have to be se-
lected carefully because otherwise created metamodels might not be expressive enough to model
concrete implementations in the analyzed language. On the other hand, a metamodel storing too
much information might result in long execution times for the family mining approach as too
many details have to be processed.

4.5.2 Build a MetaModel

ContainerEn�ty

id : EString

NodeEn�ty

id : EString

ModelEn�ty

id : EString

StateChart Region

name : EString

AbstractState

name : EString
isHierarchical() : EBoolean
isParallel() : EBoolean

EdgeEn�ty

id : EString

IncomingState OutgoingState

Transi�on

FinalState StateIni�alState

[1..1] source[1..1] target

[0..*] inTrans�ons

[1..1] rootRegion [1..1] parent

[1..1] parent

[0..*] outTransi�ons

[0..*] states

Figure 4.9: Excerpt from the metamodel for the family mining of statecharts

Based on the selected relevant model elements and corresponding properties it is now possi-
ble to build a metamodel or to modify an existing metamodel. The first step is to select a suitable
metamodeling language such as EMF. Relevant model elements should be modeled using classes
(e.g., EClasses in Ecore) with attributes (e.g., EAttributes in Ecore) modeling their relevant
properties and inheritance applied where applicable (e.g., states are a generalization of initial
states). In Figure 4.9, we show an excerpt from the metamodel for statechart family mining.
The classes ModelEntity, ContainerEntity, NodeEntity, and EdgeEntity are part of the
base metamodel. The created metamodel is able to express semantically correct models from the
language if the users executed a complete language analysis with a suitable subset selection of
relevant elements and realization of a well-formed metamodel (i.e., all elements and properties
are modeled correctly) based on these results. To allow processing of the models by the family

4.5. Variability Mining for Block-based Languages 51

mining algorithms, developers have to realize importers to create corresponding metamodel in-
stances. In addition, suitable exporters have to be realized to transform the resulting annotated
metamodel instances back to the original language notation.

4.5.3 Define a Family Mining Metric
The next step for the adaptation is to create a metric to allow comparison of elements and corre-
sponding properties of metamodel instances. A sensible way to start is to execute a ranking of the
selected element properties according to their influence on the overall functionality. Properties
with a high impact (e.g., the function of a MATLAB/Simulink block) should be ranked higher than
properties with less expressiveness (e.g., the name of a MATLAB/Simulink block). Based on the
ranking, developers then can assign corresponding weights. These weights should be normalized
(ideally in the interval [0..1] as it allows direct translation to percentages). Thus, the summed
up weights for the properties of an element should not be higher than the upper bound of the
normalization interval (i.e., compared elements cannot have a similarity higher than 100%). For
examples of concrete metrics, we refer to [193] and to [194] for metrics used in the comparison
of MATLAB/Simulink models and statecharts, respectively. As a small illustration, the authors
design a metric, where model similarity is defined in terms of 5% name, 75% function, 10%
inport and 10% outport similarity.

4.5.4 Adapt the Family Mining Algorithms
After creating a metamodel representation for the analyzed language and defining a correspond-
ing metric to allow comparison of corresponding metamodel instances, it is now possible to adapt
the family mining algorithms. Next, we give a brief summary of the three family mining phases
Compare, Match, and Merge (cf. Figure 4.6 in Subsection 4.3.2).

4.5.4.1 Compare Phase

During the Compare phase, the algorithm identifies possible relations between two compared
models. For the first iteration, we have to select a base model that serves as a basis for the
comparisons from the set of input models. All remaining models serve as compare models and
are iteratively compared and merged with the selected base model. The technique allows for
two approaches to select the base model. Either the user selects the base model manually based
on domain knowledge or an automatic algorithm is used. In the current implementation the
algorithm selects the smallest model as Wille et al. argue that extending an existing variant with
additional functionality is a common clone-and-own approach. Thus, the smallest variant most
likely represents the common core for the analyzed variants.

To compare the selected base model and one of the compare models, we iterate over the
data-flow of the analyzed models. By starting at the highest hierarchy level, we start this data-
flow analysis and compare the models’ entry points that are defined by language-specific model
elements (e.g., the initial states of the statecharts in Figure 4.1). The comparisons are continued
by virtually separating the compared models into stages with each stage containing only elements
that have the same distance (i.e., the number of nodes or edges) on their shortest path to the
model’s entry points.

Given that during the Merge phase (cf. Subsubsection 4.5.4.3) all variability is correctly
merged into a 150% model, the generic family mining algorithms are able to walk through all
alternative paths for model comparisons with n > 2 models. Thus, the compare algorithm can

52 Model Analytics for Variability Mining

identify possible relations between elements on these alternative paths and elements from the
new compare model that is analyzed during the current iteration of the mining algorithm.

4.5.4.2 Match Phase

Usually, the resulting comparison elements are ambiguous as for each model element multi-
ple possible counterparts in the compared model exist (e.g., for the transitions between state
cls_unlock and state cls_lock in Figure 4.1 two possible matches exist). During the Match
phase the list of all created comparison elements is processed to match each element from a
model to at most one counterpart in the compared model. For each comparison element CEi the
algorithm first identifies all other comparison elements sharing either the base model element or
the compare model element with CEi. From the resulting list of comparison elements, it selects
the element with the highest similarity value as a direct match and rule out all other possibilities
by removing them from the list. This step is repeated until all model elements were matched.

In case no distinct match can be selected based on the similarity value (i.e., the comparison
elements have the same similarity), all corresponding elements are sorted to the end of the com-
parison element list. This solution implicitly solves most conflicts by matching other comparison
elements first. For cases where this strategy fails, a decision wizard is used which allows the user
to either manually select the best match or apply additional user-defined automatic resolution
strategies defined prior to the execution.

4.5.4.3 Merge Phase

After processing the matched list of comparison elements and establishing distinct relations be-
tween the compared models, the algorithm can merge a 150% model storing all identified vari-
ability relations. The first step for the merging is to categorize the relations identified for the
model elements contained in each comparison element CEi from the list. Here, it analyzes the
calculated similarity and uses a function which maps similarity values ≥ 0.95 to mandatory,
(0,0.95) to alternative and 0 to optional elements [84, 194].

Depending on the identified relations, the algorithm applies different strategies to merge the
compared models into a copy of the base model. In case of mandatory elements, it marks the ex-
isting element in the base model as mandatory and annotate that it is contained in the base model
and the compare model. In case of an optional element, it either annotates the already existing
model element in the base model as optional or first merge the corresponding element from the
compare model and afterwards annotate it. Finally in case of alternative model elements, it only
merge the element into the 150% model that is not already contained in the base model copy. For
comparisons with n> 2 models, it has to consider the already existing variability for all iterations
i > 1 as here the 150% model from the previous iteration serves as base model (cf. Figure 4.6).

The resulting 150% model for the two CLS features from Figure 4.1 can be found in Fig-
ure 4.10. We can see for the three transitions that only one of them is contained in the AutoPW
variant and the other two variants are contained in the ManPW variant. The transition from the
AutoPW variant and the upper transition from ManPW variant are regarded as alternatives because
the additional guard in the ManPW variant is their only difference. The remaining ManPW transition
is regarded as an optional element. Both states and the transition from cls_lock to cls_unlock
are regarded as mandatory. For clarity reasons, we did not annotate the concrete variability
classes (i.e., mandatory, alternative and optional) in Figure 4.10 and neglected the source model
annotations for mandatory elements.

The final 150% model can now be used to export the results to a graphical representation
or for further processing by additional algorithms (e.g., to generate an SPL [197]). Furthermore

4.6. Implementation 53

cls_unlock cls_lock
key_pos_unlock / cls_locked=false;

pw_enabled=true;

key_pos_lock / cls_locked=true;
pw_enabled=false; GEN(pw_but_up);

key_pos_lock [pw_pos != 1] / cls_locked=true;

key_pos_lock [pw_pos == 1] / cls_locked=true;
pw_enabled=false;

ManPW

ManPW

AutoPW

Figure 4.10: 150% model for the ManPW and AutoPW variants of the CLS feature in Figure 4.1

it serves as input for the next iteration of the family mining algorithms in case of n > 2 input
models (cf. Figure 4.6).

4.6 Implementation
In this section, we give an overview of the implementations for our clustering framework
(cf. Subsection 4.6.1) and the family mining framework (cf. Subsection 4.6.2). See Figure 4.4
for the overall architecture of the two techniques combined.

4.6.1 The Clustering Framework
The clustering framework is implemented partly in JAVA (feature extraction and comparison) and
partly in R (clustering). While using Eclipse and EMF, the framework at the moment does not
have an explicit Eclipse plug-in architecture; the components should be interpreted as conceptu-
ally distinct and modular steps of the workflow. Indeed for the study in this chapter, the default
importer and extractor parts have been replaced with new ones for statecharts.
• Language/Base MetaModels: The Ecore metamodels to be used for loading the statechart

models and extracting features.
• Importer: Standard importer for EMF resources.
• Schemes & Parameters: Specification of extraction, matching and comparison schemes

and other framework parameters [22, 19].
• Extract: Feature extraction code, using the EMF API in JAVA. Here the extraction logic

discussed in Subsection 4.4.1 is implemented.
• Compare: Feature comparison to build the VSM (cf. Sections 4.4.2 and 4.4.3). As we

extract features into the internal representation of the framework, this component is used
as-is with the appropriate parameter settings.

• Cluster: Distance calculation and clustering in R using packages hclust for hierarchical
agglomerative clustering (HAC) and vegan for Bray-Curtis distance (cf. Section 4.4.3)

• Visualization: Export of the cluster hierarchy plot for visual identification of clusters and
outliers.

4.6.2 The Family Mining Framework
The family mining framework is implemented using JAVA and the Eclipse plug-in mechanisms
to allow for easy extension with customized algorithms.

54 Model Analytics for Variability Mining

• Family Mining Core: The framework’s core plug-in provides all basic classes for user
interaction (e.g., to configure or trigger algorithms for selected files) and the execution
of the family mining workflow. Developers can customize this workflow by integrating
additional plug-ins via the provided extension points for the following framework plug-
ins.

• Importer & Exporter: These plug-ins allow to import models from block-based modeling
languages files (e.g., MATLAB/Simulink model files) to the internal metamodel representa-
tion or to export the results (e.g., in form of reports or the original modeling language). As
the import and export of models to/from an internal metamodel involves model-to-model
transformations, realization of such plug-ins cannot be automated. However, we provide
basic import and export plug-ins for Ecore files.

• Base MetaModel: The base metamodel plug-in contains artifacts that can be used to create
a language-specific metamodel for our generic mining algorithms (cf. Subsection 4.5.2).
It is realized using EMF Ecore.

• Language MetaModel: This metamodel is needed to have an internal representation of
imported models. Its generation can be automated after a manual analysis of the language
(cf. Subsection 4.5.1). It is realized using EMF. Its connection to the base metamodel is
optional (cf. Subsection 4.5.2).

• Compare: The compare algorithm is part of the core plug-ins and uses the generic structure
specified by metamodels (cf. Subsubsection 4.5.4.1).

• Metric: Metric plug-ins can be automatically generated after analyzing new languages and
specifying corresponding weights (cf. Subsection 4.5.3).

• Match: The match algorithm is completely language-agnostic (cf. Subsubsection 4.5.4.2)
and, thus, part of the core plug-ins.

• Decision Wizard: Decision wizards can be automatically generated with an extended
domain specific language (DSL) description or metamodel annotations (cf. Subsubsec-
tion 4.5.4.2).

• Merge: Merge algorithms have to be manually implemented as block-based languages are
too diverse for generating such algorithms (cf. Subsubsection 4.5.4.3).

4.7 Case Study
We combined our clustering technique in Section 4.4 with the family mining in Section 4.5 to
execute fine-grained variability mining on clusters of related models excluding outliers. We used
the workflow described in Figure 4.4 and focused on the question how our cluster and outlier
detection can improve such results:
• RQ4.1 – Outlier Detection: Is the clustering technique capable of eliminating outliers in

input models before executing the family mining approach?
• RQ4.2 – Cluster Detection: Is the clustering technique capable of identifying sensible

clusters of related models in the input models?
• RQ4.3 – Improvement of Results: Are the results of the family mining improved by apply-

ing it only to identified clusters and neglecting outliers?

4.7.1 Case Study Subjects
For our case study, we selected different subjects to evaluate whether the described clustering is
capable of improving the mining results (cf. Subsubsection 4.7.1.2).

4.7. Case Study 55

Variants Shared Mutually Alternating
Cluster 1 Cluster 2∗ ∑ Exclusive

OD1 8 2 10 7 14 6
OD2 8 2 10 10 12 5
OD3 8 2 10 6 0 21
CD1 8 8 16 17 2 8
CD2 12 12 24 12 7 8
∗containing the outliers for the OD scenarios and the second cluster for the CD scenarios

Table 4.1: High-level overview of the five scenarios from the body comfort system (BCS) used
to evaluate the cluster detection (CD1 & CD2) and outlier detection (OD1 – OD3).

4.7.1.1 Family Mining Implementation

We selected the block-based language statecharts for the evaluation of our approach. For that
language, our partners already realized manual implementations using the guidelines from previ-
ous work without exploiting their common structures and implementing the algorithms for each
language separately [195]. We use the same subjects as for the previous evaluation by our part-
ners [197, 194]. Thus, for the evaluation of the statechart family mining, we concentrate on the
body comfort system (BCS) also used as a motivating example in this chapter (cf. Section 4.2).
The BCS implementation represents a real world system from the automotive domain that was
realized using IBM Rational Rhapsody statecharts and was decomposed into an SPL [109, 128].
The resulting SPL comprises 27 reusable features and allows generation of 11,616 valid variants.
These features encapsulate the functionality of different system parts (e.g., the central locking
system or alarm system – cf. Section 4.2). Depending on the feature selection, the BCS statechart
variants comprise up to 70 states, 40 regions and 94 transitions. In particular, we concentrate on
17 BCS variants that were derived from the BCS SPL to cover a wide range of functionality in
the feature combinations [109, 128].

4.7.1.2 Cluster and Outlier Detection

For the evaluation of our cluster and outlier detection, we use five scenarios in the context of the
BCS SPL (cf. Section 4.2 and Subsubsection 4.7.1.1) that we outline in Table 4.1: To evaluate
the capability of the outlier detection algorithms to identify a small set of outliers in a set of
otherwise highly related variants (cf. RQ4.1), we selected three outlier detection scenarios (OD1
– OD3). These outlier variants differ compared to the cluster of related variants as large parts of
their selected features differ. Apart from the outlier detection, these scenarios also evaluate that
the algorithms are capable of identifying the expected cluster of related variants. Furthermore,
to evaluate the capability of the clustering algorithms without outliers present (cf. RQ4.2), we
selected two cluster detection scenarios (CD1 & CD2) with two delimitable clusters of variants.
Each selected scenario comprises clusters of valid feature selections from the BCS SPL to gener-
ate corresponding variants. Analyzing the selected scenarios, we also evaluate the benefit of the
outlier and cluster detection (cf. RQ4.3).

In Table 4.1, we show the number of variants contained in the different scenarios. Each
scenario consists of two clusters. While Cluster 1 always represents one of the expected clus-
ters, Cluster 2 either represents the set of outliers for the OD scenarios or the expected second
cluster for the CD scenarios. The table shows, for each scenario, the number of shared features
(i.e., contained in both clusters), the number of mutually exclusive features (i.e., contained only
in one of the clusters) and the number of alternating features (i.e., features that cannot clearly

56 Model Analytics for Variability Mining

Component Setting Description

Extraction

model statechart extractor for statechart models
unit type-name pairs further units NA at this point

structure bigrams capturing structure
postprocessing off no postprocessing

Comparison
basic NLP on compound-word similarity w/ internal NLP

advanced NLP off WordNet disabled
type matching relaxed 0.5 multiplier for non-exact types

struct. matching semi-rlx semi-relaxed comparison for n-grams

VSM
frequency sum sum of frequencies

idf off idf disabled
weighting off weighting disabled

Analysis
distance Bray-Curtis normalized distance

clustering hclust hierarchical clustering with average linkage
cut manual manual extraction of clusters

Table 4.2: SAMOS configuration for the case studies.

be assigned to variants from a particular cluster). Thus, we evaluate our clustering technique
using variants with different degrees of similarity (i.e., number of shared or mutually exclusive
features). In addition, we evaluate the resistance against “noise” (i.e., alternating features) which
might negatively influence the clustering as variants might be assigned to unexpected clusters.
Using the selected scenarios for the cluster and outlier detection provides us with a ground truth
as we clearly labeled variants as outliers or which cluster they belong to. As a consequence, we
can evaluate whether the detection is capable of generating results confirming this ground truth
and, thus, meets the expectations of experts well familiar with the BCS implementation.

For consistency, we also list the table of settings of SAMOS (Table 4.2 for the case studies
in this chapter.

4.7.2 Methodology
For our evaluation, we execute our proposed approach for each scenario selected in Table 4.1,
and discuss the resulting clusters and outliers, as well as the 150% models generated for these
clusters.

4.7.3 Results and Discussion
In this section, we report on our results of our case study and discuss them with respect to our
research questions.

RQ4.1 – Outlier Detection We applied our clustering technique with the settings outlined in
Section 4.4 for each scenario. By inspecting the dendrograms generated by the clustering, we
identified the outliers in scenarios OD[1-3]. Figures 4.11(a) to 4.11(c) depict the corresponding
dendrograms. The interpretation of the figures is as follows: (1) a big coherent cluster of data
points with high similarity marked in a blue frame; and (2) individual data points with relatively
little similarities with the main cluster marked in red frames.

An important point to discuss is related to the distinction between a feature vs. its imple-
mentation in the variant models. While we designed the scenarios based on selecting/deselecting

4.7. Case Study 57

features to comprise a notion of similarity between models, we ignored their implementation,
especially how big their corresponding realizations in the models are. This may lead to some
situations, e.g., having a common feature with a very large implementation offsets the selection
of all other minor features and dominates our similarity calculation. This is partly reflected in
Figure 4.11(c), where a considerable number of different features (6 out of 27) between V11616
and the large cluster contribute only to around 10% difference. Elaborate weighting schemes,
e.g., based on importance of features or model elements is omitted considering the scope of this
work.

V1
16

11

V1
16

16

V0
00

69

V0
00

77

V0
00

65

V0
00

73

V0
00

53

V0
00

61

V0
00

49

V0
00

57

0.
0

0.
1

0.
2

0.
3

0.
4

Cluster Dendrogram

hclust (*, "complete")
vegdist(test, method = "bray")

H
ei

gh
t

(a) Dendrogram for OD1
V0

00
01

V0
00

09

V1
12

19

V1
12

31

V1
12

23

V1
12

27

V1
12

17

V1
12

29

V1
12

21

V1
12

25

0.
0

0.
1

0.
2

0.
3

0.
4

Cluster Dendrogram

hclust (*, "complete")
vegdist(test, method = "bray")

H
ei

gh
t

(b) Dendrogram for OD2

V0
00

01

V1
16

16

V0
58

11

V0
58

12

V0
58

07

V0
58

08

V0
58

09

V0
58

10

V0
58

05

V0
58

06

0.
0

0.
1

0.
2

0.
3

0.
4

Cluster Dendrogram

hclust (*, "complete")
vegdist(test, method = "bray")

H
ei

gh
t

(c) Dendrogram for OD3

V1
08

58
V1

08
66

V1
08

60
V1

08
68

V1
08

62
V1

08
64

V1
08

54
V1

08
56

V1
08

44
V1

08
48

V1
08

43
V1

08
47

V1
08

42
V1

08
46

V1
08

41
V1

08
45

0.
00

0.
10

0.
20

0.
30

Cluster Dendrogram

hclust (*, "complete")
vegdist(test, method = "bray")

H
ei

gh
t

(d) Dendrogram for CD1

Figure 4.11: Dendrograms for the cluster detection scenario CD1 and the outlier detection sce-
narios OD1 to OD3. Clusters are marked with blue frames and outliers with red frames.

RQ4.2 – Cluster Detection For cluster detection we adopted an approach similar to the outlier
detection; namely we inspected the resulting dendrogram and this time tried to find large groups
of similar models rather than isolated outliers. The dendrograms for CD1 and CD2 are largely
similar; thus we only depict the former for the sake of space. Looking at the dendrogram in
Figure 4.11(d), it can be seen clearly that there are two distinct sets of data points, with high
similarity among each other (around 0.10), yet the intra-cluster distance is around 0.30; high
enough to comprise separate groups. As mentioned previously, especially in the case where a
much larger number of models is considered, it is arguable whether to obtain a few but large
clusters, or many but small (sub-)clusters; it is up to the domain expert to make this design deci-
sion.

The results of the outlier and cluster detection scenarios confirm that our clustering technique
is able to perform well enough with respect to the expectations of the experts building up the

58 Model Analytics for Variability Mining

ground truth for this study. This holds also in the presence of alternating features explained
previously as being potentially challenging. While the number of models considered in the case
study is limited, considering the results we answer RQ4.1 and RQ4.2 positively.

RQ4.3 – Improvement of Results To examine the results of the family mining algorithms with
or without a cluster and outlier detection, we distinguish two situations: a) cases with outliers
and b) cases without outliers.

In case outliers exist, we identified that our outlier detection improves the fine-grained vari-
ability information generated by the family mining algorithm. The main reason is that outlier
variants represent models that have a low or at worst no relationship to the remaining input mod-
els. Executing our family mining without detecting these outliers might result in unexpected
variability relations in the 150% model or even elements that have no relation to the rest of the
150% model. Thus, we argue that using the outlier detection is essential in situations where
users are not fully familiar with the input models and relations between these models are unclear
(e.g., after developers left the company).

In case no outliers exist, we do not necessarily need to execute our cluster detection as the
generated results for the complete set of input models represent valid variability information.
However, executing family mining on particular clusters might allow users to focus their analysis
on the corresponding models. Furthermore, detecting clusters reduces the chance of unexpected
variability information (e.g., induced by variants from other clusters; cf. Subsection 4.2.2). Thus,
detecting clusters prior to executing the fine-grained variability mining can improve the experi-
ence of users. However, we think that these clusters should at least be evaluated at a high level
by users as, depending on the focus of users, it might be interesting to combine multiple clus-
ters for a bigger picture of the overall system. For example, this could be interesting for senior
developers working on multiple projects that are identified as separate clusters.

Overall, we answer RQ4.3 positively as using the cluster and outlier detection allows to
improve the experience of users. The generated 150% models are tailored towards their ex-
pectations as outliers are removed and the identified variability information can be focused on
particular clusters.

4.7.4 Threats to Validity
Although we designed, implemented and evaluated our technique with great care, different
threats to validity are inherently present. Our feasibility studies contain models from the auto-
motive domain only and the used case studies are limited to IBM Rational Rhapsody statecharts.
This limits the generalizability of our approach as we can only say with certainty that our algo-
rithms and generic implementations work for these particular case studies and languages. How-
ever, we used the generic family mining and the outlier and cluster detection algorithms without
having a particular domain in mind and prior to our evaluation. Thus, we kept ourselves from
being biased and are confident that the algorithms are applicable to other block-based languages
and models from other domains.

On the clustering part of this work, there are also several threats of validity. First of all, the
technique itself aims to deliver a fast but approximate overview of the given data; hence it may
not be ideal if very high accuracy is required. The scenarios considered in this chapter are rela-
tively simple and further scenarios with varying size and complexity, preferably in real industrial
settings, could be investigated to test our claims. Another point, already addressed above, is that
the ground truth, hence the expectation of the domain experts, is shaped with respect to the high
level features in contrast to the lower level implementation in terms of the actual models. This
contrasts with the clustering technique working on the level of implementation, i.e., the model

4.8. Related Work 59

variants. Elaborate weighting schemes based on features and/or model elements could be intro-
duced to mitigate this situation, where the domain experts associate the corresponding parts with
varying importance to guide the clustering.

4.8 Related Work
In this section, we discuss related work for our presented clustering algorithm (cf. Subsec-
tion 4.8.1) and our variability mining (cf. Subsection 4.8.2).

4.8.1 Clustering Techniques
The existing approaches for model comparison typically consist of expensive pairwise techniques
that focus on accurate comparison/matching of just two models [159]; EMFCompare being one
of the most used industry standards. Only in recent work [19, 22, 35], scalable techniques based
on information retrieval and clustering (i.e., machine learning) for comparing large number of
models have been introduced. To the best knowledge of the authors, there is no further re-
lated work in the model-driven engineering (MDE) domain with a comparable perspective, i.e., a
holistic and scalable treatment of models for analysis and visualization.

In the SPL domain, Zhang et al. [204] use model comparison (i.e., EMFCompare) to synthe-
size a product line model from variant models. Our approach is different in the sense that the
mining/merging technique does not use model comparison directly, but rather clustering is meant
as an individual step of data preprocessing, selection and filtering before family mining. Further-
more, model clustering is faster and more scalable than pairwise techniques [22, 35], though
possibly with a trade-off in accuracy. This trade-off fits our workflow perfectly where we need
a rough overview of a potentially large number of models, whereas family mining operates by
itself in a precise way in the next step.

4.8.2 Variability Mining Techniques
Comparing different types of models for various purposes (e.g., variability identification or model
versioning) has been extensively investigated [159] and can be categorized into clone detection,
differencing and variability identification.

Clone Detection Different clone detection algorithms exist for various software artifacts and
languages including models [103, 141, 159]. For example, graph-based algorithms allow to
detect syntactic clones [64, 108, 132], semantic clones [7] and near-miss clones (i.e., clones that
have minor differences) [132]. Further algorithms translate models to textual representations
for text-based clone detection [10]. Clustering identified clones Alalfi et al. identify varying
parts in MATLAB/Simulink models by inferring that all remaining parts represent variability [8].
While the approach can theoretically be adapted for other languages, its applicability has only
been demonstrated for MATLAB/Simulink and no corresponding guidance exists. In contrast
the family mining framework by Wille et al. provides a generic implementation and adaptation
guidelines for adapting further languages.

Differencing For a complete analysis of variability information in models, focusing on the
cloned parts only is not sufficient as the differences describe their variability. A large number of
differencing algorithms exist for various languages and software artifacts in literature (e.g., [52,
95, 96, 186, 201]) and in commercial tools (e.g., DiffPlug [68], SimDiff [73]). However, unlike

60 Model Analytics for Variability Mining

the family mining approach these algorithms only provide information on the differences and
neglect the common parts necessary to describe the models’ complete variability.

Variability Identification While clone detection and differencing only identify one side of the
variability (i.e., either the common or the varying parts), variability identification combines both
dimensions. In addition, classic clone and difference detection algorithms mostly compare only
two models, while for a complete variability analysis in a set of models all models need to be
compared.

An essential part of variability identification is merging the compared models and storing
the identified information in a unified representation. A large number of model merging algo-
rithms exist for various contexts (e.g., [11, 117, 152, 181, 189]). These algorithms solely focus
on merging the information of the models and neglect their variability. In contrast, additional
variability-aware algorithms exist that merge the compared models and annotate the elements’
source models [77, 144, 147] or visualize the identified variability [115]. Unlike the familiy
mining algorithm these lack explicit variability information (i.e., about mandatory, alternative or
optional parts) and, thus, are not applicable for fine-grained variability analysis.

Nejati et al. describe an approach that similar to family mining uses heuristics (e.g., metrics)
for comparing and matching elements from statechart variants [123, 124]. However, in contrast
to the family mining approach, Nejati et al. only merge model elements with annotations about
their parent models and neglect fine-grained variability information, which limits their solution
to the generation of contained variants. In contrast, the family mining approach not only allows
transition to an SPL allowing generation of these variants [197], but also detailed analysis of
the fine-grained variability. Another variability identification approach similar to family min-
ing is that of Ryssel et al. [149]. However, unlike family mining they do not focus on storing
the identified variability in a unified representation but focus on extracting reusable library ele-
ments [151]. Work by Font et al. focuses on identifying variability information of models [76]
and incorporating the developers’ domain knowledge to identify larger reusable model parts sim-
ilar to Ryssel et al. [75]. While these approaches store the identified artifacts in an SPL using the
Common Variability Language (CVL), Wille et al. focus on generating 150% models that can be
translated to different SPL representations (e.g., delta-oriented SPLs [197]). Klatt et al. focus in
their work on identifying variability between related source code artifacts [97]. While, similar to
family mining, they operate on a graph-based representation, their algorithm relies on abstract
syntax trees (ASTs) of the analyzed code and, thus, is limited to the underlying data-structure.
In contrast, Wille et al. ’s presented model-based approach is applicable to different block-based
languages and they also showed that similar algorithms can be applied to source code [196].

The most part of mining techniques in literature use so-called pairwise approaches. In con-
trast, n-way algorithms are capable of merging a potentially arbitrary number of model variants at
the same time. In literature, such algorithms exist to merge different artifacts such as UML mod-
els into 150% models [147] and model-transformation rules into variability-based rules [172].
While the family mining approach can be easily adapted for different languages with varying
paradigms (i.e., MATLAB/Simulink and state charts), these approaches were evaluated for single
languages and currently lack such capabilities.

While all these approaches concentrate on the concrete realization artifacts, other techniques
exist to extract high-level configuration options in form of feature models [145] or CVL models.
Examples are approaches that analyze natural-language requirements [188], product maps [150,
158], or existing products [204]. During an SPL generation from the identified 150% models
(e.g., [197]) such information could provide a configuration model for the generated SPL.

4.9. Conclusion and Future Work 61

4.9 Conclusion and Future Work
In this chapter, we explained in detail how fine-grained variability information can be identified
for large sets of models in different block-based languages using the family mining approach
supported by our technique presented in this thesis. We demonstrated and discussed how our
language-agnostic cluster and outlier detection can improve the variability information gener-
ated by our family mining. Using the presented extension it is now possible to remove outliers
(e.g., completely unrelated variants) from a set of input models and cluster them into more mean-
ingful sets (e.g., relevant for particular users). Such fine-grained variability mining could in turn
support model management in SPL-like scenarios.

In future work, we plan to implement a direct link between the family mining framework
and our clustering framework. Currently, these two frameworks are realized independently and
after executing the cluster and outlier detection the user has to manually interpret the dendro-
grams. Using this information outliers have to be manually removed and sensible clusters have
to be selected prior to the detailed variability analysis using the family mining. By applying
additional algorithms to cut the generated dendrogram trees at sensible positions, we plan to
(semi-)automate this step by at least automatically providing suitable suggestions to the user. In
addition, we plan to evaluate clustering techniques that can help to automatically select a base
model for the comparisons using other (possibly more accurate) heuristics than selecting the
smallest model.

Chapter 5

Managing a Feature Model Repository

Model-Driven Engineering and Software Product Lines promote the use of models as central
artifacts for a variety of activities including domain analysis and generative software develop-
ment. As these paradigms gain popularity, the number and variety of models in use increase.
Several initiatives to gather models in repositories exist, such as ATL Zoo for metamodels or
S.P.L.O.T. for feature models, aiming for public access and reuse. However, as those reposito-
ries are only partly or not at all curated, the growing number of models leads to problems such
as duplicates a.k.a. clones, and lack of repository overview. This makes both repository man-
agement and model searching/reuse very hard. We address this issue for S.P.L.O.T. by adapting
SAMOS, our generic model analytics framework, for feature model comparison. We perform two
exploratory case studies. First, we aim for getting a high level repository overview with large
clusters and their domains. Secondly, we try to get clusters of highly similar models, to be inter-
preted as duplicates or clones. We conclude our approach is applicable for feature models and
can improve the use and maintenance of S.P.L.O.T.

5.1 Introduction
Model-Driven Engineering (MDE) and Software Product Lines (SPLs) are paradigms heavily
using models for a variety of activities ranging from domain analysis to software development,
deployment and testing. While one of the key objectives of such paradigms is the management
and reuse of increasingly complex software artifacts, the same problem emerges as they gain
popularity and wider adoption: there are more, larger and more complex models in use [26].
Recently, there has been some effort to collect various models in model repositories to facilitate
public access and reuse. Notable examples are the ATL Ecore Metamodel Zoo1, OCL dataset
along with the metamodels [121] and Software Product Lines Online Tools (S.P.L.O.T.) feature
model repository2 [119]. One problem of such repositories is when they are either partly or not
at all curated.

1http://web.emn.fr/x-info/atlanmod/index.php?title=Ecore
2http://www.splot-research.org/

http://web.emn.fr/x-info/atlanmod/index.php?title=Ecore
http://www.splot-research.org/

64 Managing a Feature Model Repository

This is particularly evident in S.P.L.O.T.: a quick inspection of the individual models reveals
that (1) models usually lack proper metadata on their domains, versions, etc.; (2) there are quite
many duplicates/clones/versions of models with no explicit relationship noted. Moreover the
number of models in the repository increases rapidly, scaling up the aforementioned problems.
These have serious implications in scenarios involving both repository management and use.
First of all, there is a lack of repository overview, e.g. what groups of models there are, and to
which domains these belong. This type of information would enable repository exploration, fa-
cilitating model search and reuse. Secondly, as new models are added, either the model manager
or the users themselves are burdened with the manual labeling of the models e.g. with respect to
their domains. And lastly, there is a considerable amount of duplicate models, clones arbitrarily
copy-pasted, and also various versions of the same models lying around in the repository.

These issues have been raised in the domain of MDE [22, 35]. A promising solution is the
automatic comparison of models [159] for gaining some information on the repository dataset
such as grouping/subgrouping of models, proximities among models (and groups as well) and
outliers. Doing this on a large scale for hundreds of models requires techniques beyond the
complex and expensive pairwise comparison such as in [118]; rather it requires approximate but
fast and scalable techniques. These include e.g. fragmentation of models into smaller chunks,
typically via Information Retrieval (IR)-based and statistical methods such as clustering [22, 35],
especially for clone detection [18].

There has been a considerable amount of work in the SPL community on feature model anal-
ysis, comparison and use of IR-based techniques, however with several important distinctions.
First of all, inspecting the thorough literature study of Benavides et al. [37] on automated anal-
ysis of feature models reveals that analysis is mostly performed on a single feature model and
some configuration of that, for instance to find out the dead features or valid products. Other ap-
proaches involve multiple feature models as input, but model comparison is generally perceived
based on the configuration semantics (as used by She et al. [158] in contrast with ontological se-
mantics): feature models are transformed into logical formulas, and reasoned about their pairwise
relationships such as generalization/specialization [178], or exact differences [2, 48]. Another
approach uses EMF Compare to calculate pairwise differences between feature models [70]. An
interesting take on feature model comparison is presented by Xing [200], who argues that feature
models might evolve over time with changes in both the structure and feature names/descriptions,
and applies their generic model differencing technique to feature models using the structural (or
ontological according to [158]) information in the models. On the other hand, many researchers
have proposed IR and clustering, not for comparing feature models but requirements, product
descriptions, or features themselves (e.g. their names, the text in their description) for reverse
engineering feature models [14, 158]. Along a line of work mostly on model synthesis and com-
position [3, 4], Bécan et al. utilize IR and NLP techniques in their interactive model synthesis
tool [36]. To our best knowledge, there has been no comparable work in the modelling and SPL
domains to cluster large numbers of feature models with our objectives of discovering relations
among large datasets in a scalable manner.

In this chapter, we attempt to apply our generic model analytics framework to compare the
feature models in the S.P.L.O.T. repository. Our goals are twofold; introducing our approach to
the SPL community which we believe can benefit from the proposed techniques, and testing the
genericness and extensibility of our approach for new model types and datasets. First, we extend
our framework with an extraction scheme for feature models using the S.P.L.O.T. Java API for
parsing Simple XML Feature Model (SXFM) files. Using many utilities of the framework, no-
tably Natural Language Processing (NLP) tools, we test our approach on the 1034-model dataset
in S.P.L.O.T. We perform two case studies: firstly trying to get relatively large sized clusters and
their corresponding domains in the repository; and secondly obtaining clusters of very similar

5.2. Analyzing Feature Models 65

models—to be interpreted as duplicates, clones or versions. We conclude our approach is indeed
applicable for feature models and can improve the use and maintenance of S.P.L.O.T.

5.2 Analyzing Feature Models
In this section we start with some preliminaries and move on to detail our approach for analyzing
and comparing feature models by extending SAMOS.

5.2.1 SXFM Feature Models
There are many notations for feature models, starting with the original one by Kang et al. [93],
later extended with cardinalities, additional constraints, attributes and so on [156, 157]. As a
starting point for this study we take the SXFM notation supported by the models in S.P.L.O.T. A
feature model has a feature tree with different types of features in it (Root as the root of the tree,
Solitaire meaning singleton, non-grouped features), optional/mandatory modifier, feature groups
with cardinalities (lower and upper bounds) and grouped features in them, and the parent-child
relations. They may also contain additional constraints in Conjunctive Normal Form (CNF)
clauses. See Figure 5.1 for an example SXFM feature model with mandatory, optional and
grouped features.

5.2.2 Extracting n-grams and Constraints
We want to extract the information from the features (names, types, cardinalities) and their rela-
tion to other features in the hierarchy (i.e. structural context) in the form of n-grams as supported
by our framework. Additionally, we want to represent constraints for accurate comparison. Us-
ing the SXFM Java parser library of S.P.L.O.T., it is rather straightforward to traverse the feature
tree and generate the information to be used for clustering. We present here the pseudocode for a
simple extraction of bigrams and constraint sets from feature models. Note that the bigram rep-
resentation is an inaccurate simplification for grouped features (due to the then implementation
of SAMOS) as the n-ary relation among the grouped feature and its members together is trans-
formed into binary relations. Please see Section 5.4 on future work to overcome this limitation
with more complex features, i.e. trees.

We give an example extraction from a model in S.P.L.O.T. (Figure 5.1) for n = 1,2 and
constraints in Table 5.1. We use a mobile phone feature model, with mandatory features (Calls),
optional ones (GPS), and an alternative feature group (meaning only one should be chosen)
with Basic, Colour or High Resolution screen. Constraints not being shown in the figure would
include (∼ _r_2 or∼ _r_3_5_6), which describes the implication GPS→∼ Basic when we map
the feature id’s to the corresponding feature names.

5.2.3 Rest of the SAMOS Workflow
Once we obtain the IR-features, the rest of the framework can be used as is for the n-grams.
For the constraint sets, we apply the Hungarian algorithm [105] to obtain a best (partial) match
score among the sets based on their feature names and negations (each using vertex similarity in
SAMOS). In terms of vertex/node matching, i.e. how to compare unigrams with each other, users
can choose to check for synonyms via tokenization, filtering, stemming/lemmatization, Leven-
shtein distance and WordNet3; whether types should be exactly the same or ignored altogether.

