

Process mining on databases

Citation for published version (APA):
Gonzalez Lopez de Murillas, E. (2019). Process mining on databases: extracting event data from real-life data
sources. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische
Universiteit Eindhoven.

Document status and date:
Published: 27/02/2019

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/5bb2b9ff-0fe2-4a39-9f7d-a68ec26e217e

Extracting Event Data from Real-Life Data Sources

E. González López de Murillas

Process Mining
on Databases

Process Mining on Databases:
Extracting Event Data from Real-Life Data Sources

E. González López de Murillas

Copyright © 2019 by E. González López de Murillas. All Rights Reserved.

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

González López de Murillas, E.

Process Mining on Databases: Extracting Event Data from Real-Life Data Sources
by E. González López de Murillas.
Eindhoven: Technische Universiteit Eindhoven, 2018. Proefschrift.

A catalogue record is available from the Eindhoven University of Technology Library

ISBN 978-90-386-4704-3

Keywords: Process mining, Databases, Data extraction, Case notion discovery, Case
notion recommendation, Event log building, Event data querying

SIKS Dissertation Series No. 2019-03
The research reported in this thesis has been carried out under the auspices of SIKS,
the Dutch Research School for Information and Knowledge Systems.

Process Mining on Databases:
Extracting Event Data from Real-Life Data Sources

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische
Universiteit Eindhoven, op gezag van de rector magnificus
prof.dr.ir. F.P.T. Baaijens, voor een commissie aangewezen

door het College voor Promoties, in het openbaar te
verdedigen op

woensdag 27 februari 2019 om 16:00 uur

door

Eduardo González López de Murillas

geboren te Pamplona, Spanje

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de pro-
motiecommissie is als volgt:

voorzitter: prof.dr. O.J. Boxma
1e promotor: prof.dr.ir. H.A. Reijers
2e-promotor: prof.prof.h.c.dr.h.c.dr.ir. W.M.P. van der Aalst (RWTH Aachen)
leden: prof.dr. A. Gal (Israel Institute of Technology)

dr. M. Montali (Free University of Bozen-Bolzano)
dr. G.H.L. Fletcher
prof.dr. J. Ezpeleta Mateo (Universidad de Zaragoza)

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd in
overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

Dedicated to my little nephew, Mateo.

Abstract

Process mining as a discipline is gaining importance in recent years. Its focus is on
the analysis of business processes by means of process execution data. It is a common
misconception to think that a process mining project starts as soon as the data are
available. We tend to underestimate the time, knowledge, and number of iterations
needed to gather relevant data and build an event log suitable for analysis. In many
cases, the data extraction and preparation phase can take up to 80% of the project
duration. Improving this time-consuming initial phase will have a large impact on
the whole process mining project in terms of time, cost, and quality of insights.

In this thesis, we take on several challenges related to data extraction, multi-
perspective event log building, and event data querying. We consider environments
in which many business processes coexist, sharing data both in a centralized and
distributed storage. The aim of this work is twofold. First, to ease the path for
practitioners to get started with a process mining project in unknown environments
when domain knowledge is not always available. Second, to provide the tools needed
for event data querying and to build specialized event logs for a more effective process
mining analysis. We propose several techniques that, together, constitute a pipeline
connecting databases with existing process mining techniques:

• A meta-model for process mining on databases (in Chapter 3). This meta-model
aims to standardize the way to capture and structure both data and process
aspects of an organization.

• Data extraction adapters for several scenarios (in Chapter 4). These adapters,
developed for some mainstream scenarios, allow us to extract and transform
data from databases to comply with the proposed meta-model structure.

• A technique to discover and recommend case notions in order to build event logs
for process mining (in Chapter 5). This is achieved by exploring possible views
on the data, correlating events by means of the underlying relations extracted
from the original database, and assessing their “interestingness” with respect to
some metrics.

• A data-aware process oriented query language (in Chapter 7). This query lan-
guage provides a compact and easy way to express relevant queries in the busi-
ness context by means of constructs that exploit the underlying meta-model.

The techniques presented in this thesis have been evaluated using representative
sample datasets that resemble the most relevant challenges that can be found in real-

viii

life environments, as well as case studies with real databases. The results show that
these techniques succeed at capturing a more comprehensive picture of the systems
under study, improving the quality of the generated event logs, and supporting the
user in the process of data extraction and log building. Moreover, they are a step
ahead towards the goal of automatic data extraction and process mining analysis of
complex IT systems. Implementations of our techniques are publicly available and
licensed as open source.

Preface

Honeybees are fascinating creatures. These small insects are incredibly cooperative.
They organize themselves according to a very well defined societal structure, divided
mainly into reproductive and non-reproductive groups. Individually, they would not
be able to survive. However, as a team they can build complicated housing structures
called hives where they live, breed, store food, and protect themselves from external
agents.

These incredible animals do not only produce honey, but also wax, their main
construction material. Both products are highly valuable for us humans due to the
nutritive value of honey, and the versatility of the wax as a material in many manu-
facturing processes. However, the shape in which beehives appear in nature does not
allow human beekeepers to take advantage of the honey and wax production without
partially or entirely destroying the hive.

Nowadays, most organizations produce data as a byproduct of their business ac-
tivity, similarly to the hard-working bees producing wax and honey for their survival.
In many cases, the produced data is crucial for the functioning of the organization,
while at the same time it acts as a record of the execution of their business processes.
However, many of such organizations struggle to get the maximal potential from their
data. One of the reasons is the disconnect between the data structure that supports
their business processes and the data structure that would be suitable for the analysis
of their process data.

We believe that business process execution and analysis can coexist, sharing com-
mon data sources in a sustainable manner. In order to achieve such an equilibrium,
data structures need to be reshaped, similarly to the way that beekeepers provide a
structure to beehives. When used responsibly, artificial beehives allow the beekeeper
to benefit from the production of honey without disrupting the colony. This thesis
proposes a way to structure data in order to facilitate data extraction and to enable
the analysis of business processes in real-life environments.

Contents

List of Figures xv

List of Tables xxi

1 Introduction 1
1.1 Event Data and Process Mining . 2

1.1.1 Event Data . 2
1.1.2 Process Mining . 4

1.2 Process Mining on Databases . 7
1.3 Challenges in Process Mining on Databases 8

1.3.1 Challenge 1: Finding, Merging, and Cleaning Event Data 9
1.3.2 Challenge 2: Dealing with Complex Event Logs Having Diverse

Characteristics . 11
1.3.3 Challenge 3: Cross-Organizational Mining 11
1.3.4 Challenge 4: Multi-Perspective Event Log Building 11
1.3.5 Challenge 5: Improve Usability for Non-Experts 12
1.3.6 Challenge 6: Fill the Domain Knowledge Gap in Event Log

Extraction . 12
1.3.7 Challenge 7: Question-Driven Log Extraction 12

1.4 Contributions and Structure of this Thesis 13
1.4.1 Thesis Contributions . 13
1.4.2 Thesis Structure . 15

2 Preliminaries 17
2.1 Notations . 17
2.2 Databases . 18
2.3 ETL: Extract, Transform, Load . 20
2.4 Event Logs . 21
2.5 Process Models . 22
2.6 Process Mining . 23

2.6.1 Process Discovery . 23
2.6.2 Conformance Checking and Alignments 24

2.7 Chapter Summary . 26

xi

xii CONTENTS

3 OpenSLEX: A Meta-Model for Process Mining 27
3.1 Introduction . 27
3.2 Running Example . 30
3.3 Meta-Model . 32

3.3.1 Requirements . 33
3.3.2 Formalization . 33

3.4 Implementation . 43
3.5 Related Work . 45
3.6 Chapter Summary . 48

4 OpenSLEX in Practice: Data Extraction and Querying 49
4.1 Introduction . 49
4.2 Evaluation in Real-life Environments . 50

4.2.1 Meta-Model Completion Scenarios 52
4.2.2 Database Redo-Logs . 54
4.2.3 In-Table Versioning . 57
4.2.4 Change Table . 60
4.2.5 Merging Data Sources . 66

4.3 Analysis of the Resulting Populated Meta-Model 68
4.3.1 Standardized Querying . 69
4.3.2 Process Mining Results . 74

4.4 Chapter Summary . 79

5 Case Notion Discovery and Recommendation 81
5.1 Introduction . 81
5.2 Running Example . 84
5.3 Case Notions and Log Building . 86

5.3.1 Defining Case Notions . 86
5.3.2 Building a Log . 88

5.4 Log Quality: Is my Log Interesting? . 92
5.5 Predicting Log Interestingness . 95
5.6 Evaluation . 100

5.6.1 Features for Log Quality Prediction 101
5.6.2 Evaluation of Predictors’ Accuracy 101
5.6.3 Evaluation of Ranking Quality . 104
5.6.4 Discussion . 106

5.7 Related Work . 106
5.8 Chapter Summary . 108

6 Process Mining Techniques Applied: Data Properties and Opportunities 111
6.1 Introduction . 111
6.2 Data Properties and Process Mining Techniques 112
6.3 A Sample Event Log . 115
6.4 Process Mining Techniques Applied . 116

6.4.1 Model Discovery . 116

CONTENTS xiii

6.4.2 Trace Clustering . 122
6.4.3 Conformance Analysis . 124
6.4.4 Performance Analysis . 127

6.5 Chapter Summary . 130

7 Data-Aware Process Oriented Querying 131
7.1 Introduction . 131
7.2 Systematic Literature Review . 133
7.3 DAPOQ-Lang . 138

7.3.1 Syntax . 140
7.3.2 Semantics . 146

7.4 Implementation & Evaluation . 151
7.5 Application / Use Cases . 154

7.5.1 Business Questions in Process Mining 154
7.5.2 Exporting Logs . 156
7.5.3 Specialized Sublogs . 157
7.5.4 Metrics, Artifacts & Provenance 160
7.5.5 DAPOQ-Lang vs. SQL . 162

7.6 Chapter Summary . 164

8 Case Study: Process Mining on a Health Information System 165
8.1 Introduction . 165
8.2 From Database to Event Log in Six Commands 166

8.2.1 Data Exploration . 167
8.2.2 Data Schema Discovery . 169
8.2.3 Data Extraction . 172
8.2.4 Event Discovery . 173
8.2.5 Case Notion Discovery . 174
8.2.6 Event Log Building . 178

8.3 Results . 180
8.4 Data Querying . 185
8.5 Chapter Summary . 188

9 Conclusion 191
9.1 Contributions . 191

9.1.1 Data Extraction . 192
9.1.2 Event Log Building . 193
9.1.3 Data Querying . 193

9.2 Limitations and Open Issues . 193
9.2.1 Data Extraction . 194
9.2.2 Event Log Building . 194
9.2.3 Data Querying . 195

9.3 Future Work . 196
9.3.1 Data Extraction . 196
9.3.2 Event Log Building . 197

xiv CONTENTS

9.3.3 Data Querying . 198
9.3.4 Beyond Data Preprocessing . 198

9.4 Reflection . 199

A Mapping from Data Sources to OpenSLEX 201
A.1 Common Definitions to the three Environments 202
A.2 Database Redo-Logs: Formalization . 204
A.3 In-Table Versioning: Formalization . 204
A.4 SAP-style Change Table: Formalization 206
A.5 Common Meta-Model Mapping for the three Environments 207

Bibliography 211

Summary 223

Acknowledgements 225

Curriculum Vitae 227

SIKS dissertations 231

List of Figures

1.1 An overview of the P M 2 methodology [114]. 2
1.2 Different event logs that can be built depending on the selected case

notion. 4
1.3 Directly-follows graph based on the event log in Table 1.1. 5
1.4 Process tree discovered with Inductive Miner [62] based on the event

log in Table 1.1. 5
1.5 Deviations displayed on top of a process tree (discovered with Inductive

Miner [62]) based on the event log in Table 1.1. 6
1.6 Performance metrics (sojourn time) displayed on top of a process tree

(discovered with Inductive Miner [62]) based on the event log in Table 1.1. 7
1.7 Space of events obtained from a data store. 9
1.8 A case as a path through the space of events. 9
1.9 A process as a collection of cases. 9
1.10 The same event can belong to several cases of the same or different

processes. 9
1.11 Processes as different views on the same set of events. 9
1.12 Processes describing disjoint events. 9
1.13 Overview of the challenges when connecting data stores with process

mining techniques. 10
1.14 Overview of the contributions of this thesis, in the context of a pipeline

connecting databases with existing process mining techniques. 13

2.1 Example of a Petri net with initial marking start and final marking end. 22
2.2 Petri net discovered using the Inductive Miner [64] from the sample

event log in Table 1.1. 24
2.3 Conformance checking result from the alignment of the Petri net in

Figure 2.2 with the event log in Table 1.1. 24
2.4 Legend to interpret conformance checking results. 25
2.5 Legend to interpret performance analysis results. 25
2.6 Metrics displayed per node in a Petri net with performance analysis

results. 25
2.7 Performance information resulting from the alignment of the Petri net

in Figure 2.2 with the event log in Table 1.1. 26

3.1 Data gathering from several systems to a meta-model 28

xv

xvi LIST OF FIGURES

3.2 Data schema of the example database . 30
3.3 Diagram of the meta-model at a high level of abstraction 34
3.4 ER diagram of the OpenSLEX meta-model. The entities have been

grouped into sectors, delimited by the dashed lines. 40
3.5 Diagram of an instance of the OpenSLEX meta-model. 42
3.6 Screenshot of the meta-model inspector tool 43

4.1 Meta-model completion in the three evaluated environments 51
4.2 Input scenarios to complete meta-model sectors 52
4.3 Data model of the redo-log dataset as obtained from the populated

OpenSLEX file . 57
4.4 PADAS tool settings to convert a redo-log dataset into a populated

meta-model . 58
4.5 Example of in-table versioning and its transformation into objects and

versions . 59
4.6 Data model of the in-table versioning dataset as obtained from the

populated meta-model . 61
4.7 RapidMiner workflow to convert an in-table versioning dataset in order

to populate the OpenSLEX meta-model 62
4.8 Example of SAP change tables CDHDR and CDPOS 63
4.9 General view of the data model of the SAP dataset as obtained from

the populated meta-model. Due to the size of the data model, the
attributes or the tables have been omitted from this graph. 64

4.10 Detail of the data model of the SAP dataset as obtained from the
populated meta-model . 65

4.11 RapidMiner workflow to connect to an SAP database and extract the
content of all the tables . 65

4.12 RapidMiner subprocess to extract each table when connecting to a SAP
database . 65

4.13 RapidMiner workflow to populate the meta-model based on SAP dataset. 66
4.14 The link between different data models through tables representing a

common concept (CUSTOMER_A and CUSTOMER_B) by means of
a link table (CUSTOMER_LINK) . 67

4.15 Merging method to map versions of objects belonging to classes of
different data models (class A and class B) through a linking class
(class Link) . 67

4.16 Merging method to map versions of multiple objects belonging to classes
of different data models (class A and class B) through a linking class
(class Link). In this case, the related objects change through time . . . 68

4.17 Fragment of resulting populated meta-model 69
4.18 Analysis workflow to process the three resulting populated meta-models 73
4.19 Process mining analysis subprocess . 73
4.20 Discovered model and deviations for the redo-log dataset 74
4.21 Performance analysis of the model for the redo-log dataset 75
4.22 Conformance analysis of the model for the redo-log dataset 75

LIST OF FIGURES xvii

4.23 Discovered model & deviations for the in-table versioning dataset . . . 76
4.24 Performance analysis of the model for the in-table versioning dataset . 76
4.25 Conformance analysis of the model for the In-table Versioning dataset 77
4.26 Discovered model & deviations for the SAP dataset 78
4.27 Performance analysis of the model for the SAP dataset 78
4.28 Conformance analysis of the model for the SAP dataset 78
4.29 Social network for the SAP dataset . 79

5.1 Example of database schema types: (a) star, (b) snowflake, and (c)
arbitrary. The edges represent relationships, i.e., a foreign key in a
table (source or the edge) pointing to a unique key in another table
(target of the edge). 82

5.2 General view of the data model of the SAP dataset (the table attributes
have been omitted). 85

5.3 Detail of the data model of the SAP dataset. EKKO and EKPO tables
refer to purchase documents, while EBAN contains information about
purchase requisitions. 86

5.4 Sample of a case notion, represented as an annotated rooted tree. . . . 88
5.5 Links between objects of classes EKET (a1, a2), EBAN (b1, b2),

EKKO (c1, c2, c3), and EKPO (d1, d2, d3, d4). The objects have
been grouped in two sets, corresponding to the case identifiers com-
puted for the case notion of Figure 5.4. 88

5.6 Sample of beta distribution curves for different values of the α and β

parameters. 93
5.7 Comparison of mean absolute error (MAE) for the predictors on the

three normalized log properties. 102
5.8 Comparison of absolute error for the three normalized log properties

per predictor. The scale is logarithmic . 103
5.9 NDCG@10 per ranker given different combinations of α and β values. . 105

6.1 Landscape of the process mining techniques proposed in Table 6.1 with
the corresponding input/output dependencies. 115

6.2 Process tree discovered by Inductive Miner. 118
6.3 Data causal net discovered with the Data-aware heuristic miner show-

ing one of the discovered data guards. 119
6.4 Process model discovered by the Statechart workbench with the activ-

ity Make Booking showing a nested subprocess (still collapsed). 120
6.5 Process model discovered by the Statechart workbench with the activ-

ity Make Booking showing two nested activities, one of them duplicated.120
6.6 Social network discovered by the Handover-of-Work Social Network

miner. The nodes represent different resources involved in the execu-
tion of the process. 121

6.7 Clusters discovered by the Log to Model Explorer tool on the sample
event log. 122

xviii LIST OF FIGURES

6.8 Details of the first cluster discovered by Markov clustering based on
the attribute payment_issue. 123

6.9 Details of the second cluster discovered by Markov clustering based on
the attribute payment_issue. 124

6.10 Detailed view of alignments per trace on the sample event log with
respect to a discovered Petri net. 125

6.11 Petri net showing enhanced conformance information based on the sam-
ple event log. 126

6.12 Conformance details for activity Update Customer on the model shown
in Figure 6.11. 126

6.13 Conformance checking result on the sample event log and a data Petri
net using the ProM plug-in Multi-perspective process explorer. 127

6.14 Performance metrics computed based on the alignment of an event log
and a Petri net. 128

6.15 Summary of the results of a context-aware process performance analysis
on the sample event log. 129

6.16 Description of the observation detected by the context-aware process
performance analysis plug-in. 129

6.17 Boxplot of the differences in terms of duration for activity instances of
Make Booking with respect to the value of the attribute payment_issue.129

7.1 Pipeline of the systematic review process 133
7.2 Distribution per year of the related work as a result of the first query

on Scopus. 134
7.3 DAPOQ-Lang types hierarchy in UML notation. Arrows indicate sub-

type relations. 139
7.4 Syntax tree for DAPOQ-Lang Query 7.1. 152
7.5 Benchmark of queries run with DAPOQ-Lang, DAPOQ-Lang with

disk-based caching, and SQL on an SQLite backend. Note that the
vertical axis is logarithmic. 153

7.6 Process model corresponding to 4 traces selected by Query 7.1 164

8.1 First case notion in the ranking for the OK cluster, with dbo.OK_OK-
INFO as root class. It reflects the process of surgery room appointments.177

8.2 Second case notion in the ranking for the OK cluster, with dbo.OK_-
OKROUTE as root class. It reflects the process of surgery room ap-
pointments. 177

8.3 Third case notion in the ranking for the OK cluster, with dbo.OK_-
OKANNULE as root class. It reflects the process of surgery room
appointment cancellation. 177

8.4 First case notion in the ranking for the AGENDA cluster, with dbo-
AGENDA-AFSPRAAK as root class. It reflects the process of agenda
appointments between patients and doctors. 178

LIST OF FIGURES xix

8.5 Second case notion in the ranking for the AGENDA cluster, with dbo-
AGENDA-BEPALING as root class. It reflects the process of agenda
appointments between patients and doctors combined with information
about waiting lists. 178

8.6 Third case notion in the ranking for the AGENDA cluster, with dbo-
OK-AGENDA as root class. It reflects the process of agenda appoint-
ments between patients and doctors combined with information about
waiting lists and locations. 178

8.7 First case notion in the ranking for the PATIENT cluster, with dbo-
PATIENT-MERGELOG as root class. 179

8.8 Second case notion in the ranking for the PATIENT cluster, with dbo-
PATIENT-PATLAST as root class. 179

8.9 Third case notion in the ranking for the PATIENT cluster, with dbo-
PATIENT-MERGELOG as root class. 179

8.10 Process model mined with the Inductive Miner based on the event log
of cluster OK corresponding to the case notion in Figure 8.1. 182

8.11 Process model mined with the Inductive Miner based on the event log
of cluster AGENDA corresponding to the case notion in Figure 8.5. . . 183

8.12 Process model mined with the Inductive Miner based on the event log
of cluster PATIENT corresponding to the case notion in Figure 8.7. . . 185

8.13 Process model mined with the Inductive Miner based on the event log
of cluster OK corresponding to the result of Query 8.7. 187

9.1 Overview of the contributions of this thesis, in the context of a pipeline
connecting databases with existing process mining techniques. 192

A.1 Mapping of the elements of each of the three environments to the
OpenSLEX meta-model. 202

List of Tables

1.1 Example of an event log obtained from the database of a ticket selling
system. 3

4.1 Fragment of a redo-log: each row corresponds to the occurrence of an
event . 54

4.2 Fragment of a redo-log: each row corresponds to the occurrence of an
event . 55

4.3 Redo-log dataset transformation to populate the OpenSLEX meta-model 56
4.4 In-table versioning dataset transformation to populate the OpenSLEX

meta-model . 60
4.5 SAP dataset transformation to populate the OpenSLEX meta-model . 63
4.6 Parameters to query the three different populated meta-models with

the same query . 72
4.7 Query results for the three different populated meta-models 72

5.1 Sample object, version and event identifiers for the classes involved in
the case notion. 87

5.2 Case identifiers and final traces built from the sample dataset, accord-
ing to each of the three case notions. 91

5.3 Top 8 discovered case notions, sorted by score with parameters (αSP = 2,
βSP = 1, αLoD = 4.16, βLoD = 1, αAE = 1.28, βAE = 1.53, wsp = 0.3, wlod =
0.3, and wae = 0.3). The α and β parameters have been estimated
based on desired min, max, and mode values for the corresponding
beta distribution (LoDmi n = 2, LoDmax = 10, LoDmode = 4, AEmi n = 4,
AEmax = 30, and AEmode = 8). The values for SP, LoD, and AE have
been scaled. 96

5.4 Features used to compute upper and lower bounds for each log metric. 100
5.5 Details about the SAP dataset used during the evaluation. 101
5.6 Features used to predict log “interestingness”. 102

6.1 Attributes required (R), optional (O), or ignored (-) for the input data
of different process mining techniques. 113

6.2 Example of an event log obtained from the database of a ticket selling
system. 117

xxi

xxii LIST OF TABLES

7.1 Comparison of features for the references at the end of the systematic
review. 137

7.2 Relations in Allen’s interval algebra. 142
7.3 Size of datasets. 153
7.4 Types of BPM professionals, according to [86], and relation to querying

in process mining. 155

8.1 Some statistics obtained querying the source database before the ex-
traction. 168

8.2 Discovered unique and foreign keys for each cluster of tables. 172
8.3 Result of the data extraction phase for each cluster. Objects and object

versions coincide in number given the direct transformation from rows
to object versions. Relations represent foreign key instances. 173

8.4 Results of the event discovery task. The discovered event definitions
provide a basic pattern (timestamp, activity name) in order to perform
the event extraction. 174

8.5 Parameters used during the case notion discovery and recommendation
step. 176

8.6 Case notions discovered for each cluster. 176
8.7 Distribution of discovered activities and events per class for the PA-

TIENT cluster. 179
8.8 Details on the event logs computed for each of the three top-ranked

case notions per cluster. Predicted vs. actual values per metric are
displayed. 180

Swarm hanging from a branch.
“Cours complet d’apiculture”, Georges de

Layens and Gaston Bonnier, 1897

1
Introduction

The goal of process mining is to analyze event data of business processes in order to
obtain insights into the behavior and execution of processes, such as the most common
paths, deviations, performance measurements, etc. In order to obtain these insights,
process mining techniques rely on the existence of event logs.

In reality, however, event logs are not always readily available. In fact, it is
almost never the case that event logs are generated and stored in the desired format
ready for analysis. In general, obtaining event logs is a very time consuming and not
straightforward task that can require the involvement of business analysts, domain
experts, IT specialists, and database administrators. In many cases, up to 80% of
the time and effort, and 50% of the cost is spent during the data extraction and
preparation phases [121]. Far from the common belief, the construction of event logs
is not a one-time task. As shown in Figure 1.1, it is a manual and iterative process that
starts with a data exploration phase, continues with repeated event log extractions
and mining, and ends with the desired event log that contains the necessary features
and cases in order to carry out the desired process mining analysis. The variety of
systems used in organizations adds difficulty to the event log extraction task, forcing
the analysts to develop ad-hoc queries and perform data preprocessing specifically
tailored to each situation.

The focus of this thesis is to research methods to extract event data and support
the user in the process of generating event logs suitable for process mining analysis. In
this chapter, first, we provide an introduction to process mining in Section 1.1. In Sec-
tion 1.2 we focus on process mining in the context of databases. Section 1.3 presents
the challenges to face when dealing with databases in a process mining project. Fi-
nally, we list the contributions of this thesis and its structure in Section 1.4.

1

2 Introduction

Initialization

Analysis iterations

Analysis iterations

Analysis iterations

1. Planning

2. Extraction
3. Data

processing

4. Mining
& Analysis

5. Evaluation
6. Process

Improvement
& Support

Discovery

Conformance

Enhancement

Event
logs

Improve-
ment ideas

Event
Data

Information
System

Process
Models

Performance
findings

Compliance
findings

StageOutput /
Input

Research
questions

Refined/new
research
questions

Analytics

Analytic
models

pppppp

Business
experts

Process
analysts

Figure 1.1: An overview of the P M2 methodology [114].

1.1 Event Data and Process Mining
The field of process mining offers a wide variety of methods to analyze event data.
Process discovery, conformance and compliance checking, performance analysis, pro-
cess monitoring and prediction, and operational support are some of the techniques
that process mining provides to better understand and improve business processes.
Most of these techniques rely on the existence of an event log. Section 1.1.1 provides
details on what event data is and how event logs can be built. Section 1.1.2 gives an
introduction to process mining and some of the most common types of analysis that
can be performed.

1.1.1 Event Data
Event data is the fuel for process mining. It provides information about the execu-
tion of all kinds of processes and enables us to analyze what happened, when, and,
sometimes, in what context. This kind of data can be obtained from many sources,
such as information system logs, databases, and even paper records. In the scope of
this thesis, we will focus on event logs obtained from databases.

Events are the smallest pieces of event data that we can use to perform a process
mining analysis; they represent the occurrence of a specific action. An event is usually
characterized by three basic attributes: a timestamp, an activity name, and a case
identifier. The timestamp indicates when the event occurred. The activity name gives
an indication of what kind of activity was performed. Finally, a case identifier tells
us to which instance of the underlying process this event belongs. The timestamps
of a collection of events provide some sort of order, while the case identifiers provide

1.1 Event Data and Process Mining 3

Table 1.1: Example of an event log obtained from the database of a ticket selling system.

Event Case CustomerID BookingID TicketID Activity Time stamps
1 1 101 Insert Customer 2014-11-27 15:55:35
2 1 101 201 Make Booking 2014-11-27 15:58:23
3 2 102 Insert Customer 2014-11-27 15:59:10
4 1 201 039 Update Ticket 2014-11-27 16:03:25
5 1 101 Update Customer 2014-11-27 16:20:13
6 2 102 Update Customer 2014-11-27 16:22:17
7 3 103 203 Make Booking 2014-11-27 17:12:50
8 3 203 055 Update Ticket 2014-11-27 17:15:22
9 2 102 202 Make Booking 2014-11-27 17:23:45

10 2 202 073 Update Ticket 2014-11-27 17:55:15
11 3 203 084 Update Ticket 2014-11-27 18:07:50
12 3 202 065 Update Ticket 2014-11-27 18:13:32
13 4 104 Insert Customer 2014-11-28 10:12:46
14 4 104 Update Customer 2014-11-28 10:20:35
15 5 105 Insert Customer 2014-11-28 11:38:13
16 5 105 205 Make Booking 2014-11-28 12:01:15
17 5 205 061 Update Ticket 2014-11-28 12:02:05
18 4 104 204 Make Booking 2014-11-29 22:40:21
19 4 204 023 Update Ticket 2014-11-29 22:45:12
20 4 204 048 Update Ticket 2014-11-29 23:01:51
21 5 105 Update Customer 2014-11-29 23:05:10
22 4 204 032 Update Ticket 2014-11-29 23:15:28
23 6 106 Update Customer 2014-11-30 13:34:26
24 6 106 206 Make Booking 2014-11-30 13:38:14
25 5 205 017 Update Ticket 2014-11-30 14:45:08
26 6 206 020 Update Ticket 2014-11-30 14:56:42
27 6 206 021 Update Ticket 2014-11-30 15:10:45
28 6 206 022 Update Ticket 2014-11-30 15:25:36
...

a way to correlate events per process instance or trace. Activity names are typically
used by miners to discover the activities (or transitions) that belong to the discovered
process model.

Table 1.1 shows an example of an event log corresponding to a ticket selling sys-
tem. We see several events that correspond to actions performed by the system
such as customer insertions (“Insert Customer”), customer data changes (“Update
Customer”), bookings (“Make Booking”), and ticket reservations (“Update Ticket”).
Also, we see that each event has a corresponding timestamp. However, when it comes
to case identifiers, several options are left open. Figure 1.2 shows four different event
logs that can be built using the events in Table 1.1 when considering different case
notions. When customer identifiers (CustomerID) are used to correlate events, we
obtain the traces in Figure 1.2.a where each trace contains events belonging to the
same customer. Another option is to group the events based on the booking they
refer to (BookingID) resulting in the event log in Figure 1.2.b. Considering the ticket
identifier (TicketID) as the case notion we obtain the event log shown in Figure 1.2.c

4 Introduction

where every trace refers to a unique ticket update. However, combining customer and
booking identifiers provides a more comprehensive view of the process, resulting in the
event log depicted in Figure 1.2.d. Depending on which field is chosen, different event
logs will be constructed and, therefore, different process models will be discovered.

Figure 1.2: Different event logs that can be built depending on the selected case notion.

1.1.2 Process Mining
The aim of process mining [109] is to analyze event data in order to provide insights
into the execution of processes in reality. Many techniques can be used, depending on
the insights we want to obtain and the questions we need to answer. Process mining

1.1 Event Data and Process Mining 5

techniques can be classified according to their relation to three main tasks: process
discovery, conformance checking, and process enhancement.

Process discovery

Process discovery techniques focus on discovering process models that describe the
behavior of systems as has been observed in event data. Different algorithms use
different representations, each of them having different strengths. Figure 1.3 shows
the result of constructing the directly-follows graph based on the 6 traces in Table 1.1.
We see patterns like the repetition of “Update Ticket” several times per trace and the
fact that most of the times it is preceded by the execution of “Make Booking”.

Figure 1.3: Directly-follows graph based on the event log in Table 1.1.

However, the previous model does not provide clear execution semantics, since
there is no information about whether splits in the model are actually choices or
parallel execution paths. Other algorithms are able to discover these constructs and
provide a better understanding of the behavior of the process. Figure 1.4 shows a
process tree discovered by the Inductive Miner [62]. There, we see that “Update
Ticket” is executed in parallel with “Update Customer” and “Make Booking”. This
means that these activities can be executed in any order.

Figure 1.4: Process tree discovered with Inductive Miner [62] based on the event log in
Table 1.1.

6 Introduction

A discovered process model can be useful on its own, as a representation of a
process based on the observed event data. Also, it can be used, together with event
data, as the input for other process mining tasks, such as conformance checking or
process enhancement.

Conformance checking

Conformance and compliance checking deals with the problem of comparing the ex-
pected behavior with the actual observed behavior of a process. It is rarely the case
that the observed behavior of processes in reality exactly matches the expected be-
havior. This can be due to many causes: human error, flexible processes, exceptional
cases not considered by the initial design, noise, fraud, etc.

One of the challenges when tackling the conformance and compliance problem
is to correctly relate event data to the process model used as a guideline. Another
challenge is to provide meaningful diagnostics to the user by means of reliable metrics.
Alignment computation [111] is a method that deals with this problem, providing
insights into the differences between observed behavior and reference process models.

Figure 1.5: Deviations displayed on top of a process tree (discovered with Inductive
Miner [62]) based on the event log in Table 1.1.

Figure 1.5 shows a model discovered with the Inductive Miner, on top of which
deviations have been plotted. These deviations, represented as red dashed arrows,
show alternative paths taken during the execution of the process (as observed in the
event data) that were not possible in the reference process model. The first read arc
at the top represents one alternative path, initially not supported by the model, that
was taken in the event log by skipping the execution of the activities Make Booking,
Update Ticket, and Update Customer. The second red arc (with a frequency of 7),
represents the execution of activities in the event log that were not supported by the
model at that point. The detection of these alternative paths is possible thanks to the
application of conformance checking, which is able to match elements of the process
model to the event data and identifies the observed behavior that cannot be described
by the reference model.

1.2 Process Mining on Databases 7

Process enhancement

Process enhancement methods use event data to provide additional diagnostics to
improve existing process models. Their aim is to change or extend a process model.
For instance, process enhancement can be used to repair a reference model in order
to capture observed behavior that was not originally allowed. Figure 1.5 shows an
example of this, enabling alternative paths that the original model did not consider.
Another use of process enhancement is the representation of performance diagnostics
on top of a model. Figure 1.6 shows performance metrics (sojourn time) for a discov-
ered process model based on recorded event data. Using different metrics allows the
identification of bottlenecks, throughput times, frequencies, etc.

Figure 1.6: Performance metrics (sojourn time) displayed on top of a process tree (discovered
with Inductive Miner [62]) based on the event log in Table 1.1.

1.2 Process Mining on Databases
Process mining analysis, when applied on databases, pursues the same goal as process
mining on any other environment. However, there are several characteristics that
make this environment particularly challenging and promising at the same time:

• Normally, several processes coexist in the scope of a single database. One
possibility is that these processes are disjoint in terms of the events that relate
to them (Figure 1.12). It can also be the case that they are interconnected
and share some data aspect, which can be analyzed together (Figure 1.10).
Another option is that each process represents a different view on the same
data (Figure 1.11).

• The notion of event log and trace is not strictly defined, especially if the system
under study is not process-aware. Data objects and implicit events are stored
in a database, but it is rare to find them explicitly correlated in traces (Fig-
ure 1.7). The analyst is free to choose how to correlate them to build event
logs (Figures 1.8 and 1.9). Event correlation in this context is enabled by data
relations implicit in the database schema, but the challenge is to decide which

8 Introduction

of the multiple relations to take into account. Also, many case notions can be
chosen, each one representing a different view on the data. Table 1.1 shows
an example of a sparse set of events where, in order to be able to correlate all
the events belonging to a full process instance, we need to consider the transi-
tive relations between tickets and customers by means of bookings. This is an
additional challenge present in most database contexts.

• Event data might not be explicitly recorded, and needs to be extracted and
interpreted before it can be analyzed. This is the case when timestamps, activity
names, resource, and life-cycle data appeared scattered through the data model.
We find this problem too when events are not recorded in the tables, but stored
by the RDBMS as a transaction log (or redo-log) at a lower level, in binary or
plain files.

• Data incompleteness is a common issue when dealing with real-life datasets.
This issue becomes critical when important data attributes are missing. This
is the case when we find timestamps that indicate the occurrence of an event,
without knowing what is the corresponding activity name. Also, timestamps
can be missing, either always or sometimes, which represents another example
of event data incompleteness.

• It is often the case that data relations are not explicitly defined in the database
schema, but the constraints are being kept at the application level. If the ap-
plication is proprietary and documentation is not available, we need to discover
these relations before the events can be correlated.

• There is a huge variety of database vendors and systems. Each of them uses
different technologies and records data in a different way. Despite the existence
of SQL as the de facto standard among query languages, each database sys-
tem implements a dialect of SQL, adding new commands or introducing syntax
variations with respect to the SQL specification.

All these aspects make the application of process mining on databases a challenging
but potentially rewarding task. The fact that, every day, almost every organization
stores large amounts of data about their business process instances in a structured
manner in databases, represents an extraordinary opportunity to bring process mining
to practice at a large scale. This thesis focuses on supporting the process of event
data extraction, event log building, and event data querying, based on the first two
guiding principles (GP1 and GP2) indicated in [110]. We follow these two guiding
principles to tackle the challenges faced when applying process mining on databases.
The next section explores these challenges more exhaustively.

1.3 Challenges in Process Mining on Databases
Over the last years, we have witnessed an increase of interest in the field of process
mining. Important academic developments took place, while at the same time many

1.3 Challenges in Process Mining on Databases 9

Figure 1.7: Space of events
obtained from a data store.

Figure 1.8: A case as a path
through the space of events.

Figure 1.9: A process as a
collection of cases.

Figure 1.10: The same event
can belong to several cases
of the same or different pro-
cesses.

Figure 1.11: Processes as dif-
ferent views on the same set
of events.

Figure 1.12: Processes de-
scribing disjoint events.

companies became aware of the business potential of process mining. As a result, a
number of commercial tools incorporating process mining capabilities became avail-
able to the market.

Despite these developments, several challenges remain an open question. An ex-
ample is the case of the data extraction and preparation phase. Nowadays, obtaining
event data and getting the right event logs is still one of the most time-consuming
tasks in any process mining project. The process mining manifesto [110], published
by the IEEE Task Force on Process Mining, presents several guiding principles and
challenges in the field. This section lists some challenges relevant in the scope of this
thesis, and proposes a few additional ones of particular importance in database envi-
ronments. All of these challenges are related to the problems of event data extraction,
event log building, and event data querying, as depicted in Figure 1.13.

1.3.1 Challenge 1: Finding, Merging, and Cleaning Event Data
This challenge corresponds to Challenge C1 as mentioned in [110]. According to C1,
extracting event data in a form suitable for process mining represents a considerable
effort. Some issues to face when extracting event data are:

10 Introduction

Figure 1.13: Overview of the challenges when connecting data stores with process mining
techniques.

• Distribution of data across various sources: the information needs to be retrieved
and merged in order to be analyzed.

• Nature of data: usually, data found in databases are “object centric” instead
of “process centric”. However, processes usually involve events that belong to
objects of different classes.

• Incompleteness of event data: this makes it difficult to directly relate events to a
process instance. Event timestamps may be missing as well. Data interpolation
and inference may be necessary to derive the missing pieces of information.

• Outliers in data: extracted event logs may contain exceptional behavior. How
to identify this behavior and classifying it either as noise or exceptions worth of
further analysis is a question to be answered.

• Granularity of events: very low-level events are often too detailed for the pur-
pose of the analysis, while very high-level events hide interesting and complex
behavior. Very fine-grained timestamps can be mixed with coarse date infor-
mation as well, complicating the ordering of events and, therefore, the analysis.

• Context of event occurrence: this context may help to explain the behavior
observed in data. If not taken into account at the data extraction phase, im-
portant details can be missing. However, incorporating excessive contextual
information can complicate the analysis, introducing too many features.

1.3 Challenges in Process Mining on Databases 11

These problems need to be addressed by new tools or techniques, aimed at ob-
taining high-quality event logs. This can only be achieved by “treating event data as
first-class citizens” (Guiding Principle GP1 [110]).

1.3.2 Challenge 2: Dealing with Complex Event Logs Having Diverse
Characteristics

This challenge corresponds to Challenge C2 as mentioned in [110]. C2 states that
event logs may have very different characteristics in terms of size, quality, granularity,
structure, etc. These aspects contribute to the difficulty of the analysis. Very large
event logs may pose scalability issues, while very small event logs do not provide
enough evidence to obtain reliable results. Also, the structure plays an important
role in the complexity of an event log, independently of its size. High variability in
structure among the traces contributes to more unstructured process models, more
difficult to interpret than other logs in which most of the cases follow the same path.
So far, organizations deal with these issues by investing a considerable amount of time
and work to identify event logs suitable for process mining analysis.

1.3.3 Challenge 3: Cross-Organizational Mining
This challenge corresponds to Challenge C7 as mentioned in [110]. C7 states that
it is common to find processes that span across several organizations. It is often
the case that each participant handles a part of the whole process at hand. Event
logs may become available for analysis from each organization involved. However,
focusing on each of these logs individually does not help to understand the process
as a whole. The analysis of end-to-end cross-organizational processes requires event
logs from different sources to be merged. Correlating events across organizations is
not a trivial task and still represents an open challenge to apply process mining in
this kind of scenario.

1.3.4 Challenge 4: Multi-Perspective Event Log Building
Modern organizations are driven by many processes. Some of these processes can
be completely disjoint (procurement vs. salaries), while others can intersect in some
aspects (procurement vs. invoicing). In the latter case, the extracted event data
may belong to several processes and, in order to analyze each one separately, we
need to adopt the right perspective. Choosing one or another perspective requires a
different way to correlate the events to build event logs. Organizations achieve this by
means of trial and error, going back to the original source of data and rebuilding logs
from different perspectives by manually specifying correlation rules and executing
complicated queries. It is not trivial to define a general approach that facilitates
multi-perspective log building and enables process mining techniques to show common
points of intersection between coexisting processes.

12 Introduction

1.3.5 Challenge 5: Improve Usability for Non-Experts

This challenge corresponds to Challenge C10 as mentioned in [110]. According to
C10, one of the goals of process mining is to provide “living process models”. These
models must hold a link with event data, so new data can be used to discover new
behavior, and to remain up-to-date with the current state. All this requires easy-to-
use, intuitive interfaces and automatic methods that hide the complexity from the
user. When it comes to databases, usability is important due to the vast amount of
information to be analyzed by users. Additionally, the lack of homogeneity in terms of
structure complicates the development of tools to automatically extract and process
the data.

It is necessary to develop new techniques that focus on the automation of data
extraction and log building, assisting the user on this tedious task, and requiring as
little intervention and manual work as possible.

1.3.6 Challenge 6: Fill the Domain Knowledge Gap in Event Log Ex-
traction

Nowadays, event log extraction from databases is driven mainly by domain knowledge.
This means looking at specific attributes of the data to extract events and correlating
them in order to build event logs. In the cases when such knowledge is not available, it
is necessary to use intuition or explorative methods to identify event information and
case notions. Some of these explorative methods require a lot of manual work. This
problem becomes intractable when tackling databases that involve tens, hundreds, or
thousands of tables. In these cases, manual explorative approaches are inefficient, due
to the huge cost in time, and ineffective, given that important data can be missed. New
approaches are needed to fill the domain knowledge gap in database environments, in
order to enable automatic extraction of data with some guarantees.

1.3.7 Challenge 7: Question-Driven Log Extraction

Event log extraction is not a trivial task, especially in the context of databases, where
many processes and data perspectives can be mixed in a single and complex data
schema. Extracting and correlating all the existing events as a whole often results in
extremely complex event logs, where behavioral patterns are mixed into a meaningless
and difficult to interpret “spaghetti” process. To avoid this, during the data extraction
phase, we should focus on particular perspectives, cases, or tables, in order to answer
concrete questions. This falls in line with the Guiding Principle GP2 [110], which
says that “log extraction should be driven by questions”.

Without concrete questions, it becomes very hard to obtain meaningful event data,
especially within a database context where hundreds or thousands of tables can be
involved. It is necessary to develop techniques able to query data in order to select
the relevant events for a more effective analysis and more meaningful results.

1.4 Contributions and Structure of this Thesis 13

Figure 1.14: Overview of the contributions of this thesis, in the context of a pipeline con-
necting databases with existing process mining techniques.

1.4 Contributions and Structure of this Thesis
In this section, we list the main contributions of this thesis and provide an outline of
the chapters with a short summary of their content.

1.4.1 Thesis Contributions
The contributions of this thesis can be grouped into three blocks according to the
phase of a process mining project to which they relate: data extraction, event log
building, and data querying. Figure 1.14 shows a diagram of the pipeline connecting
the source databases to the existing process mining techniques. When compared to
the situation depicted in Figure 1.13, we see that contributions have been made at
several stages of the process. Contributions at the data extraction level focus on the
definition of a standard target format and on supporting the extraction from different
sources. With respect to event log building, contributions focus on assisting event log
generation from different perspectives. Finally, contributions on data querying aim
at supporting analysts to analyze data in a process mining context, e.g., to obtain
event logs that fit specific business questions. More details about the contributions
are provided below:

Data Extraction

The data extraction phase consists of the process of accessing, extracting, and trans-
forming the data to a standard format, i.e., all the operations to be performed before
we can start making sense out of the data. With respect to this phase, we present the
following contributions:

• A meta-model for process mining on databases (OpenSLEX) (Chapter 3, ad-
dresses challenges 1.3.1 and 1.3.2). This meta-model combines data and process
aspects in a single structure in order to capture a more comprehensive picture of
the system under study. At the same time, it serves as a standard format to de-
couple data extraction from later phases like event log building, data querying,
or process mining analysis.

14 Introduction

• Data extraction adapters for several environments (Chapter 4, addresses chal-
lenges 1.3.1, 1.3.2, and 1.3.3). The meta-model mentioned above is tested on
three different environments, presenting the mapping to the proposed meta-
model both formally and in practice. Domain knowledge about the architecture
of the source data is used during the data extraction phase in order to adapt it
to the proposed meta-model.

Event Log Building

The event log building phase deals with the issue of correlating events in order to
build traces and logs. This is an important phase, since there are many criteria to
group events together. A case notion defines the specific criteria to follow in order to
correlate two events together in the same trace. To help in carrying out this task, we
present the following contributions:

• Case notion discovery and recommendation (eddytools) (Chapter 5, addresses
challenges 1.3.4, 1.3.5, and 1.3.6). We propose a framework to assist the analyst
in the event log building phase by providing methods to discover and recommend
interesting case notions, and to build the corresponding event logs:

– Multiple perspectives on event data (Addresses Challenge 1.3.4). We pro-
pose a technique to define case notions based on the underlying data
schema, providing different ways to correlate events, and therefore mul-
tiple views on the data. This allows us to automatically define candidate
case notions based on the data schema at hand. Also, when domain knowl-
edge is available, custom case notions can be defined using this formalism.

– Automated event log building based on data schema (Addresses challenges
1.3.4 and 1.3.6). We provide an algorithm to build event logs given a case
notion and a dataset extracted from a database. The combination of this
algorithm with the proposed case notion discovery technique provides an
automated approach to event log building.

– Case notion recommendation framework (Chapter 5, addresses challenges
1.3.4, 1.3.5, and 1.3.6). We propose a method for case notion ranking
based on their potential “interestingness”. This reduces the computation
time, avoiding the generation of meaningless event logs. The goal is to help
analysts to focus on the most interesting views on the event data in the
exploratory phases of the analysis or at times when domain knowledge is
not available.

Data Querying

Data querying is a phase that can be performed at any moment, i.e., before and after
the data extraction, and before and after the event log building. When performed
before the data extraction, we need to query considering the original structure of
the data, as well as the specific system in which the data are stored, e.g., Oracle

1.4 Contributions and Structure of this Thesis 15

RDBMS. However, when performed after the extraction, we can assume a common
structure (in our case the proposed meta-model) regardless of the source of data. This
helps to standardize the querying process. In order to provide an easier and more
standard way to query data in the process mining context, we present the following
contribution:

• Data-aware process oriented query language (DAPOQ-Lang) (Chapter 7, ad-
dresses Challenge 1.3.7). With this query language we aim at simplifying the
query writing step when carrying out a process mining project. We provide a
set of constructs that makes it possible to write more compact and readable
queries, to obtain insights when exploring the data, and to build specialized
event logs exploiting domain knowledge about the data in an easier way.

1.4.2 Thesis Structure
This thesis is structured into 9 chapters, covering the following topics:

Chapter 1: Introduction. This chapter provides an introduction to the topic and aim
of this thesis. Challenges and contributions are discussed as well.

Chapter 2: Preliminaries. In this chapter, we introduce the basic mathematical no-
tation and formal definitions required to understand the rest of this thesis.

Chapter 3: OpenSLEX: A Meta-Model for Process Mining. We propose a meta-model
for process mining, especially focused on database environments, that combines data
and process aspects of an organization. This chapter is based on [40,42].

Chapter 4: OpenSLEX in Practice: Data Extraction and Querying. In this chapter,
we evaluate our meta-model on three different real-life environments. We provide the
adapters needed to extract and transform data in order to comply with the OpenSLEX
meta-model. We also performed a limited analysis of the extracted data as a sample
of the opportunities for analysis enabled by this technique. This chapter is based
on [38,40,42,44].

Chapter 5: Case Notion Discovery and Recommendation. We propose a method to
compute candidate case notions based on the schema of the database under study, as
well as a technique to predict the possible “interestingness” of the resulting event log
based on certain metrics. The accuracy of the prediction is evaluated with respect to
an established ground truth. This chapter is based on [39].

Chapter 6: Process Mining Techniques Applied: Data Properties and Opportunities.
In this chapter we present a survey of process mining techniques that can be applied
on event logs obtained from databases, according to the characteristics of the data at
hand. The aim is to provide a tease on the types of analyses that can be performed

16 Introduction

on the data obtained by the techniques that we presented in the previous chapters.

Chapter 7: Data-Aware Process Oriented Querying. We exploited the structure of
the OpenSLEX meta-model to create a query language focused on ease of use and
compactness. We provide a specification of the syntax and semantics, together with a
performance evaluation. The most common use cases are listed together with sample
queries that demonstrate the benefits of this query language. This chapter is based
on [41,43].

Chapter 8: Case Study: Process Mining on a Health Information System. The tech-
niques presented in previous chapters are tested in this case study on a healthcare
system. The whole process mining pipeline is presented, from the first contact with
the original database to the process mining analysis of the resulting event logs.

Chapter 9: Conclusion. We conclude this thesis with a summary of the achievements
and lessons learned, together with ideas for future work.

The honeybee: a, worker; b, queen; c, drone.
“Beekeeping: a discussion of the life of the honeybee

and of the production of honey”,
Everett Franklin Phillips, 1923 2

Preliminaries

In this chapter, we recall some basic mathematical concepts like sets, tuples, power-
sets, functions, partial functions, sequences, and multi-sets. Also, we present a notion
of database at a formal level, a description of the ETL (extract, transform, load)
process, and a formalization of event logs and Petri nets.

2.1 Notations
In this section, we introduce some basic mathematical concepts and notations, which
will be widely used across the chapters of this thesis.

Definition 1 (Set) A set is a well-defined, possibly infinite, unsorted collection of
distinct objects. The objects that belong to a set are called elements. A set is usually
denoted by a capital letter such as X, and it can be described listing its elements
between curly braces, e.g., X = {a,b,c}. We use ∈ to express that an element belongs
to a set, e.g., a ∈ X . An empty set is denoted by ;, and the cardinality of a set
(number of elements) is denoted by |X |. We can perform the following operations on
sets: union (X ∪Y), intersection (X ∩Y), and difference (X \ Y). A set X is a subset
of set Y (X ⊆ Y) when all the elements of X are included in Y. A set X is a strict
subset of Y (X ⊂ Y) if X is a subset of Y and they are not equal.

Definition 2 (Tuple) A tuple is a finite ordered list of elements. A tuple can be
expressed by listing its elements in order between parentheses, e.g., A = (a,b,c). Also,
it can be expressed as belonging to the Cartesian product of other sets, e.g., A = B ×C .

Definition 3 (Powerset) The powerset of a set X (P (X)) is the set of all possible
subsets of X, including X and the empty set (;), i.e., Y ∈P (X) ⇐⇒ Y ⊆ X .

17

18 Preliminaries

Definition 4 (Function and partial function) A function f from X to Y, maps an el-
ement in X to an element in Y, and is expressed as f ∈ X → Y . The domain of
f is X if for every element in X, f is defined and maps it to a value in Y, i.e.,
dom(f) = X ⇐⇒ ∀x ∈ X : f (x) ∈ Y . The range of f is the set of the images of all ele-
ments in the domain, i.e., range(f) = { f (x) | x ∈ dom(f)}. A partial function g ∈ X ̸→ Y
is a function whose domain is a subset of X, i.e., dom(g) ⊆ X , which means that g
does not need to be defined for all values in X.

Definition 5 (Sequence) For a given set A, A∗ is the set of all non-empty finite se-
quences over A plus the empty sequence. A non-empty finite sequence over A of
length n is a mapping σ ∈ {1, ...,n} → A. Such a sequence is represented by a string,
i.e., σ = 〈a1, a2, ..., an〉 where ai = σ(i) for 1 ≤ i ≤ n. |σ| denotes the length of the
sequence, i.e., |σ| = n.

Definition 6 (Multi-set (bag)) Given a finite set A, a multi-set M over A is a function
M : A →N. B(A) denotes the set of all multi-sets over a finite domain A. The size of
a multi-set is denoted as |M |, and is defined as |M | =∑

a∈A M(a).

A multi-set M over a set A is a set in which each element of A may occur multiple
times. An example multi-set can be expressed as M = [a,b2,c4] where a,b,c ∈ A,
M(a) = 1, M(b) = 2, and M(c) = 4.

2.2 Databases
Within the scope of this thesis, databases represent our main source of data. For this
reason, it is important to clearly define the assumptions made with respect to the
structure of the information that we can find in them. We assume that a relational
database will always comply with the following requirements:

• A data model is defined,

• There is a set of class/table names,

• There is a primary key defined for each class,

• A foreign key can only refer to an existing primary key,

• There must be a one-to-one mapping between the attributes of a foreign key
and the attributes of the primary key that it refers to.

Even if these requirements are fulfilled, they may not be available to the analyst.
In that case, some limitations exist with respect to the techniques that can be applied
to carry out a process mining project. In the coming chapters, we will propose ways
to overcome these limitations, and still be able to perform the analysis.

In this thesis, we deal with environments that use a relational database to store
all the relevant information. Therefore, all of them share some characteristics. In
further chapters we provide a formalization of a standard meta-model for storage of
data obtained from such sources. But first, Definition 7 formalizes the concept of
source data model for a certain relational database:

2.2 Databases 19

Definition 7 (Source Data Model) Assume V to be some universe of values. A source
data model is a tuple SDM = (C , A,classAttr,val,PK ,FK ,keyClass,keyRel,keyAttr,refAttr)
such that:

• C is a set of class names,

• A is a set of attribute names,

• classAttr ∈ C → P (A) is a function mapping each class onto a set of attribute
names. Each attribute a ∈ A must belong to the set of attributes mapped to one
class c ∈C . Ac is a shorthand denoting the set of attributes of class c ∈C , i.e.,
Ac = classAttr (c),

• val ∈ A →P (V) is a function mapping each attribute onto a set of values. Va =
val (a) is a shorthand denoting the set of possible values of attribute a ∈ A,

• PK is a set of primary and unique key names,

• FK is a set of foreign key names,

• PK and FK are disjoint sets, that is PK∩FK =;. To facilitate further definitions,
the shorthand K is introduced, which represents the set of all keys: K = PK ∪FK ,

• keyClass ∈ K →C is a function mapping each key name to a class. Kc is a short-
hand denoting the set of keys of class c ∈C such that Kc = {k ∈ K | keyClass (k) = c},

• keyRel ∈ FK → PK is a function mapping each foreign key onto a primary key,

• keyAttr ∈ K →P (A) is a function mapping each key onto a set of attributes, such
that ∀k ∈ K : keyAttr (k) ⊆ AkeyClass(k),

• refAttr ∈ (FK × A) ̸→ A is a function mapping each pair of a foreign key and an at-
tribute onto an attribute from the corresponding primary key, i.e., dom(refAttr) =
{(k, a) ∈ FK × A | a ∈ keyAttr(k)}, and ∀k ∈ FK : ∀a ∈ keyAttr(k) : (refAttr(k,a) ∈
keyAttr(keyRel(k)). Also, every attribute of the referred primary key must be
mapped to an attribute of the referring foreign key, i.e., ∀k ∈ FK : ∀a ∈ keyAttr(
keyRel(k)) : ∃a′ ∈ keyAttr(k) : refAttr(k,a′) = a. Finally, each attribute of the re-
ferred primary key can only be mapped to one attribute from each referring
foreign key ∀k ∈ F K : ∀a, a′ ∈ keyAttr(k) : refAttr(k,a) = refAttr(k,a′) =⇒ a = a′.

The following notations in Definition 8 will help us to express mappings and objects
in a compact way.