3https://wordnet.princeton.edu/

https://wordnet.princeton.edu/

66 Managing a Feature Model Repository

Algorithm 2 Processing the feature models for bigrams and con-
straints.
declare list f eatureList

procedure process(FM)
processTree(T)
processConstraints(Cons,T)

procedure processTree(T)
parent← extract (name, type) pair from current node T
for each regular child C of T do

child ← extract (name, type) pair from child C
if type(C) == mandatory then

edge← "child[1..1]"
else

edge← "child[0..1]"
end if
f eatureList ← f eatureList

⋃
(parent,edge,child)

processTree(C)
end for
for each grouped feature G of T do

child ← extract (name, type) pair from child G
edge ← "child[i.. j]" where i, j are lower/upper group cardi-
nality
f eatureList ← f eatureList

⋃
(parent,edge,child)

processTree(G)
end for

procedure processConstraints(Cons,T)
declare set S
for each CNF constraint F in Cons do

for each term Trm in F do
name← get name of Trm in feature tree T
if negated(Trm) then

name←∼name
end if
S← S

⋃
name

end for
f eatureList ← f eatureList

⋃
S

end for

5.3. Case Studies 67

Figure 5.1: A feature model example (constraints not shown).

type IR-features

un
ig

ra
m

(Root-Mobile phone)
(Mandatory-Calls)

(Optional-GPS)
(Mandatory-Screen)

(Grouped-Basic)
. . .

bi
gr

am

(Root-Mobile phone)-(child[1..1])-(Solitaire-Calls)
(Root-Mobile phone)-(child[0..1]-(Solitaire-GPS)

. . .
(Solitaire-Screen)-(child[1..1])-(Grouped-Basic)

(Solitaire-Screen)-(child[1..1])-(Grouped-Colour)
. . .

co
ns

tr (∼GPS,∼Basic)
(High resolution,∼Basic)

. . .

Table 5.1: IR-feature extraction: some examples for Figure 5.1. ’∼’ denotes negation.

Finally, users can choose to apply type-based weighting (e.g. some parts of the model might be
more important such as classes vs. parameters in UML) and idf.

Having set all the above schemes, the framework computes the VSM based on the n-grams
extracted. Using this matrix and picking a distance measure (e.g. cosine for domain clustering),
clustering is performed in R. Further options are what type of clustering to do (flat vs. hier-
archical) and algorithm-specific parameters. The main output of hierarchical clustering is the
dendrogram, which can be manually inspected, or cut with certain parameters to automatically
infer clusters (e.g. for clone detection with threshold values).

5.3 Case Studies
We performed two exploratory case studies to demonstrate the applicability of our approach for
feature models, on the 1034-model dataset in S.P.L.O.T. (as of July 18, 20184).

4snapshot available at http://www.win.tue.nl/~obabur/data/AMMORE18.zip

http://www.win.tue.nl/~obabur/data/AMMORE18.zip

68 Managing a Feature Model Repository

Component Setting Description

Extraction

model feature model extractor for feature models
unit name only names

structure unigrams ignoring structure
postprocessing on token expansion, filtering

Comparison
basic NLP on single-word similarity w/ basic NLP

advanced NLP on WordNet semantic relatedness (Lin)
type matching off NA for names

struct. matching off NA for names

VSM
frequency sum sum of frequencies

idf norm. log normalized log
weighting off type-based weighting NA for names

Analysis
distance cosine angular cosine distance

clustering hclust hierarchical clustering with average linkage
cut semi-automatic filtering cut + manual inspection

Table 5.2: SAMOS configuration for case study 1.

5.3.1 Case Study 1 - Repository Overview and Major Domains
In this case study, we want to obtain large groups of related feature models, to be able to identify
roughly the domains in the repository (e.g. mobile phone models). Observing that in our case the
domain knowledge is captured mostly in the feature names, unigrams (n = 1) are adequate here.
We have adopted a similar parameter set previously used for clustering the ATL Ecore metamod-
els [22] (see Chapter 2): unigrams of names only (no types), NLP including pre-tokenization
for compound words, Levenshtein distance for typos, stemming, lemmatization and WordNet
for semantic relatedness; normalized log idf weighting, cosine distance and finally hierarchical
clustering with average linkage (see Table 5.2) The procedure for this case study is as follows:
(1) cluster the whole dataset with the above settings, (2) perform a filtering pass to cut off the
models that are less similar (≥ 0.8 cosine distance, arbitrarily chosen as high enough similarity)
to the rest of the dataset, and focus on relatively large clusters (≥ 20 models), and (3) perform a
second clustering step on the subset and visualize the dendrogram. See Table 5.2 for a summary
of the configuration of SAMOS for case study 1.

Note that the filtering step is necessary, as we have to manually inspect and evaluate the
results; manually handling a 1034-item dendrogram with a non-trivial coarse structure within
the scope of this work is not feasible. Figure 5.2 is useful to see the diversity of the models
in S.P.L.O.T: there is not much thick branching, for instance dividing the dataset into few large
clusters.

A Brief Qualitative Evaluation The filtering steps reduced the dataset size to 275. The result-
ing dendrogram for clustering those 275 models is given in Figure 5.3. The interpretation of the
dendrogram is that (1) the numbers on the dendrogram correspond to the table row indices of the
feature models as given in S.P.L.O.T. table and (2) the joining height of individual branches are
the normalized distance (can be considered percentage dissimilarity) between those two individ-
ual models or groups of models. Cutting the dendrogram horizontally at height 0.8, we obtain
10 major clusters, as shown in Figure 5.3 in dashed lined boxes with cluster labels at the bot-
tom. Inspecting the models, we can roughly attribute the following domain labels to the clusters:
cluster 1 of mobile media and cluster 2 of mobile phone models, cluster 3 of models with many

5.3. Case Studies 69

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cluster Dendrogram

hclust (*, "average")
d

H
ei

gh
t

Figure 5.2: The dendrogram of the 1034 models. Leaves are hung from the joints (which denote
the actual similarity) for better visualization; hence some leaves extend below 0.

feature names Feature-1, Feature-2, . . . Feature-N, cluster 4 of voting/e-voting models in Por-
tuguese (urna), cluster 5 of models with many feature names F1, F2, F_1, and so on; cluster 6 of
models in Spanish about real estate (inmobiliaria), cluster 7 of models for marketplaces (mostly
in Spanish), cluster 8 of models with a lot of abbreviations and numbers as feature names (see
discussion below), cluster 9 of e-shop and e-commerce models, cluster 10 of computer models
(mostly in Spanish).

A precise account of the accuracy of this categorization is difficult to give, as the dataset
itself is not labeled. Instead we comment about the clusters and some false positives we found
by manual inspection. Clusters 1 and 2 are very accurate, and we could find cases where our tool
successfully detected typos and NLP-related changes. Cluster 3 has the upper part of the branch
(say, higher than 0.5 distance) seemingly less and less relevant; models with few percentages of
features with names Feature-X are detected as partly relevant to this cluster.

Cluster 4 is also a quite accurate account including non-English (in this case Portuguese)
models, although our tool cannot specifically address them at the moment (e.g. with synonym
detection in other languages). Cluster 5 (F ′s) is conceptually similar to 3, but does not have as
many irrelevant models and is mostly accurate. Clusters 6 and 7 are again mostly accurate except
for an outlier numbered 682 (about mass transport). Cluster 8 is the most irrelevant one, where
a lot of different models with abbreviations and numbers as feature names are grouped together.
Clusters 9 and 10 also seem quite accurate. In the latter, we even identified two models about
computers in different languages being correctly clustered together thanks to some shared terms.

A detailed account of the recall for this case study is left as future work. One can increase the
recall (at the cost of precision) by relaxing the parameters/thresholds more generously. Note that
there are certainly some more domains in the dataset to be discovered, e.g. car and bike feature
models. If there are too many domains, it might be practical to handle all of the dataset manually;
a semi-automatic way could solve the problem and is left as future work.

70 Managing a Feature Model Repository

25
55
83

112
301
450

260
332

418
597

548
613

834
351

415
382
386

378
385
411

192
314

343
416

342
380

363
266

341
339

420
359
376

344
319

340
326
312
307
309

356
412
422
413
407
405
402
397
398
369
346
395
391
389
384
381
379
371
367
366
365
360
358
352
345
349

274
370

598
610

602
479
621

140
433

374
63

119
393

46
61

65
77
67
54
47
34
31
28
26
11
24

37
72

179
404

336
209

132
50

16
241
252

80
22
6

184
472

329
117
100

200
152

57
183
221
2

51
84

556
191
214

39
144
71
81
175

1023
99

142
233
273
735
53

835
73

197
557

869
388
455

529
995

692
848

718
515

482
495

802
606

513
678

580
410
946

254
151

187
159
165
118
143
133
107
114

331
774

754
797

731
614

693
685

527
653

701
796

745
778

723
730
688
727

638
665

879
981

961
931
973

690
836

682
976

535
617

1013
616

1004
832

224
982
984

628
599
622
629

188
19
98

136
210

953
462

811
814

715
858

443
127
355

793
887

829
635

889
900
907

863
865

916
922

881
940

866
911

921
853
876

875
901

897
729
888

861
868
912

882
898

895
884
892
919
927

910
891

903
872
904

914
918

894
799
852

877
906

886
905

893
923

902
917

864
885

0.0 0.2 0.4 0.6 0.8 1.0

C
luster D

endrogram

hclust (*, "average")
d_subset

Height

1"
2"

3"
4"

5"
6"

7"
8"

9"
10"

Figure 5.3: The dendrogram depicting 10 domain clusters.

5.3. Case Studies 71

Component Setting Description

Extraction

model feature model extractor for feature models
unit attributed key-value pairs for attributes

structure edged bigrams, sets capture tree structure and constraints
postprocessing off lemma/case standardization

Comparison
basic NLP on compound-word sim. w/ internal NLP

advanced NLP off WordNet disabled
type matching relaxed 0.5 multiplier for non-exact types

struct. matching semi-rlx, Hung semi-rlx for bigrams, Hungarian for sets

VSM
frequency sum sum of frequencies

idf off idf disabled
weighting off weighting disabled

Analysis
distance msk. Bray-Curtis masked normalized distance

clustering dbscan density-based clustering
cut automatic automatic clustering with thresholds

Table 5.3: SAMOS configuration for case study 2.

5.3.2 Case Study 2 - Detecting Duplicates and Clones
In this case study, we set the objective to obtain groups of very similar feature models, both
content and structure-wise. We would like to detect duplicates, clones, variants and versions in
S.P.L.O.T. , easily seen with a brief inspection of the models in the repository. Exact categoriza-
tion of the found models into one of these is beyond the scope of this work; we refer to all of
those simply as clones. As we want to capture as much information as possible, we turned to use
full bigrams (with types, cardinalities) and constraints here. We used (1) no idf weighting, (2)
relaxed type matching (with non-exact type matches getting a reduced similarity multiplier). We
further used masked Bray-Curtis Distance with a density-based clustering technique (please refer
to Chapter 6 for full details for this technique and [103] for clone detection in general). In sum-
mary, we ran SAMOS with the clone detection setting on the 1034-model dataset for detecting
Type A, B and C clones [18] with respective distance thresholds of 0 (identical except cosmetic
changes), 0.1 (slightly different) and 0.3 (somewhat different). See Table 5.2 for a summary of
SAMOS configuration for case study 2.

clone type #clusters #pairs #models involved
A 22 64 59
B 60 1472 208
C 90 3320 382

Table 5.4: Clone detection statistics.

A Brief Qualitative Evaluation We found a considerable number of clones; we report in Ta-
ble 5.4 the number of clone clusters, the total number of clone pairs and models involved in
those.5 This already indicates that a relatively high percentage of the models in S.P.L.O.T. is
highly similar to other models in the repository. The actual clone clusters with some examples

5See http://www.win.tue.nl/~obabur/data/AMMORE18.zip for the full list of clones

http://www.win.tue.nl/~obabur/data/AMMORE18.zip

72 Managing a Feature Model Repository

type model indices in a cluster
A 811 814
A 763 769 773
A 165 187
A 567 568 571 573 589
A 11 24 26 31 34 54
A . . .
B 1029 1030
B 967 970
B 884 892 919 927
B 599 622 629
B 479 602
B . . .
C 1032 1034
C 783 794
C 556 735 835
C 11 24 26 28 31 34 37 47 54 61 65 67 72 77 241 374
C 19 50 98 125
C . . .

Table 5.5: Some of the clone clusters.

are given in Table 5.5. Inspecting a (random sample amounting to %20 of) the clone clusters, we
were able to trace the following:

• Type A clones: SAMOS was able to detect Type A clones (implying no significant change)
very accurately; we found no incorrect labeling in the validation subset. Manually inspect-
ing the clusters, we found the following changes which led to a Type A classification:
change in the date of creation of the model, feature model name, metadata, constraint
names (i.e. not the content), order of elements in the feature tree and the CNF formulas,
consistently changed feature id’s (which lead to e.g. completely different looking con-
straint formulas), and cosmetic changes in feature names (e.g. upper/lower and snake/-
camel casing).

• Type B clones: SAMOS detected clones with a variety of changes, ranging from sim-
ple modification of cardinalities, textual changes in feature names (e.g. typos, additional
tokens) to addition or removal of features and constraints, and moving of features to else-
where in the feature tree as well. Although all the clones we inspected were relevant,
some might arguably be categorized as higher level, namely type C (see discussion about
weighting and feature groups in Section 5.4).

• Type C clones: SAMOS is again in most cases accurate in finding higher percentage of
addition, removal, or changes in feature trees and constraints, although we identify certain
shortcomings. SAMOS treats feature names such as Feature-1 and Feature-2 as highly
similar, which leads to an inaccurate Type C classification (see e.g. line 3 of type C clones
in Table 5.5). Also due to the simplification of grouped features in the form of bigrams,
SAMOS is not able to distinguish very well between e.g. grouped features in a strict alter-
native feature group of cardinality 1..1, and the same features moved outside as mandatory

5.4. Discussion and Future Work 73

features (again with cardinalities 1..1). The problem with weighting as mentioned above
might lead to some misjudgment and is subject to improvement.

5.4 Discussion and Future Work
The case studies show our approach can provide an insight into the feature models in S.P.L.O.T.,
in terms of repository overview and domain decomposition, and of duplicates a.k.a. clones. We
consider these as hypotheses for further verification in our future studies. We extract the informa-
tion captured in the feature names, the ontological hierarchy of the feature tree and the constraints
(syntax only); and use this to efficiently calculate approximate similarities among models. Here
we provide no quantitative evaluation on the accuracy of our approach partly due to the lack of a
labeled dataset and the exploratory nature of the study. A brief qualitative evaluation yet reveals
our approach is indeed effective to a considerable extent with room for improvements. It would
be interesting to quantitatively evaluate the effect of different settings, given a labeled dataset
(e.g. feature models with explicit domains for the first case study, or mutated feature models
for clone detection). In this section we discuss several limitations of and improvements for our
approach.

Grouped features, configuration semantics: Given our choice of bigram representation, we
inaccurately extract group cardinalities for each grouped feature. An improvement would be to
switch to tree representations in SAMOS (which was still in development at the time, see Chap-
ter 6 for these integrated into SAMOS) to properly capture those. Furthermore, we do not per-
form any inference and compare the syntactic constructs as is. Hence, it should be further inves-
tigated how we can incorporate the inferred information, though then the approach would move
towards comparing knowledge bases. Another further step would be incorporating attributes in
extended feature models for comparison, which is not supported by the S.P.L.O.T. dataset, and
left as an open problem.

Weighting, fine tuning: At the moment we did not use any weighting scheme in this chap-
ter, such as type-based weighting (e.g. constraints having less weight than the feature tree) as
supported by SAMOS, but also advanced ones. An initial idea for the latter would be depth-
dependent weighting, i.e. features lower in the tree hierarchy get lower weights, hence attributing
more importance to higher level features (which are arguably more general or abstract, e.g. as
mere structural units, more coarse grained/architecture-related). Inspecting the results of the
clone detection, we believe a fine-tuned weighting scheme could improve the clone classifica-
tion, especially around boundaries between Type B, C and higher thresholds.

NLP settings: The S.P.L.O.T. dataset brings several new challenges for our framework’s NLP
capabilities, notably due to its multi-language heterogeneous nature. There are models in En-
glish, Spanish, Portuguese, Indonesian, etc. in the repository, which renders our English-based
NLP tools inadequate. In an orthogonal direction for improvement, the framework could be
extended with multi-language NLP, including e.g. tokenizers and even cross-language synonym
checkers. The features labeled as Feature-1 or F1, or cryptically abbreviated, pose yet another
challenge.

Threats to validity There are several threats to validity for our work, mostly stemming from
the exploratory approach. The settings we have chosen for the case studies may not be the most

74 Managing a Feature Model Repository

efficient and accurate ones, but were chosen mostly for simplicity and demonstration purposes. A
quantitative evaluation of different parameters and thresholds, and more importantly on labelled
datasets (e.g. explicit domain labels for case study 1, clones for case study 2) would be required
for a more precise account.

5.5 Conclusion
In this chapter we have presented an application of our generic model clustering technique to
feature models. We have extended our framework to extract information from feature models
and efficiently but approximately compare models. With two exploratory case studies on the
1034-model dataset in the S.P.L.O.T. repository, we get (1) a repository overview and major do-
mains therein, (2) very similar models in the repository such as duplicates and clones. Based
on the studies, we conclude that our approach is indeed applicable for clustering feature mod-
els. Following the two objectives we set in the beginning, we both confirm the genericity and
applicability of our approach for different types of models, and provide a new perspective on the
comparison of feature models for the SPL community. Indeed, our approach can help with the
use and maintenance of emerging repositories such as S.P.L.O.T.; hence serves those aspects of
model management in general.

Chapter 6

Metamodel Clone Detection with SAMOS

Wider adoption of model-driven engineering leads to an abundance of models and metamod-
els in academic and industrial practice. One of the key techniques for the management and
maintenance of such artifacts is model clone detection, where highly similar (meta-)models and
(meta-)model fragments are mined from a typically large set of data. In this chapter we have
extended the SAMOS framework (Statistical Analysis of MOdelS) to clone detection, exemplified
on Ecore metamodels. The clone detection uses and extends the framework’s feature extraction,
vector space model, natural language processing and clustering capabilities. We performed
three extensive case studies to demonstrate its accuracy both quantitatively and qualitatively. We
first compared the sensitivity and accuracy of SAMOS for metamodel changes through mutation
and scenario analysis (which simulate clones) with those of NICAD-Ecore and MACH, tools for
clone detection on Ecore and UML models respectively. We then compared the precision and
recall of SAMOS and of NICAD-Ecore on a real dataset, consisting of conference management
metamodels from the ATL Zoo. Finally we performed a repository-wide mining of metamodel
clones from GitHub. We conclude that SAMOS stands out with its higher accuracy and yet
considerable scalability for further large-scale clone detection and other empirical studies on
metamodels and domain specific languages.

6.1 Introduction
Model-driven engineering (MDE) promotes the use of models (and metamodels to which they
conform) as central artifacts in the software development process1. This eases development and
maintenance of software artifacts (including source code generated from models), yet increas-
ing MDE adoption leads to an abundance of models in use. Some examples of this include
the academic efforts to gather models in repositories, and large-scale MDE practices in the in-
dustry [26, 120, 187]. This leads to challenges in the management and maintenance of those
artifacts. One of those challenges is the identification of model clones, which can be defined in
the most general sense as duplicate or highly similar models and model fragments [64]. Similar

1In our context, we refer to metamodels and models shortly as models, as metamodels are models too.

76 Metamodel Clone Detection with SAMOS

scenarios apply in the traditional software development for source code clones. There is a sig-
nificant volume of research on code clones, elaborating the drawbacks of having clones, which
can be a major source of defects or lead to higher maintenance cost and less reusability, and pro-
viding detection techniques and tools [143]. Note that in some cases clones might be useful too,
as argued by Kapser et al. [94]; it is nevertheless worthwhile to investigate them. Code clones
have attracted the attention of the source code analysis community, who had to deal with the
maintenance of large numbers of artifacts for a longer time than the MDE community.

Model clone detection, on the other hand, is a relatively new topic. Many researchers have
drawn parallels from code clones, and claimed that a lot of the issues there can be directly trans-
lated into the world of models. While the problem domains are similar, the solution proves to be
a challenge. Source code clone detection usually works on linear text or an abstract syntax tree
of the code while models are in general graphs [65]; other aspects are also inherently different
for models, such as tool-specific representations, internal identifiers, and abstract vs. concrete
syntaxes [167].

There are several approaches for model clone detection, or model comparison in the broader
sense, in the literature [65, 159]; yet we are particularly interested in ones with a publicly avail-
able tool to be reused in our studies. A good portion of such tools are either limited to, tailored
for, or evaluated on specific types of models such as MATLAB/Simulink. Notable examples,
along with the code clone detector back-ends for them, are CloneDetective-ConQAT [64] and the
SIMONE Simulink clone detector [9]—referred to as NICAD-SIMONE in this chapter—an ex-
tension of text-based tool NICAD to cover clone detection in Simulink models. Another related
approach for Simulink models is ModelCD based on graph comparison and approximation [132],
but the tool is not publicly available. While the approach is similar to ours in this chapter, given
the unavailability we cannot use it in our study; see however Section 6.7 for a discussion. Stör-
rle presents an approach and a tool, MQlone, for UML model clone detection [167, 168]. Störrle
elaborately describes and classifies UML model clones, noting the differences to code clones and
Simulink model clones. Furthermore, the author reports a much higher performance and scal-
ability for MQlone compared to ConQAT and ModelCD. MQlone is integrated into the publicly
available tool suite MACH2, though in a very limited manner, with almost no control over the
rich set of algorithms and settings developed by Störrle.

In our research we have the goal of detecting clones in large repositories of models and large
evolving industrial domain-specific language (DSL) ecosystems based on the Eclipse Modelling
Framework (EMF). Metamodels are artifacts of particular interest to us, for various purposes
including metamodel repository management and DSL analysis (see Section 6.2 for a detailed
discussion). To achieve this goal, we have investigated the feasibility of existing tools, with three
major requirements: (1) conceptual and technological applicability to Ecore metamodel clones;
(2) sensitivity to all possible metamodel changes, and accuracy in general (precision, recall);
and (3) scalability for large datasets. As a starting point we considered MACH and NICAD-
SIMONE as promising candidates. However, these tools underperformed with respect to some
of our requirements, which will be demonstrated in the rest of this chapter.

We have taken an orthogonal approach by extending the SAMOS framework (Statistical
Analysis of MOdelS) for model clone detection. SAMOS is a state-of-the-art tool for large-scale
analysis of models [17], as introduced in the previous chapters. We wish to exploit the underlying
capabilities of the framework—incorporating information retrieval-based fragmentation, natural
language processing, and statistical algorithms—for model clone detection. In this chapter, we
describe how we have extended and tailored SAMOS for (meta-)model clone detection.

The rest of the chapter is structured as follows. Section 6.2 opens with scenarios and con-

2https://www.pst.ifi.lmu.de/~stoerrle/tools/mach.html

https://www.pst.ifi.lmu.de/~stoerrle/tools/mach.html

6.2. Metamodel Clones 77

ceptualization of metamodel clones. We outline the two clone detector tools used to contrast
SAMOS to in our case studies, namely NICAD-ECORE and MACH, in Section 6.3. In Sec-
tion 6.4, we elaborate on the extended SAMOS framework with its feature extraction, com-
parison, natural language processing and clustering capabilities. Section 6.5 details the three
extensive case studies with mutation/scenario analysis for SAMOS, NICAD-Ecore and MACH;
comparison of SAMOS with NICAD-Ecore on ATL Zoo metamodels; and finally a repository
mining scenario on a very large set (thousands) of GitHub metamodels. The rest follows with an
overall discussion including future work in Section 6.6 and further related work in Section 6.7.
We finally draw conclusions on the applicability of SAMOS to metamodel clone detection.

6.2 Metamodel Clones
The goal of our research is to detect metamodel clones. Metamodel clones might exist due
to a wide range of reasons including copy-paste or clone-and-own approaches in model-driven
development [65], lack of abstraction mechanisms in metamodels for language design [174], or
difficulty in reuse for DSLs in general [57]. Maintenance, which has been identified by Kosar et
al. [102] as one of the major overlooked areas in DSL research, is hampered by the presence of
clones and can benefit from clone detection [175].

In our research, we are interested in finding similar (fragments of) metamodels, with the
following problems at hand. First and foremost, clones suggest potential scenarios for quality
assurance and refactoring in MDE/DSL ecosystems. Also, as those ecosystems in large-scale
settings do consist of multiple DSLs, clone detection across different DSLs and their versions
forms a basis of empirical studies on their development and evolution. Furthermore, repositories
and datasets of metamodels, whether company-wide in industry, online in the public domain, or
specific collections for research purposes, could benefit from clone detection for activities such
as repository management, exploration, data preprocessing, filtering, and large-scale empirical
studies (such as on the origin, distribution and genealogy of the clones). Finally, we might
use clone detection for plagiarism detection and assistance in grading student assignments for
language design and metamodelling courses, similarly as done by the counterparts in the source
code domain, such as JPlag [134].

While metamodel clones have not been specifically studied in the literature, model clones
have been, particularly model clones in MATLAB/Simulink and other data flow type models. A
very large portion of the model clone detection literature is focused on data flow languages such
as Simulink with the following classification scheme [9, 7]:

• Type-I (exact) model clones: Identical model fragments except for variations in visual
presentation, layout and formatting.

• Type-II (blind renamed, or consistently renamed) model clones: Structurally identical
model fragments except for variations in labels, values, types, visual presentation, layout
and formatting.

• Type-III (near-miss) clones: Model fragments with further modifications, such as changes
in position or connection with respect to other model fragments and small additions or
removals of blocks or lines in addition to variations in labels, values, types, visual presen-
tation, layout and formatting.

• Type-IV (semantic) clones: Model fragments with different structure but equivalent or
similar behaviour.

78 Metamodel Clone Detection with SAMOS

Note that we omit Type-IV, i.e. semantic, clones for the scope of this chapter as they pose an
orthogonal and arguably bigger challenge; however this is perfectly in line with the related work
for NICAD-SIMONE and MACH, both of which omit semantic clones as well.

While the above scheme is more or less a community standard, metamodels are more similar
to UML class diagrams than to Simulink models, with respect to the following two key aspects:
(1) the importance of the model element names, and (2) the dominance of a containment tree
structure. Hence our conceptualization and classification of metamodel clones is mostly adopted
from UML clones [168]. Störrle emphasizes that names of model elements are essential parts
of UML models. His classification for UML clones has a notable distinction from the Simulink
classification: it rules out Type-II (renamed) clones due to the indispensability of element names.
This is also the case in the context of EMF metamodel clones. Our clone classification, adding
a few items related to Natural Language Processing (NLP) to Störrle’s classification, is given
below. He further argues that the structure of UML models is dominated by a containment tree
with few additional cross-tree connections. We believe those two observations apply to Ecore
metamodels as well; though an empirical study to find evidence on large corpora is left as future
work. Note we use a different formulation than of Störrle for semantic clones. However, we omit
Type-D semantic clones for the scope of this chapter (see discussion above for Type-IV clones),
which is consistent with Störrle who avoids semantic clones as well. We leave it as future work
to conceptualize and detect semantic model clones. We will use the following classification for
the rest of the chapter.

• Type-A duplicate model fragments except secondary notation (layout, formatting), internal
identifiers.

– Plus any cosmetic change in the names (lower-/uppercase, snake-/camel-case and
other insignificant changes).

• Type-B duplicate model fragments with small percentage of changes to names, types, at-
tributes, few additions/removals of parts.

– Plus potentially many syntactic/semantic changes in the names such as typos, syn-
onyms, semantically related words.

• Type-C duplicate model fragments with substantial percentage of changes/ additions/re-
movals of names, types, attributes and parts.

• Type-D semantically equivalent or similar model fragments with different structure and
content.

Now that we have set the concepts and classification of metamodel clones, we continue with
existing model clone detectors that can be used for metamodel clone detection.

6.3 Other Model Clone Detector Tools
In this section we discuss two prominent model clone detector tools we used in our comparative
evaluation against SAMOS.

6.3. Other Model Clone Detector Tools 79

6.3.1 NICAD-SIMONE
The NICAD Clone Detector3 is a scalable clone detection tool implementing the NICAD (Au-
tomated Detection of Near-Miss Intentional Clones) code clone detection method [59]. It was
mainly designed for finding intentionally copy/pasted units, such as functions and subsystems,
that have been modified. It uses a configuration file to specify steps such as normalization of
identifier names and filtering of irrelevant parts. It has good reporting capabilities in XML and
HTML for readability. NICAD supports a range of languages and normalizations, and is de-
signed to be easily extensible using a component-based plug-in architecture. Furthermore, it is
scalable to very large systems with millions of lines of code.

Internally, NICAD is a parser-based and language-specific but lightweight tool, which adopts
a line-based textual comparison rather than subtree comparison to achieve better performance and
scalability. It is built on top of the TXL (short for Turing eXtender Language) programming and
transformation language [58] for identifying syntactic clones while relying on pretty-printing
to eliminate formatting differences and noise. Thanks to TXL, the tool is extensible to other
languages via the introduction of the appropriate TXL grammar and transformation rules [142].

For the scope of this chapter, the main feature of interest is the standard mode of operation in
the model clone detection tools derived from NICAD (notably SIMONE [9]). The approach con-
sists of (1) parsing textual forms of models which may use various formatting and preprinting, (2)
pre-processing to a normalized format, removing irrelevant parts, and ordering textual elements
using multi-attribute topological sorting, (3) extracting subparts with the selected granularity for
the comparisons such as subsystem scope for Simulink, (4) post-processing to further normalize,
for instance rename identifier names, filter or transform elements, (5) line-based computation of
least common subsequence (LCS) to find clone pairs, (6) clustering the pairs using connected
component analysis.

There are two points to discuss in detail about this approach. For the LCS algorithm, the
order of the elements naturally matters. Step (2) is needed to properly normalize reordering
of elements because different orderings of the same elements still represent clones such as with
data-independent declaration statements in code [140] or certain elements in models (UML mod-
els [167], Simulink models [9], metamodels [18]). For instance, NICAD-SIMONE indeed un-
derlines a fundamental problem of line-based comparison on graphical data: the order of (at least
some of the) elements actually does not lead to any meaningful change. NICAD-SIMONE tack-
les this by a sorting-normalization pass where it sorts model elements according to their type,
name and so on, and therefore can successfully detect clones with reordered elements. Another
point is the line-based comparison in LCS, which is done in NICAD outside the TXL scope (in
a Turing+ script) and therefore hard to do in a language-aware manner. In our experience this
line-based approach is followed consistently in NICAD-based approaches, whether for model
clone detection as by Antony et al. for UML sequence diagrams [16] or code clone detection4.

6.3.1.1 Extending NICAD for Metamodel Clone Detection

At Eindhoven University of Technology, we conducted a small project for an Ecore extension
for metamodel clone detection. The base extension can be found in GitHub5. It is inspired by
NICAD-SIMONE, i.e. the extension of NICAD for Simulink models, and tries to replicate the
same mode of operation for detecting Ecore metamodel clones. It has the following major steps
for its workflow:

3https://www.txl.ca/nicaddownload.html
4See a small Java code exercise in our report http://www.win.tue.nl/~obabur/publications/JVLC18/
5https://github.com/jzhang3/Nicad3-emfatic

https://www.txl.ca/nicaddownload.html
http://www.win.tue.nl/~obabur/publications/JVLC18/
https://github.com/jzhang3/Nicad3-emfatic

80 Metamodel Clone Detection with SAMOS

1. Convert Ecore metamodels into the textual Emfatic6 format,

2. Provide an Emfatic TXL grammar for NICAD,

3. Provide an Ecore plug-in with transformation rules for extraction, filtering, renaming and
sorting of model elements.

In order to do a correct clone detection and fair comparison with other tools, we have de-
veloped an improved extension of this plug-in (replicating the mode of operation of NICAD-
SIMONE as close as possible) with the following features:

• Granularity. Allow extraction with two fixed scopes: whole-model, or EClass (a metaclass
of Ecore, similar to Class in UML class diagrams),

• Filtering. Remove most of the original filtering and simplifications (as implemented by
our student), to keep as much information as possible for completeness, still excluding
elements which SAMOS ignores such as EAnnotations (a metaclass of Ecore for annota-
tions, see Section 6.4.2 for details),

• Sorting. Implement multi-attribute topological sorting wherever applicable (such as among
all elements contained in an EClass, multiple supertypes and so on) with respect to type,
eType and name of the corresponding elements,

• Configuration. Add configuration files to detect Type A, B and C clones with different
threshold values; respectively 0, 0.1 and 0.3.

6.3.2 MACH
The MACH toolset for UML model analysis and checking includes the UML model clone de-
tector MQlone developed by Störrle [167, 168]. The approach is applicable for multiple types
of UML models, ranging from class diagrams to use case and sequence diagrams; in contrast
to several existing approaches focusing on a single type of model, such as MATLAB/Simulink
models [132]. The most relevant steps of the approach from the perspective of this chapter
are (1) processing (XMI-serializations of) models as graphs, and encoding the graphs as Pro-
log programs representing node and edge information; (2) defining various similarity heuristics
based on element names or hash/index values; and finally (3) using Prolog rules and inference
to match, rank, and weight clones in the models. MACH natively supports UML files produced
by tools such as MagicDraw; and automatically eliminates/normalizes layout, internal identifiers
and tool-specific information.

The author advocates focusing on node similarity rather than the graph structure similarity
(as done in other tools such as [64, 118]); and claims that UML models are very wide and flat
trees with mostly containment structure in contrast to more general graphs. The clone detection
is based on a variety of heuristics. First, name-based similarity heuristics involve comparing
element names based on the Levenshtein edit distance and taking into account other factors such
as different format, for example CamelCaps vs. separate words. Such heuristics include one
which takes just the name of a single node for comparison, and another which also considers the
neighboring nodes’ names for similarity. In [168], a new heuristic is introduced where type and
attribute information is also taken into account. Another set of index-based heuristics involve
comparing the hash values of model elements: for instance, using a hash function which adds up

6https://www.eclipse.org/emfatic/

https://www.eclipse.org/emfatic/

6.4. Using and Extending SAMOS for Clone Detection 81

all characters found in two model elements. Finally, there is a more powerful similarity heuristic
which can weight and rank clones, and hence favors more promising matches as clone candidates.

An important note is that the rich set of heuristics and settings developed by Störrle is only
partially accessible in the closed source MACH toolset. The single standard clone detection
setting in MACH calculates similarities with absolute measures, rather than standardized in the
range of [0,1] or in percentages — which makes it harder to interpret the similarity. Furthermore,
MACH finds clone pairs but does not group clones into larger clusters.

6.4 Using and Extending SAMOS for Clone Detection
As introduced in the previous chapters, the framework SAMOS is a state-of-the-art tool for large-
scale analysis of models. In this section we elaborate how we have used and extended it for clone
detection, highlighting the differences particularly with respect to the domain analysis settings
in Chapters 2 and 3. Please refer to those chapters for the background, basic workflow and an
example-driven operation of SAMOS.

6.4.1 Scoping/granularity for extraction
While, originally, SAMOS handles entire models and extracts all the model elements contained,
we introduce the notion of scoping to define the granularity of independent data elements. For
Ecore metamodels, we define three scopes: the whole model, EPackage, and EClass; it is rela-
tively straightforward to pick these fixed scopes as the major hubs in the containment tree. The
scope guides the extraction by mapping a model into one (i.e. whole model) or more data points
such as per EPackage contained. Given a fixed scope, we adopt the approach for UML clone
detection [168]: we cover all the model elements under transitive containment closure of that
starting model element.

6.4.2 Extracting model element information
The main unit of information extracted by SAMOS has previously been the so called type-name
pair, which essentially maps to a vertex in the underlying graph of the model. Such a pair encodes
the domain-specific type (metaclass) information, such as EClass, and the name, such as Book,
of a model element. For proper clone detection, we need to cover the attributes in the model ele-
ments (for instance whether an EClass is abstract) and cardinalities, e.g. of EReferences. We also
need to explicitly capture the edges such as containment to include in the comparison. Therefore,
we have extended the original feature hierarchy in SAMOS (see Figure 6.1) with (1) Attribut-
edNode, which holds all the information of a vertex including domain-specific type, name, type,
attributes as key-value pairs; and (2) SimpleType, which indicates whether an edge is of type
containment or supertype (meaning superclasses as named in EMF). All the mentioned feature
types belong to the SimpleFeature class and represent non-composite stand-alone features.

There are several implementation details worth mentioning about the extraction:

• Our current implementation covers almost the full Ecore meta-metamodel for extraction,
except EAnnotations, EFactories, and generic types. We also ignore the attributes of
namespace URIs and prefixes. The reason for exclusion for all the elements mentioned
was our initial assessment of those (based on anecdotal evidence of our preliminary stud-
ies and discussions with language engineers) as mostly insignificant model content.

82 Metamodel Clone Detection with SAMOS

SimpleFeature AggregateFeature

TypedName

Feature

AttributedNode NGram

SimpleType
...

Subtree

Figure 6.1: Feature hierarchy in SAMOS: simple features for representing vertices and edges,
and aggregate features for encoding structure.

• Observing that for most attributes in Ecore metamodels, a mode or default value exists, we
encode only non-default values in our AttributedNodes to reduce the data size and speed
up the comparison. The fixed values can be deduced either from Ecore metamodel itself
(default value), or by inspecting the majority of cases in our dataset (mode value).

• We push the type (eType) information (e.g. what EDataType is assigned to an EAttribute)
into the AttributedNode itself, rather than representing it as a separate vertex connected to
that node, which would be expected from a naive/plain graph-based extraction. Examples
of the modified extraction can be seen in the vertices v2 and v6 in the upcoming example.
It avoids the problem we observed with the settings of [23] (Chapter 3), in which our
approach matched too many irrelevant features just because of matching types, for instance
all EAttributes with the type EString.

• The framework can also be configured to do a normalizing pass on element names to
convert them into a standardized corresponding lower and snake case, tokenized and lem-
matized form.

To exemplify, see the graph in Figure 6.2, where the vertices are displayed as domain type
and name information with the rest of the attributes being hidden. The AttributedNode features
to be extracted in our approach are the v0 to v6. While this example is partly a repetition of the
one in Chapter 3, we outline it here again for readability purposes.

• v0 = {name : BIBTEX, type : EPackage},

• v1 = {name : LocatedElement, type : EClass, abstract : true},

• v2 = {name : location, type : EAttribute, eType : EString, lowerBound : 1},

• v3 = {name : Bibtex, type : EClass},

• v4 = {name : entries, type : EReference, eType : Entry, unique : true, . . . },

• v5 = {name : Entry, type : EClass, abstract : true}.

6.4. Using and Extending SAMOS for Clone Detection 83

EPackage(

EPackage(

BIBTEX(

EPackage(

BIBTEX(

EClass(
LocatedElement(

EA7ribute(
loca<on(

EClass(

Bibtex(

EReference(

entries(

EClass(

Entry(

EA7ribute(

key(

EPackage(

Types(

EDataType(

Integer(

contains(

contains(

contains(contains(contains(

contains(contains(

typeof(

supertype(

typeof(

EDataType(

EString(

typeof(

EDataType(

EInteger(

v0(
v0(

v1(

v2(

v3(

v4(

v5(

v6(

Figure 6.2: A simplified graph representation for (part of) a model.

• v6 = {name : key, type : EAttribute, eType:EInteger, lowerBound : 1, upperBound :
1}.

Note that there are no features corresponding to the basic EDataType leaf nodes in the figure;
these are folded into their parent as discussed above. We have seen how we can extract infor-
mation from (meta)models. In the next section we use the extracted information to encode the
structure of metamodels in order to perform clone detection via cluster analysis.

6.4.3 Encoding structure in n-grams and subtrees
Our extended version of SAMOS, supporting subtree extraction in addition to the previously
existing options [19] (Chapter 3), has the following three feature settings:

• Ignore the model structure completely, use nodes as is: i.e. the unigram setting [22],

• Encode structure in linear chunks: i.e. the n-gram (with n > 1) setting [19],

• Encode structure in fixed depth subtrees: i.e. 1-depth setting to be described in this chapter.

In terms of the conceptual feature hierarchy in Figure 6.1, one can think of unigrams as
corresponding to SimpleFeatures, while n-grams and subtrees (potentially of depth n > 1) are
aggregated features containing multiple SimpleFeatures. Based on the graph representation of
a model, we can describe n-grams as n consecutively connected vertices. In contrast to [19]
which simply omitted the edge information, we also incorporate the edges in the n-grams as
SimpleTypes in order to represent the edge information as well. Although it is quite intuitive, the
readers are referred to [19] for more details on the graph traversal and n-gram extraction. Some
bigrams (n = 2) from Figure 2 would be:

• b1 = (v0, contains, v1),

• b2 = (v1, contains, v2),

84 Metamodel Clone Detection with SAMOS

• b3 = (v5, hasSupertype, v1).

For this chapter, we have extended the structure encoding with another option, namely sub-
trees. Our motivation was twofold: some shortcomings of n-gram encoding in terms of accuracy
(please refer to our first case study in Section 6.5.1 and our previous work [18] for details), and
the fact pointed out by Störrle that UML class diagrams are lightly connected trees [167]. We
expect this to be the case for metamodels as well, though an empirical assessment remains as
future work. Currently SAMOS has been extended for subtree extraction with depth of 1 only
(unlike arbitrary n-gram extraction for any n), and hence we show here only 1-depth subtrees. In
principle, this can be extended to subtrees of arbitrary depth n > 1 as well, but is left as future
work. Similar to the n-grams, based on the underlying graph for a model, we can describe 1-
depth subtrees as a root node with all its child vertices. Some 1-depth subtrees from the example
are shown in Figure 6.3.

v0

(contains, v5)(contains, v3)(contains, v1)

v3

(contains, v4)
v5

(hasSupertype, v1)(contains, v6)

Figure 6.3: Example 1-depth subtrees from Figure 6.2 and vertices above.

The subtrees are extracted in a relatively intuitive form as shown above. Note that the edges
are pushed before the vertices (e.g. (contains,v1)), effectively representing each such pair as an
n-gram in a single tree node. This is an implementation choice, made due to our wish to use
an existing tree edit distance library as a black-box, to be introduced in in Section 6.4.5. A
naive extraction with edges in separate tree nodes would lead to a default similarity between
most subtrees as they naturally have many relations in common—for example, many model
elements contain other elements. With the containment tree nodes matched by the algorithm,
too many subtrees would yield high similarities (for instance, close to 50% similarity merely
due to matching edges). We avoid this by collapsing the original tree structure to obtain trees
as represented in Figure 6.3. In this way, we can control the n-gram comparison and make sure
those with only matching edges do not yield a high similarity value.

6.4.4 Vertex and n-gram comparison
As aggregate features consist of multiple Feature vertices, we first define the extended vertex
comparison to account for attributes with the following multiplicative vertex similarity formula:

vSim(n1,n2) = nameSim(n1,n2)∗ typeSim(n1,n2)∗ eTypeSim(n1,n2)∗attrSim(n1,n2) (6.1)

attrSim(n1,n2) = 1− # unmatched attributes between n1 and n2

total # attr. for that domain type
(6.2)

where nameSim is the NLP-based similarity between the names; while typeSim and eTypeSim
are between the domain types and eTypes in the vertices, respectively. The last part attrSim
measures the similarity for the remaining attributes.

6.4. Using and Extending SAMOS for Clone Detection 85

As an example, the number of unmatched attributes in Equation 6.2 would equal 1 given a
variant of v4, see Figure 6.2, with unique : false instead of unique : true. Note that the simple
multiplicative formula in Equation 6.1 might not be optimal, and has issues with certain situa-
tions; for example, zero matching attributes leading to zero similarity. We leave it as future work
to develop a more suitable scheme. The framework allows relaxing the similarity multipliers:
e.g. by instead using a reducing multiplier of 0.5 for non-matching types, ignoring attributes al-
together, and so on. N-gram comparison is the semi-relaxed formula [19]; i.e. given n-grams~v1
and ~v2 with 2n− 1 elements (n vertices and n− 1 edges corresponding to v1..2n−1

1 and v1..2n−1
2),

the n-gram similarity is:

nSim(~v1,~v2) = ctxMult(~v1,~v2)∗
2n−1

∑
i=1

vSim(vi
1,v

i
2) (6.3)

ctxMult(~v1,~v2) =
1+ |nonzero vSim matches between~v1 and~v2|

1+(2n−1)
(6.4)

As an implementation workaround, we perform a corrective pass to eliminate edge-only matches.
For example, SAMOS ignores matches such as A-contains-B vs. C-contains-D when A-C and
B-D are completely dissimilar (i.e. vSim(A,C) = 0, vSim(B,D) = 0); effectively discarding the
similarity due to matching merely contains. Finally, regarding the NLP part used to compute
nameSim, SAMOS supports:

• normalizing in cases of mixed-casing and use of other conventions such as camel and snake
case,

• tokenization and compound word similarity,

• stemming and lemmatization,

• Levenshtein distance for typos,

• WordNet-based measure of synonymy and semantic relatedness.

The vertex and n-gram comparison, as given above, provide a baseline for comparing more
complex structures such as trees. Next we explain two techniques for subtree comparison.

6.4.5 Subtree comparison with ordered tree edit distance
For comparing (meta)model subtrees (of any depth) we have integrated the APTED7 ordered tree
edit distance library [130] into SAMOS. APTED is a state-of-the-art algorithm for computing
ordered tree edit distance in a memory efficient manner, using an optimal all-path strategy. As
mentioned above, we would like to mostly use the algorithm as a black-box with two minor
(plug-and-play) customizations: node data (to contain the n-grams as tree nodes), and the edit
distance cost model. The latter is especially important for assigning the cost of minor changes in
a non-binary manner; for instance, just changing the abstract modifier of an EClass would lead to
a 5% change only. Next we elaborate those two important customization steps for our adoption
of APTED.

7http://tree-edit-distance.dbresearch.uni-salzburg.at/

http://tree-edit-distance.dbresearch.uni-salzburg.at/

86 Metamodel Clone Detection with SAMOS

Data representation We extend the data structure to hold the necessary information in the
APTED nodes. Consistently with the subtree examples of Figure 6.3, a node can hold a simple
feature (i.e. root) or a bigram (i.e. edge + another simple feature). In both cases each APTED
node contains an n-gram.

Cost model APTED uses a cost model to customize different weights (costs) for tree edit
operations. We specify the following for the cost of node remove, insert and rename operations
used by the algorithm:

• Deleting and insertion with a fixed cost of 1.0,

• Changing (i.e. renaming in the terminology of APTED) a node holding the n-gram p1 into
p2 with the cost 1−nSim(p1, p2). That is, ranging from 0 (exactly same), to 1 (completely
distinct). Any value between captures the situation for changing several parts of the node
types, attributes and so on.

Pre-sorting the tree nodes As APTED works with ordered trees, we first sort the children
of each node with respect to their types, names and attributes. We use a lightweight sorting
algorithm at each depth level, hence only consider information at that level. The motivation
comes from the fact that in metamodels the order of the child nodes do not matter, and the
approach is consistent with the sort-and-compare approach in clone detectors such as NICAD-
SIMONE.

Subtree similarity Given two pre-sorted subtrees t1, t2 and size being the number of nodes in
the subtree, we define the edit distance based tree similarity in SAMOS as:

tSimAPTED(t1, t2) = 1− APTED(t1, t2)
max(size(t1),size(t2))

(6.5)

where APT ED is the tree edit distance between the two input trees, and size yields the number
of leaves on a given tree.

Note that we have left the integration of an unordered tree edit distance algorithm (such as
Zhang-Shasha [203]) as future work, as a more powerful but costly alternative - especially for
subtrees with high depth. Two major reasons would be the lack of an available implementa-
tion and the computational complexity. Instead we have developed the (unordered) comparison
method for 1-depth subtrees only, as presented in Section 6.4.6. Note that the advantage of using
a generic tree edit distance algorithm such as APTED is the uniform applicability for any tree
with arbitrary depth.

6.4.6 Subtree comparison with modified Hungarian algorithm
For comparing unordered trees of 1-depth, we employ the Hungarian algorithm [105] for the
child nodes. Given 1-depth subtrees t1, t2, with parent nodes p1, p2 and their respective child
node sets C1 and C2, we define the Hungarian algorithm based tree similarity in SAMOS as:

tSimHUNG(t1, t2) = 1− vSim(p1, p2)+hungarian′(C1,C2)

1+max(m,n)+(# matches in C1,C2 with vSim = 1)
(6.6)

where we define the hungarian′ distance, slightly modified over the classical Hungarian distance
as:

6.4. Using and Extending SAMOS for Clone Detection 87

hungarian′(C1,C2) = argmin
x

∑
c1∈C1

∑
c2∈C2

cost ′(c1,c2)x(c1,c2) (6.7)

with slightly modified cost function cost ′ and match function x (as well as additional restrictions)
as:

cost ′(c1,c2) =

{
vSim(c1,c2) if vSim(c1,c2)< 1
2 otherwise

(6.8)

x(c1,c2) =

{
1 if c1 and c2 are matched
0 otherwise

(6.9)

Given two sets (of possibly unequal sizes), we impose a further restriction to ensure that
elements of the smaller set are matched exactly once; while some elements of the larger set can
remain unmatched. Furthermore, in the second part of the cost function in Equation 6.8, note
the cost of 2 when the two n-grams are completely distinct. We try to mimic the cost of first
removing the node and adding a completely new one: represented as two operations instead of a
single one (i.e. substitution). We try to find the optimal 1-1 match between all the child nodes of
the trees using the vertex similarities for all pairs.

6.4.7 Weighting
SAMOS supports type-based weighting for features. So we can exploit type-based weighting to
reduce the relative importance of certain features. Features with more important types (based on
our experience) are given higher weights; for instance, matching EClasses should be favored over
e.g. matching EParameters. As a larger example, a 1-depth subtree with an EClass node at the
root can be allocated a higher weight than a 1-depth subtree with an EOperation root. Note that
these weights can be and do get configured according to the model types and problem statement
at hand.

For simple types, we use a slight variation of the settings in [22], where we basically give
higher weight, for instance, to EClasses, EPackages with lower weight for EReferences, EAt-
tributes and finally even lower for EParameters and EDataTypes. For containment edges in ag-
gregate features, we simply take the average of the type-based weight of all the vertices contained
in that feature. For other edges which we consider less significant such as supertypes, we also
assign a lower weight. The exact weights are given in Table 6.1.

6.4.8 VSM calculation
SAMOS offers two modes for calculating the VSM: linear and quadratic (all-pairs). Linear
VSM counts the exact occurrences, that is, computes the total frequencies of features with a
single-pass, hence having linear complexity and much faster feature comparison (strict equality
exploiting simple hashing). However, this mode is not able to account for synonyms or fine-
grained differences in the features such as attributes or types. Quadratic VSM, on the other hand,
compares each feature occurrence in the models with the entire feature set of the models, i.e. an
all-pairs comparison, with expensive feature comparison such as tree edit distance, leading to
a much more expensive (quadratically complex) computation but with proper treatment of fine-
grained differences.

88 Metamodel Clone Detection with SAMOS

metaclass/relation weight
EPackage 1.0

EDataType 0.2
EClass 1.0

EReference 0.5
EAttribute 0.5

EEnum 1.0
EENumLiteral 1.0

EOperation 0.3
EParameter 0.1
supertype 0.2

throws 0.1

Table 6.1: Table for the type-based weights used in this chapter.

6.4.9 Distance measurement
Originally SAMOS adopted a regular VSM approach: a choice of a distance measure such as
cosine and Manhattan, and calculation of the distance over the whole VSM. We have identified
several shortcomings in the context of clone detection, and extended the distance measurement.
We can summarize our arguments as follows:

• For clone detection, a measure is needed that is normalized (like cosine, and unlike Man-
hattan distance — as we need relative thresholds), yet size-sensitive (unlike cosine — as
size is important). There are several measures in the literature (and implemented in R)
that fulfill the requirements of normalization and size-sensitivity, such as Bray-Curtis and
Canberra [66].

• Bray-Curtis and Canberra may differ in terms of robustness in certain situations (depend-
ing on the dataset, outliers and distribution), but one important distinguishing feature is
that Bray-Curtis is weight-sensitive, while Canberra is weight-agnostic. As a result, our
weighting scheme, with e.g. higher weights to more important types of model elements,
can be realized using Bray-Curtis distance, but not with Canberra.

• VSM assumes orthogonality of the features, and takes all columns into account for distance
calculation. This is violated in our case where our features are often (partly) similar to
many other features and hence not orthogonal. For clone detection, we limit the distance
calculation to the union of originally contained features by the two entities, rather than all
the features in the dataset. Note that this solves only part of the problem; please see the
case studies in Section 6.5 and Secton 6.6 for further discussion.

For the reasons above, we have integrated a masked variant of Bray-Curtis distance (Equation
6.10) into SAMOS, extending the default distance function in the R package vegan. Given an
N dimensional vector space, data points P and Q for Ecore metamodels representing the whole
model, an EPackage or an EClass depending on the scope; P consisting of features P1, . . . ,Pm and
Q consisting of features Q1, . . . ,Qn, p and q the corresponding vectors on the full vector space
for P and Q, the masked Bray-Curtis distance is over the vector subspace P∪Q (size ≤ m+ n)
as:

bray′(P,Q) =
∑

P∪Q
i |pi−qi|

∑
P∪Q
i (pi +qi)

, (6.10)

6.5. Case Studies and Comparative Evaluation 89

6.4.10 Clustering
As the final step of the SAMOS workflow, we apply clustering on top of the calculated distances
to obtain the clone clusters. This in turn can be boiled down to finding non-singleton (size ≥ 2)
and sizeable (size≥ n) groups of data points that are similar (distance≤ t); with n and t thresholds
depending on the application scenario. While SAMOS originally supported k-means and hierar-
chical clustering, we have added and used Density-Based Spatial Clustering of Applications with
Noise (dbscan) [74]. The algorithm (implemented in R package dbscan) uses two parameters,
minimum Points (i.e. n) and ε distance (i.e. t) to compute density-reachable regions as clusters,
with non-reachable regions being labelled as noise. While technical details are beyond the scope
of this chapter, dbscan possesses some properties that we desire for clone detection, namely:

• detection of clusters in various (non-convex, non-spherical) shapes,

• detecting noise, i.e. non-clones,

• suitability and efficiency for large datasets.

This concludes the details about extension we have integrated into SAMOS for this work.
This extended version of SAMOS will be used in the case studies in the following section.

6.5 Case Studies and Comparative Evaluation
We performed three case studies to evaluate the clone detection capabilities of SAMOS compared
to NICAD-Ecore and MACH; in terms of accuracy, and with respect to scalability in the presence
of thousands of models:

• Case Study 1: We analyzed artificially generated mutation cases and change scenarios
where we measured pairwise distances with the base metamodel and the mutated ones to
see how sensitive and accurate the different settings of SAMOS are, compared to NICAD-
Ecore and MACH.

• Case Study 2: At EClass scope, we ran SAMOS with the most accurate setting along with
NICAD-Ecore on the configuration management metamodels from ATL Zoo, and compar-
atively evaluated the clone pairs (and their correct classification, respective precision and
recall) found by the two tools.

• Case Study 3: We performed a large-scale clone detection exercise, in two-steps with the
cheapest and most expensive settings of SAMOS. We aimed to find the metamodel clone
clusters in GitHub, for data preprocessing/filtering purposes and future empirical studies
on metamodels and DSLs.

For the case studies, we used SAMOS version 0.5, NICAD 3.5 with our Ecore extension 1.1,
and finally MACH 0.94. We have put all the relevant material (data, reports, validation/compari-
son and other information) as supplemental material on our website7 . We further give the list of
settings of SAMOS in Table 6.2.

7http://www.win.tue.nl/~obabur/publications/JVLC18/

http://www.win.tue.nl/~obabur/publications/JVLC18/

90 Metamodel Clone Detection with SAMOS

Component Setting Description

Extraction

model Ecore extractor for Ecore metamodels
unit attributed key-value pairs for attributes

structure uni-/bigram, subtree different features for comparison
postprocessing on lemma/case standardization

scoping model, EClass whole model, EClasses

Comparison
basic NLP on compound-word sim. w/ internal NLP

advanced NLP on WordNet semantic relatedness (Lin)
type matching relaxed 0.5 multiplier for non-exact types

struct. matching semi-rlx, edit, Hung. semi-relaxed for bigrams
edit dist. & Hungarian for trees

VSM
frequency sum sum of frequencies

idf off idf disabled
weighting on type-based weighting (aggregated)

Analysis
distance msk. Bray-Curtis masked normalized distance

clustering dbscan density-based clustering
cut automatic automatic clustering with thresholds

Table 6.2: SAMOS configuration for the clone detection case studies.

6.5.1 Case Study 1: Mutation and Scenario Analysis
We have based this case study on a conceptual framework by Stephan et al. for validating our
approach [160, 164]. The framework suggests using mutation analysis to evaluate model clone
detection techniques. We additionally investigated a few additional scenarios, which can be either
conceived as chains of mutations or change scenarios (slightly similar to the ones in Roy [140]).
In this section, we detail our assumptions, case design and goals. We finally present the results of
SAMOS with different settings, MACH, and NICAD-Ecore; and discuss their potential strengths
and weaknesses.

6.5.1.1 Case Design

First we make the simplifying assumption that the scope for this case study is that of EClass
clones. Inspecting the Ecore meta-metamodel, we identified a set of mutations, representing
noteworthy small changes in an EClass as a starting point. Additionally, we designed some
NLP-based cases, a few slightly more complex mutations involving move and swap operations,
and finally some more complex scenarios to provide further insight into each tool’s shortcomings.
We outline our mutation sets as follows.

Set 1a. The first set of cases include 31 metamodels with atomic mutations. The mutations
are mostly trivial operations of adding, removing or changing elements.

Set 1b. We added three specific mutations involving subtle element name changes: cosmetic
renaming (such as lower vs. upper case, camel vs. snake case) and adding a typo, and replacing
a word with its synonym, so that we can evaluate the NLP-related capabilities of the tools.

Set 2. For the second set, we have 5 mutations of reordering, moving and swapping model
elements. The regular move mutation involves simply moving a model element elsewhere. In
contrast, the extra move mutation (moveSimilarContainer) involves moving a model element
A contained in B into a distinct container B′, with the condition that vSim(B,B′) = 1 (same
vertex similarity)—a change easily detectable using graph-based techniques but possibly not by
approximate techniques such as ours. Swap mutations are designed in a similar manner. With

6.5. Case Studies and Comparative Evaluation 91

this set, we wish to demonstrate potential shortcomings of SAMOS (in some settings, due to the
approximate nature of information representation) and other tools, even if (arguably) some of the
cases might not be realistic in real data.

Set 3. The final set of cases includes 4 metamodels obtained from 3 base metamodels by
one or more changes: (1) simple renaming of base metamodel elements which lead to a different
lexicographic order (as sorting is an essential step of NICAD-* model clone detection and our
ordered tree edit distance algorithm), (2) changing the eTypes of all EAttributes in the base
metamodel, and (3) removal of one out of many occurrences of model element A contained in
E (removeNonOrthogonal), versus (4) removing another model element which has no similarity
to the rest of the elements in E (removeOrthogonal). Some of these may be trivial cases for
e.g. detecting of moves using a graph-based comparison, but possibly not for tools such as ours,
MACH, and NICAD-Ecore. We aim to investigate cases beyond the very basic mutations.

We used medium-sized base metamodels to be manually mutated as indicated above. To
give an impression, the base metamodel for simple mutations contained a single EClass with
5 EAttributes, 2 EReferences and an EOperation to be used for extraction and comparison at
the EClass scope. We used the original files for SAMOS and their Emfatic transformations
for NICAD-Ecore. For the UML part, we manually replicated all the mutations on UML class
diagram representations of the same metamodels in order to evaluate MACH.

6.5.1.2 Goals for the Distance Measures

With respect to accuracy, we set five requirements for distance measures to achieve with SAMOS,
and which we advocate as requirements for model clone detection tools in general. We use these
to qualitatively evaluate the accuracy of the tools.

- R1. Obtain zero distance for mutations leading to Type A clones.

- R2. Obtain a non-zero distance for mutations leading to higher level clones such as Type B and
C.

- R3. For those positive distances in R2, have the distance reasonably small (e.g 0.05 or 0.10 as
a breaking point towards Type C) given that all the mutations in this section are small.

- R4. For those positive distances in R2, have them matching an intuitive assessment of distance
based on the significance or weight of the change, for instance, changing just an EParam-
eter is less significant than changing an EClass.

- R5. Overall have bigger changes lead to higher distances than smaller ones do. For instance,
introducing a typo in a name should lead to lower distance than a complete renaming; and
changing a type to a lower distance than removing the corresponding element altogether.

In short, we desire accurate but also fine-tuned distances for small changes. This is so be-
cause we want to correctly detect cases with accumulated multiple small changes as clones too,
such as a complete change of EAttributes types (see Set 3 in Table 6.3), or changing all model
element names with snake case into camel case. Overly large distances for small changes, when
accumulated across multiple instances, might in fact lead to an incorrect clone classification or
missing the clone altogether. This is why we were not satisfied with Set 1 only for evaluation,
but also included Set 3. We believe such accumulated changes are interesting and complex sce-
narios for clones, which have been overlooked by the literature for clone detection evaluation,
especially with the mutation-based approaches.

92 Metamodel Clone Detection with SAMOS

set id mutation unigram bigram tr-edit tr-hung NICAD MACH

Se
t1

a

1 addEClassSupertype 0.000 0.042 0.063 0.026 0.100 245 / 510
2 addEClassEAttribute 0.025 0.049 0.030 0.025 0.100 245 / 510
3 addEClassEOperation 0.025 0.051 0.145 0.123 0.100 129.5 / 510
4 addEOperationEException 0.000 0.010 0.094 0.061 0.100 510 / 510

. . .
5 changeEClassNameRandom 0.114 0.737 0.033 0.027 0.100 NA
6 changeEClassSupertype 0.000 0.011 0.055 0.067 0.100 510 / 510
7 changeEClassAbstract 0.026 0.062 0.008 0.007 0.100 476 / 510
8 changeEAttrNameRandom 0.054 0.005 0.033 0.049 0.100 442 / 510
9 changeEAttrType 0.040 0.003 0.012 0.010 0.100 510 / 510

. . .
10 removeEClassSupertype 0.000 0.048 0.038 0.042 0.100 229.2 / 510
11 removeEClassEAttribute 0.028 0.054 0.034 0.058 0.100 148.1 / 510
12 removeEClassEOperation 0.022 0.071 0.227 0.200 0.100 107.6 / 510

. . .

Se
t1

b

13 changeEAttrNameCosmetic 0.000 0.000 0.000 0.000 0.100 442 / 510
14 changeEAttrNameTypo 0.003 0.001 0.001 0.001 0.100 442 / 510
15 changeEAttrNameSynonym 0.001 0.001 0.068 0.001 0.100 442 / 510

. . .

Se
t2

16 changeOrder 0.000 0.000 0.000 0.000 0.000 1196/1196
17 moveSimple 0.000 0.001 0.047 0.019 0.060 1196/1196
18 moveSimilarContainer 0.000 0.000 0.046 0.018 0.060 1196/1196
19 swapSimple 0.000 0.000 0.000 0.007 0.060 1196/1196
20 swapSimilarContainer 0.000 0.000 0.000 0.000 0.060 1196/1196

Se
t3

21 renamingReordering 0.009 0.009 0.100 0.008 0.480 130 / 338
22 fullRetyping 0.248 0.045 0.101 0.101 0.530 338 / 338
23 removeOrthogonal 0.026 0.032 0.030 0.030 0.100 187.2/1066
24 removeNonOrthogonal 0.051 0.053 0.052 0.052 0.100 220.1/1066

Table 6.3: Pairwise relative distances (reverse similarity) for SAMOS and NICAD-Ecore, abso-
lute similarities for MACH compared to the identity similarity. Values in bold indicate the most
problematic cases.

6.5.1.3 Evaluation

We have applied our clone detection technique and report here the distance measure between
each case from the three sets and the corresponding base metamodel/UML model. We have
used SAMOS with different feature settings (unigrams, bigrams, 1-depth subtrees with ordered
tree edit distance, 1-depth subtrees with Hungarian distance) using weighted masked Bray-Curtis
distance on the one hand; NICAD-Ecore and MACH on the other hand. Table 6.3 gives a rep-
resentative subset of the results; for the full set of results, please see the supplemental material8.
The numbers for SAMOS and NICAD-Ecore represent normalized similarity scores of each case
with respect to the base metamodel. Since MACH did not output a normalized distance measure
but an absolute one, we reported it along with the identity similarity (base model versus itself)
for reference. The most prominent errors are presented in bold in the table.

8http://www.win.tue.nl/~obabur/publications/JVLC18/

http://www.win.tue.nl/~obabur/publications/JVLC18/

6.5. Case Studies and Comparative Evaluation 93

SAMOS evaluation In general, the results look promising, though not without certain errors
and weaknesses for particular settings.

• R1 is not violated by any technique in SAMOS in the two cases with cosmetic changes
(mutation 13) and reordering (mutation 16).

• R2 is violated in a number of cases for SAMOS. Unigrams (not unexpectedly, as they
ignore structural context) evaluate quite some mutations with zero distance, such as mu-
tations 1, 6, 10 involving supertypes and 4 involving exceptions. Furthermore move/swap
mutations (mutations 17-20 in Set 2) are mostly undetected by our technique. Even with
the tree settings, SAMOS fails to detect some swap operations: mutations 19 and even 20
for subtree comparison with modified Hungarian algorithm.

• R3 is not uniformly satisfied but the majority of the results are acceptable given a relaxed
threshold range of 0.05−0.10. For the mutations involving EOperations (numbers 3 and
12, especially for the tree settings), SAMOS returns relatively large values. While we hope
to improve this in the future versions of SAMOS, this is not too problematic considering
that removing an EOperation effectively removes all its content as well (EParameters,
EExceptions); hence leads to a large distance. Besides, one of the biggest issues, as put in
bold in the table, is with bigrams for renaming an EClass (mutation 5): due to the nature
of feature extraction (i.e. bigrams), vertices with high number of outgoing edges (such as
EClasses typically having many elements) are over-represented in the vector space. They
are present in many features, hence any change leads to a larger distance in the vector
space.

• R4, thanks to the type-based weighting applied, is improved over the non-weighted setting
for n-grams as in our previous work [18]: we obtain larger distances for more significant
changes, for example, in EClass vs. EAttribute vs. EParameter. For the tree settings how-
ever, due to several reasons such as EOperations being represented as separate trees in the
VSM, we sometimes end up with non-optimal distances (mutation 12).

• Finally, R5 is relatively well achieved overall. We also would like to highlight the special
case with renaming-reordering (mutation 21), which tr-edit scores quite dissimilar to the
original, due to the lexicographic re-ordering involved. The same problem applies to the
case changeEAttrNameSynonym (mutation 15), where replacing an EAttribute’s name with
its synonym leads to a different ordering of the elements in the EClass. Furthermore,
element orthogonality (i.e. relatedness of the individual delta elements) affects the pairwise
distance in all of the settings (i.e. a fundamental issue with our VSM-based approach),
evident in the bottom cases removeOrthogonal-removeNonOrthogonal (cases 23, 24).

NICAD-Ecore evaluation NICAD-Ecore overall does a good job in not missing many of the
changes. It violates R1 only for the cosmetic EAttribute change case (mutation 13), due to its
lack of NLP capabilities. Other than that, it satisfies R1 perfectly with the move/swap cases.
Overall it has no problem with R2 too. R3 for the basic cases is satisfied, however the scenar-
ios renaming-reordering and fullRetyping (cases 21, 22) are not properly assessed by NICAD;
respectively due to LCS and line-based granularity for comparison. This line-based (and by de-
fault unweighted) approach further leads to the violation of R4 and R5: most changes in this case
study are interpreted as "one-line" change, leading to a uniform 0.10 distance; most problematic
for the mutations 14 and 15 with very minor changes in element names. Note that although we
have not emphasized these cases in the table as a big problem, they lead to quite some inaccuracy
(evident in the next case study). Finally NICAD-Ecore is not sensitive to orthogonality at all.

94 Metamodel Clone Detection with SAMOS

MACH evaluation Inspecting the respective column overall, MACH (with the default setting
of the closed-source distributable) seems to be making a few simplifications along the way just
like SAMOS with certain of its settings. R1 is only violated for the cosmetic renaming sce-
nario (mutation 13). In the corresponding papers MQlone is reported to have NLP capabilities,
so we suspect they might be turned off in MACH. As for R2, however, MACH seems to be
somewhere between the unigram and bigram settings of SAMOS. It seems to ignore or not con-
sistently recognize changes to the following model parts: thrown exceptions (mutation 4), types
(of properties, parameters; mutations 9 and others not shown on the table), modifiers, such as
the attribute unique, and cardinalities. Note that some of these are not shown on the table due
to space limitations; please see the supplemental material for details. Since MACH returns an
absolute measure of the distances, we choose not to discuss R3-5 (for instance, through a relative
measure with respect to the identity comparison, which might lead to a misjudgment). However,
we further report that MACH did not find the proper class clone when the class name is changed
(changeEClassNameRandom, mutation 5) and fails to detect move/swap changes (Set 2). There
is also the surprising finding that MACH correctly detected the addition and removal of a super-
type, while failing to detect the change thereof (mutation 6). As a final observation MACH, like
SAMOS, is sensitive to orthogonality of the changed model elements.

6.5.1.4 Discussion

The mutation and scenario analysis allows us to shed light on the capabilities, simplifications
and inaccuracies of the tools compared. Not surprisingly, SAMOS has an increasing accuracy
with more complex features and comparison techniques, reaching the best accuracy with 1-depth
subtrees and Hungarian distance, at the cost of lower performance and scalability. With NLP
as a core capability of SAMOS by design, it handles textual changes better than the other tools.
The orthogonality issue is something fundamental to VSM and hence SAMOS with its current
design, yet it is surprisingly observed in MACH as well. In any case, this issue is an interesting
finding not only in terms of evaluating MACH, but also for the clone detection research in general
when evaluating other tools as well. We plan to investigate in the future whether this should
be regarded as a positive or negative aspect in clone detection. Finally for SAMOS, we plan
to implement specific and more advanced weighting schemes (especially for the tree settings),
so that it better meets our goals. As for NICAD-Ecore, it catches all of the non-NLP-related
changes, however its line-based granularity and LCS poses a problem. Note that (some of)
these might not be fundamental flaws of NICAD itself, but we have taken the standard mode of
operation of NICAD-SIMONE and just applied it to metamodels. Yet we believe the problem
cannot be properly solved simply by applying pre-/post-processing and normalization steps of
the types, modifiers and so on. One might need to change the line-based approach into a more
fine-grained comparison.

A final remark is that it is not trivial whether and how NLP could be properly integrated into
NICAD (due its use of pre-sorting and LCS), and MACH (due to its use of Prolog indexing and
pattern matching). While normalization such as supported by NICAD may avoid pairwise com-
parison of words with difference casing or typos, it will certainly not be able to avoid pairwise
comparisons for more complicated cases such as semantic relatedness of model element names,
for instance, using WordNet.

6.5.2 Case Study 2: Metamodels in ATL Zoo
With the results of the first case study giving an idea about the tools, we proceed to the second
one where we compare SAMOS with its most accurate setting, tree-hung — subtree comparison

6.5. Case Studies and Comparative Evaluation 95

with modified Hungarian algorithm, with NICAD-Ecore on a real dataset. We chose NICAD-
Ecore over MACH for its higher accuracy, and since MACH lacks several features such as clone
clustering, clone classes, and normalized similarity. As the dataset, we chose the conference
management metamodels from the ATL Zoo9, due to the visibility of the public ATL Zoo and
the fact that the conference management metamodels form a coherent thematic subset; thus po-
tentially include many clones.

Methodology Given the 14 conference management metamodels from ATL Zoo, we per-
formed the following steps for SAMOS and NICAD-Ecore:

1. Granularity: extract all EClass fragments along with their content (transitive closure of
containment),

2. Filtering: remove EClasses without any content or deemed too small (e.g. number of lines
< 5 for NICAD-Ecore),

3. Clone detection: On the extracted EClass fragments, run SAMOS with tree-hung setting as
in case study 6.5.1 and NICAD-Ecore with the distance thresholds: 0, 0.1, 0.3 (respectively
Type A, B, C clones),

4. Validation: inspect (manually, but using EMFCompare10 where possible) random subsets
as given below for Type A, B and C. Note down the differences and categorize manually
what clone class they belong to. We then report the precision and relative recall (relative
to all the inspected validation sets for both tools combined). The validation involved the
following sets:

• Clone pairs common for both, SAMOS ∩ NICAD-Ecore,
• Clone pairs SAMOS \ NICAD-Ecore,
• Clone pairs NICAD-Ecore \ SAMOS.

6.5.2.1 Results

Table 6.4 depicts the relevant numbers in our findings. Note that the number of clone pairs for
NICAD-Ecore are extracted from the clone clusters (i.e. taking each pair in all the clusters), and
differ slightly from the original clone pairs reported by NICAD-Ecore, which are 591 for Type
B, and 1054 for Type C (see supplemental material11 for the clone pair report of NICAD-Ecore).
This is due to the fact that NICAD uses connected component analysis for building the clone
clusters from pairs. SAMOS also adopts a similar approach with its clustering. A first impression
of the table is that SAMOS claimed to detect strictly more clone pairs than NICAD-Ecore for all
three clone types, while there was disagreement especially in the B-C categories.

As mentioned, we relied on manual validation to assess the accuracy of the tools. We in-
spected random subsets of the common and different pairs found by the two tools. For the latter,
we focused on the exclusively new pairs only - as by definition a Type A clone pair is a Type
B/C clone pair too. We performed a random sampling with confidence level 90% and margin of
error 0.10 to get the final sets for manual validation. Table 6.5 gives the resulting set sizes. The
validation sets and the manual annotations can be found in the supplemental material. Note that
in higher level clones, relatively minor changes are generally not annotated, such as cosmetic
changes in Type C clone annotations.

9http://web.imt-atlantique.fr/x-info/atlanmod/index.php?title=Ecore
10https://www.eclipse.org/emf/compare/
11http://www.win.tue.nl/~obabur/publications/JVLC18/

http://web.imt-atlantique.fr/x-info/atlanmod/index.php?title=Ecore
https://www.eclipse.org/emf/compare/
http://www.win.tue.nl/~obabur/publications/JVLC18/

96 Metamodel Clone Detection with SAMOS

Type A Type B Type C
#c #p #c #p #ex #c #p #ex

SAMOS 62 702 59 1142 440 40 1687 546
NICAD 58 523 70 599 66 52 1264 665
SAMOS \ NICAD 179 543 405 426 381
NICAD \ SAMOS 0 0 41 0 498
SAMOS ∩ NICAD 523 599 35 1264 167

Table 6.4: Number of clone clusters and pairs found in the conference management metamodels.
c denoting the number of clusters, p pairs and ex exclusively new pairs (i.e. Type B \ Type A,
and Type C \ Type B).

Type A Type Bex Type Cex
SAMOS \ NICAD 50 58 58
NICAD \ SAMOS - 26 60
SAMOS ∩ NICAD 60 24 49

Table 6.5: Sizes of the validation sets.

Type A clones SAMOS did a better job in finding the Type A clones, as the dataset includes
many cosmetic changes in the model element names and attributes: upper/lower case and extra
underscore characters. While the common set for both tools is completely accurate, the difference
set is fully in favor of SAMOS. We considered the occasional cases with reordering of elements
trivial (and perfectly detected by the two tools), and did not annotate them in our report. We
traced the ones missed by NICAD-Ecore in the higher level clone reports and found that NICAD-
Ecore detects them with large distances varying from 8 to 73 (i.e. considering each cosmetic
change as a one-line difference).