Definition 8 (Notation) Let SDM = (C , A,classAttr,val,PK ,FK ,keyClass,keyRel,keyAttr,
refAttr) be a source data model.

• MSDM = {map ∈ A ̸→V | ∀a ∈ dom(map) : map(a) ∈Va} is the set of mappings,

• OSDM = {(c,map) ∈ C ×MSDM | dom(map) = classAttr(c)} is the set of all possible
objects of SDM.

20 Preliminaries

Another aspect of databases is the concept of source object model. Definition 9
describes this concept, which corresponds to a snapshot of the database at a certain
moment in time.

Definition 9 (Source Object Model) Let SDM = (C , A,classAttr,val,PK ,FK ,keyClass,
keyRel,keyAttr,refAttr) be a source data model. A source object model of SDM is a
set SOM ⊆ OSDM of objects. U SOM (SDM) =P (OSDM) is the set of all object models of
SDM.

To ensure the validity of the source object model, i.e., the fulfillment of all the
constraints such as primary and foreign keys, we introduce the concept of valid source
object model in Definition 10.

Definition 10 (Valid Source Object Model) Assume SDM = (C , A,classAttr,val,PK ,FK ,
keyClass,keyRel,keyAttr,refAttr) to be a source data model. VSOM ⊆U SOM (SDM) is the
set of valid source object models. An object model SOM ∈ VSOM if and only if the
following requirements hold:

• ∀(c,map) ∈ SOM : (∀k ∈ Kc ∩FK : (∃(c ′,map′) ∈ SOM : keyClass(keyRel(k)) = c ′∧
(∀a ∈ keyAttr(k) : map(a) = map′(refAttr(k,a))))), i.e., referenced objects must exist,

• ∀(c,map), (c,map′) ∈ SOM : (∀k ∈ Kc∩PK : ((∀a ∈ keyAttr(k) : map(a) = map′(a)) =⇒
map = map′)), i.e., PK values must be unique.

For the remainder of this thesis, we assume that any database we deal with will
be defined by a data model according to Definition 7, and a valid source object model
as described in Definition 10. Also, incomplete data in the form of empty values is
allowed, as long as it does not conflict with the constrains set by the data model.
This means that primary and foreign key constraints must be satisfied.

2.3 ETL: Extract, Transform, Load
Extract, transform, load (ETL) [57] is a process commonly executed when working
with databases. It refers to the following steps involved in the preparation of data
from databases for analysis or querying:

1. Extract: data are extracted from homogeneous or heterogeneous data sources,
e.g., monolithic databases, and distributed databases with the same or different
structure,

2. Transform: data are transformed in order to be stored in the appropriate format
required for the purpose of analysis, e.g., data quality and consistency standards
are enforced, and data are normalized and merged,

3. Load: data are loaded in the final database, e.g., a data store or a data ware-
house.

2.4 Event Logs 21

ETL is a common process when dealing with data from different sources within
organizations to be integrated in a common data warehouse. The next chapter pro-
poses a meta-model to structure data obtained from databases in order to enable the
application of process mining techniques.

2.4 Event Logs
In this section we present the definition of event log as proposed in [109]. A process
consists of cases, and a case consists of events. Events within a case are ordered, and
can have attributes. Examples of typical attribute names are activity, time, costs,
and resource.

Definition 11 (Universes [109]) We define the following universes:

• ϵ denotes the set of all possible event identifiers,

• AN denotes the set of all possible attribute names,

• V denotes the set of all possible attribute values,

• A denotes the set of all possible activity names,

• I denotes the set of all possible process instance identifiers,

• TS denotes the set of all possible timestamps,

• CA denotes the set of all possible cases.

Definition 12 (Event, Attribute [109]) Let ϵ be the set of all possible event identifiers,
and AN the set of all possible attribute names. Events can be described by several
attributes, e.g. time of occurrence, resource involved, name of the performed activity,
etc. Given an event e ∈ ϵ and a name n ∈ AN, we say that #n(e) is the value of attribute
n for event e. If event e does not have attribute n, then #n(e) =⊥ (null value).

We define some shorthands for the most common, although optional, event at-
tributes:

• #activity(e) is the activity associated to event e,

• #time(e) is the timestamp of event e,

• #resource(e) is the resource associated to event e,

• #trans(e) is the transaction type, also known as life-cycle, associated to event e.

Some conventions apply for these attributes. In particular, timestamps should be
non-descending in the event log. Also, we assume the timestamp universe TS such
that #time(e) ∈ TS for any e ∈ ϵ.

22 Preliminaries

Figure 2.1: Example of a Petri net with initial marking start and final marking end.

Definition 13 (Case, trace, event log [109]) Let CA be the universe of all possible cases.
Cases have attributes. For any case c ∈ CA and name n ∈ AN : #n(c) is the value of
attribute n for case c. If c does not have an attribute named n, then #n(c) =⊥. Each
case has a mandatory attribute trace, #trace(c) ∈ ϵ∗.

A trace is a finite sequence of events σ ∈ ϵ∗ such that each event appears only once,
i.e., for 1 ≤ i < j ≤ |σ| : σ(i) ̸=σ(j).

An event log is a set of cases L ⊆ CA. If an event log contains timestamps, then
the ordering in a trace should respect these timestamps, i.e., for any c ∈ L, i and j
such that 1 ≤ i < j ≤ |ĉ| : #time(ĉ(i)) ≤ #time(ĉ(j)).

2.5 Process Models
An event log usually describes the observed behavior of a certain process. It is possible
to capture and abstract such behavior in a process model. A process model uses graphs
to describe the causal dependencies between the activities of a process.

Petri nets are one of the oldest and most well-studied process modeling languages.
The notation is simple and intuitive, yet powerful enough to allow us to model complex
structures. One important characteristic of Petri nets is that they are executable and
they support concurrency.

A Petri net can be formalized as a bipartite graph, consisting of places and tran-
sitions. Tokens can flow through the network following certain firing rules. The state
of a Petri net is determined by its marking, which captures the distribution of tokens
over places. The initial marking of a network determines its marking right before the
execution starts.

Definition 14 (Petri net [109]) A Petri net is a triplet N = (P,T,F) where P is a finite
set of places, T is a finite set of transitions such that P∩T =;, and F ⊆ (P×T)∪(T ×P)
is a set of directed arcs, called the flow relation. A marked Petri net is a pair (N , M)
where N = (P,T,F) is a Petri net and where M ∈ B(P) is a multi-set over P denoting
the marking of the net. The set of all marked Petri nets is denoted N .

Figure 2.1 depicts a sample Petri net, which can be formalized as follows: P =
{start, p1, p2, p3,end}, T = {a,b,c,d ,e}, and F = {(start, a), (a, p1), (p1,b), (p1,c), (b, p2),
(c, p3), (p2,d), (d , p3), (p3,e), (e,end)}.

2.6 Process Mining 23

Given a Petri net N = (P,T,F), we say that, for any x ∈ P ∪T , •x = {y |(y, x) ∈ F }
denotes the set of input nodes and x• = {y |(x, y) ∈ F } denotes the set of output nodes.
For a marking M of net N , a transition t ∈ T is enabled if each of its input places
•t contains at least one token, and it is denoted as (N , M)[t〉. If a transition t is
enabled, it can be fired. When a transition fires, one token is removed from each of
the input places •t and one token is put in each of the output places t•. The expression
(N , M)[t〉 denotes that t is enabled at marking M . (N , M)[t〉(N , M ′) denotes that firing
the enabled transition t results in marking M ′.

Given a marked Petri net (N , M0) with the initial marking M0 = [start], as shown
in Figure 2.1, we say that the empty sequence σ= 〈〉 is enabled in (N , M0), i.e., 〈〉 is
a firing sequence of (N , M0). The firing sequence σ = 〈a,b〉 is also enabled. Firing σ

results in marking [p2]. A marking M is reachable from the initial marking M0 if and
only if there exists a sequence of enabled transitions σ whose firings lead from M0 to
M .

In order to relate transitions in the Petri net to activities, we defined a labeled
Petri net.

Definition 15 (Labeled Petri net [109]) A labeled Petri net is a tuple N = (P,T,F, A, l)
where (P,T,F) is a Petri net as defined in Definition 14, A ⊆ A is a set of activity
labels, and l ∈ T → A is a labeling function.

Multiple transitions may be labeled equally. Each label, which we call activity,
represents the observable action. When a transition is not observable, it is labeled
with the reserved label τ, and is considered as a silent transition.

2.6 Process Mining
The concept of event log has been introduced in Section 2.4. Also, process models and
Petri nets have been presented in Section 2.5. In this section, we describe two of the
most important process mining tasks, process discovery and conformance checking.

2.6.1 Process Discovery
Process discovery is the task of discovering process models based on an event log. The
goal is to provide insights on the behavior of real-life processes. The contributions
of this thesis do not focus on the process discovery task, but on the data extraction
and preparation needed to obtain event logs suitable for process mining analysis. One
of these types of analysis is process discovery. Therefore, our contributions help to
enable the application of process discovery and other process mining techniques in
environments that present certain data challenges.

Many discovery algorithms exist in the literature [64,76,122]. In this thesis we do
not focus on any specific technique. However, we describe process discovery in general
as a function that takes an event log as an input and produces a process model as an
output. Figure 2.2 shows a Petri net discovered from the sample event log proposed
in Chapter 1 using the Inductive Miner.

24 Preliminaries

Figure 2.2: Petri net discovered using the Inductive Miner [64] from the sample event log in
Table 1.1.

Figure 2.3: Conformance checking result from the alignment of the Petri net in Figure 2.2
with the event log in Table 1.1.

A process model can be described as a set of process runs (or sequences). Given
a labeled Petri net N = (P,T,F, A, l) with an initial marking M0 and a final marking
M f , an alternative way to describe this process model is by computing the set S of all
possible firing sequences that lead from marking M0 to marking M f . In some cases,
this set of sequences can be infinite (e.g., in the presence of loops).

When discovering a process model from an event log, the set of possible sequences
S allowed by such model does not need to be equal to the behavior observed in the
event log. The discovered model could allow for more behavior (sequences) than the
ones observed in the log. Also, the event log could contain more sequences than
the ones allowed by the discovered process model. The differences between what is
observed in an event log and what is allowed by a process model can be due to different
reasons. Normally, we want discovery algorithms to avoid over-fitting to the event
log, i.e., be able to generalize. This means that we are interested in process models
that allow for more behavior than the one observed in the event log.

2.6.2 Conformance Checking and Alignments
One of the aims of the conformance checking task is to aligning observed behavior
captured in an event log with the allowed or normative behavior allowed by a process
model. Also, it allows to find deviations between observed and normative behavior.

The alignment technique [111] is a conformance checking method that aligns be-
havior between log and model. For each trace existing in the event log, it computes
the closest run in the process model. The result is a set of alignments. Each alignment

2.6 Process Mining 25

Figure 2.4: Legend to in-
terpret conformance check-
ing results.

Figure 2.5: Legend to in-
terpret performance analysis
results.

Figure 2.6: Metrics dis-
played per node in a Petri
net with performance analy-
sis results.

can be defined as a sequence of moves, and each move relates an event in a trace of
the event log to an instance of a transition in a firing sequence of a model. There are
three types of move:

• A synchronous move represents a match between an observed event and an
allowed event in the model,

• A log move happens when an observed event cannot be replayed by the model,
i.e., none of the enabled transitions in the model are related to the observed
event in the log,

• A model move happens when none of the behavior allowed by the model is
observed in the event log, e.g., the execution of the only enabled transition is
not observed in the event log.

Figure 2.3 depicts a Petri net with conformance information. Figure 2.4 shows
the legend to interpret the colors and sizes of the augmented Petri net. We see that,
when aligning the event log to the process, most of the transitions (Insert Customer,
Update Ticket, and Make Booking) can be executed synchronously with the behavior
observed in the log. However, in one of the cases, there was a model move in the
transition Update Customer. This means that for a certain trace in the log, the firing
sequence could not be perfectly aligned with the model, and the Update Customer
transition had to be skipped. Also, we see that certain places have a yellow color.
This means that a log move happened at that place when computing the alignment
for certain traces. The size of the place node represents the move on log frequency.

Also, computing alignments allows us to display performance information on top of
a process model. Figure 2.7 shows a Petri net augmented with performance statistics.
Figure 2.5 shows the color code used. An intense red color indicates a high value, while
the pale yellow represents a low one. As shown in Figure 2.6, the metric represented in

26 Preliminaries

Figure 2.7: Performance information resulting from the alignment of the Petri net in Fig-
ure 2.2 with the event log in Table 1.1.

each transition of the model corresponds to the average sojourn time, i.e., time spent
in a particular state. The metric represented in the places is the average waiting time,
i.e., time between the completion of the previous activity and the start of the next
one.

2.7 Chapter Summary
In this chapter we introduced most of the basic definitions, concepts, and nota-
tion used throughout the rest of the chapters of this thesis. The next chapter, the
first one of the contribution chapters, proposes a meta-model for process mining on
databases.

Vertical hive with one single body and a
brood chamber.

“Cours complet d’apiculture”, Georges de
Layens and Gaston Bonnier, 1897

3
OpenSLEX:

A Meta-Model
for Process Mining

In Chapter 1, we introduced the concept of process mining. Next, we set the scope of
this thesis to the application of process mining on databases. Also, we presented some
of the challenges to face when dealing with data stored in databases with the purpose
of applying process mining to it. In Chapter 2, we introduced several concepts in
process mining in general (event log, process model), and some focused on databases
(database, data model, case notion, event log extraction).

In the following, we discuss the challenge of event data extraction from databases,
as well as how the extract, transform, load process (ETL) can be improved with
respect to the state of the art. The motivation is supported by a running example.
Next, we propose a meta-model for process mining on databases, Open SQL Log
Exchange (OpenSLEX), for which we provide a formalization. Also, we give details
of an implementation of the meta-model. Finally, we discuss related work.

3.1 Introduction
The field of process mining offers a wide variety of techniques to analyze event data.
Process discovery, conformance and compliance checking, performance analysis, pro-
cess monitoring and prediction, and operational support are some of the techniques
that process mining provides to better understand and improve business processes.
However, most of these techniques rely on the existence of an event log.

27

28 OpenSLEX: A Meta-Model for Process Mining

ERP

Platform

CRM

System

BPM

Work ow

Manager
Databases

Process

Aware

Meta

Model
Process

Mining

Redo-Logs

Figure 3.1: Data gathering from several systems to a meta-model

Obtaining event logs in real-life scenarios is not a trivial task. While this may
be different in the future, it is not yet common to find logs exactly in the right
form. In many occasions, such logs simply do not exist and need to be extracted
from some sort of storage, like databases. In situations when a database exists that
contains meaningful data, several approaches are available to extract events. The
most general is the classical extraction in which events are manually obtained from
the tables in the database. In that case, substantial domain knowledge is required
to select the right data, which are normally scattered across tables. Some work has
been done in this field to assist in the extraction and log generation task [13]. Also,
studies have been performed on how to extract events in specific environments like
SAP [55, 73, 104] or other ERP systems [85]. In [44] we presented a more general
solution to extract events from databases, regardless of the application under study.
The paper describes how to automatically obtain events from database systems that
generate redo-logs (transaction logs) as a way to recover from failure. The extracted
events represent data changes, and the technique makes it possible to build event
logs even on systems that are not process-aware. All mentioned approaches aim at,
eventually, generating an event log, i.e., a set of traces, each of them containing a
set of events. These events represent operations or actions performed in the system
under study and are grouped in traces following some criteria. However, there are
multiple ways in which events can be selected and grouped into traces. Depending on
the perspective we want to take on the data, we need to extract event logs differently.
Also, a database contains a lot more information than just events. The extraction of
events and its representation as a plain event log can be seen as a “lossy” process,
which means that during this activity valuable information can get lost. Considering
the prevalence of databases as a source for event logs, it makes sense to gather as
much information as possible, combining the process view with the actual data.

We see that process mining techniques grow more and more sophisticated. Yet,
the most time-consuming activity, event log extraction, is hardly supported. In big
industrial database settings, where event data is scattered over hundreds of tables,
and many processes coexist within the same environment, the queries used to extract
event logs can become very complicated, difficult to write, and hard to modify. Ideally,
users should be able to find events explicitly defined and stored in a centralized way.
These events should be defined in such a way that event correlation and log building
could be performed effortlessly and be easily adapted to the business questions to
answer in each situation. Also, to discover meaningful data rules, these events should
be annotated with enough data attributes.

3.1 Introduction 29

This chapter aims at providing support to tackle the problem of obtaining, trans-
forming, organizing, and deriving data and process information from databases, ab-
stracting the raw data to high-level business concepts such as events, cases, and
activities. This means that, after the ETL process is applied, users will no longer
have to deal with low-level raw data distributed over tables (e.g., timestamps, activ-
ity names, and case ids as columns of different tables that need to be joined together).
Conversely, users will be able to focus on the analysis, dealing only with familiar pro-
cess elements such as events, cases, logs, and activities, or with data elements such
as objects, object versions1, object classes, and attributes. Also, the new OpenSLEX
meta-model proposed in this work can be seen as a data warehouse schema that
captures all the pieces of information necessary to apply process mining to database
environments.

In order to build event logs with events from databases, languages like SQL are
the natural choice for many users. The point of this thesis is not to replace the use
of query languages, but to provide a common meta-model as a standard abstraction
that ensures process mining applicability. Moreover, one of the main advantages of the
adoption of a standard meta-model has to do with multi-perspective event log building
and analysis. Many different event logs can be built from the information stored in
a database. Looking at data from different perspectives requires ad-hoc queries that
extract and correlate events in different ways (e.g. (a) order, delivery, and invoice
events, versus (b) order, product, and supplier events). Our meta-model defines the
abstract concepts that need to be extracted to enable this multi-perspective event log
building in a more intuitive way.

Additionally, as a result of the adoption of the proposed meta-model, it becomes
easier to connect the event recording system2 of enterprises with analysis tools, gen-
erating different views on the data in a flexible way. Also, this work presents a
comprehensive integration of process and data information in a consistent and uni-
fied format. All of this is supported by our implementation. Moreover, the provided
solution has the benefit of being universal, being applicable regardless of the specific
system in use. Figure 3.1 depicts an environment in which the process information of
a company is distributed over several systems of different types, like ERPs, CRMs,
BPM managers, database systems, redo-logs, etc. In such a heterogeneous environ-
ment, the goal is to extract, transform, and derive data from all sources, consolidating
it into a common representation. By putting all pieces together, analysis techniques
like process mining can be readily applied.

The remainder of this chapter is structured as follows: Section 3.2 presents a
running example used throughout the chapter. Section 3.3 explains the proposed
meta-model and provides a formalization. Implementation details are presented in

1In this context, the term “version” or “object version” refers to an instance of an object at a point
in time (e.g. the database object corresponding to a specific customer had two different values for
the attribute “address” at different points in time, representing two versions of the same customer
object). This is different of the usual meaning of “version” in the software context as a way to
distinguish different code releases (e.g. version 1.1).

2An event recording system stores event data that reflects the execution of transactions and
activities, the occurrence of exceptions, and the reception of signals and messages, at a certain
moment in time.

30 OpenSLEX: A Meta-Model for Process Mining

Figure 3.2: Data schema of the example database

Section 3.4. Section 3.5 discusses the related work and, finally, Section 3.6 presents
the conclusions.

3.2 Running Example
In this section, we propose a running example to explain and illustrate our approach.
Assume we want to analyze a setting where concerts are organized and concert tickets
are sold. A database is used to store all the information related to concerts, concert
halls (hall), seats, tickets, bands, performance of bands in concerts (band_playing),
customers, and bookings. Figure 3.2 shows the data schema of the database in use. In
it we see many different elements of the involved process represented. Let us consider
now a complex question that could be raised from a business point of view: What
is the process followed by customers between 18 and 25 years old who bought tickets
for concerts of band X? This question represents a challenge starting from the given
database for several reasons:

1. The database does not provide an integrated view of process and data. There-
fore, questions related to the execution of the underlying process with respect
to some of the elements cannot be directly answered with a query.

2. The current database schema fits the purpose of storing the information in this
specific setting, but it does not have enough flexibility to extend its functionality
allocating new kinds of data such as events or objects of a different nature.

3. The setting lacks execution information in an accessible way (events, traces, and
logs are missing so one cannot apply process mining directly) and there is no
assistance on how to extract or derive this information from the given data.

4. If we plan to use the data as they are, we need to adapt to the way it is stored
for every question we want to answer.

3.2 Running Example 31

All these reasons make the analysis complex. At best, any analysis of this sort
can only be carried out by the extraction of a highly specialized event log by creating a
complex ad-hoc query. On top of that, the extraction will need to be repeated for new
questions that require a new viewpoint on the data.

If we consider that, for the present database, some sort of event recording system
is in place, the extraction of additional events becomes feasible. Listing 3.1 shows an
example of an ad-hoc query to answer the sample question posted above. This query
makes use of the event data distributed over the database (booking, band, etc.), as
depicted in Figure 3.2, together with events recorded by a redo-log (or transaction
log) system provided by the RDBMS (redo_logs_mapping table). The way to access
redo-log information has been simplified in this example for the sake of clarity. The
first part of the query retrieves ticket booked events, making use of the booking_-
date timestamp stored in the table booking. These events are united to the ones
corresponding to customer events. These last ones are obtained from redo-logs, due
to the lack of such event information in the data schema. Next, events belonging to
the same customer are correlated by means of the caseid attribute, while the cases
are restricted to the ones belonging to customers aged 18-25 at the time the booking
was made. Additionally, we need to keep only the bookings made on bands named
“X” at the moment of the booking (a band could change its name at any point in
time). This is an especially tricky step since we need to look into the redo-logs to
check if the name was different at the time the booking was made.

Query 3.1: Sample SQL query to obtain a highly customized event log from the database

1 SELECT * FROM (
2 SELECT
3 "ticket booked" as activity,
4 BK.booking_date as timestamp,
5 BK.customer_id as caseid
6 FROM booking as BK
7 UNION
8 SELECT
9 concat(RL.operation," customer profile") as activity,

10 RL.timestamp as timestamp,
11 rl_value_of('id') as caseid
12 FROM redo_logs_mapping as RL
13 WHERE
14 RL.table = "CUSTOMER"
15) as E,
16 booking as BK,
17 customer as CU,
18 ticket as T,
19 concert as C,
20 band_playing as BP,
21 band as B
22 WHERE
23 E.caseid = CU.id AND
24 CU.id = BK.customer_id AND
25 BK.id = T.booking_id AND
26 T.for_concert = C.id AND
27 C.id = BP.concert_id AND
28 BP.band_id = B.id AND
29 "0018-00-00 00:00:00" <= (BK.booking_date - CU.birth_date) AND
30 "0025-00-00 00:00:00" >= (BK.booking_date - CU.birth_date) AND
31 (
32 (B.name = "X" AND

32 OpenSLEX: A Meta-Model for Process Mining

33 B.id NOT IN
34 (SELECT rl_value_of('id') as id
35 FROM redo_logs_mapping as RL
36 WHERE
37 RL.table = "BAND"
38)
39)
40 OR
41 (B.id IN
42 (SELECT rl_value_of('id') as id
43 FROM redo_logs_mapping as RL
44 WHERE
45 RL.table = "BAND" AND
46 rl_new_value_of('name') = "X" AND
47 RL.timestamp <= BK.id AND
48 ORDER BY RL.timestamp DESC LIMIT 1
49)
50)
51 OR
52 (B.id IN
53 (SELECT rl_value_of('id') as id
54 FROM redo_logs_mapping as RL
55 WHERE
56 RL.table = "BAND" AND
57 rl_old_value_of('name') = "X" AND
58 RL.timestamp >= BK.id AND
59 ORDER BY RL.timestamp ASC LIMIT 1
60)
61)
62)

It is evident that extracting customized event logs that answer very specific ques-
tions, while maintaining the original data schema, is possible. However, such queries
will have to be adapted or rewritten for every different setting or event recording sys-
tem. The fact that users, in particular business analysts, need to be knowledgeable
about the specifics of how event data is stored represents an important challenge to
overcome. This is one of the main reasons why so much time and effort is consumed
during the ETL phase, which would better be devoted to analysis. This work aims
at supporting the ETL phase and ultimately at decoupling it from the analysis by
providing a set of familiar abstractions readily available for business analysts.

3.3 Meta-Model
As has been shown before, a need exists for a way to store execution information in a
structured way, something that accepts data from different sources and allows building
further analysis techniques independently from the origin of these data. Efforts in this
field have already been made, as can be observed in [1] with the IEEE XES standard.
This standard defines a structure to manage and manipulate logs, containing events
and traces and the corresponding attributes. Therefore, XES is a good format to
represent behavior. However, an XES file is just one view on the data and, despite
being an extensible format, it does not provide a predefined structure to store all the
linked information we want to consider.

Because of this, it seems necessary to define a structured way to store additional
information that can be linked to the classical event log. This new way to generalize

3.3 Meta-Model 33

and store information must provide sufficient details about the process, the data types,
and the relations between all the elements, making it possible to answer questions at
the business level, while looking at two different perspectives: data and process.

3.3.1 Requirements
To be able to combine the data and process perspectives in a single structure, it is
important to define a set of requirements that a meta-model must fulfill. It seems
reasonable to define requirements that consider backwards-compatibility with well-
established standards, support of additional information, its structure, and the cor-
relation between process and data views:

1. The meta-model must be compatible with the current meta-model of XES, i.e.,
any XES log can be transformed into the new meta-model and back without
loss of information,

2. It must be possible to store several logs in the new meta-model, avoiding event
duplication,

3. Logs stored in the same meta-model can share events and belong to different
processes,

4. It must be possible to store some kind of process representation in the meta-
model,

5. The meta-model must allow storing additional information, like database ob-
jects, together with the events, traces, processes, and the correlation between
all these elements,

6. The structure of additional data must be precisely modeled,

7. All information mentioned must be self-contained in a single storage format,
easy to share and exchange, similarly to the way that XES logs are handled.

The following section describes the proposed meta-model, which complies with
these requirements, providing a formalization of the concepts along with explanations.

3.3.2 Formalization
Considering the typical environments subject to study in the process mining field, we
can say that it is common to find systems backed up by some sort of database storage
system. Regardless of the specific technology behind these databases, all of them have
in common that the data are structured in some way, e.g., similar data are stored in
the same tables with values for the same attributes. We can describe our meta-
model as a way to integrate process and data perspectives, providing flexibility on its
inspection and assistance to reconstruct the missing parts. Figure 3.3 shows a high-
level representation of the meta-model. On the right-hand side, the data perspective
is considered, while the left-hand side models the process view. Assuming that the

34 OpenSLEX: A Meta-Model for Process Mining

Figure 3.3: Diagram of the meta-model at a high level of abstraction

starting points of our approach are data, we see that the less abstract elements of the
meta-model, events and versions, are related, which provides the connection between
the process and data view. These are the basic blocks of the whole structure and,
usually, the rest can be derived from them.

The data side considers three elements: data models, objects, and versions. The
data models provide a schema describing the objects of the database. The objects
represent the unique entities of data that ever existed or will exist in our database,
while the versions represent the specific values of the attributes of an object during a
period of time. Versions represent the evolution of objects through time. The process
side considers events, instances, and processes. Processes describe the behavior of
the system. Instances are traces of execution for a given process, being sets of events
ordered through time. These events represent the most fine-granular kind of execution
data, denoting the occurrence of an activity or action at a certain point in time.

In Chapter 2, we already formalized the structure of a database. Definition 7
represents the existing structure of the source data schema. In this section, we present
a more abstract and generic representation of databases and event data sources, in
line with our meta-model. The idea is to provide a representation that adapts to
our needs while abstracting from the specific database characteristics captured in
Definition 7. Chapter 4 shows examples of application of the OpenSLEX meta-model
to different data sources where the original database representation is transformed into
our proposed meta model structure, and Appendix A presents a formalization of the
mapping between each scenario (defined according to the definitions in Section 2.2)
and the OpenSLEX meta-model.

The remainder of this section proposes a formalization of the elements in the
OpenSLEX meta-model, starting from the data and continuing with the process side.
As has been mentioned before, we can assume a way to classify elements in types or
classes exists. Looking at our running example, we can distinguish between a ticket
class and a customer class. This leads to the definition of data model as a way to
describe the schema of our data.

Definition 16 (Data Model) A data model is a tuple DM = (CL,AT ,classOfAttribute,RS,

3.3 Meta-Model 35

sourceClass, targetClass) such that

• CL is a set of class names,

• AT is a set of attribute names,

• classOfAttribute ∈ AT → CL is a function that maps each attribute to a class,

• RS is a set of relationship names,

• sourceClass ∈ RS → CL is a function that maps each relationship to its source
class,

• targetClass ∈ RS → CL is a function that maps each relationship to its target class.

Each element belonging to a Class represents a unique entity, something that can
be differentiated from the other elements of the same class, e.g., Customer A from
Customer B. In a database setting, these elements would be table rows, and they
would be uniquely identified by a unique key. Definition 9 provides a formalization
of the collection of these entities in the general context of a database. In the context
of OpenSLEX, we will call these unique entities Objects, and the collection of them
an Object collection.

Definition 17 (Object Collection) Let OBJ be the set of all possible objects. An object
collection OC is a set of objects such that OC ⊆ OBJ.

Something we know as well is that, during the execution of a process, the nature of
objects can change over time. Modifications can be made on their attributes. Each of
these represents mutations of an object, modifying the values of some of its attributes,
e.g., modifying the address of a customer. As a result, despite being the same object,
we will be looking at a different version of it. The notion of object version is, therefore,
introduced to show the different stages in the life cycle of an object.

During the execution of a process, operations will be performed and, many times,
links between elements are established. These links allow relating tickets to concerts
or customers to bookings, for example. These relationships are of a structured nature
and usually exist at the data model level, being defined between classes. Therefore,
we know upfront that elements of the ticket class can be related somehow to elements
of the concert class. Relationships is the name we use to call the definition of these
links at the data model level. However, the actual instances of these relationships
appear at the object version level, connecting specific versions of objects during a
specific period of time. These specific connections are called relations.

Definition 18 (Version Collection) Let V be some universe of values, TS a universe
of timestamps and DM = (CL,AT ,classOfAttribute,RS,sourceClass, targetClass) a data
model. A version collection is a tuple OVC = (OV ,attValue,startTimestamp,
endTimestamp,REL) such that

• OV is a set of object version identifiers,

36 OpenSLEX: A Meta-Model for Process Mining

• attValue ∈ (AT ×OV) ̸→ V is a function that maps a pair of object version and
attribute to a value,

• startTimestamp ∈ OV → TS is a function that maps each object version to a start
timestamp,

• endTimestamp ∈ OV → TS is a function that maps each object version to an end
timestamp such that ∀ov ∈ OV : endTimestamp(ov) ≥ startTimestamp(ov),

• REL ⊆ (RS×OV ×OV) is a set of triples relating pairs of object versions through
a specific relationship.

At this point, it is time to consider the process side of the meta-model. The most
basic piece of information we can find in a process event log is an event. Events are
defined by some attributes. For convenience purposes we provide shorthands for the
most typical attributes like timestamp, resource, and life-cycle.

Definition 19 (Event Collection) Let V to be some universe of values and TS a uni-
verse of timestamps. An event collection is a tuple EC = (EV ,EVAT ,eventAttributeValue,
eventTimestamp,eventLifecycle,eventResource)
such that

• EV is a set of event identifiers,

• EVAT is a set of event attribute names,

• eventAttributeValue ∈ (
EV ×EVAT

) ̸→ V is a function that maps a pair of an
event and event attribute name to a value,

• eventTimestamp ∈ EV → TS is a function that maps each event to a timestamp,

• eventLifecycle ∈ EV → {start,complete, . . . } is a function that maps each event to a
value for its life-cycle attribute. If an event e ∈ EV does not have a value for the
life-cycle attribute, then eventLifecycle(e) =⊥ (nul l value),

• eventResource ∈ EV → V is a function that maps each event to a value for its
resource attribute. If an event e ∈ EV does not have a value for the resource
attribute, then eventResource(e) =⊥ (nul l value).

When we consider events of the same activity but relating to a different life cycle,
we gather them under the same activity instance. For example, two events that belong
to the activity make booking could have different life-cycle values, being start the one
denoting the beginning of the operation (first event) and complete the one denoting
the finalization of the operation (second event). Therefore, both events belong to the
same activity instance. Each of these activity instances can belong to different cases
or traces. At the same time, cases can belong to different logs, which represent a
complete set of traces on the behavior of a process.

3.3 Meta-Model 37

Definition 20 (Instance Collection) An instance collection is a tuple IC = (AI ,CS,LG,
aisOfCase,casesOfLog) such that

• AI is a set of activity instance identifiers,

• CS is a set of case identifiers,

• LG is a set of log identifiers,

• aisOfCase ∈ CS → P (AI) is a function that maps each case to a set of activity
instances,

• casesOfLog ∈ LG →P (CS) is a function that maps each log to a set of cases.

The last piece of our meta-model is the process model collection. This part stores
process models on an abstract level, i.e., as sets of activities, ignoring details about
the control flow or how these activities relate between them. An activity can belong
to different processes at the same time.

Definition 21 (Process Model Collection) A process model collection is a tuple PMC =
(PM ,AC,actOfProc) such that

• PM is a set of process identifiers,

• AC is a set of activity identifiers,

• actOfProc ∈ PM →P (AC) is a function that maps each process to a set of activi-
ties.

Now that we have all the pieces of our meta-model, it is still necessary to wire them
together. A connected meta-model instance defines the logical relations between these
blocks. Therefore, we see that versions belong to objects (objectOfVersion) and objects
belong to a class (classOfObject). In the same way, events belong to activity instances
(eventAI), activity instances belong to activities (activityOfAI) and can belong to
different cases (aisOfCase), cases belong to different logs (casesOfLog), and logs relate
to processes (processOfLog). Events and versions are related (eventToOVLabel) in a
way that can be interpreted as a causal relation, i.e., when events happen they trigger
the creation of versions as a result of modifications on data (the update of an attribute
for instance). Another possibility is that the event represents a read access or query
of the values of a version.

Definition 22 (Connected Meta-Model Instance) A connected meta-model instance is
a tuple CMI = (DM ,OC,classOfObject,OVC,objectOfVersion,EC,eventToOVLabel, IC,
eventAI ,PMC,activityOfAI ,processOfLog) such that

• DM = (CL,AT ,classOfAttribute,RS,sourceClass, targetClass) is a data model,

• OC is an object collection,

38 OpenSLEX: A Meta-Model for Process Mining

• classOfObject ∈ OC → CL is a function that maps each object to a class,

• OVC = (OV ,attValue,startTimestamp,endTimestamp,REL) is a version collection,

• objectOfVersion ∈ OV → OC is a function that maps each object version to an
object,

• EC = (EV ,EVAT ,eventAttributeValue,eventTimestamp,eventLifecycle,eventResource)
is an event collection,

• eventToOVLabel ∈ (EV ×OV) ̸→ V is a function that maps pairs of an event and
an object version to a label. If (ev,ov) ∈ dom(eventToOVLabel), this means that
both event and object version are linked. The label itself defines the nature of
such link, e.g “insert”, “update”, “read”, “delete”, etc.,

• IC = (AI ,CS,LG,aisOfCase,casesOfLog) is an instance collection,

• eventAI ∈ EV → AI is a function that maps each event to an activity instance,

• PMC = (PM ,AC,actOfProc) is a process model collection,

• activityOfAI ∈ AI → AC is a function that maps each activity instance to an ac-
tivity,

• processOfLog ∈ LG → PM is a function that maps each log to a process.

The previous definition defines a connected meta-model instance (CMI). However,
we still need to define the validity of a CMI. Before doing so, we introduce some
shorthands:

Definition 23 (Notation) Let CMI = (DM ,OC,classOfObject,OVC,objectOfVersion,EC,
eventToOVLabel, IC,eventAI ,PMC,activityOfAI ,processOfLog) be a connected meta-model
instance. We define the following shorthands:

• Eai = {e ∈ EV | eventAI (e) = ai} is the set of events that belong to the activity in-
stance ai,

• AIcs =
{
ai ∈ AI | ai ∈ aisOfCase(cs)

}
is the set of activity instances that belong to the

case cs,

• OVobj =
{
ov ∈ OV | objectOfVersion(ov) = obj

}
is the set of object versions that be-

long to the object obj,

• OCcl =
{
obj ∈ OC | classOfObject(obj) = cl

}
is the set of objects that belong to the

class cl,

• RELrs =
{
(rs′,ov,ov′) ∈ REL | rs′ = rs

}
is the set of relations that belong to the rela-

tionship rs,

• AIACac =
{
ai ∈ AI | activityOfAI(ai) = ac

}
is the set of activity instances that belong

to the activity ac.

3.3 Meta-Model 39

In order to consider a connected meta-model instance as valid, the data and con-
nections in it must fulfill certain criteria set in the following definition:

Definition 24 (Valid Connected Meta-Model Instance) Let CMI = (DM ,OC,
classOfObject,OVC,objectOfVersion,EC,eventToOVLabel, IC,eventAI ,PMC,activityOfAI ,
processOfLog) be a connected meta-model instance. A valid connected meta-model
instance VCMI is a connected meta-model instance such that:

• attValue is only defined for attributes of the same class of the object ver-
sion, that is, (at,ov) ∈ domain(attValue) ⇐⇒ classOfObject(objectOfVersion(ov)) =
classOfAttribute(at),

• none of the object versions of a same object overlap in time, that is,
∀obj ∈ OC : ∀ova ∈ OVobj : ∀ovb ∈ OVobj : ova ̸= ovb =⇒ endTimestamp(ova) ≤
startTimestamp(ovb)∨endTimestamp(ovb) ≤ startTimestamp(ova),

• all the cases of a log contain only activity instances that refer to activities of
the same process of the log, that is, ∀log ∈ LG : ∀cs ∈ casesOfLog(lg) : ∀ai ∈ AIcs :
activityOfAI(ai) ∈ actOfProc(processOfLog(lg)).

Figure 3.4 depicts the entity-relation diagram of the meta-model as formalized
above. Some elements of the meta-model have been omitted from the diagram for the
sake of simplicity. A full version of the ER diagram is available online3. Each of the
entities in the diagram, as represented by a square, corresponds to the basic entities of
the meta-model as formalized in Definition 22. Also, these entities, together with their
relations (diamond shapes), have been grouped in areas that we call sectors (delimited
by dashed lines). These sectors are: data models, objects, versions, events, cases, and
process models. These tightly related concepts provide an abbreviated representation
of the meta-model. For the sake of clarity, the “sectorized” representation of the
meta-model will be used in further parts of the thesis. As can be observed, the
entity-relation diagram is divided into six sectors. The purpose of each of them is
described below:

• Data models: this sector is formed by concepts needed to describe the structure
of any database system. Many data models can be represented together in this
sector, whose main element is the data model entity. For each data model,
several classes can exist. These classes are abstractions of the more specific
concept of table, which is commonly found in RDBMSs. Looking at the database
provided in Section 3.2, the tables customer and booking are examples of classes.
These classes contain attributes, which are equivalent to table columns in modern
databases (e.g., id, name, address, etc.). The references between classes of the
same data model are represented with the relationship entity. This last entity
holds links between a source and a target class (e.g., booking_customer_fk which
relates the source class booking to the target class customer).

3https://github.com/edugonza/OpenSLEX/blob/master/doc/meta-model.png

https://github.com/edugonza/OpenSLEX/blob/master/doc/meta-model.png

40 OpenSLEX: A Meta-Model for Process Mining

Figure 3.4: ER diagram of the OpenSLEX meta-model. The entities have been grouped into
sectors, delimited by the dashed lines.

3.3 Meta-Model 41

• Objects: the object entity, part of the objects sector, represents each of the
unique data elements that belong to a class. An example of this can be a
hypothetical customer with customer_id = 75. Additional details of this object
are omitted, given that they belong to the next sector.

• Versions: for each of the unique object entities described in the previous sector,
one or many versions can exist. A version is an instantiation of an object
during a certain period of time, e.g., the customer object with id 75, existed
in the database, during a certain period of time, for example from “2015-08-
01 14:45:00” to “2016-09-03 12:32:00”. During that period of time, the object
had specific values for the attributes of the customer class that it belongs to.
Therefore, there is a version of customer 75, valid between the mentioned dates,
with name “John Smith”, address “45, 5th Avenue”, and birth date “1990-01-03”.
If at some point, the value of one of the attributes changed (e.g., a new address),
the end timestamp of the previous version would be set to the time of the change,
and a new version would be created with the updated value for that attribute,
and a start timestamp equal to the end of the previous version, e.g., version_-
1 = {object_id = 75, name = “John Smith”, address = “45, 5th Avenue”,
birth_date = “1990-01-03”, start_timestamp = “2015-08-01 14:45:00”, end_-
timestamp = “2016-09-03 12:32:00”}, and version_2 = {object_id = 75, name
= “John Smith”, address = “floor 103, Empire State Building”, birth_date
= “1990-01-03”, start_timestamp = “2016-09-03 12:32:00”, end_timestamp =
NONE }. Note that the value of end_timestamp for the newly created object
version (version_2) is NONE. That means that it is the current version for the
corresponding object (object_id = 75). Another entity reflected in this sector
is the concept of relation. A relation is an instantiation of a relationship, and
holds a link between versions of objects that belong to the source and target
classes of the relationship. For example, a version of a booking object can be
related to another version of a customer object by means of a relation instance,
given that a relationship (booking_customer_fk) exists from class booking to
class customer.

• Events: this sector collects a set of events, obtained from any available source
(database tables, redo-logs, change records, system logs, etc.). In this sector,
events appear as a collection, not grouped into traces (such grouping is reflected
in the next sector). In order to keep process information connected to the data
side, each event can be linked to one or many object versions by means of a
label (eventToOVLabel). This label allows specifying what kind of interaction
exists between the event and the referred object version, e.g., insert, update,
delete, read, etc. Events hold details such as timestamp, life-cycle, and resource
information, apart from an arbitrary number of additional event attributes.

• Cases and instances: the entities present in this sector are very important from
the process mining point of view. The events by themselves do not provide
much information about the control flow of the underlying process, unless they
are correlated and grouped into traces (or cases). First, the activity instance

42 OpenSLEX: A Meta-Model for Process Mining

Figure 3.5: Diagram of an instance of the OpenSLEX meta-model.

entity should be explained. This entity is used to group events that refer to
the same instance of a certain activity with different values for its life-cycle,
e.g., the execution of the activity book_tickets generates one event for each
phase of its life-cycle: book_tickets+start, and book_tickets+complete. Both
events, referring to the same execution of an activity, are grouped into the same
activity instance. Next, as in any other event log format, activity instances can
be grouped in cases, and these cases, together, form a log.

• Process models: the last sector contains information about processes. Several
processes can be represented in the same meta-model. Each process is related
to a set of activities, and each of these activities can be associated with several
activity instances, contained in the corresponding cases and instances sector.

An instantiation of this meta-model fulfills the requirements set in Section 3.3.1
in terms of storage of data and process view. Some characteristics of this meta-
model that enable full compatibility with the XES standard have been omitted in
this formalization for the sake of brevity.

Figure 3.5 shows an example of an instance of the OpenSLEX meta-model. For
the sake of clarity the model has been simplified, but the main structure remains. We
see that there is a global data model. All the classes belong to it: “Customer” and
“Booking”. Also, there are three attributes: “Name”, “Address”, and “BookingDate”.
The first two attributes belong to the class “Customer”. The third one belongs to
“Booking”. There is a relationship connecting bookings to customers named “Book-
ing_to_Customer”. Two objects exist. The first object has two versions. Each ver-
sion of the customer object has values for the corresponding attributes. We see that
the first customer version corresponds to a customer named “Edu” while he lived in
“Spain”, from 1986 to 2014. The second version corresponds to the same customer,
while he lived in “The Netherlands” from 2014 until the present. There is another ob-
ject version that belongs to the second object, a booking object. The “BookingDate”

3.4 Implementation 43

Figure 3.6: Screenshot of the meta-model inspector tool

value of this version is “2019”. There is a relation (an instance of the relationship
“Booking_to_Customer”), that connects the second object version of customer 1 to
the first object version of booking 1. On the left side of the figure, we see that three
events exist. The first event, related to the first version of customer 1, is linked to
the activity “Born”, and happened in 1986. The second event, linked to the activity
“Move”, happened in 2014 and is related to the second version of the same customer.
Finally, the third event is linked to the activity “Book”, and is linked to the first
version of booking 1. Each event belongs to its own activity instance. All activity
instances belong to one case. This case belongs to a log of the process “Life”.

The meta-model previously formalized has been implemented. This was required
in order to provide tools that assist in the exploration of the information contained
within the populated meta-model. More details on this implementation are explained
in the following section.

3.4 Implementation
The Open SQL Log Exchange (OpenSLEX4) library, based on the meta-model pro-
posed in this thesis, has been implemented in Java. This library provides an interface
to insert data in an instantiation of this meta-model and to access it in a similar
way to how XES Logs are managed by the IEEE XES Standard [1]. The OpenSLEX

4https://github.com/edugonza/openslex

https://github.com/edugonza/openslex

44 OpenSLEX: A Meta-Model for Process Mining

implementation relies on SQL technology. Specifically, the populated meta-model is
stored in a SQLite5 file. This provides some advantages, like an SQL query engine, a
standardized format, as well as storage in self-contained single data files that benefits
its exchange and portability. Figure 3.4 shows an ER diagram of the internal struc-
ture of the meta-model. However, it represents a simplified version to make it more
understandable and easy to visualize. The complete class diagram of the meta-model
can be accessed in the OpenSLEX’s website. In addition to the library mentioned ear-
lier, an inspector has been included in the Process-Aware Data Suite (PADAS)6 tool.
This inspector, depicted in Figure 3.6, allows exploring the content of OpenSLEX
files by means of a GUI in an exploratory fashion, which lets the user dig into the
data and apply some basic filters on each element of the structure. The tool presents
a series of blocks that contain the activities, logs, cases, activity instances, events,
event attribute values, data model, objects, object versions, object version attribute
values and relations entities in the meta-model. Some of the lists in the inspector
(logs, cases, activity instances, events and objects) have tabs that allow one to filter
the content they show. For instance, if the tab “Per Activity” in the cases list is
clicked, only cases that contain events of such activity will be shown. In the same
way, if the tab “Per Case” in the events list is clicked, only events contained in the
selected case will be displayed. An additional block in the tool displays the attributes
of the selected event.

The goal of providing these tools is to assist in the task of populating the proposed
meta-model, in order to query it in a later step. Because the meta-model structure
and the data inserted into it are stored in a SQLite file, it is possible to execute
SQL queries in a straightforward way. In particular, the whole process of extracting,
transforming, and querying data has been implemented in a RapidProM7 workflow.
RapidProM is an extension to the well-known data mining workflow tool RapidMiner8

that adds process mining plugins from ProM. For our task, an OpenSLEX meta-model
population operator has been implemented in a development branch9 of RapidProM.
This operator, together with the data handling operators of RapidMiner (including
database connectors), lets us extract, transform, and query our populated meta-model
automatically in a single execution of the workflow. More details on this workflow
and the extraction and transformation steps are provided in Section 4.2, showing
how the technique can be applied in different real-life environments. A workflow was
designed for each of the evaluation environments with the purpose of extracting and
transforming the content of the corresponding databases to fit the structure of the
OpenSLEX meta-model. Each of these workflows, also referred to as adapters, are
extensible using the collection of operators available in RapidMiner, RapidProM, and
other plugins. They can be modified to fit new environments. Moreover, Section 4.3
demonstrates how querying of the resulting OpenSLEX populated meta-model can
be standardized for all the proposed environments.

5http://www.sqlite.org/
6https://github.com/edugonza/PADAS
7http://rapidprom.org/
8http://rapidminer.com/
9https://github.com/rapidprom/rapidprom-source/tree/egonzalez

http://www.sqlite.org/
https://github.com/edugonza/PADAS
http://rapidprom.org/
http://rapidminer.com/
https://github.com/rapidprom/rapidprom-source/tree/egonzalez

3.5 Related Work 45

The provided implementation of the OpenSLEX meta-model is a general and ex-
tensible platform for data extraction and transformation. It provides the means to
abstract raw data to high-level concepts. These concepts, (events, cases, objects,
etc.) are easy to deal with for business analysts. On the other hand, the current
implementation presents certain limitations. A general method does not exist at the
moment to perform this extraction and transformation independently of the raw data
structure. This means that an ad-hoc adapter needs to be designed for different data
architectures (SAP data schema, Oracle redo-logs, in-table versioning, etc.) in order
to properly extract and interpret events and object versions. However, we believe that
the three adapters provided with the implementation should suffice in most cases and
can serve as a template for other environments. It is important to note that, despite
the need to design an extraction adapter for each type of environment, it provides
a notable advantage with respect to writing ad-hoc queries for event log extraction.
This is due to the fact that, once the extraction and transformation to OpenSLEX are
performed, automated methods (implemented as operators in the RapidProM plat-
form) become available for generating multiple event logs from different perspectives
in a single dataset. This saves time and effort. Also, this approach is less prone to
errors than designing ad-hoc queries for each specific event log perspective.

3.5 Related Work
Despite the efforts made by the community, we can identify a few areas in which
the problem of modeling, collecting, and analyzing process execution data remains
a challenge. Business process management and workflow management are areas in
which the community has focused on providing models to describe their functioning
and make the analysis of their behavior possible. Papers like [98, 130] propose meta-
models to provide structure to audit trails on workflows. However, they focus mainly
on the workflow or process perspective and leave out the database side.

Process mining techniques require event data as input. In order to improve the ex-
change of event data between systems and tools, it was necessary to define a standard
way to store event logs. In [113], the authors provide a meta-model to define event
logs, which would evolve later in the IEEE XES Standard format [1]. This format
represents a great achievement from the standardization point of view. Also, it allows
exchanging logs and developing mining techniques, assuming a common representa-
tion of the data. However, the current definition of XES is not able to effectively
and efficiently store the data perspective of our meta-model. From our point of view,
the XES format is, in fact, a target format and not a source of information. We aim
at generating from a richer source different views on data in XES format to enable
process mining.

Artifact-centric approaches provide a point of view on event logs that gives more
relevance to the data entities in business management systems. Data artifacts are
identified within business process execution data, in order to discover how changes and
updates affect their life-cycle [92]. Techniques like the one proposed in [72] are able to
combine the individual life-cycles of different artifacts to show the interrelation of the

46 OpenSLEX: A Meta-Model for Process Mining

different steps. However, a limitation of these techniques is the difficulty to interpret
correctly the resulting models, in which clear execution semantics are not always
available. The application of other techniques, like conformance and performance
analysis, to the resulting models has not been solved yet.

In the field of conceptual modeling and formal ontologies, we find several stud-
ies that explore different aspects of data modeling in business scenarios. In [47, 48]
relationship reification is discussed from a ontological point of view. An ongological
analysis of relations and relationships is presented, and a general theory of reification
and truthmaking is proposed. Our meta-model, OpenSLEX, closely relates to such
concepts of relation and relationship, since relationships must exist to give mean-
ing and truth to relations found between data elements. The work in [49] explores
the ontological nature of events and object-like entities (endurants) in business mod-
els. Endurants are entities that can qualitatively change in certain respects while
maintaining their identity. The connection of this work with our meta-model is very
interesting since the concept of object in OpenSLEX matches the description of an
endurant, and its evolution through time is described by means of object versions
and events. Finally, [46] discusses the temporal characteristics of future and ongoing
events. It proposes a theory by which events shall not be considered as instanta-
neous, i.e., frozen in time, but rather changing elements. In our meta-model, we
adopt a more traditional concept of events that happen instantaneously at a certain
moment in time. However, we support long lasting occurrences by means of activity
instances, which can group several events indicating changes in the life-cycle during
the execution of a certain activity.

Data warehousing is an area in which there is a great interest to solve the problem
of gathering business process information from different sources. Work has been
done on this aspect [28, 89, 127–129], proposing ways to centralize the storage of
heterogeneous data, with the purpose of enabling process monitoring and workflow
analysis. However, some of these approaches, besides being process-oriented, do not
allow for the application of process mining analysis. This is due to the lack of event
data, where measures of process performance are stored instead. On the other hand,
some approaches allow us to store more detailed information [87], but they force an ad-
hoc structure only relevant for the process at hand. The main distinction between our
approach and existing work on data warehousing for process mining is the generality
and standardization of our meta-model, which is independent of the specific process,
while combining both data and process perspectives.

Process cubes [107] are techniques, closely related to data warehousing, that aim
at combining aspects of multidimensional databases (OLAP cubes) with event logs, in
order to enable the application of process mining techniques. Related work has been
presented in [9,117–119]. These approaches allow one to slice, dice, roll up, and drill
down event data using predefined categories and dimensions. It represents a great
improvement for the analysis of multidimensional data with respect to traditional
filtering. However, these techniques still rely on event data as their only source of
information. Also, they require any additional data to be part of each individual
event. Therefore, given that it is impossible to efficiently represent in an event log all
the aspects we cover in our meta-model, process cubes as they are right now, do not

3.5 Related Work 47

represent an alternative for our purposes.

SAP Process Observer is a component of the wide spectrum of SAP utilities. It
makes it possible to monitor the behavior of some SAP Business Suite processes (e.g.,
order to cash). This component monitors Business Object (BO) events and creates
logs correlating them. The tool provides insights such as deviation detection, real-
time exception handling, service level agreement tracking, etc. These event logs can
be used as well to perform other kinds of analytics. One of the main advantages of
this solution is the fact that it enables real-time monitoring, without the need to deal
with raw data. However, it needs to be configured specifying the activities that must
be monitored. The kind of logs that it generates is not different from the event logs
provided by other tools or techniques, in the sense that they use the same structure,
having events grouped in sets of traces, and data only represented as plain attributes
of events, traces, and logs. Also, it lacks genericity, being only applicable in SAP
environments to monitor Business Suite processes.

Nowadays, several commercial process mining tools are available in the market.
These tools import either XES event logs (e.g., Disco10) or event tables (e.g., Celo-
nis11), supporting attributes at the event, trace, and log levels. Most of them provide
advanced filtering features based on these attributes, as is the case for Disco. Addi-
tionally, Celonis has two interesting features. First, it implements OLAP capabilities,
making it possible to perform some operations like slicing and dicing event data. Sec-
ond, Celonis provides its own language to express formulas. These formulas are used
to compute statistics and key performance indicators (KPIs), as well as to express
complex conditions for OLAP operations. All these features are powerful tools to
work on data. However, they are restricted by the flat structure of their input event
log format. It is not possible to keep complex data relations in such a restricted rep-
resentation. These complex relations are needed to perform advanced data querying,
cf. query GQ in Section 4.3.1, where relevant event data must be selected based on
the evolution of database objects of a specific class.

In general, the main weakness of most of the approaches discussed resides in the
way they force the representation of complex systems by means of a flat event log.
The data perspective is missing, which only allows one to add attributes at the event,
trace or log level. More recent works try to improve the situation, analyzing data
dependencies [80] in business models with the purpose of improving them or even
observing object-state changes to improve their analysis [51]. However, none of the
existing approaches provides a generic and standard way of gathering, classifying,
storing, and connecting process and data perspectives on information systems, espe-
cially when dealing with databases where the concept of structured process can be
fuzzy or nonexistent.

10https://fluxicon.com/disco/
11https://www.celonis.com/en/

https://fluxicon.com/disco/
https://www.celonis.com/en/

48 OpenSLEX: A Meta-Model for Process Mining

3.6 Chapter Summary
In this chapter, a meta-model has been proposed that provides a way to capture a more
descriptive image of the reality of business processes. This meta-model aligns data and
process perspectives and enables the application of existing process mining techniques.
At the same time, it unleashes a new way to query data and historical information.
This is possible thanks to the combination of data and process perspectives in a rich
format. The data are transformed in order to be ready for multi-perspective analysis
of information systems, while allowing one to use existing process mining techniques
that still require a flat event log as an input. The next chapter presents the application
of the OpenSLEX meta-model for the data extraction and querying on three examples
of real-life database environments.

Beekeeper introducing a swarm into a hive
from the top.

“Cours complet d’apiculture”, Georges de
Layens and Gaston Bonnier, 1897

4
OpenSLEX in Practice:

Data Extraction
and Querying

In the previous chapter, we proposed a meta-model for process mining on databases.
This data model allows us to capture process (processes, logs, events, etc.) and data
aspects (data models, objects, object versions, etc.) in a single structure, enabling
multi perspective log building and standardized event data querying regardless of the
source of data. This chapter evaluates the applicability of this meta-model to three
different real-life environments, showing details of the extraction, transformation, and
load process. Also, we show how query templates can be applied to answer a similar
question for three very different datasets.