Type B clones The commonly found Type B clones were all correct, containing missing EOp-
posite values and few additions/removals of elements and supertypes. The exclusively Type B
clones found by NICAD-Ecore (i.e. Type Bex(NICAD)), in turn, entirely consists of actually
Type A clones misclassified by NICAD-Ecore. Type Bex(SAMOS) has several categories of
clone pairs. In the simplest category, there are 51 pairs with very small difference (missing EOp-
posite, type changed from String to Integer, or interestingly a metaclass change while keeping
the element name the same), which are clearly Type B - so correct classification by SAMOS. In
other 7 cases there are multiple changes in large EClasses; there, weighting and orthogonality
of the changes cause SAMOS to classify those as Type B clone pairs. While in most of these
cases the pairs are highly similar to each other, it is difficult to strictly label them as Type B,
C or higher. We would like to exemplify a few of those: with a base EClass with elements
such as hasMail, write_paper, submit_paper, newly added elements such as hasEmail, submit,
write_article would all be considered highly similar to their base counterparts due to SAMOS’
NLP functionality such as typo checking, compound word similarity and WordNet semantic re-
latedness. Those cause SAMOS to calculate a higher similarity score compared to the addition
of orthogonal elements.

While this may be considered controversial—and we have therefore conservatively labeled
them as Type C, i.e. misclassified by SAMOS—we believe this to be a powerful feature of our
framework.

6.5. Case Studies and Comparative Evaluation 97

Type A Type Bex Type Cex

SAMOS precision 1.00 0.89 0.65
rel. recall 1.00 0.92 0.78

NICAD-Ecore precision 1.00 0.46 0.26
rel. recall 0.75 0.09 0.34

Table 6.6: Precision and relative recall of SAMOS and NICAD-Ecore aggregated from all the
validation sets.

Type C clones The changes observed in this category mostly involved multiple addition/re-
moval/changes of model elements, along with above mentioned changes such as cosmetic
changes, changes in attribute values (not documented in our annotations). The intersection of
the two tools contains mostly correctly classified clone pairs of such type, except 10 cases where
additional minor changes, such as a new supertype, led to a high percentage difference in small
EClasses.

Type C clones exclusive to NICAD-Ecore are mostly (55 out of 60) misclassified Type A/B
clones due to NICAD’s line-based granularity and lack of NLP. Two examples are a single super-
type addition and a cosmetic renaming, and a type change from String to Integer, both of which
lead to NICAD-Ecore classifying those as Type C clones. In a few cases however, NICAD-Ecore
does a better job while SAMOS underestimates those as Type B. For the opposite set (SAMOS \
NICAD), all detected pairs are interesting cases with considerable similarity. While most are due
to the addition of (multiple) model elements, there were two interesting cases where all the EAt-
tributes of an EClass were replaced with EReferences with the same name and type name (date of
eType Date). Nevertheless 16 pairs we manually assessed have relatively too many changes (due
to weighting, orthogonality) and hence cannot be considered Type C clones (denoted as >C in
our report in the supplemental material12). In such cases however, it may be that the elements of
the pair are in fact part of a non-spherical (for instance stripe-like) cluster in higher dimensional
space, and hence in fact are (indirectly) related. SAMOS performs reachability clustering (simi-
lar to the connected component analysis in NICAD) and can detect such non-spherical clusters.
The implication is, it is not guaranteed that all the pairs in the cluster have low (i.e. lower than
threshold) pairwise distances; in fact the ends of the stripe can have much higher distances than
the threshold.

Although it is hard to exactly pinpoint the clone type in this set, we annotated the pairs
being C, C borderline (arguably C) and >C. We report the accuracy assuming the worst cases for
SAMOS, i.e. all borderline cases being incorrect. Table 6.6 gives a final account of both tools’
precision and relative recall separately for all the validation sets. The number of real clones
(as labelled manually) necessary for relative recall is calculated as the following: (1) find the
percentage of the relevant clones in all the validation sets, (2) extrapolate the percentages to the
original sets with respect to the validation sets (i.e. multiply percentages with the sizes) and (3)
average it over all the sets. Note that step (1) means we exhaustively looked at Type B and C
sets even when looking for Type A clone pairs, and so on. As for the extrapolation step, we rely
on the underlying assumption that random selection of the considerable-sized validation samples
ensures similar statistics (percentage of clones in particular) as the population, i.e. the full set of
clones, which the sample was taken from.

12http://www.win.tue.nl/~obabur/publications/JVLC18/

http://www.win.tue.nl/~obabur/publications/JVLC18/

98 Metamodel Clone Detection with SAMOS

6.5.2.2 Discussion

In this case study, we performed comparative clone detection on a real dataset. We found ev-
idence to support our claims in case study 1: we need NLP and fine-tuned distances so that
multiple small changes accumulate properly to a reasonable sum. NICAD-Ecore overestimates
distances due to the lack of these features. On the other hand, SAMOS seems in some cases
to underestimate the distance, thus leading to some amount of inaccuracy as well. The results
of this case study provided us with insight and helped to improve SAMOS - for instance with
better weighting schemes, to begin with. The issue with respect to the orthogonality issue are
left as future work to examine in detail, based on interviews with the developers or discussions
within the clone detection community. Nevertheless, overall SAMOS performs well with both
high accuracy and recall.

Note that we used NICAD with the basic mode of operation as done in SIMONE (i.e. nor-
malization and line-based comparison with LCS). We believe, however, that all of the problems
mentioned cannot simply be solved by normalization steps, but rather need more fine-grained
(i.e. not line-based) comparison, employing NLP as well. NICAD is nevertheless in principle
extensible in the sense that LCS, for instance, can be replaced with other techniques such as set
similarity and so on.

We have not reported exact run times here (given the small size of the data). SAMOS is much
slower than NICAD: for this case study, the former processes the data in the order of minutes, the
latter in just a few seconds. In our case, this level of a performance loss is an acceptable trade-off
for the increased accuracy.

For fairness, we would like to emphasize that one of the major weaknesses of SAMOS,
namely the move-swap type of changes, are not found in this case study. We leave it as future
work to compare the two tools with higher scope and/or model types with typically longer chain-
like structure (state charts, or Simulink models already supported by NICAD-SIMONE), which
might reveal additional shortcomings of SAMOS. Another interesting line of comparison would
involve structural clones (such as blind renamed clones used by SIMONE), which SAMOS does
not support at the moment.

6.5.3 Case Study 3 - Metamodel Clones in GitHub
We performed a third case study to apply SAMOS on real data mined from GitHub. The goal
here is again to assess the accuracy of our tool, but additionally to demonstrate its scalability to
thousands of metamodels. This level of scalability is necessary for empirical studies on meta-
models and related DSLs in GitHub (with tens of thousands of items) or industrial DSL/MDE
ecosystem evolution studies (with hundreds to thousands of items, and tens of versions per item).
Next we detail the mining process and the iterative clone detection we performed.

6.5.3.1 Mining Ecore metamodels from GitHub

For mining GitHub, we did not perform a rigorous methodology as it is not the main focus of
this chapter. We rather leave it for the follow-up empirical studies to tackle, along the lines of
the related work by Kalliamvakou et al. [92] and Hebig et al. [82]. We do not guarantee a full
coverage of all the metamodels in GitHub; we are aware that our search mostly covers just the
master branches and we are not able to search for files bigger than 384 KB13.

13https://help.github.com/articles/searching-code/

https://help.github.com/articles/searching-code/

6.5. Case Studies and Comparative Evaluation 99

Using the web interface of GitHub, we searched for Ecore metamodel files containing the
word EClass14. We crawled all the resulting metamodels and applied two filtering passes, re-
spectively removing (1) files not parsable by EMF or not having any content, and (2) exact
duplicates, using MD5 hash comparison.

The search yielded 68,511 code results15, of which 68,485 could be found and downloaded.
Filtering pass 1 removed 1337 files. Roughly 2/3 (45,355) were eliminated after exact duplicate
removal, resulting in a final set of 21,793 metamodels. The high number of duplicates contrasts
with the results on UML models in GitHub by Hebig et al., who reported merely 12% dupli-
cates. While at first glance one can see that there are public datasets which duplicate the mined
metamodels by publishing them again on GitHub, a detailed analysis and explanation of this
fact is left for future studies. The clusters of exact duplicates can be found in the supplemental
material16.

6.5.3.2 Iterative Process for Clone Detection: Methodology

The∼22k metamodels still posed a challenge for our framework with computationally expensive
settings such as tree-hung. While we have put some effort into a distributed (big data) processing
back-end for SAMOS [25], it is in a rather early experimental phase. Here we instead aimed
to develop an iterative approach and do the assessment. Given various settings of SAMOS, the
idea is to start with cheaper, less accurate settings to find clusters with the most promising clone
candidates, and process each cluster separately with the more expensive and accurate settings:

1. Run SAMOS with full NLP on unigrams (no structure) of names only (no types, attributes)
with threshold 0.3 and the rest of the settings as in the above case studies. However, pre-
tokenize and pre-lemmatize all the names to reduce the vector space.

2. Remove the outliers (non-clones), get each clone cluster into a separate bucket.

3. For each bucket, run SAMOS separately with the tree-hung setting with attributed 1-depth
subtrees (i.e. as in case study 2).

4. Find Type A (i.e. almost the same) and Type C clones (highly similar) with thresholds 0
and 0.3. We choose to omit Type B for simplicity, and the fact that Type C clones already
cover a superset of Type B clones.

5. For validating the precision, inspect manually random subsets of the clusters (confidence
level 90% and margin of error 0.10) as well as ones with large number of elements, >10
for Type A and >50 for Type C clones—as cases of higher interest.

6. For validating the relative recall of this new iterative approach (compared to running
SAMOS on the whole data at once), run SAMOS with tree-hung random subsets assem-
bled from the disjoint buckets and the whole outlier bucket to see if we can find clones
which would not be found by the iterative approach.

Note that the preprocessed unigram setting in step (1) greatly reduced the vector space, al-
lowing us to handle the whole data set at once. Even with the outlier removal at step (2), we
ended up with too many metamodels. We rather processed each bucket separately; hence helping

14Using the following URL: https://github.com/search?q=EClass+extension%3Aecore, same as what has
been done by Kolovos et al. [101]

15Performed on June 1st, 2018.
16http://www.win.tue.nl/~obabur/publications/JVLC18/

https://github.com/search?q=EClass+extension%3Aecore
http://www.win.tue.nl/~obabur/publications/JVLC18/

100 Metamodel Clone Detection with SAMOS

tremendously in dealing with the inherently quadratic complexity of our approach. Steps (5) and
(6) allowed us to reach qualitative conclusions about the accuracy of SAMOS, and this iterative
process. For step (1), we did not go for other approaches such as word stemming (heavier nor-
malization), character n-grams or hash values (such as locality sensitive hashing [182]), in order
to be able to use full NLP including WordNet semantic relatedness. An advantage with those
approaches, though, is that we could calculate the VSM in a linear way (see Section 6.4.8 for
the linear vs. quadratic computation of VSM). Even with the current unigram setting, running
SAMOS on the dataset in this case study, but with complex parameters such as NLP turned off
and using the linear VSM, only takes minutes (in contrast to hours when using the quadratic
VSM).

6.5.3.3 Results

Step 1 of our process resulted in 3813 buckets involving 16048 metamodels, with an average of
4.2 metamodels per bucket. This is yet another important empirical finding: again more than
two thirds of the non-duplicate metamodels in GitHub are highly similar to others (provided that
SAMOS detects them accurately; see discussion below). We found a few clusters with over 100
items, and one with over 2800. This might be due to the clustering algorithm (cf. discussion
in case study 2 on spherical vs. non-spherical clusters), and will be elaborated further in the
validation and discussion subsections.

Running tree-hung clone detection on the 3813 buckets resulted in 3680 Type A clone clusters
containing a total of 8488 metamodels and 2200 exclusively Type C clusters involving 11044
metamodels.

Type A clones Inspecting the 67-item validation set for Type A, we were able to manually
label all except one as Type A, hence correctly classified by SAMOS. We identified mostly
whitespace differences, reordering of elements, cosmetic changes in names, XML encoding.
Changes for instance in nsURI and nsPrefixes of EPackages, generic types and EAnnotations
are by design ignored by SAMOS, so we did not consider those as incorrect. A number of
cases involved differences in the eType object paths while the names remained the same, where
they were treated by EMFCompare as identical as well. One cluster contained metamodels with
unresolved proxies (hence eTypes not being retrieved by SAMOS and SAMOS conflating the
resulting null values); SAMOS incorrectly labelled it as Type A despite the type differences. A
surprisingly large percentage of the cases involved an interesting situation: probably copy-pasted
metamodels in different platforms contain different new line characters, resulting in multiple
additional carriage return characters. This not only happens in a few repositories, but seems like
a GitHub-wide phenomenon. This simple fact renders simplistic file comparisons inadequate and
might be taken into account by studies like ours (this chapter and [26]) or the ones by Hebig et
al. [82] and Kolovos et al. [101] (and replication studies thereof). We additionally checked the
11 clone clusters with more than 10 metamodels per cluster; 9 were correctly classified (except
the parts ignored by SAMOS, notably EAnnotations - including any OCL constraints encoded
in those): sliced UML metamodels, Petri nets, Ecore meta-metamodel, and various toy example
metamodels. In the final two clusters, which we manually labelled as Type B, there were two
minor problems: a small implementation error due to empty package not being represented in
SAMOS, and token filter removing too short tokens. Note that the latter (together with stopword
removal) is in most cases actually beneficial for ignoring insignificant changes; as an example
consider the following set of name_of_class, name_class, name_class_1, name_of_classX and
so on.

6.5. Case Studies and Comparative Evaluation 101

Type C clones For validating exclusively Type C clones, we only considered whether the clus-
ter contained highly similar and interrelated metamodels (adequate for our follow-up studies);
rather omitting the exact categorization into Type B, C or higher. We inspected the 66-item
random validation subset plus 13 clusters with sizes larger than 50. The majority of the clus-
ters contained highly similar metamodels, ranging from toy metamodels to ones for C++, Java,
fUML, petri nets, business process models. These were situated both intra and inter-repositories.
We identified certain flaws of SAMOS as well: apart from a minor implementation error, this in-
volved a case where orthogonality might also be an issue (as discussed in the previous case stud-
ies), and two cases where cluster connectivity led to multiple small and consistent sub-clusters
getting packed into a large cluster. One of those involved too small metamodels with matching
base classes (hence higher weight). In the second, we had a 677-item cluster with UML, SQL,
state machine and graph metamodels all thrown in together (presumably because of reachability
clustering).

Additional random runs As a result of the 100 runs each with 100 metamodels randomly
picked from the buckets and outlier set under the restriction that at most one metamodel per
bucket was selected metamodels, we obtained zero Type A and zero Type B clones. However,
we found 9 additional clone pairs (i.e. clusters with size two) of Type C. Of these, 4 were correctly
classified, while one was borderline and 3 were incorrect. The inaccuracy stemmed presumably
from a lot of matching tokens (XElement, YElement, . . .) and/or (partly) matching supertypes
which were ignored by the unigram pass. In the first case, using WordNet semantic relatedness
measures led tokens such as Element and Component to be very similar (Lin similarity of 100%).

6.5.3.4 Discussion and Performance

The results indicate that this iterative mode of SAMOS is able to detect many clones with high
precision: 75/78 for Type A, and 76/79 for Type C clone clusters. The high precision is not
so surprising given the above case studies used depth 1 subtrees with the Hungarian distance.
While we cannot assess the absolute recall, we can claim that the iterative approach also has
a very high recall with respect to the non-iterative mode of SAMOS: the 9 small clusters from
the random runs are very few compared to the original 4073 clusters with >10k models. Yet
again a qualitative analysis for identifying the problematic cases (due to implementation error,
or something fundamental with SAMOS) helps us to improve SAMOS in the future.

The VSM computation part and the distance calculation being the bottleneck, the complexity
of SAMOS is essentially quadratic with respect to the number of features in the dataset. Ex-
pensive feature comparison techniques such as Hungarian algorithm and NLP (notably WordNet
checks) also greatly increase the execution time. However, as mentioned above, the complex-
ity can be lower when there are many common features across the dataset - reducing the vector
space. Thanks to this, we were able to perform the first, unigram pass on a single core of an 2.3
GHz Intel Core i7 processor with 16 GB 1600 MHz DDR3 memory in approximately 14 hours.
The second pass, in turn, took close to 12 hours in total for the 3813 buckets. Given the large
size of the dataset, we believe SAMOS already achieves a good scalability. We plan to further
improve the performance with optimizations and a distributed computing back-end, to cope with
tens of thousands of models or even more.

We would like to emphasize that we leave the detailed empirical discussion of the results as
future work. We believe it is worthwhile to investigate several phenomena, for instance, whether
it is expected to have Type A clones for Ecore meta-metamodels as they are used across many
EMF-based projects, and what are the syntactic, semantic and pragmatic differences across the
various Petri Net metamodels. We also deliberately left out a comparative performance assess-

102 Metamodel Clone Detection with SAMOS

ment of SAMOS vs. NICAD-Ecore. This is because we established the higher accuracy of
SAMOS in the previous case study, and moved on to assess its scalability and feasibility for a
large dataset. In future work, we plan to conduct case studies comparing the performance of
SAMOS vs. NICAD-* and MACH as well.

6.6 Overall Discussion and Future Work
In this section we discuss several aspects of our approach and the techniques we developed.

Underlying framework We have built our clone detection technique on top of SAMOS, ex-
ploiting its capabilities such as NLP and statistical algorithms for free. The framework easily
allowed extension, for example with extraction of new features, and addition of new distance
measures. This is one of the strengths of our approach, also considering recent developments
within SAMOS such as support for distributed computing and more sophisticated NLP. Using
R as the back-end enables us to further experiment with advanced statistical and data mining
techniques. We are investigating whether to integrate SAMOS into a data mining framework
which would enable us to utilize features such as a GUI, workflow management, and advanced
visualization, data mining, and machine learning. We plan to publish SAMOS as an extendible
open source framework for model clone detection.

Accuracy SAMOS has a high accuracy, as given in the three case studies. When compared to
existing tools, it does a better job, notably thanks to its NLP capabilities (given our clone type
categorization). While it is harder to give an account of recall, we tried to give some assessment
of (relative) recall in case study 2 (vs. NICAD-Ecore) and 3 (vs. non-iterative execution). The
qualitative analysis of the inaccurate cases for all three tools further allow us to pinpoint the
weaknesses of the approaches and improve SAMOS where applicable in the future. We believe
the variety of case studies and comparison with state-of-the-art clone detectors show SAMOS to
be a powerful tool.

Performance and scalability Overall, SAMOS is slower than NICAD-Ecore and MACH,
which can mostly be attributed to the quadratic complexity of the all-pairs VSM and distance
measurement, the complex NLP employed, and the expensive comparison algorithms performed.
Nevertheless, SAMOS can handle quite large datasets (in the order of tens of thousands meta-
models, millions of model elements) without too much of a problem, with the help of the iterative
process introduced in case study 3, and the distributed computing back-end being developed.

Genericness SAMOS is in principle generic, in the sense that it can be applied to any graph-
based model provided one implements the corresponding (metamodel-driven or hard-coded) fea-
ture extraction. SAMOS has been or is currently being applied in different contexts for UML
class diagrams, industrial DSLs [29], feature models [24] and state charts [198]. It will be fur-
ther investigated to what extent our technique is applicable to these and other types of models,
especially in data flow or block-based languages. Another challenge would be detecting struc-
tural clones e.g. for Simulink models, which would certainly require a considerable extension to
SAMOS. We regard the detection of semantic clones more of a longer term goal.

Orthogonality and clustering As discussed in all three case studies above, the orthogonality
of changes among artifacts changes not only the assessment of (some of the) clone detectors, but

6.7. Related Work 103

also the assessment of the clone types especially along the borders of Type B, C and higher. It is
not clear to us whether orthogonality plays a positive or negative role in the clone classification
and perception. We leave it as future work to investigate this phenomenon in detail. Another im-
portant aspect is the connectivity clustering of spherical/convex vs. non-spherical/convex shapes.
This is a well-known issue in the data mining domain, and we would like to investigate further
how it affects the clone detection domain, and whether other clustering techniques might lead
to more accurate groupings. For small models, for which even atomic changes lead to too high
of a dissimilarity as we found out in our case studies, we plan to investigate solutions such as
transforming the similarity function, or using some variant of the binding strength advocated by
Störrle [168].

Improving SAMOS With the input from the three case studies and our increasing insight
working with different types of models, we plan to further extend and test SAMOS with ad-
ditional features including longer n-grams, arbitrary-depth trees, subgraphs, ordered elements,
customized and improved weighting schemes (such as ways to remedy bigram weighting issue,
or depth-based weighting), distance measures and statistical algorithms.

More powerful NLP We believe NLP is crucial to tackle real world datasets, and is an under-
rated aspect in the current model clone detection literature. We plan to further improve the NLP
capabilities of SAMOS with part-of-speech tagging, context-based word-sense disambiguation,
and more advanced, possibly domain specific semantic resources beyond WordNet.

Other practical aspects Several other practical aspects are reported in the literature as impor-
tant for applying model clone detection in practice [65, 160]. In this chapter, we have fixed scop-
ing of EClass, EPackage and whole model, thus do not run into the nested clones problem [160].
This would be somewhat important for e.g. EPackage scope, but even more so for other types of
models. Other aspects including clone ranking, reporting and inspection, visualization are also
left as future work.

Threats to validity A threat to validity of this study is the lack of an assessment of the abso-
lute recall, although we used state-of-the-art (and hence presumably reasonably accurate) clone
detector tools as comparison. Ways of further mitigating this problem would be to apply a proper
and automated mutation-based assessment tool [162] on the one hand, but also perform further
comparative studies with other clone detectors to have a stronger account of the overall relative
recall of all the tools combined. The manual labelling of clones, hence the manual validation
of accuracy, is also a labor-intensive and error-prone process; to reduce the error rate, we plan
to incorporate multiple assessors with techniques from the empirical research domain, and work
with domain experts from the industry and the clone detection community for building ground
theory [166]. Other additional manual validation techniques could be employed, as proposed
by Stephan et al. [163]. Moreover, further comparative case studies not only with NICAD and
MACH, but also with additional model clone detectors, notably ConQAT, would lead to a more
objective assessment of accuracy. We plan to publish SAMOS along with those validation data
in the future for replication studies and reproducibility.

6.7 Related Work
The bulk of model clone detection research follows and is inspired by the larger software clone
detection [103] and code clone detection literature [143], which is not covered in this chapter.

104 Metamodel Clone Detection with SAMOS

The readers are referred to those extensive surveys for further information. Model clone detec-
tion research, which can be considered as a sub-area of model comparison [159] in a broader
sense, is driven by the major approaches accompanied by tooling as outlined in Section 6.1:
CloneDetective/ConQAT [64], SIMONE [9], MACH [167, 168]. Other approaches based on SI-
MONE are presented by Anthony et al. [16] for UML sequence diagrams and Chen et al. [53]
for MATLAB Stateflow models. These approaches use a lot of sophisticated language-specific
and problem-specific pre-/postprocessing to extract meaningful model fragments (for instance,
conversation patterns in the former) and rely on the mode of operation used in NICAD-SIMONE
to find near-miss clones.

Graph-based approaches for MATLAB Simulink models include ConQAT [64] and Mod-
elCD [132]. Both use graph matching and graph-theoretic algorithms to find clones in sets
of data flow models. ConQAT is used in comparative studies such as the one by Stephan et
al. [162] and is reported to have lower accuracy (especially recall) than NICAD for near-miss
clones. ModelCD in turn, contains two algorithms, eScan and aScan, for clone detection, how-
ever they are not publicly available. Störrle reports a much higher performance and scalability
for MQlone compared to ConQAT and ModelCD. eScan (for exact clone detection) is imple-
mented by Strüber et al. [171] for detecting model transformation clones and compared against
ConQAT. The authors report a much lower performance and scalability than ConQAT for eScan.
The performance issue with graph-based approaches is even more evident in more fundamental
approaches, namely Similarity Flooding [118] or general (sub-)graph isomorphism.

The aScan approximate clone detection algorithm in ModelCD, however, follows a very sim-
ilar approach with SAMOS in terms of model fragmentation and vector-based similarity calcu-
lation. While we started with IR-inspired scenarios for SAMOS for domain clustering of mod-
els, after moving to clone detection we realized that aScan follows a very similar approach to
SAMOS. It extracts features for an approximation of the (sub)graphs: n-paths (similar to n-grams
in SAMOS) and (p-q)-nodes (similar to depth 1 subtrees in SAMOS). It then uses an occurrence-
counting vector with a simple distance measure for calculating the similarity. Nevertheless, we
can identify several distinguishing features: they (1) use a very simplistic representation of model
information, for instance Simulink nodes by their types only, discarding all other information, (2)
do not employ any fine-grained comparison such as NLP, and (3) use additional constraints and
heuristics for computing the clones (especially in the case of nested clones). Unfortunately, given
the unavailability of ModelCD and the lack of extensive comparative studies of ModelCD with
other clone detector tools, it is impossible to assess ModelCD properly. Besides, like MACH,
ModelCD is reported on a single model to find the clone within; SAMOS can operate on multiple
models and finds clones across different models as well as within the models.

Another approach by Hummel et al. [87] tries to mitigate the shortcomings of fully-fledged
graph-based approaches, by indexing subgraphs in terms of their canonical labels approximated
by MD5 hashes. Those labels consist of tuples of relevant information such as name of the model
files, lists and sequences of normalized statements in the subgraphs. They act as a heuristic step,
after which a proper isomorphism check is performed on the potential clone pairs.

Another interesting approach involves clone detection for UML sequence diagrams [110].
The authors suggest flattening sequence diagrams into a 1-dimensional array to construct suffix
trees, and identify longest common prefixes of those as clones. Ekanayake et al. present another
graph edit distance-based clone detection approach, for business process models [72]. A final
interesting reference is the DSL clone detection study by Tairas et al. [175], where the authors
investigate Type I and II clones in Object Constraint Language. While the target language is a
textual one, it is lifted to the model (abstract syntax) level and clone detection is done via model
transformations. The authors note that their approach is not flexible enough to detect Type III
(near miss) clones.

6.8. Conclusion 105

6.8 Conclusion
In this chapter we have presented a novel model clone detection approach based on the SAMOS
model analytics framework using information retrieval and machine learning techniques. We
have extended SAMOS with additional scoping, feature extraction and comparison schemes,
customized distance measures and clustering algorithms in the context of metamodel clone de-
tection. We have evaluated our approach using a variety of case studies involving both syn-
thetic and real data; and identified the strengths and weaknesses of our approach along with two
other state-of-the-art clone detectors, namely NICAD-SIMONE and MACH. We conclude that
SAMOS stands out with its higher accuracy while still being considerably scalable; it proves to be
useful for further large-scale clone detection and empirical studies on metamodels and domain
specific languages. Regarding model management, detecting and managing (e.g. eliminating)
clones is an important process for the health of large scale MDE ecosystems.

Chapter 7

Model Analytics for Industrial MDE Ecosystems

Widespread adoption of model-driven engineering (MDE) in industrial contexts, especially in
large companies, leads to an abundance of MDE artifacts such as domain-specific languages
and models. ASML is an example of such a company where multi-disciplinary teams work on
various ecosystems with many languages and models. Automated analyses of those artifacts,
e.g. for detecting duplication and cloning, can potentially aid the maintenance and evolution of
those ecoystems. In this work, we explore a variety of model analytics approaches using our
framework SAMOS in the industrial context of ASML ecosystems. We have performed case stud-
ies involving clone detection on ASML’s data and control models within the ASOME ecosystem,
cross-DSL conceptual analysis and language-level clone detection on three ecosystems, and fi-
nally architectural analysis and reconstruction on the CARM2G ecosystem. We discuss how
model analytics can be used to discover insights on MDE ecosystems (e.g. via model clone de-
tection and architectural analysis) and opportunities such as refactoring to improve them.

7.1 Introduction
The increased use of model-driven engineering (MDE) techniques leads to the need to address
issues pertaining to the increasing number and variety of MDE artifacts, such as domain specific
languages (DSLs) and the corresponding models. This is indeed the case when large industries
adopt MDE for multiple domains in their operation. ASML, which is the leading producer of
lithography systems, is an example of such a company where multi-disciplinary teams work on
various MDE ecosystems involving tens of languages and thousands of models [153]. Automated
analyses of those artifacts can potentially aid the maintenance and evolution of those ecoystems.
One example issue with these ecosystems is that of duplication and cloning in those artifacts. The
presence of clones might negatively affect the maintainability and evolution of software artifacts
in general, as widely reported in the literature [94]. In the general sense, when multiple instances
of software artifacts (e.g. language or model fragments in our case) exist, a change required
in such a fragment (to fix a bug, for instance) would also have to be performed on all other
instances of this fragment. Inconsistent changes to such fragments might also lead to incorrect
behavior. Therefore, eliminating such redundancy in software artifacts might result in improved

108 Model Analytics for Industrial MDE Ecosystems

maintainability. While not all cases of encountered clones can be considered negative [94], as
some might be inevitable or even intended, it is worthwhile to explore what types of clones exist
and what their existence might imply for the system.

The growing number of DSLs in the variety of ecosystems, on the other hand, also demands
ways to automatically analyze those languages, e.g. to give an overview of the domains and
sub-domains of the enterprise-level ecosystem (i.e. system of ecosystems). Other interesting
analyses would include the similarities, conceptual relatedness and clone fragments among the
various languages both within and across the ecosystems.

In this chapter, we explore a variety of model analytics approaches using our framework
SAMOS [22, 27] in the industrial context of ASML ecosystems. We perform case studies in-
volving clone detection on ASML’s data models and control models of the ASOME ecosys-
tem, cross-DSL conceptual analysis and language-level clone detection on three ecosystems
(ASOME, CARM2G, wafer handler), and finally architectural analysis and reconstruction, using
a technique called topic modelling [44], on the CARM2G ecosystem DSLs. We provide in-
sights into how model analytics can be used to discover factual information on MDE ecosystems
(e.g. what types of clones exist, and why) and opportunities such as refactoring to improve the
ecosystems.

The rest of the chapter is structured as follows. In Section 7.2 we introduce our main ob-
jectives for analyzing MDE ecosystems. In Sections 7.3 and 7.4, we give some background
information, respectively on ASML ecosystems and the concept of model clones. We detail
how we used and extended SAMOS for the clone detection tasks on ASML’s ASOME ecosys-
tem models in Section 7.5. We provide extensive case studies in Section 7.6: clone detection
in ASOME data models and control models, cross-DSL conceptual analysis and language-level
clone detection, and finally architectural analysis of the CARM2G ecosystem. We continue in
Section 7.7 with a general discussion and threats to validity, related work on important topics
such as model clone detection and topic modelling in Section 7.8, and finally conclusions and
pointers for future work in Section 7.9.

7.2 Objectives
This section presents the objectives that we pursued to analyze the MDE ecosystems at ASML.
First, we would like to point out that we used and extended our model analytics framework,
SAMOS, to perform various analyses on the MDE artifacts. Since SAMOS already provides a
means to detect clones for Ecore metamodels (representing the DSLs in the ecosystems), we ex-
plore how this framework can be extended (1) to analyze models adhering to the domain-specific
metamodels used at ASML, and (2) to incorporate additional techniques e.g. for architectural
analysis.

ASML uses the ASOME modeling language [12] to model the behaviour of its machines.
To analyze ASOME models in SAMOS, we first need to understand the elements involved in
these models, based on the metamodels they adhere to. This is necessary to extend the feature
extraction part, determining e.g. which model parts to extract (and in which specific way) or to
ignore. Moreover, while SAMOS defines comparison schemes for the comparison of features
extracted from e.g. Ecore metamodels, it has yet to be examined if these comparison schemes
are suitable for ASOME models.

Our analysis of ASOME models in this work, namely clone detection, also needs to be eval-
uated with respect to accuracy and relevance. The goal of clone detection in this context is to
find a way to use this information to investigate, and if possible reduce the level of cloning in
the models. The largest part of the analysis done in this chapter is clone detection on ASOME

7.3. MDE Ecosystems at ASML 109

models at ASML. There we considered three aspects: (1) applying and extending SAMOS to
detect clones in ASOME models, (2) assessing the accuracy and relevance of the clones found,
and (3) improving the maintainability of the MDE ecosystems at ASML based on the discovered
cloning information.

Given the variety of MDE ecosystems at ASML, each of which consists of several languages
represented by metamodels, we have a few additional objectives related to language-level anal-
yses. First of all, we would like to investigate what overview and high-level insights we can
gain by clustering the metamodels of multiple ecosystems. Similarly, we are also interested in
the cloning at the language-level within and among the ecosystems, along with their relevance,
nature and actionability for improving the quality of the ecosystems. Finally we also consider a
focused study on the CARM2G ecosystem only and reconstruct it in terms of the conceptual and
architectural layers for architectural understanding and conformance.

The related analyses, addressing the objectives presented above, have been discussed in var-
ious sections of the chapter. The extension of SAMOS for clone detection on ASOME models
is addressed in Sections 7.5.1 and 7.5.2. The actual clone detection and the interpretation of
the results are discussed in the first case studies in Sections 7.6.1 and 7.6.2. The case studies in
Sections 7.6.3-7.6.5 on the MDE ecosystems address the rest of the objectives on the language
level.

7.3 MDE Ecosystems at ASML
The development of complex systems involves a combination of skills and techniques from var-
ious disciplines. The use of models allows one to abstract from the concrete implementation
provided by different disciplines to enable the specification, verification and operation of com-
plex systems. However, shortcomings or misunderstandings between the disciplines involved at
the model level can become visible at the implementation level. To avoid such shortcomings, it
is essential to resolve such conflicts at the model level. To this end, Multi-Disciplinary Systems
Engineering (MDSE, used synonymously with MDE in our work for simplicity, although strictly
speaking it is a broader domain) ecosystems are employed to maintain the consistency among
inter-disciplinary models.

ASML is developing such MDE ecosystems by formalizing the knowledge of several dis-
ciplines into one or more domain specific languages [120]. The separation of concerns among
the different disciplines helps with handling the complexity of these concerns. Clear and un-
ambiguous communication between the different disciplines is facilitated to enable not only the
functioning of the complex system, but also its ability to keep up with the evolving performance
requirements. Furthermore, the design flow is optimized, resulting in a faster delivery of software
products to the market [12, 120].

In such an ecosystem, concepts and knowledge of the several involved disciplines are formal-
ized into of one or more domain specific languages (DSLs). Each MDE ecosystem has its own
well defined application domain. Examples of developed MDE ecosystems at ASML are:

• ASOME, from ASML’s Software application domain. It enables functional engineers from
different disciplines to define data structures and algorithms, and allows software engineers
to define supervisory controllers and data repositories [12];

• CARM2G, from ASML’s Process Control application domain. It enables mechatronic de-
sign engineers to define the application in terms of process (motion) controllers (coupled
with defacto standard Matlab/Simulink), providing a means for electronic engineers to

110 Model Analytics for Industrial MDE Ecosystems

Figure 7.1: Basic elements in a data model

define the platform containing sensors, actuators, the multi-processor, multi-core com-
putation platform and the communication network, and means for software engineers to
develop an optimal mapping of the application on to the platform, see [154, 5];

• Wafer handler (WLSAT), from ASML’s Manufacturing Logistics application domain. It
provides a formal modeling approach for compositional specification of both functionality
and timing of manufacturing systems. The performance of the controller can be analyzed
and optimized by taking into account the timing characteristics. Since formal semantics are
given in terms of a (max, +) state space, various existing performance analysis techniques
can be reused [184, 185, 125].

7.3.1 ASOME Models
The ASOME MDE ecosystem is a software development environment that supports the DCA
pattern, which separates Data, Control and Algorithms. A motivation to employ this architecture
pattern is to avoid changes in the control flow of a system based on a change in data [12]. Using
techniques of MDE, ASOME provides metamodels to create data and control models indepen-
dently of each other.

7.3. MDE Ecosystems at ASML 111

In the context of DCA and ASOME, data is one of the aspects. Similarly, we also talk
about the ‘control’, ‘algorithm’ and (overall) ‘system’ aspects. Within this data aspect, several
kinds of systems, interfaces and realizations can be recognized. Domain interfaces and system
realizations are just a few examples; other operational examples would include data shifters,
services, etc. We further limit our studies on domain interfaces in the data models1.

Different data elements of an ASML component are represented using one or more data
models, the elements of which adhere to a collection of metamodels. As seen in Figure 7.1 data
models contain:

• Domain Interfaces: any kind of interface in ASOME can express a dependency on another
interface. Interfaces allow dependencies among elements originating from other models,
hence reuse across models. Within these domain interfaces, several model elements reside
including enumerations, entities and value objects.

• Attributes and Associations: simple elements with a name, type, and multiplicities rep-
resenting how many instances of these elements can exist at run-time. While attributes
are involved strictly in a containment structure, associations can refer to other elements
without containing them. Associations additionally distinguish between source and tar-
get multiplicities. For collections, the order of the elements contained might be relevant
(i.e. list) or not (i.e. set), indicated by the optional flag order.

• Entities: model elements that contain value objects, attributes and associations to other
entities (within the same model or from different models). Entities additionally allow a
user to define properties such as deletability, mutability, and persistency.

• Value Objects: model elements that contain only attributes of primitive types enumera-
tions or other value objects, but no associations. The concept of value objects has been
introduced to be able to avoid repetition.

• Enumerations: collections of constant values called Enumeration Literals.

• Primitive Types: simple types to act as basic building blocks for the ASOME language.

Control models, on the other hand, allow a user to model the flow of control of different
components of the system at hand. This is done using state machines. Control models can be
of three different types - composite, interface and design2. The construction of complex systems
in ASOME control models is done using instances of some smaller systems. Composite models
contain a decomposition defining what system instances are made up of, along with how they
are connected through ports and interfaces. An interface model provides a protocol for a state
machine along with a definition of how the system and its interfaces can be defined. A design
model uses this protocol to define a concrete realization of this system. Figure 7.2 represents the
elements of interest in a control model. These elements are as follows:

• State Machines: elements defined in the protocols of interface models or realizations de-
sign models. A state machine consists of states, transitions and variables used within these
states.

1Although, the concept of a data model, in the strict sense, actually does not exist, we simply refer to any such model
originating from the data realm as data model in this work for simplification.

2Composite is strictly a part of the ‘system’ aspect and not the ‘control’ aspect. As with data models, the concept of
a control model as such does not exist within ASOME. In the scope of this work, we group these types of systems or
interfaces and call them control models.

112 Model Analytics for Industrial MDE Ecosystems

Figure 7.2: Basic elements of a control model

7.4. Model Clones: Concept and Classification 113

• States: elements used to represent different states of the system being modeled using con-
trol models. Every state machine consists of a number of states of which one of them is
indicated as the initial state.

• Transition States: elements that are contained within the state to model the behavior of the
system based on different triggers. Each transition state is associated with such a trigger,
followed by one or more actions (see below) and optionally a guard (an expression to be
solved) and a target state specification3.

• Actions: elements specifying the activity that follows when a triggering event occurs. A
sequence of one or more actions is defined in each transition state. These actions could
include sending a reply to an interface of a model, terminating the control flow, invoking
an operation or a notification, etc.

We will refer to the above basic concepts within ASOME models, when discussing about our
approach for clone detection in Section 7.5. While ASOME also facilitates the specification of
Algorithm models, these were not considered for the purpose of finding clones in this work. This
is due to the fact that there is ongoing effort at ASML to model algorithms and as a consequence
there are no models that contain sufficient algorithmic aspects to analyze.

7.4 Model Clones: Concept and Classification
Before detailing the process of clone detection, it is essential to consider what defines a clone. As
the core part of the concept and classification is already discussed in Chapter 6, we are skipping
it here. However, there are specific concerns for the ASML models, which we address in this
section.

For the ASOME data models, the names of elements are considered relevant (argument be-
ing that they are similar to conceptual domain models) and the classification of clone types takes
changes in the name of model fragments into account. However, for the ASOME control mod-
els, since the behavior of these models is analyzed and the structure of the models represents
behavior, the classification of clones takes into account the addition or removal of components
that modify the structure of the model (in the sense of finding structural clones). This is partly
in line with the clone category of renamed clones, as investigated in the model clone detection
literature (e.g. in [53] for Simulink model clones).

7.5 Using and Extending SAMOS for ASOME Models
SAMOS is natively capable of analyzing certain types of models, such as Ecore metamodels.
However, it needs to be extended and tailored to the domain-specific ASOME models; this can
be considered an extended implementation rather than a conceptual extension. The current sec-
tion discusses the applicability and extension of SAMOS for clone detection on the ASOME
models at ASML. The workflow of SAMOS, as given in Chapter 2, involves the extraction of
relevant features from the models. This extraction scheme is metamodel-specific and therefore,
an extension to SAMOS is first required, to incorporate a feature extraction scheme based on the
ASOME metamodels. SAMOS already uses a customizable workflow for extracting and com-
paring model elements, e.g. for clone detection. The first step to do this is the metamodel-based

3Note that it might be slightly confusing to have a concept mixing the terms transition and state. In the newer versions
of the ASOME language, the name has been changed to Transition avoid confusion.

114 Model Analytics for Industrial MDE Ecosystems

extraction of features, i.e. via a separate extractor for each model type, which is addressed in the
following sections.

7.5.1 Feature Extraction
The first step for detecting model clones is to determine the information that is relevant for com-
paring model elements. In feature extraction, first, the collection of metamodels which jointly
define what the Data and Control models adhere to were inspected. Along with input from a
domain expert (senior architect and lead language engineer for the ASOME ecosystem) via iter-
ations of face-to-face discussions, we gained insight into the features for each model element that
could be considered relevant for clone detection. These include, among others, names and types
of the model elements, depending on the particular model element involved. Separate extraction
schemes were developed for the Data and Control models.

The above settings describe how a model element (i.e. the vertex in the underlying graph)
should be represented as a feature. Next, SAMOS allows a structure setting for feature extrac-
tion: unigrams, effectively ignoring the graph structure ; n-grams, capturing structure in linear
chunks; and subtrees, capturing structure in fixed-depth trees [27]. These have implications on
the comparison method needed (as will be explained in the following sections, and see [27] for
details), and on the accuracy of clone detection overall.

The extraction in SAMOS can be specified to treat models as a whole (i.e. map each model
to the set of its model elements). In addition, the extraction scope can be narrowed to smaller
model fragments, such as extracting features per class in a class diagram. In such cases the
analysis done in SAMOS is performed on a model fragment level rather than at the model level,
effectively allowing SAMOS to compare and relate model fragments at the chosen scope. For
the ASOME models, a number of scopes was investigated. The relevant ones used in the scope
of this work are as follows.

Scopes for Data Models Figure 7.1 is a basic representation of the elements contained in the
data models. The extraction scopes are listed below:

• Structured Type and Enumerations: Similar to the EClass scope we used for metamodel
clone detection [27], we treat each entity, value object, and enumeration within a model
separately.

• LevelAA: This lowest level scope treats each attribute or association separately; hence the
name AA denoting attributes and associations. These could be considered as one-liner
micro clones considered in the code clone detection literature [122].

Scopes for Control Models Figure 7.2 represents the basic elements of ASOME control mod-
els. For those models, we considered the following scope:

• Protocol: A Control Interface, defined in an interface model, uses a state machine to
specify the allowed behavior, i.e. Protocol, along with its interface. A Control Realization,
defined in a design model, needs to provide a specification that adheres to the Control
Interfaces it provides and requires. Similarly, this specification takes the form of a state
machine.

7.5. Using and Extending SAMOS for ASOME Models 115

7.5.1.1 Domain Specific Concerns for Extraction

A direct (and non-filtered) treatment of the models as their underlying graphs might lead to
inaccurate (and noisy) representations, and in turn inaccurate comparison results. We had several
domain-specific adaptation for feature extraction of the new model types.

Redundant Information in the Model Graphs Figures 7.3 and 7.4 represent the structure of
attributes and associations, respectively, as modeled in the ASOME language. A blind extraction
of features along the tree structure for these model fragments would lead to redundant represen-
tation of features. For instance, consider a tree-based comparison of any two attributes based
on this representation. Since the tree nodes of Collection and Multiplicity would by definition
exist in any attribute, the tree comparison would always detect some minimum similarity (2/7
tree nodes matching). In the extreme case, all attributes with matching multiplicities would have
a too high similarity (at least 5/7 tree nodes matching). This would lead to unfair similarities
between those model fragments, and is against the fine-tuned distances policy of SAMOS [27].

Attribute

Collection

Ordered Multiplicity

Min Max

Name Asome Type

Figure 7.3: Containment structure for
Attribute.

Association

Collection

Ordered Multiplicity

Min Max

Name Asome Type Multiplicity

Min Max

Figure 7.4: Containment structure for Associa-
tion.

To solve this problem, we appended the multiplicity bounds and ordering flag into the at-
tribute or association. Figure 7.5 depicts the new flattened representation for Association. This
allows us to have a more meaningful comparison, and in turn more accurate clone detection.

Association

Ordered Multiplicity-Min Multiplicity-Max Name Asome Type Target-Min Target-Max

Figure 7.5: Modified containment structure for Association.

Filtering Out Some Model Elements With MDE systems, maintaining traceability between
models and eventually derived or generated artifacts, such as code, is important. ASOME uses
annotations in Control models to provide this traceability between systems. In Control models,
for transition states within a state, such annotations are introduced. During the extraction of
features from models, annotations are also extracted. However, the behavior of the model does
not depend on these annotations and therefore, including these annotations hamper the accuracy
of detecting relevant clones for our interest. To avoid this, the extraction of model features
excluded the extraction of these annotations.

7.5.2 Feature Comparison, VSM Calculation and Clustering
While SAMOS has the basic building blocks for the next steps in clone detection, namely feature
comparison and VSM construction, we need to specify and extend the comparison needed for

116 Model Analytics for Industrial MDE Ecosystems

our case studies. The feature comparison setting on the vertex or unit level in SAMOS involve
e.g. whether to consider domain type (i.e. metaclass) information of model elements for com-
parison, and whether and how to compare names using NLP techniques such as tokenization,
typo and synonym checking. For this work, we introduced a new option to effectively ignore
names (i.e. the No Name setting). This extension was introduced specifically to find structural
clones within ASOME control models, where names do not possess much significance. As for
aggregate features containing structural information, such as subtrees (of 1-depth in this work),
SAMOS has a built-in unordered comparison technique using the Hungarian algorithm [27]. We
employed a specific combination of such settings for various case studies, as will be explained in
Section 7.6 per case study.

Building on top of this comparison on the feature level, SAMOS performs an all-pairs com-
parison to compute a VSM, representing all the models (or model fragments, depending on the
extraction scope) in a high-dimensional space. In the case of clone detection, by selecting dis-
tance measures (specifically masked Bray-Curtis) and clustering methods (density-based cluster-
ing), SAMOS performs the necessary calculations to identify clone pairs and clusters [27].

7.6 Case Studies with ASML MDE Ecosystems
We have performed a wide range of case studies on the models and languages/metamodels used at
ASML. In the first two case studies we have detected and investigated the clones in ASOME data
and control models, while the others contain language-level analyses on various ecosystems. We
are not repeating the explicit tables for SAMOS configurations, but readers can refer to Chapter 5
settings for the conceptual analysis, and Chapters 5 and 6 for clone detection.

7.6.1 Clone Detection in ASOME Data Models
This section discusses the results of the case studies performed using the different settings of
SAMOS on the ASOME data models.

7.6.1.1 Dataset and SAMOS Settings

The dataset consists of 28 data models, containing one domain interface each. These domain in-
terfaces in total contain 291 structured type and enumeration model fragments and 574 attributes
and associations. Our preliminary runs with the scopes Model and Domain Interface did not
yield significant results, therefore we report here only the lower level scopes. The settings of
SAMOS for this case study are as follows:

• Scopes: Structured Type and Enumerations, LevelAA.

• Structure: Unigrams. For the model fragments at the chosen (low-level) scopes, there is
no deep containment structure. So, a unigram representation suffices for this case study.

• Name Setting: Name-sensitive comparison, as model element names are important parts
of the data models.

• Type Setting: A relaxed type comparison (standard setting of SAMOS) for the scope Struc-
tured Types and Enumerations and strict type comparison for LevelAA. For the latter, we
are interested in strictly similar micro-clones, facilitating easy refactoring.

On the given set of data models, using the settings above, we discuss the results we found in
the next section.

7.6. Case Studies with ASML MDE Ecosystems 117

7.6.1.2 Results and Discussion

This section discusses, per scope, the results obtained through the chosen settings. The discussion
is structured as follows: first, the model fragments considered to be clones are discussed; second,
the proposition for reducing the level of cloning is presented and finally, the opinion of a domain
expert on this proposition is presented.

We found the following clone clusters in the scope of Structured Type and Enumerations:

• Type A Clones. Only one clone cluster was found for this category consisting of two Value
Objects, named XYVector, representing coordinates. This is a small example of duplication
in two models, and can be easily eliminated, by reusing from one model in another. The
domain expert has commented, that in fact one of the models is actually called core, with
the intention that it contains the commonalities, while other models import and reuse it.

• Type B Clones. We found four clone clusters, each having a single clone pair. We show
an example of such Type B clone pairs in Figure 7.6(a), consisting of model fragments
with partly similar names (e.g. End Position vs. Start Position) and otherwise the same
content. The domain expert’s remark was that such cases of redundancy can be considered
candidates for elimination via inheritance abstraction. However, due to specific design
constraints, and the additional effort to integrate this abstraction in the existing practice,
the expert told it is difficult and unlikely that such improvements will be realized.

• Type C Clones. We found 23 Type C clone clusters. Figure 7.6(b) shows an example clone
pair, with a slight name difference and an additional attribute. Other pairs included changes
in names, and attributes. For such clones, redundancy can be eliminated by creating an
abstract class with commonalities and extending it. The domain expert commented it is
in any case useful to discover such variants in the modelling ecosystem, and it can be
investigated which ones can be refactored (along the discussion above for Type B clones).

En: End Position

location: Location

En: Start Position

location: Location

En: Capture Plan

capture_plan capture_plan

{0..1} {0..1}

(a) Type B clone pair example.

VO: horizontal_x_wsc

x_offset : Offset

y_offset : Offset

VO: horizontal_y_wscs

x_offset : Offset

y_offset : Offset

rz : RZ

(b) Type C clone pair example.

Figure 7.6: Examples for clone pairs in the Structured Types and Enumerations scope for data
models.

As for the micro-clones at scope LevelAA, we have the following results:

• Type A Clones. We found 53 Type A clone clusters. The most interesting result proved to
be the Association task, found in a cluster of 9 items. The target of this association is an
entity Task which belongs to a core data model (a specific instance of a data model which
other models depend on). This pattern along with the fact that these associations were all
named the same is an indication of consistency and good design, as confirmed by the do-
main expert. This is an example of the fact that not all clones are harmful and in this case,

118 Model Analytics for Industrial MDE Ecosystems

the clones are an indication of good design; outliers (if any) can be investigated as an in-
dication of violation of the common practice. As for the duplication in Attributes, the idea
of refactoring by lifting these attributes up to a common superclass, was considered by the
domain expert with suspicion, due to the additional complexity of introducing inheritance.
Duplicate associations in some cases cannot even be eliminated at all, especially in entities
from different models.

• Type B-C Clones. We found 65 Type B clones clusters, consisting with very similar el-
ements with small differences in e.g. multiplicities. Clones of these types are not candi-
dates for elimination or refactoring however, as remarked by the domain expert. Similarly,
among the 81 Type C clone clusters with a higher percentage of differences, the domain
expert could not find any good candidate for refactoring. This might indicate that only
exact duplicate micro-clones should be considered as useful and actionable, and therefore
studied.

Overall Discussion We have provided separate discussions above for our results in different
scopes and clone types. A general remark is to be made about the NLP component of SAMOS.
In the current setting, due to the tokenization and stop-word removal, SAMOS considers model
elements with names element_m_1 and element_m_2 as identical; numbers and short tokens are
omitted. Moreover, the lemmatization and stemming steps lead SAMOS SAMOS to consider the
following as identical or highly similar names: changed, unchanged, changing. In the future we
might consider further fine-tuning (and partly disabling) several NLP components considering
the problem at hand, when looking for exact clones at the scope of LevelAA.

7.6.2 Clone Detection in ASOME Control Models
This section discusses the case studies performed on control models as well as the results of these
case studies.

7.6.2.1 Dataset and SAMOS Settings

The approach taken to detect clones within control models is different compared to the one
for data models. This is due to the importance of structure in these models. However, the
tree-based setting in SAMOS is still considerably expensive for large datasets. Oh the other
hand, a structure-agnostic unigram-based detection with SAMOS [22] would be too inaccurate.
Therefore, we follow an iterative approach (similar to Chapter 6). We first narrow down the
number of elements for comparison using a cheaper unigram-based analysis. On each cluster
found in this first step, we perform a more accurate clone detection separately, therefore reducing
the total complexity of the problem. In our previous work [27], we showed that this iterative
process leads to only minor drops in recall, but we leave it future work to assess its accuracy in
this work.

The data set of control models for this case study contained 691 models, 531 protocols and re-
alizations. A pre-processing step excluded 10 protocols and realizations because these protocols
and realizations were very large compared to the other models. Excluding these for the compari-
son was justified considering it was less likely to find similar models to these ones based on their
size. Moreover, these models would slow down the comparison significantly while constructing
the VSM. The following settings were chosen for the comparison of control models.

• Scope: Protocol level. On this level of comparison, one can compare models based on their
behavior, as defined using the state machines residing in these protocols or realizations.

7.6. Case Studies with ASML MDE Ecosystems 119

• Structure: For the first round of comparisons, the unigram setting was used to find clusters
of similar model elements. Fifty such clusters of models were found. The second round
of comparison involved inspecting some of the clusters found in the first round. For this
round, one-depth subtrees were extracted and compared.

• Name Setting: A no-name setting was used for the two rounds of comparison of control
models. This was done so we could find models that were structurally equivalent ignoring
names.

• Type Setting: A strict type setting was used for both rounds of comparisons for control
models. In a no-name comparison, to find structurally similar models, this setting allows
one to detect model elements with similar types and other attributes.

Figure 7.7: A dendrogram representation of cluster 1 with potential clones.

7.6.2.2 Results and Discussion

In this section we provide a detailed discussion and qualitative evaluation on some exemplary
control model clone clusters found by SAMOS. Based on the first round, which results in a
number of buckets with potential candidates for clones, we ran SAMOS with the more accurate
subtree setting for a second round of clustering. Figure 7.7 represents the hierarchical clustering
of elements contained in one bucket. Note that this hierarchical clustering of elements is used
for clarification and discussion purposes only; SAMOS employs a threshold-based automatic
cluster extraction technique. The dendrogram represents the Protocol-scope model fragments at
each leaf represented by a number, and the vertical axis along with the joints in the tree denote
the distance, i.e. dissimilarity, of the fragments.

The models inspected in this cluster were quite large. These contained a single state with
a variation in the number and type of transition states, representing an all-accepting state. A
combination of patterns found in the models is shown in Figure 7.9. The state X contains a
number of transition states. The patterns of the different types of transition states found in the
models are represented by TS1 through TS6.

120 Model Analytics for Industrial MDE Ecosystems

Figure 7.8: Example visualization of some transition states in cluster 1.

Figure 7.8 is an example of a visualization of a few of the transition states in the single
state models found in this cluster. The figure shows a single state Operational which defines
behavior using three transition states. A trigger for each transition state exists. The triggers
here are Update X, Notify and Evaluate. Depending on the trigger that has been received, the
corresponding transition state is executed. For example, the Update X trigger is followed by
the action of a State Variable Update where the variable x is updated. Following this, the value
“Updated" is sent as a reply. Once the reply is sent, the transition state specifies the same state
Operational as a target state.

A discussion of the different types of clones, based on the number of occurrences of each
type of transition state in the models, is given as follows:

• Type A Clones. The elements shown in Figure 7.7 that are represented at the same height
and are part of the same hierarchical cluster can be considered type A clones. Examples
of such clones are models 20, 14 and 17, and models 18, 12 and 15. An inspection of
a collection of models of this type showed that these models had a single state X with
multiple transition states. The behavior of the transition states is as shown in Figure 7.9.
An inspection of models 19, 16, 10 and 13 showed that they each had 18 occurrences of
the pattern TS1; 1 occurrence each of patterns TS2, TS3 and TS4; and 8 occurrences of
the pattern TS5. TS6 however, did not occur in these models.

• Type B Clones. We can use the dendrogram as guidance to identify elements that are not
exactly the same but could be considered similar to each other (up to 10% distance). Model
8, for instance, is similar to the cluster of models 19, 16, 10 and 13; that group is already
mentioned above as Type A clones. Model 8 in this case is highly similar to those in the
Type A cluster, but contains additionally 2 occurrences of TS5. This makes it a Type B
clone compared to rest of the models mentioned.

• Type C Clones. Again by inspecting the dendrogram, we can consider, for instance, models
27 and 24 as candidate Type C clones to validate. Figure 7.10 shows the number of times
each transition state pattern was found in the models; The number of occurrences are

7.6. Case Studies with ASML MDE Ecosystems 121

TS1 TS2 TS3 TS4 TS5 TS6

Trigger

Send Reply

TargetState
Specification

Trigger

Send Reply

Var Update

Trigger

Send Reply

Var Update

Var Update

Trigger

Guard

Terminate Send Reply

Var Update

Trigger

Guard

Trigger

Invoke
Notification

State X State X State X State X State X State X

TargetState
Specification

TargetState
Specification

TargetState
Specification

TargetState
Specification

Figure 7.9: Representation of combined behavior of cluster 1 models.

slightly different for four out of six transition state patterns. Therefore, we manually label
these as Type C clones as well.

Figure 7.10: Number of occurrences of transition states in models 24 and 27.

We further examined another example cluster to validate the results of SAMOS. Figure 7.11
shows the resulting dendrogram for Cluster 2. The three types of clones in this cluster are dis-
cussed as follows. Note that all the models in this cluster share a common pattern (with minor
differences as will be discussed below), as shown in Figure 7.12.

• Type A Clones. All the elements in this cluster excluding models 3 and 4 can be considered
type A clones. The models were all protocols, defining state machines with this structure.
The action of sending a reply is associated with a control interface defined in the model.
In each of these models, it was observed that the value of the reply sent to the control
interfaces was void.

• Type B Clones. The models excluding model 3 and model 4 could be considered similar
to model 4, while not exactly the same. Upon investigating these models, it was noted that
the difference between the other models and model 4 is in the action Send Reply. While
the other models sent an empty reply to the control interface, model 4 replied to the control

122 Model Analytics for Industrial MDE Ecosystems

interface with a value. Since this is a small percentage of change between these models,
model 4 and the models excluding model 3 can be considered type B clones.

• Type C Clones. Model 3 can be considered significantly different from the models in this
cluster, excluding model 4. The differences between these models is that model 3 was a
realization while the other models were protocols. In addition to this, model 3 also sent a
value back to the control interface in the Send Reply action, like model 4.

Figure 7.11: A dendrogram representation of cluster 2 with potential clones.

State A TS1 Trigger Send Reply
TargetState
Specification

Figure 7.12: Representation of behavior of cluster 2 models.

Overall Discussion The example clusters discussed above represent the types of clusters de-
tected after performing a comparison on the extracted one depth trees representing control models
on the 50 unigram-based clusters. Some clusters that were investigated, however, only contained
type A clones because all the models found were similar to the other models in that cluster.

While eliminating clones was straightforward for cases in data models, this is not as easy for
control models. The presence of duplicates in terms of a sequence of actions might be inevitable
if that is the intended behavior of the models. This presents the case for the idea that not all
clones can be considered harmful, and some are in fact, intended. However, many occurrences
of some transition state patterns have been found in the models. The transition state pattern TS1
as seen in the example cluster 1 (Figure 7.9) was found 18 times each in two inspected models.
For such transition states, maybe the language could allow for an easier representation of such a
pattern to make it easier for a user to implement this sequence of actions.
According to the domain expert: “Detecting such patterns of control behavior definitely can be
used to investigate whether the user could benefit from a more comfortable syntax. Then an
evaluation is needed that needs to take into account:

1. Whether the new syntax requires more time to learn by the user.

7.6. Case Studies with ASML MDE Ecosystems 123

2. Whether the simplification really simplifies a lot (see below).

For instance, in the example above, even for TS1, the user will need to specify the trigger
somehow. In case of a non-void reply, also the reply value will need to be specified. So, TS1
cannot be replaced by one simple keyword. It will always need 2 or three additional inputs from
the user. In this case, we will not likely simplify this pattern. However, the way of thinking to
inspect whether we can support the user with simplifying the language is interesting. It will
always be a trade off between introducing more language concepts vs. writing (slightly) bigger
models."

Another suggestion for control models is to investigate the unigram clusters to find the dif-
ferent types of patterns found within the control models. Following this, checking what models
do not adhere to these patterns might reveal outliers to investigate, to find unexpected behavior.
According to a domain expert:

“I see the line of reasoning and it brings me to the idea of applying machine learning to the
collection of models and let the learning algorithm classify the models. Then, investigating the
outliers indeed might give some information about models that are erroneous. However, these
outliers could also be models describing one single aspect of the system, which would justify the
single instance of a pattern. However, I would expect that the erroneous models would also have
been identified by other, less costly, means such as verification, validation, review, etc."

7.6.3 Overview on Multiple ASML MDE Ecosystems
As introduced in Section 7.3, ASML has a very diverse conglomerate of MDE ecosystems, de-
veloped and maintained by different groups and involving different domains in the company’s
overall operation. While the architects and managers might have a good idea of (parts of) the
enterprise-level big picture, we would like to (semi-automatically) investigate the relation among
the different ecosystems with respect to the domains.

Objectives Given the multitude of languages which belong to the various ecosystems, we
would like to perform a concept analysis via hierarchical clustering based on the terms used
in the metamodels which represent the abstract syntaxes of those languages. Note that we will
use the terms metamodel and language interchangeably through our case studies. We have two
main sub-objectives in this case study. First we would like to get a good overall picture of the
enterprise ecosystem and its compartmentalization into meaningful domains and sub-domains.
It is worthwhile to investigate, e.g., whether different ecosystems occupy distinct or intersecting
conceptual spaces. Furthermore, it can be interesting to see what close-proximity metamodel
pairs or clusters across different ecosystems imply, and whether this information leads to qual-
ity improvement opportunities in the ecosystems, such as metamodel refactoring and reuse of
language fragments.

Approach To address the objectives above, we process the 86 metamodels belonging to three
ecosystems. Using SAMOS, we extract the element names from the metamodels, using the nor-
malization steps including tokenization and lemmatization. We then compute the vector space
model over the words, using a tf-idf (with normalized log idf as in [22]) setting also using ad-
vanced NLP features such as WordNet checks for semantic relatedness. We then apply hierar-
chical clustering with average linkage over the cosine distances in the vector space.

Results and Discussion We present our result in the dendrogram depicted in Figure 7.13. Each
leaf in the dendrogram corresponds to a metamodel, and all the metamodels are color coded with

124 Model Analytics for Industrial MDE Ecosystems

respect to their ecosystems. The colored leaves are also projected into the horizontal bar as
a complementary visualization. The joints of the leaves and branches can be traced in the y
axis, which denotes the distance (dissimilarity) of the (groups of) metamodels. For instance,
metamodel pairs in the lower parts of the dendrogram (such as ds_resource and resource) are
very similar. By discussing with the language engineers and domain experts for each ecosystem
(three in total, all senior lead engineers for the ecosystems), we gathered a list of remarks that
address the objectives above. Next we present a representative summary of those findings, along
with key sub-objectives of this case study.

Figure 7.13: Dendrogram depicting the result of clustering the 86 metamodels. Colors denote
the ecosystems, while each leaf correspond to a single metamodel in the color-coded ecosystem.

Some remarks involving the general overview, domains and subdomains, proximities across
ecosystems would include the following:

• The ecosystems roughly occupy distinct conceptual spaces. As can be followed from the
horizontal bar at the bottom, ASOME models are mostly on the right hand side, while
wafer handler (less consistently) is in the middle regions.

• There are however small intersections (i.e. impurities in the colored bar, or different colors
in the subtrees) among the ecosystems. These are not always surprising or bad because
different ecosystems might reuse languages and potentially share sub-domains. However
our automated analysis allows having a full overview, in contrast to partial insights of the
individual experts.

• Within ecosystems, the domain experts can already detect sub-domains, such as platform,
deployment, timing and scheduling for CARM2G, and data for ASOME.

We would conclude the following points regarding highly similar metamodels within and
across ecosystems:

7.6. Case Studies with ASML MDE Ecosystems 125

• Except two metamodels within CARM2G which are highly similar (height<0.2, i.e. dec-
oratorMappings and pattern.decorator) — one of which happens to be very small and in-
significant, so discarded by the domain experts —, no metamodels within a single ecosys-
tem are too similar. This indicates a healthy design, where each language deals with a
distinct conceptual subspace. There are still somewhat similar (height< 0.4) pairs, which
might lead to a consideration of a within-ecosystem refactoring. Examples for such pairs
would include sgdeployanchor, wrkanchor from CARM2G.

• Across the ecosystems, there is a pattern of similar (height<0.4) pairs for CARM2G and
wafer handler, specifically for resources, schedule and graph metamodels. This is appar-
ently due to the fact that wafer handler borrowed these metamodels from CARM2G in
early development, while making custom changes as required in time. Our visualization
correctly reveals this in a straightforward manner.

• Along the same lines, somewhat similar couples of metamodels across ASOME vs. the
other ecosystems exist, though not as significant with the ones above. Examples are
aliassm vs. metamodel which partly contain state machine languages, and expression
vs. pswb which partly contain expression languages.

In summary, according to the feedback we received from the domain experts, such an auto-
mated and visual overview of the MDE ecosystems used within a company indeed reveals useful
information. This can be used to aid the governance, usage and maintenance of the ecosystems.
However, some additional information such as dependencies across languages, the correspond-
ing model instantiations and their relations, usage, etc. could be potentially utilized to further
augment our study. Furthermore, we currently cannot detect subtle relations among similar lan-
guages which use different terminology. The experts exemplified it by various graph description
languages, some of which use the terms node, edge; while others use task, dependency. This
can potentially be mitigated by using a domain-specific thesaurus, in contrast to just relying on
general-purpose WordNet for synonyms.

7.6.4 Cross-DSL Clone Detection Across Ecosystems
The concept analysis performed above only deals with the element names, and not the other in-
formation in the metamodels such as types, attributes and the structure. It also treats metamodels
as a whole. In this case study, we would like to perform a more precise and fine-grained analysis
on the metamodel fragments (i.e. sub-parts), in order to reveal similar fragments across, as well
as within, the different ecosystems and languages.

Objectives As metamodels across the different ecosystems can have duplicate or highly similar
fragments (due to various reasons, e.g. clone-and-own approaches in development or language
limitations [27]), we would like to perform clone detection in a more accurate manner, including
all the information in the metamodels (not only names). We would like to inspect the clones,
their nature (why they occur) and their distribution across the ecosystems. As in the model clone
detection case studies, we are also interested to identify potential candidates among these clones
which can be used for improving the MDE ecosystems, e.g. in terms of elimination or refactoring.

Approach We considered the 86 metamodels representing three ecosystems in this study. Us-
ing SAMOS, we extracted the 1-depth subtrees with full set of model element information from
the metamodels, with the EClass scope. Note that we ignored EClasses with no content and
supertypes (i.e. zero number of contained elements), assuming they would make less significant

126 Model Analytics for Industrial MDE Ecosystems

cases for refactoring. We then computed the vector space model over the subtrees, using the tree-
hung setting [27]. Finally, we applied the clone detection procedure with reachability clustering
over the masked Bray-Curtis distances in the vector space.

Results and Discussion Using SAMOS, we found 9 Type A, 13 exclusively Type B (i.e. dis-
carding Type A clusters) and 55 exclusively Type C clone clusters. Table 7.1 gives some of the
interesting clusters, which we will discuss next.

id cluster t s eco
1 dca$LiteralMapping imp$LiteralMapping A 3 A
2 criticalw2w$BlockName cycliccuts$BlockName A 2 C
3 ds_resource$ResourceModel resources$ResourceModel A 1 CW
4 pgwb$PG_LBoundary pgwb$PG_UBoundary A 1 C
5 physicalPlatform${CoHost,Host} A 1 C
...
6 xes$Attribute{Boolean,Date,Float,. . . }Type B 9 W
7 dca$DDTargetIdentifier imp$DDTargetIdentifier B 5 A
8 ds_schedule$Sequence schedule$Sequence B 5 CW
9 VpOverview$NXT19{50Ai,60Bi,70Ci,. . . }Type B 3 C

10 machine${AxisPositionMapEntry,AxisPositionsMapEntry} B 3 W
11 {dca,imp,basics}$NamedElement B 2 AC
12 ds_resource${WorkerResourceSet,IOWorkerResourceSet} B 2 C
...
13 imp$EntityRealizationRecipe imp$EntityRecipe C 13 A
14 data$Entity datarealization$EntityRealization C 8.5 A
15 pgsg${HierarchicalBlockGroup,ServoGroupAbstract} C 6.5 C
16 vpbinding$Binding vpbinding$Clause C 5.5 C
17 timing$PertDistribution timing$TriangularDistribution C 4.5 W
18 setting${Location,Motion,Physical,...}SettingsMapEntry C 4.2 W
19 Validity$ConstrainingNode Validity$ValidatableNode C 4 C
20 action$IfAction $action$SwitchAction C 3.5 A
21 {connections,DSDIxPLATFORM,DSxTR,. . . }$Connection C 3.4 C
22 expression$UnaryExpression pgwb$PG_UnaryExpression C 3 AC
23 connections$ConnectionList logicalPltfm$ConnectionBundle C 3 C
24 pgmaxsgdef$Pgma{BlockAlias,BlockGroup,Block,. . . }Ref C 3 C
...

Table 7.1: Some of the EClass-scope clones in the metamodels (reported using the convention
metamodelName$EClassName). t denotes the clone type (A, B or C), s the average size of the
clones in a cluster (with respect to the total number of attributes, operations, etc. for each clone;
counting the EClass itself as well) and eco the ecosystem the cluster involves: A = ASOME, C
= CARM2G, W = wafer handler.

Here is a discussion of Type A clones and opportunities for eliminating duplication:

• There are not too many Type A clones overall and they are quite small (size<3). This
indicates little redundancy in general in terms of exact duplication.

• Clusters 1 and 2 show two examples of small clones across different languages, which can
be easily refactored and reused.

7.6. Case Studies with ASML MDE Ecosystems 127

• Cluster 3 shows an exact clone across ecosystems for the resource language; which we
discovered in the previous study to be an evolution/modification from CARM2G to wafer
handler.

• Due to our NLP settings (notably ignoring stopwords and typo detection compensating
for minor changes), SAMOS finds clone clusters such as 4 and 5 as identical. While they
are sigificantly similar and some of these might indicate room for refactoring, the domain
experts generally found them to be uninteresting from a maintenance perspective.

As for Type B/C clones and potential refactoring opportunities, we make the following points:

• There is a significant number of Type B/C clones. This indicates that there might be good
opportunities to improve the ecosystems.

• Cluster 6 with sizeable (of average size 9) clones shows a clone pattern that we encoun-
tered a few more times in this study. According to the domain experts, xes is a generated
metamodel from xml schemas. There is hence an opportunity to either refactor the xml
schema, or the generation process in such a way that the commonality, for instance, is
abstracted to a superclass.

• Cluster 7, as well as clusters 13 and 14 show a cloning pattern which happens a few times
in the ASOME ecosystem: design vs. realization/implementation. This is a case where
clones are intended: this pattern is devised to allow the extension of existing language
elements for the sake of (a) backwards-compatibility, and (b) clear (conceptual) separation
of concerns, i.e. abstract design vs. client-specific implementations.

• Cluster 8 (and some more clusters omitted in the table for conciseness) shows modified
fragments of the metamodels adopted from CARM2G into wafer handler.

• Cluster 9 indicates near-duplicate entities for different machine types at ASML. These
could be easily refactored, for example, into enumerations, which solves the cloning prob-
lem.

• Cluster 10 is an interesting case: the only difference between these metamodels is the
multiplicity of an EReference. Domain experts remark that this is an intended clone for
improving the performance while processing the models in real time in ASML machines.

• Cluster 11 shows small sized clones with a single attribute name, differing only in cardi-
nality — considered as a very minor issue, which does not urge for a refactoring. Cluster
12 similarly indicates small clones, which the experts commented they could refactor, for
instance, using generics.

• Clusters 15 and 16 show medium-sized clones with common EAttributes and EOperations
defined; so the common parts can be abstracted into superclasses. However for the latter,
the domain experts remarked that actually there is a superclass which is overridden in sub-
classes. Due to the limitations of EMF (needing to duplicate the EOperation and pointing
to the overridden implementation in EAnnotations), cloning here is supposedly inevitable.

• For the rest of the clusters, the experts indicated a varying degree of usefulness (in terms of
refactoring), from low-medium (e.g. in cluster 23 - cardinality difference in small EClasses
and in cluster 20 - similar control structures which could be refactored into an abstract
superclass) and high (e.g. cluster 17 - one statistical distribution being the ontological
superclass of the other smoothed distribution).

128 Model Analytics for Industrial MDE Ecosystems

Table 7.1 presents the clone occurrences in a flat list. However, we would like to explicitly
investigate and visualize the distribution of the clones across languages and ecosystems. To ad-
dress that, we have constructed the heat map shown in Figure 7.14. It is evident from the figure
that there are only a few clones across ecosystems. Notable ones include the resource and sched-
ule languages in CARM2G and wafer handler, parts of expression languages across ASOME and
CARM2G and some small basic constructs across all three ecosystems (as discussed above in
individual clone clusters). Darker yellow and red parts (i.e. high number of clones) are generally
on the diagonal, meaning clones within languages themselves. We can see the reason for these
in Table 7.1 e.g. in clusters 9 and 18 with multiple clone pairs. The fact that most clones are
within ecosystems is positive, as refactoring across ecosystems might involve multiple develop-
ers or teams, projects, and even companies (in the case of outsourcing); hence make it much
more difficult and costly to realize.

ac
tio

n

al
go

rit
hm

al
ia

s

al
ia

ss
m

co
m

m
on

co
m

po
si

te

da
ta

da
ta

ad
ap

te
r

da
ta

ca
st

in
g

da
ta

co
re

da
ta

re
al

iz
at

io
n

dc
a

dd
s

dd
sp

se
ud

o

dd
sr

ea
liz

at
io

n

dt
od

df

ex
pr

es
si

on

ex
te

ns
io

n

fe
at

ur
eM

od
el

fo
re

ig
n

im
p

in
pu

tfi
lte

r

sy
st

em ty
pe

ap
pM

ap

ba
si

cs

co
nf

ig
ur

at
io

n

co
nn

ec
tio

ns

cr
iti

ca
lw

2w

cy
cl

ic
cu

ts

de
co

ra
to

rM
ap

pi
ng

s

D
ia

gr
am

ds
_g

ra
ph

ds
_r

es
ou

rc
e

ds
_s

ch
ed

ul
e

D
S

D
Ix

A
P

P

D
S

D
Ix

M
A

P

D
S

D
Ix

P
LA

T
F

O
R

M

D
S

xE
A

P

D
S

xT
P

D
S

xT
R dv

ex
ec

ut
io

nT
im

es

io
tim

in
g

lo
gi

ca
lP

la
tfo

rm

Lo
gV

ie
w

er

M
ea

su
re

m
en

ts

M
od

el
S

ta
ck

pa
tte

rn
.d

ec
or

at
or

pg
ap

p

pg
m

ax
sg

de
f

pg
sg

pg
w

b

ph
ys

ic
al

P
la

tfo
rm

pl
at

fo
rm

M
ap

ra
ck

co
nf

ig

re
le

as
eT

im
es

sg
de

pl
oy

sg
de

pl
oy

an
ch

or

S
im

ul
in

k

th
si

m
m

od
e

T
im

in
g

V
al

id
ity

vp
bi

nd
in

g

V
pO

ve
rv

ie
w

vp
V

al
ua

tio
n

w
rk

an
ch

or

w
rk

de
pl

oy

zn
W

2W cs
v

di
re

ct
ed

_g
ra

ph

gr
ap

h

re
so

ur
ce

s

sc
he

du
le

tim
ed

oc
to

r

ac
tiv

ity

di
sp

at
ch

in
g

ed
g

m
ac

hi
ne

m
et

am
od

el

pe
tr

i_
ne

t

se
tti

ng

tim
in

g

tp
_t

ra
ce

w
h_

gr
ap

h

xe
s

action

algorithm

alias

aliassm

common

composite

data

dataadapter

datacasting

datacore

datarealization

dca

dds

ddspseudo

ddsrealization

dtoddf

expression

extension

featureModel

foreign

imp

inputfilter

system

type

appMap

basics

configuration

connections

criticalw2w

cycliccuts

decoratorMappings

Diagram

ds_graph

ds_resource

ds_schedule

DSDIxAPP

DSDIxMAP

DSDIxPLATFORM

DSxEAP

DSxTP

DSxTR

dv

executionTimes

iotiming

logicalPlatform

LogViewer

Measurements

ModelStack

pattern.decorator

pgapp

pgmaxsgdef

pgsg

pgwb

physicalPlatform

platformMap

rackconfig

releaseTimes

sgdeploy

sgdeployanchor

Simulink

thsimmode

Timing

Validity

vpbinding

VpOverview

vpValuation

wrkanchor

wrkdeploy

znW2W

csv

directed_graph

graph

resources

schedule

timedoctor

activity

dispatching

edg

machine

metamodel

petri_net

setting

timing

tp_trace

wh_graph

xes

Figure 7.14: Heatmap of the clones across languages and ecosystems. Dashes denote the bound-
aries of the ecosystems (from left/bottom to right/top: ASOME, CARM2G, wafer handler). Light
to dark yellow and red denotes an increasing number of clones.