4.1 Introduction
Data extraction and preparation are among the first steps to take in any business
intelligence or data analysis project (steps 2 and 3 in Figure 1.1). It is a very time-
consuming task, that can take up to 80% of the total project duration. This is due to
the fact that the original sources of data come in a great variety, differing in structure
depending on the nature of the application or process under study. The standard-
ization of this phase represents a challenge, given that a lot of domain knowledge is
usually required in order to carry it out. It is because of this that most of the work
is done by hand, in an ad-hoc fashion, requiring a lot of iterations in order to obtain
the proper data in the right form.

49

50 OpenSLEX in Practice: Data Extraction and Querying

In process mining, the situation is not much different. Studies have been carried
out, focusing on SAP [55,97,100] or ERP systems in general [34,125]. Also, efforts have
been made to achieve a certain degree of generalization with the tool XESame [116],
which assists in the task of defining mappings between database fields on the one
side, and events, traces and logs on the other. However, these solutions, which we
refer to as part of the classical or traditional approach, are tightly coupled to the
specific IT system or data schema they were designed to analyze. Moreover, they do
not support the extraction of event data from systems that are not process-aware or
do not explicitly record historical information.

Other techniques exist that try to leverage on the existence of alternative sources of
data. A very promising approach is redo-log process mining [44]. This technique takes
advantage of the redo-log mechanism that exists in most modern relational database
management systems (RDBMSs), to extract events that represent data changes, and
be able to build event logs even on systems that are not process-aware. In some other
environments, a functionality similar to redo-logs is implemented at the application
level. SAP is an example of such an environment, which records data changes per-
formed on certain tables. These tables are tracked for data modifications, keeping a
record in what is called change log tables. Sometimes, none of the previous situations
apply. In that case, events must be extracted in an ad-hoc manner.

The remainder of this chapter is structured as follows: Section 4.2 evaluates the
application of ETL on three different environments, where the data are transformed
to conform with the meta-model proposed in Chapter 3. The results of the evaluation
and the querying of the output of our approach are analyzed in Section 4.3. Finally,
Section 4.4 presents the conclusions.

4.2 Evaluation in Real-life Environments
The development of the meta-model presented in Chapter 3 has been partly motivated
by the need of a general way to capture the information contained in different systems
combining the data and process views. Such systems, usually backed up by a database,
use very different ways to internally store their data. Therefore, in order to extract
these data, it is necessary to define a translation mechanism tailored to the wide
variety of such environments. Because of this, the evaluation aims at demonstrating
the feasibility of transforming information from different environments to the proposed
meta-model. Specifically, three real-life source environments are analyzed:

1. Database redo-logs: files generated by the RDBMS in order to maintain the con-
sistency of the database in case of failure or rollback operations. The data were
obtained from real redo-logs generated by a running Oracle database instance.
A synthetic process was designed and run in order to insert and modify data in
the database and trigger the generation of redo-logs. Because of the clarity of
the data model, this environment inspired the running example of Section 5.2.

2. In-table version storage: Application-specific schema to store new versions of
objects as a new row in each table. The data of this analysis were obtained from

4.2 Evaluation in Real-life Environments 51

Events

Cases

Data

Model

Process

Model

Objects

Versions

Events

Cases

Data

Model

Process

Model

Objects

Versions

Events

Cases

Data

Model

Process

Model

Objects

Versions

Events

Cases

Data

Model

Process

Model

Objects

Versions

Database

with

SAP-style

change log

Database

with

Redo-logs

Events

Cases

Data

Model

Process

Model

Objects

Versions

Database

with In-table

versioning

Event

inference

Version

inference

Case

derivation

Process

mining

Data

extraction

Data

extraction

Data

extraction
(d)

(e)

(c) (f)

Figure 4.1: Meta-model completion in the three evaluated environments

a real-life instance of a Dutch financial organization.

3. Change tables: changes in tables are recorded in a “redo-log” style as a separate
table, the way it is done in SAP systems. For this analysis, real SAP data,
generated by an external entity, were used. Such data are often used for training
purposes by the third party organization.

The benefit of transforming data to a common representation is that it allows for
decoupling the application of techniques for the analysis from the sources of data.
In addition, a centralized representation allows linking data from different sources.
However, the source of data may be incomplete in itself. In some real-life scenarios,
explicitly defined events might be missing. In other scenarios, there is no record of
previous object versions. Something common is the lack of a clear case notion, which
causes the absence of process instances. In all these cases, it is necessary to apply
some automated inference techniques to derive the missing information and create
a complete and fully integrated view. Figure 4.1 shows these environments. It also
shows which sectors of our meta-model can be populated right away, only extracting
what is available in the database. Next, following a series of automated steps like
version inference and event inference, case derivation, and process discovery, all the
sectors can be populated with inferred or derived data.

The first part of this evaluation (Section 4.2.1) presents the different scenarios that
we can find when transforming data. Each of these scenarios starts from data that
correspond to different sectors of the meta-model. Next, we show how to derive the
missing sectors from the given starting point. Sections 4.2.2, 4.2.3, and 4.2.4 analyze
the three real-life common environments mentioned before. We will demonstrate that
data extraction is possible and that the meta-model can be populated from these dif-
ferent sources. Additional formalizations describing the mapping between these three

52 OpenSLEX in Practice: Data Extraction and Querying

Events

Cases

Data

Model

Process

Model

Objects

Versions

Events

Cases

Data

Model

Process

Model

Objects

Versions

Input

Unknown or

not required

Derived

Legend (a) (b) (c) (d) (e) (f)

Events

Cases

Data

Model

Process

Model

Objects

Versions

Events

Cases

Data

Model

Process

Model

Objects

Versions

Events

Cases

Data

Model

Process

Model

Objects

Versions

Events

Cases

Data

Model

Process

Model

Objects

Versions

Figure 4.2: Input scenarios to complete meta-model sectors

real-life environments and the OpenSLEX meta-model can be found in Appendix A.
Section 4.2.5 presents a method to merge data from two different systems into a sin-
gle meta-model structure, providing an end-to-end process view. Section 4.3 demon-
strates that, starting from the three resulting populated meta-models, it is possible
to standardize the process mining analysis and perform it automatically, adapting
only a few parameters specific to each dataset. In addition to that, an example of the
corresponding resulting populated meta-model for each of the environments is shown.

4.2.1 Meta-Model Completion Scenarios
Experience teaches us that it is not common to find an environment that explicitly
provides the information to fill every sector of our meta-model. This means that
additional steps need to be taken to evolve from an incomplete meta-model to a
complete one. Figure 4.2 presents several scenarios in which, starting from a certain
input (gray sectors), it is possible to infer the content of other elements (dashed
sectors). Depending on the starting point that we face, we must start inferring the
missing elements consecutively in the right order, which will lead us, in the end, to a
completely populated meta-model:

a) Schema discovery: One of the most basic elements we require in our meta-model
to be able to infer other elements is the events sector. Starting from this input
and applying schema, primary key, and foreign key discovery techniques [101,
126], it is possible to obtain a data model describing the structure of the original
data.

b) Object identification: If the events and a data model are known, we can infer
the objects that these events represent. It is necessary to know the attributes of
each class that identify the objects (primary keys). Finding the unique values
for such attributes in the events corresponding to each class results in the list
of unique objects of the populated meta-model.

c) Case derivation: Another possible scenario is the one in which we derive cases
from the combination of events and a data model. The event splitting technique
described in [44], which uses the transitive relations between events defined by

4.2 Evaluation in Real-life Environments 53

the data model, allows generating different sets of cases, or event logs. This
requires, similar to scenario b, to match the attributes of each event to the at-
tributes of each class. Next, we must use the foreign key relations to correlate
events between them. Selecting the desired combination of relationships be-
tween events will tell us how to group these events in cases to form a log. A
more general approach was proposed in [39] (Chapter 5), where we proposed
a definition of case notion and a method to generate multiple event logs as
different perspectives on the same data.

d) Version inference: The events of each object can be processed to infer the object
versions as results of the execution of each event. Events must contain the values
of the attributes of the object they relate to at a certain point in time or, at
least, the values of the attributes that were affected (modified) by the event.
Next, ordering the events by (descending) timestamp and applying them to the
last known value of each attribute allows us to reconstruct the versions of each
object.

e) Event inference: The inverse of scenario d is the one in which events are inferred
from object versions. By looking at the attributes that differ between consecu-
tive versions it is possible to create the corresponding event for the modification.

f) Process mining analysis: Finally, a set of cases, or an event log, can be used
to apply different kinds of process mining techniques such as process discovery,
performance analysis, conformance analysis, prediction, model repair, etc.

Figure 4.1 provides an overview of the extraction and transformation process ap-
plied to each environment. We see that two alternative paths exist in order to obtain a
populated meta-model instance, depending on the data source. The first path (top left
of Figure 4.1) starts with the basic extraction step, in which data model, objects and
explicitly defined events are extracted and stored in an OpenSLEX instance. Next,
version inference (scenario c) is applied to obtain object versions from the extracted
objects and events. The second path (bottom left of Figure 4.1) extracts data model,
objects and object versions from the original data source. Next, event inference is
applied (scenario e), in order to obtain event data from object versions. At that point,
the data from all the environments have been transformed into a common representa-
tion. If our purpose is to apply existing process mining techniques (scenario f), first
we need to build event logs that can be analyzed. This can be achieved by means
of the case derivation step. In this step, we need to correlate events into cases to
build event logs. There are many ways in which events can be grouped, each of them
providing a different perspective on the same data. Chapter 5 proposes a definition
of case notion in the context of OpenSLEX, and provides insights on how to obtain
alternative perspectives on the event data. For the sake of simplicity, in this chapter
we build one single event log per environment, which provides a specific perspective
to be analyzed.

The following three sections consider real-life environments that can act as a source
for event data. These environments are used to illustrate the scenarios in Figure 4.2

54 OpenSLEX in Practice: Data Extraction and Querying

Table 4.1: Fragment of a redo-log: each row corresponds to the occurrence of an event

Time + Op + Ta-
ble

Redo Undo

1 2016-11-27
15:57:08.0 +
INSERT +
CUSTOMER

insert into "SAMPLEDB". "CUSTOMER"
("ID", "NAME", "ADDRESS",
"BIRTH_DATE") values ('17299',
'Name1', 'Address1', TO_DATE(
'01-AUG-06', 'DD-MON-RR'));

delete from "SAMPLEDB". "CUSTOMER"
where "ID" = '17299' and "NAME" =
'Name1' and "ADDRESS" = 'Address1'
and "BIRTH_DATE" = TO_DATE(
'01-AUG-06', 'DD-MON-RR') and ROWID
= '1';

2 2016-11-27
16:07:02.0 +
UPDATE +
CUSTOMER

update "SAMPLEDB". "CUSTOMER" set
"NAME" = 'Name2' where "NAME" =
'Name1' and ROWID = '1';

update "SAMPLEDB". "CUSTOMER" set
"NAME" = 'Name1' where "NAME" =
'Name2' and ROWID = '1';

3 2016-11-27
16:07:16.0 +
INSERT +
BOOKING

insert into "SAMPLEDB". "BOOKING"
("ID", "CUSTOMER_ID") values
('36846', '17299');

delete from "SAMPLEDB". "BOOKING"
where "ID" = '36846' and
"CUSTOMER_ID" = '17299' and ROWID
= '2';

4 2016-11-27
16:07:16.0 +
UPDATE +
TICKET

update "SAMPLEDB". "TICKET" set
"BOOKING_ID" = '36846' where
"BOOKING_ID" IS NULL and ROWID =
'3';

update "SAMPLEDB". "TICKET"
set "BOOKING_ID" = NULL where
"BOOKING_ID" = '36846' and ROWID
= '3';

5 2016-11-27
16:07:17.0 +
INSERT +
BOOKING

insert into "SAMPLEDB". "BOOKING"
("ID", "CUSTOMER_ID") values
('36876', '17299');

delete from "SAMPLEDB". "BOOKING"
where "ID" = '36876' and
"CUSTOMER_ID" = '17299' and ROWID
= '4';

6 2016-11-27
16:07:17.0 +
TICKET +
UPDATE

update "SAMPLEDB". "TICKET" set "ID"
= '36876' where "BOOKING_ID" IS NULL
and ROWID = '5';

update "SAMPLEDB". "TICKET" set "ID"
= NULL where "BOOKING_ID" = '36876'
and ROWID = '5';

and demonstrate that the complete meta-model structure can be derived for each of
them. In each scenario, the goal is to create an integrated view of data and process,
even when event logs are not directly available.

4.2.2 Database Redo-Logs
The first environment focuses on database redo-logs, a mechanism present in many
DBMSs to guarantee consistency, as well as providing additional features such as
rollback, point-in-time recovery, etc. Redo-logs have already been considered in our
earlier work [44, 108] as a source of event data for process mining. Its feasibility
has been validated in [38]. This environment corresponds to the scenario depicted in
Figure 4.2.d, where data model, objects, and events are available, but object versions
need to be inferred. Table 4.1 shows an example fragment of a redo-log obtained from
an Oracle DBMS. After processing the redo-log records, explained in [44], they are
transformed into events. Table 4.2 shows the derived values for attributes of these
events according to the changes observed in the redo-log. For instance, we see that
the first row of Table 4.2 corresponds to the processed redo-log record observed in
the first row in Table 4.1. It corresponds to a Customer insertion. Therefore, none of
the values for each attribute existed before the event was executed (fourth column).
The second column holds the values for each attribute right after the event occurred.

4.2 Evaluation in Real-life Environments 55

Table 4.2: Fragment of a redo-log: each row corresponds to the occurrence of an event

Attribute name Value after event Value before event

1 Customer:id 17299 -
Customer:name Name1 -
Customer:address Address1 -
Customer:birth_date 01-AUG-06 -
RowID = 1

2 Customer:id = {17299}
Customer:name Name2 Name1
Customer:address = {Address1}
Customer:birth_date = {01-AUG-06}
RowID = 1

3 Booking:id 36846 -
Booking:customer_id 17299 -
RowID = 2

4 Ticket:booking_id 36846 NULL
Ticket:id = (317132)
Ticket:belongs_to = (172935)
Ticket:for_concert = (1277)
RowID = 3

5 Booking:id 36876 -
Booking:customer_id 17299 -
RowID = 4

6 Ticket:booking_id 36876 NULL
Ticket:id = (317435)
Ticket:belongs_to = (173238)
Ticket:for_concert = (1277)
RowID = 5

The rest of the events are interpreted in the same way.
Figure 4.1 shows a general overview of how the meta-model sectors are completed

according to the starting input data and the steps taken to derive the missing sectors.
In this case, the analysis of database redo-logs allows one to obtain a set of events,
together with the objects they belong to and the data model of the database. These
elements alone are not sufficient to perform process mining without the existence of an
event log (Figure 4.2.c). In addition, the versions of the objects of the database need
to be inferred from the events as well (Figure 4.2.d). Therefore, the starting point
is a meta-model in which the only populated sectors are Events, Objects and Data
Model. We need to infer the remaining ones: Versions, Cases, and Process Models.

Fortunately, we developed a technique to build logs using different perspectives
(Trace ID Patterns), as presented in [44]. The existence or definition of a data model
is required for this technique to work. Figure 4.1 shows a diagram of the data trans-
formation performed by the technique and how it fits in the proposed meta-model
structure. A more formal description of the mapping between redo-logs and our
meta-model can be consulted in Appendix A.2. The data model obtained from the
source database is stored in an OpenSLEX file. This data model, together with the

56 OpenSLEX in Practice: Data Extraction and Querying

Table 4.3: Redo-log dataset transformation to populate the OpenSLEX meta-model

Entity Format # Input Els. # Output Els. Aut/Manual Derivation

Data Model SQL 1 1 aut explicit
Class SQL 8 8 aut explicit
Attribute SQL 27 27 aut explicit
Relationship SQL 8 8 aut explicit
Object - 0 6740 aut inferred
Version - 0 8424 aut inferred
Relation - 0 13384 aut inferred
Event Redo-Log 8512 8512 aut explicit
Activity Instance - 0 8512 aut inferred
Case - 0 21 aut inferred
Log - 0 1 aut inferred
Activity - 0 14 aut inferred
Process - 0 1 aut inferred

extracted events, allows us to generate both cases (Figure 4.2.c) and object versions
(Figure 4.2.d). Next, process discovery completes the meta-model with a process
(Figure 4.2.f). Once the meta-model structure is populated with data, we can make
queries on it taking advantage of the established connections between all the entities
and apply process mining to do the analysis.

Database Redo-Logs: Transformation

In the previous section, we have described the nature of redo-logs and how they can be
extracted and transformed into event collections first, and used to populate the meta-
model afterward. The goal of this section is to sketch the content of this resulting
populated meta-model and, in further sections, the kind of analysis that can be done
on it.

Table 4.3 represents quantitatively the input and output data for our meta-model
population process for each of the entities introduced in Section 3.3. These entities
match the ones depicted in Figure 3.4. Moreover, this table provides qualitative
properties on the nature of the transformation for each entity. In this case, we observe
that all the data are obtained from the original database through SQL (except for the
redo-logs, which require some specific-to-the-job tools from Oracle). The input entities
(data model, class, attribute, relationship, and event) are extracted automatically (fifth
column), directly transformed given that they are explicitly defined in the source
data (sixth column), and maintaining their quantity (third vs. fourth columns).
However, the remaining entities of our meta-model need to be inferred, i.e., derived
from the original entities. In this case, this derivation can be done automatically by
our tool, PADAS1, which implements the technique for redo-log extraction and event
log building described in [44]. The data model that describes this dataset is depicted
in Figure 4.3. It is clearly inspired by the running example provided in Section 3.2.

1https://github.com/edugonza/padas

https://github.com/edugonza/padas

4.2 Evaluation in Real-life Environments 57

Figure 4.3: Data model of the redo-log dataset as obtained from the populated OpenSLEX
file

Database Redo-Logs: Adapter Implementation

In order to assist in the task of extracting and processing redo-logs, the tool PADAS
(Section 3.4) has been developed. This tool is able to:

1. Connect to an existing Oracle RDBMS,

2. Load a collection of redo-logs,

3. Extract their content and fill the missing data from a database snapshot,

4. Obtain the data model automatically,

5. Export the resulting collection of events to an intermediate format.

The rest of the processing can be done offline from the Oracle database. The
tool allows the user to select case notions from the data model and build logs for a
specific view. As can be observed in Figure 4.4, once the three main sectors have been
extracted, i.e., data model, events, and cases, the population of the meta-model can
begin. This is an automatic process that does not require any further user interaction.

4.2.3 In-Table Versioning
It is not always possible to get redo-logs from databases. Sometimes, they are dis-
abled or not supported by the DBMS. Also, we simply may not be able to obtain
credentials to access them. Whatever the reason, it is common to face the situation
in which events are not explicitly stored. This seriously limits the analysis that can
be performed on the data. The challenge in such a setting is to obtain, somehow, an
event log to complete our data.

It may be so that in a certain environment, despite lacking events, versioning
of objects is kept in the database, i.e., it is possible to retrieve the old value for

58 OpenSLEX in Practice: Data Extraction and Querying

Figure 4.4: PADAS tool settings to convert a redo-log dataset into a populated meta-model

any attribute of an object at a certain point in time. This is achieved by means
of duplication of the modified versions of rows. This environment corresponds to
the scenario depicted in Figure 4.2.e, where data model, objects, and object versions
are available, but events need to be inferred. The table at the bottom left corner
of Figure 4.5 shows an example of in-table versioning of objects. We see that the
primary key of Customer is formed by the fields id and load_timestamp. Each row
represents a version of an object and every new reference to the same id at a later
load_timestamp represents an update. Therefore, if we order rows (ascending) by
id and load_timestamp, we get sets of versions for each object. The first one (with
older load_timestamp) represents an insertion, the rest are updates on the values. A
more formal description of the mapping from In-table versioning environments to our
meta-model can be found in Section A.3.

In-Table Versioning: Transformation

Looking at Figure 4.5 it is clear that, when ordering by timestamps, the versions in
the original set (bottom left), we can reconstruct the different states of the database

4.2 Evaluation in Real-life Environments 59

Customer (Original)

(PK) id INTEGER

(PK) load_timestamp TIMESTAMP

name STRING

address STRING

birth_date DATE

Customer (Derived)

(PK) id INTEGER

name STRING

address STRING

birth_date DATE

id name address birth_date

17299 Name2 Address1 01-AUG-06

17300 Name3 Address3 14-JUN-04

id name address birth_date

17299 Name2 Address1 01-AUG-06

17300 Name3 Address2 14-JUN-04

id name address birth_date

17299 Name2 Address1 01-AUG-06

id name address birth_date

17299 Name1 Address1 01-AUG-06

id name address birth_dateT0 :

T1 :

T2 :

T3 :

T4 :

obj1 : v1

obj1 : v2

obj1 : v2

obj2 : v1

obj1 : v2

obj2 : v2

Database states at different moments in time

id load_
timestamp

name address birth_date

17299 2014-11-27
15:57:08.0

Name1 Address1 01-AUG-06

17299 2014-11-27
16:07:02.0

Name2 Address1 01-AUG-06

17300 2014-11-27
17:48:09.0

Name3 Address2 14-JUN-04

17300 2014-11-27
19:06:12.0

Name3 Address3 14-JUN-04

e1

e2

e3

e4

Figure 4.5: Example of in-table versioning and its transformation into objects and versions

(right). Each new row in the original table represents a change in the state of the
database. Performing this process for all the tables allows for inferring the events in
a setting where they were not explicitly stored. Figure 4.1 shows that, thanks to the
meta-model proposed, it is possible to derive events starting from a data model, a set
of objects, and their versions as input (Figure 4.2.e). The next step is to obtain cases
from the events and data model applying the techniques from [39, 44] (described in
Chapter 5) to split event collections into cases selecting an appropriate case notion
(Figure 4.2.c). Finally, process discovery will allow us to obtain a process model to
complete the meta-model structure (scenario f). A more formal description of the
mapping between In-table versioning sources and our meta-model can be found in
Appendix A.3.

As a result of the whole procedure, we have a meta-model completely filled with
data (original and derived) that enables any kind of analysis available nowadays in
the process mining field. Moreover, it allows for extended analysis by combining the
data and process perspectives. Table 4.4 shows the input/output of the transforma-
tion process, together with details of its automation and derivation. We see that in
this environment the input data corresponds to the following entities of the meta-
model: data model, class, attribute and version. These elements are automatically
transformed from the input data, where they are explicitly defined. However, the rest
of the elements needs to be either manually obtained from domain knowledge (dom.
know.), e.g. relationships between classes, or automatically inferred from the rest of
the elements. This is so because, given the configuration of the database, there was
no way to query the relationships between tables. After all, they were not explicitly
defined in the DBMS but managed at the application level. Therefore, these relation-
ships needed to be specified by hand after interviewing domain experts on the process
at hand.

60 OpenSLEX in Practice: Data Extraction and Querying

Table 4.4: In-table versioning dataset transformation to populate the OpenSLEX meta-
model

Entity Format # Input Els. # Output Els. Aut/Manual Derivation

Data Model CSV 1 1 aut explicit
Class CSV 8 8 aut explicit
Attribute CSV 65 65 aut explicit
Relationship - 0 15 manual dom. know.
Object - 0 162287 aut inferred
Version CSV 277107 277094 aut explicit
Relation - 0 274359 aut inferred
Event - 0 277094 aut inferred
Activity Instance - 0 267236 aut inferred
Case - 0 9858 aut inferred
Log - 0 1 aut inferred
Activity - 0 62 aut inferred
Process - 0 1 aut inferred

The resulting data model is depicted in Figure 4.6. It is based on the database
of a financial organization, focusing on the claim and service processing for a specific
financial product. As can be observed, this dataset links information corresponding
to customers (CUSTOMER (3)), their products (Product (8) and Service_Provi-
tion (6)), incoming and outgoing phone calls (Call_IN (2) and Call_OUT (7)),
letters being sent to customers (Letter_OUT (4)), monthly statements from cus-
tomers (MONTHLY_STATEMENT (1)), and customer details change forms (User_-
Details_Change_Form_IN (5)). In the coming sections, we will show how to obtain
a view on this dataset by exploiting the structure of the meta-model.

In-Table Versioning: Adapter Implementation

The task of transforming the data from an environment that presents an In-table
versioning structure into our meta-model can be automated by means of an adapter.
In this case, we make use of the RapidMiner2 platform together with the RapidProM3

extension to implement a workflow that automates this transformation. Specifically,
the operator needed for this task can be found in one of the development branches of
the RapidProM repository4. This adapter, as depicted in Figure 4.7, takes as input
the set of CSV files that contains the unprocessed dump of the tables to be analyzed
directly from the source database. Also, if we get direct access to such a database,
the data can be queried directly, skipping the transformation to CSV files.

4.2.4 Change Table
The last environment we will consider for our feasibility study is related to widespread
ERP systems such as SAP. These systems provide a huge amount of functionalities

2http://www.rapidminer.com
3http://www.rapidprom.org/
4https://github.com/rapidprom/rapidprom-source/tree/egonzalez

http://www.rapidminer.com
http://www.rapidprom.org/
https://github.com/rapidprom/rapidprom-source/tree/egonzalez

4.2 Evaluation in Real-life Environments 61

Figure 4.6: Data model of the in-table versioning dataset as obtained from the populated
meta-model

to companies by means of configurable modules. They can run on various platforms
and rely on databases to store all their information. However, in order to make them
as flexible as possible, their implementation tries to be independent of the specific
storage technology running underneath. We can observe SAP systems running on MS
SQL, Oracle, and other technologies. However, they generally do not make intensive
use of the features that the database vendor provides. Therefore, data relations are
often not defined in the database schema, but managed at the application level. This
makes the work of the analyst who would be interested in obtaining event logs rather
complicated. Fortunately, SAP implements its own redo-log-like mechanism to store
changes in data. This represents a valid source of data for our purposes. In this
setting, we lack event logs, object versions, a complete data model, and processes.
Without some of these elements, performing any kind of process mining analysis
becomes very complicated. For instance, the lack of an event log does not allow for
the discovery of a process and, without it, performance or conformance analyses are
not possible. To overcome this problem, we need to infer the lacking elements from
the available information in the SAP database.

First, it must be noted that, despite the absence of an explicitly defined data
model, SAP uses a consistent naming system for their tables and columns. Also, there
is lots of documentation available that describes the data model of the whole SAP
table landscape. Therefore, this environment corresponds to the scenario depicted in
Figure 4.2.d, where data model, objects, and events are available, but object versions
need to be inferred. To extract the events we need to process the change log. This

62 OpenSLEX in Practice: Data Extraction and Querying

Figure 4.7: RapidMiner workflow to convert an in-table versioning dataset in order to pop-
ulate the OpenSLEX meta-model

SAP-style change log, as can be observed in Figure 4.8, is based on two change tables:
CDHDR and CDPOS. The first table, CDHDR, stores one entry per change performed
on the data with a unique change id (CHANGENR,OBJECTCLAS,OBJECTID) and
other additional details. The second table, CDPOS, stores one entry per field changed.
Several fields in a data object can be changed at the same time and will share the
same change id. For each field changed, the table name is recorded (TABNAME)
together with the field name (FNAME), the key of the row affected by the change
(TABKEY), and the old and new values of the field (VALUE_OLD, VALUE_NEW).
A more formal description of the mapping between SAP change tables and our meta-
model can be found in the Appendix A.4. This structure is very similar to the one
used for redo-logs. However, one of the differences is that changes on different fields
of the same record are stored in different rows of the CDPOS table, while in the redo
logs they are grouped in a single operation.

Change Table: Transformation

As can be seen in Figure 4.1, after processing the change-log and providing a SAP data
model, we are in a situation in which the events, objects, and data model are known.
Therefore, we can infer the versions of each object (d), split the events over cases (c),
and finally, discover a process model (f). With all these ingredients it becomes possible
to perform any process mining analysis and answer complex questions combining
process and data perspectives.

4.2 Evaluation in Real-life Environments 63

CDHDR

OBJECTCLAS STRING

CHANGENR INTEGER

OBJECTID INTEGER

USERNAME STRING

UDATE DATE

UTIME TIME

TCODE INTEGER

Customer

(PK) id INTEGER

name STRING

address STRING

birth_date DATE

OBJECTCLAS CHANGENR OBJECTID USERNAME UDATE UTIME TCODE

CUST 0001 0000001 USER1 2014-11-27 15:57:08.0 0001

CUST 0002 0000001 USER2 2014-11-27 16:07:02.0 0002

CUST 0003 0000002 USER2 2014-11-27 17:48:09.0 0003

CUST 0004 0000002 USER1 2014-11-27 19:06:12.0 0004

...

OBJECTCLAS CHANGENR TABNAME TABKEY FNAME VALUE_NEW VALUE_OLD

CUST 0001 CUSTOMER 17299 name Name1

CUST 0001 CUSTOMER 17299 address Address1

CUST 0001 CUSTOMER 17299 birth_date 01-AUG-06

CUST 0002 CUSTOMER 17299 name Name2 Name1

CUST 0003 CUSTOMER 17300 name Name3

CUST 0003 CUSTOMER 17300 address Address2

CUST 0003 CUSTOMER 17300 birth_date 14-JUN-04

CUST 0004 CUSTOMER 17300 address Address3 Address2

...

CDPOS

OBJECTCLAS STRING

CHANGENR INTEGER

TABNAME STRING

TABKEY STRING

FNAME STRING

VALUE_NEW STRING

VALUE_OLD STRING

Figure 4.8: Example of SAP change tables CDHDR and CDPOS

Table 4.5: SAP dataset transformation to populate the OpenSLEX meta-model

Entity Format # Input Els. # Output Els. Aut/Manual Derivation

Data Model SQL 1 1 aut explicit
Class SQL 87 87 aut explicit
Attribute SQL 4305 4305 aut explicit
Relationship - 0 296 aut dom. know.
Object SQL 7340011 7339985 aut explicit
Version - 0 7340650 aut inferred
Relation - 0 7086 aut inferred
Event SQL 26106 26106 aut explicit
Activity Instance - 0 5577 aut inferred
Case - 0 22 aut inferred
Log - 0 1 aut inferred
Activity - 0 172 aut inferred
Process - 0 1 aut inferred

Table 4.5 shows that, in order to populate our meta-model, what we obtain from
SAP are the following entities: data model, class, attribute, object, and event. All these
elements are explicitly defined and can be automatically transformed. However, the
rest needs further processing to be inferred from the input data. Only the relationships
cannot be inferred, but can be obtained automatically from domain knowledge. The
difference between in-table versioning and SAP is that, in the case of SAP, we can
query the online documentation that specifies the connections between different tables
of their data model. A script5 has been developed which, from a set of table names,
finds and obtains the relationships and stores them in a CSV file.

To get an idea of the complexity of the data model of this dataset, Figure 4.9
shows a full picture of it. As can be noticed, it is a very complex structure. However,

5https://www.win.tue.nl/~egonzale/createkeysfile-sh/

https://www.win.tue.nl/~egonzale/createkeysfile-sh/

64 OpenSLEX in Practice: Data Extraction and Querying

ADR2

T005

TCURC

ADRC

ADRCT ADRT CSKT DD07T

BKPF

T001

T003

T880

BSEG

EKKO

EKPO

LFA1

MARA

T001K

T001W

T042Z

TBSL

T024E

T161

EBAN

EINA

T001L T023 MARM

CSKS

USR02

LFBK LFC1

T024D

T024

T161S

EINE

EKAB

EKBE

T156

EKES

EKET

EKKN

LFB1

MAKT MBEW

LFM1

MLAN

MARC

T003T

MKPF

T005T

MSEG

RBCO

RBKP

REGUH

REGUP

RSEG

T006A T007S T008T T023T T023UT T052U T077Y T134T T156T T158W T161T

T161U T163C T163F T163I T163M T163Y T16FT T460T T681B T685T TBDLST

TBSLT TCURF TCURR TCURX TINCT TKA02 TSTCT TVZBT

Figure 4.9: General view of the data model of the SAP dataset as obtained from the popu-
lated meta-model. Due to the size of the data model, the attributes or the tables
have been omitted from this graph.

the tool allows one to zoom in and explore areas of interest. Figure 4.10 shows a
zoomed-in area of the data model, where the EKPO table points to the EKKO table.

Change Table: Adapter Implementation

As has been mentioned before, SAP systems often use relational databases to store
the documents and information they manage. Despite the wide variety of database
systems used, the extraction of the relevant information is always possible, as long

4.2 Evaluation in Real-life Environments 65

ADR2

T005

TCURC

ADRC

ADRCT ADRT CSKT DD07T

BKPF

T001

T003

T880

BSEG

EKKO

EKPO

LFA1

MARA

T001K

T001W

T042Z

TBSL

T024E

T161

EBAN

EINA

T001L T023 MARM

CSKS

USR02

LFBK LFC1

T024D

T024

T161S

EINE

EKAB

EKBE

T156

EKES

EKET

EKKN

LFB1

MAKT MBEW

LFM1

MLAN

MARC

T003T

MKPF

T005T

MSEG

RBCO

RBKP

REGUH

REGUP

RSEG

T006A T007S T008T T023T T023UT T052U T077Y T134T T156T T158W T161T

T161U T163C T163F T163I T163M T163Y T16FT T460T T681B T685T TBDLST

TBSLT TCURF TCURR TCURX TINCT TKA02 TSTCT TVZBT

ADR2

T005

TCURC

ADRC

ADRCT ADRT CSKT DD07T

BKPF

T001

T003

T880

BSEG

EKKO

EKPO

LFA1

MARA

T001K

T001W

T042Z

TBSL

T024E

T161

EBAN

EINA

T001L T023 MARM

CSKS

USR02

LFBK LFC1

T024D

T024

T161S

EINE

EKAB

EKBE

T156

EKES

EKET

EKKN

LFB1

MAKT MBEW

LFM1

MLAN

MARC

T003T

MKPF

T005T

MSEG

RBCO

RBKP

REGUH

REGUP

RSEG

T006A T007S T008T T023T T023UT T052U T077Y T134T T156T T158W T161T

T161U T163C T163F T163I T163M T163Y T16FT T460T T681B T685T TBDLST

TBSLT TCURF TCURR TCURX TINCT TKA02 TSTCT TVZBT

Figure 4.10: Detail of the data model of the SAP dataset as obtained from the populated
meta-model

as a JDBC Driver exists. This allows one to connect to the source database directly
from RapidMiner, as shown in the workflow in Figure 4.11. In this specific case, the
database was SAP Adaptive Server Enterprise (ASE), originally known as Sybase
SQL Server. The process is as simple as providing the list of table names we are
interested in. The workflow will loop through them (Figure 4.12) and extract their
content into CSV files that will be processed in a further step by a different workflow.

Process

Process

Read CSV

f i l out

Loop Examples

exa exa

out

out

inp
res

res

Figure 4.11: RapidMiner workflow to connect to an SAP database and extract the content
of all the tables

Process

Loop Examples

Extract Macro

exa exa

Read Database

out

Annotate

inp out
exa exa

out

out

Figure 4.12: RapidMiner subprocess to extract each table when connecting to a SAP
database

Once we have the CSV files of the SAP tables, we need to process them. To do
so, the RapidProM workflow in Figure 4.13 has been developed, which loops through
these files (including the SAP change tables) to build our meta-model. The top branch

66 OpenSLEX in Practice: Data Extraction and Querying

corresponds to the processing of the data schema. The branch below incorporates the
information about the foreign keys, which are used to define the relationships at the
leve of the data schema, and to establish relations between object versions. The third
branch loads information about the objects, i.e., unique identifiers of each data object
from the source database. The two branches at the bottom process the change log
tables from SAP in order to derive object versions. The rightmost block takes as
an input the source data in a standardized format, and outputs an OpenSLEX file
corresponding to a valid meta-model instance.

Figure 4.13: RapidMiner workflow to populate the meta-model based on SAP dataset.

4.2.5 Merging Data Sources
The three previous environments have been considered in isolation, showing the ETL
process on individual systems. On the other hand, as depicted in Figure 3.1, it often
happens that the landscape of a company is constructed by several systems such as
ERP systems, CRM systems, BPM systems, and so on, which operate separately.
These systems store data related to different aspects of the operations within a com-
pany. It is possible that, in order to perform our analysis, we need to make use of
data from several of these sources combined, e.g., to link user requests made through
a website on the one hand with internal request handling managed by an internal SAP
system on the other. In such a case, we need to merge the data coming from these
independent systems into a single structure. In order to achieve this goal, we require,
at the very least, one common connecting concept to be shared by these systems.

Figure 4.14 shows an example of two systems being merged in a single data model.
On the left-hand side of the figure, the data model described in Section 4.2.3 is shown
as an abstract group of tables from which one of them, the customer table, has been

4.2 Evaluation in Real-life Environments 67

Figure 4.14: The link between different data models through tables representing a com-
mon concept (CUSTOMER_A and CUSTOMER_B) by means of a link table
(CUSTOMER_LINK)

selected. On the right-hand side, the ticket selling platform described in Section 4.2.2
is represented, from which the customer table has been selected as well. Both customer
tables (CUSTOMER_A and CUSTOMER_B) have a customer identification field.
Both could share the same ids to represent the same concept. However, that is not
needed to be correlated. The merging process requires the creation of an additional
linking table (CUSTOMER_LINK) which holds the relation between customer ids
for both separate data models.

Figure 4.15: Merging method to map versions of objects belonging to classes of different
data models (class A and class B) through a linking class (class Link)

To make the combination of these data models fit the structure of our meta-model,
it is necessary to make the connection between objects at the object version level. This
can be done automatically as long as we know (a) which customer id from table A is
related to which customer id from table B, and (b) during which period of time this
relation existed. It may be that the correlation is permanent, for example when we
map customer ids of two systems which always represent the same entity (e.g. social
security numbers on one system with national identification numbers on the other).
In such a case, the connecting object will always relate to versions of the same two
connected objects. This situation is represented in Figure 4.15, where an object of
class A (top line) is connected to an object of class B (bottom line) by means of a
linking object (middle line). For each pair of coexisting object versions of objA and

68 OpenSLEX in Practice: Data Extraction and Querying

objB, a new version of objL must exist to relate them. This method has the benefit
of providing great flexibility. It allows us to establish relations between objects that
change through time. An example of this is the case in which the connection between
two tables represents employer-to-employee relations. An employer can be related to
many employees and employees can change employers at any time. Therefore, the
mapping between employer and employee objects will not be permanent over time,
but rather evolve and change. Such a case is supported by the proposed mapping
method, as presented in Figure 4.16, by means of new object versions for the linking
object.

Figure 4.16: Merging method to map versions of multiple objects belonging to classes of
different data models (class A and class B) through a linking class (class Link).
In this case, the related objects change through time

As demonstrated with this example, the proposed meta-model is able to merge
information from different systems into a single structure, enabling the analysis of
process and data in a holistic way, beyond the boundaries of IT systems infrastruc-
ture. Throughout this section, we have seen how data extraction and transformation
into the proposed meta-model can be performed when dealing with environments of
very different nature. It is important to note that, despite its apparent complexity,
all the steps previously mentioned are carried out automatically by the provided im-
plementations of the adapters. These adapters can be modified and extended to add
support for new environments.

4.3 Analysis of the Resulting Populated Meta-Model
The main advantage of transforming all our source information into the proposed
meta-model structure is that, regardless of the origin of data, we can pose questions
in a standard way. Let us consider the three environments described in previous sec-
tions: redo-logs, in-table versions, and change tables. In the examples, we chose to
illustrate the transformation it is evident that they belong to very different processes
and businesses. The redo-log example corresponds to a concert ticket selling portal.

4.3 Analysis of the Resulting Populated Meta-Model 69

Customer

(PK) id INTEGER

name STRING

address STRING

birth_date DATE

id start_
timestamp

end_
timestamp

name address birth_date object_id

17299 2014-11-27
15:57:08.0

2014-11-27
16:07:02.0

Name1 Address1 01-AUG-06 1

17299 2014-11-27
16:07:02.0

Name2 Address1 01-AUG-06 1

17300 2014-11-27
17:48:09.0

2014-11-27
19:06:12.0

Name3 Address2 14-JUN-04 2

17300 2014-11-27
19:06:12.0

Name3 Address3 14-JUN-04 2

id class_id

1 1

2 1

id timestamp lifecycle resource activity_instance_id

1 2014-11-27
15:57:08.0

Name1 Address1 1

2 2014-11-27
16:07:02.0

Name2 Address1 2

3 2014-11-27
17:48:09.0

Name3 Address2 3

4 2014-11-27
19:06:12.0

Name3 Address3 4

id activitiy_id

1 1

2 2

3 1

4 3

id case_name

1 caseA

2 caseB

id name pid

1 customer-creation 1

2 customer-update-name 1

3 customer-update-address 1

id process_name

1 Process 1

Versions

Events

Cases

Activity instances

Activities

Objects

Data Model

Processes

Figure 4.17: Fragment of resulting populated meta-model

The second example, based on in-table versioning, corresponds to the claim and ser-
vice processing for a financial product within an organization. The third example,
based on a SAP system, represents the procurement process of a fictitious company.
Due to the diversity of data formats and designs of the systems, in a normal situ-
ation these three environments would require very different approaches in order to
be queried and analyzed. However, we claim that our meta-model provides the stan-
dardization layer required to tackle these systems in a similar manner. In this section
we propose a way to standardize the querying process, using a similar template to
answer different questions on each dataset.

4.3.1 Standardized Querying
Our goal is to query the data from different sources in a standardized fashion. To
do so, as demonstrated in Section 5.6, we extracted the raw input data from the
databases of each system. Next, our automated workflows were used to transform
these data and obtaining, as a result, a structure compliant with the proposed meta-
model. In this section, we assume that a fully populated meta-model (result on the
right in Figure 4.1) is available for each of the three environments under study. Also,
we assume that the case derivation step (Figure 4.2.c) has been applied in order to
generate, at least, one set of cases that capture the perspective needed to answer to
business question of interest. As has been stated in Section 4.2.1, many different case
notions could be considered in order to generate alternative perspectives based on the
same event data. Chapter 5 will elaborate on this by proposing a definition of case
notion based on our meta-model in order to support multi-perspective analysis.

Given the populated meta-model instances obtained from the previously described
environments, we hope to make plausible that, given a specific business question, it
is possible to make a SQL query that answers this question, regardless of the original

70 OpenSLEX in Practice: Data Extraction and Querying

format of the data. We demonstrate our claim with the following example. Let us
assume we want to find the group of cases in our logs that comply with a specific rule
or represent a part of the behavior we want to analyze. As an example, for the redo
log dataset we may want to define the following Business Question (BQ1):

BQ1: In which cases was the address of a customer updated?

Doing this on the original data would require to go through the redo-log, looking
for events on the table CUSTOMER, linking them to the specific customer_id, cor-
relating the other events of the same customer, grouping them in traces and building
the log. This is not an easy task, especially if such a complicated query needs to be
built specifically for each new business question that comes to mind. Let us consider
another example, now for the in-table versioning dataset (BQ2):

BQ2: In which cases was a service request resolved?

To answer this, we need to go through the table product and check in which row
the value of the field decision changed respect to the previous one, that has the
same customer_id. The next step would be to correlate events from any other table
through the same customer_id and build the log again. This requires a sequence
of non-trivial and time-consuming steps. As a final example, we could think of the
following question to inspect on the basis of the SAP dataset (BQ3):

BQ3: In which cases was the quantity of a purchase requisition order
modified?

This time we would need to go to the EKPO6 table, which contains information
about purchasing document items. However, unlike the in-table versioning case, the
previous values of the items are not in the original table anymore. To find historical
values for each field, we need to go through the CDHDR and CDPOS tables to find
a row that corresponds to the modification of the field MENGE (purchase order
quantity). We must look at the value of the field FNAME, which should be equal
to the string “MENGE”, as well as the value of the field TABNAME, which should
be equal to the string “EKPO”. Next, that needs to be matched with the correct
Purchase Order (sharing the same TABKEY). Finally, we should correlate event
(from the CDHDR and CDPOS tables) that affected the same purchase order and
group them in cases to form a log. By doing so, we can see the changes in context.
As the complexity of data increases, the process to query it becomes more complex
as well.

To summarize, if we want to ask three different questions in three different en-
vironments, then each question needs to be answered in a specific way. However,
we claim that we can derive a standard way to answer questions of the same nature
on different datasets, as long as the data have been previously normalized into our
meta-model. If we look at the three proposed business questions (BQ1, BQ2 and
BQ3), all of them have something in common: they rely on identifying cases in which

6http://www.sapdatasheet.org/abap/tabl/EKPO.html

http://www.sapdatasheet.org/abap/tabl/EKPO.html

4.3 Analysis of the Resulting Populated Meta-Model 71

a value was modified for a specific field. We can even filter the cases to obtain only
the ones that cover a specific period of time. This means that we can generalize these
questions into one common general question (GQ):

GQ: In which cases (a) there was an event that happened between time
T1 and T2 (b) that performed a modification in a version of class C (c)
in which the value of field F changed from X to Y?

This is a question we can answer on the basis of our meta-model, regardless of the
dataset it represents. All we need to do is to specify the values of each parameter (T1,
T2, C, X, and Y) according to the data model at hand. We translated the general
question GQ into the SQL query in Listing 7.20.

Query 4.1: Standard query executed on the three populated meta-models

1 SELECT C.id as "T:concept:name",
2 E.timestamp as "E:time:timestamp",
3 AC.name as "E:concept:name",
4 E.resource as "E:org:resource",
5 E.lifecycle as "E:lifecycle:transition",
6 E.ordering
7 FROM
8 event as E,
9 "case" as C,

10 activity_instance as AI,
11 activity_instance_to_case as AITC,
12 activity as AC
13 WHERE
14 C.id = AITC.case_id AND
15 AITC.activity_instance_id = AI.id AND
16 E.activity_instance_id = AI.id AND
17 AI.activity_id = AC.id AND
18 C.id IN
19 (
20 SELECT C.id
21 FROM
22 "case" as C,
23 class as CL,
24 object as O,
25 object_version as OV,
26 object_version as OVP,
27 event as E,
28 activity_instance as AI,
29 activity_instance_to_case as AITC,
30 event_to_object_version as ETOV,
31 attribute_name as AT,
32 attribute_value as AV,
33 attribute_value as AVP
34 WHERE
35 E.activity_instance_id = AI.id AND
36 AITC.activity_instance_id = AI.id AND
37 AITC.case_id = C.id AND
38 ETOV.event_id = E.id AND
39 ETOV.object_version_id = OV.id AND
40 OV.object_id = O.id AND
41 O.class_id = CL.id AND
42 CL.name = "%{CLASS_NAME}" AND
43 E.timestamp > "%{TS_LOWER_BOUND}" AND
44 E.timestamp < "%{TS_UPPER_BOUND}" AND
45 AT.name = "%{ATTRIBUTE}" AND
46 AV.attribute_name_id = AT.id AND
47 AV.object_version_id = OV.id AND

72 OpenSLEX in Practice: Data Extraction and Querying

48 AV.value LIKE "%{NEW_VALUE}" AND
49 AVP.attribute_name_id = AT.id AND
50 AVP.object_version_id = OVP.id AND
51 AVP.value LIKE "%{OLD_VALUE}" AND
52 OVP.id IN
53 (
54 SELECT OVP.id
55 FROM object_version as OVP
56 WHERE
57 OVP.start_timestamp < OV.start_timestamp AND
58 OVP.object_id = OV.object_id
59 ORDER BY OVP.start_timestamp DESC LIMIT 1
60)
61)
62 ORDER BY C.id, E.ordering;

This query is standard and independent of the dataset thanks to the use of macros
(RapidMiner macros) denoted by %{M AC RO_N AME }. We just need to instantiate
their values according to the dataset to process. Table 4.6 shows the values for each
macro to be replaced in each case. Notice that the timestamps (TS_LOWER_-
BOUND and TS_UPPER_BOUND) are expressed in milliseconds and the string %
in NEW_VALUE and OLD_VALUE will match any value.

Table 4.6: Parameters to query the three different populated meta-models with the same
query

Variable Value-RL Value-ITV Value-SAP

CLASS_NAME CUSTOMER Product EKPO
TS_LOWER_BOUND 527292000000 527292000000 527292000000
TS_UPPER_BOUND 1480531444303 1480531444303 1480531444303
ATTRIBUTE ADDRESS Decision MENGE
NEW_VALUE % Toekenning %
OLD_VALUE % Nog geen beslissing %

This query can be easily executed in the RapidMiner environment by using the
Query Database operator. Figure 4.18 shows the workflow executed to set the macro
values and make the query for each dataset. Some details of the logs obtained for
each of the three datasets can be observed in Table 4.7.

Table 4.7: Query results for the three different populated meta-models

Properties Redo-Log In-table Ver. SAP

Cases 17 3177 1
Events 301 69410 12
Event classes 5 50 11

It is important to notice that this technique does not exclude the classical way to
analyze logs. On the contrary, it enables the use of all the existing process mining
techniques. A proof of it is the workflow in Figure 4.18, which executes the subprocess
in Figure 4.19 for each of the resulting logs. As can be observed, this process mining
task transforms the log table into an XES log. Next, a process tree is discovered using

4.3 Analysis of the Resulting Populated Meta-Model 73
Process

Process

SAP Query Params

t h r t h r

SAP MM

out

PM Analysis 3

in

in

ou t

out

out

out

out

RL Query Params

t h r t h r

Redo Log MM

out

PM Analysis 1

in

in

ou t

out

out

out

out

InT Query Params

t h r t h r

In−table MM

out

PM Analysis 2

in

in

ou t

out

out

out

out

inp
res

res

res

res

res

res

res

res

res

res

res

res

res

Figure 4.18: Analysis workflow to process the three resulting populated meta-models
Process

PM Analysis 1

Numerical to Dat . . .

exa exa

ori

Data Table to Ev. . .

exa eve

Mult ip ly (5)

inp out

out

out

out

out

out

Inductive Visual . . .

eve mod

Social Network . . .

eve mod

Induct ive Miner (. . .

eve mod

Process Tree to . . .

mod mod

Mult ip ly (6)

inp out

out

out

Conformance Ch.. .

eve

mod

ali

exa

exa

exa

exa

Analyze Perform.. .

eve

mod

mod
in

in

ou t

out

out

out

out

Figure 4.19: Process mining analysis subprocess in the analysis workflow of the three pop-
ulated meta-models. It shows that queries on the populated meta-models can
be converted into event logs to be analyzed by a range of process mining algo-
rithms.

the Inductive Miner, which transforms it into a Petri Net. After that, a performance
analysis is done on the discovered model and the log, together with a conformance
check. In addition to that, a more interactive view of the process is obtained with the
Inductive Visual Miner. A social network (assuming the resource field is available)
can be discovered using the Social Network Miner. All these analyses are performed
automatically and with exactly the same parameters for each resulting log. It is
completely independent of the source. Just by modifying the values of the macros of
our query, we can standardize the process of analyzing sub-logs for value modification
cases.

74 OpenSLEX in Practice: Data Extraction and Querying

4.3.2 Process Mining Results
In this section, we continue with the study in order to determine the viability of this
technique. We show the results of the automated analysis performed on the three
different datasets by means of the same query and same workflow.

The Redo-Log Environment: Ticket Selling Process

In the case of the ticket selling process, we are interested in the traces that modified
the address of a customer. First, the discovered model is shown in Figure 4.20.
We see five main activities in this model: customer insertions, booking insertions,
and three different kinds of customer updates. One can notice that the activity
CUSTOMER+UPDATE+1411, which corresponds to updates in the address field, is
the most frequent of the three modifications. The activity BOOKING+INSERT+44
is the most frequent with a total of 141 executions. One can also see that, as expected,
a customer record can only be modified when it has been inserted before. The dashed
lines in the model represent deviations from the discovered model, which usually
represent infrequent cases that were filtered out during the mining phase.

Figure 4.20: Discovered model and deviations for the redo-log dataset

Another technique that can be used during the execution of the automated work-
flow is performance analysis. The log is replayed on the discovered model such that
time differences can be computed between consecutive events. Next, this information
is displayed on top of the original model to visualize bottlenecks and performance
issues. In this case, Figure 4.21 shows that the most time-consuming activity is one
of the customer updates. However, this information can be misleading since these
modifications were atomic, while data about start and complete events is missing. To
have a better view on performance metrics and obtain accurate task duration, the
life-cycle attribute should be properly assigned to pair events in activity instances.
This is done automatically by the transformation adapter. However, in this case,
there are no activities to be paired.

To finalize the analysis of this process, Figure 4.22 shows the result of checking
the conformance of the log respect to the process. Here we see that, framed in red,
activities CUSTOMER+UPDATE+1411 and BOOKING+INSERT+44 show move

4.3 Analysis of the Resulting Populated Meta-Model 75

Figure 4.21: Performance analysis of the model for the redo-log dataset

Figure 4.22: Conformance analysis of the model for the redo-log dataset

on log deviations. However, as the green bar at the bottom and the number in
parentheses show, these deviations occur in a very small share of the total cases. The
rest of the activities are always executed synchronously in accordance with the model.

The In-Table Versioning Environment: Claim Management Process

The second environment corresponds to the claim management process of a financial
organization. The result of our query represents the cases in which the value of the
Decision field of product service claim changed from Undecided (Nog geen beslissing)
to Granted (Toekenning). Figure 4.23 shows the model as obtained from the Inductive
Visual Miner. It can be observed that the process starts with a Monthly Statement

76 OpenSLEX in Practice: Data Extraction and Querying

Figure 4.23: Discovered model & deviations for the in-table versioning dataset

Figure 4.24: Performance analysis of the model for the in-table versioning dataset

4.3 Analysis of the Resulting Populated Meta-Model 77

being initialized. Then, for most of the following steps three possibilities exist: the
activity is executed, the activity is re-executed (in a loop), or the activity is skipped.
The frequencies in the arcs demonstrate that, in most of the cases, each subsequent
activity happens at least once. These activities consist of the Reception and Checking
of Monthly Statements, Incoming calls, Outgoing letters, Changes in user details, and
Outgoing calls. Finally, the claim is resolved and three outcomes are possible: Not
decided, Accepted, or Rejected.

When looking at the performance view in Figure 4.24, we notice that most of
the places of the net are colored in red. This means that the waiting time in these
places is higher than the rest. This makes sense since for some automatic activities
the waiting time between tasks will be very low, i.e. in the order of milliseconds or
seconds, and those places will set the lower bound for the performance scale. On the
other hand, for most of the human-driven activities, the times will be much longer,
i.e. in the order of days. With respect to activities, we see some variability, observing
some very costly activities especially at the beginning. These activities are mainly
the ones related to processing of Monthly Statements, Incoming calls, and Outgoing
letters.

Figure 4.25: Conformance analysis of the model for the In-table Versioning dataset

Figure 4.25 shows some conformance results. Here we can observe that most of
the activities happen without significant deviations. However, some model moves are

78 OpenSLEX in Practice: Data Extraction and Querying

observed. This happens at a very low rate, mainly because of the infrequent skips
explained previously on Figure 4.23.

The SAP Environment: Procurement Process

Finally, we focus on the Procurement process within an SAP environment. We are
particularly interested in the cases in which the quantity of a purchase order was
modified. After querying the populated meta-model and obtaining the relevant cases,
we used the Inductive Visual Miner to get a model of the process. Figure 4.26 shows
a very structured process, which is not strange given the few cases that fulfilled our
criteria.

Figure 4.26: Discovered model & deviations for the SAP dataset

It seems clear that some activities are executed repeatedly because of the loops.
The process always starts with an update in the value of the Effective Price in Pur-
chasing Info Record (INFOSATZ_U_EFFPR). This is followed by updates in the
Purchasing Document (EINKBELEG object class), specifically in the Purchase or-
der not yet complete field (MEMORY). Only then, the Purchase Order Quantity
(MENGE) field is updated.

Figure 4.27: Performance analysis of the model for the SAP dataset

According to Figure 4.27, the performance seems evenly distributed, except for
the update in Purchase Order Quantities, which seems to take a shorter time than
the rest. From a conformance point of view (Figure 4.28), we see that the process
does not show deviations. This was to be expected, given the size of the log and the
existence of only one case with this particular behavior.

Figure 4.28: Conformance analysis of the model for the SAP dataset

Something interesting to note in this dataset with respect to the other environ-
ments is the existence of resource information. This means that we know who per-

4.4 Chapter Summary 79

Figure 4.29: Social network for the SAP dataset

formed a change in the documents in SAP. This can be exploited to analyze the data
discovering the social network behind the interactions. In this case, Figure 4.29 rep-
resents the discovered social network, showing the handout of work between resources
UJBSSEN and EHANI.