7.6. Case Studies with ASML MDE Ecosystems 129

With the case study in this section, we are able to give both an overview of clones across
the ecosystems, and insights into the individual clone clusters and pairs. Overall, the results
indicate many opportunities to improve the quality of the enterprise-level MDE ecosystem and its
maintenance. Our discussions with the domain experts shed light on specific cases where clones
might not only be due to sub-optimal design, but can also be intended (e.g. for performance
concerns) or inevitable (e.g. due to language limitations). Our analysis and insights can be used
to aid the language design and engineering lifecycle, given the growing number of ecosystems
and evolving languages at ASML and other similar companies with large scale MDE practice.

7.6.5 CARM2G Architectural Analysis
The CARM2G ecosystem consists of several architectural layers, as depicted in Figure 7.15.
We can regard it as having 5 layers: application, platform, mapping, analysis and deployment,
with distinct color coding (given by the domain experts) in the figure. As in the previous case
study, the relation between the different layers and sub-languages of CARM2G captured in the
41 metamodels is implicit in the domain expertise of the CARM2G developers. we would like
to analyze those metamodels and try to automatically infer useful information with respect to the
architecture of the ecosystem.

Mapping

Application

Platform
Logical
Platform

Platform
Mapping

Physical
Platform

ApplicationServo
Groups

Control
Blocks

Transducer
Groups

Basics

AppMap

Application

Mapping

Platform

DAG

Resource Schedule

Application2
Analysis

App2
Interface

Schedule2
Mapping

Modeling Stack

Deployment Stack

Analysis Stack

Map2
Interface

Platform2
Interface

Language inclusionTransformation I/O Language ClustertransformationDSL DSL Stack

ESITrace

Figure 7.15: CARM2G ecosystem and its architectural layers.

Objectives By topic modelling the terms (i.e. element names) in the metamodels, we aim to
reconstruct architectural partitions (arguably layers) and their relation with the individual meta-
models. We formulate the following sub-objectives, n being the number of latent topics in the
dataset:

1. (unknown n) Identifying how many "topics" there are in the dataset, guessing an optimal
n,

130 Model Analytics for Industrial MDE Ecosystems

2. (n = 5) Assessing the correspondence of the automatically mined topics (i.e. partitions) to
the architectural layers given by the domain experts,

3. (n 6= 5) Identifying additional or redundant partitions or layers by picking different n’s.

Approach As in the first case study, using SAMOS we extracted the element names from the
CARM2G metamodels, using the normalization steps including tokenization and lemmatization.
After removing regular stopwords in English (such as "of", "and") and domain-specific stop-
words as determined by the domain experts (such as "name", "type"), We computed a simplistic
vector space model over the words in the form of a basic frequency matrix (i.e. no idf). We then
performed several experiments with Latent Dirichlet Allocation (LDA, see Section 7.8.3 for de-
tails) based on Gibbs sampling [165], to infer the topic-term distributions in the dataset. We did
not change the default parameters of LDA (due the exploratory nature of this case study, and the
complexity of the parameter setting [129]); we only kept the number of iterations at a relatively
high value of 10000 to increase the likelihood of convergence to a global maximum.

Results and Discussion Before going into the results involving topic modelling and the indi-
vidual sub-objectives, we would like to give a word cloud for the whole ecosystem, as depicted in
Figure 7.16. According to the domain experts, this is a very nice summary of CARM2G concepts
and can be used, for instance, to describe and document the ecosystem, teach it to new language
engineers and modellers.

Figure 7.16: Word cloud representation for the whole CARM2G ecosystem.

To address the first sub-objective, we ran LDA with n from 2 to 50, and analyzed the graphs of
several metrics in the ldatuning package4 to investigate near-optimal (minimized or maximized
depending on the metric) values for n, as shown in Figure 7.17. We can deduce various near-
optimal —while aiming for a small n as much as possible— picks for n: n = 4,6 (Deveaux2014),

4https://cran.r-project.org/package=ldatuning

https://cran.r-project.org/package=ldatuning

7.6. Case Studies with ASML MDE Ecosystems 131

20 (Griffith2004), 6,10,16 (CaoJuan2009) and 15,17 (Arun2010). Two of these metrics have
optimum values close to n = 5, as given to us by the domain experts, while other metrics predict
a larger number of topics. We proceed with n = 5, but are going to discuss the implications of
picking a lower and higher n later in this section.

After establishing that the number of topics given by the two domain experts is (nearly)
agreed on by some of the metrics above, we proceeded with topic modelling with n = 5. For
the second sub-objective, we are interested in prominent terms per topic, terms by metamodel
and the distribution of the topics by metamodel. To evaluate the results, we used a subset of 15
metamodels chosen by the domain experts as key representatives of the CARM2G architectural
layers (see Figure 7.15). In Figure 7.18, we present the results of topic modelling specifically
for those key metamodels. The interpretation of the figure is as follows. Each row (i.e. y axis)
represents a topic (labelled with the top 5 most prominent terms). Each column (i.e. x axis)
represents a key metamodel as can also be seen in the legend. The bars at each cell of the matrix
represent how likely the metamodels are represented by that topic. Each document is associated
with a number of topics, hence the probability values in each column for a specific metamodel
add up to 1.

Note that we color coded the metamodels with respect to the architectural layers: green
being the application layer, orange mapping, blue platform, purple interface and red analysis. By
inspecting the figure along these color codes, for n = 5 we can deduce the following:

Topic-1: The first (top-most) topic roughly represents the application layer; mostly represented in
four of the application layer metamodels. Nevertheless basics and dv metamodels, be-
ing rather generic and common metamodels, have a mixture of the topics. pg_wb, which
is originally considered in the CARM2G application layer, does not reside in this layer
however, and will be discussed below (referred to as Lwb). Note that DSDIxAPP from the
interface layer mostly covers this topic as well.

Topic-2: The second topic can mostly be associated with the platform layer (most related term:board).
It is found in the platform layer metamodels (except platformMap, to be discussed below)
and the DSDIxPlatform from the interface layer.

Topic-3: pg_wb stands out in the third topic with almost no association with any other topic. This is
due to it being a very large and fundamental language describing general purpose language
building blocks such as statements and expressions.

Topic-4: The fourth topic does not associate with any of the key metamodels, but potentially (a mix-
ture of) some other niche set of languages in the dataset (e.g. variation point languages).
We will discuss this further in our experiments with increasing n, referring to it as outlier
layer: Lo.

Topic-5: The final topic has a mixture of mapping and analysis layers. appMap naturally is mostly
associated with this topic and platformMap, DSDIxMAP across the other layers as well; all
being related. Furthermore, the three metamodels from the analysis layer also consistently
reside here.

According to our detailed inspection, and the feedback from the domain experts, we argue
that (1) the most prominent terms per topic give only a limited idea about the topics and layers,
while (2) the partitioning into topics across languages make a lot of sense. This indeed gives
an orthogonal view on the architecture, in terms of the conceptual space. There is still room
to change the parameter n for the number of topics, to see whether we can find redundant par-
titions, and additional (niche) groups of languages besides the standard architectural layers —

132 Model Analytics for Industrial MDE Ecosystems

Figure 7.17: Different metric plots for assessing the number of topics.

7.6. Case Studies with ASML MDE Ecosystems 133

Figure 7.18: Topic distributions per metamodel colored w.r.t. CARM2G architectural layers:
green=application, orange=mapping, blue=platform, purple=interface, red=analysis.

134 Model Analytics for Industrial MDE Ecosystems

addressing the final sub-objective. Following the different near-optimal estimates as discussed
above, we remark on the cases with n = 4,6,10,16 in text without giving the figures (due to
space limitations).

n=4 We obtain a very similar partitioning as for n = 5: roughly the application, platform, map-
ping+analysis layers. The topic which did not correspond to any key metamodel disap-
pears. This might indicate a more optimal partitioning than n = 5 if aiming for a high-level
layering.

n=6 With larger n, we still get the clear-cut partitions corresponding to platform and map-
ping+analysis layers. Lo and Lwb also remain as is. We see however, that instead of a
single application layer, we have two (with divided probabilities for the related metamod-
els): one with terms block,group and other with connect,port. These might partly relate to
different aspects of an application description.

n=10 We start getting further decompositions: mapping+analysis layer into resource with plat-
formMap, ds_resource (terms: worker, map, resource); and scheduling with appMap,
ds_graph, ds_schedule (terms: task, sequence, schedule). Some of the other partitions,
however, start getting a lot fuzzier; platform metamodels for instance are distributed
across different topics, logicalPlatform is now strongly associated with the application
(sub-)topic. However, inspecting all the metamodels involved, we discover further top-
ics, sometimes even represented by a single metamodel: system variants (vpOverview),
variant binding with a visitor pattern (vpbinding), deployment and anchor (configuration,
sgdeploy, wrkdeploy, wrkanchor) intermixed with simulation (thsimmode).

n=16 The topics are further diluted, which makes it very difficult to argue about meaningful
partitioning compared to the previous run with n = 10.

This exploratory study reveals that we can indeed automatically infer valuable architectural
information to a certain extent, as a complementary conceptual viewpoint to architectural layer-
ing. It can reveal conceptual partitions in an MDE ecosystem for checking architectural confor-
mance; reveal similar groups and sub-groups of languages; see the cross-cutting concerns across
the languages, etc. The accuracy and reliability of topic modelling on the MDE ecosystems,
however, is yet to be quantitatively evaluated and further improved. See Sections 7.7 and 7.9 for
threats to validity and potential room for improvements in the future.

7.7 Discussion
We have performed a variety of analyses for the MDE ecosystems at ASML. While there have
been discussions for each case study separately, in this section we would like to present an overall
discussion for our approach.

For the clone detection studies on models, we have extended SAMOS with partly custom-
tailored, domain-specific extraction and comparison methods, particular for the ASOME data and
control models. The development of these, with the domain experts in the loop, has indicated
that the different nature of the (domain-specific) modelling languages, and what the domain
experts consider as relevant and irrelevant pieces of information in the models, are crucial for an
accurate, intuitive, and actionable clone detection exercise on those models. These additionally
lead to implications on the setting and type of clone detection desired. For example, for the
control models, the domain experts were interested in structural clones, while not so much for
the data models.

7.7. Discussion 135

As for the accuracy for the model and metamodel clone detection, we have achieved con-
siderable success in general. However, especially for the structural clone detection for control
models, which has been a new extension to SAMOS as introduced in this work, our approach
posesses certain shortcomings. We will discuss these as threats to validity later in this section.

For both models and metamodel clones, we have participated in discussions with the domain
experts on the nature of the clones, and actionability for improving the MDE ecosystems. Our
discussions reveal that some of those clones are indeed harmful and desirable to eliminate or
refactor; while others might be inevitable due to language restrictions or even intended, e.g. for
certain design goals, performance criteria, or backwards compatibility. Some of those harmful
clones are indeed confirmed by the domain experts for potential candidates for improvement,
e.g. in the form of refactoring or abstraction. On the other hands, other such harmful clones
have been identified as difficult or undesirable to refactor. Reasons for these would include
deliberate design decisions (e.g. keeping singleton repositories, as reported in Section 7.6.1) or
organizational limitations (e.g. language clones across ecosystems maintained by different teams,
as reported in Section 7.6.4).

Interestingly, the results of the clone detection in control models might be used not to refac-
tor the models themselves, but to introduce new language concepts, e.g. in the form of syntactic
sugar or abstractions. This could increase the modellers’ consistency and efficiency. Neverthe-
less, there can be certain limitations, such as the additional learning time for the new syntax, and
additional modelling effort in the case of abstractions.

Furthermore, we have discovered another use of model clone detection thanks to our discus-
sions with the domain experts. When the cloning pattern is expected and desirable in a certain
set of models, we can investigate the occurrence of those clone fragments in all the expected
models. Outlier models, i.e. expected to have this pattern but not detected in the corresponding
clone clusters, might actually indicate inconsistent design. We believe this to be an interesting
additional use of SAMOS, and hope to investigate this angle of clone detection in our future
work.

Our studies on the system of ecosystems, i.e. the languages and their corresponding meta-
models, have been shown to be potentially useful for maintaining the growing and evolving sys-
tem of ecosystems at ASML. High-level conceptual overview of the enterprise-level ecosystem,
as well as finer-grained clone detection on the languages, can provide valuable sources of in-
formation in an automatic manner, to understand and monitor the ecosystems, while identifying
certain shortcomings of those ecosystems, for instance, in the form of duplication and cloning.
The architectural analysis we have performed on the CARM2G ecosystem, on the other hand,
can provide a complementary conceptual perspective; in terms of automatic architectural recon-
struction and conformance checking with respect to the intended layering. The limitations of the
architectural study, a newly explored type of analysis in SAMOS, will be elaborated in the next
section as threats to validity.

Threats to Validity Thanks to our extension in this work, SAMOS has been adapted for de-
tecting clones in ASOME data and control models. However, there are several threats to validity
for our current implementation. Data models have been compared in a structure-agnostic manner
(i.e. using unigrams) at a relatively small scope (i.e. structured types and levelAA; not e.g. the
whole model with a deeper containment hierarchy). For larger scopes we would need to use
more powerful settings of SAMOS, capturing structure as well (e.g. subtrees, as done for control
models).

On the other hand, clone detection for control models has been done on the Protocol scope
using a similar structure-agnostic setting of unigrams, followed by another comparison using
subtrees. The use of one depth subtrees allowed us to reduce the computational time for compar-

136 Model Analytics for Industrial MDE Ecosystems

A

B

A

B C

X

Figure 7.19: Counter example for blind renaming, where SAMOS (erroneously) cannot distin-
guish between the two cases.

A

B

A

B

X1

X2

X1

X2

Figure 7.20: Counter example where consistent renaming would be inaccurate.

ison while still including structural information from the models (when compared, for example,
to comparing full trees per model fragment). Note that this is still an approximation, and could
lead to certain inaccuracies, in which case maybe fully-fledged (and very costly) graph compari-
son techniques should be employed instead. Obviously there is a trade-off between the accuracy
and the running time (hence the scalability) of the selected techniques.

Another issue is with the requirement for selectively employing ordered comparison and
unordered comparison for certain parts of the models. In the current implementation of SAMOS,
we have it one way or another for the whole process. ASOME Control models prove to be a
mixture of both, where order matters for the list of sequential actions and does not matter for the
list of states in a state machine. A selective combination of both would be needed for a more
accurate representation and comparison in the case of control models.

The comparison of elements for control models using the No Name name setting is similar to
the blind renaming approach taken in [53]. In such an approach, the identifiers of all the model
elements are blindly renamed to the same name, effectively ignoring the relevance of names for
the comparison. This approach allows us to find model elements that have similar structure but
different values for elements such as guards or triggers or target state specification. While this
improves the recall of the results found, the behavior of the two states as shown in Figure 7.19
cannot be distinguished. The two cases on the left side of the figure are treated the same, as
depicted on the right side. While the structure is mainly captured by the extracted trees, some
structural value is also attached to the names of elements, especially target state specifications.
While consistent renaming of model elements might solve this problem, this approach was not
taken because the order in which these states are renamed could result in inaccurate comparison
results; see Figure 7.20 for an example.

As another important point, we can check what can be borrowed from other research areas
(partly or fully) applicable for comparing behavioural models, such as business process mod-

7.8. Related Work 137

els [69] and finite automata [62]. These could help overcome the inaccuracies our technique
currently have with respect to behavioural models.

As for the language analyses presented in this work, several threats to validity exist as well.
These would include, for instance, inaccurate NLP for language elements due to the lack of
domain-specific dictionaries, cryptic element identifiers, abbreviations and so on. The topic mod-
elling analysis part, however, is treated in a more exploratory manner in this work, in contrast to
the domain analysis and clone detection parts which have been validated considerably in previ-
ous work. The accuracy and reliability of topic modelling used for the architectural analysis is
yet to be studied in detail, quantitatively evaluated and further improved as well. As emphasized
in the relevant section, the technique used for topic modelling, namely LDA, is very sensitive
to the parameter settings, especially the number of topics. Hierarchical variants of LDA could
be investigated to partly overcome this limitation. More specialized topic modelling approaches
for shorter bodies of text (e.g. in social media data) could also be experimented with, as the lan-
guages in our case also have significantly less content (in the form of metamodel identifiers) than
regular text documents.

7.8 Related Work
There are various bodies of literature related to the model analytics case studies in this work. In
this section we present those along with brief discussions relevant for this work.

7.8.1 Model Pattern Detection
Model pattern detection is a prominent research area, related to the tasks we are interested in for
our research. However, the word pattern has been mostly considered synonymous to design pat-
terns or anti- patterns in the literature [161]. One approach uses pattern detection as a means to
comprehend the existing design of a system to further improve this design [180]. This approach
involves a representation of the system at hand, as well as of the design pattern to be detected,
in terms of graphs. Ultimately, the similarity between the two graphs is computed using a graph
similarity algorithm. The paper claims to find (design) patterns within the system even when
the pattern has been slightly modified. This approach, however, involves building a collection or
catalogue of expected patterns as graphs. Since there were no expectations (by ASML) of the
kind of patterns that needed to be detected in our case, we focused on finding e.g. model clones
in an unsupervised manner as discussed in the section below.

7.8.2 Model Clone Detection
While code clones have been previously explored in abundance and hence can be associated with
some standard definition and classifications [143, 103], relatively less work has been done in the
field of model clone detection, resulting in the lack of such clear definitions. Model clones have
been defined as “unexpected overlaps and duplicates in models” [138]. Störrle discusses the
notion of model clones in depth, as a pair of model fragments with a high degree of similarity
between each other [167]. Model fragments are further defined as model elements closed under
the containment relationship (the presence of this relationship between elements implies that the
child in the relationship cannot exist independently of its parent).

Quite a few approaches advocate representing and analysing models with respect to their un-
derlying graphs, for clone detection purposes. One such approach involves representing Simulink

138 Model Analytics for Industrial MDE Ecosystems

models in the form of a labeled model graph [64]. In such graph-based methods, the task of find-
ing clones in the models boils down to finding similar sub-graphs within the constructed model
graph. To do this, all maximal clone pairs are found within the graph (with a specification as
to what constitutes a clone pair in their case). The approach of finding these maximal clone
pairs is NP-complete and to reduce the running time, [64] the approach is modified to construct a
similarity function for two nodes as a measure of their structural similarity. Finally, the detected
clone pairs are aggregated using a clustering algorithm to find the resulting clone classes in the
model. The disadvantage of this approach however, is that approximate clones are not captured.

The work presented in [84] compares block based models by assigning weights to relevant
attributes for comparison such as names, functions of the block and interfaces. A similarity mea-
sure is defined to assign a value for the comparison and this value is stored for every pair of
blocks being compared. This approach is taken to find variability in models in the automotive
domain. Variations were introduced to a base model to add or remove functionality. By inspect-
ing the similarity values, one could find models similar to a selected base model. SAMOS also
uses the idea of computing similarity using a vector space model to represent the occurrence of
features in each model.

Stö provides a contradictory notion however, that for some UML models, the graph structure
may not necessarily be the most important aspect of the models to consider for clone detec-
tion [167]. Section 4.2 discusses that for some UML models, most of the information worth
considering resides in the nodes as opposed to the links between these nodes. Therefore, the
approach taken in this paper defines the similarity of model fragments as the similarity of the
nodes in such model fragments instead of the similarity of the graph structure of these model
fragments. To construct this measure of similarity, the approach involves using heuristics based
on the names of the elements being compared. Such an approach is justified when considering
that “most elements that matter to modelers are named” [167]. This approach works for mod-
els where structure does not represent much in terms of model behavior. However, when the
behavior of the models is represented in terms of structure, this approach cannot be used.

7.8.3 Topic Modelling
Topic modelling, an approach in Information Retrieval and Machine Learning domains, involves
a set of statistical techniques in text mining to automatically discover prominent concepts or
topics in natural language text document collections [165, 44]. Topics are typically conceived as
collections or distributions of frequently co-occurring words in the corpus, which are assumed
to be often semantically related. Topic models are often employed as an effective means to work
on unstructured and unlabelled data such as natural language text, to infer some latent structure
in the form of topic distributions (over the documents) and term distributions (over the topics).

Topic Modelling Applications for Software Engineering Besides in text mining tasks, topic
models are used in other disciplines, such as bioinformatics, computer vision and recently in
software engineering as well. Various surveys in the software engineering literature investigate
the application of topic modelling to software engineering in general (SE) [129, 173], and into
the sub-domains mining software repositories (MSR) [54] and software architecture (SA) [42].
The overall goal is to exploit automated techniques to better understand the underlying systems
and processes, aid in reconstructing and improving certain parts of them, and eventually increase
their quality in a cost effective manner. A large volume of literature can be found on topic
modelling for SE and MSR tasks, such as concept, aspect and feature mining or location from
source code, clustering similar SE artifacts, recovering traceability links among heterogeneous
sets of SE artifacts/entities (e.g. source code, documentation, requirements), bug localization and

7.8. Related Work 139

prediction, test case prioritization, evolution analysis and finally clone detection [129, 54]. The
common denominator of all those approaches is the fact that there exists textual content in all
those artifacts. Based on a similar observation of textual content in SE artifacts, and the fact that
they might also contain architectural information, another set of approaches investigate the use
of topic modelling in architecture-related tasks. The exhaustive list of activities to be supported
by topic modelling in the mapping study by Bi et al. [42] includes architectural understanding,
(automatic) recovery and documentation on the one hand, and architectural analysis, evaluation,
and maintenance on the other hand. The authors in general emphasize the value of those activi-
ties, such as architectural understanding for distribution of responsibilities in a software system,
architectural analysis for evaluating conformance in the case of a layered architecture, and so on.

All the topic modelling approaches reported in the three surveys above typically operate
on a set of traditional software artifacts, notably source code and documentation. In a recent
work, Perez et al. [131] observe this as well, and propose applying feature location directly on
the models in model-based product families. They however use it in a very particular setting:
for assessing the fitness of model fragments in a query reformulation problem using genetic
algorithms. To the best of our knowledge, there are no approaches in the literature which apply
topic modelling for SA-related tasks in model-driven engineering and domain-specific language
ecosystems, in which we are interested in this work.

Latent Dirichlet Allocation One of the most popular topic modelling techniques, also in soft-
ware engineering tasks [129, 42, 54], is Latent Dirichlet Allocation (LDA) [45]. LDA is a par-
ticular probabilistic (Bayesian) variant of topic modelling, which assumes Dirichlet prior dis-
tributions on the topics (per document, θ) and words (per topic, φ) and fits a generative model
on the word occurrences in the corpus. Similar to the vector space model setting of SAMOS,
a collection of documents is transformed into a frequency matrix. Instead of the distance and
measurement (as done for clustering in SAMOS), the matrix is fed to LDA, which identifies the
latent variables (topics) hidden in the data. The probability distributions θ and φ effectively de-
scribe the entire corpus. LDA relies on a set of hyper-parameters to be set in advance, notably n
being the number of topics, α and β being the parameters of the prior Dirichlet distributions, and
additional ones depending on the particular inference technique used.

While the details of the statistical inference process (e.g. computing the posterior distribu-
tions using collapsed Gibbs sampling [165] as typically used in SE-related tasks) is beyond the
scope of this work, from an end-user perspective the output of LDA consists of two matrices:
(given the fixed number of topics) one for the probability of each document belonging to various
topics (i.e. multiple topics allowed, resulting in a kind of soft clustering), and the probability of
each term belonging to various topics. The term probabilities can be manually inspected, for in-
stance, to deduce what "concept" the topic actually corresponds to, while topic probabilities can
be used to get the most prominent topics for the documents and identify document similarities.

The regular application of LDA as described above, requires that the number of topics is
given in advance (unlike e.g. some other non-parametric variants such as Hierarchical Dirichlet
Process [176]). One can either rely on domain expertise with respect to the corpus such that n is
already known, or try to estimate the number using various heuristics. The latter involves running
LDA with a range of candidate values, and trying to optimize certain metrics: maximize the log
likelihood of the inferred model [79] or minimizing the topic density [50]. There are advanced
techniques aiding or automatizing this estimation process; some notable examples within the
software engineering literature include Panichella et al. [129] based on genetic algorithms, and
Grant et al. [78] based on heuristics using vector similarity and source code location.

LDA has a proven track record of successful application in mining problems for natural lan-
guage text documents. Yet one should be cautious while applying it, especially for other types

140 Model Analytics for Industrial MDE Ecosystems

of artifacts. First of all, there is the non-trivial task of determining the parameters of LDA in
advance (such as number of topics, as discussed above); an incorrect choice of parameters [54]
and even incorrect order of input [6] can lead to non-optimal results. The authors in [129] further
emphasize the difference between natural language text vs. source code, the latter of which has
been recently studied and found to have a higher level of regularity than text in English [83],
and claim that topic modelling for source code should be treated differently in order to get bet-
ter results. For other artifacts such as models, metamodels, domain-specific languages, etc. no
thorough empirical studies have been conducted regarding their nature yet.

7.9 Conclusion and Future Work
In this chapter, we have presented our approach for model analytics in an industrial context,
with various analyses on ASML’s MDE ecosystems. We have used and extended our model an-
alytics framework, SAMOS, to operate on ASML’s languages and models. We elaborated the
domain-specific extension of SAMOS, specifically for ASML’s ASOME data and control mod-
els to enable clone detection on those models. We provided extensive case studies, where we
performed clone detection on ASML’s models, and additionally language-level analyses rang-
ing from cross-DSL conceptual analysis and clone detection to architectural analysis for the
CARM2G ecosystem. We present our findings along with valuable feedback from the domain
experts on the nature of cloning in the ecosystems, and opportunities such as refactoring to sup-
port the maintenance and quality of the ever-growing and evolving ecosystems.

Besides the wide range of analyses presented in this work, there is still a lot of room for
improvements and future work. While SAMOS has many combination of settings and scopes
available for model clone detection, not all these combinations were chosen for the case studies
(considering the time constraints of our collaborative project with ASML). As future work we
could explore different aspects of comparison using the different available settings, such as type-
based and idf weighting. Furthermore, as indicated in threats to validity, advanced comparison
schemes (e.g. selective ordered vs. unordered comparison for different model parts) could be
integrated to improve the accuracy of our clone detection. Other directions would include the
detection of patterns, e.g. design patterns (as in [180]), or anti-patterns. As an example useful
application of this, one could create a pattern catalogue and find what models do not adhere
to these patterns (i.e. as a potential indication of unexpected behaviour in models). Finding
structural clones, especially in the control models, is another promising direction for future work.
Lastly, the language analyses could be improved to overcome the limitations as addressed in
the threats to validity, e.g. with more sophisticated NLP and more advanced, fine-tuned topic
modelling techniques. Considering the time dimension of the languages in development, it would
be also very interesting to investigate their evolution, in terms of concept drift [206] and cloning.

Chapter 8

Towards Distributed Model Analytics

The growing number of models and other related artifacts in model-driven engineering has re-
cently led to the emergence of approaches and tools for analyzing and managing them on a large
scale. Our framework SAMOS applies techniques inspired by information retrieval and data
mining to analyze large sets of models. As the data size and analysis complexity goes up, how-
ever, further scalability is needed. In this chapter we extend SAMOS to operate on Apache Spark,
a popular engine for distributed big data processing, by partitioning the data and parallelizing
the comparison and analysis phase. We present preliminary studies using a cluster infrastruc-
ture and report the results for two datasets: one with 250 Ecore metamodels where we detail the
performance gain with various settings, and a larger one of 7.3k metamodels with nearly one
million model elements for further demonstrating scalability.

8.1 Introduction
The use of models as a basis for software engineering—whether UML models used as a basis for
design and implementation, or metamodels and models in model-driven engineering (MDE)—
has been exponentially growing in recent years. This is witnessed by e.g. the dramatic growth of
models and related artifacts present both in open source such as the GitHub repository [101, 82]
and in industrial MDE ecosystems [26]. Analogously to earlier developments in source code
analytics and text mining where very high volumes of data have long emerged as a reality and a
challenge, this development necessitates similar approaches for analyzing models at larger scales.
At the same time, models inherently display more complex structure, in general being graph-
structured instead of the trees with (limited) cross-links typically encountered as representations
of source code and natural language. Models in turn demand efficient and scalable, even if
approximate, techniques for the analysis—versus comparing them one-to-one using exact but
expensive techniques (graph edit distance, similarity flooding [118], etc.). As a result, analytics
becomes more complex for the setting of models, both in terms of techniques needed, and of
computation effort required. Note that the requirements and potential added value for (big) data
analytics in the general sense (i.e. not for models) has for long been widely recognized by the
community [106, 205], and is not further elaborated in this chapter.

142 Towards Distributed Model Analytics

One way to improve the performance of model analytics, for complex analyses of large
datasets, is to look at distributed settings, versus running in a sequential setting on a single
machine. There recently have been a few efforts of exploiting distributed computing in the MDE
community, though in a different context: for model transformations [39, 49]. In this chapter,
we sketch how the existing model analytics framework SAMOS can be lifted from the latter
setting to a distributed setting using the Apache Spark framework for distributed computation.
In Section 8.2 we give an overview of the Apache Spark framework. Section 8.3 considers how
SAMOS can be modified and extended to operate in the distributed setting for potentially higher
performance, while Section 8.4 discusses initial results for two sets of Ecore metamodels from
a proof of concept, i.e. a version of SAMOS lifted to the Apache Spark framework, without any
specific optimizations: one dataset with 250 Ecore metamodels reporting the performance gain
with various settings, and a larger one of 7.3k metamodels with nearly one million model ele-
ments for further demonstrating our scalability. Section 8.5 concludes the chapter with several
indications for future work.

8.2 Background: Apache Spark
Apache Spark1 is an open-source distributed data processing engine [202], also used for Big
Data Analytics. It offers a stack of technologies for both fundamental components such as clus-
ter management and fault-tolerant distributed data storage (in the form of Resilient Distributed
Datasets — RDDs), and for advanced ones such as streaming and distributed machine learning.
Spark further provides rich APIs for various programming languages including Java, Python and
Scala. It improves on the previously popular MapReduce [63] computational paradigm (e.g.
on Apache Hadoop2) with a more efficient distributed data and memory management system,
leading to a higher comparative performance and scalability [202].

Spark typically operates with a master driver node, which coordinates several worker nodes
(see Figure 8.1). Each worker node is allocated parallel tasks to process the specific parts of the
distributed data (e.g. on the distributed file system). A central cache in each worker node can
further improve efficiency by for instance maintaining some data in memory for faster access in
multiple cores and for repeated/iterative tasks.

8.3 Distributed VSM Computation
As outlined in Chapters 2 and 3, SAMOS relies on the calculation of a vector space by comparing
the extracted features of each model against the set of all features (i.e. columns of the vector
space). We can identify several components of this approach:

• extraction of desired features from the models, mapping each model to the feature set Pi,

• calculation of the set of all unique features (F , dimensions of the VSM),

• given F , comparing each feature in Pi against each feature in F to calculate a row or vector
in the VSM.

The vector represents the model in the high-dimensional vector space, to be used for distance
calculation and other statistical analyses. The bottleneck of this approach is the quadratic number

1https://spark.apache.org/
2http://hadoop.apache.org/

https://spark.apache.org/
http://hadoop.apache.org/

8.3. Distributed VSM Computation 143

Figure 8.1: Overview of Spark architecture3.

of feature comparisons (in contrast with the previous steps which have linear complexity), which
makes this the target for our parallelization effort to increase scalability. Note that the efficiency
and scalability of the distance calculation for the resulting large sparse matrix is a relatively lesser
problem and left as future work.

On the other hand, thinking in the context of the Spark architecture (cf. Figure 8.1), we can
map our approach to the distributed setting as follows:

• data: feature sets (Pi’s) residing as distributed data (i.e. RDDs of model-feature pairs),

• cache: maximal feature set (F) precomputed and distributed to each worker node to be
held in memory cache,

• tasks: feature comparison as the atomic unit of parallel execution.

Feature-to-feature comparison is the atomic unit for parallelization in this setting. However
for practical reasons, notably to have an easier Reduce step of collecting back and merging the
data, we aim for a coarser granularity. We perform a single pass for each feature, comparing it
with the maximal set. Each parallel task in return consists of (1) pair-wise comparing a feature
p in Pi versus F and computing an intermediate vector, and (2) computing the final VSM vec-
tor for the corresponding model, e.g. via summing the intermediate ones (frequency setting of
SAMOS [19]). To exemplify, a model consisting of m features is processed m-way and eventually
integrated to calculate a single row of the VSM corresponding to that model.

Note that a great deal of the necessary functionality for distributed operation is provided by
Spark: partitioning and distribution (shuffling) of the data, synchronisation of the tasks and the
workflow, data collection and I/O, and so on. The necessary modifications for SAMOS mostly
were wrapping the related building blocks (e.g. parsing and extraction, feature comparison) into
parallel Spark RDD operations with minimal glue code around them.

144 Towards Distributed Model Analytics

8.4 Preliminary Results and Discussion
We performed some preliminary experiments for our technique. First of all, we used SURFSara 4,
the computational infrastructure for ICT research in the Netherlands. SURFSara provides a
Hadoop cluster with Spark support, which consists of 170 data/compute nodes with 1370 CPU-
cores for parallel processing and a distributed file system with a capacity of 2.3 PB.

Next, as for SAMOS, we chose bigrams of attributed nodes (for the clone detection sce-
nario [18], see Chapter 6), as one of the more computationally intensive settings (e.g. compared
with extracting simple word features for domain analysis [22]). As for the dataset, we mined
GitHub for (1) a limited set of 250 Ecore5 metamodels, and (2) a large set of 7312 Ecore meta-
models (after both the exact duplicates and the files smaller than 2KB are removed). Table 8.1
shows some details on the sizes of the two datasets. A further SAMOS framework setting to men-
tion is that we have turned off expensive NLP checks for semantic relatedness and synonymy for
this preliminary experiment. For a table representation of the configuration, please refer to the
bigram setting as depicted Table 6.2 in Chapter 6; the only difference being WordNet switched
off.

Normally, we have a simplistic all or none strategy for NLP-caching; for small datasets we
iterate over all the model elements to compute and keep in memory the word-to-word similarity
scores (i.e. full caching). For the distributed execution we have disabled this feature as we cannot
fit the relevant data for very large model sets (the goal is to process tens of thousands of models)
into the memory, so we completely disabled NLP-caching. As future work, we plan to investigate
various more sophisticated approaches to caching to circumvent this issue.

dataset #models file size #model elem.
1 250 4.8MB ∼50k
2 7312 133.6MB ∼1 million

Table 8.1: Description of the datasets: number of metamodels, total file size and number of
model elements.

Performance for Dataset 1. On dataset 1, we ran the single-core local version of SAMOS,
with and without NLP-caching, and the distributed version with 1, 10, 50, 100 and 250 and 500
executors without NLP-caching. Figure 8.2 depicts the results. For the single-core case, local
execution has the best performance, especially with NLP-caching enabled. We have included the
single-core distributed case to roughly assess the overhead: 17.1 hours (distributed) versus 13.8
hours (local). It is evident that as the number of executors increase, the performance increases as
well, though with diminishing returns.

Performance for Dataset 2. As a bigger challenge for our approach, we made an attempt
to run dataset 2 with the same (expensive) settings as above. We could argue going for more
approximate, hence cheaper, settings (unigrams instead of bigrams, ignoring instead of including
attributes, etc.) for such a large dataset but we performed this experiment in order to load-test
and assess the limits of our technique. We successfully calculated the VSM using a total of

3http://spideropsnet.com/site1/blog/2014/12/09/igniting-the-spark/
4https://www.surf.nl/en/about-surf/subsidiaries/surfsara/
5https://www.eclipse.org/modeling/emf/

http://spideropsnet.com/site1/blog/2014/12/09/igniting-the-spark/
https://www.surf.nl/en/about-surf/subsidiaries/surfsara/
https://www.eclipse.org/modeling/emf/

8.4. Preliminary Results and Discussion 145

0 100 200 300 400 500

0
5

10
15

Number of executors

R
un

 ti
m

e
(h

ou
rs

)

●

●

●

●

●

●

●

Run time vs. # executors

●

●

Mode of Execution

local non−cached
local cached
distributed non−cached

Figure 8.2: Performance for dataset 1.

∼1500 executors (215 worker nodes with 7 cores and 8GB memory each) processing the 5000-
way partitioned data on SURFSara and obtained the resulting VSM (5000-part on the distributed
file system) in approximately 17.9 hours.

Discussion. The results indicate that the distributed execution mode has the potential to in-
crease the applicability of SAMOS for large datasets. We can consider this as a first but impor-
tant step towards the in-depth analysis of thousands of models for application scenarios such as
repository mining (notably our ∼7k Ecore metamodel set from GitHub and the ∼93k Lindhol-
men UML dataset [82]), large-scale clone detection and model evolution studies.

Given the preliminary nature of this work, there is certainly a lot of room for further opti-
mization. These would involve not only optimizations with respect to the inner mechanisms of
Apache Spark, but also improvements within SAMOS, which is itself a research prototype. Nev-
ertheless, to our knowledge we do not know of another comparable model analytics approach or
tool in the literature which is capable of such scalability.

Threats to Validity. In this work, we only deal with VSM calculation (which we assume to be
the major bottleneck) and leave tackling the rest of the workflow—such as distance calculation
and statistical analyses—as future work. We plan to proceed with parallel or scalable techniques
for this as well. Another threat to validity is that our approach at this point has not been tried on
larger scales, so it should be investigated how it performs with e.g. hundred thousands of models
towards Big Data.

146 Towards Distributed Model Analytics

8.5 Conclusion
In this chapter we present a novel approach for distributed model analytics. We have extended
the SAMOS framework to operate on Apache Spark infrastructure and exploit its powerful dis-
tributed data storage and processing facilities. Using the SURFSara cluster, we have performed
preliminary experiments using two sets of Ecore metamodels. On the smaller one, we have re-
ported in detail the performance of the different execution modes and number of executors. For
the larger one, we have tested the scalability of our approach in the case of nearly a million model
elements.

There is a large volume of potential future work. The immediate next step would involve
extending the SAMOS workflow with scalable, distributed techniques for distance calculation
and statistical analyses. More advanced statistical analyses, including predictive and prescriptive
ones, are among the notable targets for future work. Noting the benefits of caching for the NLP
part, we also would like to investigate various caching strategies, applicable for large amounts of
data. Moreover, we believe there is a lot of room for optimization for this approach, which can be
considered in parallel to the other proposed steps. A more in-depth discussion of the distributed
vs. local execution in terms of performance gain and optimal number of executors would also be
beneficial.

Chapter 9

Conclusions

This chapter concludes this thesis by discussing the main contributions, obstacles for model
analytics and management research and directions for the future of our framework and research.
For each of the research questions stated in Chapter 1, we outline the contribution with respect
to the Chapters 2 to 8. Additional details are available in the individual chapters that cover the
research questions.

9.1 Contributions
The starting point of this thesis was our observation that expanding MDE adoption leads to more
numerous and diverse artifacts, such as models, which in turn calls for the need for automatically
analyzing and managing them in a scalable manner. We elaborated this problem in Chapter 1,
where we provide quantitative evidence from open repositories and industry. Based on that
observation, we formulated the main research question covered in this thesis:

RQ: How can we analyze, compare and visualize large sets of models in a generic
and scalable way?

As a central architecture and customizable workflow, we introduced the SAMOS model analytics
framework. The main research question is divided into three more specific research questions,
and each of these questions was addressed in this thesis. The first of these questions deals with
efficient model fragmentation to enable large scale analysis of models.

RQ1: How (i.e. with which features) can we represent models and their relevant
information for scalable analyses?

To address this question, we presented an approach inspired by the domain of information re-
trieval. In Chapter 2, we outlined the basic idea. We extracted simplistic features from models
in the form of type-name pairs, which correspond to the relevant vertex information in the un-
derlying graphs of the models. Realizing the need for more advanced and detailed fragments
(i.e. more accurate representations of the models), we further introduced the following features:

148 Conclusions

n-grams (Chapter 3) and subtrees (Chapter 6) which capture structural information, attributed
nodes (Chapter 6) to also capture additional vertex information such as modifiers and sets (Chap-
ter 5) to represent unordered collections. We further used a very simplistic (therefore cheap)
preprocessed name-only representation (e.g. in Chapter 6), as a means of highly efficient way of
dealing with tens of thousands of models in certain scenarios. This rich set of representations
effectively allows SAMOS to fragment various model types as needed.

RQ2: What techniques can we use to compare models (represented as fragments) in
order to discover e.g. similarities, clusters and outliers?

This question maps to the feature comparison and clustering steps of the SAMOS workflow.
We devised a VSM-based approach for model analytics, where we compute the VSM via sev-
eral feature comparison and weighting settings. For comparing features, we applied a range of
techniques: natural language processing (including tokenization, stop word filtering and check-
ing semantic relatedness) for textual content (Chapter 2), maximum similar subsequence for
n-grams (Chapter 3), tree edit distance and modified Hungarian algorithm for trees (Chapter 6)
and again modified Hungarian algorithm for unordered sets (Chapter 5). We further improved
and fine-tuned the VSM by idf-based and type-based weighting schemes (Chapter 2).

Using the computed VSM, we used various distance measures: cosine (Chapter 2) for angular
similarity and masked Bray-Curtis (Chapter 6) for normalized similarity. Depending on the
nature of the problem at hand, we applied different analyses, such as hierarchical clustering
for visualization (Chapter 2), density-based clustering for clone detection (Chapter 6) and topic
modelling (Chapter 7) for architectural recovery.

Moreover, we further experimented with a distributed data processing back-end for SAMOS
(Chapter 8), as a means to improve its scalability further, to help with e.g. larger datasets or more
expensive analyses.

As for the third research question, a wide range of analysis techniques integrated in SAMOS
allowed us to explore different application areas for our approach:

RQ3: How can we exploit the information we acquire through these large scale
model analyses, in order to improve the state-of-the-art MDE practices for model
analytics and management?

Throughout the thesis, we used our approach for a variety of application areas around the
topic of large scale model analytics and management. In Chapter 2, we probed into how the
problems of model searching, domain analysis, model repository exploration and management
(for Ecore metamodels in particular) could benefit from our technique. In a variability min-
ing scenario (Chapter 4), we applied SAMOS as a preprocessing step to improve the quality
of the inferred variability models from state chart variants. We further applied SAMOS in a
repository management setting for feature models in Chapter 5 in terms of domain analysis and
clone detection. We advanced and polished the clone detection capabilities of SAMOS, and
comparatively evaluated it against state-of-the-art model clone detectors in Chapter 6. There we
also investigated the application of SAMOS for detecting clones in DSLs (i.e. with respect to
their metamodels) in GitHub. Finally we performed a wide range of studies in industrial MDE
ecosystems: clone detection in industrial data and control models, cross-ecosystem and cross-
DSL comparison and clone detection, and architectural reconstruction and analysis of an MDE
ecosystem (Chapter 7). Overall we demonstrate how model analytics can be beneficial in the
context of model management, in terms of e.g. model searching, repository management, model
maintenance and reuse.

9.2. Obstacles for Model Analytics and Management 149

As can be followed from the explicit set of configurations reported in each chapter, we con-
tinuously experimented and improved the components and settings of SAMOS. This reflects our
thinking process and growing insight into our technique and its application to a variety of sce-
narios.

9.2 Obstacles for Model Analytics and Management
Throughout our research we attacked some of the problems in the MDE domain using cross-
disciplinary techniques. We had a considerable amount of success in doing so, as evaluated in
a range of settings. The workflow inspired by IR eventually can indeed be applied to models
provided that the necessary extensions are integrated. The clustering (i.e. unsupervised machine
learning) mindset of finding groups of similar models and outliers has also led to a number of
successful application areas around model management. Nevertheless, we would like to explic-
itly address some of the limitations we encountered.

• Analyzing Graph Data. The techniques which we adopted and experimented with are
mostly from the text mining and information retrieval domains as well as data science for
simple types of data. This is, for instance, the reason why n-grams are generally acceptable
for approximating the structure in natural language text, yet were found to be inadequate in
our clone detection studies (see Chapter 5 for the discussion with the n-ary relation in the
form of group cardinalities in feature models, Chapter 6 for the inaccuracies in general). It
is an obstacle and an open question for model analytics in general, how to exploit the rel-
evant techniques, including natively graph-based approaches (e.g. graph kernels) or other
advanced techniques (e.g. locality-sensitive hashing on graph data). We however would
require them to be (1) accurate yet reasonably scalable, and (2) applicable to the problems
at hand in the MDE domain.

• Processing Textual Content in Models. We used a range of NLP techniques in our ap-
proach, to process the textual content in models (e.g. in model element names). We found
it very difficult to do this accurately, e.g. compared to the traditional NLP tasks. First of
all, we might not have big enough data (i.e. models) in the MDE domain to do an unsuper-
vised approach for synonym detection, e.g. via word embeddings. Another limitation is
that the textual content in the models is typically short, partially cryptic, domain-specific
and lack proper sentential context. To exemplify one of the pains, we had very little suc-
cess in our exploratory efforts in trying to do a proper word-sense disambiguation using
the surrounding model elements in the underlying graph as context (using variations of the
Lesk algorithm [107]).

• Lack of Labeled Data for Model Analytics. We mostly had to use unsupervised tech-
niques supported with manual validation in our work. This is mostly due to the fact that
there is a lack of structured and labelled datasets in our domain. This has a stark contrast
with e.g. text mining communities which have been building and studying many standard
datasets for decades. In the future, we hope to contribute to the MDE research community
in this respect as well; via student projects or crowd-sourced annotations (e.g. Amazon
Mechanical Turk1). Once we have a labelled training set, it is quite possible to plug in
more advanced machine learning algorithms and explore applications of prescriptive/pre-
dictive statistical techniques and supervised approaches.

1https://www.mturk.com/

https://www.mturk.com/

150 Conclusions

• Lack of Awareness in the MDE Community. In our numerous discussions with MDE re-
searchers and practitioners, we observed that an important part of the community is not
aware of the rapidly increasing scale of MDE artifacts along with increasingly widespread
MDE practices. This has been recently addressed by van den Brand [183] in an industrial
context as well. To give some anecdotal evidence, we have so far received some interest-
ing feedback ranging from "There aren’t so many models in the whole world combined,
why are you making up an artificial problem?" and "If there are multiple DSLs and meta-
models, this means the language engineers in the company are doing their job wrong." to
"Machine learning on models doesn’t work, believe me I’ve tried everything!" and "Model
clone detection research is dead!". Note that this perception was much stronger a few years
ago; the awareness seems to slowly be increasing recently, partly thanks to the seminal
work by Hebig et al. with the Lindholmen UML dataset [82], our dissemination efforts via
workshops, and emerging literature on various related topics (see Chapter 1 for examples).
However, we believe it will take some more time until model analytics and management
(as in our vision) will settle as an established sub-domain within MDE.

9.3 Future Work
In this thesis we presented a generic model analytics and management approach, applied in a
variety of scenarios. However, we believe there is much more potential for our technique. A
short summary of those, i.e. future directions for our work would include the following:

• Extending SAMOS for different model types, notably UML models, Simulink models and
business process models, each with its own difficulties and domain-specific concerns to
tackle;

• Extending SAMOS for different type of analyses, notably for detecting structural clones,
semantic clones, and patterns in the general sense;

• Enabling model analytics and management for heterogeneous sets of MDE artifacts, in-
cluding e.g. different UML notations (concrete syntaxes as well as UML 1.x vs. 2.x), dif-
ferent domain model notations (e.g. UML vs. Ecore), and models from multiple disciplines
(software, hardware, engineering, business processes);

• Incorporating new features such as metrics, constraints and subgraphs for extraction and
comparison;

• Improving the NLP part with advanced features such as part-of-speech tagging, word sense
disambiguation, domain specific dictionaries and even cross-language capabilities;

• Exploring different problems such as model classification, model querying and searching
and MDE (co-)evolution;

• Experimenting with potentially more powerful settings for SAMOS, such as advanced
weighting schemes, flexible scoping, distance measures and clustering algorithms, and
eventually other fundamental approaches beyond VSM such as scalable graph-based ap-
proaches;

• Experimenting with other statistical techniques beyond descriptive ones; predictive and
prescriptive ones, supervised machine learning and data mining techniques; and

• Maturing and fully integrating the distributed processing back-end to maximize the scala-
bility.

9.4. The Future of SAMOS as a Mature Open Framework 151

9.4 The Future of SAMOS as a Mature Open Framework
Orthogonal to these directions, we have put some initial effort in transforming SAMOS from a
research prototype into a mature, open, extensible and usable framework for model analytics.
We believe this to be an important aspect for the longevity of SAMOS as a state-of-the-art tool.

We opted for integrating SAMOS into the open source Konstanz Information Miner (KN-
IME) data mining framework [41]. Building on the Eclipse ecosystem2 (which fits perfectly
with the existing Eclipse-based MDE toolset such as EMF), KNIME has a flexible plug-in archi-
tecture and allows easy visual assembly and interactive execution of a data pipeline. It already
comes with a plethora of modules implementing techniques from e.g. data mining and machine
learning. Moreover, thanks to its modular environment, one can easily integrate new algorithms,
tools, data manipulation and visualization capabilities.

Figure 9.1: Describing SAMOS workflows visually in KNIME.

Figure 9.1 depicts a screenshot of the version of SAMOS running on KNIME. Here is a
summary of the major components:

• On the lower left side, there is the node repository containing all the components already
present in KNIME, and additionally the SAMOS-specific extensions: an extraction cate-
gory and a VSM category, containing the EcoreExtractor, EcoreExtractorSimplified and
VSMBuilder nodes.

• Using the nodes, we can design a visual model analytics workflow by drag-and-dropping
them into the center part, i.e. the workflow window. The nodes have well-defined input
and output data ports. A short description of their functionality along with their ports can
be found in the right-most Node Description window (upon selecting the desired node).

• Workflows can be easily stored, modified and reused. The left-top window, i.e. KNIME
Explorer shows the various user-defined workflows in the workspace.

2http://www.eclipse.com/

http://www.eclipse.com/

152 Conclusions

• KNIME allows real-time monitoring of the workflow progress. Each node in the work-
flow is shown with red, yellow or green lights (and flashing lights) to indicate the status
e.g. whether they are still running, or have successfully completed. The lower right side
shows detailed information about the status of each node.

• We get, for free, a simple and convenient GUI for setting the custom parameters for each
node. This is an improvement over the originally file-based configuration of SAMOS, and
is actually a feature that was explicitly asked from by industrial partners to increase our
tool’s usability. Figure 9.2 shows for instance the parameters of the scope, unit, structure
and strategy for feature extraction, along with preprocessing flags.

Figure 9.2: A simple GUI for setting up the parameters of SAMOS feature extraction node.

The workflow in Figure 9.1 contains, among others, file I/O components which are used
directly from the existing set of KNIME nodes. We believe such opportunities for reusing ex-
isting functionality would save us the effort for developing standard functionality from scratch
in SAMOS in the future. We have also experimented with, and plan to use in the near future
e.g. visual descriptive statistics nodes of KNIME to aid our empirical analyses on MDE artifacts,
and machine learning components to build intelligent predictive models for various MDE tasks.

Bibliography

[1] S. L. Abebe and P. Tonella. Natural language parsing of program element names for
concept extraction. In Int. Conf. on Program Comprehension, pages 156–159. IEEE, 2010.

[2] M. Acher, P. Heymans, P. Collet, C. Quinton, P. Lahire, and P. Merle. Feature model
differences. In Int. Conf. on Advanced Information Systems Engineering, pages 629–645.
Springer, 2012.

[3] M. Acher, B. Baudry, P. Heymans, A. Cleve, and J.-L. Hainaut. Support for reverse en-
gineering and maintaining feature models. In Int. Workshop on Variability modelling of
Software-intensive Systems, page 20. ACM, 2013.

[4] M. Acher, B. Combemale, P. Collet, O. Barais, P. Lahire, and R. B. France. Compos-
ing your compositions of variability models. In Int. Conf. on Model Driven Engineering
Languages and Systems, pages 352–369. Springer, 2013.

[5] S. Adyanthaya. Robust multiprocessor scheduling of industrial-scale mechatronic control
systems. PhD thesis, Eindhoven: Technische Universiteit Eindhoven, 2016.

[6] A. Agrawal, W. Fu, and T. Menzies. What is wrong with topic modeling? and how to
fix it using search-based software engineering. Information and Software Technology, 98:
74–88, 2018.

[7] B. Al-Batran, B. Schätz, and B. Hummel. Semantic Clone Detection for Model-Based De-
velopment of Embedded Systems. In Int. Conf. on Model Driven Engineering Languages
and Systems, volume 6981 of LNCS, pages 258–272. Springer, 2011. ISBN 978-3-642-
24484-1.

[8] M. Alalfi, E. Rapos, A. Stevenson, M. Stephan, T. Dean, and J. Cordy. Semi-automatic
Identification and Representation of Subsystem Variability in Simulink Models. In Int.
Conf. on Software Maintenance and Evolution, pages 486–490. IEEE, 2014.

[9] M. H. Alalfi, J. R. Cordy, T. R. Dean, M. Stephan, and A. Stevenson. Models are code too:
Near-miss clone detection for simulink models. In Int. Conf. on Software Maintenance,
pages 295–304. IEEE, 2012.

154 Bibliography

[10] M. H. Alalfi, J. R. Cordy, and T. R. Dean. Analysis and clustering of model clones: An
automotive industrial experience. In Int. Conf. on Software Maintenance, Reengineering
and Reverse Engineering, pages 375–378. IEEE, 2014.

[11] M. Alanen and I. Porres. Difference and Union of Models. In «UML» 2003 - The Unified
Modeling Language. Modeling Languages and Applications, volume 2863 of LNCS, pages
2–17. Springer, 2003. ISBN 978-3-540-20243-1.

[12] W. Alberts. ASML’s MDE Going Sirius. https://www.slideshare.net/Obeo_corp/
siriuscon2016-asmls-mde-going-sirius, 2016. Accessed: 2018-11-12.

[13] K. Altmanninger, M. Seidl, and M. Wimmer. A survey on model versioning approaches.
International Journal of Web Information Systems, 5(3):271–304, 2009.

[14] V. Alves, C. Schwanninger, L. Barbosa, A. Rashid, P. Sawyer, P. Rayson, C. Pohl, and
A. Rummler. An exploratory study of information retrieval techniques in domain analysis.
In Software Product Line Conference, 2008. SPLC’08. 12th International, pages 67–76.
IEEE, 2008.

[15] M. Antkiewicz, W. Ji, T. Berger, K. Czarnecki, T. Schmorleiz, R. Lämmel, S. Stănciulescu,
A. Wąsowski, and I. Schaefer. Flexible Product Line Engineering with a Virtual Platform.
In Companion Proc. of the 36th Int. Conf. on Software Engineering, pages 532–535. ACM,
2014. ISBN 978-1-4503-2768-8.

[16] E. P. Antony, M. H. Alalfi, and J. R. Cordy. An approach to clone detection in behavioural
models. In Working Conf. on Reverse Engineering, pages 472–476, Oct 2013.

[17] Ö. Babur. Statistical analysis of large sets of models. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering, ASE 2016,
pages 888–891, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-3845-5.

[18] Ö. Babur. Clone detection for Ecore metamodels using n-grams. In Proc. of the 6th Int.
Conf. on Model-Driven Engineering and Software Development, 2018, pages 411–419,
2018.

[19] Ö. Babur and L. Cleophas. Using n-grams for the automated clustering of structural mod-
els. In 43rd Int. Conf. on Current Trends in Theory and Practice of Computer Science,
pages 510–524, 2017.

[20] Ö. Babur, V. Smilauer, T. Verhoeff, and M. van den Brand. Multiphysics and multiscale
software frameworks: An annotated bibliography. Technical Report 15-01, Dept. of Math-
ematics and Computer Science, Technische Universiteit Eindhoven, Eindhoven, 2015.

[21] Ö. Babur, V. Smilauer, T. Verhoeff, and M. van den Brand. A survey of open source
multiphysics frameworks in engineering. Procedia Computer Science, 51:1088–1097,
2015.

[22] Ö. Babur, L. Cleophas, and M. van den Brand. Hierarchical clustering of metamodels for
comparative analysis and visualization. In Proc. of the 12th European Conf. on Modelling
Foundations and Applications, 2016, pages 2–18, 2016.

[23] Ö. Babur, L. Cleophas, T. Verhoeff, and M. van den Brand. Towards statistical comparison
and analysis of models. In Proceedings of the 4th Int. Conf. on Model-Driven Engineering
and Software Development, pages 361–367, 2016.

https://www.slideshare.net/Obeo_corp/siriuscon2016-asmls-mde-going-sirius
https://www.slideshare.net/Obeo_corp/siriuscon2016-asmls-mde-going-sirius

Bibliography 155

[24] Ö. Babur, L. Cleophas, and M. van den Brand. Model analytics for feature models: case
studies for S.P.L.O.T. repository. In Proc. of MODELS 2018 Workshops, co-located with
ACM/IEEE 21st Int. Conf. on Model Driven Engineering Languages and Systems (MOD-
ELS 2018), Copenhagen, Denmark, October, 14, 2018., pages 787–792, 2018.

[25] Ö. Babur, L. Cleophas, and M. van den Brand. Towards distributed model analytics with
Apache Spark. In Proc. of the 6th Int. Conf. on Model-Driven Engineering and Software
Development, 2018, pages 767–772, 2018.

[26] Ö. Babur, L. Cleophas, M. van den Brand, B. Tekinerdogan, and M. Aksit. Models, more
models, and then a lot more. In M. Seidl and S. Zschaler, editors, Software Technolo-
gies: Applications and Foundations, pages 129–135, Cham, 2018. Springer International
Publishing. ISBN 978-3-319-74730-9.

[27] Ö. Babur, L. Cleophas, and M. van den Brand. Metamodel clone detection with SAMOS.
Journal of Visual Languages and Computing (JVLC), accepted for publication.

[28] Ö. Babur, L. Cleophas, and M. van den Brand. Metamodel clone detection with SAMOS
(extended abstract). In The 17th edition of the BElgian-NEtherlands software eVOLution
symposium (BENEVOL), 2018, accepted for publication and presentation.

[29] Ö. Babur, A. Suresh, W. Alberts, L. Cleophas, R. Schiffelers, and M. van den Brand.
Model analytics for industrial MDE ecosystems. In B. Tekinerdogan, Ö. Babur,
L. Cleophas, M. van den Brand, and M. Aksit, editors, Model Management and Analytics
for Large Scale Systems. Elsevier, submitted as a book chapter.

[30] I. Baki and H. A. Sahraoui. Multi-step learning and adaptive search for learning complex
model transformations from examples. ACM Trans. Softw. Eng. Methodol., 25(3):20:1–
20:37, 2016. doi:10.1145/2904904. URL http://doi.acm.org/10.1145/2904904.

[31] A. Barriga, A. Rutle, and R. Heldal. Automatic model repair using reinforcement learn-
ing. In Proc. of MODELS 2018 Workshops, co-located with ACM/IEEE 21st Int. Conf.
on Model Driven Engineering Languages and Systems (MODELS 2018), Copenhagen,
Denmark, October, 14, 2018., pages 781–786, 2018.

[32] F. Basciani, J. Di Rocco, D. Di Ruscio, A. Di Salle, L. Iovino, and A. Pierantonio. MDE-
Forge: an extensible web-based modeling platform. In Proceedings of the 2nd Inter-
national Workshop on Model-Driven Engineering on and for the Cloud co-located with
the 17th International Conference on Model Driven Engineering Languages and Systems,
CloudMDE@MoDELS 2014, Valencia, Spain, September 30, 2014., pages 66–75, 2014.
URL http://ceur-ws.org/Vol-1242/paper10.pdf.

[33] F. Basciani, J. Di Rocco, D. Di Ruscio, L. Iovino, and A. Pierantonio. A tool for clus-
tering metamodel repositories. In Demonstrations and Posters at MODELS2015, Ottawa,
Canada, 2015.

[34] F. Basciani, J. Di Rocco, D. Di Ruscio, L. Iovino, and A. Pierantonio. Model repositories:
Will they become reality? In CloudMDE@ MoDELS, pages 37–42, 2015.

[35] F. Basciani, J. Di Rocco, D. Di Ruscio, L. Iovino, and A. Pierantonio. Automated cluster-
ing of metamodel repositories. In Int. Conf. on Advanced Information Systems Engineer-
ing, pages 342–358. Springer, 2016.

http://dx.doi.org/10.1145/2904904
http://doi.acm.org/10.1145/2904904
http://ceur-ws.org/Vol-1242/paper10.pdf

156 Bibliography

[36] G. Bécan, S. Ben Nasr, M. Acher, and B. Baudry. WebFML: synthesizing feature models
everywhere. In Proceedings of the 18th International Software Product Line Conference:
Companion Volume for Workshops, Demonstrations and Tools-Volume 2, pages 112–116.
ACM, 2014.

[37] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated analysis of feature models 20
years later: A literature review. Information Systems, 35(6):615–636, 2010.

[38] A. Benelallam, A. Gómez, G. Sunyé, M. Tisi, and D. Launay. Neo4EMF, a scalable
persistence layer for EMF models. In European Conference on Modelling Foundations
and Applications, pages 230–241. Springer, 2014.

[39] A. Benelallam, A. Gómez, M. Tisi, and J. Cabot. Distributed model-to-model transforma-
tion with ATL on MapReduce. In Proceedings of the 2015 ACM SIGPLAN International
Conference on Software Language Engineering, pages 37–48. ACM, 2015.

[40] L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common subsequence algo-
rithms. In String Processing and Information Retrieval, 2000. SPIRE 2000. Proceedings.
Seventh International Symposium on, pages 39–48. IEEE, 2000.

[41] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter, T. Meinl, P. Ohl, K. Thiel, and
B. Wiswedel. KNIME-the Konstanz information miner: version 2.0 and beyond. ACM
SIGKDD explorations Newsletter, 11(1):26–31, 2009.

[42] T. Bi, P. Liang, A. Tang, and C. Yang. A systematic mapping study on text analysis
techniques in software architecture. Journal of Systems and Software, 144:533–558, 2018.

[43] B. Bislimovska, A. Bozzon, M. Brambilla, and P. Fraternali. Textual and content-based
search in repositories of web application models. ACM Transactions on the Web (TWEB),
8(2):11, 2014.

[44] D. M. Blei and J. D. Lafferty. Topic models. In Text Mining, pages 101–124. Chapman
and Hall/CRC, 2009.

[45] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of machine
Learning research, 3(Jan):993–1022, 2003.

[46] M. Brambilla, J. Cabot, and M. Wimmer. Model-Driven Software Engineering in Practice.
Morgan & Claypool Publishers, 1st edition, 2012. ISBN 1608458822, 9781608458820.

[47] G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, and M. Sabetzadeh. A mani-
festo for model merging. In Proc. of the 2006 Int. Workshop on Global Integrated Model
Management, pages 5–12. ACM, 2006.

[48] J. Bürdek, T. Kehrer, M. Lochau, D. Reuling, U. Kelter, and A. Schürr. Reasoning about
product-line evolution using complex feature model differences. Automated Software En-
gineering, pages 1–47, 2015.

[49] L. Burgueño, M. Wimmer, and A. Vallecillo. Towards distributed model transformations
with LinTra. 2016.

[50] J. Cao, T. Xia, J. Li, Y. Zhang, and S. Tang. A density-based method for adaptive LDA
model selection. Neurocomputing, 72(7):1775 – 1781, 2009. Advances in Machine Learn-
ing and Computational Intelligence.

Bibliography 157

[51] C. Catal and B. Diri. A systematic review of software fault prediction studies. Expert
systems with applications, 36(4):7346–7354, 2009.

[52] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom. Change Detection in
Hierarchically Structured Information. In Proc. of the 1996 ACM SIGMOD Int. Conf. on
Management of Data, pages 493–504. ACM, 1996.

[53] J. Chen, T. R. Dean, and M. H. Alalfi. Clone detection in MATLAB stateflow models.
Software Quality Journal, 24(4):917–946, 2016.

[54] T.-H. Chen, S. W. Thomas, and A. E. Hassan. A survey on the use of topic models when
mining software repositories. Empirical Software Engineering, 21(5):1843–1919, 2016.

[55] R. Clarisó and J. Cabot. Applying graph kernels to model-driven engineering problems.
In Proceedings of the 1st International Workshop on Machine Learning and Software
Engineering in Symbiosis, MASES 2018, pages 1–5, 2018.

[56] P. C. Clements and L. M. Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley, 2001. ISBN 0-201-70332-7.

[57] B. Combemale, J. Kienzle, G. Mussbacher, O. Barais, E. Bousse, W. Cazzola, P. Col-
let, T. Degueule, R. Heinrich, J.-M. Jézéquel, M. Leduc, T. Mayerhofer, S. Mosser,
M. Schöttle, M. Strittmatter, and A. Wortmann. Concern-Oriented Language Develop-
ment (COLD): Fostering Reuse in Language Engineering. Computer Languages, Systems
& Structures, 54:139 – 155, 2018.

[58] J. R. Cordy. The TXL source transformation language. Science of Computer Program-
ming, 61(3):190–210, 2006.

[59] J. R. Cordy and C. K. Roy. The NiCad clone detector. In Program Comprehension (ICPC),
2011 IEEE 19th International Conference on, pages 219–220. IEEE, 2011.

[60] K. Czarnecki and U. W. Eisenecker. Generative Programming: Methods, Tools, and Ap-
plications. Addison-Wesley, 2000. ISBN 0-201-30977-7.

[61] G. Daniel, G. Sunyé, and J. Cabot. Mogwaï: a framework to handle complex queries on
large models. In Research Challenges in Information Science (RCIS), 2016 IEEE Tenth
International Conference on, pages 1–12. IEEE, 2016.

[62] L. De Alfaro, M. Faella, and M. Stoelinga. Linear and branching metrics for quantitative
transition systems. In International Colloquium on Automata, Languages, and Program-
ming, pages 97–109. Springer, 2004.

[63] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

[64] F. Deissenboeck, B. Hummel, E. Jürgens, B. Schätz, S. Wagner, J.-F. Girard, and
S. Teuchert. Clone detection in automotive model-based development. In Software En-
gineering, 2008. ICSE’08. ACM/IEEE 30th International Conference on, pages 603–612.
IEEE, 2008.

[65] F. Deissenboeck, B. Hummel, E. Juergens, M. Pfaehler, and B. Schaetz. Model clone
detection in practice. In Proc. of the 4th Int. Workshop on Software Clones, pages 57–64.
ACM, 2010.

158 Bibliography

[66] M. M. Deza and E. Deza. Encyclopedia of Distances. Springer, 2009.

[67] J. Di Rocco, D. Di Ruscio, L. Iovino, and A. Pierantonio. Mining metrics for un-
derstanding metamodel characteristics. In Proceedings of the 6th International Work-
shop on Modeling in Software Engineering, MiSE 2014, pages 55–60, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-2849-4. doi:10.1145/2593770.2593774. URL
http://doi.acm.org/10.1145/2593770.2593774.

[68] DiffPlug Simulink. https://www.diffplug.com/features/simulink.

[69] R. Dijkman, M. Dumas, B. van Dongen, R. Käärik, and J. Mendling. Similarity of business
process models: Metrics and evaluation. Inf. Systems, 36(2):498–516, 2011.

[70] N. Dintzner, A. van Deursen, and M. Pinzger. Analysing the linux kernel feature model
changes using FMDiff. Software & Systems Modeling, pages 1–22, 2015.

[71] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and K. Czarnecki. An Ex-
ploratory Study of Cloning in Industrial Software Product Lines. In 17th European Conf.
on Software Maintenance and Reengineering, pages 25–34. IEEE, 2013. ISBN 978-0-
7695-4948-4.

[72] C. C. Ekanayake, M. Dumas, L. García-Bañuelos, M. La Rosa, and A. H. ter Hofstede.
Approximate clone detection in repositories of business process models. In International
Conference on Business Process Management, pages 302–318. Springer, 2012.

[73] EnSoft SimDiff. http://www.ensoftcorp.com/simdiff/.

[74] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discover-
ing clusters a density-based algorithm for discovering clusters in large spatial databases
with noise. In Proc. of the Second Int. Conf. on Knowledge Discovery and Data Mining,
KDD’96, pages 226–231. AAAI Press, 1996.

[75] J. Font, L. Arcega, Ø. Haugen, and C. Cetina. Building Software Product Lines from
Conceptualized Model Patterns. In Proc. of the 19th Int. Conf. on Software Product Line,
pages 46–55. ACM, 2015. ISBN 978-1-4503-3613-0.

[76] J. Font, M. Ballarín, Ø. Haugen, and C. Cetina. Automating the Variability Formalization
of a Model Family by Means of Common Variability Language. In Proc. of the 19th Int.
Conf. on Software Product Line, pages 411–418. ACM, 2015. ISBN 978-1-4503-3613-0.

[77] H. Frank and J. Eder. Towards an Automatic Integration of Statecharts. In Proc. of the
18th Int. Conf. on Conceptual Modeling, volume 1728 of LNCS, pages 430–445. Springer,
1999. ISBN 978-3-540-66686-8.

[78] S. Grant and J. R. Cordy. Estimating the optimal number of latent concepts in source code
analysis. In Source Code Analysis and Manipulation (SCAM), 2010 10th IEEE Working
Conference on, pages 65–74. IEEE, 2010.

[79] T. L. Griffiths and M. Steyvers. Finding scientific topics. Proceedings of the National
academy of Sciences, 101(suppl 1):5228–5235, 2004.

[80] T. Hartmann, A. Moawad, F. Fouquet, G. Nain, J. Klein, Y. L. Traon, and J.-M. Jezequel.
Model-driven analytics: Connecting data, domain knowledge, and learning. arXiv preprint
arXiv:1704.01320, 2017.

http://dx.doi.org/10.1145/2593770.2593774
http://doi.acm.org/10.1145/2593770.2593774
https://www.diffplug.com/features/simulink
http://www.ensoftcorp.com/simdiff/

Bibliography 159

[81] A. Hashibon, Ö. Babur, M. Hanzich, G. Houzeaux, and B. Patzák. Platforms for ICME,
chapter 8, pages 533–564. Wiley-Blackwell, 2016. ISBN 9783527693566.

[82] R. Hebig, T. H. Quang, M. R. Chaudron, G. Robles, and M. A. Fernandez. The quest
for open source projects that use UML: mining GitHub. In Proc. of MODELS ’19, pages
173–183. ACM, 2016.

[83] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software.
In Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847.
IEEE, 2012.

[84] S. Holthusen, D. Wille, C. Legat, S. Beddig, I. Schaefer, and B. Vogel-Heuser. Family
model mining for function block diagrams in automation software. In Proceedings of the
18th International Software Product Line Conference: Companion Volume for Workshops,
Demonstrations and Tools-Volume 2, pages 36–43. ACM, 2014.

[85] A. Hotho, A. Nürnberger, and G. Paass. A brief survey of text mining. LDV
Forum, 20(1):19–62, 2005. URL http://www.jlcl.org/2005_Heft1/19-62_
HothoNuernbergerPaass.pdf.

[86] M. J. Howard, S. Gupta, L. Pollock, and K. Vijay-Shanker. Automatically mining
software-based, semantically-similar words from comment-code mappings. In Proceed-
ings of the 10th Working Conference on Mining Software Repositories, pages 377–386.
IEEE Press, 2013.

[87] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt. Index-based code clone de-
tection: incremental, distributed, scalable. In Software Maintenance (ICSM), 2010 IEEE
International Conference on, pages 1–9. IEEE, 2010.

[88] IBM Rational Rhapsody. http://www.ibm.com/software/awdtools/rhapsody/.

[89] A. K. Jain and R. C. Dubes. Algorithms for clustering data. Prentice-Hall, Inc., 1988.

[90] F. Javed, M. Mernik, J. Gray, and B. R. Bryant. Mars: A metamodel recovery system
using grammar inference. Inf. and Software Tech., 50(9):948–968, 2008.

[91] H. Kagdi, M. L. Collard, and J. I. Maletic. A survey and taxonomy of approaches for
mining software repositories in the context of software evolution. J. Softw. Maint. Evol.,
19(2):77–131, Mar. 2007. ISSN 1532-060X. doi:10.1002/smr.344. URL http://dx.
doi.org/10.1002/smr.344.

[92] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and D. Damian. The
promises and perils of mining github. In Proceedings of the 11th working conference on
mining software repositories, pages 92–101. ACM, 2014.

[93] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-oriented
domain analysis (FODA) feasibility study. Technical report, DTIC Document, 1990.

[94] C. J. Kapser and M. W. Godfrey. “Cloning considered harmful” considered harmful:
patterns of cloning in software. Empirical Software Engineering, 13(6):645, 2008.

[95] T. Kehrer, U. Kelter, M. Ohrndorf, and T. Sollbach. Understanding Model Evolution
through Semantically Lifting Model Differences with SiLift. In 28th Int. Conf. on Software
Maintenance, pages 638–641. IEEE, 2012.

http://www.jlcl.org/2005_Heft1/19-62_HothoNuernbergerPaass.pdf
http://www.jlcl.org/2005_Heft1/19-62_HothoNuernbergerPaass.pdf
http://www.ibm.com/software/awdtools/rhapsody/
http://dx.doi.org/10.1002/smr.344
http://dx.doi.org/10.1002/smr.344
http://dx.doi.org/10.1002/smr.344

160 Bibliography

[96] U. Kelter, J. Wehren, and J. Niere. A Generic Difference Algorithm for UML Models. In
Software Engineering, volume 64 of LNI, pages 105–116. GI, 2005.

[97] B. Klatt, M. Küster, and K. Krogmann. A Graph-Based Analysis Concept to Derive a
Variation Point Design from Product Copies. In 1st Int. Workshop on Reverse Variability
Engineering, pages 1–8. ACM, 2013.

[98] P. Klint, D. Landman, and J. Vinju. Exploring the limits of domain model recovery. In
Software Maintenance (ICSM), 2013 29th IEEE International Conference on, pages 120–
129. IEEE, 2013.

[99] D. S. Kolovos, D. Di Ruscio, A. Pierantonio, and R. F. Paige. Different models for model
matching: An analysis of approaches to support model differencing. In Comparison and
Versioning of Software Models, 2009. ICSE Workshop on, pages 1–6. IEEE, 2009.

[100] D. S. Kolovos, L. M. Rose, N. Matragkas, R. F. Paige, E. Guerra, J. S. Cuadrado,
J. De Lara, I. Ráth, D. Varró, M. Tisi, and J. Cabot. A research roadmap towards achieving
scalability in model driven engineering. In Proceedings of the Workshop on Scalability
in Model Driven Engineering, BigMDE ’13, pages 2:1–2:10, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-2165-5. doi:10.1145/2487766.2487768.

[101] D. S. Kolovos, N. D. Matragkas, I. Korkontzelos, S. Ananiadou, and R. F. Paige. Assessing
the use of Eclipse MDE technologies in open-source software projects. In OSS4MDE@
MoDELS, pages 20–29, 2015.

[102] T. Kosar, S. Bohra, and M. Mernik. Domain-specific languages: A systematic mapping
study. Information and Software Technology, 71:77 – 91, 2016. ISSN 0950-5849.

[103] R. Koschke. Survey of research on software clones. In Dagstuhl Seminar Proceedings.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2007.

[104] A. Kuhn, S. Ducasse, and T. Gírba. Semantic clustering: Identifying topics in source code.
Information and Software Technology, 49(3):230–243, 2007.