4.4 Chapter Summary
In this chapter, we have demonstrated the applicability of the meta-model described
in Chapter 3, with a special focus on the standardization of the analysis. Several
real-life environments have been analyzed, for which we provided formal descriptions
of their mapping on our meta-model. Moreover, we provided an implementation
of all our techniques, which makes it possible to transform the data to populate
our meta-model, capturing the data and process perspectives of the system under
analysis. This allows for querying it in a standard way, obtaining the relevant cases
for the business question at hand, in order to proceed with the analysis. Finally, a
demonstration of the analysis is made, covering all the phases of the process, starting
from the data extraction and continuing with data transformation, querying, process
discovery, conformance, and performance analysis. The applicability of this ETL
technique to such different environments provides a common ground to separate data
extraction and analysis as different problems. In this way, an interface is generated
that is much richer and powerful than the existing standards. To summarize, the
OpenSLEX meta-model and the proposed ETL technique provide a standardization
layer to simplify and generalize the analysis phase.

Capping melter. This also shows the
proper method of removing cappings.
“Beekeeping: a discussion of the life of
the honeybee and of the production of

honey”, Everett Franklin Phillips, 1923

5
Case Notion Discovery
and Recommendation

In Chapter 3 we proposed a meta-model for process mining on databases. The applica-
bility of this meta-model in practice on different environments has been demonstrated
in Chapter 4. Chapter 5 builds on top of the previous work, assuming that events
have been extracted from the source system, and provides the tools to build event
logs for process mining analysis. First, we provide a formalization of the concept of
a case notion. Next, we present a method for building event logs based on a defined
case notion. Also, the concept of event log “interestingness” is discussed, together
with a method to predict it. Finally, the technique is evaluated.

5.1 Introduction
Obtaining event logs is not a trivial matter. This is due to the fact that data come in
many forms, while a lot of manual work and domain knowledge is needed to obtain
meaningful event logs from it. The principal idea behind log building is to correlate
events in such a way that they can be grouped into traces to form event logs. Classical
approaches would use a common attribute to correlate events. This is a valid method
in scenarios where the data schema has a star shape [45] (Figure 5.1.a): there is a
central table, and the rest of the tables are directly related to it, with at least one
column in common, which can be used as a case notion. However, we consider the
scenario in which some pairs of events may not have any attribute in common. This
is the case for a snowflake schema [45] (Figure 5.1.b), which resembles the shape of
a star schema, with the difference that, at the nodes, we find tables that only hold

81

82 Case Notion Discovery and Recommendation

Figure 5.1: Example of database schema types: (a) star, (b) snowflake, and (c) arbitrary.
The edges represent relationships, i.e., a foreign key in a table (source or the
edge) pointing to a unique key in another table (target of the edge).

a transitive relation with the central table. In practice, we often find databases of
which its schema presents a higher complexity than a star or snowflake structure (Fig-
ure 5.1.c). In that case, there are many combinations in which events can be grouped.
These combinations cannot be arbitrary, but must obey some criteria with a business
meaning, e.g., group the invoice and delivery events by means of the invoice_id field
present in the former ones. Also, more complex combinations can be defined when
transitive relations are considered for the grouping, e.g., group the invoice, delivery,
and bill events according to the field invoice_id in delivery events and the field de-
livery_id in the bill events. Each of these examples captures what we will refer to as
a case notion, i.e., a way to look at event data from a specific perspective.

When dealing with vast datasets from complex databases, the existence of many
potential case notions is evident. Enterprise Resource Planning (SAP, Oracle EBS,
Dolibarr), Hospital Information Systems (ChipSoft, GE Centricity, AGFA Integrated
Care), and Customer Relationship Management (Salesforce, MS Dynamics, Sugar-
CRM) are examples of systems powered by large databases where multi-perspective
analysis can be performed. According to different case notions, many different event
logs can be built. The research problem we tackle in this chapter is how to choose
the right perspective on the data, which is a crucial step in order to obtain relevant
insights. It is common practice to perform this selection by hand-written queries,
usually by an analyst with the right domain knowledge about the system and process
under study. However, when facing complex data schemas, writing such queries can
become a very complicated task, especially when many tables are involved.

A naive way to tackle the exploration of complex databases is to generate all
the possible case notions as combinations of tables. This can lead to many event
log candidates, even for a small database. The combinatorial problem is aggravated
in more complex scenarios, i.e., with hundreds of tables involved. Given a weakly
connected1 data schema of 90 tables, there exist 4 005 combinations of pairs of tables2.
If we consider combinations of 3 tables instead, the number increases to 117 480,

1Weakly connected graph: a directed graph such that, after replacing all of its directed edges with
undirected ones, it produces a connected graph. A connected graph is one such that, for any pair of
nodes (a, b), there is a path from a to b.

2For a set of n elements (n tables), the number of k-combinations (combinations of k tables) is(n
k

)= n!
k !(n−k)!

5.1 Introduction 83

even before considering the many different paths that could connect the tables in
each combination. In such cases, the automated building of logs for all possible
table combinations may still be possible, but has proven to be computationally very
expensive: In the hypothetical case that building an event log would take 4 seconds
on average, building the event logs for a data schema with 90 tables and 10 000
possible case notions would take approximately 11 hours. Even if we spend the time
to compute all of them, we still need to inspect 10 000 event logs to find out which
perspective is both meaningful and interesting.

A way to mitigate the combinatorial explosion is to reduce the case notion search
space as much as possible. Identifying the most interesting event logs would help to
prioritize the most promising views on the data for its analysis. The challenge of
identifying the most promising views is related to the log quality problem. The log
quality problem is concerned with identifying the properties that make an event log
more suitable to be analyzed, i.e. the characteristics that increase the probability of
obtaining valuable insights from the analysis of such an event log. The choices made
during the log building process have an effect on the log quality [56]. Also, in the
literature metrics are available to assess structural log properties [50], which may be
important to assess log quality.

The main contributions described in this chapter are: (a) formally defining com-
plex case notions to adopt different perspectives on event data; (b) automatically
generating candidate case notions on a dataset; (c) assessing the quality of the result-
ing event logs; (d) automatically predicting an event log’s quality before it is built;
(e) sorting the case notions according to their relative quality from the analysis point
of view. This drastically reduces the computational cost avoiding the generation of
uninteresting event logs. In order to achieve these goals, data must be extracted from
the original system and transformed to fit into a certain structure. This structure
should be able to capture both the process and the data sides of the system under
study. The techniques proposed in this paper have been implemented in a frame-
work and evaluated with respect to related ranking algorithms. The approach yields
promising results in terms of performance and accuracy on the computation of event
log rankings.

To enable the application of process mining and the techniques proposed in this
chapter, we need access to the database of the system under study. This informa-
tion should be extracted and transformed to fit into a specific data structure. An
appropriate structure has been previously defined in Chapter 3 as the OpenSLEX
meta-model.

From now on, any reference to input or extracted data will assume to be in the form
of a valid connected meta-model as described in Definition 24 (page 39). As we have
seen, according to our meta-model description, events can be linked to object versions,
which are related to each other by means of relations. These relations are instances of
data model relationships. In database environments, this would be the equivalent of
using foreign keys to relate table rows and knowing which events relate to each row.
For the purpose of this chapter, we assume that pairwise correlations between events,
by means of related object versions, are readily available in the input meta-model.
This means that, prior to the extraction, we know the data schema, i.e., primary and

84 Case Notion Discovery and Recommendation

foreign keys, and how events are stored in each table, e.g., which columns contain the
timestamp and activity name of each event. The first precondition (knowing the data
schema) is fair to assume in most real-life environment. Given the lack of automated
approaches in the literature that tackle the challenge of event data discovery, the
second precondition (knowing the events) requires having the right domain knowledge
in order to extract events. The presented meta-model formalization sets the ground
for the definition of case notion and log that will be presented in the coming sections.

5.2 Running Example
Extracting data from an information system’s database is a complex task. Very of-
ten, we lack the domain knowledge needed to identify business objects and meaningful
case notions. Also, understanding complex data schemas can be challenging when the
number of tables is beyond what can be plotted and explored intuitively. Consider
for example the SAP ERP system. This widespread ERP system is often a target
for process mining analysis, as it is used in a multitude of organizations, and con-
tains a huge amount of functionalities by means of configurable modules. SAP can
run on different database technologies, but its instances always maintain a common
data model which is well-known for its complexity. SAP represents a prime example
because it is a widely used system. Nevertheless, the approach is highly generic and
can be applied in different environments, e.g., alternative ERP tools such as Oracle
EBS, HIS solutions such as ChipSoft, and CRM systems like Salesforce.

Figure 5.2 depicts the data model of a sample SAP dataset. This dataset, belong-
ing to SAP IDES (Internet Demonstration and Evaluation System), is an instance of
a fictitious organization. It contains more than 7M data objects of 87 different classes
and more than 26k events corresponding to changes for a subset of the objects present
in the database. In the diagram, classes are represented by squares, while edges show
the relationships between classes, i.e., a foreign key in one table (edge source) pointing
to a unique key in another table (edge target). Table names in SAP are codified in
such a way that it is not easy to identify what these classes mean without further
documentation. Also, most of the relevant classes are connected to many others. This
makes it very difficult to plot the graph in such a way that clusters of classes can be
easily identified.

Figure 5.3 shows in detail a small portion of the graph, where we observe that the
EKKO class is linked, among others, to the EKPO class. Also, the EBAN class is
connected to both. Additionally, the class EKET is linked to EBAN. According to
the official documentation, both EKKO (header table) and EKPO (item table) refer
to purchasing documents. The EBAN class contains information about purchase
requisition and the EKET class contains scheduling agreement schedule lines. This
could very well be a valid case notion, if we use the connection between the four
tables to correlate the corresponding events in traces. However, there are many ways
in which this correlation could be constructed. One-to-many relationships can exist
between classes, which leads to the well-known problems of data divergence (several
events of the same type are related to a single case) and data convergence (one event is

5.2 Running Example 85

ADR2

T005

TCURC

ADRC

ADRCT ADRT CSKT DD07T

BKPF

T001

T003

T880

BSEG

EKKO

EKPO

LFA1

MARA

T001K

T001W

T042Z

TBSL

T024E

T161

EBAN

EINA

T001L T023 MARM

CSKS

USR02

LFBK LFC1

T024D

T024

T161S

EINE

EKAB

EKBE

T156

EKES

EKET

EKKN

LFB1

MAKT MBEW

LFM1

MLAN

MARC

T003T

MKPF

T005T

MSEG

RBCO

RBKP

REGUH

REGUP

RSEG

T006A T007S T008T T023T T023UT T052U T077Y T134T T156T T158W T161T

T161U T163C T163F T163I T163M T163Y T16FT T460T T681B T685T TBDLST

TBSLT TCURF TCURR TCURX TINCT TKA02 TSTCT TVZBT

Figure 5.2: General view of the data model of the SAP dataset (the table attributes have
been omitted).

related to multiple cases), as described in [72]. This means that the combination of a
subset of classes can yield several, different event logs, depending on the choices made
to correlate the events. Should all the purchase items be grouped in the same purchase
requisition trace? Should one trace per purchase item exist? Would that mean that
the same purchase requisition events would be duplicated in different traces? The
fact that these choices exist makes the process of log building a non-trivial task.
Section 5.3 provides a definition of case notion and presents a framework to build
event logs effectively, taking into account the aforementioned choices in a formal
manner.

86 Case Notion Discovery and Recommendation

ADR2

T005

TCURC

ADRC

ADRCT ADRT CSKT DD07T

BKPF

T001

T003

T880

BSEG

EKKO

EKPO

LFA1

MARA

T001K

T001W

T042Z

TBSL

T024E

T161

EBAN

EINA

T001L T023 MARM

CSKS

USR02

LFBK LFC1

T024D

T024

T161S

EINE

EKAB

EKBE

T156

EKES

EKET

EKKN

LFB1

MAKT MBEW

LFM1

MLAN

MARC

T003T

MKPF

T005T

MSEG

RBCO

RBKP

REGUH

REGUP

RSEG

T006A T007S T008T T023T T023UT T052U T077Y T134T T156T T158W T161T

T161U T163C T163F T163I T163M T163Y T16FT T460T T681B T685T TBDLST

TBSLT TCURF TCURR TCURX TINCT TKA02 TSTCT TVZBT

ADR2

T005

TCURC

ADRC

ADRCT ADRT CSKT DD07T

BKPF

T001

T003

T880

BSEG

EKKO

EKPO

LFA1

MARA

T001K

T001W

T042Z

TBSL

T024E

T161

EBAN

EINA

T001L T023 MARM

CSKS

USR02

LFBK LFC1

T024D

T024

T161S

EINE

EKAB

EKBE

T156

EKES

EKET

EKKN

LFB1

MAKT MBEW

LFM1

MLAN

MARC

T003T

MKPF

T005T

MSEG

RBCO

RBKP

REGUH

REGUP

RSEG

T006A T007S T008T T023T T023UT T052U T077Y T134T T156T T158W T161T

T161U T163C T163F T163I T163M T163Y T16FT T460T T681B T685T TBDLST

TBSLT TCURF TCURR TCURX TINCT TKA02 TSTCT TVZBT

Figure 5.3: Detail of the data model of the SAP dataset. EKKO and EKPO tables refer to
purchase documents, while EBAN contains information about purchase requisi-
tions.

5.3 Case Notions and Log Building
The focus of this section is on defining what a case notion is, in order to build
logs from event data. Relying on the meta-model structure to correlate events gives
us the freedom to apply our log building technique to data coming from different
environments, where SAP is just an example. As long as the existing data elements
can be matched to the class, object and event abstractions, event correlation will be
possible. Therefore, our log building technique will be feasible. The fact that this kind
of data and correlations can be obtained in real-life environments has been previously
demonstrated in [42]. Our approach defines case notions based on the data model of
the dataset (classes and relationships) and projects the data onto it (objects, object
versions, and events) to build traces with correlated events.

5.3.1 Defining Case Notions
We define a case notion (Definition 25) as an annotated rooted tree in which there is
always a root node (root class of the case notion). There can be a set of additional
regular class nodes, together with some converging class nodes, as children of the root
node or other nodes of the subtrees. The root node is the main class of the case notion
and triggers the creation of a new case identifier for each object that belongs to it
(e.g. a case identifier for a purchase order). Regular nodes will force the creation of a
new case identifier when several of its objects relate to one root or regular object (e.g.
several deliveries of the same order will result in one case identifier for each delivery).
Converging nodes are the ones that allow one case identifier to refer to objects of that
same class (e.g., several delivery items linked to the same delivery will be grouped in
under the same case identifier).

Definition 25 (Case Notion) Let us assume a data model DM = (CL,AT ,

5.3 Case Notions and Log Building 87

classOfAttribute,RS,sourceClass, targetClass). We define a case notion as a tuple
CN = (C,root,children,CONV , IDC,rsEdge) such that:
- C ⊆ CL is the set of classes involved in the case notion,
- root ∈C is the root class in the case notion tree,
- children ∈C →P (C) is a function returning the children of a class in the case notion
tree,

- CONV ⊆C is the set of classes of the case notion for which convergence is applied.
If a class c belongs to CONV , all the members of the subtree of c must belong to this
set, i.e., ∀c ∈ CONV : children(c) ⊆ CONV ,

- IDC =C \CONV is the set of identifying classes that will be used to uniquely identify
cases of this case notion,

- rsEdge ∈ (C ×C) → RS is a function returning the relationship of the edge between
two classes in the tree such that, ∀c ∈ C : ∀c ′ ∈ children(c) : ∃rs ∈ RS : {c,c ′} =
{sourceClass(rs), targetClass(rs)}∧ rsEdge(c,c′) = rs.

Table 5.1: Sample object, version and event identifiers for the classes involved in the case
notion.

Class ObjectID VersionID EventID RelationID
EKET a1 av1 ae1 bv1
EKET a1 av2 ae2 bv2
EKET a2 av3 ae3 bv3
EBAN b1 bv1 be1 -
EBAN b1 bv2 be2 -
EBAN b2 bv3 be3 -
EKKO c1 cv1 ce1 bv2
EKKO c2 cv2 ce2 bv2
EKKO c3 cv3 ce3 bv3
EKPO d1 dv1 de1 cv1
EKPO d2 dv2 de2 cv1
EKPO d3 dv3 de3 cv2
EKPO d4 dv4 de4 cv3

Figure 5.4 shows an example of a case notion combining classes EBAN, EKET,
EKKO, and EKPO. The class EBAN is the root of the case notion. The class
EKET is a regular child of the root node, while the child node EKKO is a con-
verging class. By inheritance, the node EKPO is a converging class as well,
given that it belongs to a subtree of the converging class EKKO. Therefore,
Figure 5.4 is the graphical representation of the case notion cn for which C =
{EBAN ,EKET ,EKKO,EKPO}, root = EBAN , CONV = {EKKO,EKPO}, IDC = {EBAN ,EKET},
children ∈ C → P (C) such that children(EBAN) = {EKET ,EKKO},children(EKKO) =
{EKPO},children(EKPO) = ;, and children(EKET) = ;, and rsEdge ∈ (C × C) →
RS such that rsEdge(EKET ,EBAN) = fk_eket_to_eban3, rsEdge(EKKO,EBAN) =

3fk_* stands for “foreign key”, e.g., fk_eket_to_eban represents a foreign key from table EKET
to table EBAN.

88 Case Notion Discovery and Recommendation

Figure 5.4: Sample of a case notion, repre-
sented as an annotated rooted
tree.

Figure 5.5: Links between objects of classes
EKET (a1, a2), EBAN (b1,
b2), EKKO (c1, c2, c3), and
EKPO (d1, d2, d3, d4). The
objects have been grouped in
two sets, corresponding to the
case identifiers computed for
the case notion of Figure 5.4.

fk_ekko_to_eban, and rsEdge(EKPO,EKKO) = fk_ekpo_to_ekko. According to this
case notion, each trace will contain events belonging only to one EBAN object, only
one EKET object, but to any EKKO or EKPO objects that hold a relation with
the EBAN object represented by the trace. This is due to the fact that EKKO and
EKPO are defined as converging classes in our case notion. The log building process
is described in greater detail below.

5.3.2 Building a Log
The process of building an event log can be seen as the projection of a dataset on
a certain case notion. First, a set of case identifiers will be constructed, which will
determine the objects that will be correlated per trace. Definition 26 describes in
more detail how this set of case identifiers is generated. Figure 5.5 will be used in
this section as an example to illustrate the method.

Definition 26 (Case Identifiers) Let us assume a valid connected meta-model instance
CMI and a case notion CN = (C,root,children,CONV , IDC,rsEdge). We define CI as the
maximal set4 of case identifiers such that, each case identifier ci ∈ CI is a set of objects
ci = {o ∈ OC | classOfObject(o) ∈ C} and the following properties apply:
- ∀o ∈ ci : classOfObject(o) ∈ IDC ⇒ (∃o′ ∈ ci : classOfObject(o′) = classOfObject(o) ⇒ o′ =

o), i.e., cannot exist two objects per identifying class in each case identifier,
- ∃o ∈ ci : classOfObject(o) = root, i.e., one object of the case identifier belongs to the
root,

- R ⊆ (ci× ci) = {(o,o′)|∃(rs,ov,ov′) ∈ REL : c = classOfObject(o)∧ c ′ = classOfObject(o′)∧
objectOfVersion(ov) = o ∧objectOfVersion(ov′) = o′∧ rs = rsEdge(c,c′)∧ sourceClass(rs) =
c ∧ targetClass(rs) = c′}, i.e., R is a relation between two objects of the case identifier
such that both objects have at least one link in the original data for a relationship
4 A is a maximal set for property P if: (a) A satisfies property P and (b) ∀B ⊇ A satisfying property

P : B = A.

5.3 Case Notions and Log Building 89

considered in the case notion. To improve readability, we can say that oRo′ ⇐⇒
(o,o′) ∈ R,

- |ci| > 1 ⇒∀(o,o′) ∈ (ci× ci) : oR+o′, i.e., as long as the case identifier contains more
than one object, any pair of objects must belong to the transitive closure5 of the
relation R, i.e., directly or transitively related through objects of the case identifier.

Let us consider the sample dataset in Table 5.1. It corresponds to the tables
EBAN, EKET, EKKO, and EKPO. In total there are 11 objects ({a1, a2,b1,b2,c1,c2,
c3,d1,d2,d3,d4}), 13 object versions ({av1, av2, av3,bv1,bv2,bv3,cv1,cv2,cv3,d v1,
d v2,d v3,d v4}), and 13 events ({ae1, ae2, ae3,be1,be2,be3,ce1,ce2,ce3,de1,de2,de3,
de4}). Additionally, there are 10 relations between object versions ({av1 → bv1, av2 →
bv2, av3 → bv3,cv1 → bv2,cv2 → bv2,cv3 → bv3,d v1 → cv1,d v2 → cv1,d v3 →
cv2,d v4 → cv3}).

The first step to build the event log corresponding to the case notion in Figure 5.4
is to build the set of case identifiers. First, we have to find the maximal set of case
identifiers that comply with the constrains set by the case notion at hand, i.e. (a) all
the objects must belong to the classes in the case notion, (b) at least one object per
case identifier must belong to the root class of the case notion, (c) two objects of the
same case identifier cannot belong to the same identifying class of the case notion,
and (d) all the objects in the same case identifier must be related, either directly or
transitively, by means of the relationships specified in the case notion.

Going back to our example, we will construct the set of case identifiers by observing
the relations between objects (Figure 5.5). Knowing that {b1,b2} are the objects
belonging to the EBAN class and that EBAN is the root class of the case notion,
we know that exactly one of these objects must be in each of the resulting traces.
That means we will generate, at least, two traces. Objects {a1, a2} belong to the class
EKET, which is the other identifying class of the case notion. Only one of these
objects is allowed per trace. In this case, each one of them is related to a different
EBAN object. Because EKET and EBAN are the only identifying classes of the case
notion, we can combine their objects already to create a (non-maximal) set of case
identifiers CI ′ = {ci 1′,ci 2′}:

ci 1′ = {a1,b1}

ci 2′ = {a2,b2}

The next class to look at in the case notion hierarchy is EKKO. There are three
objects ({c1,c2,c3}) belonging to this class. Two of them ({c1,c2}) are related to the
EBAN object b1. Given that it is a converging class, we can put them in the same
case identifier, in this case ci 1′. The other object (c3) is related to the EBAN object
b2. Therefore, it will be inserted in the case identifier ci 2′. We proceed analogously
with the EKPO objects {d1,d2,d3,d4}, given that EKPO is a converging class in our
case notion as well. Finally, the maximal case identifiers set C I = {ci 1,ci 2} is:

ci 1 = {a1,b1,c1,c2,d1,d2,d3}

ci 2 = {a2,b2,c3,d4}

5R+ is the transitive closure of a binary relation R on a set X if it is the smallest transitive relation
on X containing R.

90 Case Notion Discovery and Recommendation

Once the case identifiers have been generated, it is possible to build the log in its
final form. First, we introduce some useful notation in Definition 27.

Definition 27 (Shorthands I) Given a valid connected meta-model instance CMI, a
case notion CN = (C,root,children,CONV , IDC,rsEdge) and a maximal set of case iden-
tifiers CI, we define the following shorthands:
- Acto = {act ∈ AC | ∃(e,ov) ∈ dom(eventToOVLabel) : objectOfVersion(ov) = o ∧

activityOfAI(eventAI(e)) = act}, i.e., the set of activities of the activity instances re-
lated to an object through its versions and events,

- ActCc = {act ∈ AC | ∃(e,ov) ∈ dom(eventToOVLable) : objectOfVersion(ov) = o ∧
activityOfAI(eventAI(e)) = act ∧ classOfObject(o) = c}, i.e., the set of activities related
to a class through its activity instances, events, versions and objects,

- Oc = {o ∈ OC | classOfObject(o) = c}, i.e., the set of objects of a certain class c ∈C ,
- EvOo = {e ∈ EV | ∃(e,ov) ∈ dom(eventToOVLabel) :

objectOfVersion(ov) = o}, i.e., the set of events of a certain object o ∈ OC,
- EvCc = {e ∈ EV | ∃(e,ov) ∈ dom(eventToOVLabel) :

classOfObject(objectOfVersion(ov)) = c}, i.e., set of events of a certain class c ∈C ,
- Eai = {e ∈ EV | ai ∈ AI ∧eventAI(e) = ai}, i.e., set of events of a certain activity instance

ai ∈ AI .

In order to build the final log, we will map a set of activity instances to each object
and group them per case identifier to form traces. According to the definition of the
OpenSLEX meta-model, an activity instance is a set of events that belong to the same
activity and case, e.g., correlated events with different life-cycle of the same activity
(start and complete events). In our example, for the sake of clarity, we assume that
each activity instance is a singleton with a single event. In fact, we will represent
traces as a set of events. Definition 28 provides a formal description of a log and how
to build it from a maximal set of case identifiers.

Definition 28 (Log) Given a valid connected meta-model instance CMI, a case no-
tion CN = (C,root,children,CONV , IDC,rsEdge) and a maximal set of case identifiers
C I , we define a log l ∈ CI → P (AI) as a deterministic mapping between the set of
case identifiers and the powerset of activity instances, such that each of the activ-
ity instances in the mapped set is linked to at least one object of the case identi-
fier, i.e., for all ci ∈ CI : l(ci) = {ai ∈ AI | ∃e ∈ EV : ai = eventAI(e)∧∃ov ∈ OV : (e,ov) ∈
dom(eventToOVLabel)∧objectOfVersion(ov) ∈ ci}.

Assuming that, in our example, each activity instance is represented by a single
event, we can build the final log l as the following mapping:

CI →P (AI)

l : ci 1 = {ae1, ae2,be1,be2,ce1,ce2,de1,de2,de3}

ci 2 = {ae3,be3,ce3,de4}

Of course, different variations of case notions will lead to different event logs, given
that the grouping rules will change. Table 5.2 shows three different case notions, as

5.3 Case Notions and Log Building 91

well as the corresponding case identifiers and final traces. The first row (a) is based on
the case notion in Figure 5.4, representing the same example we have just analyzed.
Case notions (b) and (c) are variations of the case notion (a). In (b), the EKKO
class has been promoted to be an identifying class. This provokes the generation of
an additional case identifier, since objects {c1,c2} cannot coexist in the case identifier
anymore. In (c), also the EKPO class has been transformed into an identifying class.
This triggers the creation of another case identifier, since the objects {d1,d2,d3,d4}
cannot belong to the same case identifier either. These examples show the impact of
converging and identifying classes in the output of the log building process.

Table 5.2: Case identifiers and final traces built from the sample dataset, according to each
of the three case notions.

ID Case Notion Case Identifiers & Traces

a

Trace 1: {ae1, ae2,be1,be2,ce1,ce2,de1,de2,de3}
Trace 2: {ae3,be3,ce3,de4}

b

Trace 1: {ae1, ae2,be1,be2,ce1,de1,de2}
Trace 2: {ae1, ae2,be1,be2,ce2,de3}
Trace 3: {ae3,be3,ce3,de4}

c

Trace 1: {ae1, ae2,be1,be2,ce1,de1}
Trace 2: {ae1, ae2,be1,be2,ce1,de2}
Trace 3: {ae1, ae2,be1,be2,ce2,de3}
Trace 4: {ae3,be3,ce3,de4}

These definitions make it possible to create specialized logs that capture behavior
from different perspectives. However, the combinatorial explosion problem makes it
practically impossible to explore all the case notions for large and complex data mod-
els. This means that we must focus our efforts on the most interesting perspectives
to obtain insights without being overwhelmed by excessive amounts of information.
The following section proposes a set of metrics to assess the “interestingness” of a
case notion, based on measurable quality features of the resulting event log.

92 Case Notion Discovery and Recommendation

5.4 Log Quality: Is my Log Interesting?
The log quality problem concerns the identification of characteristics that make event
logs interesting to be analyzed. This problem is not new to the field. Some authors
have studied how the choices made during the log building process can affect the
log quality [56] and have developed procedures to minimize the negative impact.
Other authors have tried to define metrics to assess different log properties from the
structural point of view [50]. In this work, we aim at assessing the quality of an event
log in an automated way. For that purpose, we adopt some metrics from [50], that
will give us an idea of the structural and data properties that a log should possess
in order to be an interesting candidate. In the scope of our meta-model and the logs
we are able to build, we need to adapt these concepts to be able to compute them.
Considering a valid connected meta-model instance CMI, a case notion CN , a set of
case identifiers C I , and a log l , we define the following three equations to match the
structure of our meta-model.
Support (SP) (Equation 5.1): number of traces present in an event log:

SP(l) = |dom(l)| = |CI| (5.1)

Level of detail (LoD) (Equation 5.2): average number of unique activities per trace:

LoD(l) =

∑
ci∈CI

| ∪
ai∈l(ci)

activityOfAI(ai)|

SP(l)
=

∑
ci∈CI

| ∪
o∈ci

Acto|
|CI| (5.2)

Average number of events (AE) (Equation 5.3): average number of events per trace:

AE(l) =

∑
ci∈CI

| ∪
ai∈l(ci)

Eai|

SP(l)
=

∑
ci∈CI

| ∪
o∈ci

EvOo|
|CI| (5.3)

When analyzing processes, intuitively, it is preferred to have event logs with as
many cases as possible, i.e., higher support (Equation 5.1), but not too many activities
per case, i.e., a reasonable level of detail (Equation 5.2). The reason for this is that the
complexity of the resulting model, and therefore its interpretation, is closely related
to the number of activities it needs to represent. However, too few activities result in
very simple models that do not capture any interesting patterns we want to observe.
Also, we try to avoid cases with extremely long sequences of events, i.e., large average
number of events per trace (Equation 5.3), because of the difficulty to interpret the
models obtained when trying to depict the behavior. However, too short sequences
of events will be meaningless if they represent incomplete cases.

Therefore, while we would like to maximize the support value (5.1), i.e., give
priority to logs with a higher number of traces, we cannot say the same for the level
of detail (5.2) and average number of events per case (5.3). These last two metrics
will find their optimality within a range of acceptable values, which will depend on
the domain of the process and taste of the user, among other factors. Given the
differences between the pursued optimal values for each of the metrics, the need for
a scoring function becomes evident. It is required to be able to effectively compare

5.4 Log Quality: Is my Log Interesting? 93

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Beta(α,β) Distribution

x

P
D

F
α = 5, β =2
α = 4, β =4
α = 2, β =5
α = 1.47, β =2
α = 2, β =1

Figure 5.6: Sample of beta distribution curves for different values of the α and β parameters.

log metrics. A candidate is the beta distribution. Note that the choice of the scoring
function is not restricted by the approach and could be replaced by any distribution
more appropriate to the setting of application.

The beta distribution is defined on the interval [0,1] and has two shape parameters,
α and β. The values of these two parameters determine the shape of the curve, its
mean, mode, variance, etc. Also, the skewness of the distribution can be controlled
by choosing the right combination of parameters (See Figure 5.6). This allows one
to define a range of values for which the probability density function (PDF) of the
beta distribution (Equation 5.4) will return higher scores as they approximate to the
mode.

BetaPDF (x;α,β) = xα−1(1−x)β−1

B(α,β)
, where B(α,β) is the Euler beta function. (5.4)

The input values will get a lower score as they get farther from the mode. One
advantage of this distribution is that it is possible to define a mode value different
from the mean, i.e., to shape an asymmetric distribution. Figure 5.6 shows examples
of beta distributions for different values of α and β.

The parameters α and β can be estimated based on the mode and approximate
inflection points of the desired PDF [90]. We show an example considering only the
mode. If we are interested in event logs with a level of detail close to 7, we need to
estimate the values of α and β to obtain a PDF with mode 7. First, we scale the value.
If the minimum and maximum values for LoD are 1 and 20, then the scaled mode is
0.32. Assuming that we are after a unimodal PDF and α,β> 1, we use Equation 5.5

94 Case Notion Discovery and Recommendation

to compute the mode:

mode = α−1

α+β−2
for α,β> 1 (5.5)

Given the desired mode, we can fix the value of one of the shape parameters and
estimate the other one using Equation 5.5:

est(mode) =

β= 2,α= 1

1−mode , if mode < 0.5 ⇒ positively skewed
α= 2,β= 1−4mode

mode , if mode > 0.5 ⇒ negatively skewed
α,β= 2, if mode = 0.5 ⇒ symmetric

(5.6)

Therefore, for the mode 0.32, the PDF is positively skewed. Using Equation 5.6 we
evaluate est (0.32) to obtain the values β= 2 and α= 1/(1−0.32) = 1.47. The resulting
PDF can be observed in Figure 5.6 (dotted curve). This is a basic yet effective method
to set the shape parameters of the beta function using domain knowledge, i.e., the
optimal value that we desire to score higher. Once the parameters α and β have
been selected, we can compute the scores of the previous log metrics by means of the
following score function:

score(f ,xi,X ,α,β) = BetaPDF (scaled(f ,xi,X);α,β) (5.7)

Here, f is a function to compute the metric to be scored (e.g., SP, LoD or AE), xi is
the input of function f (e.g., a log l), X is the set of elements with respect to which
we must scale the value of f (xi) (e.g., a set of logs L), α and β are the parameters of
the beta probability distribution function, and scaled(f ,xi,X) is a rescaling function
such that:

scaled(f , xi , X) =
f (xi)−min

xj∈X
{f (xj)}

max
xj∈X

{f (xj)}−min
xj∈X

{f (xj)}
(5.8)

With the score function in Equation 5.7, first we perform feature scaling (Equa-
tion 5.8). Next, we apply the beta distribution function (Equation 5.4) with the
corresponding α and β parameters. With respect to the support of the log, the score
will be the result of scaling the support feature (SP(l)) with respect to the set of possi-
ble logs L and applying the beta probability distribution function. As the purpose, in
this case, is to give a higher score to higher support values, we will set the parameters
αSP and βSP such that the probability distribution function resembles an ascending
line (e.g., α= 2 and β= 1 in Figure 5.6):

ssp(l,L) = score(SP, l,L,αSP,βSP) (5.9)

To score the level of detail, we let the parameters αLoD and βLoD to be tuned
according to the preference of the user:

slod(l,L) = score(LoD, l,L,αLoD,βLoD) (5.10)

5.5 Predicting Log Interestingness 95

The score of the average number of events per case is computed in the same way,
using the appropriate values for the parameters αAE and βAE :

sae(l,L) = score(AE, l,L,αAE ,βAE) (5.11)

The “interestingness” of a log l with respect to all the logs L can be defined by
the combination of the score values for each of the previous metrics. In order to
combine the scores for each log metric, a global scoring function gsf ∈ L ×P (L) ⇒ R

can be used, which takes a log l and a set of logs L, and returns the score of l with
respect to L. The approach does not depend on the choice of this function, and it can
be replaced by any custom one. For the purpose of demonstrating the feasibility of
this approach, we define the global scoring (or “log interestingness”) function as the
weighted average of the three previous scores. The weights (wsp , wsp , wsp) and the
parameters of the beta distribution (αSP , βSP , αLoD , βLoD , αAE , βAE) can be adjusted
by the user to balance the features according to their interest.

gsf (l,L) = wsp · ssp(l,L)+wlod · slod(l,L)+wae · sae(l,L) (5.12)

The log “interestingness” scoring function (Equation 5.12) proposed in this section
aims at giving an indication of how likely is that a log will be of interest, with respect to
the other candidates, given a set of parameters. Table 5.3 shows the top 8 discovered
case notions of the sample SAP dataset, according to the computed score. We see
that the tables involved in the purchase requisition process represent a relevant case
notion candidate for this specific dataset. The main contribution until now is not
the specific scoring function, but the framework that enables the assessment and its
configuration. However, this framework still requires a log to be generated in order
to be subjected to evaluation. Taking into account that the final goal is to assess
log “interestingness” at a large scale automatically, we need better ways to score case
notions before the corresponding logs are built. The following section explores this
idea, proposing a method to predict log interestingness.

5.5 Predicting Log Interestingness
If an event log is completely created from an extracted dataset, then it is straightfor-
ward to assess the actual “interestingness”. However, as explained before, for large
databases it is infeasible to compute all candidates. In order to mitigate this prob-
lem and save computation time, we aim at approximating the value of the metrics
considered in Section 5.4 for a certain case notion, before the log is computed. For
this purpose, we define bounds for the log metrics, given a certain case notion. The
goal is to restrict the range of uncertainty and improve the prediction accuracy. In
fact, at the end of this section, the bounds will be used to define a custom predictor
for each of the log metrics. First, we try to set bounds to the support of a log. From
Equation 5.1 we see that the support of a log is equal to the domain of the mapping,
i.e., the number of case identifiers of the log. Definition 26 shows that the number
of case identifiers depends on the combination of objects belonging to the identifying

96 Case Notion Discovery and Recommendation

Table 5.3: Top 8 discovered case notions, sorted by score with parameters (αSP = 2, βSP = 1,
αLoD = 4.16, βLoD = 1, αAE = 1.28, βAE = 1.53, wsp = 0.3, wlod = 0.3, and wae = 0.3).
The α and β parameters have been estimated based on desired min, max, and
mode values for the corresponding beta distribution (LoDmi n = 2, LoDmax = 10,
LoDmode = 4, AEmi n = 4, AEmax = 30, and AEmode = 8). The values for SP, LoD,
and AE have been scaled.

Root Tables SP’ LoD’ AE’ Score
1 EBAN EKPO, EINE, EBAN, EKKO, LFA1 0.54 1.00 0.60 1.90
2 EINE EKPO, EINE, EBAN, EKKO, LFA1 0.70 0.95 0.65 1.79
3 EBAN EKPO, EINE, EBAN, MARA 0.28 1 0.69 1.73
4 EKPO EKPO, EINE, EBAN, EKKO, LFA1 0.80 0.87 0.63 1.60
5 EKKO EKPO, EINE, EBAN, EKKO, LFA1 0.55 0.88 0.47 1.53
6 EINE EKPO, EINE, EBAN, EKKO 0.70 0.85 0.56 1.52
7 EBAN EKPO, EINE, EBAN, EKKO 0.54 0.87 0.48 1.51
8 EINE EKPO, EINE, EBAN, MARA 0.45 0.89 0.71 1.44

classes of the case notion (IDC). Given that every case identifier must contain one
object of the root class, that only one object of the root class is allowed per case
identifier, and that the set of case identifiers is a maximal set, we can conclude that
the set of case identifiers will contain at least one case identifier per object in the root
class:

Bound 1 (Lower Bound for the Support of a Case Notion) Given a valid connected
meta-model instance CMI, a case notion CN = (C,root,children,CONV , IDC,rsEdge), a
maximal set of case identifiers CI, and the corresponding log l we see that ∀ci ∈ CI : ∃o ∈
ci : classOfObject(o) = root ⇐⇒ ∀o ∈ Oroot : ∃ci ∈ CI : o ∈ ci ⇒ |CI| ≥ |Oroot |. Therefore, we
conclude that: SP(l) ≥ ⌊SP(CN)⌋ = |Oroot |

For a case identifier to be transformed into an actual trace, at least an event must
exist for the root object involved in it. For the sake of simplicity, Bound 1 assumes
that at least one event exists for every object in the root class. This has been taken
into account in the implementation, considering only objects of the root class that
contain at least one event.

Each of the case identifiers is a combination of objects. Also, exactly one object of
the root class and no more than one object of each identifying class (classes in IDC)
can exist per case identifier. This leads to the following upper bound for support:

Bound 2 (Upper Bound for the Support of a Case Notion) Given a valid connected
meta-model instance CMI, a case notion CN = (C,root,children,CONV , IDC,rsEdge), a
maximal set of case identifiers CI, and the corresponding log l , we define a maximal
set CI ′ for which the following properties hold:
a) ∀ci ∈ CI ′ : ∀o ∈ ci : classOfObject(o) ∈ IDC ⇒ ∃o′ ∈ ci : classOfObject(o) =

classOfObject(o′) ⇐⇒ o = o′, i.e., only one object per class belongs to the case iden-
tifier,

5.5 Predicting Log Interestingness 97

b) ∀ci ∈ CI ′ : ∃o ∈ ci : classOfObject(o) = root, i.e., one object of the root class must
always belong to the case identifier.

This implies that CI ′ contains all the possible combinations of one or zero objects of
each class in IDC, except for the root class, that must always be represented by an
object in the case identifier. That means that |CI ′| = |Oroot | · ∏

c∈{C \root}
(|Oc|+1). Given

that CI ′ is less restrictive than CI, we know that CI ′ ⊇ CI ⇒ |CI ′| ≥ |CI|. Therefore:
SP(l) ≤ ⌈SP(CN)⌉ = |Oroot | · ∏

c∈{C \root}
(|Oc|+1)

Following the same logic to set a lower bound for support, we know that all the
objects that belong to the root class will be involved in at least one case identifier.
However, the number of traces is still unknown if the log has not been built and we
can only consider it as the maximum possible, i.e., the upper bound of the support.
Therefore, a lower bound for the level of detail will be given by the sum of the
unique activities per object of the root class divided by the maximum number of case
identifiers. If we consider that the additional case identifiers (beyond the number of
objects of the root class) will, at least, add a unique number of activities equal to the
minimum number of activities per object of the root class, we can get a better lower
bound as described below:

Bound 3 (Lower Bound for the LoD of a Case Notion) Given a valid connected
meta-model instance CMI, a case notion CN = (C,root,children,CONV , IDC,rsEdge),
a maximal set of case identifiers CI, and the corresponding log l , we see that
∀ci ∈ CI : ∃o ∈ ci : classOfObject(o) = root ⇐⇒ ∀o ∈ Oroot : ∃ci ∈ CI : o ∈ ci ⇒ ∀ci ∈
C I :

∪
o∈ci

Acto ⊇ ∪
o∈(ci∩Oroot)

Acto. Additionally, we know that ∑
ci∈CI

| ∪
o∈(ci∩Oroot)

Acto| ≥
(

∑
o∈Or oot

|Acto|)+ (|CI|− |Or oot |) · min
o∈Or oot

{|Acto |}. Therefore:

LoD(l) ≥ ⌊LoD(CN)⌋ =
(

∑
o∈Or oot

|Acto|)+ (⌈SP(CN)⌉− |Or oot |) · min
o∈Or oot

{|Acto |}

⌈SP(CN)⌉
A lower bound for LoD is given by the lower bound of the sum of the unique

activities per case, divided by the upper bound on the number of cases. We know
that, at least, one case will exist per object belonging to the root class. That is why
the sum of the unique activities per object of the root class is added on the top part of
the formula. Also, because these objects could be involved in more than one case, to
a maximum of ⌈SP(CN)⌉ cases, we add the minimum number of unique activities they
could have and multiply it by the maximum number of additional case identifiers.
This will always be a lower bound given that the number of activities we add at the
upper part for the additional case identifiers will always be equal or lower than the
average. Not adding these extra case identifiers would still result in a lower bound,
but an extremely low one since the divisor is usually an overestimation for the number
of possible case identifiers.

With respect to the upper bound for the level of detail, we need to consider the
most extreme situation. This is caused by a case identifier that contains one object

98 Case Notion Discovery and Recommendation

per identifying class and one or more objects per converging class, such that, for
each object, the events related to it represent all the possible activities. For this
case identifier, the number of unique activities will be the sum of the number of
unique activities per class involved. However, there is a way to restrict this bound.
If we count the number of unique activities for the events of each object, and find
the maximum per class, the upper bound will be given by the sum of the maximum
number of unique activities per object for all the identifying classes, plus the total of
unique activities per converting class involved in the case notion:

Bound 4 (Upper Bound for the LoD of a Case Notion) Given a valid connected
meta-model instance CMI, a case notion CN = (C,root,children,CONV , IDC,rsEdge),
a maximal set of case identifiers CI, and the corresponding log l , we know that,
∀c ∈ C : ∀o ∈ Oc : |Acto| ≤ max

o′∈Oc

{|Acto′ |}. This implies that, ∀ci ∈ CI : | ∪
o∈ci

Acto| ≤∑
c∈IDC

max
o∈Oc

{|Acto|}+ ∑
c i nCONV

|ActCc|. Therefore:

LoD(l) ≤ ⌈LoD(CN)⌉ =
|CI| · (

∑
c∈IDC

max
o∈Oc

{|Acto|}+ ∑
c i nCONV

|ActCc|)
|CI| =∑

c∈IDC
max
o∈Oc

{|Acto|}+
∑

c i nCONV
|ActCc|

The same reasoning used to obtain a lower bound for the level of detail can be
applied in the case of the average number of events per trace. Only that, in this case,
instead of counting the number of unique activities, we count the number of events
per object:

Bound 5 (Lower Bound for the AE of a Case Notion) Given a valid connected meta-
model instance CMI, a case notion CN = (C,root,children,CONV , IDC,rsEdge), a max-
imal set of case identifiers CI, and the corresponding log l , we see that ∀ci ∈ CI :
∃o ∈ ci : classOfObject(o) = root ⇐⇒ ∀o ∈ Oroot : ∃ci ∈ CI : o ∈ ci ⇒ ∀ci ∈ CI :

∪
o∈ci

EvOo ⊇∪
o∈(ci∩Oroot)

EvOo. Additionally, we know that ∑
ci∈CI

| ∪
o∈(ci∩Oroot)

EvOo| ≥ (
∑

o∈Oroot

|EvOo|) +
(|CI|− |Or oot |) · min

o∈Or oot
{|EvOo |}. Therefore:

AE(l) ≥ ⌊AE(CN)⌋ =
(

∑
o∈Oroot

|EvOo|)+ (⌈SP(CN)⌉− |Or oot |) · min
o∈Or oot

{|EvOo |}

⌈SP(CN)⌉
A lower bound for AE is given by the lower bound of the sum of the events per

case, divided by the upper bound on the number of cases. At least one case will exist
per object of the root class. Therefore, we consider the sum of the number of events
per object. These objects could be involved in more than one case, to a maximum of
⌈SP(CN)⌉ cases. So, we add the minimum number of events they could have, multiplied
by the maximum number of additional case identifiers. This is a lower bound given
that the number of events added at the upper part for the additional case identifiers
is equal or lower than the average. Not adding these extra case identifiers would

5.5 Predicting Log Interestingness 99

still result in a lower bound, but an extremely low one since the divisor is usually an
overestimation on the number of possible case identifiers.

To define an upper bound for AE, we use an approach similar to the one used to
compute an upper bound for LoD. We need to consider the most extreme case, the
case in which the maximum number of events per object (for the identifying classes)
could be included in the final trace. However, if the case notion has converging classes,
the most extreme case is the one in which all the objects of such classes are contained
in the case identifier, therefore all the events belonging to the converging classes would
be inserted in the trace:
Bound 6 (Upper Bound for the AE of a Case Notion) Given a valid connected meta-
model instance CMI, a case notion CN = (C,root,children,CONV , IDC,rsEdge), a
maximal set of case identifiers CI, and the corresponding log l , we know that,
∀c ∈ C : ∀o ∈ Oc : |EvOo| ≤ max

o′∈Oc

{|EvOo′ |}. This implies that, ∀ci ∈ CI : | ∪
o∈ci

EvOo| ≤∑
c∈IDC

max
o′∈Oc

{|EvOo′ |}+
∑

c∈CONV
|EvCc|. Therefore:

AE(l) ≤ ⌈AE(CN)⌉ =
|CI| · (

∑
c∈IDC

max
o′∈Oc

{|EvOo′ |}+
∑

c∈CONV
|EvCc|)

|CI| =∑
c∈IDC

max
o′∈Oc

{|EvOo′ |}+
∑

c∈CONV
|EvCc|

These bounds define the limits for our prediction. For each metric (SP(l), LoD(l)
and AE(l)), either the lower or upper bound could be a prediction. However, a better
heuristic can be designed. We defined equations to predict the values as the weighted
average of the corresponding bounds (Equations 5.13, 5.14, and 5.15). Given a valid
connected meta-model instance CMI and a case notion CN , our prediction for each
metric is given by the following heuristics:

ŜP(CN) = wlbsp · ⌊SP(CN)⌋+wubsp · ⌈SP(CN)⌉ (5.13)

L̂oD(CN) = wlblod · ⌊LoD(CN)⌋+wubl od · ⌈LoD(CN)⌉ (5.14)

ÂE(CN) = wlbae · ⌊AE(CN)⌋+wubae · ⌈AE(CN)⌉ (5.15)

From these equations, we see that in order to calculate the heuristics for each
metric, we need to collect some features. These features (Table 5.4) can be easily
computed once for each class c ∈ CL in the dataset and be reused for every case notion
CN we want to assess.

Finally, in order to score the predicted values of each metric, the scoring function
previously used (Equation 5.7) must be individually applied. The input parameters
are two: a case notion C N , and a set of case notions C N S to compare to. Equa-
tions 5.16, 5.17 and 5.18 provide the scores for the predicted metrics given a case
notion C N and a set of case notions C N S.

ŝsp(CN ,CNS) = score(ŜP,CN ,CNS,αSP,βSP) (5.16)

100 Case Notion Discovery and Recommendation

Table 5.4: Features used to compute upper and lower bounds for each log metric.

Feature Description
1 MaxEvOc = max

o∈Oc
{|EvOo|} Maximum # of events per object of a class c

2 MaxActc = max
o∈Oc

{|Acto|} Maximum # of activities per object of a class c

3 MinEvOc = min
o∈Oc

{|EvOo|} Minimum # of events per object of a class c

4 MinActc = min
o∈Oc

{|Acto|} Minimum # of activities per object of a class c

5 |EvCc| # of events per class c
6 |ActCc| # of unique activities per class c
7 SumEvOc = ∑

o∈Oc

|EvOo| Total # of events per object for a class c

8 Sum Actc = ∑
o∈Oc

|Acto| Total # of unique activities per object for a class c

9 |Oc| # of objects of a class c

ŝlod(CN ,CNS) = score(L̂oD,CN ,CNS,αLoD,βLoD) (5.17)

ŝae(CN ,CNS) = score(ÂE,CN ,CNS,αAE ,βAE) (5.18)

Next, a global scoring function is defined to combine the three of them. We will
call this function the predicted global scoring function, pgsf ∈C N S×P (C N S) →R and
it is the weighted average of the scores of each of the three predicted values:

pgsf (CN ,CNS) = wsp · ŝsp(CN ,CNS)+wlod · ŝlod(CN ,CNS)+wae · ŝae(CN ,CNS) (5.19)

This function represents our custom predictor for log “interestingness”. The ac-
curacy of the predictor will be evaluated in Section 5.6, where it will be compared to
alternative techniques.

5.6 Evaluation
So far, we proposed a set of metrics to assess the “interestingness” of an event log
once it has been constructed. Also, we provided predictors for these metrics based
on (a) the characteristics of the case notion being considered and (b) features of the
dataset under study. The aim of this section is twofold:

1. To find out how good our predictors are at estimating the value of each log
characteristic.

2. To evaluate the quality of the rankings of case notions, based on their potential
“interestingness” according to certain log metrics, using our custom predictor
and compare them to existing learning to rank algorithms.

5.6 Evaluation 101

Table 5.5: Details about the SAP dataset used during the evaluation.

Tables 87 Case Notions 1.0622×104

Objects 7.3400×106 Non empty logs 5.1800×103

Versions 7.3407×106 Total log building time 13h 57m
Events 2.6106×104 Average log building time 4.7s

Features computation time 2m

The evaluation was carried out on an SAP sample dataset (Table 5.5). It contains
the data model, objects, object versions, and events of 87 SAP tables. The following
steps were executed using the open source software package eddytools6. First, a set
of candidate case notions was generated. Each one of the tables in the data model
was taken as the root node of a potential case notion. Next, for each of them, all
the possible simple paths following outgoing arcs were computed, yielding a result of
10622 case notion candidates. For each of the candidates, the corresponding event
log was generated and the metrics presented in Section 5.4 were computed. This set
of logs and metrics represent the ground truth. Given that we want to predict the
metrics in the ground truth set, we need to measure the features that our predictors
require. The following section describes these features.

5.6.1 Features for Log Quality Prediction
Section 5.5 presented our predictors for each of the log characteristics. These pre-
dictors estimate the values of the support (SP, Equation 5.13), level of detail (LoD,
Equation 5.14), and average number of events per trace (AE, Equation 5.15) of a log,
given the corresponding case notion and a set of features. This subsection describes
the features used during the evaluation which are (a) the lower and upper bounds of
each log property as listed in Section 5.5 and (b) additional features used to improve
the accuracy of the regressors we will compare to.

Given a valid connected meta-model instance CMI (i.e., a dataset stored in the
OpenSLEX format containing events, objects, versions, and a data model) and a
specific case notion CN , we can measure the features enumerated in Table 5.6. The
log associated to such case notion does not need to be built in order to compute these
features. Actually, many of the features are the result of an aggregation function over
a class property. Once the class properties have been computed, the complexity of
calculating these case notion metrics is linear with respect to the number of classes
involved.

5.6.2 Evaluation of Predictors’ Accuracy
In Section 5.5, upper and lower bounds were given for each log property given a case
notion (CN). These bounds have been used to estimate the value of such log properties
by means of three predictors (one per log property), before the log is actually built.

6https://github.com/edugonza/eddytools

https://github.com/edugonza/eddytools

102 Case Notion Discovery and Recommendation

Table 5.6: Features used to predict log “interestingness”.

Feature Description
1 ⌊SP (C N)⌋ Lower bound for the support
2 ⌈SP (C N)⌉ Upper bound for the support
3 ⌊LoD(C N)⌋ Lower bound for the level of detail
4 ⌈LoD(C N)⌉ Upper bound for the level of detail
5 ⌊AE(C N)⌋ Lower bound for average number of events per trace
6 ⌈AE(C N)⌉ Upper bound for average number of events per trace
7 |C | Number of classes in the case notion
8 |E(C N)| Total number of events of all the classes in the case notion
9 I R(C N) Average number of events per object

SP ML QR NN

SP

M
A

E

0
.0

0
.4

0
.8

LoD ML QR NN

LoD

M
A

E

0
.0

0
.4

0
.8

AE ML QR NN

AE

M
A

E

0
.0

0
.4

0
.8

Mean Absolute Error on each property

Our predictors

Multiple Linear Regressor

Quantile Regression

Neural Network Regressor

Figure 5.7: Comparison of mean absolute error (MAE) for the predictors on the three nor-
malized log properties.

Now it is time to evaluate the accuracy of these predictors. We compared the predicted
value for each log property (SP, LoD, and AE) with the actual values in the ground
truth dataset. This was done for the predictors for each log property as defined
in Section 5.5 (Equations 5.13, 5.14, and 5.15). The combination of the scores of
the three individual predictors (Equations 5.16, 5.17, and 5.18) in a single scoring
function of log “interestingness” (Equation 5.19) is what we call our Custom Predictor
(CP). Additionally, we compared the accuracy of the individual predictors to three
different regressors: (a) Multiple Linear Regressor (MLP), (b) Quantile Regressor
(QR) [58], and (c) Neural Network Regressor (NN). Each of them was trained and
tested using the features in Table 5.6. A 5-fold cross validation was performed in
order to determine the accuracy of the predictors (our predictors, MLP, QR, and
NN). To avoid underestimation of the prediction error, empty logs where filtered out
of the dataset, using only 5180 case notions from the original 10622.

Figure 5.7 shows the mean absolute error (MAE) measured per normalized prop-

5.6 Evaluation 103

erty for each predictor. We see that our predictors do not perform really well, pre-
senting an average error of around 1.0 when predicting LoD or AE and around 1.1
when predicting SP. In comparison, within the scope of this experiment and for this
specific dataset, the regressors perform better, in particular, the Quantile Regressor
with an average error of around 0.8 for SP and LoD, and around 0.9 for AE. This
figure, however, could be misleading, given that the MAE is computed on all the pre-
dictions, regardless of the existence of outliers. To get a better idea of the influence of
extremely bad predictions on the overall performance, we include Figure 5.8, which
shows box-plots for each log property per predictor. It is important to notice that a
logarithmic scale has been used, in order to plot extreme outliers and still be able to
visualize the details of each box.

● ●●● ●●●● ●● ●●●●● ●●●● ● ●● ● ●● ●●●● ●● ●●●●● ●●● ●● ● ●●●●● ● ●●● ●●●●● ● ●●●● ● ●●● ● ●●●● ● ●●●● ●●● ●● ●●●● ●●●●● ● ● ●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●● ●●● ● ●●●●● ● ●●● ●●● ●● ●●● ●● ● ● ●●●● ●● ●● ●●●●● ● ●● ● ●●●● ●●● ● ●●●●●● ● ●● ● ●●●● ●●●●●●● ●●●●● ●● ●● ●● ●●● ●●●●● ●●●●● ●● ●●●● ●●●● ●● ● ●●● ●●● ●● ●●●● ●●● ●● ●● ●● ● ●●●●●● ● ●●● ●●●●● ●●● ● ●● ●●● ● ●●●●● ● ●● ●●●●● ●● ●● ●●●●● ●●●●● ●● ●●● ●●● ●●● ●●●●● ●●●●● ●● ●●●●●● ●●● ●● ● ●●● ●●● ●●●● ●●●● ●●● ●● ● ● ●●●●●● ●● ● ●●●●● ●●● ● ●●●● ●● ●●●●●● ● ●●● ● ●●●● ●●●● ●●●●● ● ● ●● ●●●● ●● ●● ● ●●● ●● ●●●● ●●● ●●● ●● ● ●● ●●●● ●● ●●●●●● ●● ● ●●●●●● ●●● ●●●●● ● ●●●● ●●●● ●●● ● ●●●●● ● ●●● ● ●●●● ●●● ●● ●●●●● ●●●●● ● ● ●●●●● ●● ●●● ●

● ●● ●●●● ●● ●● ●●●●● ●●● ●● ● ●● ●● ●● ● ●●● ● ●●● ●● ●● ●● ●● ● ●● ●● ●●● ● ●●●● ● ●● ●● ●●●● ●● ●● ●● ●●● ●●● ●● ●●● ●● ● ●● ●● ●●● ●● ●●● ●● ●● ●●● ●● ●● ●●● ● ●●●● ●●● ● ●● ●● ●●● ●● ●● ● ●● ●●● ●● ●● ●●● ● ●● ●●● ●● ●●● ● ●● ●●● ●● ●●● ● ●●● ●● ●● ●●● ●●● ●●●● ● ● ● ●●● ●●● ●●●● ●● ●● ●● ●● ●●●● ●●●●●● ● ●●● ● ● ●●● ●●● ●● ●●●●●● ●●●●● ●●● ●●● ● ●●● ●●● ●●● ●●● ●● ●● ●● ● ●●●● ●● ●●● ●●● ●● ● ●●●●● ●●● ●●● ●● ● ●● ●● ● ●● ●●●●● ● ●●● ●● ●●● ● ●● ●●●●●● ●●● ●● ● ● ●●●● ●● ●● ●●● ● ●●● ● ●●● ● ● ●●●● ●● ●● ● ●● ●●● ●●●●●●●● ●●● ●●● ● ●●● ●● ●●● ●●● ●● ●● ●●● ●●● ●●●● ●● ●● ● ●●●● ●●●●● ●●● ●● ● ● ●● ●●● ●● ● ●●● ●●● ● ●●●●●●● ●●●●● ●● ●● ● ●● ●● ● ●●● ● ● ●●●● ● ●●● ●● ●● ●●● ●● ●●●● ●●● ● ●●●● ● ●● ●● ●● ●● ●●● ●● ●● ●●● ●●●● ●● ●● ●● ● ● ● ●● ●●● ● ●●●● ● ●● ●●● ● ● ●●● ●● ●● ●●● ●●●●● ●● ● ●●●●● ●● ●●●● ●●● ●●● ●● ● ●●●● ●●●● ● ● ●● ●● ●● ●● ●●● ●● ●● ● ●●● ●● ●●●● ●●●● ● ●● ●●●● ●● ●● ●

● ●●● ● ●●●● ●●● ●●● ●● ●● ●●●●●● ●●● ● ●●● ●●● ●● ●● ●● ● ●●●● ●●●●● ●●●● ● ●● ●●●● ●● ●●● ● ● ●● ●● ●●● ●● ● ●●●●● ● ●●● ●● ●● ● ●●●● ●● ● ●●● ●● ●● ● ●●●● ●● ●●● ●● ●● ● ● ●● ● ●● ● ●● ●●● ●●● ●● ●●●● ●● ●● ●●●● ● ●● ● ●●●● ●●● ●● ● ●● ● ●●● ● ●● ●● ●●●● ●● ●● ●● ●● ●● ●●● ●●● ●● ●● ●● ● ● ●● ● ●●● ●●● ●●● ●● ●● ● ●●●●●● ●●●● ●● ● ● ●● ● ●●●●●●● ●● ● ●● ●●● ●● ●●● ●●● ●● ● ●● ● ●● ●●● ●●●●● ● ● ●●● ● ●●● ●● ●● ●●● ●●● ● ●● ●●● ●●● ●● ●●●● ●● ●●● ●● ●●● ●● ● ●●● ●●●● ● ●●● ●● ●● ● ●●●●● ●● ●●● ●● ●● ●● ●●●●● ● ●●● ●●● ●● ●● ●●● ● ● ●● ●●● ●● ●● ●● ●●● ● ●●● ●●●● ●● ●● ●● ●● ●●● ●● ●● ● ●●● ● ●●● ●● ●● ● ● ●● ●●● ●●●●● ●● ● ●●● ●●● ●●● ●● ●●● ● ●● ●● ●● ●●● ●●●● ●● ● ● ●●● ●● ●●● ●●● ● ●● ●●●● ●●● ●● ● ●●● ● ●●●● ●● ● ●●● ●● ●● ● ●● ●●● ●●●●●● ●●●● ● ● ●●● ● ●● ● ●● ●●●● ●●● ●●● ●● ● ● ●● ● ●● ●● ● ● ●● ●●● ●●● ●●● ● ●●● ● ●● ●● ●● ●●●● ●●● ●●●● ●●● ●● ●● ●●●●● ●●● ●● ● ●● ● ●●●● ●● ●●●● ●●● ●●● ●●●● ●●● ● ●● ●● ● ● ● ●●● ●● ●● ●● ●●● ●● ●● ●● ●● ● ●● ●● ●● ●●●● ●●●●●● ●●● ● ●●● ●● ●● ● ●● ●● ● ●● ●● ● ● ●● ●●●●● ● ●●● ●● ●● ●● ●●● ●● ● ●●●●● ●●●●●● ● ●●● ●●● ●●● ● ●● ●● ●● ●●● ●● ●● ● ●● ●● ● ●● ●● ●●● ● ●●● ●●● ●●●●● ●● ●● ● ● ●● ● ●● ● ●●● ● ●● ●● ●● ●● ● ●● ●●●● ● ● ●●● ●●● ● ● ●●●● ● ●●● ●●● ●●● ● ●●● ●● ●●● ●● ●● ● ●●● ●● ●●●● ●●●● ●● ●●● ●●●● ● ●● ●● ●●●●● ● ●● ●● ●● ●●●● ● ●● ●● ●●● ●● ● ●●● ●● ●● ●● ● ●● ●● ●● ●● ●●●● ●●● ● ●●● ●● ● ● ●● ●●●● ● ●● ● ●●●● ●● ●●● ●● ●●● ●●●● ●● ● ●● ●● ●● ●● ●

● ● ●●●● ●●●● ●●● ●●●● ●● ● ●●●● ● ●● ●● ● ●●● ●● ● ●●●● ● ●● ●● ●●● ●● ●● ● ●●●●● ●●● ●●● ● ●●● ●●● ●●● ●●● ●● ●●● ●●● ●● ● ●●●● ● ● ●● ●●● ●● ●● ●● ●●●●● ● ● ●●●● ●● ● ●●●● ●● ● ●● ● ●● ● ●● ● ● ●●● ● ●●● ● ●● ●●● ●●● ● ● ●●● ●● ● ● ●●● ●● ●●●● ●●●●●● ● ●● ●●●● ● ●● ●●● ● ●●●●●● ● ●●●● ●●● ●●● ●●●● ●●● ●●●●● ●● ●● ●● ●●● ●●●● ● ●● ●●●●●● ●●● ● ● ●●● ● ●●● ●●● ●●● ● ●●● ●●● ● ●●● ● ●●● ●● ●● ●● ● ●●●●●● ●●●● ● ●●●●● ●●● ●● ●●● ●●●●● ●●●● ● ● ●● ● ●● ●●● ●● ● ●●●● ●●● ●●● ●● ● ● ●●● ● ●● ●● ●● ● ●●● ●●●●● ● ●●●●● ●●●● ●●● ●● ●●● ●● ● ●● ● ●● ●●●● ●●● ●●● ●●●● ●● ●● ●● ●●● ●● ●●● ●●●● ● ● ●● ●●● ●●●● ● ● ● ●● ●●● ● ●●● ●●● ●●●● ●● ●●● ●●● ●● ●●● ●● ●●●● ●● ●●● ●● ●● ●●●●● ● ●● ●● ●●● ●●

S
P

M
L

Q
R

N
N

0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0

Absolute Error for Support (SP)

● ● ●● ●●● ●● ●●●● ●● ●●● ● ●● ● ●● ●●● ●●● ●● ●●● ●● ●● ●●● ●● ●● ●●●● ●●● ●● ●● ●●●● ●● ●●● ●● ●●●● ●●● ●●●●● ●●● ●● ●● ● ●●● ●● ●● ● ●● ● ●● ●● ●● ●● ● ●●● ●● ● ●●●●●●● ●● ●● ● ● ●● ●● ● ● ● ●●● ●●●●● ●● ● ●●● ●●● ●●● ●●● ●●● ●● ●● ●●● ● ●●● ● ●●● ● ●● ●● ●●● ●●● ●● ● ●●● ●● ●● ● ●●●●●● ●●● ●● ● ●●● ●● ●●● ●● ● ● ●●● ●● ●●● ●● ●● ●●●● ●● ●●● ●● ●● ● ●●● ●●●● ●● ●●● ●● ● ●●● ●● ●● ● ●●● ● ●● ●● ●● ●●● ●● ●●● ●● ●●● ●●● ●●●● ●● ● ●● ●● ●●● ●● ● ● ●●●●●● ●●● ●● ●● ●● ●● ●●● ● ● ●●● ●● ●●●●● ●● ●●● ● ●●● ●● ●●● ● ●● ● ●●● ●●● ●● ● ●●●● ●●● ●●● ● ●●● ●●●● ●● ●● ●● ●● ●● ●● ● ● ●●●● ●● ●●● ●● ●● ●●●● ●●●●● ●●● ● ●●●● ●●● ●●● ●●● ●● ● ●●● ●● ●●● ●● ● ●● ● ●● ●● ●●● ● ●● ●● ●● ●●● ●●●● ●● ●●●●●● ● ● ●● ●● ● ● ●● ●● ● ● ● ●●●●● ●● ●● ● ●● ●● ● ●●●● ●●● ●● ●● ●●● ●●●● ●● ● ●●● ●●● ● ●●● ●●●● ●● ●● ●● ●● ●● ●● ● ●●●● ●●● ●●● ● ●●● ●● ●●●● ●● ●● ● ●●●● ●● ● ● ●●●● ●● ●● ●● ●● ●●● ●● ●● ● ●● ● ●●●● ●● ●●● ●●● ●● ● ●●●●● ●●● ●● ● ●●● ● ●●● ●●● ● ●●● ●● ● ●● ●● ● ●●● ●● ●● ●●●●● ●● ● ●●● ● ●●● ● ●●● ●●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●●● ●● ●●●●● ●●● ● ●● ●● ● ●● ● ●●●● ●● ●● ●● ● ●●●●● ● ●●● ●●● ● ● ●● ●● ●● ●●● ●● ●● ●● ●●● ●● ●●● ●● ●● ●●●● ●● ●● ●● ●● ● ●●● ●●● ● ●●● ●●● ● ●●● ●● ●●●● ●● ●●● ● ●● ●● ● ●●● ● ●●● ●● ●●●● ●● ● ●● ●● ●●● ●● ● ●● ● ● ●●● ●● ● ●●● ●●● ●●● ● ●● ●●● ●●●● ●● ●● ●● ●●● ●●●● ●●● ●● ●●● ● ●● ● ●●● ●

● ●● ● ● ●●● ●● ●● ●● ●●● ●● ●●●● ●● ●● ●● ●●● ●●● ● ●●● ●●●● ●●● ● ●● ●●● ●● ●●● ●●● ●●● ●●●●●●●● ●● ●● ●●●●● ● ●● ●● ●●● ● ●●●● ●● ●●●● ●●● ●● ●●● ● ●●●● ●● ●● ●● ● ●●●●● ●● ●●● ● ●●●● ●●● ● ●●● ●●●●● ● ●● ●● ●● ●● ● ●●● ●● ●●● ●● ●●●● ●● ● ●●● ● ●●● ●● ● ●● ●●● ● ●●● ● ●●●● ● ●●●● ●● ●●● ● ●●●●● ● ●●●●● ●● ●●●●● ●●●● ●●● ●● ●●●● ●●● ●●● ● ● ●●●● ●● ●●● ●●●● ●● ● ●● ●● ● ●●● ●● ●● ●●●● ● ●●● ●●● ●● ●● ●● ●●● ● ●●● ●● ●● ● ●●●● ●● ●● ● ●●● ●●●●● ●● ●●● ●●●● ● ● ●●● ●●●● ●●● ●●●●● ●● ●●●● ● ●● ● ●● ●● ●● ● ● ●●● ● ●●● ●● ●● ●●● ●● ●●● ● ●●● ● ●● ●● ●●● ●●● ●●●●● ●● ●● ●●● ● ●● ● ●● ●●● ●●● ●● ● ●●● ●● ● ● ●●●●● ●● ●●● ●●● ●● ●●● ● ●●● ●●● ●● ●●●● ● ●●●●● ● ●●● ● ●● ●●●● ●● ●● ● ●●●● ● ●● ● ●●●●● ●● ● ●●● ●● ● ●● ●●● ●●●● ●●●● ●●●● ● ●● ●●● ●● ●●●● ●● ●●●● ●●● ● ●● ● ●● ● ●● ●● ● ●● ● ●●● ● ●●● ● ●●●● ●●● ●●● ●●●● ● ●● ● ● ●●● ●● ● ●●● ●●● ●●● ● ●●● ●● ●●●●● ●● ●●● ●●● ●● ● ●●●●●●● ●●● ●●●● ● ●●●●● ●●● ●● ●●● ● ●● ●●● ●● ●●●●● ●●● ●● ●● ●●● ●● ● ●● ● ●● ●● ●●● ● ●●● ● ●●●● ●●● ●●● ●●●● ●●●● ●●● ●●●● ●● ●●● ● ● ●●●● ●●●● ●●●● ● ●●●● ●● ● ●● ●● ●● ● ●●● ●● ●● ● ●● ●●●● ●●● ●●●● ●●● ●●● ● ●● ●●● ●● ●●●● ●● ●● ●● ● ●●●●● ●● ●●● ●● ●● ● ● ●● ● ●●● ●●●● ● ●●●● ●● ●●● ● ●● ● ●● ●●● ● ●● ●● ●● ●●●● ●● ● ●● ●●● ●●●● ●● ●● ● ●● ● ●●●●●● ● ●●● ●● ●●●●● ●● ● ●●● ●● ●● ●● ●● ●●● ●● ● ●●● ●● ●● ●●● ●● ● ●●● ●● ●● ● ●

● ●●● ● ● ●●● ● ●● ●● ●● ●●●● ● ●●● ● ●●●● ●●●● ● ●● ●● ●● ●●● ● ●● ●● ●●● ● ●●●● ● ●●● ● ●● ●●● ●●● ● ●●● ●●● ● ● ●●● ●● ●● ●●●●●●●● ●● ●● ● ●●● ●●● ● ●● ●● ●●● ● ●●●● ●●● ● ●● ●● ●●●●● ●● ● ●● ●● ●● ●●● ● ● ●●●● ●● ● ●● ●● ● ●●●● ●●●● ●● ●●● ●●●● ●●● ●● ●●● ●● ●● ●● ● ●●●●● ●● ●● ●● ●● ● ●●● ●● ●● ●●● ●● ●● ●● ●●● ●●● ●●● ● ●● ● ●●● ● ●● ● ●●● ●●● ● ●● ● ●●●● ● ●●●● ●●● ●●● ● ●●●●● ●●● ●● ● ●● ●●●● ● ●●●● ●● ●● ●● ●●●●● ●● ● ●●● ●●● ● ●●●●● ● ●●● ●● ●● ● ●● ● ●●● ● ●● ●●● ● ●● ● ●●●●● ●●● ●●● ● ●● ●● ●● ● ●●● ● ●●● ●● ●● ●●● ●●●● ● ●●●● ●●● ●●● ● ●● ●●● ●●● ●●●● ●● ●● ●●● ●● ●● ● ●● ●● ●●● ●● ●● ● ●● ●● ●● ● ●●●●● ●●● ●● ● ●●● ●●●●●●● ● ●●● ●● ●●●●● ● ●●●● ●●●● ●● ●● ●● ●● ●● ● ●● ●●● ●● ●● ●● ●● ● ●●● ● ●● ●●● ● ●●● ●● ●●● ●●● ●●● ● ●●●● ● ●●●●● ● ●● ● ●● ●●●●● ●● ●● ●● ●●● ●● ●● ● ●●● ● ●● ● ●● ●●●● ● ●●● ●● ●● ● ●●● ●● ●● ● ●● ●●● ●● ●● ●● ●●● ●●● ●● ● ●● ●●● ● ●●● ●● ●● ●●● ●●●●● ●●●●●● ●●●● ●● ● ● ●● ●● ●●● ●● ●● ● ●●●● ● ●● ●●●● ●●● ●● ●●●● ●● ●●●● ●● ●● ● ●●●● ● ●●●●● ● ●●●●● ●● ●● ●● ●●● ●●● ●●●● ●● ●● ● ●● ●● ● ●●● ● ●● ● ●● ● ●●● ●● ●●● ● ●● ● ●● ●● ●●● ● ●● ●●● ● ●●●● ●●● ●●● ●●● ● ●●●● ● ● ●●● ● ● ●●● ●●● ● ●●● ●● ●● ●●● ●●● ●●● ●● ●●●●●● ● ●●● ●●● ● ●● ● ● ●●●●● ●●● ● ●● ●●●● ● ●●●● ●●●●● ●● ●●●● ● ● ●● ●● ●●● ● ● ●● ●●●●● ●● ●● ●● ●●● ●●● ● ●●● ● ●● ● ●● ● ●● ●●●● ●● ●● ●●● ●●● ●●● ●● ● ●● ●●● ●●● ●●●● ● ●●● ●●● ●●● ● ●● ●● ●●● ● ● ●●● ●● ● ●●●● ●●● ●●● ●● ●●● ●●● ● ●● ● ●● ●● ●●● ●● ● ● ● ●● ●● ●●●● ● ●● ● ●● ●● ●● ●●●● ●●● ●●●● ●●● ● ●● ●● ● ● ●● ● ●● ●● ●●● ●●●● ● ●● ●●● ● ●● ● ●● ●●● ●●● ●●● ●● ● ● ●● ●● ● ● ●●● ● ●●● ●●●● ● ●●●● ●● ●●●● ● ●● ● ●● ●●● ● ●● ●●●● ●●● ● ●● ●●●●● ●● ● ●● ●● ●● ● ●●●● ●●● ●● ● ● ●● ● ●●●●● ●● ● ●●● ● ●●● ●● ●●● ●●● ●●● ●● ●●● ● ●● ●●●● ●●●● ●● ●●●● ●●●● ●● ●● ●●● ● ●●● ●●● ●●● ●●● ●●● ● ●●● ●● ●● ●● ●● ●● ● ●

● ● ●● ●●● ●●● ●●●● ●● ● ●●● ● ●● ●●● ●●● ●● ●●●●● ● ● ●●● ● ●●● ● ●●● ●● ● ●● ●● ●●● ●● ● ●● ●●● ●●●●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●●● ●● ●●● ●●●● ●● ●● ●●●● ●●●●● ●●●●● ●● ●● ●● ●●● ●●● ●● ● ●● ● ●● ●●● ●●● ●● ●● ● ● ●●●● ●●● ● ●● ● ●● ●●●● ●● ● ●●● ●●● ●● ●● ●● ●●●●● ●●● ●●● ●●●● ● ●●●● ●● ● ●● ● ●●●● ●● ●● ●● ●● ● ●●● ● ●●● ●●● ● ● ●●● ●● ● ●● ●● ● ●●● ●● ●● ●● ●● ● ●● ●● ●● ●● ●● ● ●●● ●●● ●●●●● ●●●● ●● ●● ● ●●● ●●● ●● ● ●● ●●●●●● ● ●● ●● ●●● ●●● ●●● ● ●● ●● ●● ●●●● ● ●● ●●● ●●●●● ●●●● ● ●●● ●● ● ●●● ●●● ●● ●● ●●●● ●●●●●●●● ●● ●● ●●

L
o
D

M
L

Q
R

N
N

0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0

Absolute Error for Level of Detail (LoD)

● ●●● ●●●●●● ● ●●●● ●●● ●● ●● ● ●●● ●● ●●● ●● ● ●●● ● ● ●● ●●●● ●●●● ● ● ●●●● ●●●● ● ● ●●●●●●● ●●●● ● ●● ● ●● ●●●● ●●● ●●●● ●●● ● ●●● ●● ●● ●●●●● ●● ● ●● ●●● ●● ● ●● ●●●● ●● ● ●●● ●● ● ● ●●● ●● ●●●● ● ● ●●● ●●● ●●●●● ●● ●●● ● ●● ●● ●●● ●●●●● ●● ●●● ●●●● ●● ●● ●●●●●● ●● ● ●●●● ●● ● ●●● ● ●● ●● ●●● ●●● ●● ● ● ●● ●●● ●● ●●● ● ●●● ● ● ●●●●● ●● ●● ●● ● ●●● ● ●●●● ●●●●● ● ●●● ●●● ● ●● ●●●● ●● ●●●● ●●● ●● ● ● ●●● ● ●● ●●● ●● ● ●●● ● ●● ●●● ●● ●●●●● ● ●●● ●●●● ● ● ●●●●●● ●● ●● ●● ● ●● ●●●● ●●●● ●● ● ●●● ● ●●● ● ●● ●●●●● ● ●●●● ●●● ●● ●● ●● ●●● ●●● ●●●● ● ● ● ●●●● ●● ●●●● ● ● ●●●● ●●●● ● ● ●●●●● ●● ●● ● ●● ● ●● ● ●● ●●● ●● ●● ●● ●●

● ●● ●●● ● ● ●● ●● ● ●●●● ●●● ●● ●●● ●● ●●●● ● ●● ●● ●●● ● ●●●● ● ●● ● ●● ●● ●● ●●●●●● ● ●●●●●● ●●●●● ●● ●● ● ● ●●●● ●● ● ●●● ● ●● ●●●● ●●●●●●●●● ●● ● ●●●● ●●●●●●● ● ●●● ●●● ● ●● ●● ● ●● ●● ●●● ●●●●● ●●● ● ●●●● ●●●●●● ●● ● ●● ●● ●● ●● ●●● ● ●● ●● ●●●● ●● ●●● ●●● ●● ●●● ●● ●●● ●● ● ● ●● ● ●● ●● ●●● ●●●● ●● ●

●●● ●●● ● ●● ●● ● ●●● ●●●● ●● ●● ●●●● ● ●●●● ●●● ●●●● ●● ●● ● ●● ● ●●● ●● ●●●●●● ● ●●●● ●● ●●●●●●● ●● ● ●●●● ●● ● ●●●● ●● ●●●● ●●●●●●●●● ●● ● ●●●● ●●●●● ●● ● ●●● ●●● ● ●●●● ● ●● ●● ●●● ●●●● ● ●●● ● ●●●● ●●●●●● ●● ● ●● ●● ●●● ●●●●● ● ●● ●● ●●●● ●● ●● ●●●●● ● ●●● ●● ●● ● ●●●● ●● ●● ●●● ●● ●● ●●

● ● ●●● ● ●●●●●● ●●● ●●● ●● ● ●●●● ●● ●●● ●●●●● ●●● ●●●●● ● ●●● ●● ●●● ●●●●● ●●● ●●● ●● ●● ●● ●●●●● ● ●●●●●●●● ●●●● ● ●●● ●● ● ●● ● ● ●●● ●●● ● ●● ●●● ● ●● ●● ● ●●●●● ●●● ● ●● ● ●●●●● ● ●● ● ● ●●● ● ●● ●● ● ●● ●●● ●●●●● ●● ●●●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●

A
E

M
L

Q
R

N
N

0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0

Absolute Error for Average Number of Events per Case (AE)

SP,LoD,AE = Our predictors
ML = Multiple Linear Regressor

QR = Quantile Regression

NN = Neural Network Regressor

Figure 5.8: Comparison of absolute error for the three normalized log properties per predic-
tor. The scale is logarithmic

We see that our predictors (ŜP , �LoD, and ÂE) are the worst performing ones,
especially when it comes to SP. Also, they are the ones presenting the most extreme
outliers for the three log properties. Quantile Regression and Neural Network regres-
sors present the most consistent results, with the least extreme outliers. These results
show that there is considerable room for improvement to predict SP, LoD, and AE

104 Case Notion Discovery and Recommendation

accurately. This can be achieved, for example, by selecting additional features that
have a stronger correlation with the properties we aim to predict. It must be noted
that our predictors are unsupervised, i.e., do not need a training set. This represents
an advantage with respect to the regressors, since they can generate predictions on
the absence of training data. Despite the inaccuracy of our predictors, their useful-
ness is yet to be determined. The aim of the prediction is to build a ranking of case
notions based on their “interestingness” (Equation 5.19). This means that, as long as
the relative interestingness is preserved, the ranking can be accurate. The following
section will address this issue, using a metric to evaluate the quality of the rankings.

5.6.3 Evaluation of Ranking Quality
Until now we have evaluated the accuracy of our predictors and compared them
to other existing regressors. However, the goal of predicting log properties is to
assess the “interestingness” of the log before it is built. If we are able to predict the
interestingness of the logs for a set of case notions, we can rank them from more to less
interesting and provide a recommendation to the user. In this section, we evaluate how
good the predictors are at ranking case notions according to their interestingness. To
do so, we use the metrics on the resulting event logs as the ground truth to elaborate
an ideal ranking (Equation 5.12). Then a new ranking is computed using our custom
predictor (Equation 5.19) and it is compared to the ideal one. This comparison is
done by means of the metric normalized discounted cumulative gain at p (nDCGp),
widely used in the information retrieval field.

DCGp =
p∑

i=1

rel_scorei

log2(i +1)
= rel_score1 +

p∑
i=2

reli

log2(i +1)
(5.20)

IDCGp =
|REL_SCORES|∑

i=1

r el_scor ei

log2(i +1)
(5.21) nDCGp = DCGp

IDCGp
(5.22)

The normalized discounted cumulative gain at p (Equation 5.22) is a metric that
assumes the existence of a relevance score for each result, penalizing the rankings in
which a relevant result is returned in a lower position. This is done by adding the
graded relevance value of each result, which is logarithmically reduced proportional
to its position (Equation 5.20). Next, the accumulated score is normalized, dividing
it by the ideal score in case of a perfect ranking (Equation 5.21). This means that
the ranking 〈3,1,2〉 will get a lower score than the ranking 〈2,3,1〉 for an ideal ranking
〈1,2,3〉 and a relevance per document of 〈3,3,1〉.

When it comes to ranking, there is a large variety of learning to rank (LTR) algo-
rithms in the information retrieval field [106]. These algorithms are trained on ranked
lists of documents and learn the optimal ordering according to a set of features. A
5-fold cross-validation was performed on the unfiltered set of case notions (10622 can-
didates) comparing the implementation7 of 10 learning to rank algorithms (MART,

7https://sourceforge.net/p/lemur/wiki/RankLib/

https://sourceforge.net/p/lemur/wiki/RankLib/

5.6 Evaluation 105

●
●

●

●

●

●

●

●

●
●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NDCG@10 per ranker for different (α, β) values

N
D

C
G

@
10

M
A
R
T

M
A
R
T
+

R
an

kN
et

R
an

kN
et
+

R
an

kB
oo

st

R
an

kB
oo

st
+

A
da

R
an

k

A
da

R
an

k+

C
oo

rd
in
at
e
A
sc
en

t

C
oo

rd
in
at
e
A
sc
en

t+

La
m
bd

aR
A
N
K

La
m
bd

aR
A
N
K
+

La
m
bd

aM
A
R
T

La
m
bd

aM
A
R
T
+

Li
st
N
et

Li
st
N
et
+

R
an

do
m
 F

or
es
t

R
an

do
m
 F

or
es
t+

Li
ne

ar
 r
eg

re
ss
io
n

Li
ne

ar
 r
eg

re
ss
io
n+

N
eu

ra
l N

et
w
or
k
(N

N
)

N
eu

ra
l N

et
w
or
k
(N

N
)+

M
ul
tip

le
 L

in
ea

r
R
eg

re
ss
io
n
(M

LP
)

M
ul
tip

le
 L

in
ea

r
R
eg

re
ss
io
n
(M

LP
)+

Q
ua

nt
ile

 R
eg

re
ss
io
n
(Q

R
)

Q
ua

nt
ile

 R
eg

re
ss
io
n
(Q

R
)+

C
us

to
m
 P

re
di
ct
or
 (
C
P)

R
an

do
m

Figure 5.9: NDCG@10 per ranker given different combinations of α and β values.

RankNet, RankBoost, AdaRank, Coordinate Ascent, LambdaRank, LambdaMART,
ListNet, Random Forest, and Linear Regression) with the predictors evaluated in
Section 5.6.2 (Quantile Regression, Multiple Linear Regression, Neural Network Re-
gressor, and our custom predictor). Two models were trained for each algorithm: one
with the 9 input features in Table 5.6 and another one with 4 extra features (the
estimated value for SP, LoD, AE, i.e., Equation 5.13, 5.14, and 5.15). The purpose of
adding these extra features is to find out how the estimations made by our predictors
affect the predictions of the other algorithms.

Figure 5.9 shows the result of the evaluation. The 13 algorithms (10 LTR +
3 regressors) were trained on two different sets of features (9 and 13 input fea-
tures), 3 different combinations of α and β values for the log quality function
((α,β) ∈ {(2,5), (5,2), (2,1)}), and with equal weight for the three metrics. That makes
a total of 78 models ((10+3)×2×3). The NDCG@10 metric was measured for each
model and the results were grouped per algorithm and feature set. That resulted
in 27 categories ((10 LTR algorithms × 2 sets of features) + (3 regressors × 2 sets
of features) + our custom predictor) with 15 NDCG@10 values each (5 folds × the
3 combinations of α and β values). The models trained with 13 features are repre-
sented in the figure with the symbol + at the end of their name. Additionally, the
NDCG@10 was calculated for a set of random rankings, in order to set a baseline.
In the case of our custom predictor, given that it only takes 6 features (the lower
and upper bounds for SP, LoD, and AE) and that it does not need training, only
3 NDCG@10 values were computed, one for each pair of values for the α and β pa-

106 Case Notion Discovery and Recommendation

rameters. The horizontal dashed lines drawn in Figure 5.9 represent the median of
the NDCG@10 for our custom predictor (upper) and the random ordering (lower).
Any algorithm whose median is above the upper line will perform better than our
custom predictor at least 50% of the time. Any algorithm whose median is above the
lower line will perform better than random at least 50% of the time. Most of the
algorithms perform better than random. But only two have the median above the
upper line: MART and Random Forest. When trained with 9 input features, both
MART and Random Forest show very similar behavior. However, when considering
13 input features, MART’s median is lower. In the case of Random Forest, using 13
features is better than using 9 in every aspect.

5.6.4 Discussion
The aim of this evaluation has been twofold. First, to assess the precision of our
predictors at estimating the value of each log characteristic. Second, to evaluate
the quality of the rankings of case notions, based on their potential “interesting-
ness”, using our custom predictor and compare them to LTR algorithms. The results
(Figures 5.7 and 5.8) show that our predictors are not very good at predicting log
characteristics with precision. Other regressors, like Quantile Regression, have shown
better results in this aspect. However, when it comes to ranking quality, the preci-
sion in the prediction of the log characteristics is of less importance than the relative
differences between predictions for several case notions (i.e., it is not so important to
predict accurately the log quality of case notions a and b, as long as we can predict
that a will be more interesting than b). In fact, the results obtained from the ranking
quality evaluation (Figure 5.9) show that our custom predictor performs better, on
average, than other regressors, even though they showed better prediction accuracy.

We conclude that for the purpose of predicting accurately the value of log char-
acteristics and when training data are available, the use of regressors such as QR
is the best option. When it comes to ranking candidates, LTR algorithms such as
Random Forest and MART provide better results. However, unlike our custom pre-
dictor, all these techniques require the existence of training data to build the models.
Therefore, in the absence of such data, the proposed custom predictor provides close-
to-optimal results when it comes to rankings and indicative values for the prediction
of log characteristics.

5.7 Related Work
The field of process mining is dominated by techniques for process discovery, con-
formance, and enhancement. Yet event correlation and log building are crucial since
they provide the data that other process mining techniques require to find insights.
In fact, the choices made during the log building phase can drastically influence the
results obtained in further phases of a process mining project. Therefore, it is sur-
prising that there are only a few papers on these topics. Works like the one presented
in [56] analyze the choices that users often need to make when building event logs

5.7 Related Work 107

from databases. Also, it proposes a set of guidelines to ensure that these choices do
not negatively impact the quality of the resulting event log. It is a good attempt
at providing structure and a clear methodology to a phase typically subject to ex-
perience and domain knowledge of the user. However, it does not aim at enabling
automated log building in any form. It has been shown that extracting event logs
from ERP systems like SAP is possible [55]. However, the existing techniques are ad-
hoc solutions for ERP and SAP architectures and do not provide a general approach
for event log building from databases. Another initiative for event log extraction is
the onprom project [18, 19, 21]. The focus is on event log extraction by means of
ontology-based data access (OBDA). OBDA requires to define mappings between the
source data source and a final event log structure using ontologies. Then, the onprom
tools perform an automatic translation from the manually defined mappings to the
final event log.

Event log labeling deals with the problem of assigning case identifiers to events
from an unlabeled event log. Only a few publications exist that address this chal-
lenge. In [30], the authors transform unlabeled event logs into labeled ones using an
Expectation-Maximization technique. In [120], a similar approach is presented, which
uses sequence partitioning to discover the case identifiers. Both approaches aim at
correlating events that match certain workflow patterns. However, they do not han-
dle complex structures such as loops and parallelism. The approach proposed in [7]
makes use of a reference process model and heuristic information about the execution
time of the different activities within the process in order to deduct case ids on un-
labeled logs. Another approach called Infer Case Id (ICI) is proposed in [3] and [15].
The ICI approach assumes that the case id is a hidden attribute inside the event log.
The benefit of this approach is that it does not require a reference process model or
heuristics. The approach tries to identify the hidden case id attribute by measuring
control-flow discovery quality dimensions on many possible candidate event logs. Its
goal is to select the ones with a higher score in terms of fitness, precision, general-
ization, and simplicity. The mentioned approaches for event log labeling are clearly
related to the problem we try to solve. However, they ignore the database setting,
where event correlations are explicitly defined by means of foreign keys. This means
that case identifiers do not need to be discovered. Therefore, the challenge of iden-
tifying interesting event logs remains open. Only the ICI approach tackles this issue
by measuring control-flow metrics to select the best event log. This is similar to our
idea of measuring log “interestingness”. However, the ICI approach requires to build
all the candidate event logs in order to measure such properties. Our approach is able
to reduce the computational cost by predicting interestingness properties before the
log is built.

Other authors have already considered the idea of evaluating event log character-
istics. The metrics proposed in [50] aim at discovering the structural properties of
event logs without actually mining the behavior. These metrics have proven to be of
great value in order to develop our automated approach. The approach in [84] focuses
on event correlation for business processes in the context of Web services. Addition-
ally, it proposes semi-automatic techniques to generate process views with a certain
level of “interestingness”. Instead of focusing on what is interesting, it discards unin-

108 Case Notion Discovery and Recommendation

teresting correlations based on the variability of values on the correlating attributes,
or on the ratio of process instances per log. The approach is certainly of value in the
area of event correlation. On the other hand, it does not provide a framework for
automatic case notion discovery. Also, the approach chosen by the authors to deal
with the combinatorial explosion problem is search space pruning, which still requires
to compute the event logs, but for a smaller set of candidates.

When it comes to computing rankings, in our case rankings of event logs or case
notions, we must consider learning to rank (LTR) algorithms from the information re-
trieval field. These algorithms are able to learn an optimal ordering of documents with
respect to certain features. Three main categories can be distinguished among them:
pointwise, pairwise, and listwise. Pointwise algorithms try to predict the relevance
score of each candidate, one by one. These algorithms are able to give a prediction
of the score, but do not consider the position of a document in the ranking. Ex-
amples of pointwise algorithms are Random Forest [12], Linear regression [88], the
predictors evaluated in Section 5.6.2, and any other algorithm that applies regression
in general. Pairwise algorithms take pairs of candidates and predict which candidate
ranks higher. In this case, the relative position of documents is taken into account.
Examples of pairwise algorithms are MART [32], RankNet [17], RankBoost [31], and
LambdaRANK [16]. Listwise algorithms take lists of candidates and learn to opti-
mize the order. A disadvantage of this type of approach is the difficulty to obtain
training sets of full ranked lists of candidates. Examples of listwise algorithms are
AdaRank [124], Coordinate Ascent [79], LambdaMART [123], and ListNet [32].

As a summary, event correlation, log building, and process view “interestingness”
are known topics in the field. Despite the attempts of authors, none of the approaches
succeeded at reaching a satisfactory level of automation. Also, none of them proposes
a way to recommend process views to the user, neither to rank them by interests.

5.8 Chapter Summary
Applying process mining in environments with complex database schemas and large
amounts of data becomes a laborious task, especially when we lack the right domain
knowledge to drive our decisions. The work presented in this chapter attempts to
alleviate the problem of event log building by automatically computing case notions
and by recommending the interesting ones to the user. By means of a new definition of
case notion, events are correlated to construct the traces that form an event log. The
properties of these event logs are analyzed to assess their “interestingness”. Because
of the computational cost of building the event logs for a large set of case notion
candidates, a set of features was defined based on the characteristics of the case
notion and the dataset at hand. Next, a custom predictor estimates the log metrics
used to assess the “interestingness”. This allows one to rank case notions even before
their corresponding event logs are built. Finally, an extensive evaluation of the custom
predictor was carried out, comparing it to different regressors and to state of the art
learning to rank algorithms. We believe that evaluating the approach in comparison to
techniques from the information retrieval field has not been considered before within

5.8 Chapter Summary 109

the process mining discipline.
To conclude, this chapter proposes a framework that covers the log building process

from the case notion discovery phase to the final event log computation, providing
the tools to assess its “interestingness” based on objective metrics. This assessment
can be done on the case notion itself before the event log is generated. The result of
this assessment is used to provide recommendations to the user.

Beekeeper inspecting a comb from a hive.
“Cours complet d’apiculture”, Georges de

Layens and Gaston Bonnier, 1897

6
Process Mining

Techniques Applied:
Data Properties and Opportunities

In the previous chapters, we have proposed several techniques that aim at supporting
the user on tasks of event data extraction and event log building. The goal of these
techniques is to obtain event logs that can be analyzed with the existing process
mining approaches. The purpose of this chapter is to give the reader an idea of what
can be achieved with process mining when the right data are available. We present a
small sample dataset that serves as an illustration of a rich event log with diverse data
properties. The goal is to show the different insights that can be obtained depending
on the use that process mining techniques make of the data properties of the event
log at hand.

6.1 Introduction
A large part of the time needed to carry out a process mining project is spent on
the data preparation phase. It is only after the data are extracted and event logs are
built, that the analysis can be performed in order to obtain real insights. The aim of
this thesis is to provide techniques that assist on the task of extracting and preparing
data for the process mining analysis. This chapter does not introduce new knowledge,
but provides some hints on some of the types of process mining analysis that can be
performed once the data are ready.

According to the process mining framework introduced in Chapter 10 of [109],

111

112 Process Mining Techniques Applied: Data Properties and Opportunities

there are several process-mining related activities, which are grouped in three cate-
gories: cartography (discover, enhance, and diagnose), auditing (detect, check, com-
pare, and promote), and navigation (explore, predict, and recommend). The possibil-
ity to apply the activities belonging to each of these categories depends on the origin
of data to be analyzed. Cartography requires “post mortem” data, which refers to
historical data that reflect previous states of the system under study; it does not
necessarily represent the current situation. These data is used to discover behavior
that has manifested itself in the past, learn from it, enhance it, or diagnose problems.
Navigation activities are enabled when “pre mortem” or current data are used, i.e.,
data that are generated at real-time and reflects the current and most recent situation
of the system. “Pre mortem” data are necessary in order to provide valuable predic-
tions and recommendations at the time that they are needed. Finally, a combination
of the two types of data are required to perform auditing activities, e.g., in order to
compare current behavior with past trends.

The focus of this thesis is on “post mortem” data, i.e., data that have been gener-
ated and stored in databases, event stores, or other forms of data storage for off-line
analysis. Therefore, in this chapter we will explore some of the techniques that can
be applied to historical data and discuss how to leverage different data properties of
event logs.

This chapter is structured as follows. Section 6.2 proposes a non-exhaustive list
of process mining techniques and their data requirements. Section 6.3 introduces a
sample dataset with different data properties. Section 6.4 extends the description of
the proposed list of process mining techniques. Finally, Section 6.5 concludes this
chapter.

6.2 Data Properties and Process Mining Techniques
Event data can come in many different forms. During a process mining project,
extracting and generating event logs has a big cost in terms of time and effort. This
motivates the work presented in this thesis, with the goal of bringing a certain level
of standardization and automation to the process of data extraction and preparation.
The techniques proposed in the previous chapters aim at providing, as an ultimate
result, a set of event logs that capture different perspectives on the system under
study. However, event logs are not the desired end result when carrying a process
mining project, but an element that needs to be analyzed to obtain insights. In this
section, we propose a non-exhaustive list of process mining techniques, and their data
dependencies in order to be applied.

We limit the scope of this review to a few specific approaches. These cover the
following types of process mining:

• Model discovery: the goal is to obtain (process) models that represent some
perspective on the event data.

• Trace clustering: event data is analyzed to obtain clusters of traces based on
different aspects, e.g., control-flow, data attributes.

6.2 Data Properties and Process Mining Techniques 113

Table 6.1: Attributes required (R), optional (O), or ignored (-) for the input data of different
process mining techniques.

Name Input Output

C
as

e
N

ot
io

n
T

im
es

ta
m

p
E

ve
nt

or
de

r
A

ct
iv

ity
na

m
e

Li
fe

-c
yc

le
R

es
ou

rc
e

D
at

a
at

tr
ib

ut
es

H
ie

ra
rc

hy

Model Discovery

Inductive Miner [64] Event log Process tree R O R R O O - -

Data-aware Heuristic Miner [76] Event log Data Petri net R O R R O O O -

Statechart Workbench [61] Event log Petri net R O R R O O O O

Social Network Miner [112] Event log Social network R O R O - R - -

...

Trace Clustering

Log to Model Explorer [71] Event log Trace clusters R O R R - - - -

Cluster Traces using Markov Clus-
tering [53]

Event log Trace clusters R O O O O O O -

...

Conformance Analysis

Replay a Log on Petri Net for Con-
formance Analysis [111]

Event log &
Petri net

Conformance
Analysis

R O R R O - - -

Conformance Checking for Data
Petri Nets [75]

Event log &
Data Petri net

Conformance
Analysis

R O R R O O O -

...

Performance Analysis

Replay a Log on Petri Net for
Performance/Conformance Analy-
sis [111]

Event log &
Process model

Performance
Analysis

R R R R O - - -

Context-Aware Process Perfor-
mance Analysis [52]

Event log Performance
Analysis

R R R R O O O -

...

• Conformance analysis: this is a way to enhance existing process models provid-
ing diagnostics on how faithfully a model represents an event log.

• Performance analysis: process models can be extended with performance statis-
tics computed on the observed behavior.

On the basis of a review of some of the existing process mining approaches, we
have identified the following attributes that can be present in the event data:

• Case Notion: a general assumption in many process mining techniques is the

114 Process Mining Techniques Applied: Data Properties and Opportunities

availability of event logs in which events are grouped into cases or traces. Each
of these traces represents a process instance. A case notion defines how events
should be grouped into traces, e.g., by means of a case identifier.

• Timestamp: a timestamp indicates the moment in which an event occurred.
Time resolution can vary from days to milliseconds. Also, timestamps are com-
monly used to sort events in order of occurrence.

• Event order: when a timestamp is not available or when time resolution is not
fine-grained enough to sort events without ambiguity, another way to find an
order is required, e.g., partial orders. In some environments, events are recorded
in the order of occurrence, even if the exact timestamp is not known.

• Activity name: an event reflects the occurrence of an activity in a certain mo-
ment in time, i.e., the happening of an activity instance. A common way to
relate events to the activity they executed is by means of an activity name.

• Life-cycle: an event can indicate the execution of an atomic action or a step
within the life-cycle of a non-atomic one. In the latter case, the trail of an ac-
tivity instance can span through several events reflecting different phases of the
life-cycle of the corresponding activity. The most common phases are start and
complete, indicating the beginning and end of an activity instance respectively.

• Resource: activity instances can be carried out by certain resources, e.g., em-
ployees, machines, equipment. The reference to the specific resource involved
in the execution can be reflected in the resource field of an event.

• Data attributes: additional event attributes can contain any extra information
about the event itself or about the context in which it occurred. In a database
environment, events can be directly related to database objects, e.g., purchase
orders, bookings, customer profiles. Data about these related objects can be
included in the event for further analysis.

• Hierarchy: not all events reflect activity instances executed at the same level.
Different hierarchies can exist representing activities that invoke other activities,
e.g., as part of a subprocess. In order to discover these different execution levels,
it is necessary to encode this information somehow in the event data.

It is rare to face an event log that provides all of these attributes. But it is possible
to find, at least, subsets of them. For instance, the most basic event logs provide, at
least, a set of ordered event occurrences linked to activity names, as well as an implicit
case notion. Sometimes, it is possible to find resource attributes, e.g., who performed
the activity. In certain situations, a life-cycle model is known and can be incorporated
into the data when extracted, e.g., start and complete steps within the execution of
an activity instance. Other data attributes are easily obtained when extracting event
logs from databases. In some exceptional cases, a notion of hierarchy is present in
the data, and can be exploited to discover threads of execution within the process
invoking other subprocesses. Depending on the subset of data aspects that our event

6.3 A Sample Event Log 115

Figure 6.1: Landscape of the process mining techniques proposed in Table 6.1 with the cor-
responding input/output dependencies.

log exhibits, different techniques can be applied. Some techniques require additional
inputs apart or instead of event logs, e.g., process models. In that case, different
techniques can be applied (Figure 6.1) in order to use the output of one as the input
of another. Table 6.1 presents a short list of process mining techniques with respect
to the attributes that the input needs to fulfill in order to be applied. Attributes
marked with an “R” are required, i.e., if the data do not have that attribute the
technique cannot be applied. Attributes marked with an “O” are optional, i.e., the
technique can use these attributes to provide more informative results, but they are
not required in order to run. Attributes marked with the symbol “-” are not relevant
or ignored by the technique.

We consider it as important to remain practical when proposing analysis tech-
niques. For this reason, all the techniques used in this chapter are supported by
plug-ins in the ProM1 platform.

6.3 A Sample Event Log
A way to show the results that can be expected from the approaches proposed in this
chapter is to run the algorithms on a dataset. For this purpose, we built a sample event
log containing the most representative data characteristics as discussed in section 6.2.
Table 6.2 shows this sample event log based on a fictitious ticket selling process. Each
row represents an event, in total 32. The first column on the left serves as a unique

1http://promtools.org

116 Process Mining Techniques Applied: Data Properties and Opportunities

identifier for the event, and it shows the global event order, too. The second column
(Case) indicates the case identifier of the case/trace to which the event belongs, i.e.,
the case notion, with 6 cases in total. The third column shows the activity name
associated to the event. In this event log, there are 4 different activities: “Insert
Customer”, “Update Customer”, “Make Booking”, and “Update Ticket”. The fourth
column provides an exact timestamp of the moment in which the event occurred. The
next two columns reflect the values for resource and life-cycle attributes. As can be
seen, there are two types of resources: the system (“System”) and customers (e.g.,
“Cust.101”). The life-cycle attribute either indicates the “start” or the “complete”
state of the activity instance. Finally, the last two columns are data attributes specific
for this dataset, indicating if there was an issue with the payment (pay_issue) and
what the price was of each purchased ticket (price). It can be noticed that the notion
of hierarchy is not explicitly indicated in the events of this dataset. However, we will
show how other fields such as life-cycle can be used with the purpose of obtaining
hierarchy relations between events.

This is a simple example, but it serves as an illustration of a rich event log in terms
of data properties and attributes. The goal is to show how different insights can be
obtained depending on the use that different analysis techniques make of the available
data properties. The following sections show the output obtained when applying the
techniques proposed in Section 6.2 to this sample event log.

6.4 Process Mining Techniques Applied
In this section, we show the outputs obtained after applying the process mining tech-
niques listed in Table 6.1 to the sample event log in Table 6.2. In each subsection we
explain, at a high level, the functioning of the corresponding technique and we show
an example of the insights that can be obtained.

6.4.1 Model Discovery
The purpose of discovery techniques is to obtain a (process) model that describes the
behavior captured in the event log being analyzed. They are usually called “miners”,
and many variants exist. In this section, we look into four different miners: the
Inductive miner, the Data-aware heuristic miner, the Statechart Workbench, and the
Social network miner. These miners differ from each other in the data properties they
take into account during the discovery process and the kind of behavioral structures
they are able to detect.

Inductive Miner

One of the most recent and successful discovery techniques is Inductive Miner
(IM) [64]. A big part of its popularity is due to its ability to handle large event
logs, a good user interface, and the guaranteed soundness of the discovered process
models. This feature of the discovered models (soundness) is due to the fact that,
in order to discover process models, first IM splits the event log into smaller pieces.

6.4 Process Mining Techniques Applied 117

Table 6.2: Example of an event log obtained from the database of a ticket selling system.

Case Activity Name Time stamp Resource Life-cycle pay_issue price
1 1 Insert Customer 2014-11-27 15:55:35 System complete
2 1 Make Booking 2014-11-27 15:58:23 Cust.101 start FALSE
3 2 Insert Customer 2014-11-27 15:59:10 System complete
4 1 Update Ticket 2014-11-27 16:03:25 System complete 30.5
5 1 Make Booking 2014-11-27 16:03:26 Cust.101 complete
6 3 Make Booking 2014-11-27 17:12:50 Cust.103 start FALSE
7 3 Update Ticket 2014-11-2 717:15:22 System complete 27.5
8 2 Make Booking 2014-11-27 17:23:45 Cust.102 start FALSE
9 2 Update Ticket 2014-11-27 17:55:15 System complete 40.0

10 3 Update Ticket 2014-11-27 18:07:50 System complete 18.0
11 3 Make Booking 2014-11-27 18:07:51 Cust.103 complete
12 2 Update Ticket 2014-11-27 18:13:32 System complete 37.5
13 2 Make Booking 2014-11-27 18:13:33 Cust.102 complete
14 4 Insert Customer 2014-11-28 10:12:46 System complete
15 4 Make Booking 2014-11-28 10:20:35 Cust.104 start TRUE
16 5 Insert Customer 2014-11-28 11:38:13 System complete
17 5 Make Booking 2014-11-28 12:01:15 Cust.105 start TRUE
18 5 Update Customer 2014-11-28 12:02:05 Cust.105 complete
19 4 Update Customer 2014-11-29 22:40:21 Cust.104 complete
20 4 Update Ticket 2014-11-29 22:45:12 System complete 15.5
21 4 Update Ticket 2014-11-29 23:01:51 System complete 17.0
22 5 Update Ticket 2014-11-29 23:05:10 System complete 25.5
23 4 Update Ticket 2014-11-29 23:15:28 System complete 23.0
24 4 Make Booking 2014-11-29 23:15:29 Cust.104 complete
25 6 Update Customer 2014-11-30 13:34:26 Cust.106 complete
26 6 Make Booking 2014-11-30 13:38:14 Cust.106 start FALSE
27 5 Update Ticket 2014-11-30 14:45:08 System complete 28.5
28 5 Make Booking 2014-11-30 14:45:09 Cust.105 complete
29 6 Update Ticket 2014-11-30 14:56:42 System complete 24.5
30 6 Update Ticket 2014-11-30 15:10:45 System complete 22.5
31 6 Update Ticket 2014-11-30 15:25:36 System complete 23.0
32 6 Make Booking 2014-11-30 15:25:37 Cust.106 complete

Once it has been recursively split to a certain level, IM builds a specific type of
block-structured process model called process trees. By definition, this type of model
guarantees soundness. However, one of the drawbacks of this algorithm is that it
tends to favor parallel constructs to model behavior. In extreme cases, this can result
in the discovery of flower models, i.e., models that have a perfect fitness but allow for
too much behavior, in this way scoring very low in terms of precision.

Figure 6.2 shows an example of a discovered process tree using Inductive Miner.
We see that the activity Insert Customer has been placed at the beginning of the
process. However, the model allows skipping the execution following the skip-arc
placed on top. Next, we find an and operator (+) that will continue the execution
in parallel on the upper and lower branches. The top branch only offers one option,
to execute the activity Make Booking, which could be followed by the end of this
branch or by the execution of Update Ticket. In case Update Ticket gets executed,

118 Process Mining Techniques Applied: Data Properties and Opportunities

Figure 6.2: Process tree discovered by Inductive Miner.

we have the option to either repeat in a loop thanks to the arc going back from left
to right above the activity, or to execute Make Booking again. The fact that Make
Booking can be executed twice is due to the fact that Make Booking appears in our
event log twice per trace with different life-cycle values (start and complete). A way
to differentiate these two events is to select a different event classifier that combines
the activity name with the life-cycle. Therefore, we would have two activities instead
of one. In the meantime, the lower branch is executed in parallel (according to IM).
This branch allows to either execute or skip the Update Customer activity. Once
both branches have ended, there is an and-join operator that leads to the end of the
process.

The process tree in Figure 6.2 is just one of the many process models that can
be mined with IM on this event log by tuning the parameters offered by the miner.
It is possible to filter by activity and path frequency in order to simplify the model,
filter out noise, or show the most frequent behavior. Process trees discovered with the
Inductive Miner can be converted to Petri nets in order to be used by other plug-ins.

Data-Aware Heuristic Miner

Another recently developed plug-in is the Data-aware heuristic miner [76]. This miner
is based on the principles of the heuristic miner [122], but evolved in order to handle
the data perspective of processes. This algorithm is able to discover models that
reflect the most common behavior, being robust to noise. Also, it is able to detect long-
distance relationships between activities that do not happen in a sequence. This miner
allows us to discover directly-follows graphs, causal nets, data causal nets (Figure 6.3),
Petri nets, and data Petri nets. When the data variants of causal and Petri nets are
discovered, data attributes present in the event log are used in order to uncover data
guards that model the observed behavior.

In our example dataset, we deliberately included a data attribute that relates to
the behavior of the underlying process (payment_issue). When we use the Data-aware
heuristic miner to discover a data causal net, we obtain the model in Figure 6.3. We see
that the process resembles the one discovered by the Inductive Miner. It is important
to note that the discovered model is expressed in the notation of causal nets. The dots
placed on top of the arcs connecting activities are used to indicate whether activities
happen in parallel or in exclusion. For example, at the beginning of the process,
there is the option to execute the activity Insert Customer+complete (there is a dot

6.4 Process Mining Techniques Applied 119

Figure 6.3: Data causal net discovered with the Data-aware heuristic miner showing one of
the discovered data guards.

at the start of the initial edge) or to execute the activities Make Booking+start and
Update Customer+complete in parallel (there is a small arc connecting the dots on
top of the edges leading to each activity). This notation makes it possible to represent
complex control-flow structures in a very compact way. The difference between causal
nets and data causal nets is that the latter are able to represent data guards. These
guards are represented by a dot with a double border on top of the output arcs of
certain activities. In the example in Figure 6.3, two data guards have been discovered
that model the choice after the execution of Make Booking+start. If the attribute
payment_issue has the value true, the path on the right is enabled and the activity
Update Customer+complete will be executed. If the value is false, the path on the
left will be enabled and the activity Update Ticket+complete will be executed.

Some of the techniques listed in Table 6.1 require a process model next to an event
log as input. In those cases, a data Petri net equivalent to the data causal net shown
in Figure 6.3 will be used.

Statechart Workbench

In real-life scenarios, we commonly find business processes that include activities
nested within other higher level activities. An example is the case of subprocesses.
The Statechart workbench is an approach based on Inductive Miner that extends the
definition of process trees to include more advanced modeling constructs common in
software systems such as subprocesses and nested calls, and cancellation regions. In
order to discover subprocesses and nested calls, the miner expects to find a notion of
hierarchy within the data attributes of the event log (several conversions and heuristics
are provided). This hierarchy can be decoded in an ad-hoc manner to adapt to
the system under study or it can be inferred from other attributes and control-flow

120 Process Mining Techniques Applied: Data Properties and Opportunities

Figure 6.4: Process model discovered
by the Statechart work-
bench with the activity
Make Booking showing a
nested subprocess (still col-
lapsed).