[105] H. W. Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

[106] S. LaValle, E. Lesser, R. Shockley, M. S. Hopkins, and N. Kruschwitz. Big data, analytics
and the path from insights to value. MIT sloan management review, 52(2):21, 2011.

[107] M. Lesk. Automatic sense disambiguation using machine readable dictionaries: how to
tell a pine cone from an ice cream cone. In Proceedings of the 5th annual international
conference on Systems documentation, pages 24–26. ACM, 1986.

[108] Z. Liang, Y. Cheng, and J. Chen. A Novel Optimized Path-Based Algorithm for Model
Clone Detection. Journal of Software, 9(7):1810–1817, 2014.

[109] S. Lity, R. Lachmann, M. Lochau, and I. Schaefer. Delta-oriented Software Product Line
Test Models – The Body Comfort System Case Study. Technical Report 2012-07, Tech-
nische Universität Braunschweig, Germany, 2012.

[110] H. Liu, Z. Ma, L. Zhang, and W. Shao. Detecting duplications in sequence diagrams based
on suffix trees. In Software Engineering Conf., 2006. APSEC 2006. 13th Asia Pacific,
pages 269–276. IEEE, 2006.

http://dx.doi.org/10.1145/2487766.2487768

Bibliography 161

[111] D. Lucrédio, R. P. d. M. Fortes, and J. Whittle. Moogle: a metamodel-based model search
engine. Software & Systems Modeling, 11(2):183–208, 2012.

[112] C. D. Manning and H. Schütze. Foundations of statistical natural language processing,
volume 999. MIT Press, 1999.

[113] C. D. Manning, P. Raghavan, H. Schütze, et al. Introduction to information retrieval,
volume 1. Cambridge university press Cambridge, 2008.

[114] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic. An information retrieval approach
to concept location in source code. In Reverse Engineering, 2004. Proceedings. 11th
Working Conference on, pages 214–223. IEEE, 2004.

[115] J. Martinez, T. Ziadi, J. Klein, and Y. Le Traon. Identifying and Visualising Commonality
and Variability in Model Variants. In European Conf. on Modelling Foundations and
Applications, volume 8569 of LNCS, pages 117–131. Springer, 2014. ISBN 978-3-319-
09194-5.

[116] Y. Mass and M. Mandelbrod. Retrieving the most relevant xml components. In INEX
2003 Workshop Proceedings, page 58. Citeseer, 2003.

[117] A. Mehra, J. Grundy, and J. Hosking. A Generic Approach to Supporting Diagram Differ-
encing and Merging for Collaborative Design. In Prof. of the 20th IEEE/ACM Int. Conf.
on Automated Software Engineering, pages 204–213. ACM, 2005. ISBN 1-58113-993-4.

[118] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph match-
ing algorithm and its application to schema matching. In Data Engineering, 2002. Proc.
18th Int. Conf. on, pages 117–128. IEEE, 2002.

[119] M. Mendonca, M. Branco, and D. Cowan. SPLOT: software product lines online tools.
In Proc. of the 24th ACM SIGPLAN Conf. Companion on Object oriented Prog. Systems
Languages and Applications, pages 761–762. ACM, 2009.

[120] J. Mengerink, A. Serebrenik, R. Schiffelers, and M. van den Brand. Automated analy-
ses of model-driven artifacts: obtaining insights into industrial application of MDE. In
Proceedings of the 27th International Workshop on Software Measurement and 12th In-
ternational Conference on Software Process and Product Measurement, pages 116–121.
ACM, 2017.

[121] J. G. M. Mengerink, J. Noten, and A. Serebrenik. Empowering ocl research: a large-scale
corpus of open-source data from github. Empirical Software Engineering, 2018.

[122] M. Mondai, C. K. Roy, and K. A. Schneider. Micro-clones in evolving software. In 2018
IEEE 25th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 50–60. IEEE, 2018.

[123] S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, and P. Zave. Matching and merging
of statecharts specifications. In Software Engineering, 2007. ICSE 2007. 29th Int. Conf.
on, pages 54–64. IEEE, 2007.

[124] S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, and P. Zave. Matching and Merging
of Variant Feature Specifications. Transactions on Software Engineering, 38(6):1355–
1375, 2012.

162 Bibliography

[125] J. Nogueira Bastos. Modular specification and design exploration for flexible manufac-
turing systems. PhD thesis, Department of Electrical Engineering, 12 2018. Proefschrift.

[126] F. N. A. A. Omran and C. Treude. Choosing an NLP library for analyzing software doc-
umentation: a systematic literature review and a series of experiments. In Proceedings of
the 14th International Conference on Mining Software Repositories, MSR 2017, Buenos
Aires, Argentina, May 20-28, 2017, pages 187–197, 2017. doi:10.1109/MSR.2017.42.
URL https://doi.org/10.1109/MSR.2017.42.

[127] M. H. Osman, T. Ho-Quang, and M. Chaudron. An automated approach for classifying
reverse-engineered and forward-engineered UML class diagrams. In 2018 44th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA), pages 396–399.
IEEE, 2018.

[128] S. Oster, M. Zink, M. Lochau, and M. Grechanik. Pairwise Feature-interaction Testing for
SPLs: Potentials and Limitations. In Int. Conf. on Software Product Line, pages 6:1–6:8.
ACM, 2011. ISBN 978-1-4503-0789-5.

[129] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and A. De Lucia. How
to effectively use topic models for software engineering tasks? an approach based on
genetic algorithms. In Proceedings of the 2013 International Conference on Software
Engineering, pages 522–531. IEEE Press, 2013.

[130] M. Pawlik and N. Augsten. Tree edit distance: Robust and memory-efficient. Information
Systems, 56:157–173, 2016.

[131] F. Pérez, J. Font, L. Arcega, and C. Cetina. Automatic query reformulations for feature
location in a model-based family of software products. Data & Knowledge Engineering,
116:159 – 176, 2018. ISSN 0169-023X.

[132] N. H. Pham, H. A. Nguyen, T. T. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen. Complete
and accurate clone detection in graph-based models. In Proceedings of the 31st Int. Conf.
on Software Engineering, pages 276–286. IEEE Computer Society, 2009.

[133] K. Pohl, G. Böckle, and F. J. van der Linden. Software Product Line Engineering: Foun-
dations, Principles and Techniques. Springer, 2005. ISBN 3540243720.

[134] L. Prechelt, G. Malpohl, and M. Philippsen. Finding plagiarisms among a set of programs
with JPlag. J. UCS, 8(11):1016, 2002.

[135] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2014. URL http://www.R-project.org/.

[136] J. A. Ramey. clusteval: Evaluation of Clustering Algorithms, 2012. URL http://CRAN.
R-project.org/package=clusteval. R package version 0.1.

[137] D. Ratiu, M. Feilkas, and J. Jürjens. Extracting domain ontologies from domain specific
apis. In Software Maintenance and Reengineering, 2008. CSMR 2008. 12th European
Conf. on, pages 203–212. IEEE, 2008.

[138] D. Rattan, R. Bhatia, and M. Singh. Model clone detection based on tree comparison. In
2012 Annual IEEE India Conference (INDICON), pages 1041–1046, Dec 2012.

http://dx.doi.org/10.1109/MSR.2017.42
https://doi.org/10.1109/MSR.2017.42
http://www.R-project.org/
http://CRAN.R-project.org/package=clusteval
http://CRAN.R-project.org/package=clusteval

Bibliography 163

[139] I. Reinhartz-Berger. Towards automatization of domain modeling. Data & Knowledge
Engineering, 69(5):491–515, 2010.

[140] C. K. Roy. Detection and analysis of near-miss software clones. In Ph. D. Thesis, Queen’s
School of Computing. Citeseer, 2009.

[141] C. K. Roy and J. R. Cordy. A Survey on Software Clone Detection Research. Technical
Report 541, School of Computing, Queen’s University, Kingston, Ontario, Canada, 2007.

[142] C. K. Roy and J. R. Cordy. Nicad: Accurate detection of near-miss intentional clones
using flexible pretty-printing and code normalization. In Program Comprehension, 2008.
ICPC 2008. The 16th IEEE International Conference on, pages 172–181. IEEE, 2008.

[143] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and evaluation of
code clone detection techniques and tools: A qualitative approach. Sci-
ence of Computer Programming, 74(7):470 – 495, 2009. ISSN 0167-6423.
doi:http://dx.doi.org/10.1016/j.scico.2009.02.007. URL http://www.sciencedirect.
com/science/article/pii/S0167642309000367.

[144] J. Rubin and M. Chechik. Combining Related Products into Product Lines. In Int. Conf.
on Fundamental Approaches to Software Engineering, volume 7212 of LNCS, pages 285–
300. Springer, 2012. ISBN 978-3-642-28871-5.

[145] J. Rubin and M. Chechik. Domain Engineering: Product Lines, Languages, and Concep-
tual Models, chapter A Survey of Feature Location Techniques, pages 29–58. Springer,
2013. ISBN 978-3-642-36654-3.

[146] J. Rubin and M. Chechik. Quality of Merge-Refactorings for Product Lines. In Int. Conf.
on Fundamental Approaches to Software Engineering, volume 7793 of LNCS, pages 83–
98. Springer, 2013. ISBN 978-3-642-37056-4.

[147] J. Rubin and M. Chechik. N-way model merging. In Proc. of the 2013 9th Joint Meeting
on Foundations of Software Engineering, pages 301–311. ACM, 2013.

[148] P. Runeson and M. Höst. Guidelines for conducting and reporting case study research in
software engineering. Empirical software engineering, 14(2):131, 2009.

[149] U. Ryssel, J. Ploennigs, and K. Kabitzsch. Automatic Variation-point Identification in
Function-block-based Models. In Int. Conf. on Generative Programming and Component
Engineering, pages 23–32. ACM, 2010.

[150] U. Ryssel, J. Ploennigs, and K. Kabitzsch. Extraction of Feature Models from Formal
Contexts. In Int. Conf. on Software Product Line, pages 4:1–4:8. ACM, 2011. ISBN
978-1-4503-0789-5.

[151] U. Ryssel, J. Ploennigs, and K. Kabitzsch. Automatic library migration for the generation
of hardware-in-the-loop models. Sci. Comput. Programming, 77(2):83–95, 2012.

[152] M. Sabetzadeh and S. Easterbrook. Analysis of Inconsistency in Graph-Based Viewpoints:
A Category-Theoretic Approach. In Int. Conf. on Automated Software Engineering, pages
12–21. IEEE, 2003.

http://dx.doi.org/http://dx.doi.org/10.1016/j.scico.2009.02.007
http://www.sciencedirect.com/science/article/pii/S0167642309000367
http://www.sciencedirect.com/science/article/pii/S0167642309000367

164 Bibliography

[153] R. Schiffelers. Empowering high tech systems engineering using mdse ecosystems (in-
vited talk). In E. Guerra and M. van den Brand, editors, Theory and Practice of Model
Transformation - 10th International Conference, ICMT 2017 Held as Part of STAF 2017,
Proceedings, Lecture Notes in Computer Science, page XI, Germany, 2017. Springer.

[154] R. R. H. Schiffelers, W. Alberts, and J. P. M. Voeten. Model-based specification, analysis
and synthesis of servo controllers for lithoscanners. In Proceedings of the 6th International
Workshop on Multi-Paradigm Modeling, MPM ’12, pages 55–60, New York, NY, USA,
2012. ACM. ISBN 978-1-4503-1805-1. doi:10.1145/2508443.2508453. URL http:
//doi.acm.org/10.1145/2508443.2508453.

[155] A. Schlie, D. Wille, S. Schulze, L. Cleophas, and I. Schaefer. Detecting variability in
matlab/simulink models: an industry-inspired technique and its evaluation. In Proceedings
of the 21st International Systems and Software Product Line Conference-Volume A, pages
215–224. ACM, 2017.

[156] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bontemps. Generic semantics of
feature diagrams. Computer Networks, 51(2):456–479, 2007.

[157] C. Seidl, T. Winkelmann, and I. Schaefer. A software product line of feature modeling
notations and cross-tree constraint languages. Modellierung, 2016.

[158] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki. Reverse engineering feature
models. In Software Engineering (ICSE), 2011 33rd International Conference on, pages
461–470. IEEE, 2011.

[159] M. Stephan and J. R. Cordy. A survey of model comparison approaches and applications.
In Modelsward, pages 265–277, 2013.

[160] M. Stephan and J. R. Cordy. Model clone detector evaluation using mutation analysis. In
ICSME, pages 633–638, 2014.

[161] M. Stephan and J. R. Cordy. Identifying instances of model design patterns and antipat-
terns using model clone detection. In Proceedings of the Seventh International Workshop
on Modeling in Software Engineering, MiSE ’15, pages 48–53, Piscataway, NJ, USA,
2015. IEEE Press. URL http://dl.acm.org/citation.cfm?id=2820489.2820501.

[162] M. Stephan and J. R. Cordy. MuMonDE: A framework for evaluating model clone detec-
tors using model mutation analysis. Software Testing, Verification and Reliability, page
e1669, 2018.

[163] M. Stephan, M. H. Alafi, A. Stevenson, and J. R. Cordy. Towards qualitative comparison
of simulink model clone detection approaches. In Proceedings of the 6th International
Workshop on Software Clones, pages 84–85. IEEE Press, 2012.

[164] M. Stephan, M. H. Alalfi, and J. R. Cordy. Towards a taxonomy for simulink model
mutations. In Software Testing, Verification and Validation Workshops (ICSTW), 2014
IEEE Seventh International Conference on, pages 206–215. IEEE, 2014.

[165] M. Steyvers and T. Griffiths. Probabilistic topic models. Handbook of latent semantic
analysis, 427(7):424–440, 2007.

http://dx.doi.org/10.1145/2508443.2508453
http://doi.acm.org/10.1145/2508443.2508453
http://doi.acm.org/10.1145/2508443.2508453
http://dl.acm.org/citation.cfm?id=2820489.2820501

Bibliography 165

[166] K. Stol, P. Ralph, and B. Fitzgerald. Grounded theory in software engineering research:
A critical review and guidelines. In 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE), pages 120–131, May 2016.

[167] H. Störrle. Towards clone detection in UML domain models. Software & Systems Model-
ing, 12(2):307–329, 2013.

[168] H. Störrle. Effective and efficient model clone detection. In Software, Services, and
Systems, pages 440–457. Springer, 2015.

[169] H. Störrle, R. Hebig, and A. Knapp. An index for software engineering models. In Joint
Proceedings of MODELS 2014 Poster Session and the ACM Student Research Competition
(SRC) co-located with the 17th International Conference on Model Driven Engineering
Languages and Systems (MODELS 2014), Valencia, Spain, September 28 - October 3,
2014., pages 36–40, 2014. URL http://ceur-ws.org/Vol-1258/poster8.pdf.

[170] D. Strüber, M. Selter, and G. Taentzer. Tool support for clustering large meta-models. In
Proceedings of the Workshop on Scalability in Model Driven Engineering, page 7. ACM,
2013.

[171] D. Strüber, J. Plöger, and V. Acreţoaie. Clone detection for graph-based model transfor-
mation languages. In Int. Conf. on Theory and Practice of Model Transformations, pages
191–206. Springer, 2016.

[172] D. Strüber, J. Rubin, T. Arendt, M. Chechik, G. Taentzer, and J. Plöger. RuleMerger:
Automatic Construction of Variability-Based Model Transformation Rules. In Int. Conf.
on Fundamental Approaches to Software Engineering, pages 122–140. Springer, 2016.

[173] X. Sun, X. Liu, B. Li, Y. Duan, H. Yang, and J. Hu. Exploring topic models in software en-
gineering data analysis: A survey. In 2016 17th IEEE/ACIS International Conference on
Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Com-
puting (SNPD), pages 357–362. IEEE, 2016.

[174] A. M. Sutii, M. van den Brand, and T. Verhoeff. Exploration of modularity and reusability
of domain-specific languages: an expression DSL in metamod. Computer Languages,
Systems & Structures, 2017.

[175] R. Tairas and J. Cabot. Cloning in DSLs: experiments with OCL. In International Con-
ference on Software Language Engineering, pages 60–76. Springer, 2011.

[176] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical dirichlet processes.
Journal of the American Statistical Association, 101(476):1566–1581, 2006.

[177] The Mathworks MATLAB/Simulink. http://www.mathworks.com/products/
simulink/.

[178] T. Thüm, D. Batory, and C. Kästner. Reasoning about edits to feature models. In 31st Int.
Conf. on Software Engineering, pages 254–264. IEEE, 2009.

[179] E. Tromp and M. Pechenizkiy. Graph-based n-gram language identification on short texts.
In Proc. of the 20th Machine Learning conference of Belgium and The Netherlands, pages
27–34, 2011.

http://ceur-ws.org/Vol-1258/poster8.pdf
http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/simulink/

166 Bibliography

[180] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T. Halkidis. Design pattern de-
tection using similarity scoring. IEEE Transactions on Software Engineering, 32(11):
896–909, Nov 2006. ISSN 0098-5589. doi:10.1109/TSE.2006.112.

[181] S. Uchitel and M. Chechik. Merging Partial Behavioural Models. In Int. Symposium on
Foundations of Software Engineering, pages 43–52. ACM, 2004. ISBN 1-58113-855-5.

[182] M. S. Uddin, C. K. Roy, and K. A. Schneider. Simcad: An extensible and faster clone
detection tool for large scale software systems. In Program Comprehension (ICPC), 2013
IEEE 21st International Conference on, pages 236–238. IEEE, 2013.

[183] M. van den Brand. Model Driven Software Engineering creates tomorrow’s legacy, 2018.
URL http://gemoc.org/pub/20181015-GEMOC18/keynote-abstract.pdf. Keynote
at the 6th Int. Workshop on The Globalization of Modeling Languages co-located with
MODELS 2018, Copenhagen, Denmark.

[184] B. van der Sanden, M. Reniers, M. Geilen, T. Basten, J. Jacobs, J. Voeten, and
R. Schiffelers. Modular model-based supervisory controller design for wafer logistics
in lithography machines. In 2015 ACM/IEEE 18th International Conference on Model
Driven Engineering Languages and Systems (MODELS), pages 416–425, Sept 2015.
doi:10.1109/MODELS.2015.7338273.

[185] L. van der Sanden. Performance analysis and optimization of supervisory controllers.
PhD thesis, Department of Electrical Engineering, 11 2018. Proefschrift.

[186] S. Wenzel and U. Kelter. Model-Driven Design Pattern Detection Using Difference Cal-
culation. In Proc. of the 1st Int. Workshop on Pattern Detection for Reverse Engineering.
IEEE, 2006. ISBN 0-7695-2719-1.

[187] R. Wester and J. Koster. The software behind moore’s law. IEEE Software, 32(2):37–40,
Mar 2015. ISSN 0740-7459.

[188] N. Weston, R. Chitchyan, and A. Rashid. A Framework for Constructing Semantically
Composable Feature Models from Natural Language Requirements. In Proc. of the 13th
Int. Software Product Line Conference, pages 211–220. ACM, 2009.

[189] J. Whittle and J. Schumann. Generating Statechart Designs From Scenarios. In Int. Conf.
on Foundations of Software Engineering, pages 314–323. ACM, 2000.

[190] J. Whittle, J. Hutchinson, and M. Rouncefield. The state of practice in model-driven
engineering. IEEE software, 31(3):79–85, 2014.

[191] F. Wild. lsa: Latent Semantic Analysis, 2015. URL http://CRAN.R-project.org/
package=lsa. R package version 0.73.1.

[192] D. Wille. Managing Lots of Models: The FaMine Approach. In Proc. of the 22nd ACM
SIGSOFT Int. Symposium on Foundations of Software Engineering, pages 817–819. ACM,
2014. ISBN 978-1-4503-3056-5.

[193] D. Wille, S. Holthusen, S. Schulze, and I. Schaefer. Interface Variability in Family Model
Mining. In Proc. of the 17th Int. Software Product Line Conference Co-located Workshops,
pages 44–51. ACM, 2013. ISBN 978-1-4503-2325-3.

http://dx.doi.org/10.1109/TSE.2006.112
http://gemoc.org/pub/20181015-GEMOC18/keynote-abstract.pdf
http://dx.doi.org/10.1109/MODELS.2015.7338273
http://CRAN.R-project.org/package=lsa
http://CRAN.R-project.org/package=lsa

Bibliography 167

[194] D. Wille, S. Schulze, and I. Schaefer. Variability Mining of State Charts. In Proc. of the
7th Int. Workshop on Feature-Oriented Software Development, pages 63–73. ACM, 2016.

[195] D. Wille, S. Schulze, C. Seidl, and I. Schaefer. Custom-Tailored Variability Mining for
Block-Based Languages. In IEEE 23rd Int. Conference on Software Analysis, Evolution,
and Reengineering, volume 1, pages 271–282. IEEE, 2016.

[196] D. Wille, M. Tiede, S. Schulze, C. Seidl, and I. Schaefer. Identifying Variability in Object-
Oriented Code Using Model-Based Code Mining. In Int. Symposium on Leveraging Ap-
plications of Formal Methods, volume 9953 of LNCS, pages 547–562. Springer, 2016.
ISBN 978-3-319-47169-3.

[197] D. Wille, T. Runge, C. Seidl, and S. Schulze. Extractive Software Product Line Engi-
neering Using Model-based Delta Module Generation. In Proc. of the 11th Int. Workshop
on Variability Modelling of Software-intensive Systems, pages 36–43. ACM, 2017. ISBN
978-1-4503-4811-9.

[198] D. Wille, Ö. Babur, L. Cleophas, C. Seidl, M. van den Brand, and I. Schaefer. Improving
custom-tailored variability mining using outlier and cluster detection. Science of Com-
puter Programming, 163:62 – 84, 2018.

[199] Z. Wu and M. Palmer. Verbs semantics and lexical selection. In Proceedings of the 32nd
annual meeting on Association for Computational Linguistics, pages 133–138. Associa-
tion for Computational Linguistics, 1994.

[200] Z. Xing. Model comparison with GenericDiff. In Proc. of the IEEE/ACM Int. Cont. on
Automated Software Engineering, pages 135–138. ACM, 2010.

[201] Z. Xing and E. Stroulia. UMLDiff: An Algorithm for Object-oriented Design Differenc-
ing. In Int. Conf. on Automated Software Engineering, pages 54–65. ACM, 2005. ISBN
1-58113-993-4.

[202] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen,
S. Venkataraman, M. J. Franklin, et al. Apache Spark: A unified engine for big data
processing. Communications of the ACM, 59(11):56–65, 2016.

[203] K. Zhang and D. Shasha. Simple fast algorithms for the editing distance between trees
and related problems. SIAM Journal on Computing, 18(6):1245–1262, Dec. 1989. ISSN
0097-5397.

[204] X. Zhang, Ø. Haugen, and B. Møller-Pedersen. Model Comparison to Synthesize a
Model-Driven Software Product Line. In Int. Conf. on Software Product Line, pages 90–
99. IEEE, 2011. ISBN 978-1-4577-1029-2.

[205] P. Zikopoulos, C. Eaton, et al. Understanding big data: Analytics for enterprise class
hadoop and streaming data. McGraw-Hill Osborne Media, 2011.

[206] I. Žliobaitė, M. Pechenizkiy, and J. Gama. An overview of concept drift applications. In
Big data analysis: new algorithms for a new society, pages 91–114. Springer, 2016.

Summary

Model Analytics and Management

Nowadays, we are witnessing an ever increasing complexity of software and systems, ranging
from cyber-physical systems to the Internet of Things. Model-Driven Engineering (MDE) is a
methodology which promotes the use of models, metamodels and model transformations as first-
class citizens to tackle the complexity of building and maintaining those systems. With increased
adoption of Model-Driven Engineering (MDE), however, the number of related artifacts in use,
notably models, greatly increases. To confirm this, we present in this thesis quantitative evidence
from both academia —in terms of repositories and datasets— and industry—in terms of large
domain-specific language ecosystems. To be able to tackle this dimension of scalability in MDE,
we propose to treat the artifacts as data, and apply various techniques—ranging from information
retrieval to machine learning—to analyze and manage those artifacts in a holistic, scalable and
efficient way.

Based on this idea, we have developed a framework called SAMOS (Statistical Analysis of
MOdelS) to analyze, compare and visualize large datasets of models. The essence of the ap-
proach involves (1) extracting pieces of information (i.e. features) from models such as names,
types and structure (e.g. linear chunks of n-grams, or subtrees); (2) defining comparison schemes
(e.g. name comparison using Natural Language Processing for typos and synonyms, and struc-
tural comparison using edit distance) to obtain a Vector Space Model; and (3) applying distance
measures and clustering to discover e.g. groups of similar models or model fragments. Working
on different types of models such as EMF metamodels, state charts, feature models and industrial
domain-specific models, we have used and evaluated SAMOS in various settings and application
areas throughout the thesis.

Chapter 2 introduces the basics of our approach used in this thesis. We make a first step to-
wards the handling of large datasets of models, EMF metamodels in particular, from a statistical
perspective. Using VSM-based clustering of models represented as simple features including
name and type information only, many characteristics and relations among the metamodels, such
as clusters, sub-clusters and outliers, can be analyzed and visualized. We have explored two
scenarios, namely model searching and repository exploration, for which we can utilize our ap-
proach. Particularly for the first case study, it is clearly noticeable that there are distinct outliers
and groupings in the search results. This information can be used to improve the navigation or
precision of the search results. The second case study, on the other hand, deals with a hetero-
geneous set of domains and allows identifying domains, subdomains and also the proximities
between related ones. This grouping information can be used for domain model recovery as well
as model repository management scenarios.

170 Summary

We have extended SAMOS to incorporate structural context into clustering in Chapter 3. We
have indicated a shortcoming of the basic approach as in the previous chapter, i.e. ignoring the
context of model elements, and have proposed an n-gram based representation and comparison,
which can be considered as the compromise between context-less clustering approaches and
advanced pairwise structural techniques. We have evaluated our approach on an Ecore dataset.
We have shown that n-grams improve the clustering accuracy on average. Picking an n > 1
is shown to increase complexity (though not monotonically) and using n = 2 is suggested for
smaller datasets and precision-oriented tasks.

In Chapter 4, we have introduced how our approach can be used to improve the results of
variability mining from models of block-based languages. For this purpose, we have demon-
strated and discussed how our cluster and outlier detection can improve the variability informa-
tion generated by the family mining approach developed by our collaboration partners. Using the
presented extension it is possible to remove outliers (e.g., completely unrelated variants) from a
set of input models, i.e. state charts, and cluster them into more meaningful sets (e.g., relevant
for particular users).

We have presented in Chapter 5 an application of our generic model clustering technique to
comparing feature models. With two exploratory case studies on the 1034-model dataset in the
S.P.L.O.T. repository, we get (1) a repository overview and major domains therein, (2) very simi-
lar models in the repository such as duplicates and clones. Based on the studies, we conclude that
our approach can help with the use and maintenance of emerging repositories such as S.P.L.O.T.
The clone detection part is properly treated later in Chapter 6. There we have extended SAMOS
with additional scoping, feature extraction and comparison schemes, customized distance mea-
sures and clustering algorithms in the context of metamodel clone detection. We have evaluated
our approach using a variety of case studies involving both synthetic and real data; and identified
the strengths and weaknesses of our approach along with two other state-of-the-art clone detec-
tors. We conclude that SAMOS stands out with its higher accuracy while still being substantially
scalable.

In Chapter 7, we have applied our approach in an industrial context, with various analyses
on ASML’s MDE ecosystems. We have used and extended SAMOS to operate on ASML’s lan-
guages and models. We have elaborated the domain-specific extension of SAMOS, specifically
for ASML’s ASOME data and control models to enable clone detection on those models. In
extensive case studies, we have performed clone detection on ASML’s models, and addition-
ally language-level analyses ranging from cross-DSL conceptual analysis and clone detection
to architectural analysis for the CARM2G ecosystem. We have presented our findings along
with valuable feedback from the domain experts on the nature of cloning in the ecosystems,
and indicated opportunities such as refactoring to support the maintenance and quality of the
ever-growing and evolving ecosystems.

Moreover, we have experimented with a distributed data processing back-end for SAMOS
(Chapter 8), as a means to improve its scalability further, to help with e.g. larger datasets or more
expensive analyses. Along with integration into the Eclipse KNIME data mining ecosystem,
this is part of our efforts in transforming SAMOS into a mature open framework to be used and
extended in further scenarios.

Curriculum Vitae

Personal Information
Name: Önder Babur

Date of birth: February 5, 1985

Place of birth: Ankara, Turkey

Education
2014–now Ph.D candidate, Eindhoven University of Technology, The Netherlands

2007–2010 M.Sc in Software Systems Engineering, RWTH Aachen, Germany

2002–2007 B.Sc in Computer Engineering, Middle East Technical University, Turkey

Work Experience
2017–now Part-time visiting researcher, ASML, The Netherlands

2012–2013 Research intern, IMDEA Software Institute, Spain

2011–2012 Software systems engineer, IVU Traffic Technologies AG, Germany

Organization and Community Service
4TU.NIRICT community building project on Model Management and Analytics, acquired 23.4k

Euros funding (2017), founded http://modelanalytics.wordpress.com

Editor, Book on Model Management and Analytics for Large Scale Systems, Elsevier (2019)

Chair, Int. Workshop on Analytics and Mining of Model Repositories @ MODELS’18

Chair, Special Session on Model Management and Analytics @ MODELSWARD’18

Chair, Dutch Symposium on Model Management and Analytics, WUR (2017)

Proceedings chair MODELS’18, publicity chair VaMoS’17, student volunteer ETAPS’16

http://modelanalytics.wordpress.com

Titles in the IPA Dissertation Series since 2015

S.-S.T.Q. Jongmans. Automata-Theoretic
Protocol Programming. Faculty of Mathe-
matics and Natural Sciences, UL. 2016-01

S.J.C. Joosten. Verification of Interconnects.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2016-02

M.W. Gazda. Fixpoint Logic, Games, and
Relations of Consequence. Faculty of Mathe-
matics and Computer Science, TU/e. 2016-03

S. Keshishzadeh. Formal Analysis and Veri-
fication of Embedded Systems for Healthcare.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2016-04

P.M. Heck. Quality of Just-in-Time Require-
ments: Just-Enough and Just-in-Time. Fac-
ulty of Electrical Engineering, Mathematics,
and Computer Science, TUD. 2016-05

Y. Luo. From Conceptual Models to Safety
Assurance – Applying Model-Based Tech-
niques to Support Safety Assurance. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2016-06

B. Ege. Physical Security Analysis of Embed-
ded Devices. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2016-07

A.I. van Goethem. Algorithms for Curved
Schematization. Faculty of Mathematics and
Computer Science, TU/e. 2016-08

T. van Dijk. Sylvan: Multi-core Deci-
sion Diagrams. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2016-09

I. David. Run-time resource management for
component-based systems. Faculty of Mathe-
matics and Computer Science, TU/e. 2016-10

A.C. van Hulst. Control Synthesis us-
ing Modal Logic and Partial Bisimilarity –
A Treatise Supported by Computer Verified
Proofs. Faculty of Mechanical Engineering,
TU/e. 2016-11

A. Zawedde. Modeling the Dynamics of
Requirements Process Improvement. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2016-12

F.M.J. van den Broek. Mobile Communica-
tion Security. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2016-13

J.N. van Rijn. Massively Collaborative Ma-
chine Learning. Faculty of Mathematics and
Natural Sciences, UL. 2016-14

M.J. Steindorfer. Efficient Immutable Col-
lections. Faculty of Science, UvA. 2017-01

W. Ahmad. Green Computing: Efficient En-
ergy Management of Multiprocessor Stream-
ing Applications via Model Checking. Fac-
ulty of Electrical Engineering, Mathematics
& Computer Science, UT. 2017-02

D. Guck. Reliable Systems – Fault tree anal-
ysis via Markov reward automata. Faculty of
Electrical Engineering, Mathematics & Com-
puter Science, UT. 2017-03

H.L. Salunkhe. Modeling and Buffer Anal-
ysis of Real-time Streaming Radio Applica-
tions Scheduled on Heterogeneous Multipro-
cessors. Faculty of Mathematics and Com-
puter Science, TU/e. 2017-04

A. Krasnova. Smart invaders of private mat-
ters: Privacy of communication on the Inter-
net and in the Internet of Things (IoT). Fac-
ulty of Science, Mathematics and Computer
Science, RU. 2017-05

A.D. Mehrabi. Data Structures for Analyz-
ing Geometric Data. Faculty of Mathematics
and Computer Science, TU/e. 2017-06

D. Landman. Reverse Engineering Source
Code: Empirical Studies of Limitations
and Opportunities. Faculty of Science,
UvA. 2017-07

W. Lueks. Security and Privacy via Cryptog-
raphy – Having your cake and eating it too.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2017-08

A.M. Şutîi. Modularity and Reuse of
Domain-Specific Languages: an exploration
with MetaMod. Faculty of Mathematics and
Computer Science, TU/e. 2017-09

U. Tikhonova. Engineering the Dynamic Se-
mantics of Domain Specific Languages. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2017-10

Q.W. Bouts. Geographic Graph Construc-
tion and Visualization. Faculty of Mathemat-
ics and Computer Science, TU/e. 2017-11

A. Amighi. Specification and Verification of
Synchronisation Classes in Java: A Practi-
cal Approach. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2018-01

S. Darabi. Verification of Program Par-
allelization. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2018-02

J.R. Salamanca Tellez. Coequations and
Eilenberg-type Correspondences. Faculty of
Science, Mathematics and Computer Science,
RU. 2018-03

P. Fiterău-Broştean. Active Model Learning
for the Analysis of Network Protocols. Fac-
ulty of Science, Mathematics and Computer
Science, RU. 2018-04

D. Zhang. From Concurrent State Machines
to Reliable Multi-threaded Java Code. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2018-05

H. Basold. Mixed Inductive-Coinductive
Reasoning Types, Programs and Logic. Fac-
ulty of Science, Mathematics and Computer
Science, RU. 2018-06

A. Lele. Response Modeling: Model Re-
finements for Timing Analysis of Runtime
Scheduling in Real-time Streaming Systems.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2018-07

N. Bezirgiannis. Abstract Behavioral Spec-
ification: unifying modeling and program-
ming. Faculty of Mathematics and Natural
Sciences, UL. 2018-08

M.P. Konzack. Trajectory Analysis: Bridg-
ing Algorithms and Visualization. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2018-09

E.J.J. Ruijters. Zen and the art of rail-
way maintenance: Analysis and optimization
of maintenance via fault trees and statistical
model checking. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2018-10

F. Yang. A Theory of Executability: with a
Focus on the Expressivity of Process Calculi.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2018-11

L. Swartjes. Model-based design of baggage
handling systems. Faculty of Mechanical En-
gineering, TU/e. 2018-12

T.A.E. Ophelders. Continuous Similarity
Measures for Curves and Surfaces. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2018-13

M. Talebi. Scalable Performance Analysis of
Wireless Sensor Network. Faculty of Mathe-
matics and Computer Science, TU/e. 2018-14

R. Kumar. Truth or Dare: Quantitative se-
curity analysis using attack trees. Faculty of
Electrical Engineering, Mathematics & Com-
puter Science, UT. 2018-15

M.M. Beller. An Empirical Evaluation
of Feedback-Driven Software Development.
Faculty of Electrical Engineering, Mathemat-
ics, and Computer Science, TUD. 2018-16

M. Mehr. Faster Algorithms for Geometric
Clustering and Competitive Facility-Location
Problems. Faculty of Mathematics and Com-
puter Science, TU/e. 2018-17

M. Alizadeh. Auditing of User Behavior:
Identification, Analysis and Understanding
of Deviations. Faculty of Mathematics and
Computer Science, TU/e. 2018-18

P.A. Inostroza Valdera. Structuring Lan-
guages as Object-Oriented Libraries. Faculty
of Science, UvA. 2018-19

M. Gerhold. Choice and Chance - Model-
Based Testing of Stochastic Behaviour. Fac-
ulty of Electrical Engineering, Mathematics
& Computer Science, UT. 2018-20

S.M.J. de Putter. Verification of Concur-
rent Systems in a Model-Driven Engineering
Workflow. Faculty of Mathematics and Com-
puter Science, TU/e. 2019-01

S.M. Thaler. Automation for Information
Security using Machine Learning. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2019-02

Ö. Babur. Model Analytics and Manage-
ment. Faculty of Mathematics and Computer
Science, TU/e. 2019-03

	Acknowledgements
	Introduction to Model Analytics and Management
	Introduction
	The Expanding Universe of MDE
	Treating MDE Artifacts as Data
	Relevant Domains for Model Analytics and Management
	Research Questions
	Outline and Origin of Chapters

	SAMOS: A Framework for Model Analytics
	Introduction
	Preliminaries: Information Retrieval, Vector Space Model, Clustering
	An Architecture for Model Analytics
	Case Studies
	Discussion
	Conclusion

	Structural Comparison of Models
	Introduction
	Motivation for Structural Comparison
	Extending SAMOS with Structural Features
	Case Studies with n-grams
	Discussion
	Conclusion

	Model Analytics for Variability Mining
	Introduction
	Motivating Example and Overall Workflow
	Background
	Clustering for Variability Mining
	Variability Mining for Block-based Languages
	Implementation
	Case Study
	Related Work
	Conclusion and Future Work

	Managing a Feature Model Repository
	Introduction
	Analyzing Feature Models
	Case Studies
	Discussion and Future Work
	Conclusion

	Metamodel Clone Detection with SAMOS
	Introduction
	Metamodel Clones
	Other Model Clone Detector Tools
	Using and Extending SAMOS for Clone Detection
	Case Studies and Comparative Evaluation
	Overall Discussion and Future Work
	Related Work
	Conclusion

	Model Analytics for Industrial MDE Ecosystems
	Introduction
	Objectives
	MDE Ecosystems at ASML
	Model Clones: Concept and Classification
	Using and Extending SAMOS for ASOME Models
	Case Studies with ASML MDE Ecosystems
	Discussion
	Related Work
	Conclusion and Future Work

	Towards Distributed Model Analytics
	Introduction
	Background: Apache Spark
	Distributed VSM Computation
	Preliminary Results and Discussion
	Conclusion

	Conclusions
	Contributions
	Obstacles for Model Analytics and Management
	Future Work
	The Future of SAMOS as a Mature Open Framework

	Summary
	Curriculum Vitae