Figure 6.5: Process model discovered by the
Statechart workbench with the ac-
tivity Make Booking showing two
nested activities, one of them du-
plicated.

structures. In this example, we are interested in discovering hierarchy from our sample
event log making use of the life-cycle attribute of the events.

The Statechart workbench offers the possibility to use the life-cycle to discover
nested activities that occur between the start and complete stages of a higher-level
activity. Figure 6.4 shows the discovered model from the sample event log. We see
that it detects a parallel construct, as delimited by the square with rounded corners,
with two parallel tracks: one with the Update Customer activity, and another one
with the Make Booking activity. In the latter, we observe that the activity has a
(+) sign next to its name. Figure 6.5 shows that expanding the activity block shows
the nested behavior: a loop between Update Ticket and Update Customer. The
miner has detected that the activity Update Customer can happen in two different
contexts: in parallel to the Make Booking activity, or as a nested call within the
Make Booking activity. This distinction makes it possible to simplify the represented
model eliminating arcs between activities, obtaining simpler control-flow structures
and providing a better representation of the real behavior of the underlying system.

6.4 Process Mining Techniques Applied 121

Figure 6.6: Social network discovered by the Handover-of-Work Social Network miner. The
nodes represent different resources involved in the execution of the process.

Social Network Miner

The previous miners presented in this section are focused on discovering the control-
flow between activities. This is important to understand how the different steps
of the process are executed, but we miss an important perspective: who or what
is executing those activities? The resource attribute of an event log provides the
necessary information to analyze interactions between resources during the execution
of a business process. The Social network miner provides a set of algorithms that focus
on this task: analyzing interactions between resources with the purpose of discovering
behavioral patterns such as handover-of-work, reassignments of tasks, similar-task
relations, subcontracting behavior, and work-together patterns.

Due to the simplicity of our sample event log, we will only show the result of dis-
covering a handover-of-work social network. Figure 6.6 shows the discovered network
represented by a graph. Each node represents a resource (System, Customer.101,
Customer.102, etc.) and the edges represent the handover-of-work. The presence of
an edge between two resources means that one of the resources performed an activity
interleaved between the execution of other activities by the other resource. A com-
mon scenario is the handover of work from department A to department B and, after
the completion of a certain task, department B returns the work back to department
A. In our example, we see that the resource System plays a central role within the
process, being involved in all the interactions with the other resources. This might
indicate that some activities within the process can only be executed by the resource
System. The analysis of social networks behind the execution of business processes
allows us to identify social interactions, roles, risks, and inefficiencies in the way an
organization operates and utilizes its resources.

Here, we conclude the overview of process discovery techniques. The following sec-
tions present the rest of the techniques on clustering, conformance, and performance
analysis, showing the results obtained on the proposed sample event log.

122 Process Mining Techniques Applied: Data Properties and Opportunities

Figure 6.7: Clusters discovered by the Log to Model Explorer tool on the sample event log.

6.4.2 Trace Clustering
In this subsection, we discuss some clustering techniques applied to event data. To
be more specific, the clustering techniques we cover are focused on grouping traces,
or process instances, with respect to a certain similarity measure. The purpose is to
show that, when the event logs contain the right data, it is possible to identify clusters
of traces that share a common characteristic such as similar behavior, control-flow
structures, data values, etc. We will see how different possibilities exist when extra
data properties are available in order to be analyzed.

L2Me: Log to Model Explorer

This trace clustering technique has an explorative nature, since it allows to hierar-
chically inspect trace clusters and automatically obtain process models from them in
order to appreciate differences. Traces are grouped in clusters based on similar behav-
ior, i.e., similar control-flow patterns are observed. This allows us to obtain simpler
process models that describe different trace variants. Without these clusters, all these
variants would be mixed in the same event log and would pollute the resulting process
model.

An example of clustering can be observed in Figure 6.7. On the left we see that
the traces within the event log have been clustered hierarchically. A tree view shows
the root node as a cluster of all the traces in the log. When it is selected, the right side
shows the detailed view of the first level of child clusters. In this case, two clusters
have been discovered: Cluster 9 with two traces (top) and Cluster 8 with four traces
(bottom). The main difference between the two has to do with the moment in which
the Update Customer activity is executed. In the traces belonging to the cluster on

6.4 Process Mining Techniques Applied 123

Figure 6.8: Details of the first cluster discovered by Markov clustering based on the attribute
payment_issue.

top, the customer update is executed before a booking is made, as part of an exclusive
choice between the insertion or update of a customer. In the cluster at the bottom,
the update of a customer is performed after a booking has started and before any
ticket is updated. It is possible to continue expanding the tree in order to explore the
rest of clusters until, finally, reaching the leaves, which are represented by single-trace
clusters. Cluster 8 is divided into another two subclusters: Cluster 3, which is a leaf
cluster, and Cluster 7, which contains three traces.

This way of hierarchically exploring the traces of an event log allows us to make
a decision on the desired level of granularity and the level of specialization of the
resulting sublog. The resulting clusters can be exported as event logs and used as
input for other analysis techniques.

Cluster Traces using Markov Clustering

We have seen that the traces in an event log can be clustered according to their control
flow behavior. However, there are other criteria that can be considered to group traces
together. The technique proposed in [53] introduces a method to discover groups
of traces based on Markov clustering, using any available event or trace attribute
according to the frequency or occurrence of their values.

Figure 6.8 shows the output obtained after applying the technique on the sample
event log. The selected clustering criterion is the occurrence of the event attribute
called payment_issue. The result, as can be seen at the center of the figure, is a graph
of two clusters. When clicking on one of the clusters we obtain a detailed view (on
the right side) showing the size of the cluster (number of traces), and the value of the
attribute used during the clustering. In this case, one of the clusters groups traces

124 Process Mining Techniques Applied: Data Properties and Opportunities

Figure 6.9: Details of the second cluster discovered by Markov clustering based on the at-
tribute payment_issue.

that contain events with the value false for the attribute payment_issue. The other
cluster (Figure 6.9) has a size of two and groups the rest of the traces with events for
which the value of payment_issue is true.

The result matches the one obtained with the clustering technique used by L2Me.
The main difference is the criteria followed to obtain these clusters. The method
used by L2Me only takes into account the differences in control-flow and behavior.
Markov clustering, on the other hand, takes into account differences in values for
certain properties, in this case the attribute payment_issue. In fact, we see that
when the value of payment_issue is true, a customer update is performed right after
the execution of Make Booking. In case the value of payment_issue is false, the
customer update is not required. This shows how different techniques can arrive at
the same output by different approaches. It also shows how combining the results
helps to obtain better insights.

6.4.3 Conformance Analysis

Until now, we have showcased techniques that only required an event log as an input.
However, there is a group of techniques that leverages on the existence of a process
model to obtain more insights about the behavior contained within the event logs.
Conformance checking techniques are able to analyze event logs showing differences
with respect to a designed or discovered de facto model. The goal is to pinpoint the
main differences between what is expected (the model) and what is observed (the
log). We will show two approaches that can perform conformance checking from two
perspectives: control-flow only or data-aware conformance checking.

6.4 Process Mining Techniques Applied 125

Figure 6.10: Detailed view of alignments per trace on the sample event log with respect to
a discovered Petri net.

Replay a Log on Petri Net for Conformance Analysis

The conformance analysis tool called Replay a Log on Petri Net for Conformance
Analysis is based on the alignment technique presented in [111]. An alignment is able
to show that an event trace can be replayed on a process model. The result is the set of
steps that need to be followed to do so. This is not trivial, since deviations might exist
in the log with respect to the model, and non-synchronous moves, called “log moves”
and “model moves”, need to be considered. The result of replaying an event log on
a model using this method is a set of alignments that can be visualized per trace.
Figure 6.10 shows a detailed view per trace, with a color-coded representation of the
synchronous moves (green), model moves (pink), log moves (yellow), and unobservable
moves (gray).

Another way to visualize the result of a conformance analysis is to project the
alignments onto the process model, enhancing it with augmented information about
synchronous, log, and model moves. Figure 6.11 shows a view of the process model
with conformance information plotted on top. The color code is the same as in
Figure 6.10. We see that, in this case, the transitions in the Petri net can be involved
either in always synchronous behavior (Insert Customer), only model moves (all the

126 Process Mining Techniques Applied: Data Properties and Opportunities

Figure 6.11: Petri net showing enhanced conformance information based on the sample event
log.

Figure 6.12: Conformance details for activity Update Customer on the model shown in Fig-
ure 6.11.

tau or silent transitions), or a mixture of both (Update Customer). More information
about the aggregated statistics on the alignments where this activity is involved can
be observed in Figure 6.13: three traces performed a synchronous move (log and
model) in this activity; another three traces performed a model only move.

The asynchronous moves observed in the resulting alignments are due to deviations
in the log with respect to the model. This means that the log contains behavior that
does not fit in the process model. Not all deviations are undesirable, since they can
represent exceptional cases that we do not want to be reflected on or even allowed
by the general model. In other situations, deviations can uncover problems in the
process that must be investigated in more detail. A more permissive process model
that allows for more behavior would be able to replay more traces with less model and
log moves. Therefore, it is important to choose a process model at the right level of
generalization, which depends on the goal that we want to achieve when performing
a conformance analysis.

Conformance Checking for Data Petri Nets

The previous technique allowed us to compare the behavior captured in an event log
with respect to the behavior allowed by a process model. However, only control-

6.4 Process Mining Techniques Applied 127

Figure 6.13: Conformance checking result on the sample event log and a data Petri net using
the ProM plug-in Multi-perspective process explorer.

flow behavior was taken into account when computing the alignments. As we have
seen before, it is possible to discover process models that restrict the behavior based
on data guards. When data process models are available, it is possible to compute
alignments that take data guards into account in order to discover data violations
in the event log. The technique described in [75] makes this possible, taking a data
Petri net and an event log as inputs, and computing data-aware alignments in or-
der to provide a conformance analysis. For this example, we have used the plug-in
Multi-perspective process explorer [74], which provides the mentioned functionality to
compute alignments on data Petri nets.

Figure 6.13 shows a process model after the data-aware alignments have been
computed. Places are color coded based on their fitness value (ratio of deviations
observed in the place with respect to all the aligned traces). We see that place p9
(on the right side of transition Make Booking+start) shows a low fitness value. In the
information panel (bottom right) there are some details about the alignment. We see
that there are no data violations at model or place level. That means that, despite
showing deviations, they do not violate any of the data guards established on the
model, which involve the data attribute payment_issue.

6.4.4 Performance Analysis
The last group of process mining techniques we show is devoted to performance analy-
sis of processes. A difference with the presented techniques for conformance analysis is
that, in order to analyze performance, we do not necessarily require a process model.
In fact, we will describe two methods to analyze performance: one based on log replay

128 Process Mining Techniques Applied: Data Properties and Opportunities

Figure 6.14: Performance metrics computed based on the alignment of an event log and a
Petri net.

on model and another one based on event log analysis only.

Replay a Log on Petri Net for Performance/Conformance Analysis

A way to analyze the performance of processes based on an event log is to look at
the individual activity names and compute performance metrics that depend on a
single activity instance, such as duration. In order to compute the duration of an
activity instance, we typically compute the time difference between the complete and
the start life-cycle phases. However, for other metrics such as waiting time it is
necessary to compute the time spent between the completion of an activity and its
predecessor. This can be done at the trace level considering event windows of size
two. However, this can result in unreliable results when parallelism comes into play.
In that case, it is necessary to find, for each event involved in a parallel branch, the
closest previous event that happened just before a parallel split. This can be easily
achieved by computing alignments first and performance metrics afterwards.

Figure 6.14 shows the result of computing performance metrics on an event log
aligned with a Petri net. We see that waiting times are displayed on top of the incom-
ing edges of the transitions, and that Update Customer has an average waiting time
of 12.1 hours. This type of visualization allows us to identify sources of inefficiency
and bottlenecks in our process. This is of great importance to improve the efficiency
and performance of business processes.

Context-Aware Process Performance Analysis

Another way to tackle performance analysis is to focus only on the evidence, i.e., the
event log without considering an explicit model. This is the philosophy adopted by
the technique described in [52]. This technique carries out a performance analysis
considering other data aspects beyond control flow. It tries to find statistically signif-
icant differences in terms of performance between groups of traces that show a certain
level of similarity, e.g., same value for a certain data attribute.

When performing this analysis on the sample event log, first we obtain a global
summary of results. In this case, one significant result was obtained with respect to

6.4 Process Mining Techniques Applied 129

Figure 6.15: Summary of the results of a context-aware process performance analysis on the
sample event log.

Figure 6.16: Description of the observation detected by the context-aware process perfor-
mance analysis plug-in.

Figure 6.17: Boxplot of the differences in terms of duration for activity instances of Make
Booking with respect to the value of the attribute payment_issue.

130 Process Mining Techniques Applied: Data Properties and Opportunities

the duration of an activity, as can be seen in Figure 6.15. A descriptive message in
natural language (Figure 6.16) explains the reason of the detected observation: The
duration is higher when “Make Booking” has attribute value [payment_issue] “true”.
A more detailed view on the performance difference in terms of duration for Make
Booking can be observed in Figure 6.17. A boxplot shows that when the attribute
payment_issue has the value true, the duration of the Make Booking activity is, on
average, more than one day longer. When the value of payment_issue is false, the
average duration of the activity instances of Make Booking is around two hours.

This shows how we can leverage on the presence of additional data attributes in
order to obtain a more detailed performance analysis and better insights. Without
considering data attributes, we would only observe an unusually high average duration
of the activity Make Booking. In order to find the reason, we would need to dig deeper
and, possibly, return to the source of data to find more details about the root of the
detected inefficiencies.

6.5 Chapter Summary
The focus of this thesis is on the data rather than on new process analytics. The
thesis provides techniques to extract event data and to transform these into event
logs. However, the event logs are not the goal of a process mining project, but the
means to obtain valuable insights. In this chapter we have shown a sample of the
possibilities that process mining offers in order to analyze event logs. The goal was
not to present an exhaustive list of techniques, but to provide an idea, by means
of examples, on how process mining techniques can exploit different data properties
encoded within event logs. First, we presented the selected approaches with respect
to their data requirements, inputs, and outputs. Next, we provided a sample event log
showing the presented data properties. Finally, this event log was analyzed using each
of the proposed techniques and the resulting output of each of them was explained.

Beekeeper placing an uncapped frame inside
of an extractor.

“Cours complet d’apiculture”, Georges de
Layens and Gaston Bonnier, 1897

7
Data-Aware Process

Oriented Querying

In the previous chapters, several techniques have been introduced that help us to
extract and store event data from different event stores and databases (Chapters 3
and 4). Also, we have seen how it is possible to build event logs from different
perspectives (Chapter 5). Next, we have explored some of the types of analysis that
can be performed on these data using different process mining techniques (Chapter 6).
The goal of this chapter is to provide the mechanisms to effectively query process
data. We propose a domain-specific query language, focused on process data, that
takes advantage of data stores based on the OpenSLEX meta-model presented in
Chapter 3. The use of the OpenSLEX meta-model helps to ease the data querying
task. The proposed query language allows us to explore the data extracted by the
methods presented in Chapter 4, refine the result of the event log building process in
Chapter 5, and to focus on the interesting parts of the event logs and related data.

7.1 Introduction
One of the main goals of process mining techniques is to obtain insights into the
behavior of systems, companies, business processes, or any kind of workflow under
study. Obviously, it is important to perform the analysis on the right data. Being
able to extract and query some specific subset of the data becomes crucial when
dealing with complex and heterogeneous datasets. In addition, the use of querying
tools allows one to find specific cases or exceptional behavior. Whatever the goal,
analysts often find themselves in the situation in which they need to develop ad-hoc

131

132 Data-Aware Process Oriented Querying

Query 7.1: DAPOQ-Lang query to retrieve cases with an event happening between two
dates that changed the address of a customer from “Fifth Avenue” to “Sunset
Boulevard”.

1 def P1 = createPeriod("1986/09/17 00:00","2016/11/30 19:44","yyyy/MM/dd HH:mm")
2
3 casesOf(
4 eventsOf(
5 versionsOf(
6 allClasses().where {name == "CUSTOMER"}
7).where { changed([at:"ADDRESS", from:"Fifth Avenue", to:"Sunset Boulevard"])}
8).where
9 {

10 def P2 = createPeriod(it.timestamp)
11 during(P2,P1)
12 }
13)

software to deal with specific datasets, given that existing tools might be difficult to
use, too general, or just not suitable for process analysis.

Different approaches exist to support the querying of process data. Some of them
belong to the field of Business Process Management (BPM). In this field, events are
the main source of information. They represent transactions or activities that were
executed at a certain moment in time in the environment under study. Querying
this kind of data allows us to obtain valuable information about the behavior and
execution of processes. There are other approaches originating from the field of data
provenance [14], which are mainly concerned with recording and observing the origins
of data. This field is closely related to that of scientific workflows [25] in which the
traceability of the origin of experimental results becomes crucial to guarantee correct-
ness and reproducibility. In the literature, we find many languages to query process
data. However, none of these approaches succeeds at combining process and data as-
pects in an integrated way. An additional challenge to overcome is the development
of a query mechanism that allows exploiting this combination while being intuitive
and easy to use.

In order to make the querying of process event data easier and more efficient, we
propose the Data-Aware Process Oriented Query Language (DAPOQ-Lang). This
query language, first introduced in [41], exploits both process and data perspectives.
The aim of DAPOQ-Lang is not to theoretically enable new types of computations,
but to ease the task of writing queries in the specific domain of process mining.
Therefore, our focus is on the ease of use. We want to illustrate the ease of use of
DAPOQ-Lang using an example. Let us consider a generic question that could be
asked by an analyst when carrying out a process mining project:

GQ: In which cases there was (a) an event that happened between time
T1 and T2, (b) that performed a modification in a version of class C (c)
in which the value of field F changed from X to Y?

This query involves several types of elements: cases, events, object versions, and

7.2 Systematic Literature Review 133

Figure 7.1: Pipeline of the systematic review process

attributes. We instantiate this query with some specific values for T1 = “1986/09/17
00:00”, T2 = “2016/11/30 19:44”, C = “CUSTOMER”, F = “ADDRESS”, X =
“Fifth Avenue”, and Y = “Sunset Boulevard”. Query 7.1 presents the corresponding
DAPOQ-Lang query. This example shows how compact a DAPOQ-Lang query can
be. The specifics of this query will be explained in the coming sections.

The rest of this chapter is organized as follows. In Section 7.2, we show the related
work with a systematic literature review on process data query languages. Section 7.3
presents the query language, focusing on the syntax and semantics. Section 7.4 pro-
vides information about the implementation and its evaluation. Section 7.5 presents
possible use cases. Section 7.6 concludes the chapter.

7.2 Systematic Literature Review
In order to get an overview of existing approaches for event data querying, we first
concluded a systematic literature review [115]. Figure 7.1 shows an overview of the
procedure. First, a coarse set of candidate papers needs to be obtained from a scientific
publications database or through a search engine by means of a literature query.
Afterwards, a relevance screening is performed in order to identify which papers are
actually within the scope. We define a set of criteria. Only papers that fulfill these
criteria pass to the next phase. Next, a quality screening is conducted on the relevant
papers. This is done by defining minimum quality criteria that the papers must
satisfy. Finally, with the selected papers that are relevant and have sufficient quality,
a detailed review is performed.

In accordance with the procedure described in Figure 7.1, first, we performed a
search of related papers. We chose Scopus1, one of the largest abstract and citation
databases of peer-reviewed literature, including scientific journals, books, and confer-
ence proceedings. This database provides a search engine that, by means of queries,
allows to specify different kinds of criteria to filter the results.

In our case, we are interested in papers that refer to business processes or work-
flows, that relate to queries and that analyze events, logs, provenance, data or trans-
actions. In addition, we want to filter out any work that does not belong to the area
of Computer Science, or that is not written in English. The exact query as executed
by the search engine can be observed in Literature Query 7.2.

The query above returned 1056 results, from the years 1994 to 2018, with the
distribution depicted in Figure 7.2.

However, not all the papers found proved relevant to our topic. When performing
1http://www.scopus.com

http://www.scopus.com

134 Data-Aware Process Oriented Querying

Literature Query 7.2: Query as executed in Scopus

1 TITLE-ABS-KEY("business process" OR "workflow") AND
2 TITLE-ABS-KEY("query" OR "querying") AND
3 TITLE-ABS-KEY("event" OR "log" OR "provenance" OR "data" OR "transaction") AND
4 LIMIT-TO(SUBJAREA,"COMP") AND
5 LIMIT-TO(LANGUAGE,"English")

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

0

20

40

60

80

100

Year

N
um

be
r

of
en

tr
ie

s

Total entries Relevant entries Quality entries

Figure 7.2: Distribution per year of the related work as a result of the first query on Scopus.

the relevance screening, we make a distinction between Inclusive (I) and Exclusive
(E) criteria. In this way, candidates that satisfy all the inclusive criteria and do not
satisfy any of the exclusive will be included in the next phase of the review. We will
discard any paper that does not satisfy all the inclusive criteria or satisfies at least
one of the exclusive ones. The specific criteria used in this review are listed below:

1. Does the study consider process data as input? (I)

2. Does the study use only process models as input? (E)

3. Does the study propose a language to query the data? (I)

As a result of the relevance screening phase, the whole set of 1056 entries was
reduced to a set of 95 relevant works. These 95 entries are considered to be related
and within the scope of process and provenance data querying. However, to guarantee
a minimum level of detail, we defined the following criteria for the quality screening
phase:

7.2 Systematic Literature Review 135

1. Does the study provide a sufficiently detailed description of the language?

2. If the language already exists, are the extensions, modifications, adaptations
sufficiently explained?

3. Does the study include concrete examples of the application of the language?

As a result of this phase, the set of 95 relevant works was further reduced to a set
of 30 truly related papers to be analyzed in detail. At the final stage, these papers
have been analyzed to identify their most important features, and then compared to
our approach. The content of each paper was reviewed, closely considering the main
characteristics of the approaches they describe. These characteristics refer to the kind
of input data that is used by each approach (Input data aspects), qualities related
to provenance (Provenance aspects), business processes (Business process aspects),
database or artifact environments (Database or Artifact aspects), and the nature of
the questions that can be queried with them (Query aspects). Table 7.1 presents the
main characteristics of the remaining 30 references and how they can be classified
when looking at the features listed below:

Input data aspects:

• Event data: The approach allows to query and analyze event data.

• Model-based: The approach takes into account execution models such as work-
flows, BPEL, or Petri nets.

• Storage model: A meta-model for provenance or event data storage is proposed
by the approach.

• Complex event processing: Different sources of events are analyzed by the ap-
proach to infer new kinds of more complex events.

• Streams: It is possible to query streams of events instead of complete logs.

Provenance aspects:

• Provenance-oriented: The approach is provenance oriented or allows to record
and query provenance information on the execution of workflows, scientific work-
flows, business processes, etc.

• OPM-compliant: The storage model used by the approach complies with the
Open Provenance Model [83]. This model proposes a standard on how prove-
nance data must be stored in order to ensure interoperability between tools.

• Data lineage: The language allows to query about the life cycle of data, its
origins and where it moves over time.

• Dependency graphs/relations: Relations between data entities are considered
by the approach. For example, dependency graphs, common in the provenance
area, are used.

136 Data-Aware Process Oriented Querying

Business Process aspects:

• Business process oriented: The approach is applied to the field of business
processes management. In addition, it considers business process specific aspects
while querying, e.g., using concepts such as activities, cases, resources, etc.

Database or Artifact aspects:

• Entities/artifacts: The approach captures information about the objects, data
entities or artifacts related to the event or provenance data. This information
can be queried as well.

• Database-oriented: The approach captures database-specific data such as
schema, tables, column information, keys, objects, etc., in case the event in-
formation is extracted from that kind of environment.

• State-aware: The state of the analyzed system is considered by the approach at
the time of capturing and querying data. This can be related to process state,
data state, versioning, etc.

Query aspects:

• Graph-based: Queries and results are expressed as graphs, in which edges are
relations and nodes can be data objects, events, activities, etc.

• Relevance querying: It is possible to query about data relevance, i.e., relations
between data that do not only reflect data origin.

• Semantic querying: The query language is based on or compatible with semantic
technologies such as RDF, OWL, SPARQL, etc.

• Regular path queries (RPQ): The language allows to make queries that select
nodes connected by a path on a graph based database.

• Projection queries: It is possible to query cases that fit a partial pattern using
projection.

• Temporal properties/querying: The language or technique makes it possible to
query temporal properties related to the data. It can also refer to temporal
logic languages such as LTL, CTL, etc.

• Event correlation: The approach does not consider events in isolation, but allows
to query the correlation between them, e.g., querying evens related to the same
artifact.

• Multi process: The approach allows to query aspects related to several processes
at the same time on the same dataset.

• Multi log: Several event logs can be queried at the same time in order to combine
results for a single query.

7.2 Systematic Literature Review 137

Table 7.1: Comparison of features for the references at the end of the systematic review.

Ref Title

Event data

M
odel-based

Storage
m

odel

Com
plex

event processing

Stream
s

Provenance-oriented

O
PM

-com
pliant

Data
lineage

Depencency
graphs/Rels.

Business
process

oriented

Entities/Artifacts

Database-oriented

State-aware

G
raph-based

Relevance
querying

Sem
antic

querying

Regular path
queries

Projection
queries

Tem
poral prop./querying

Event correlation

M
ulti process/log/schem

a

[54] Answering regular path queries on workflow provenance ✓ - - - - ✓ - - - - - - - ✓ - - ✓ - - - -
[23] Capturing and querying workflow runtime provenance

with PROV: A practical approach
✓ - ✓ - - ✓ - - ✓ - - - - - - - - - - - -

[24] Modeling and querying scientific workflow provenance in
the D-OPM

✓ - ✓ - - ✓✓ - - - - - - ✓ - - ✓ - - - -

[99] Towards a scalable semantic provenance management
system

✓ - - - - ✓✓✓✓ - - - - - - ✓ - - - - -

[22] Towards integrating workflow and database provenance ✓ - ✓ - - ✓✓✓✓ - ✓✓✓ - - - - - - - -
[33] MTCProv: A practical provenance query framework for

many-task scientific computing
✓ - ✓ - - ✓✓✓✓ - - - - - - - - - - - -

[67] OPQL: A first OPM-level query language for scientific
workflow provenance

✓ - - - - ✓✓✓ - - - - - ✓ - - - - - - -

[68] Storing, reasoning, and querying OPM-compliant scien-
tific workflow provenance using relational databases

✓ - ✓ - - ✓✓✓✓ - - - - - - - - - - - -

[69] XQuery meets Datalog: Data relevance query for work-
flow trustworthiness

✓ - - - - ✓ - - ✓ - - - - - ✓ - - - - - -

[11] A model for user-oriented data provenance in pipelined
scientific workflows

✓ - ✓ - - ✓ - ✓✓ - - - - - - - - - - - -

[27] Developing provenance-aware query systems: an
occurrence-centric approach

✓ - ✓ - - ✓ - ✓✓ - ✓ - - - - - - - ✓ - -

[102] A knowledge driven approach towards the validation of
externally acquired traceability datasets in supply chain
business processes

✓ - - - - - - ✓ - ✓ - - - - - ✓ - - - - -

[82] Process query language: A way to make workflow pro-
cesses more flexible

✓ - ✓ - - - - ✓ - ✓ - - - - - - - - - - -

[59] Workflow History Management ✓ - ✓ - - - - - - ✓ - - - - - - - - - - -
[93] The HIT model: Workflow-aware event stream monitor-

ing
✓✓ - ✓✓ - - - - ✓ - - - - - - - - - - -

[70] Semantic Enabled complex Event Language for business
process monitoring

✓ - - ✓ - - - ✓ - ✓ - - - ✓ - ✓ - ✓✓ - -

[29] A framework supporting the analysis of process logs
stored in either relational or NoSQL DBMSS

✓ - ✓ - - - - - - ✓ - - - ✓ - - - - - - -

[94] Business impact analysis: a framework for a comprehen-
sive analysis and optimization of business processes

✓ - ✓ - - - - - ✓ ✓ ✓✓ - - - - - - - - -

[5] Model-driven event query generation for business process
monitoring

✓✓ - ✓ - - - - - ✓ - - - - - - - - - - -

[103] Querying process models based on the temporal relations
between tasks

- ✓ - - - - - - - ✓ - - - - - - - - ✓ - -

[8] A query language for analyzing business processes exe-
cution

✓ - - - - - - ✓✓ ✓ ✓ - - ✓ - ✓ - - - ✓ -

[26] Top-k projection queries for probabilistic business pro-
cesses

✓✓✓ - - - - - - ✓ - - - - - - - ✓ - - -

[6] Integration of Event Data from Heterogeneous Systems
to Support Business Process Analysis

✓✓✓ - - - - - - ✓ - - - - - - - - - ✓ -

[78] Enabling semantic complex event processing in the do-
main of logistics

✓ - - ✓ - - - - - ✓ - - - - - ✓ - - - - -

[96] Optimizing complex sequence pattern extraction using
caching

✓ - - ✓ - - - - - ✓ - - - - - - - ✓ - - -

[10] Trace retrieval for business process operational support ✓ - - - - - - - - ✓ - - - - - - - ✓ - - -
[91] Process Instance Query Language to Include Process Per-

formance Indicators in DMN
✓ - - - - - - - - ✓ - - ✓ - - - - - - - -

[105] Querying Workflow Logs ✓ - - - - - - - - ✓ - - - - - - - ✓ - - -
[4] A Continuous Query Language for Stream-Based Arti-

facts
✓ - - ✓✓ - - - - ✓ ✓ - - - - - - - - - -

[95] Log-based understanding of business processes through
temporal logic query checking

✓ - - - - - - - - - - - - - - - - - ✓ - -

Our approach: DAPOQ-Lang ✓✓✓ - - ✓ - ✓✓ ✓ ✓✓✓ - ✓ - - - ✓✓✓

138 Data-Aware Process Oriented Querying

• Multi data schema: Several data schemas can be considered in a single query.

If we focus on the columns named Provenance-oriented and Business process ori-
ented in Table 7.1, we notice that none of the approaches qualifies as provenance-
oriented and business oriented at the same time. In fact, all the approaches seem to
present one of these two aspects. Therefore, we categorized the approaches into two
groups: provenance-oriented and business process oriented. The provenance-oriented
approaches ([11,22–24,27,33,54,67–69,99]) usually support some kind of provenance
model, data lineage or so. However, not all the approaches under this category sup-
port every aspect of data provenance. Only one of them [22] is database-oriented
and considers states and artifacts. Most of the business process oriented approaches
([4–6,8,10,26,29,59,70,78,82,91,93,94,96,102,103,105]) seem to ignore data prove-
nance aspects. They focus mainly on capturing causal relations of business activities
and supporting different ways to query the data. There is an outlier [95] that focuses
only on the temporal analysis of event logs using temporal logic checking. However,
this solution ignores all other aspects of the data. If we focus on the last eight columns
at the right of Table 7.1, we see that most of the approaches only present one or two
of what we call Query aspects. There are two exceptions though. The first one is
the approach presented in [70], which supports graph-based, semantic, projection, and
temporal properties querying. However, it does not support any database aspect. The
second exception is the approach in [8], which supports graph-based, semantic, and
event correlation queries, as well as artifacts. However, it lacks support for tempo-
ral properties and it is not database-oriented. As can be seen, none of the existing
approaches succeeds at combining data provenance and business processes. Addition-
ally, none of them is able to provide good support for different querying aspects while
being database-oriented.

The insight from this literature review is that in the field of process data query-
ing, there is a need for a solution that combines business process analysis with the
data perspective, which also allows querying all this information in an integrated
way. Taking into account that, in most cases, the execution of business processes is
supported by databases, the consideration of the data perspective becomes especially
relevant.

7.3 DAPOQ-Lang
DAPOQ-Lang is a data-aware process oriented query language that allows the user
to query data and process information stored in a structure compatible with the
OpenSLEX meta-model [42]. As described in Chapter 3, OpenSLEX combines
database elements (data models, objects, and object versions) with common pro-
cess mining data (events, logs, and processes), considering them as first-class citizens.
DAPOQ-Lang considers the same first-class citizens as OpenSLEX, which makes it
possible to write queries in the process mining domain enriched with data aspects
with lower complexity than in other general purpose query languages like SQL.

Intuitively, we could think that considering all the elements of the OpenSLEX
meta-model as first-class citizens would introduce a lot of complexity in our language.

7.3 DAPOQ-Lang 139

However, these elements have been organized in a type hierarchy as subtypes of higher
level superclasses (Figure 7.3). In this figure, it can be seen that MMElement is
the highest level superclass. Next, we distinguish two subtypes of elements: (1)
stored elements (StoredElement), i.e., elements that can be found directly stored in an
OpenSLEX structure, such as activities, events, objects, and logs; and (2) computed
elements (ComputedElements), i.e., elements that are computed based on the rest,
e.g., temporal periods of cases, and temporal periods of events. We will exploit this
hierarchy to design a simple language, providing many basic functions that can operate
on any MMElement, as well as some functions that focus on specific subtypes. Given a
connected meta-model instance CMI = (DM ,OC,classOfObject,OVC,objectOfVersion,EC,
eventToOVLabel, IC,eventAI ,PMC,activityOfAI ,processOfLog) (Definition 22), we define
the concept of MMElement in DAPOQ-Lang as the union of all its terminal subtypes:

MMElement = AC ∪LG∪EV ∪REL∪OC ∪AT ∪CL∪PER∪PM ∪CS∪AI∪
OV ∪RS∪DM (7.1)

Some of the functions that we define operate on sets of elements (P (MMElement)).
However, as a constraint of our query language, we require that the elements of those
sets belong to the same subtype (i.e., a set of Class elements, a set of Version elements,
or a set of Event elements, etc.). Therefore, we define the set MMSets as the set of
all possible subsets of each element type in a meta-model M M :

MMSets = P (AC)∪P (LG)∪P (EV)∪P (REL)∪P (OC)∪P (AT)∪P (C L)∪
P (PER)∪P (P M)∪P (C S)∪P (AI)∪P (OV)∪P (RS)∪P (DM) (7.2)

The output of any query will be an element set es ∈ M MSet s, i.e., a set of elements
of the same type. The following subsections describe the syntax and semantics of
DAPOQ-Lang in detail.

Figure 7.3: DAPOQ-Lang types hierarchy in UML notation. Arrows indicate subtype rela-
tions.

140 Data-Aware Process Oriented Querying

7.3.1 Syntax
The DAPOQ-Lang language has been designed with a focus on the ease of use, trying
to find a balance between simplicity and expressive power. We exploited the specifics
of the underlying meta-model defining a total of 57 basic functions, as organized in
five well-defined blocks, that can be applied in the context of a given meta-model
M M . The functions proposed in this section are used to define the syntax, while
Section 7.3.2 will focus on the semantics of DAPOQ-Lang.

Terminal Meta-Model Elements

We define a set of 13 basic terminal functions. Each of them maps to the set of
all elements of the corresponding type (Figure 7.3) in the OpenSLEX meta-model
structure (Definition 22). Given a connected meta-model instance, we define the
following :

1. allDatamodels: the set of all data models, i.e., DM,

2. allClasses: the set of all classes, i.e., CL,

3. allAttributes: the set of all class attributes, i.e., AT ,

4. allRelationships: the set of all class relationships, i.e., RS,

5. allObjects: the set of all objects, i.e., OC,

6. allVersions: the set of all object versions, i.e., OV ,

7. allRelations: the set of all relations, i.e., REL,

8. allEvents: the set of all events, i.e., EV ,

9. allActivityInstances: the set of all activity instances, i.e., AI,

10. allCases: the set of all cases, i.e., CS,

11. allLogs: the set of all logs, i.e., LG,

12. allActivities: the set of all activities, i.e., AC,

13. allProcesses: the set of all processes, i.e., PM.

Elements Related to Elements

The following 14 functions take as an input a set of elements of the same type and
return a set of elements related to them of the type corresponding to the return type
of the function. For example, a call to eventsOf (es), being es ∈ P (LG) will return
the set of events that are related to the logs in the set es. Thanks to the subtype
hierarchy, in most of the cases we can reuse the same function call for input sets of
any type, which leads to a more compact syntax. In the cases when an input of any
type would not make sense, we can still restrict the input type to a particular kind.

7.3 DAPOQ-Lang 141

This is the case with the function versionsRelatedTo, which only accepts sets of object
versions as input.

14. datamodelsOf ∈ MMSets →P (DM): returns the set of data models related to the
input,

15. classesOf ∈ MMSets →P (CL): returns the set of classes related to the input,

16. attributesOf ∈ MMSets →P (A): returns the set of attributes related to the input,

17. relationshipsOf ∈ MMSets →P (RS): returns the set of relationships related to the
input,

18. objectsOf ∈ MMSets →P (O): returns the set of objects related to the input,

19. versionsOf ∈ MMSets →P (OV): returns the set of object versions related to the
input,

20. relationsOf ∈ MMSets →P (REL): returns the set of relations related to the input,

21. eventsOf ∈ MMSets →P (E): returns the set of events related to the input,

22. activityInstancesOf ∈ MMSets → P (AI): returns the set of activity instances re-
lated to the input,

23. activitiesOf ∈ MMSets →P (AC): returns the set of activities related to the input,

24. casesOf ∈ MMSets →P (CS): returns the set of cases related to the input,

25. logsOf ∈ MMSets →P (LG): returns the set of logs related to the input,

26. processesOf ∈ MMSets →P (PM): returns the set of processes related to the input,

27. versionsRelatedTo ∈ P (OV) → P (OV): returns the set of object versions directly
related (distance 1) to the input object versions through any kind of relationship.

Computation of Temporal Values

Some elements in our meta-model contain temporal properties (e.g., events have a
timestamp, object versions have a lifespan, etc.), which allows us to make temporal
computations with them. We provide the following eight functions to compute time
periods (with a start and an end), as well as durations. Durations (DU R) are special
in the sense that they can be considered as scalars. Also, they are not part of the
MMElement subtype hierarchy. Durations can only be used to be compared with
other durations.

28. periodsOf ∈ MMSets → P (PER): returns the computed periods for each of the
elements of the input set,

29. globalPeriodOf ∈ MMSets → PER: returns a global period for all the elements in
the input set, i.e., the period from the earliest to the latest timestamp,

142 Data-Aware Process Oriented Querying

Table 7.2: Relations in Allen’s interval algebra.

Relation Name Illustration Interpretation

X < Y before X X takes place before Y
Y > X after Y

X m Y meets X X meets Y (i stands for inverse)
Y mi X meetsInv Y

X o Y overlaps X X overlaps with Y
Y oi X overlapsInv Y

X s Y starts X X starts Y
Y si X startsInv Y

X d Y during X X during Y
Y di X duringInv Y

X f Y finishes X X finishes Y
Y fi X finishesInv Y

X = Y matches X X is equal to Y
Y

30. createPeriod ∈ TS×TS → PER: returns a period for the specified start and end
timestamps,

31. getDuration ∈ PER → DUR: returns the duration of a period in milliseconds,

32. Duration.ofSeconds ∈N→ DUR: returns the duration of the specified seconds,

33. Duration.ofMinutes ∈N→ DUR: returns the duration of the specified minutes,

34. Duration.ofHours ∈N→ DUR: returns the duration of the specified hours,

35. Duration.ofDays ∈N→ DUR: returns the duration of the specified days.

Temporal Interval Algebra

Allen’s Interval Algebra, described in [2], introduces a calculus for temporal reasoning,
which defines possible relations between time intervals. It provides the tools to reason
about the temporal descriptions of events in the broadest sense. Table 7.2 shows
the 13 base relations between two intervals. These temporal relations are used in
our approach to reason about data elements for which we can compute a temporal
interval.

We have introduced the functions to compute and create periods of time. The
following 13 functions cover all the interval operators, described by Allen’s Interval
Algebra, which we can use to compare periods. Take (a,b) to be a pair of periods for
which:

36. before ∈ PER×PER →B: true if a takes place before b,

37. after ∈ PER×PER →B: true if a takes place after b,

38. meets ∈ PER×PER →B: true if the end of a is equal to the start of b,

7.3 DAPOQ-Lang 143

39. meetsInv ∈ PER×PER →B: true if the start a is equal to the end of b,

40. overlaps ∈ PER×PER →B: true if the end of a happens during b,

41. overlapsInv ∈ PER×PER →B: true if the start of a happens during b,

42. starts ∈ PER×PER →B: true if both start at the same time, but a is shorter,

43. startsInv ∈ PER×PER →B: true if both start at the same time, but a is longer,

44. during ∈ PER×PER →B: true if a starts after b started, and ends before b ends,

45. duringInv ∈ PER×PER →B: true if a starts before b starts, and ends after b ends,

46. finishes ∈ PER×PER →B: true if both end at the same time, but a is shorter,

47. finishesInv ∈ PER×PER →B: true if both end at the same time, but a is longer,

48. matches ∈ PER×PER →B: true if both have the same start and the same end.

Operators on Attributes of Elements

Some elements of the OpenSLEX meta-model can be enriched with attribute values.
These elements are events, object versions, cases, and logs. The following functions
allow the user to query these attributes and obtain their value:

49. eventHasAttribute ∈ EVAT×EV →B: true if the event contains a value for a certain
attribute name,

50. versionHasAttribute ∈ AT ×OV →B: true if the object version contains a value for
a certain attribute name,

51. caseHasAttribute ∈ CSAT ×CS →B: true if the case contains a value for a certain
attribute name,

52. logHasAttribute ∈ LGAT ×LG → B: true if the log contains a value for a certain
attribute name,

53. getAttributeEvent ∈ EVAT×EV ̸→V : returns the value for an attribute of an event,

54. getAttributeVersion ∈ AT×OV ̸→V : returns the value for an attribute of an object
version,

55. getAttributeCase ∈ CSAT ×CS ̸→V : returns the value for an attribute of a case,

56. getAttributeLog ∈ LGAT ×LG ̸→V : returns the value for an attribute of a log,

57. versionChange ∈ AT ×V ×V ×OV →B: true if the value for an attribute linked to
an object version changed from a certain value (in the previous object version)
to another (in the provided object version).

By definition, getAttribute* functions (items 53 to 56) are only defined for combi-
nations of elements and attributes for which the corresponding *HasAttribute function
(items 49 to 52) evaluates to True.

144 Data-Aware Process Oriented Querying

DAPOQ-Lang’s Abstract Syntax

The syntax of DAPOQ-Lang is defined in the form of an abstract syntax, using the
notation proposed in [81]. In DAPOQ-Lang, a query is a sequence of Assignments
combined with an ElementSet:

Query ≜ s : Assignments;es : ElementSet

Assignments ≜ Assignment∗

The result of a query is an ElementSet, i.e., the set of elements (of the same type)
from the queried OpenSLEX dataset that satisfies certain criteria. An Assignment
assigns an ElementSet to a variable. Then, any reference to such variable, via its
identifier, will be replaced by the corresponding ElementSet.

Assignment ≜ v : Varname;es : ElementSet

Varname ≜ identifier

An ElementSet can be defined over other ElementSets by Construction or Applica-
tion. It can also be defined by means of a variable identifier, i.e., an ElementSetVar,
by a call to a terminal element function with a ElementSetTerminal (Section 7.3.1),
by computation or creation of Periods, or by filtering elements of the previous options
with a FilteredElementSet.

ElementSet ≜ Construction | Application | Period | ElementSetVar |
ElementSetTerminal | FilteredElementSet

ElementSetVar ≜ identifier

An ElementSetTerminal is the ElementSet resulting from a call to the correspond-
ing terminal element function (e.g., allEvents).

ElementSetTerminal ≜ AllDatamodels | AllClasses | AllAttributes |
AllRelationships | AllObjects | AllVersions |
AllRelations | AllActivityInstances | AllEvents |
AllCases | AllLogs | AllActivities | AllProcesses

An ElementSet can be composed from other ElementSets by applying set opera-
tions such as union, exclusion, and intersection.

Construction≜ es1,es2 : ElementSet;o : Set_Op

Set_Op≜ Union | Excluding | Intersection

Also, an ElementSet can be constructed by means of a call to one of the Ele-
mentOf_Op functions. These include the functions described in Section 7.3.1 that

7.3 DAPOQ-Lang 145

return sets of elements related to other elements and the periodsOf function described
in Section 7.3.1 that computes the periods of elements.

Application≜ es : ElementSet;o : ElementOf _Op

ElementOf _Op≜ datamodelsOf | classesOf | attributesOf | relationshipsOf |
objectsOf | versionsOf | relationsOf | eventsOf |
activityInstancesOf | casesOf | activitiesOf | logsOf | processesOf |
periodsOf | versionsRelatedTo

An ElementSet can be built by means of filtering, discarding elements of another
ElementSet according to certain criteria. These criteria are expressed as a Predicate-
Block, which will be evaluated for each member of the input ElementSet. Depending
on the result of evaluating the PredicateBlock, each element will be filtered out or
included in the new ElementSet.

FilteredElementSet ≜ es : ElementSet;pb : PredicateBlock

A PredicateBlock is a sequence of Assignments combined with a Predicate. Such
Predicate can be defined recursively as a binary (and, or) or unary (not) combination
of other Predicates.

PredicateBlock ≜ s : Assignments; p : Predicate

Predicate ≜ AttributePredicate | Un_Predicate | Bin_Predicate |
TemporalPredicate

Bin_Predicate ≜ p1, p2 : Predicate;o : BinLogical_Op

Un_Predicate ≜ p : Predicate;o : UnLogical_Op

BinLogical_Op≜ And | Or

UnLogical_Op≜ Not

Also, a Predicate can be defined as an AttributePredicate, which will either refer
to AttributeExists functions that check the existence of an attribute for a certain
element, an operation on attribute values (e.g., to compare attributes to substrings,
constants, or other attributes), or an AttributeChange predicate, making use of the

146 Data-Aware Process Oriented Querying

functions specified in Section 7.3.1.

AttributePredicate ≜ AttributeExists | AttributeValuePred | AttributeChange

AttributeExists ≜ at : AttributeName

AttributeValuePred ≜ at1,at2 : Attribute;o : Value_Op

AttributeChange ≜ at : AttributeName; from, to : Value

AttributeName ≜ identifier

Value_Op≜ ==|>=|<=|>|<| startsWith | endsWith | contains

Attribute ≜ AttributeName | Value

Value ≜ literal

Finally, a Predicate can be defined as a TemporalPredicate, i.e., a Boolean oper-
ation comparing periods or durations. Period comparisons based on Allen’s Interval
Algebra are supported by the functions defined in Section 7.3.1. Duration compar-
isons are done on simple scalars (e.g., ==, >, <, ≥, and ≤). A Period can be either
created from some provided timestamps with the function createPeriod or computed
as the global period of an element or set of elements with the function globalPeriodOf.
Also, a Period can be constructed referring to a variable containing another period
by means of an identifier. Durations can be obtained from existing periods (with the
function durationOf) or created from specific durations in seconds, minutes, hours or
days with the functions defined in Section 7.3.1.

TemporalPredicate ≜ per1,per2 : Period;o : Period_Op |
dur1,dur2 : Duration;o : Numerical_Comp_Op

Period ≜ PeriodCreation | PeriodVar

PeriodCreation≜ ts1, ts2 : Timestamp;o : createPeriod |
es : ElementSet;o : globalPeriodOf

PeriodVar ≜ identifier

Period_Op≜ before | after | meets | meetsInv | overlaps | overlapsInv |
starts | startsInv | during | duringInv | finishes |
finishesInv | matches

Duration≜ p : Period;o : getDuration | v : Value;o : DurationOf

DurationOf ≜ Duration.ofSeconds | Duration.ofMinutes |
Duration.ofHours | Duration.ofDays

Numerical_Comp_Op≜ ==|>=|<=|>|<

7.3.2 Semantics
In this section, we make use of denotational semantics, as proposed in [81], to formally
describe DAPOQ-Lang. We define several semantic functions MT that describe the

7.3 DAPOQ-Lang 147

meaning of the nonterminal T (e.g., MQuer y describes the meaning of the nonterminal
Quer y). First, we introduce some notation that will be used in further definitions.

Definition 29 (overriding union) The overriding union of f : X ̸→ Y by g : X ̸→ Y , is
denoted as f ⊕ g : X ̸→ Y such that dom(f ⊕ g) = dom(f)∪dom(g) and:

f ⊕ g (x) =
{

g (x) if x ∈ dom(g)

f (x) if x ∈ dom(f) \ dom(g)

In the previous section, we introduced the use of variables in the language. These
variables must be translated into a value in M MSet s (Eq. 7.2) during the execution
of our queries. A Binding assigns a set of elements to a variable name:

Binding ≜ Varname → MMSets

Queries are computed based on a dataset complying with the structure of the
OpenSLEX meta-model. Such a meta-model can be seen as a tuple of sets of elements
of each of the basic types:

MetaModel ≜ (AC, LG, EV , REL, OC, AT , CL, PER, PM , CS, AI , OV , RS, DM)

The meaning function of a query takes a query and a meta-model dataset as an
input and returns a set of elements that satisfy the query:

MQuery : Query×MetaModel → MMSets

This function is defined as:

MQuery
[
q : Query,MM : MetaModel

]
≜MElementSet (q.es,MM ,MAssignments(q.s,MM ,;))

The evaluation of the meaning function of a query depends on the evaluation of
the assignments and the element set involved. Evaluating the assignments involves
resolving their corresponding element sets and remembering the variables to which
they were assigned.

MAssignments : Assignments×MetaModel×Binding → Binding

A sequence of assignments resolves to a binding, which links sets of elements
to variable names. Assignments that happen later in the order of declaration take
precedence over earlier ones when they share the variable name.

MAssignments
[
s : Assignments, MM : MetaModel, B : Binding

]
≜

if ¬(s.TAIL).EMPTY then
MAssignments(s.TAIL, MM , B ⊕MAssignment (s.FIRST , MM , B))

else B

148 Data-Aware Process Oriented Querying

The result of an assignment is a binding, linking a set of elements to a variable
name.

MAssignment : Assignment ×MetaModel×Binding → Binding

MAssignment
[
a : Assignment, MM : MetaModel, B : Binding

]
≜

{(a.v, MElementSet (a.es, MM , B))}

An ElementSet within the context of a meta-model and a binding returns a set of
elements of the same type that satisfy the restrictions imposed in the ElementSet.

MElementSet : ElementSet ×MetaModel×Binding → MMSets

An ElementSet can be resolved as a Construction of other ElementSets with the
well-known set operations union, exclusion, and intersection. It can be the result of
evaluating an Application function, returning elements related to other elements, to
the creation of Periods, or the value of a variable previously declared (ElementSet-
Var). Also, it can be the result of a terminal ElementSet, e.g., the set of all the
events (allEvents). Finally, an ElementSet can be the result of filtering another Ele-
mentSet according to a PredicateBlock, which is a Predicate preceded by a sequence
of Assignments. These Assignments will only be valid within the scope of the Pred-
icateBlock, and will not be propagated outside of it (i.e., if a variable is reassigned,
it will maintain its original value outside of the PredicateBlock). The resulting Fil-
teredElementSet will contain only the elements of the input ElementSet for which the
evaluation of the provided Predicate is True.

MElementSet [es : ElementSet, MM : MetaModel, B : Binding]≜
case es of

Construction ⇒
case es.o of

Union ⇒ MElementSet (es.es1, MM , B)∪MElementSet (es.es2, MM , B)

Excluding ⇒ MElementSet (es.es1, MM , B) \ MElementSet (es.es2, MM , B)

Intersection ⇒ MElementSet (es.es1, MM , B)∩MElementSet (es.es2, MM , B)

end
Application ⇒ es.o(MElementSet (es.es, MM , B))

Period ⇒ MPeriod(es, MM , B)

ElementSetVar ⇒
{

B(es) if es ∈ dom(B)

; otherwise
ElementSetTerminal ⇒ esMM

FilteredElementSet ⇒ {e ∈ MElementSet (es.es, MM , B) |
MPredicate(es.pb.p, MM , MAssignments(es.pb.s, MM , B ⊕ (it, e)))}

end

7.3 DAPOQ-Lang 149

A Predicate is evaluated as a Boolean, with respect to a MetaModel and a Binding:

MPredicate : Predicate×MetaModel×Binding →B

The meaning function of Predicate (MPr edi cate) evaluates the Boolean value of a
Predicate, which can be recursively constructed combining binary (and, or) or unary
(not) predicates. Also, Predicates can be defined as AttributePredicates that evaluate
the existence of attributes, comparisons of attribute values, or attribute value changes.
Finally, they can be defined as TemporalPredicates, which can compare durations or
periods by means of Allen’s Interval Algebra operators.

MPredicate[p : Predicate, MM : MetaModel, B : Binding]≜
case p of

AttributePredicate ⇒
case p of

AttributeExists ⇒ if B(it) ∈ EV : eventHasAttribute(p.at, B(it))

elif B(it) ∈ OV : versionHasAttribute(p.at, B(it))

elif B(it) ∈ CS : caseHasAttribute(p.at, B(it))

elif B(it) ∈ LG : logHasAttribute(p.at, B(it))

else :∅
AttributeValuePred ⇒

p.o(MAttribute(p.at1, B(it), MM), MAttribute(p.at2, B(it), MM))

AttributeChange ⇒
if B(i t) ∈ MM .OV then : versionChange(p.at, p.from, p.to, B(it)) else :∅

end
Un_Predicate ⇒¬MPredicate(p.p, MM , B)

Bin_Predicate ⇒
case p.o of

And ⇒ Mpredicate(p.p1, MM , B)∧Mpredicate(p.p2, MM , B)

Or ⇒ Mpredicate(p.p1, MM , B)∨Mpredicate(p.p2, MM , B)

end
TemporalPredicate ⇒

case p.o of
Period_Op ⇒ p.o(MPeriod(p.per1, MM , B),MPeriod(p.per2, MM , B))

Duration_Op ⇒ p.o(MDuration(p.dur1, MM , B),MDuration(p.dur2, MM , B))

end
end

A Period for a given meta-model dataset and a binding returns an instance of

150 Data-Aware Process Oriented Querying

PER, i.e., a single period element:

MPeriod : Period×MetaModel×Binding → PER

The meaning function of Period will return a period element that can be created
(PeriodCreation) or assigned from a variable name containing a period (PeriodVar).
In the case of a PeriodCreation, a period can be created for the specified start and
end timestamps using the createPeriod function or it can be computed as the global
period of another set of periods (globalPeriodOf).

MPeriod[p : Period, MM : MetaModel, B : Binding]≜
case p of

PeriodCreation ⇒
case p.o of

createPeriod ⇒ p.o(p.ts1, p.ts2)

globalPeriodOf ⇒ p.oMM (MElementSet (p.es, MM , B))

end

PeriodVar ⇒
{

B(p) if p ∈ dom(B)

; otherwise
end

A Duration is simply a value representing the length of a period, and it is computed
within the context of a meta-model dataset and a binding:

MDuration : Duration×MetaModel×Binding → DUR

A Duration can be evaluated based on the duration of a period (getDuration), or
a duration specified in scalar units (DurationOf).

MDuration[d : Duration, MM : MetaModel, B : Binding]≜
case d .o of

DurationOf ⇒ d .o(d .v)

getDuration ⇒ d.o(MPeriod(d.p, MM , B))

end

Finally, an Attribute is a value assigned to an element in the context of a meta-
model:

MAttribute : Attribute×Element ×MetaModel → Value

In order to evaluate the value of an Attribute, we can refer to the AttributeName,
in which case the value will be obtained in different ways depending on the type

7.4 Implementation & Evaluation 151

of element (event, object version, case, or log). Also, an Attribute can be explicitly
defined by its Value.

MAttribute[at : Attribute, e : Element, MM : MetaModel]≜
case at of

AttributeName ⇒
case e of

Event ⇒ if eventHasAttribute(at, e) then : getAttributeEvent(at, e) else :∅
Version ⇒ if versionHasAttribute(at, e) then : getAttributeVersion(at, e) else :∅
Case ⇒ if caseHasAttribute(at, e) then : getAttributeCase(at, e) else :∅
Log ⇒ if logHasAttribute(at, e) then : getAttributeLog(at, e) else :∅

end
Value ⇒ at

end

Figure 7.4 shows the syntax tree of Query 7.1 according to the presented abstract
syntax. This concludes the formal definition of DAPOQ-Lang in terms of syntax and
semantics at an abstract level. The later sections provide some details about the
specific syntax, implementation, and its performance.

7.4 Implementation & Evaluation
DAPOQ-Lang2 has been implemented as a Domain-Specific Language (DSL) on top
of Groovy3, a dynamic language for the Java platform. This means that, on top of
all the functions and operators provided by DAPOQ-Lang, any syntax allowed by
Groovy or Java can be used within DAPOQ-Lang queries. DAPOQ-Lang heavily
relies on a Java implementation of the OpenSLEX4 meta-model using SQLite5 as
a storage and querying engine. However, DAPOQ-Lang abstracts from the specific
storage choice, which allows it to run on any SQL database and not just SQLite. We
have developed the platform PADAS6 (Process Aware Data Suite), which integrates
DAPOQ-Lang and OpenSLEX in a user-friendly environment to process the data and
run queries. The current implementation relies on the SQLite library to store the data
and execute certain subqueries. Therefore, it is to be expected that DAPOQ-Lang
introduces certain overhead, given that data retrieval and object creation on the client
side consume extra time and memory compared to an equivalent SQL query.

In order to assess the impact of DAPOQ-Lang on query performance, we conducted
the following experiment. We run a benchmark of pairs of equivalent queries, as

2https://github.com/edugonza/DAPOQ-Lang/
3http://groovy-lang.org/
4https://github.com/edugonza/OpenSLEX/
5https://www.sqlite.org
6https://github.com/edugonza/PADAS/

https://github.com/edugonza/DAPOQ-Lang/
http://groovy-lang.org/
https://github.com/edugonza/OpenSLEX/
https://www.sqlite.org
https://github.com/edugonza/PADAS/

152 Data-Aware Process Oriented Querying

Query

Assignments

Assignment

v
Varname

P1

es
ElementSet

Period

PeriodCreation

t s1

Timestamp

“1986/09/17
00:00”

t s2

Timestamp

“2016/11/30
19:44”

o
createPeriod

ElementSet

Application

es
ElementSet

Filtered
ElementSet

Application

es
ElementSet

Filtered
ElementSet

es
ElementSet

Application

Filtered
ElementSet

es
ElementSet

ElementSet
Terminal

allClasses

pb
PredicateBlock

Assignments

;

Predicate

AttributePredicate

AttributeValuePred

at1

Attribute

Attribute
Name

name

at2

Attribute

Value

“CUSTOMER”

o
Value_Op

==

o
ElementOf_Op

versionsOf

pb
PredicateBlock

Assignments

;

Predicate

Attribute
Predicate

Attribute
Change

at
Attribute

Name

“ADDRESS”

from
Value

“Fifth
Avenue”

to
Value

“Sunset
Boulevard”

o
ElementOf_Op

eventsOf

pb
PredicateBlock

s
Assignments

Assignment

v
Varname

P2

es
ElementSet

Period

PeriodCreation

t s1

Timestamp

it.timestamp

o
createPeriod

p:Predicate

TemporalPredicate

per1

Period

PeriodVar

P2

per2

Period

PeriodVar

P1

o
Period_Op

during

o
ElementOf_Op

CasesOf

Figure 7.4: Syntax tree for DAPOQ-Lang Query 7.1.

expressed in DAPOQ-Lang and SQL, on the same SQLite database. The queries
are organized in 3 categories and run on the 3 datasets described in [42]: dataset A
(from the redo-logs of a simulated ticket selling platform), dataset B (from a financial
organization) and dataset C (a sample from a SAP system) (Table 7.3).

The DAPOQ-Lang queries of each pair were run with two different configurations:
memory-based and disk-based caching. Memory-based caching uses the heap to store
all the elements retrieved from the database during the execution of the query. This
is good for speed when dealing with small or medium size datasets, but represents a
big limitation to deal with big datasets given the impact on memory use and garbage
collection overhead. Disk-based caching makes use of MapDB7, a disk-based imple-
mentation of Java hash maps, to serialize and store in disk all the elements retrieved
from the database. This significantly reduces the memory consumption and allows us

7http://www.mapdb.org

http://www.mapdb.org

7.4 Implementation & Evaluation 153

Table 7.3: Size of datasets.

Dataset Objects Versions Events Cases Logs Activities

A 6740 8424 8512 108751 34 14

B 7339985 7340650 26106 82113 10622 172

C 162287 277094 277094 569026 29 62

Attribute & Periods filters Activity ordering ElementsOf

A B C A B C A B C
1e+02

1e+03

1e+04

1e+05

Dataset

E
xe

cu
tio

n
tim

e
(m

ill
is

ec
on

ds
)

Engines: DAPOQ−Lang (Memory Based Caching) DAPOQ−Lang (Disk Based Caching) SQL

Figure 7.5: Benchmark of queries run with DAPOQ-Lang, DAPOQ-Lang with disk-based
caching, and SQL on an SQLite backend. Note that the vertical axis is logarith-
mic.

to handle much larger datasets, which comes at the cost of speed given the overhead
introduced by serialization and disk I/O. Figure 7.5 shows the results of the bench-
mark, with one graph per query type, one line per query engine (SQL, DAPOQ-Lang,
and DAPOQ-Lang with disk caching), and for the three datasets ordered by size on
the horizontal axis. Analyzing the results we see that the disk-based implementation
of DAPOQ-Lang is slower than the memory-based for every dataset, which is due
to the I/O factor. Also, the largest absolute difference in execution time is observed
when evaluating the attribute & periods filters queries on dataset B. In this case,
DAPOQ-Lang-based engines perform ten times faster than SQL, with a difference of
around 450 seconds. This can be due to certain optimizations introduced in DAPOQ-
Lang, designed to take advantage of the OpenSLEX structure, transforming complex
DAPOQ-Lang queries into smaller and simpler SQL queries, which execute faster than
an equivalent monolithic SQL query. In the rest of the tests, we can observe that
the performance of DAPOQ-Lang queries is either similar, or poorer than the one of
the SQL engine. In the worst cases observed, DAPOQ-Lang-based engines are one
order of magnitude slower than the SQL engine, especially when it comes to queries
regarding the order of activities. This is due to the overhead on transmission and
processing of data and the fact that many filtering operations are performed on the
client instead of the server side. Obviously, there is a trade-off between ease-of-use

154 Data-Aware Process Oriented Querying

and performance. Nevertheless, performance was never the main motivation for the
development of DAPOQ-Lang, but the ease of use and speed of query writing. In
future versions, further efforts will be made to improve performance and to provide
more exhaustive benchmarks.

7.5 Application / Use Cases
The purpose of this section is to demonstrate the applicability of our approach and
tools. First, we explore the professional profiles to which this language is directed to
and we identify the most common data aspects to query given each profile. Then, we
provide some use cases of DAPOQ-Lang with examples of relevant queries for each
data aspect. Finally, we compare DAPOQ-Lang to SQL by means of an example.
The example highlights the expressiveness and compactness of our query language in
the context of process mining.

7.5.1 Business Questions in Process Mining
Process mining is a broad field, with many techniques available tailored towards a
variety of analysis questions. “Process miners” are often interested in discovering
process models from event data. Sometimes, these models are provided beforehand
and the focus is on conformance. It can be the case that assessing the performance
of specific activities is critical. Also, finding out bottlenecks in the process can be of
interest for the analysts. In some contexts, where existing regulations and guidelines
impose restrictions on what is allowed and what is not in the execution of a process,
compliance checking becomes a priority. In existing literature, we can find examples
of frequently posed questions for specific domains, like healthcare [77], in which root
cause analysis becomes relevant in order to trace back data related to a problematic
case. All these perspectives pose different challenges to process miners, who need to
dig into the data to find answers to relevant questions.

Previous works [60,86] have tried to identify professional roles and profiles in the
area of business process management by analyzing job advertisements and creating a
classification based on the expected competencies. We make use of this classification
to point out data aspects relevant for each profile. Table 7.4 presents, in the two
leftmost columns, the classification of roles according to the authors of the study. In
the column Main Focus we propose, based on the role description, the sub-disciplines
of process mining and data engineering that become relevant for each job profile
(i.e., discovery, compliance checking, conformance checking, performance analysis,
root cause analysis, integration, and data integrity). The rest of the columns indicate
whether certain event data aspects become particularly interesting to be queried for
each professional role, considering the role description and the main focus. We have
grouped these event data aspects into two big categories that reflect the expected
output of the queries:

1. Specialized sublogs are event logs that contain a subset of the events of another
event log. This selected subset reflects certain desired properties (e.g., temporal

7.5 Application / Use Cases 155

Table 7.4: Types of BPM professionals, according to [86], and relation to querying in process
mining.

Specialized Sublogs
Metrics,

Artifacts &
Provenance

Role [86] Description [86] Main focus

Te
m

po
ra

l
co

ns
tr

ai
nt

s
A

ct
iv

ity
oc

cu
rr

en
ce

O
rd

er
of

ac
tio

ns
D

at
a

pr
op

er
tie

s
D

at
a

ch
an

ge
s

D
at

a
lin

ea
ge

D
ep

en
de

nc
y

re
la

tio
ns

Pe
rf

or
m

an
ce

m
et

ric
s

Business
Process
Analyst

Elicits, analyses, documents and
communicates user requirements
and designs according to business
processes and IT systems; acts as a
liaison between business and IT

Discovery,
Compliance &
Conformance

✓ ✓ ✓ ✓ ✓

Business
Process
Compliance
Manager

Analyses regulatory requirements
and ensures compliance of business
processes and IT systems

Compliance &
Conformance

✓ ✓ ✓ ✓ ✓

Business
Process
Manager
Sales &
Marketing

Designs sales processes and analy-
ses requirements for related IT sys-
tems; supports and executes sales
and marketing processes

Compliance ✓ ✓ ✓ ✓ ✓

Business
Process
Improvement
Manager

Analyses, measures and continu-
ously improves business process, e.g.
through the application of Lean or
Six Sigma management techniques

Performance,
Conformance
& Root Cause
Analysis

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ERP
Solution
Architect

Implements business processes in
ERP systems

Performance,
Conformance
& Root Cause
Analysis

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

IT-Business
Strategy
Manager

Aligns business and IT strategies;
monitors technological innovations
and identifies business opportunities

Performance &
Conformance

✓ ✓ ✓ ✓ ✓ ✓

Technical
Architect

Develops and integrates hardware
and software infrastructures

Integration &
Data Integrity

✓ ✓ ✓ ✓ ✓

constraints, activity occurrence constraints),

2. Metrics, artifacts and provenance are the resulting values of the computation
of certain event data properties (e.g., performance metrics).

We see that there is a clear distinction between roles interested in performance and
root cause analysis, in contrast to those mainly interested in compliance. The former
will need to obtain performance metrics from the data, e.g., average case duration,
most time-consuming tasks, etc. Also, they will be interested in finding data related
to problematic cases, e.g., obtaining all the products purchased in an unpaid order
(dependency relations), or finding out providers of a defective batch of products (data
lineage). However, those with a focus on compliance will typically need to answer
questions related to temporal constraints (e.g., if cases of a particular type of client
are resolved within the agreed SLAs), activity occurrence constraints (e.g., whether a

156 Data-Aware Process Oriented Querying

purchase was always paid), and order of actions (e.g., if an invoice is created before
a delivery is dispatched).

We see that, as the roles get more concerned with the technical aspects of IT sys-
tems, more focus is put on performance and data properties. Especially for technical
architects, data integrity is crucial, since they are the ones in charge of integrating
both applications and data systems. Being able to filter information based on data
properties and find irregular data changes is important to verify a correct integration
of different infrastructures.

Now that we have identified data aspects of interest, we present a set of example
DAPOQ-Lang queries. The aim of these examples is two-fold: to serve as a template
to write queries with a similar purpose, as well as to demonstrate that the features of
DAPOQ-Lang indeed cover all the aspects described in Table 7.4.

7.5.2 Exporting Logs
One of the main purposes when querying process execution data is to export it as a
compatible event log format. DAPOQ-Lang provides utilities to export logs, cases,
and events as XES event logs, which can be further analyzed using process mining
platforms such as ProM8 or RapidProM9. The following queries show the way to
export XES logs for different types of data. When a set of logs is retrieved, an
independent XES log is generated for each of them.

Query 7.3: Export all the logs with a specific name. The result can be one or many logs
being exported according to the XES format.

1 exportXLogsOf(allLogs().where{ name == "log01" })

When the input of exportXLogsOf is a set of cases, one single XES log is exported.

Query 7.4: Export in a single XES log all the cases of different logs.

1 exportXLogsOf(casesOf(allLogs().where { name.contains("1") }))

In the case of a set of events, a single XES log with a single trace is exported.

Query 7.5: Export in a single XES log all the events of different logs.

1 exportXLogsOf(eventsOf(allLogs().where{ name.contains("1") }))

A special situation is when we want to export a set of logs or cases while filtering
out events that do not comply with some criteria. In that case, we call exportXLogsOf
with a second argument representing the set of events that can be exported. Any event
belonging to the log to be exported not contained in this set of events will be excluded
from the final XES log.

8http://www.promtools.org
9http://www.rapidprom.org/

http://www.promtools.org
http://www.rapidprom.org/

7.5 Application / Use Cases 157

Query 7.6: Export one or many XES logs excluding all the events that do not belong to a
specific subset.

1 exportXLogsOf(allLogs(), eventsOf(allClasses().where { name == "BOOKING"}))

7.5.3 Specialized Sublogs
So far, we have seen how to export logs as they are stored in the dataset under analysis.
However, it is very common to focus on specific aspects of the data depending on the
questions to answer. This means that we need to create specialized sublogs according
to certain criteria. This section presents examples of queries to create specialized
sublogs that comply with certain constraints in terms of temporal properties, activity
occurrence, order of action, data properties, or data changes.

Temporal constraints

A way to create specialized sublogs is to filter event data based on temporal con-
straints. The creation and computation of periods makes it possible to select only
data relevant during a certain time span. Query 7.7 returns events that happened
during period p and that belong to the log “log01”.

Query 7.7: Retrieve all the events of “log01” that happened during a certain period of time.

1 def evLog01 = eventsOf(allLogs().where{ name == "log01" })
2 def p = createPeriod("2014/11/27 15:57","2014/11/27 16:00", "yyyy/MM/dd HH:mm")
3
4 eventsOf(p).intersection(evLog01)

Query 7.8 focuses on the duration of cases rather than on the specific time when
they happened. Only cases of log “log01” with a duration longer than 11 minutes will
be returned.

Query 7.8: Retrieve cases of “log01” with a duration longer than 11 minutes. The variable
“it” is used to iterate over all values of “c” within the “where” closure

1 def c = casesOf(allLogs().where{ name == "log01" })
2
3 c.where { globalPeriodOf(it).getDuration() > Duration.ofMinutes(11) }

Activity occurrence

Another way to select data is based on activity occurrence. The following query shows
an example of how to retrieve cases in which two specific activities were performed
regardless of the order. First, cases that include the first activity are retrieved (cas-
esA). Then, this happens for cases that include the second activity (casesB). Finally,
the intersection of both sets of cases is returned.

158 Data-Aware Process Oriented Querying

Query 7.9: Retrieve cases where activities that contain the words “INSERT” or “UPDATE”
and “CUSTOMER” happened in the same case.

1 def actA = allActivities().where {
2 name.contains("INSERT") && name.contains("CUSTOMER") }
3
4 def actB = allActivities().where {
5 name.contains("UPDATE") && name.contains("CUSTOMER") }
6
7 def casesA = casesOf(actA)
8 def casesB = casesOf(actB)
9

10 casesA.intersection(casesB)

Order of actions

This time we are interested in cases in which the relevant activities happened in a
specific order. The following query, an extended version of Query 7.9, selects the cases
that include both activities. Yet, before storing the intersection of cases containing
events of the activities in the set actA with cases containing events of the activities in
the set actB in a variable (line 13), the query performs a filter based on the order of
these two activities. For each case, the set of events is retrieved (line 15). Next, the
events of the first activity are selected (line 16) and the ones of the second activity
(line 17). Finally, the periods of both events are compared (line 18), evaluating the
condition to the value True for each case in which all the events of activity A happened
before the events of activity B. Only the cases for which the condition block (lines 14
to 18) evaluated to True are stored in the variable casesAB and returned.

Query 7.10: Retrieve cases where activities that contain the words “INSERT” and “CUS-
TOMER” happen before activities that contain the words “UPDATE” and
“CUSTOMER”.

1 def actA = allActivities().where {
2 name.contains("INSERT") && name.contains("CUSTOMER") }
3
4 def actB = allActivities().where {
5 name.contains("UPDATE") && name.contains("CUSTOMER") }
6
7 def casesA = casesOf(actA)
8 def casesB = casesOf(actB)
9

10 def eventsA = eventsOf(actA)
11 def eventsB = eventsOf(actB)
12
13 casesAB = casesA.intersection(casesB)
14 .where {
15 def ev = eventsOf(it)
16 def evA = ev.intersection(eventsA)
17 def evB = ev.intersection(eventsB)
18 before(globalPeriodOf(evA),globalPeriodOf(evB))
19 }

7.5 Application / Use Cases 159

Data properties

Some elements in our OpenSLEX dataset contain attributes that can be queried.
These elements are object versions, events, cases, and logs. The following query shows
how to filter events based on their attributes. First, the query compares the value
of the attribute resource to a constant. Also, it checks if the attribute ADDRESS
contains a certain substring. Finally, it verifies that the event contains the attribute
CONCERT_DATE. Only events that satisfy the first and either the second or the
third will be returned as a result of the query.

Query 7.11: Retrieve events of resource “SAMPLE” that either have an attribute ADDRESS
which value contains “35” or have a CONCERT_DATE attribute.

1 allEvents().where {
2 resource == "SAMPLEDB" && (at.ADDRESS.contains("35") || has(at.CONCERT_DATE))}

Data changes

An important feature of our query language is the function changed. This function
determines if the value of an attribute for a certain object version changed. The
function has the attribute name as a required parameter (at:) and two optional pa-
rameters (from:, and to:). Query 7.12 returns all the events related to object versions
for which the value of the attribute “BOOKING_ID” changed. No restrictions are
set on the specific values. Therefore, the call to changed will be evaluated to True
for an object version only if the value of the attribute in the preceding version was
different from the value in the current one.

Query 7.12: Retrieve events that affected versions where the value of “BOOKING_ID”
changed.

1 eventsOf(allVersions().where { changed([at: "BOOKING_ID"]) })

Query 7.13 shows a similar example. This time we want to obtain the events
related to object versions for which the attribute “SCHEDULED_DATE” changed
from “11-JUN-82”, to a different one.

Query 7.13: Retrieve events that affected versions where the value of “SCHEDULED_-
DATE” changed from “11-JUN-82” to a different value.

1 eventsOf(allVersions().where { changed([at: "SCHEDULED_DATE", from: "11-JUN-82"])})

Query 7.14 instead retrieves the events related to object versions for which the
attribute “SCHEDULED_DATE” changed to “22-MAY-73”, from a different one.

Query 7.14: Retrieve events that affected versions where the value of “SCHEDULED_-
DATE” changed to “22-MAY-73” from a different value.

1 eventsOf(allVersions().where { changed([at: "SCHEDULED_DATE", to: "22-MAY-73"]) })

160 Data-Aware Process Oriented Querying

Finally, Query 7.15 imposes a stricter restriction, retrieving only the events related
to object versions for which the attribute “SCHEDULED_DATE” changed from “24-
MAR-98”, to “22-MAY-73”.

Query 7.15: Retrieve events that affected versions where the value of “SCHEDULED_-
DATE” changed from “24-MAR-98” to “22-MAY-73”.

1 eventsOf(allVersions().where {
2 changed([at: "SCHEDULED_DATE", from: "24-MAR-98", to: "22-MAY-73"]) })

7.5.4 Metrics, Artifacts & Provenance
In the previous section, we have seen examples of how to obtain specialized sublogs
given certain criteria. However, we do not always want to obtain events, cases, or logs
as a result of our queries. In certain situations, the interest is in data objects, and
their relations to other elements of the dataset, e.g., objects of a certain type, artifacts
that coexisted during a given period, data linked to other elements, etc. Also, we can
be interested in obtaining performance metrics based on existing execution data. All
these elements cannot be exported as an event log, since they do not always represent
event data. However, they can be linked to related events or traces. This section
shows example queries that exploit these relations and provide results that cannot be
obtained as plain event logs.

Data lineage

Data lineage focuses on the life-cycle of data, its origins, and where it is used over
time. DAPOQ-Lang supports data lineage mainly with the ElementsOf functions
listed in Section 7.3.1. These functions return elements of a certain type linked or
related to input elements of another type. As an example, we may have an interest
in obtaining all the products in the database affected by a catalog update process
during a certain period in which prices were wrongly set. Query 7.16 finds the cases
of log “log01” whose lifespan overlaps with a certain period, and returns the object
versions related to them.

Query 7.16: Retrieves versions of objects affected by any case in “log01” whose lifespan
overlapped with a certain period of time. A date template is specified.

1 def P1 = createPeriod("2014/11/27 15:56","2014/11/27 16:30","yyyy/MM/dd HH:mm")
2
3 versionsOf(
4 casesOf(allLogs().where{name=="log01"})
5 .where {
6 overlaps(globalPeriodOf(it),P1)
7 }
8)

7.5 Application / Use Cases 161

Dependency relations

An important feature of the language is the ability to query existing relations be-
tween elements of different types, as well as within object versions of different classes.
Query 7.16 showed an example of relations between elements of different types (logs
to cases, cases to versions). The following query shows an example of a query on
object versions related to other object versions. First, two different classes of the data
model are obtained (lines 1 and 2). Then, the versions of the class “TICKET” are
retrieved (line 3). Finally, the object versions related to object versions belonging to
class “BOOKING” are obtained (lines 5 and 6) and only the ones belonging to class
“TICKET” are selected (line 7).

Query 7.17: Retrieve versions of ticket objects that are related to versions of booking objects.

1 def ticketClass = allClasses().where{ name == "TICKET"}
2 def bookingClass = allClasses().where{ name == "BOOKING"}
3 def ticketVersions = versionsOf(ticketClass)
4
5 versionsRelatedTo(
6 versionsOf(bookingClass)
7).intersection(ticketVersions)

Performance metrics

As has been previously discussed, measuring performance and obtaining metrics for
specific cases or activities is a very common and relevant question for many profes-
sional roles. The way DAPOQ-Lang supports this aspect is with the computation
of periods and durations to measure performance. The resulting periods can be ex-
ternally used to compute performance statistics such as average execution time or
maximum waiting time. The following query shows how to compute periods for a
subset of the events in the dataset.

Query 7.18: Retrieve periods of events belonging to activities that contain the words “UP-
DATE” and “CONCERT” in their name.

1 def actUpdateConcert = allActivities().where {
2 name.contains("UPDATE") && name.contains("CONCERT")
3 }
4
5 periodsOf(eventsOf(actUpdateConcert))

Query 7.19 demonstrates how to filter out periods based on their duration. Cases
with events executed by a certain resource are selected and their periods are computed.
Next, only periods with a duration longer than 11 minutes are returned.

Query 7.19: Retrieve periods of a duration longer than 11 minutes computed on cases which
had at least one event executed by the resource “SAMPLEDB”.

1 def c = casesOf(allEvents().where { resource == "SAMPLEDB" })
2
3 periodsOf(c).where { it.getDuration() > Duration.ofMinutes(11) }

162 Data-Aware Process Oriented Querying

7.5.5 DAPOQ-Lang vs. SQL
So far, we have seen several examples of toy queries to demonstrate the use of the
functions and operators provided by DAPOQ-Lang. Obviously, there is nothing in
DAPOQ-Lang that cannot be computed with other Turing-complete languages. When
it comes to data querying on databases, SQL is the undisputed reference. It is the
common language to interact with most of the relational database implementations
available today. It is a widespread language, known by many professionals from
different fields. Even without considering scripting languages like PL/SQL, the com-
bination of SQL with CTE (Common Table Expressions) and Windowing has been
proven to be Turing-complete [35]. Other programming languages like Python10 and
R11 are receiving a lot of attention in the data science scene for their ease of use,
expressive power, and data manipulation capabilities. In the case of Python, despite
not being designed as a query language, libraries like Pandas12 provide powerful data
manipulation and filtering capabilities similar to the ones included in R. However,
none of these options is oriented to a process mining use case. The aim of DAPOQ-
Lang is not to enable new types of computations, but to ease the task of writing
queries in the specific domain of process mining. Our focus is on the ease of use, but
not at the cost of expressiveness.

Let us consider the generic question (GQ) presented in Section 7.1:

GQ: In which cases there was (a) an event that happened between time
T1 and T2, (b) that performed a modification in a version of class C (c)
in which the value of field F changed from X to Y?

This query involves several types of elements: cases, events, object versions, and
attributes. We instantiate this query with some specific values for T1 = “1986/09/17
00:00”, T2 = “2016/11/30 19:44”, C = “CUSTOMER”, F = “ADDRESS”, X = “Fifth
Avenue”, and Y = “Sunset Boulevard”. Assuming that our database already complies
with the structure proposed by the OpenSLEX meta-model, we can write the SQL
query in Query 7.20 to answer the question.

The logic is not hard to follow. Two subqueries are nested in order to retrieve (a)
object versions preceding another object version (lines 31-38) and object versions that
contain the attribute that changed (lines 20-39). Parts of the query focus on checking
the value of the attributes (lines 25-28), the timestamp of the events (lines 15-16),
and the class of the object versions (lines 7-9). The rest of the query is concerned
with joining rows of different tables by means of foreign keys.

The equivalent DAPOQ-Lang query, previously presented in Query 7.1, removes
most of the clutter and boilerplate code in order to join tables together and lets
the user focus on the definition of the constraints. The query is built up with an
assignment and several nested queries. First, a period of time is defined (line 1).
Then, object versions of a certain class are retrieved (lines 5–6) and filtered based on
the changes of one of the attributes (line 7). Next, the events related to such object

10https://www.python.org/
11https://www.r-project.org/
12Python Data Analysis Library: https://pandas.pydata.org/

https://www.python.org/
https://www.r-project.org/
https://pandas.pydata.org/

7.5 Application / Use Cases 163

Query 7.20: Standard SQL Query executed on the Redo-Log populated meta-model in [42]
and equivalent to the DAPOQ-Lang Query 7.1.

1 SELECT distinct C.id as "id", CAT.name, CATV.value, CATV.type
2 FROM "case" as C
3 JOIN activity_instance_to_case as AITC ON AITC.case_id = C.id
4 JOIN activity_instance as AI ON AI.id = AITC.activity_instance_id
5 JOIN event as E ON E.activity_instance_id = AI.id
6 JOIN event_to_object_version as ETOV ON ETOV.event_id = E.id
7 JOIN object_version as OV ON ETOV.object_version_id = OV.id
8 JOIN object as O ON OV.object_id = O.id
9 JOIN class as CL ON O.class_id = CL.id AND CL.name = "CUSTOMER"

10 JOIN attribute_name as AT ON AT.name = "ADDRESS"
11 JOIN attribute_value as AV ON AV.attribute_name_id = AT.id AND AV.object_version_id = OV.id
12 LEFT JOIN case_attribute_value as CATV ON CATV.case_id = C.id
13 LEFT JOIN case_attribute_name as CAT ON CAT.id = CATV.case_attribute_name_id
14 WHERE
15 E.timestamp > "527292000000" AND
16 E.timestamp < "1480531444303" AND
17 AV.value LIKE "Sunset Boulevard" AND
18 EXISTS
19 (
20 SELECT OVP.id
21 FROM
22 object_version as OVP,
23 attribute_value as AVP
24 WHERE
25 AVP.attribute_name_id = AT.id AND
26 AVP.object_version_id = OVP.id AND
27 OVP.object_id = OV.object_id AND
28 AVP.value LIKE "Fifth Avenue" AND
29 OVP.id IN
30 (
31 SELECT OVPP.id
32 FROM object_version as OVPP
33 WHERE
34 OVPP.end_timestamp <= OV.start_timestamp AND
35 OVPP.end_timestamp >= 0 AND
36 OVPP.object_id = OV.object_id AND
37 OVPP.id != OV.id
38 ORDER BY OVPP.end_timestamp DESC LIMIT 1
39)
40)

versions are obtained (lines 4–8) and filtered, based on the time when they occurred
(lines 8–12). Finally, the cases of these events are returned (lines 3–13). Figure 7.6
shows the discovered process model by the Inductive Miner [63] from the exported
sublog, where we can observe that insertions of new customers are followed by updates
that, in our sublog, modify the address attribute.

In essence, the advantage of DAPOQ-Lang over SQL is on the ease of use in the
domain of process mining. The fact that we can assume how logs, cases, events and
objects are linked, allows us to focus on the important parts of the query. Also, pro-
viding functions that implement the most frequent operations on data (such as period
and duration computation) makes writing queries faster and less prone to errors. This
comes at the cost of a slight decrease in performance, mainly due to implementation
choices. Nevertheless, we believe that the ability to express complicated queries with

164 Data-Aware Process Oriented Querying

4 4 4 4
4 4

Figure 7.6: Process model corresponding to 4 traces selected by Query 7.1

ease overweights the burden of longer execution times.

7.6 Chapter Summary
In the field of process mining, the need for better querying mechanisms has been iden-
tified. This chapter presented a systematic literature review of process data querying.
Next, we proposed a method to combine both process and data perspectives in the
scope of process querying, helping with the task of obtaining insights about processes.
DAPOQ-Lang, a Data-Aware Process Oriented Query Language, has been developed,
which allows the analyst to select relevant parts of the data in a simple way to, among
other things, generate specialized event logs to answer meaningful business questions.
We have formally described the syntax and semantics of the language. We presented
its application by means of simple use cases and query examples in order to show
its usefulness and simplicity. In addition, we provide an efficient implementation
that not only enables the execution, but also the fast development of queries. This
chapter shows that it is feasible to develop a query language that satisfies the most
common needs of process mining analysts. Nevertheless, DAPOQ-Lang presents cer-
tain limitations in terms of performance, expressiveness, and ease of use. As future
work, efforts will be made on (a) expanding the language with new functionalities and
constructs relevant in the process mining context, (b) improving the query planning
and execution steps in order to achieve better performance, and (c) carrying out an
empirical evaluation with users in order to objectively assess the suitability of the
language within the process mining domain.

Cotton netting veil with silk tulle front.
“Beekeeping: a discussion of the life of
the honeybee and of the production of

honey”, Everett Franklin Phillips, 1923

8
Case Study:

Process Mining on a
Health Information System

In this thesis, we have presented several techniques focused on the data preparation for
process mining analysis. Our main purpose is to assist the analyst during the initial
phases of a process mining project by reducing the time needed to obtain an event
log. Also, we provide the tools to speed up the execution of each of the steps, from
data extraction to event log creation. We believe that an effective way to show the
feasibility of a technique is to test it in a real-life environment. For this purpose, we
approached a Dutch ICT organization focused on the deployment and maintenance of
Health Information Systems (HISs) to obtain real-life data. In fact, this organization
is a distributor of the main HIS software within The Netherlands. We got access to
a large database of one real instance of the HIS to test our methodology. In this
chapter, we describe the steps followed to extract data and build event logs suitable
for process mining analysis using the techniques presented in this thesis.

8.1 Introduction
The case study described in the present chapter was carried out following the premise
of automating as many steps as possible. Traditionally, when initiating a process
mining project, a lot of time is invested in acquiring enough domain knowledge in
order to understand the data schema, tables, and relations at hand, and to map
them to the main underlying business processes. We acknowledge the importance of

165

166 Case Study: Process Mining on a Health Information System

domain knowledge to interpret results and to be able to make the right decisions.
However, our contributions aim at enabling analysts to carry out the data extraction
and log-building phases with less domain knowledge. Therefore, this case study was
envisioned as a real-life test for the techniques and methods proposed in this thesis.
Only a short meeting was held with the business owners in order to set up the project
and initiate the extraction. During this meeting, we obtained a general overview of
the challenges to overcome when dealing with these data, as well as the technical
aspects in order to enable the extraction. The main points were:

• Size. The data schema is large: it involves more than 3000 tables. Therefore,
it is not feasible to extract all of it with manual methods.

• Incompleteness. The data schema is incomplete, i.e., tables and columns are
defined, but primary and foreign key definitions are missing. These keys are
managed at the application level. Given that we are dealing with a proprietary
software application, it is not possible to obtain a complete specification of the
data schema from documentation or code. In order to correlate database objects
(rows), we need to discover primary and foreign keys.

• Privacy. Due to the fact that we are handling real medical data, we must handle
the raw information within the private network and systems of the database
owner, not being allowed to extract it or process it locally.

These aforementioned challenges give an idea of the complexity of the setting at
hand. However, this is not an extremely rare environment. In fact, when tackling
a real-life dataset, it is quite common to face issues related to data incompleteness,
privacy, lack of documentation, or data dimensionality. Therefore, we consider this
as a good fire test in order to evaluate the proposed techniques, and to identify new
challenges and opportunities for improvement. The following section describes in
detail the steps followed to carry out this study in practice.

8.2 From Database to Event Log in Six Commands
In order to demonstrate the feasibility of our approach, we aim at obtaining a complete
view of the database at hand and to build meaningful event logs. First, we must
overcome some challenges and follow a set of steps. Each of these steps require using
very specific techniques, most of which have been presented in the previous chapters
of this thesis. However, when dealing with this dataset, we faced some challenges for
which we did not have a solution in place yet. Therefore, we developed additional
general solutions that could be used to solve similar issues in other scenarios. We
propose a list of steps to follow, each of them implemented as a single command.
Below you can find a list of the steps and a description of their purpose:

1. Data exploration: to get a feeling of the size and dimension of the data. Also,
to look for any high-level structure that can be extracted from it.

8.2 From Database to Event Log in Six Commands 167

2. Data schema discovery: to discover the data relations (PKs, UKs, and FKs) in
order to be able to correlate data objects in future steps.

3. Data extraction: to obtain an off-line copy of the data that we can transform
into a format suitable for analysis. Also, this allows us to complete the data
once a schema has been discovered.

4. Event data discovery: event data might be implicitly stored within or across
different tables in the dataset. We need to discover the events and make them
explicit.

5. Case notion discovery: defining a case notion allows us to correlate events into
traces. Many alternative case notions can be defined depending on the perspec-
tive we want to take.

6. Event log building: from the discovered events and a case notion we can build
an event log. Many case notions can be defined, and the corresponding event
logs can be constructed in order to analyze different coexisting processes, or the
same process from different perspectives.

We claim that these steps can be executed in a semi-automatic way, given that they
allow for a certain customization depending on the characteristics of the environment
to analyze. The goal is to obtain a preview of the processes interacting with the
database at hand. We provide the Python library eddytools1 (which stands for Event
Data Discovery Tools) as a convenient implementation of the techniques proposed in
this thesis with individual and customizable commands. This tool assists the user
when executing the six commands to build event logs. The output of each command
becomes the input of the next one. This allows us to perform a semi-supervised
extraction too, since it is possible to review the intermediate results and correct them
if necessary using domain knowledge. For the sake of this study, we decided to keep
the corrections to the minimum, in order to evaluate the feasibility of the approach
when facing a real-life database with reduced domain knowledge. In the coming
subsections, we provide more details about the steps we executed, the challenges we
faced, and the approach we used to solve them.

8.2.1 Data Exploration
The first step in any process mining project is data exploration. We need to get a
feeling of what the data look like. In our case, we are dealing with the database
of a Health Information System (HIS) belonging to a major provider within The
Netherlands. The first thing we do is to connect to the database host. We need
to know the location where the database is hosted within the network. Also, we
need the access credentials to be granted by the IT department. The database runs
on Microsoft SQL Server 2016. Since we intend to obtain the data from a termi-
nal server within the same network as the database, we use the credentials of the

1https://github.com/edugonza/eddytools

https://github.com/edugonza/eddytools

168 Case Study: Process Mining on a Health Information System

Table 8.1: Some statistics obtained querying the source database before the extraction.

Number of tables 3570
Non-empty tables 1516
Primary keys 27
Unique keys 0
Foreign keys 0
Number of columns 40666
Number of timestamp columns 2679
Number of rows 2.446×108

Average number of columns per table 11.39
Average number of timestamp columns per table 0.75
Average number of rows per non-empty table 1.613×105

Windows account to authenticate against it. Command 8.1 shows the command to
execute using our python library (eddytools) to access the database (with the url
“mssql+pymssql://localhost/DB”) and list the tables and their details.

Command 8.1: Command to obtain the list of tables in a database.

$ eddytools schema list-classes 'mssql+pymssql://localhost/DB' --details --o=tables.txt

Table 8.1 provides some details about the database at hand. The number of tables
is high, more than 3000, with an average of around 11 columns per table. Also, we
find an average of 0.75 timestamp columns per table, i.e., at best 75% of the tables
have a timestamp attribute. Also, we see that the number of primary keys is minimal
with respect to the number of tables. Unfortunately, foreign keys are simply non-
existent. Normally, when foreign keys are not explicitly defined in the data schema,
it does not mean that the tables are completely independent. In fact, relations exist
within the data, but these relations are enforced at the application level instead. Since
we are dealing with a proprietary closed application, we do not have access to any
documented data schema. This represents quite a big challenge since, in order to
correlate events, we need to correlate the rows from different tables. The data schema
discovery step will tackle this issue.

Domain Knowledge

Observing the list of tables within the database, we realized that a certain struc-
ture is encoded in the name. Every table is preceded by a prefix indicating a
category. From the total number of tables, we identified 169 different prefixes.
Each prefix represents a cluster of tables that belongs to a specific department
or a functional aspect of the system. Some example clusters are:

• OK: 102 tables. Tables related to operatiekamer, which in Dutch stands for
operation rooms. In fact, the tables involved in this cluster handle surgery

8.2 From Database to Event Log in Six Commands 169

appointments that require the use of an operation room.

• AGENDA: 95 tables. Tables that handle appointments between doctors
and patients.

• PATIENT: 46 tables. Information about patient profiles are stored in the
tables in this group.

• FAKTUUR: 208 tables. Tables in this cluster refer to financial information
such as invoicing and payments.

• ORDERCOM: 83 tables. This group of tables handles communications
and task requests between hospital staff, such as doctors and nurses.

• SEH: 102 tables. Tables about SpoedEisendeHulp, which is Dutch for first
aid or emergency room.

For the purpose of this study, we focused on three clusters: OK, AGENDA, and
PATIENT. The following subsection covers the challenge of missing primary and
foreign keys, and we propose a solution to tackle it.

8.2.2 Data Schema Discovery
The output of the previous step gives us an indication of the dimensionality and com-
plexity of the dataset. Also, we have identified an important factor: incompleteness
of the data schema. The lack of defined unique and foreign keys is a problem if we
want to be able to correlate pieces of information belonging to different tables. In
the literature, we find several approaches in the field of data profiling that can be ap-
plied in this context. Some of these approaches aim at identifying primary keys [101]
by checking the uniqueness of values. Also, there exists work on foreign key discov-
ery [126], which tries to identify inclusion of data from candidate foreign keys into
certain given unique keys.

Checking uniqueness and inclusion of data is not a difficult task. However, it
is computationally complex due to the size of the search-space to explore when ap-
proached in a naive way. If we want to identify valid unique keys, we need to check
the uniqueness of values for column combinations per table. The complexity of unique
key discovery grows linearly with respect to the number of tables, since it is an in-
dependent problem for each of them. However, the number of candidate (possible)
unique keys per table t that we need to check (|C t

uk|) is determined by the number
of columns in the table (n) and the maximum number of columns accepted in the
key candidate (m), resulting in the sum of the k-combinations of columns (binomial
coefficient) for k = 1..n:

|C t
uk | =

m∑
k=1

(
n

k

)
(8.1)

170 Case Study: Process Mining on a Health Information System

The number of combinations of foreign key candidates and unique keys to check
for inclusion grows substantially with respect to the number of maximum columns
per key. To accept a candidate foreign key as valid, we need to check the inclusion of
its values into one of the valid unique keys (UK). The problem is more complex than
unique key discovery, since the number of tables involved plays a role. Actually, the
number of discovered unique keys has a large effect on the complexity, since we need
to check the inclusion of values from all candidate foreign keys into all given unique
keys. If we have a certain number of unique keys (of column lengths 1..m) that we
accept as valid (|UK |) and we want to discover foreign keys of a maximum size of m
columns, we need to check the inclusion of the foreign key candidates of size k = 1..m
into the primary keys of the same size k. The number of column combinations (c) for
foreign keys in a table t given a maximal key length of m in a table with n columns
is given by the k-combinations of columns (binomial coefficient): c = (n

k

)
. However,

when checking inclusion with respect to a unique key of the same length, the order
of the columns is important. This means that, for each combination of columns of
length k, we need to consider all the permutations of the combination. Therefore,
given k = 1..m, the number of candidate foreign keys in table t to consider for inclusion
(|C t

fk|) is equal to the number of k-permutations of n columns:

|C t
fk| =

m∑
k=1

nPk =
m∑

k=1

n!

(n −k)!
(8.2)

Calculating the sum of applying Equation 8.2 to each table in which we want to
discover foreign keys gives us the number of foreign key candidates to check. Multi-
plying this sum by the number of valid unique keys |UK | gives the number of inclusion
checks to perform in the worst case scenario in order to explore the whole search space,
i.e., when adopting a naive approach.

Optimizations

There are ways to prune the search space in order to reduce the complexity of the
problem. A way to do it is to reduce the number of unique keys to consider. This
can be done by reducing the detected unique keys to the minimum. For example,
if we found a valid unique key of length k and columns C ′ ∈ C , any additional set
of columns C ′′ ∈ C that is a superset of C ′: C ′′ ⊇ C ′ will be a valid unique key by
definition. Therefore, we can exclude any candidate unique key that is a superset of
verified unique keys. This will also have an impact on the number of inclusion checks
of foreign key candidates when discovering foreign keys, since the number of valid
unique keys will be smaller.

Another way to reduce the complexity is to reduce the number of permutations
of the columns of foreign key candidates based on precomputed inclusion checks.
Consider a set of columns C f k for table t that represent a candidate foreign key, and
a set of columns C uk belonging to a certain valid unique key in table t ′ ̸= t . If we
precompute the result of the inclusion check for each pair of columns from C f k and
C uk as a set of valid inclusions VI = {(c f k ,cuk) ∈ C f k ×C uk | values(c f k) ⊆ values(cuk)},

8.2 From Database to Event Log in Six Commands 171

then we can skip any permutation of C f k in which c f k
i ∈C f k is paired to cuk

j ∈C uk such
that (c f k

i ,cuk
j) ̸∈ VI, i.e., if we know that their column values do not satisfy inclusion.

Until now we have approached the problem of foreign key discovery from a naive
perspective for the sake of simplicity, ignoring any additional information about the
columns and tables involved. However, in real life, we have access to certain meta-
data that can help us to reduce the complexity of the computation. The data type of
columns is a piece of information that we can leverage. Similarly to the optimization
discussed in the previous paragraph, we can also skip permutations of columns for
which the data type of the (c f k

i ,cuk
j) pairs do not match. It would not make sense to

check inclusion of the values of a text string column into a numeric column.
One way to reduce the execution time per uniqueness or inclusion check is to apply

sampling. This means that, for large tables, we only perform the check on a random
subset of the table rows. When the sample size is sufficiently large, the probability
that the sample satisfies the uniqueness or inclusion check when the whole population
(all rows) does not can be considered negligible. Applying sampling to the uniqueness
check means that we will only verify the uniqueness of the values of a subset of the
table rows. In the case of the inclusion check, we will obtain a sample of the table
rows in the foreign key table, and check their inclusion on the values from the whole
unique key table. Applying sampling, significantly increases the number of checks we
can perform per unit of time when dealing with very large tables.

Additionally, meta data can be used too to reduce ambiguity and false positives.
That is the case when matching foreign keys to unique keys. Several matches can
occur, such that a foreign key satisfies inclusion with respect to more than one unique
key. Since only one of these pairs of foreign-unique keys can be valid, we make use of
meta data to select the most likely one. First, we look at column names. We compute
a string similarity score between the pairs of matched columns for each candidate
pair. Next, we select the unique key that presents a lower average string distance for
all pairs of column names, discarding the other matches. This helps to reduce false
positives and provide a more meaningful result.

The aforementioned strategies represent the main optimizations that have been
implemented in our software package. Further optimizations and more complicated
search space pruning techniques could be added in the future in order to execute the
schema discovery step faster and more efficiently.

Execution

Our library (eddytools) implements a basic schema discovery method that includes
the optimizations mentioned in the previous section. The goal is to integrate schema
discovery within our pipeline so it can be carried out when the situation requires it,
allowing for manual corrections too. In order to execute the schema discovery method
we run the following command:

Command 8.2: Command to discover the data schema given a database and a list of tables
for keys of length 1 and using sampling.

172 Case Study: Process Mining on a Health Information System

Table 8.2: Discovered unique and foreign keys for each cluster of tables.

Cluster Tables Discovered UKs Discovered FKs Pruned UKs
OK 102 367 75 268
AGENDA 95 458 71 331
PATIENT 46 189 28 143

$ eddytools schema discover 'mssql+pymssql://localhost/DB' ./schema_disc_dir --classes=tables.txt
,→ --max-fields=1 --sampling=5000

This command accesses the source database, computes unique and foreign key
candidates, and performs all the required uniqueness and inclusion checks to obtain
a final set of valid unique and foreign keys. The result is stored in editable text
files for easy review and correction before the actual data extraction is carried out.
We run this command for each of the considered table clusters (OK, AGENDA, and
PATIENT). The number of columns per key has been limited to one for the sake of
simplicity and to speed up the discovery. The results can be observed in Table 8.2.

For each cluster, the number of discovered unique keys (third column in Table 8.2)
largely exceeds the number of existing tables. This means that, for a single table, we
find more than one unique key. One of them will match the supposedly primary key,
but any of them could be referred to by foreign keys belonging to other tables. After
the foreign keys are discovered, we pruned the unique key set. We looked into tables
referred to by foreign keys in other tables, and removed the unique keys that were not
used by any foreign key. The result of the data schema discovery step is necessary in
order to extract the data establishing the correct relations between objects obtained
from different tables.

8.2.3 Data Extraction
During the data extraction step, relevant information from the source database is
extracted and stored locally in the OpenSLEX format. The extracted data comprise
the data model, objects, object versions, and relations between object versions found
in the source database. After this step is executed, all the data will be stored locally
and access to the original database will no longer be required. In order to perform the
extraction and correlation of object versions, we need either a data schema obtained
from explicitly defined unique and foreign keys or a discovered data schema as a result
of the execution of the previous step (data schema discovery). In our case, because
of the lack of a preexisting data schema, we use the one we discovered for each of
the clusters. Command 8.3 performs the extraction, creating one object and object
version for each table row found in the original tables, as well as one relation for each
foreign key instance between two rows. In order to reduce the data dimensionality, we
focused on the extraction of attributes that represent non-binary data, i.e., numbers,
strings, timestamps, dates, and booleans. Any other binary format, e.g., binary large
objects (BLOBs), were omitted during the extraction.

8.2 From Database to Event Log in Six Commands 173

Table 8.3: Result of the data extraction phase for each cluster. Objects and object versions
coincide in number given the direct transformation from rows to object versions.
Relations represent foreign key instances.

Cluster Classes Objects Object Versions Relations
OK 102 1.047×106 1.047×106 5.950×105

AGENDA 95 6.727×106 6.727×106 5.153×106

PATIENT 46 3.116×106 3.116×106 3.271×104

Command 8.3: Command to extract the content of a database given a discovered data
schema and a list of tables, and store it locally using the OpenSLEX for-
mat.

$ eddytools extract 'mssql+pymssql://localhost/DB' ./extraction_dir ./schema_disc_dir
,→ --classes=tables.txt

Table 8.3 shows the results of the extraction. As an example, we see that more
than one million objects and object versions were obtained from the OK cluster,
holding more than half a million relations. The number of objects is more than six
times larger in the case of the AGENDA cluster, with almost ten times more relations.
Despite having half the number of tables, the PATIENT cluster provided three times
as many objects as the OK cluster. However, the OK cluster contains almost twenty
times more relations than PATIENT. We see that the size of the clusters in number
of objects is not proportional to the number of tables involved. Also, we can get an
idea of the size of the data at hand when tackling a real-life dataset. Even focusing
on relatively small parts of the database forced us to be able to handle millions of
instances. Despite the relative simplicity of the extraction process, the size of the
data was, in fact, one of the challenges to overcome during this phase. It forced us to
adopt caching strategies in order to handle the extraction in an environment with very
limited resources (a remote terminal server). Network and connectivity problems and
source database uptime were some of the additional issues we faced when performing
this task.

At the end of the data extraction step, we obtained an OpenSLEX file for each
cluster. Each of these files contained a description of the data model, objects and
object versions for each row, together with their non-binary attributes and relations
that reflect instances of foreign keys between the extracted object versions. Having
this information available, we are ready to apply the rest of the steps, which focus on
preparing the data for process mining analysis.

8.2.4 Event Discovery
When analyzing the content of database tables, it is common to find that events
are not explicitly defined. In that case, we need to discover them. Previously, we
have carried out some experimental work to tackle the challenge of event discovery.

174 Case Study: Process Mining on a Health Information System

Table 8.4: Results of the event discovery task. The discovered event definitions provide a
basic pattern (timestamp, activity name) in order to perform the event extraction.

Cluster Classes Event definitions Extracted events
OK 102 58 1.005×106

AGENDA 95 93 1.535×107

PATIENT 46 86 7.543×106

However, in this case study we applied a more conservative approach that produces
more reliable results than the experimental techniques. We consider the presence of
a timestamp column as evidence of the existence of an event. For every timestamp
column in a table, we create as many events as rows it contains, taking the value
of the timestamp field as the time of the event occurrence and the column name as
the name of the corresponding activity. This approach provides meaningful results
easy to interpret with a low level of false events. Command 8.4 performs the event
discovery task, plus the event extraction based on the discovered event definitions.

Command 8.4: Command to discover and create events in an extracted dataset considering
timestamp columns as activity names.

$ eddytools events ./extraction_dir/mm-extracted.slexmm ./event_disc_dir --ts --build-events

Table 8.4 shows the number of event definitions discovered and the number of
events extracted. We see that the PATIENT cluster contains almost twice as many
event definitions as the number of classes. It also contains the highest amount of
extracted events, more than 7 million. In the OK cluster, the number of discovered
event definitions is roughly half of the number of classes and around 1 million of
extracted events. The AGENDA cluster presents a ratio of almost one event definition
per class and a total of more than 15 million events extracted.

The events extracted during this phase have been added to the content of the
extracted OpenSLEX files. Although these events are the necessary building blocks
to generate the event logs we are looking for, they are not the only requirement. We
need to correlate these events in a meaningful way, such that they can be grouped in
traces. There are many ways to correlate them depending on the chosen case notion.
The next section focuses on the case notion discovery task.

8.2.5 Case Notion Discovery
Another step towards the creation of an event log is to choose a meaningful case
notion. We need a case notion in order to group events together into traces, which we
will collect into event logs. As we described in Chapter 5, first we generate candidate
case notions based on the discovered data schema. Second, we collect certain statistics
at the class level. Next, we predict certain log metrics (support, level of detail, and
average number of events per trace) before the event log is built. Finally, we combine

8.2 From Database to Event Log in Six Commands 175

the predicted metrics to compute a case notion “interestingness” score. The scores
are used to rank the case notions from more to less (potentially) interesting.

During the execution of this step, we made a modification on the global scoring
function presented in Chapter 5. The previously proposed function (Equation 5.19)
computes the score as the weighted average of the three metrics (support, level of
detail, and average number of events per trace). However, while carrying out this
study, we realized that computing the weighted harmonic average (Equation 8.3)
instead yielded more meaningful results for this specific dataset. Due to the fact that
the framework proposed in Chapter 5 is easily extendable, it was not an issue to
replace the default scoring function by the one in Equation 8.4.

H =

n∑
i=1

wi

n∑
i=1

wi
xi

where w1, ...wn are weights, and x1, ..., xn are values. (8.3)

The weighted harmonic average takes into account the trade-off between the three
metrics (Equation 8.4), favoring candidates that score well in all three dimensions,
and punishing candidates that score low in some of the dimensions.

pgsf (CN ,CNS) = wsp +wlod +wae
wsp

ŝsp(CN ,CNS) +
wlod

ŝlod(CN ,CNS) + wae
ŝae(CN ,CNS)

(8.4)

An example is the case of candidates that present the desired level of detail and
average number of events per trace, but for which the predicted support is close to
zero. For this reason, it obtains a low “interestingness” score.

Table 8.5 shows the default parameters used when running the case notion discov-
ery and recommendation step in Command 8.5. The mode, max, and min parameters
for each metric (sp, lod, and ae) are used to estimate the β and α parameters of
the beta probability distribution function (beta pdf) that will give us a score for the
metric. According to the chosen values, we prefer case notions for which the average
number of activities per trace is between 3 and 10, and preferably close to 7. Also,
case notions with an average number of events per trace above 3000 will score lower.
With respect to the support, we will prefer case notions with as many traces as pos-
sible. The weights (wsp, wlod, and wae) are used when computing the global score per
case notion, combining the individual scores for each metric (Equation 8.4).

Command 8.5: Command to discover case notions and build the top 3 event logs based on
the ranking of “interestingness”.

$ eddytools cases ./event_disc_dir/mm-events.slexmm ./cn_disc_dir --build-logs --topk=3

The execution of Command 8.5 generated a ranking of case notions, sorted based
on their predicted “interestingness”. Table 8.6 shows the total number of generated
case notions, as well as information on for how many of them the predicted support

176 Case Study: Process Mining on a Health Information System

Table 8.5: Parameters used during the case notion discovery and recommendation step.

Parameter Value Description

modesp - Mode of the beta pdf used to score the support (number of cases). Default
is null, since we try to maximize sp.

maxsp ∞ Highest value of the desired range used to score the support value.
minsp 0 Highest value of the desired range used to score the support value.
modelod 7 Mode of the beta pdf used to score the lod (level of detail) value.
maxlod 10 Highest value of the desired range used to score the lod value.
minlod 3 Lowest value of the desired range used to score the lod value.
modeae 1500 Mode of the beta pdf used to score the ae (average number of events per

trace) value.
maxae 3000 Highest value of the desired range used to score the ae value.
minae 0 Lowest value of the desired range used to score the ae value.
wsp 0.33 Weight of the support score on the final global score.
wlod 0.33 Weight of the lod score on the final global score.
wae 0.33 Weight of the ae score on the final global score.

Table 8.6: Case notions discovered for each cluster.

Cluster Classes Case Notions Non-empty (ŜP > 0)
OK 102 1277 455
AGENDA 95 1881 790
PATIENT 46 131 64

(number of cases) was higher than zero. We gathered the details of the three top
ranked case notions from the individual ranking of each cluster (OK, AGENDA, and
PATIENT). The resulting case notions can be observed in Figures 8.1 to 8.9. The
notation is the same as in Figure 5.4 of Chapter 5, where squares represent classes
(tables), a square with a bold border represents the root class of the case notion, solid
arrows indicate the hierarchy relation within the case notion, and dashed arrows show
the used relationships (foreign keys) between tables to correlate events.

The three top-ranked case notions in the OK cluster are the ones depicted in
Figures 8.1-8.3. We see that the three of them represent a similar process, given that
the same tables are present in all of them: dbo.OK_OKINFO, dbo.OK_OKANNULE,
and dbo.OK_OKROUTE. The difference between the three case notions is the class
that acts as root. This will determine how traces are built, since at least an instance
of that class will be necessary in order to create a new trace. This produces slightly
different results for each case notion, even though the three of them represent a similar
process albeit from different perspectives.

Domain Knowledge

The case notion in Figure 8.1 reflects the process of surgery room appointments
from the point of view of the central surgery appointment class (dbo.OK_OK-

8.2 From Database to Event Log in Six Commands 177

INFO).
The case notion in Figure 8.2 represents the same process, but from the point of
view of the execution of the surgery appointments (dbo.OK_OKROUTE). The
third case notion (Figure 8.3) looks at the process from the point of view of the
cancellation of surgery appointments.

dbo.OK_OKINFO

dbo.OK_OKANNULE dbo.OK_OKROUTE

Figure 8.1: First case notion in
the ranking for the OK cluster,
with dbo.OK_OKINFO as root
class. It reflects the process of
surgery room appointments.

dbo.OK_OKROUTE

dbo.OK_OKINFO

dbo.OK_OKANNULE

Figure 8.2: Second case
notion in the ranking
for the OK cluster, with
dbo.OK_OKROUTE as
root class. It reflects the
process of surgery room
appointments.

dbo.OK_OKANNULE

dbo.OK_OKINFO

dbo.OK_OKROUTE

Figure 8.3: Third case no-
tion in the ranking for the
OK cluster, with dbo.OK_-
OKANNULE as root class.
It reflects the process of
surgery room appointment
cancellation.

The most relevant case notions discovered in the AGENDA cluster are related to
the appointments between patients and doctors. In this case, the three case notions
share some common classes (dbo.AGENDA_AFSPRAAK, dbo.AGENDA_AGENDA,
and dbo.AGENDA_WACHTTYD). Also, different additional and root classes are con-
sidered for each case notion.

Domain Knowledge

Figure 8.4 shows that, for the first case notion, dbo.AGENDA_AFSPRAAK
is the root class, which collects the agenda appointments (afspraak in Dutch)
between patients and doctors. It is also linked to the central agenda class
dbo.AGENDA_AGENDA and the waiting list class dbo.AGENDA_WACHT-
TYD, among others.
For the second case notion (Figure 8.5), the root class is dbo.AGENDA_BEPAL-
ING, which seems to be related to some sort of assessment or evaluation, being
linked to other classes related to a waiting list (dbo.AGENDA_WACHTTYD,
and dbo.AGENDA_AGNWACHT) and the main agenda appointment classes
(dbo.AGENDA_AGENDA and dbo.AGENDA_AFSPRAAK).
The third case notion (Figure 8.6) takes the central agenda class dbo.AGENDA_-
AGENDA as root, and combines the appointment class dbo.AGENDA_AF-
SPRAAK, the waiting list class dbo.AGENDA_WACHTTYD, and two more
classes that have some relation to locations (dbo.AGENDA_AFSPVERROPT
and dbo.AGENDA_SUBAGLOKMAP).

We see that the three case notions are quite different in terms of root classes and

178 Case Study: Process Mining on a Health Information System

additional classes involved. Still, they maintain some common factors, all notably
related to the appointment classes.

dbo.AGENDA_AFSPRAAK

dbo.AGENDA_AGENDA

dbo.AGENDA_BEPALING

dbo.AGENDA_AGNWACHT

dbo.AGENDA_WACHTTYD

Figure 8.4: First case
notion in the ranking
for the AGENDA cluster,
with dbo.AGENDA_AF-
SPRAAK as root class.
It reflects the process of
agenda appointments be-
tween patients and doc-
tors.

dbo.AGENDA_BEPALING

dbo.AGENDA_AGNWACHT dbo.AGENDA_WACHTTYD

dbo.AGENDA_AFSPRAAK

dbo.AGENDA_AGENDA

Figure 8.5: Second case notion
in the ranking for the AGENDA
cluster, with dbo.AGENDA_-
BEPALING as root class. It
reflects the process of agenda
appointments between patients
and doctors combined with in-
formation about waiting lists.

dbo.AGENDA_AGENDA

dbo.AGENDA_AFSPRAAK dbo.AGENDA_WACHTTYD

dbo.AGENDA_AFSPVERROPT

dbo.AGENDA_SUBAGLOKMAP

Figure 8.6: Third case no-
tion in the ranking for the
AGENDA cluster, with
dbo.OK_AGENDA as root
class. It reflects the process of
agenda appointments between
patients and doctors combined
with information about waiting
lists and locations.

Finally, we analyze the case notions discovered in the PATIENT cluster. The top
three case notions are related to the combination of the dbo.PATIENT_MERGELOG
and the dbo.PATIENT_PATLAST classes. Each case notion defines one of these
two classes as root. Only the third one takes a different class into account,
dbo.PATIENT_PATLAST_OLD, which seems to be a copy of dbo.PATIENT_PAT-
LAST. We see that the case notions that we obtained are much less complex and
descriptive than the ones found for other clusters. One reason is the scarcity of
case notions compared to other clusters (only 64 non-empty case notions discovered).
Also, we observed that the discovered events are concentrated on very few classes
(Table 8.7). This means that most of the discovered case notions related to classes
with little events will score very low in terms of support, which penalizes their global
score.

In the next section, we will generate the corresponding event logs for the case
notions that we have presented. Also, we will compare the predicted and actual
values for each of the metrics considered to compute the case notion score.

8.2.6 Event Log Building
Event log building is the last step of our approach. It is also one of the most mechanical
parts of the process, since all the necessary pieces of information have been discovered
and extracted in the previous steps. We already discovered a data schema, extracted
all the relevant data from the source database, discovered and extracted events, and

8.2 From Database to Event Log in Six Commands 179

Table 8.7: Distribution of discovered activities and events per class for the PATIENT cluster.

Class Activities Extracted events

dbo.PATIENT_PATIENT 9 2474660
dbo.PATIENT_POLIS 3 2044415
dbo.PATIENT_PATVERZ 2 464185
dbo.PATIENT_MERGELOG 2 42272
dbo.PATIENT_PATLAST 1 16219
dbo.PATIENT_PATLAST_OLD 1 16207
dbo.PATIENT_MRGLOG 1 7001
dbo.PATIENT_COVSTBAT 3 465
dbo.PATIENT_PATIENT_EXT 2 365
dbo.PATIENT_PATLINK 2 247
dbo.PATIENT_PATHIST 4 22
dbo.PATIENT_HINDER 3 3

dbo.PATIENT_MERGELOG

dbo.PATIENT_PATLAST

Figure 8.7: First case
notion in the ranking for
the PATIENT cluster,
with dbo.PATIENT_-
MERGELOG as root class.

dbo.PATIENT_PATLAST

dbo.PATIENT_MERGELOG

Figure 8.8: Second case
notion in the ranking for
the PATIENT cluster, with
dbo.PATIENT_PATLAST
as root class.

dbo.PATIENT_MERGELOG

dbo.PATIENT_PATLAST_OLD

Figure 8.9: Third case
notion in the ranking for
the PATIENT cluster,
with dbo.PATIENT_-
MERGELOG as root class.

computed a ranking of case notions. During this step we will build one event log for
each selected case notion. We do so by combining the extracted events by means of
the relations we computed between the objects obtained from the database. This is
the phase when the application of our method materializes into a collection of event
logs ready to be analyzed.

We will compute one event log for each of the three top-ranked case notions per
cluster presented in the previous section. When executing Command 8.5, we already
indicated that we wanted to build the event logs for the top three case notions. That
means that we only need to export the computed event logs to a format that we can
use for analysis. Command 8.6 shows how to do this.

Command 8.6: Command to export previously computed event logs to csv format.

$ eddytools logs ./cn_disc_dir/mm-logs.slexmm --export_log=1 --o=log_1.csv

Next, we compute the actual values for each metric (support, lod, and ae) to
compare them to the ones that we predicted. Table 8.8 shows the results. In general,
we see that all the computed event logs contain a large amount of traces (SP column),
and an acceptable number of activities per trace (LoD column). Also, the average
number of events per trace is equal to the average number of activities per trace. The
reason for this is the way we correlate events together. Also, because the activity name
of such events corresponds to the timestamp column name, no more than one event

180 Case Study: Process Mining on a Health Information System

per activity will belong to each trace. If we considered case notions with converging
classes (as described in Chapter 5), the values for ae and lod would differ significantly.

We can compare the predicted versus actual values for each metric. In the case of
support, it is obvious that the predicted value is several orders of magnitude higher
than the actual one. This is due to the fact that the prediction is based on an average
between the lower and upper bound of the metric. In the case of support, the upper
bound is always very high. A better strategy to improve the accuracy would be to
consider the lower bound as a prediction. Also, defining a heuristic that takes into
account other factors of the case notion to provide a prediction between the lower and
upper bound would help to increase the accuracy. When it comes to lod and ae, the
prediction is much more accurate.

Table 8.8: Details on the event logs computed for each of the three top-ranked case notions
per cluster. Predicted vs. actual values per metric are displayed.

Cluster / Case Notion Rank Score ŜP SP �LoD LoD ÂE AE

OK

cn_1059 1 2.5×10−2 3.8×1014 2.2×105 6.50 6.59 6.50 6.59
cn_1061 2 2.3×10−2 3.8×1014 1.1×105 6.00 7.96 6.00 7.96
cn_1060 3 2.3×10−2 3.8×1014 1.1×105 6.00 7.50 6.00 7.50

AGENDA

cn_292 1 1.9×10−2 1.1×1019 3.5×106 5.50 4.05 5.50 4.05
cn_291 2 1.9×10−2 1.1×1019 2.6×103 5.50 2.00 5.50 2.00
cn_57 3 1.6×10−2 2.6×1020 5.0×105 4.00 4.57 4.00 4.57

PATIENT

cn_65 1 6.8×10−4 3.3×108 4.1×104 2.00 1.43 2.00 1.43
cn_64 2 6.8×10−4 3.3×108 1.6×104 2.00 2.03 2.00 2.03
cn_63 3 6.8×10−4 3.3×108 4.1×104 2.00 1.43 2.00 1.43

This was the last step of our method for event log generation. So far, all the steps
were performed trying to reduce the amount of manual work required. Additionally,
we used some domain knowledge, e.g., information about table prefixes in order to
divide the dataset in clusters of tables. This allowed us to reduce the complexity
analyzing each cluster separately. Also, the intermediate results were not corrected in
any way. In order to get a better understanding of the underlying processes interacting
with the database at hand, we need to apply other process mining techniques. In the
next section we will discover process models based on the computed event logs.

8.3 Results
In the previous section, we followed a semi-automated method to discover and obtain
event logs with minimal manual work. Once we have one or many event logs, we can
go on with the process mining analysis in order to get insights. In this section, we
show the results of running the Inductive Visual Miner [65] on each log to obtain a

8.3 Results 181

process model.
We start with the first event log in the ranking of case notions for the cluster OK

(cn_1059). This event log was computed according to the case notion in Figure 8.1,
which represents the process of operation room appointments with cancellations.

Domain Knowledge

The event log corresponding to the case notion in Figure 8.1 combines events
belonging to the following three tables:

• dbo.OK_INFO: This is the central table about surgical operations. It holds
information about appointments that require an operation room.

• dbo.OK_OKANNULE: Cancellations of operation room appointments.

• dbo.OK_OKROUTE: Information related to what happens inside of the
operation rooms for a specific appointment.

Figure 8.10 shows the process model obtained when mining the event log with the
Inductive Miner.

Domain Knowledge

These are the most important activities within the process in Figure 8.10:

• dbo.OK_OKINFO.INVOER_D: indicates the moment when something
was inserted in the appointment record, normally by a human operator,

• dbo.OK_OKINFO.AANVRAAG_D: something was requested, either at
the appointment level, or even during the operation,

• dbo.OK_OKINFO.AANMAAK_D: the appointment was created in the
system,

• dbo.OK_OKANNULE.ANNUDATUM : the appointment has been can-
celed,

• dbo.OK_OKANNULE.GEPLANDEDA: the date in which the canceled ap-
pointment was planned,

• dbo.OK_OKROUTE.STARTDATE: the moment when the operation
starts,

• dbo.OK_OKROUTE.VERTREKDAT : the moment when the personnel
leaves the operation room,

• dbo.OK_OKINFO.OPERATIE_D: planned date for the operation,

The discovered model in Figure 8.10 shows a nicely structured process, with some
parallelism on the appointment creation (at the top) and a logical structure when

182 Case Study: Process Mining on a Health Information System

Figure 8.10: Process model mined with the Inductive Miner based on the event log of cluster
OK corresponding to the case notion in Figure 8.1.

8.3 Results 183

Figure 8.11: Process model mined with the Inductive Miner based on the event log of cluster
AGENDA corresponding to the case notion in Figure 8.5.

performing the operations (in the middle) with the sequence of activities that indicate
the start and end of the operation. Activities belonging to canceled appointments are
included in this process, which shows at which point these cancellations happen.
Normally, they occur in parallel with the appointment creation. Something to notice
is the choice between the execution of the operation, or the skip arc at the center of
the model. This can be due to the existence of incomplete cases, i.e., for which an
appointment has been planned but has not been completed yet.

The next model we obtained (Figure 8.11) was based on the event log corre-
sponding to the case notion in Figure 8.5. This case notion represents the process of
appointments between doctors and patients.

184 Case Study: Process Mining on a Health Information System

Domain Knowledge

The process in Figure 8.11 handles the appointments between doctors and pa-
tients. The main activities involved are:

• dbo.AGENDA_AFSPRAAK.INVOERDAT : date of creation of the ap-
pointment,

• dbo.AGENDA_AFSPRAAK.DATUM : date of the appointment,

• dbo.AGENDA_AFSPRAAK.FAKTDAT : date of the invoicing,

• dbo.AGENDA_AFSPRAAK.MUTDAT : date of modification of the ap-
pointment,

• dbo.AGENDA_AGENDA.EINDEDAT : end of the agenda process.

The process shows a rather sequential structure. It has two activities hap-
pening in parallel at the start (dbo.AGENDA_AFSPRAAK.INVOERDAT and
dbo.AGENDA_AFSPRAAK.DATUM) and a choice block in the middle, which can
be skipped. The initial parallel part corresponds to the appointment creation. We
see that the appointment creation can happen in parallel with the appointment date
itself. This means that many of the appointments take place on the same day they are
created. Then, the optional block seems to be related to the invoicing process. It only
happens in roughly 1/5 of the cases. At the end, some appointments are modified
and the process ends.

Finally, we discovered a process model using the event log generated according
to the case notion in Figure 8.7. This case notion combines events from the classes
dbo.PATIENT_MERGELOG and dbo.PATIENT_PATLAST, representing the pro-
cess of how doctors access patient records.

Domain Knowledge

The class MERGELOG combines patient events from different sources. PAT-
LAST stores the last time that a doctor accessed the record of a patient.

This process is rather simple, with only three activities and a very sequential
structure in which most of the times its activities are skipped. This is an example of
a discovered case notion for which the event log does not represent a very meaningful
process. Either because of the choice of activity names or because of the simplicity of
the process, the result does not provide us with interesting insights, even though the
process might match the desired criteria to consider an event log as interesting. This
is an example to consider in order to improve the technique further.

In the next section we will show an example of data querying on this dataset, and
we will discover a process model from the resulting event log.

8.4 Data Querying 185

Figure 8.12: Process model mined with the Inductive Miner based on the event log of cluster
PATIENT corresponding to the case notion in Figure 8.7.

8.4 Data Querying
It is often the case that, when preparing data for process mining, the obtained event
logs are too detailed. Also, sometimes we need to focus on a part of the data to answer
a specific business question. In this section, we leverage domain knowledge to show
an example of data querying. We want to obtain a filtered event log based on the
extracted data from the OK cluster previously presented. We will use DAPOQ-Lang,
the data querying language proposed in Chapter 7.

From the case notion displayed in Figure 8.1, we learned that the combination
of surgery appointments and cancellations could provide an interesting view on the
underlying processes interacting with the database. One business question (BQ) to
answer on such a process can relate to the appointments conducted with a specific
type of anesthesia, in a certain period of time:

BQ: What was the process followed when applying local anesthesia be-
tween March 2010 and July 2013 when handling surgery appointments?

In order to provide an answer to this business question, first we need to correlate
cases to types of anesthetics. Next, we must filter these cases based on the time of
occurrence. A general query (GQ) for this business question would look like this:

GQ: Which cases of log LOG are related to objects of class CL for which
the value of attribute AT is X, and the cases started and ended within the
period T1 and T2?

We need to translate this general query to DAPOQ-Lang adapting it to the OK
dataset. We require certain domain knowledge.

Domain Knowledge

In order to translate the generic query GQ into a DAPOQ-Lang query that we
could execute, we require certain details that come from domain knowledge:

• LOG: this is the id of the event log that contains traces related to surgery
appointments. From domain knowledge we know that the event log corre-
sponding to the case notion in Figure 8.1 represents the desired process.
The generated event log in our dataset has the id “1”,

• CL: this is the class that contains information about the surgical proce-
dures. dbo.OK_OKINFO is the corresponding table within the OK cluster,

186 Case Study: Process Mining on a Health Information System

• AT: this is the attribute of the CL class that reflects the type of anesthesia
applied during the procedure. The attribute ANAESTTECH belonging to
the table dbo.OK_OKINFO is the one we need,

• X: this is the value of the attribute AT that indicates that local anes-
thesia was used. For the attribute ANAESTTECH we observed that the
procedures in which local anesthesia was used contain the value “LOK”.

Query 8.7 shows the translated query. First, we select the log with id “1” (line 1).
This is the event log corresponding to the case notion in Figure 8.1. Next, we select
the object versions of dbo.OK_OKINFO for which the attribute ANAESTTECH has
the value “LOK”, which means that local anesthesia was applied (lines 3-5). After
that, we select the cases from log 1 related to an object version in the set of surgery
appointments in which local anesthesia was used (lines 7-9). Now we can compute
the periods on this set of cases, which will be cached. This could also be done per
case within the where clause (line 16), but it is more efficient to compute it on the
whole batch of cases at once. Next, we define the period of time in which we are
interested (line 11) and we filter the selected cases that happened during this period
(lines 13-15). Finally, we export an event log with the final filtered cases (line 17).

Query 8.7: Export the cases of log 1 where local anesthesia was applied and happened be-
tween March 2010 and July 2013.

1 log = allLogs().where{id==1}
2
3 cl = allClasses().where{name=="dbo.OK_OKINFO"}
4
5 anaesthesic = versionsOf(objectsOf(cl)).where{at.ANAESTTECH == "LOK"}
6
7 cases = casesOf(log)
8
9 filtered_cases = cases.intersection(casesOf(anaesthesic))

10
11 periodsOf(filtered_cases)
12
13 def period = createPeriod("2010/03/01 00:00","2013/07/01 00:00","yyyy/MM/dd HH:mm")
14
15 filtered_cases_time = filtered_cases.where{
16 during(globalPeriodOf(it),period)
17 }
18
19 exportXLogsOf(filtered_cases_time)

The execution of Query 8.7 yields an event log with 4121 cases, 20234 events, and
an average of 5 activities per case. This event log should contain the subset of cases
in which local anesthesia was applied, which occurred between March 2010 and July
2013.

Figure 8.13 shows the process model discovered with the Inductive Miner. The
first thing we notice is the lack of an apparent structure when compared to the
model in Figure 8.10. In this case, all the appointment management activities are
represented at the top part of the model, happening mostly in parallel. Something
unusual is the low rate of executed operations (36) with respect to the total number
of appointments (4121). Also, the sum of executed operations and the number of

8.4 Data Querying 187

Figure 8.13: Process model mined with the Inductive Miner based on the event log of cluster
OK corresponding to the result of Query 8.7.

188 Case Study: Process Mining on a Health Information System

canceled appointment does not add up to the total of cases. Given the period used to
filter the cases (2010 to 2013) it is unlikely that this difference is due to incomplete
cases, i.e., all the cases that occurred during that period should have ended already
and therefore be contained within the dataset. The most plausible reason for the lack
of operation executions is that they were either not recorded or that the cancellation
was not registered in the system. Nevertheless, this is something worth reporting to
the business owners.

To summarize, we conclude this section with a reflection on the lessons learned.
This case study demonstrates that our methodology has the potential to transform the
way data extraction and preparation is approached by process mining professionals.
Our techniques covered all the steps necessary to obtain event logs from databases.
The results were meaningful in most of the cases and domain experts concluded that
the obtained event logs represent existing processes that run within the HIS under
study. The resulting event logs represent a good start for any process mining project,
allowing the analysts to get a feeling on the kind of processes interacting with the
database at hand. Also, we provide the means for the user to correct or modify
the intermediate results at each step, e.g., correcting the discovered data schema,
adding non-detected event definitions, etc. Also, we showed how our query language
(DAPOQ-Lang) makes it possible to refine the resulting event logs to cover the user’s
area of interest. We do not aim at replacing completely manual approaches, but
to automate as much as possible. This reduces the workload and the possibility of
introducing errors while building event logs.

We also have identified several limitations of our techniques. First, discovering
the data schema of a database is a complex task. Further performance improvements
to reduce the search space are required in order to be able to apply the technique
at scale for keys of higher length. Also, reducing the number of false positives, e.g.,
not meaningful foreign keys, would help to reduce the complexity of the discovered
data schema. Another step where improvements can be made is in the discovery of
case notions. Improving the accuracy of the predicted log metrics would inherently
improve the quality of the case notions ranking. Finally, adding more metrics to the
log “interestingness” assessment would be helpful to make a better decision on which
case notions would actually be meaningful.

8.5 Chapter Summary
In this chapter, we have demonstrated the use of the techniques proposed in this thesis
in a real-life environment. We applied a semi-automatic methodology to cover all the
steps that need to be followed from the first access to a database, until the moment we
obtain an event log. All the steps were executed trying to reduce the amount of domain
knowledge needed. We showed that following this methodology enabled us to obtain
insights on the underlying processes that interact with the database reducing time
and resources spent interviewing domain experts or reading extensive documentation.
In fact, this case study was executed in a particularly challenging environment due
to the complexity and size of the dataset and the lack of documentation. Also, the

8.5 Chapter Summary 189

privacy constraints given the nature of the data forced us to adapt our implementation
in order to be executed in a resource-limited environment. As a result, we were able
to obtain meaningful event logs and mine them during the analysis phase. Finally, we
identified some limitations of our techniques, and the opportunities for improvement.

Worker honeybee on a flower of Echium
maritimum.
“Cours complet d’apiculture”, Georges

de Layens and Gaston Bonnier, 1897

9
Conclusion

The present chapter concludes the thesis. First, the contributions presented in all
previous chapters are summarized in Section 9.1. Next, we discuss the limitations of
the results in Section 9.2. In Section 9.3, we propose improvements and opportunities
for future work. Finally, in Section 9.4 we reflect on the overall thesis.

9.1 Contributions
In Chapter 1 of this thesis, we introduced the field of process mining and we discussed
the research focus: to research methods to extract event data and support the user in
the process of generating event logs suitable for process mining analysis. Additionally,
we listed a set of challenges related to our main goal:

• Challenge 1: Finding, merging, and cleaning event data,

• Challenge 2: Dealing with complex event logs having diverse characteristics,

• Challenge 3: Cross-organizational mining,

• Challenge 4: Multi-perspective event log building,

• Challenge 5: Improve usability for non-experts,

• Challenge 6: Fill the domain knowledge gap in event log extraction,

• Challenge 7: Question-driven log extraction.

191

192 Conclusion

Figure 9.1: Overview of the contributions of this thesis, in the context of a pipeline connect-
ing databases with existing process mining techniques.

In this section, we describe the contributions made in this thesis and the relation
to the challenges mentioned above. The contributions are divided into three blocks,
according to the phase of a process mining analysis project to which they relate: (1)
data extraction, (2) event log building, and (3) data querying.

9.1.1 Data Extraction

The data extraction phase on a process mining project consists of the process of
accessing, extracting, and transforming the data to a standard format. In the context
of this thesis, we contributed to the data extraction phase by defining a meta-model for
process mining on databases (OpenSLEX) (Chapter 3). This meta-model provides a
standardization layer decoupling data extraction from event log building, data query,
and process mining analysis. Also, data extraction was supported by means of several
adapters (Chapter 4). These adapters are able to extract and transform data from
different environments (SAP, Oracle redo-logs, etc.) to the OpenSLEX format.

The contributions made in this thesis with respect to data extraction tackle some
of the aspects highlighted by challenges 1, 2 and 3. We believe that the definition
of a standard meta-model for event data extraction contributes to alleviating the
problems found when searching and merging event data. Compared to alternatives like
XES, OpenSLEX becomes especially useful when dealing with multidimensional and
complex data given its ability to provide a standard representation without flattening
data into an event log format. Also, the task of merging data obtained from different
systems and organizations becomes easier when a standard target format is defined.

9.2 Limitations and Open Issues 193

9.1.2 Event Log Building
The goal of the event log building phase is to obtain event logs from the data extracted
from the original data source. This thesis presents several contributions that tackle
some of the challenges in event log building. In Chapter 5, we provided techniques to
find and select different case notions together with a method to correlate events into
cases in the context of databases. The event log building method tackles Challenge 4,
since each case notion represents an alternative view or perspective on the underlying
data. The presented method for event log building has been implemented in the tool
eddytools. This helps to alleviate the technical complexity of the task of event log
building for non-experts, which addresses Challenge 5.

Also, in Chapter 5 we proposed a framework for case notion discovery and rec-
ommendation. This framework provides a method to generate candidate case notions
based on the data schema of the original dataset. Also, it makes it possible to build
event logs using the aforementioned event log building method. Additionally, the
concept of log “interestingness” is introduced, together with a score function. This
makes it possible to rank candidate case notions on a dataset based on a predicted
“interestingness” score. This framework tackles several relevant challenges. First, it
provides the means for multi-perspective event log building (Challenge 4). Also, it
automates the process as much as possible in order to improve usability (Challenge
5). Finally, the framework makes it possible to provide suggestions about interesting
views on the data as a way to support the user when dealing with large and complex
datasets (Challenge 6).

9.1.3 Data Querying
Data querying languages are tools that can prove very valuable at many stages during
a process mining project. One of the contributions of this thesis is the data query
language DAPOQ-Lang (Chapter 7). This query language, based on the structure
proposed in the OpenSLEX meta-model, has been designed to facilitate the task of
data querying in the context of process mining. The language provides constructs that
enable the user to write complex queries. Such queries would otherwise be difficult
to write and interpret when using other query languages such as SQL. DAPOQ-Lang
aims at supporting the user when querying event data by means of constructs and
functions to express time constraints, data relations, and event types, among others.
DAPOQ-Lang can be used as a filtering technique, allowing the user to obtain refined
event logs that focus on the parts of the data that are relevant to answer the business
question at hand. The combination of our contributions in event log building with
the querying capabilities of DAPOQ-Lang enables the user to carry out event log
extraction in a question-driven fashion, which directly relates to Challenge 7.

9.2 Limitations and Open Issues
The contributions made in this thesis can be seen as important first steps to speed
up the preprocessing of data for process mining. In this section, we acknowledge that

194 Conclusion

additional work is needed and we present the main limitations and open issues of our
work.

9.2.1 Data Extraction
In the first part of this thesis, we presented several contributions related to the data
extraction phase. The main identified limitations of our work in this area are described
below:

• The definition of a target meta-model for data extraction (OpenSLEX) presents
many benefits for the analysis phase, but does not solve the data extraction
problem. The variety of formats in which data can be found in real-life makes
it challenging to design a solution that fits every situation. Although we pro-
vided examples of adapters for some wide-spread business information systems,
the challenge of automatic data extraction remains open when a new raw-data
representation is faced.

• The data extraction method proposed in this thesis assumes the existence of a
complete data model, i.e., the relationships between data classes, usually rep-
resented by foreign keys in most database systems, must be explicitly defined.
However, such relationships are not always present, as observed in Chapter 8.
Despite the existence of techniques in the literature that attempt to solve the
schema discovery problem, a reliable and efficient solution able to handle com-
plex environments is not available yet.

• The proposed OpenSLEX meta-model has been designed with the purpose of
capturing aspects of data typically found in databases and event data stores.
Aspects such as data models, classes, objects, attributes, and relationships can
be directly mapped to database concepts such as schemas, tables, rows, columns,
and foreign keys. However, this can limit the applicability of the proposed
solution in scenarios where this mapping is not so straightforward. This is the
case for event streams, where the notions of object and class become fuzzy or
do not exist.

9.2.2 Event Log Building
The second part of this thesis presents contributions related to the event log building
phase. These are the main limitations of the methods and techniques proposed:

• When building event logs from databases, it is rare to find event data readily
available. Usually, event definitions need to be discovered or manually defined.
The approach proposed in this thesis looks into the data type of object attributes
to find event timestamps. Next, it transforms instances of timestamp values into
events using the name of the timestamp attribute as the activity name. That
is a rather naive approach, since it ignores other attribute values that could
represent a much more meaningful activity name, e.g., task name or status.

9.2 Limitations and Open Issues 195

Moreover, not all timestamp attributes represent the occurrence of an event
in the context of business processes, e.g., customer birthday, which introduces
noise in the discovered event logs.

• The notion of log “interestingness” proposed in this thesis is somewhat superfi-
cial. Only certain structural properties of the log (level of detail, support, average
number of events per trace) are taken into account when evaluating event logs.
The current notion of log “interestingness” ignores other important aspects such
as the relevance of the log semantics at the business level, how meaningful the
activities are with respect to the process, as well as the homogeneity of behavior
captured in the event log.

• In this thesis, we proposed certain predictors for the event log metrics used
to assess log “interestingness”. It has been shown that the resulting ranking
based on predicted scores resembles, at an acceptable level of accuracy, the
ranking based on the actual metrics. However, the individual predictions for
each log metric lack accuracy. Relative assumptions can still be made, e.g., log
A has higher support than log B. However, accurate predictions would make
the technique more robust to outliers, and benefit the overall quality of the log
“interestingness” assessment.

9.2.3 Data Querying
In the third part of this thesis, we presented contributions in the area of data querying
applied to process mining. When it comes to querying, we are aware of the following
limitations and open issues:

• The query language proposed in this thesis, DAPOQ-Lang, was designed with
a focus on event data querying for process mining analysis. The design choices
were made with a focus on functionality rather than performance. However,
in many real-life scenarios analysts need to handle large and complex datasets.
In such cases, the applicability of DAPOQ-Lang could be limited by a lack of
performance and scalability in terms of memory and CPU use.

• DAPOQ-Lang is a query language that assumes that the data to query has
been transformed into a suitable format, i.e., an SQL store complying with the
OpenSLEX data schema. This means that DAPOQ-Lang cannot be used to
query data from the original source, but only after extraction and transforma-
tion. This can be an issue when dealing with large datasets or when querying
data that changes frequently.

• Even though DAPOQ-Lang was designed trying to ease the data querying tasks
of analysts, the querying language itself has a steep learning curve, especially
for those not familiar with procedural programming languages. The dialect
is composed of many functions (57) defined to deal with the elements of the
OpenSLEX meta-model, in addition to the general functions and expressions
belonging to the host language (Groovy). This means that, even though many

196 Conclusion

data operations will be easy to perform thanks to DAPOQ-Lang’s domain spe-
cific functions, making the most our of this query language requires some study
and practice.

9.3 Future Work
We list the most promising directions for future work that were identified while car-
rying out the work presented in this thesis. Again we consider data extraction, event
log building, and data querying separately. Also, we propose new directions that do
not fit the aforementioned areas.

9.3.1 Data Extraction

With respect to the data extraction phase, we would like to extend our contributions
in the following directions:

• One of the limitations of the proposed data extraction method is the need for
adapters when dealing with new source data formats and structures. A way to
alleviate this issue would be to provide additional adapters, one for each of the
most common types of data sources. This would allow the coverage of a large
portion of the cases. Ideally, we would like to develop a more general approach.
For this, it would be interesting to carry out an extensive study to identify
how data are structured in existing information systems. Providing a classifi-
cation of data source structures would make it possible to develop a collection
of generic adapters. This would allow extracting data from new systems by
simply choosing the adapter that corresponds to the corresponding underlying
data structure.

• The lack of a reliable data schema discovery method is one of the impediments
for a fully automated data extraction solution in environments where the data
schema is not explicitly defined. Despite the efforts performed by the data-
profiling community, further work should be done to reduce both the complexity
and the number of false positives when executing the primary and foreign key
discovery tasks. It is necessary to provide a reliable and scalable data schema
discovery method that can be applied to real-life datasets.

• The OpenSLEX meta-model was designed to be applied in data extraction from
structured data sources where notions such as data model, class, and relation-
ship are well defined. However, extraction from less structured sources such
as data streams and document repositories can be challenging. It would be of
interest to evaluate the suitability of the meta-model to deal with data from
non-structured sources.

9.3 Future Work 197

9.3.2 Event Log Building
We would like to overcome some of the limitations that affect our contributions to
event log building by continuing our research as described below:

• One of the biggest challenges in automated event log building is the discovery
of event data. Current solutions focus on the presence of timestamps to identify
event occurrences. Most of the times they use the name of the timestamp field
as the activity name. Further work must be done to automatically identify more
meaningful activity names present in the data and to rule out false positives.
Statistics about the number of unique values and their relation to the presence of
timestamps within the data could be used to identify valid activity names. Also,
the use of natural language processing could prove useful to assess if text values
in a data attribute represent activities, resources, or life-cycle phase names that
could be used to enrich the extracted events and to construct meaningful activity
names.

• The notion of log “interestingness” proposed in this thesis is a first attempt at
providing an objective score to rank event logs. However, the relation of the
proposed “interestingness” metric with respect to a subjective interestingness
score provided by users has not been evaluated. A study should be carried out
involving real business analysts and domain experts to evaluate the suitability
of the metric when applied to different datasets and contexts. Also, this study
would be valuable to identify additional measurable aspects that contribute
to the notion of log “interestingness” and have not been considered by our
definition.

• The accuracy of the proposed predictors for log metrics (support, level of detail,
and average number of events per trace) is far from accurate. Finding stricter
upper and lower bounds and designing more accurate predictors for each log
metric would help to improve the quality of event log “interestingness” rankings
and provide better recommendations to the analyst. This could be combined
with sampling techniques that combine predicted scores on candidate case no-
tions with actual scores on computed event logs. This would allow to compute
event logs only for a limited number of case notions, while increasing ranking
quality introducing some certainty in the scores.

• Other approaches propose to avoid data extraction and, instead, to map data
sources to a higher level meta-model. The OnProm [20] approach supports the
explicit modeling of a domain ontology model that represents the data contained
in the relational database at a level of abstraction that is closer to that of the
end user. It would be very interesting to explore how OnProm and OpenSLEX
can be combined in a way that different data sources can be mapped to the
OpenSLEX meta-model. The combination would allow us to benefit from both
the generality of onprom, and the semi-automated approaches for case notion
discovery and recommendation proposed in this thesis.

198 Conclusion

9.3.3 Data Querying
We have identified several ways to improve our contributions on data querying by
focusing on these aspects:

• Query languages need to keep expanding and evolving as user needs change in
order to remain useful and relevant. The case of DAPOQ-Lang is not different.
Additional language constructs and functionality can be added to the language
to support more process mining scenarios that general query languages do not
cover. The decision on which constructs to add to the language should be guided
by further user studies.

• An empirical evaluation of the query language by real users is necessary. Such a
study should allow as to assess the actual suitability and ease of use of DAPOQ-
Lang within the process mining domain. Also, it should help to identify aspects
to improve any lacking features that may be critical for its application in real
scenarios.

• An important aspect to ensure that a query language is actually useful is its
ability to execute complex queries efficiently. Also, improving its scalability is
critical in order to handle the ever-growing size of datasets in modern organi-
zations. Efforts should be made to redesign the query planning and execution
strategies and the internal memory structures to tackle big data challenges, with
the possibility to be integrated within large-scale data processing frameworks
such as Apache Spark1.

9.3.4 Beyond Data Preprocessing
We have identified interesting research lines that deviate from the data preprocessing
phase. Some of these options are described below:

• In this thesis, we proposed methods to extract event logs from different data
sources. Obtaining event logs became our goal, and we used existing process
mining techniques as a tool to analyze the results of our techniques. However,
the OpenSLEX meta-model is able to capture more perspectives on data than
regular flat event logs. We see a potential benefit, in terms of quality of in-
sights, in the development of process discovery techniques able to analyze event
data directly from the OpenSLEX format. New types of analysis would be-
come possible when the data and process perspectives are integrated within one
structure.

• In the same line as the previous item, performing process mining analysis di-
rectly on the OpenSLEX structure would allow for interesting complex analyses.
Transforming event data from databases into regular event logs is a lossy process
in which data must be flattened into event, trace, and log attributes. However,

1https://spark.apache.org/

https://spark.apache.org/

9.4 Reflection 199

original data often present many dimensions and transitive relations between
different data objects. One possibility would be the verification of complex
data compliance rules in the database context. The data perspective integrated
within OpenSLEX makes it possible to explore data related to events in a struc-
ture that is close to its original form.

9.4 Reflection
We conclude this thesis by reflecting on our contributions in a broader context. When
carrying out a process mining project, a large amount of time and resources are spent
during the data extraction and preparation phase. The growing trend in terms of
data size and complexity of systems indicate that this problem will remain relevant
in the future.

The main motivation to develop the methods and techniques described in the
contributions of this thesis is the unavoidable need for automated data extraction and
preparation. We believe that efforts must be made in order to shift the time dedicated
to process mining projects from the data extraction and preparation phases to focus
on the important parts of the analysis. Automating tedious steps as much as possible
seems crucial to save time, effort, and cost.

However, the data available in enterprise information systems do not capture the
whole picture of an organization. A lot of domain knowledge is still required to make
sense of the data and to obtain insights from the results provided by the process mining
techniques. One of the aims of process mining is to provide insights to support better
decision making. We cannot rely on automated systems to make assumptions and
decisions if we provide them with incomplete data. Our contributions do not aim at
replacing the role of the business analyst. Instead, they provide tool support to speed
up his work and to explore data in innovative ways that were out of reach before,
mainly due to time and cost constraints.

We believe that the automation of the different steps involved in a process mining
project can only be achieved to a certain extent. Domain knowledge will always be
necessary to focus the analysis on relevant aspects and to interpret the results in
order to obtain meaningful insights. The goal is to achieve a fluid level of interplay
between support tools and domain experts so that data-backed insights can be used
to improve the decision making in modern organizations.

Structure of a comb: a, vertical section at top
of comb; b, vertical section showing transition
from worker to drone cells; c, horizontal sec-
tion at side of comb showing end-bar frame;
d, horizontal section of worker brood cells; e,
diagram showing transition cells.
“Beekeeping: a discussion of the life of the
honeybee and of the production of honey”,

Everett Franklin Phillips, 1923

A
Mapping from
Data Sources

to OpenSLEX

In this appendix, we provide extended formalizations of the mapping between the
three environments presented in Chapter 4 and the meta-model proposed in Chapter 3.

Section 5.6 presented three environments in which data were extracted from their
corresponding databases and transformed to adapt to the structure of our meta-model.
Next, the transformed datasets where analyzed in Section 4.3. This section presents
a formal description of these three environments, as well as their mapping to the
meta-model.

In Section A.1 we formalize the common aspects of any relational database. Also,
we provide a definition of how events can be found in the database. The purpose
of the section is to provide a common ground. Sections A.2, A.3, and A.4 formalize
the aspects that are different for each of the three environments: redo-logs, in-table
versioning, and SAP change logs. The next step is to define a mapping from the
source definitions of these environments to the OpenSLEX meta-model. The mapped
definitions in Section A.5 demonstrate how to transform data from the source database
to a format that complies with the OpenSLEX structure provided in Chapter 3.

Figure A.1 shows a diagram of the mapping between the source data and the meta-
model elements. We see that some of the source elements need a special mapping
depending on the environment. For instance, the source object model (Valid Source
Object Model) of redo-log and SAP environments share the same structure, while
it requires a special mapping in the case of in-table versioning. Each of the blocks
depicted in the diagram corresponds to a definition in the coming subsections.

201

202 Mapping from Data Sources to OpenSLEX

Figure A.1: Mapping of the elements of each of the three environments to the OpenSLEX
meta-model.

A.1 Common Definitions to the three Environments
The three environments we are dealing with use a relational database to store all
the relevant information. Therefore, the three of them share some characteristics.
Some of these characteristics have been introduced in Chapter 2, specifically in Sec-
tion 2.2. The concepts of Source Data Model, Source Object Model, and Valid Source
Object Model are described in definitions 7, 9, and 10 respectively. In this subsection,
additional formalizations common to the three environments are presented.

In one form or the other, we find events when extracting our data. Something
in common between the events we find in the three mentioned environments is that
three types can be distinguished: additions, updates, and deletions. Addition events
correspond to row insertions in a table, like INSERT operations in an SQL statement
executed in a database. Update events represent UPDATE operations, where values
in a table row are modified. Deletion events correspond to the removal of rows in
a table, e.g., the execution of a DELETE statement in SQL. For our purposes, we
define these three types for each class in the source database. We call these types
source event types, as explained in Definition 30.

Definition 30 (Source Event Types) Let SDM = (C , A,classAttr, val ,PK ,FK ,keyClass,
keyRel,keyAttr,refAttr) be a source data model and VSOM the set of valid source object
models. SET = ETadd ∪ETupd ∪ETdel is the set of source event types composed of the
following pairwise disjoint sets:

• ETadd = {(⊕,c) | c ∈C } are the event types for adding objects,

• ETupd = {(⊘,c) | c ∈C } are the event types for updating objects,

A.1 Common Definitions to the three Environments 203

• ETdel = {(⊖,c) | c ∈C } are the event types for deleting objects.

Each of the three environments we are trying to formalize present different char-
acteristics when recording execution events. In general, we say that an event in a
database context is represented by an event type (operation performed), a map of
old values (old values in the columns of the row affected by the operation), and a
map of new values (new values in the same row after the operation). For instance, an
event can be represented by an update on the values of a row in a table, capturing
the row before and after the change. Definition 31 provides a common, base concept
of source events. However, in further sections we will see what the characteristics of
this concept are in each of the environments.

Definition 31 (Source Events) Let SDM = (C , A,classAttr,val,PK ,FK ,keyClass,keyRel,
keyAttr,refAttr) be a source data model, VSOM the set of valid source object models,
and SET the set of source event types. SE is the set of source events such that
∀e ∈ SE : ∃et ∈ SET : e = (et,mapold,mapnew).

Finally, something needed for the mapping between these systems and our meta-
model is the existence of a concept of source event occurrence and source change
log. Definition 32 provides a description of these concepts. These concepts are an
abstraction on different ways to store event occurrences and change logs as observed
in each environment. The coming sections discuss these differences and how a change
log can be inferred in each case.

Definition 32 (Source Event Occurrence and Source Change Log) Let SDM = (C ,
A,classAttr,val,PK ,FK ,keyClass,keyRel,keyAttr,refAttr) be a source data model, VSOM
the set of valid source object models and SE the set of source events. Assume
some universe of timestamps TS. eo = (e, ts) ∈ SE ×TS is a source event occurrence.
SEO(SDM ,SE) = SE ×TS is the set of all possible source event occurrences. A source
change log SCL = 〈eo1,eo2, ...,eon〉 is a sequence of source event occurrences such that
time is non-decreasing, i.e., SCL = 〈eo1,eo2, ...,eon〉 ∈ (SEO(SDM ,SE))∗ and tsi ≤ tsj for
any eoi = (ei , tsi) and eoj = (e j , tsj) with 1 ≤ i < j ≤ n.

Finally, Definition 33 establishes some useful notations for further definitions, with
respect to source event occurrences and source object ids.

Definition 33 (Notation) Assume a universe of timestamps TS, and a source data
model SDM. We define the following shorthand: objectId(c,map) = {(a, v) ∈ A ×V |a ∈
keyAttr(PKc)∧map(a) = v}, i.e., it returns a set of pairs (attribute,value) for a mapping
map according to the attributes of the primary key of such class c in the source data
model.

Now, all the common elements of the three environments have been formalized.
These represent the common ground needed in order to make the mapping to our
meta-model. The three following sections (Section A.2, Section A.3, and Section A.4)
formalize some of the concepts that differ between the three environments. Finally,
Section A.5 proposes a mapping to our meta-model.

204 Mapping from Data Sources to OpenSLEX

A.2 Database Redo-Logs: Formalization
The redo-log environment presents some particularities with respect to how the events
are represented. Definition 34 formalizes this concept while maintaining compatibility
with the common description of source events in Definition 31.

Definition 34 (Redo-Log Events) Let SDM = (C , A,classAttr,val,PK ,FK ,keyClass,
keyRel,keyAttr,refAttr) be a source data model, VSOM the set of valid source object
models and ⊥ the null value. SE = Eadd ∪ Eupd ∪ Edel is the set of source events
composed of the following pairwise disjoint sets:

• Eadd = {((⊕,c),mapold,mapnew)) | (c,mapnew) ∈ OSDM ∧ mapold =⊥}

• Eupd = {((⊘,c),mapold,mapnew)) | (c,mapold) ∈ OSDM ∧ (c,mapnew) ∈ OSDM }

• Edel = {((⊖,c),mapold,mapnew)) | (c,mapold) ∈ OSDM ∧ mapnew =⊥}

Mainly, this is the only difference between the redo-log environment and the com-
mon description provided in the previous section. However, for the other two envi-
ronments, some additional details need to be taken into account.

A.3 In-Table Versioning: Formalization
In the case of in-table versioning environments, change logs are not explicitly recorded.
However, we find object versions implicitly recorded within the tables of the database.
Definition 35 formalizes this structure.

Definition 35 (Implicit Versions Record) Let SDM = (C , A,classAttr,val,PK ,FK ,
keyClass,keyRel,keyAttr,refAttr) be a source data model. An implicit versions record is
a tuple IVR = (OBJECTID,TIMESTAMP,VERID,FNAMES,value) such that:

• OBJECTID ⊆N is a set of object identifiers,

• TIMESTAMP is a set of timestamps of versions,

• VERID ⊆ C×OBJECTID×TIMESTAMP is a set of unique version identifiers formed
by the combination of a table name, an object id, and a time stamp,

• FNAMES ⊆ A is the set of attributes of the object version,

• value ∈ (VERID× A) ̸→ V is a mapping between a pair (versionId,attributeName)
and its new value after the change.

Now that we know how object versions are being defined in this specific envi-
ronment, we can show how it affects our previous definition of source object model.
Definition 36 shows the compatibility in this particular case.

A.3 In-Table Versioning: Formalization 205

Definition 36 (ITV Source Object Model) Given a source data model SDM = (C , A,
classAttr,val,PK ,FK ,keyClass,keyRel,keyAttr,refAttr) and an implicit versions record
IVR, an ITV source object model SOM is a set of objects such that SOM ⊆ OSDM such
that: ∀o = (c,map) ∈ SOM : c ∈ C ∧∀a ∈ domain(map) : a ∈ FNAMES∧∃v = (tab,ob, ts) ∈
VERID : map(a) = value(v,a)∧ ̸ ∃v ′ = (tab,ob, ts′) ∈ VERID : ts′ > ts, i.e., the ITV source
object model SOM is formed by all the most recent object versions for each object id.

Definition 37 (Notation) Let SDM = (C , A,classAttr,val,PK ,FK ,keyClass,keyRel,
keyAttr,refAttr) be a source data model, and IVR = (OBJECTID,TIMESTAMP,VERID,
FNAMES,value) an implicit versions record. Given a version id vid = (tab,ob, ts) ∈
VERID, we define the following shorthands:

• itvEvType(id)

• itvEvType ∈ VERID → {⊕,⊘} is a function mapping object version ids to types
of change, such that itvEvType(vid) =⊕ ⇐⇒ Øvid′ = (tab’,ob′, ts′) ∈ VERID : tab′ =
tab∧ob′ = ob∧ts′ < ts, i.e., if a previous version of the same object does not exist
it is considered to be an addition change. Otherwise, itvEvType(vid) =⊘, i.e., it
is considered to be an update,

• itvTs ∈ VERID → TIMESTAMP is a function mapping object version ids to time-
stamps such that, itvTs(vid) = ts,

• itvTabName ∈ VERID → C is a function mapping object version ids to table names
such that, itvTabName(vid) = tab,

• itvObjId ∈ VERID → OBJECTID is a function mapping object version ids to object
ids such that, itvObjId(vid) = ob,

• itvPrevVerId ∈ VERID → (VERID∪⊥) is a function mapping object version ids to
their predecessor object version id (or null id if a predecessor does not exist) such
that, itvPrevVerId(vid) = vid′∧ (vid′ = (tab′,ob′, ts′)∧ tab = tab′∧ob = ob′∧ ts > ts′∧
Ø(tab′,ob′, ts′′) ∈ VERID : ts > ts′′ > ts′)∨ (itvEvType(vid) =⊕∧vid′ =⊥),

Finally, the only building block left to define in this case is the correlation between
the previous definition of source event occurrences (Definition 32) with this environ-
ment. Definition 38 shows that equivalence and provides the key to translate implicit
object versions into source event occurrences.

Definition 38 (ITV Source Event Occurrences) Let TS be a universe of timestamps,
V a universe of values and SDM a source data model SDM = (C , A,classAttr,val,PK ,
FK ,keyClass,keyRel,keyAttr,refAttr). We say that SEO(SDM , IVR) = SE ×TS×V ×V is a
set of ITV source event occurrences such that:
∀eo = (((evT ,c),mapold,mapnew), ts) ∈ SEO(SDM , IVR) : ∃id ∈ VERID:

• evT = itvEvType(id)∧
• c = itvTabName(id)∧

206 Mapping from Data Sources to OpenSLEX

• ({itvPrevVerId(id)}×domain(mapold)) ⊆ domain(value)∧
• ({id}×domain(mapnew)) ⊆ domain(value)∧
• ∀a ∈ domain(mapold) : mapold(a) = value(itvPrevVerId(id),a)∧
• ∀a ∈ domain(mapnew) : mapnew(a) = value(id,a)∧
• ts = itvTs(id)∧
• itvObjId(id) = objectId(c,mapnew).

That is, for each source event occurrence in SEO(SDM , IVR) exists an implicit version
record in IVR that shares values for all its properties.

A.4 SAP-style Change Table: Formalization
SAP systems are a different kind of environment. They are closely related to the redo
log environments, with the difference that the change record contains the relevant
information in a slightly different way. Definition 39 provides details on this SAP
change record.

Definition 39 (SAP Change Record) Assume a universe of values V, a universe of
date values DATE and a universe of time values TIME. Given a source data model
SDM = (C , A,classAttr,val,PK ,FK ,keyClass,keyRel,keyAttr,refAttr), a SAP change record
is a tuple SCR = (CHNR,OBJECTID,CHNID,uName,uDate,uTime,change_ind,
tabName, tabKey, fName,value_new,value_old) such that:

• CHNR ⊆N is a set of SAP change numbers,

• OBJECTID ⊆N is a set of SAP object ids,

• CHNID ⊆ CHNR×C ×OBJECTID is a set of unique change identifiers formed by
the combination of a change number (CHNR), an object class
(C) and an object id (OBJECTID),

• uName ∈ CHNID →V is a mapping between change ids and user name strings,

• uDate ∈ CHNID → DATE is a mapping between change ids and date values,

• uTime ∈ CHNID → TIME is a mapping between change ids and time values,

• change_ind ∈ CHNID → {⊕,⊘,⊖} is a mapping between change ids and a change
type,

• tabName ∈ CHNID →C is a mapping between change ids and a class name,

• tabKey ∈ CHNID → V is a mapping between change ids and the primary key of
the modified object,

A.5 Common Meta-Model Mapping for the three Environments 207

• fName ∈ CHNID →P (A) is a mapping between change ids and a set of changed
attributes,

• value_new ∈ (CHNID× A) ̸→V is a mapping between a pair (change id,attribute
name) and its new value after the change,

• value_old ∈ (CHNID× A) ̸→ V is a mapping between a pair (change id,attribute
name) and its old value before the change.

The previous definition gives us the ground to build the mapping to source event
occurrences. Definition 40 describes how to obtain the source event occurrences pre-
viously introduced from the SAP change record. This allows inferring the change log
necessary to build our meta-model.

Definition 40 (SAP Source Event Occurrences) Assume a universe of timestamps
TS, a universe of values V, and a function convertDateTime ∈ (DATE ×TIME) → TS
that maps pairs of date and time values into a timestamp. Given a source
data model SDM = (C , A,classAttr,val,PK ,FK ,keyClass,keyRel,keyAttr,refAttr) and a
SAP change record SCR = (CHNR,OBJECTID,CHNID,uName,uDate,uTime,change_ind,
tabName, tabKey, fName,
value_new,value_old), we define SEO(SDM ,SCR) = SE ×TS×V ×V as a set of source
event occurrences such that ∀eo = (((evT ,c),mapold,mapnew), ts) ∈ SEO(SDM ,SCR) :
∃id ∈ CHNID:

• evT = change_ind(i d)∧
• c = tabName(i d)∧
• mapold(fName(i d)) = value_old(fName(i d))∧
• mapnew(fName(i d)) = value_new(fName(i d))∧
• ts = convertDateTime(uDate(i d),uTime(i d))∧
• tabKey(i d) = objectId(c,mapnew).

That is, for each event occurrence in SEO(SDM ,SCR) exists an event record in SCR
that shares values for all its properties.

A.5 Common Meta-Model Mapping for the three Envi-
ronments

In the previous sections we have defined the common aspects of the three environments
under study, together with the characteristics of each of them. At this point, we
have defined the necessary notions to map each concept from the original sources
to our meta-model. In this section we will define this mapping for each of the main
elements of the meta-model, except for the cases and process models sectors. These are

208 Mapping from Data Sources to OpenSLEX

independent from the source data and can be inferred from the extracted information
once it has been already mapped to our meta-model. We will start with the mapping
of the source data model in Definition 41.

Definition 41 (Mapped Data Model) Given a source data model SDM = (C , A,
classAttr,val,PK ,FK ,keyClass,keyRel,keyAttr,refAttr), a mapped data model is a tuple
MDM = (CL,AT ,classOfAttribute,RS,sourceClass, targetClass) such that:

• CL =C is a set of class names,

• AT = A is a set of attribute names,

• classOfAttribute ∈ AT → CL is a function that maps each attribute to a class, such
that ∀at ∈ AT : at ∈ classAttr(classOfAttribute(at)),

• RS = FK is a set of relationship names,

• sourceClass ∈ RS → CL is a function that maps each relationship to its source
class, such that ∀rs ∈ RS : sourceClass(rs) = keyClass(rs),

• targetClass ∈ RS → CL is a function that maps each relationship to its target class,
such that ∀rs ∈ RS : targetClass(rs) = keyClass(keyRel(rs)).

The same can be done with the source object model. Its mapping is formalized in
Definition 42. Also, in Definition 43 we redefine the concept of timestamps to include
the situations in which the beginning or end of a period are unknown. Next, some
useful notations for further definitions are expressed in Definition 44.

Definition 42 (Mapped Object Collection) Assume SOM ∈ VSOM to be a valid source
object model, MDM a mapped data model, and OBJ the set of all possible objects for
MDM. A mapped object collection MOC is a set of objects such that MOC ⊆ OBJ, and
mappedObj ∈ MOC ↔ SOM is a bijective function that maps every mapped object to a
source object and vice versa.

Definition 43 (Universe of Global Timestamps) Assume TS to be a universe of time-
stamps. A universe of global timestamps is a set GTS such that GTS = TS∪ {−∞}∪ {+∞},
where −∞ represents an undefined timestamp in the past, and +∞ an undefined time-
stamp in the future. These timestamps fulfill the following condition: ∀ts ∈ TS : −∞<
ts <+∞.

Definition 44 (Notation) Assume a universe of timestamps TS. Given a source change
log SCL and a mapped data model MDM = (CL,AT ,classOfAttribute,RS,sourceClass,
targetClass), we define the following shorthands:

• SCLb
a(c,oid) = {eoi ∈ SCL|eoi = ((evT ,c),mapold,mapnew, t)∧b > i > a∧

objectId(c,mapnew) = oid}, is the set of event occurrences in the source change log
such that all of them occurred after the a-th and before the b-th element of the
sequence, and they correspond to objects of class c and with the object id oid,

A.5 Common Meta-Model Mapping for the three Environments 209

• tseo ∈P (SCL) →P (TS) is a function that returns a set of timestamps correspond-
ing to the provided set of event occurrences.

One of the key elements of this mapping is the version collection. In Definition 45
we use the source change log and object models to infer the content of the versions
part of our meta-model.

Definition 45 (Mapped Version Collection) Assume a universe of global time-
stamps GTS, a mapped object collection MOC, a source data model SDM =
(C , A,classAttr,val,PK ,FK ,keyClass,keyRel,keyAttr,refAttr), a mapped data model
MDM = (CL,classOfAttribute,AT ,RS,sourceClass, targetClass), and a source change log
SCL =< eo1,eo2, ...,eon >.
A mapped object version collection is a tuple MOVC = (OV ,attValue,startTimestamp,
endTimestamp,REL) such that:

• OV = {(c,map, ts , te)} is a set of object versions for which the following holds:

– ∀o = (c,map) ∈ MOC : ∃ov ∈ OV : ov = (c,map, ts, te) ∧ te = +ϕ ∧ ts =
max(tseo(SCLn

1 (c, id)),−ϕ), i.e., for every object in the mapped object col-
lection exists a version for which the start timestamp is either unknown or
the timestamp of the last source event occurrence that affected that object,
and the end timestamp is unknown,

– ∀i ∈ 1..n : eoi = ((evT ,c),mapold,mapnew, tev) ∈ SCL : ∃ov ∈ OV : ov = (c,map, ts ,
te)∧(((evT =⊕∨evT =⊘)∧mapnew = map∧ ts = tev∧ te = min(ts(SCLn

i+1(c, id)),

+ϕ))∨ (evT = ⊖∧mapold = map∧ te = tev ∧ ts = max(ts(SCLi−1
1 (c, id)),−ϕ))),

i.e., for every source event occurrence that represents an addition or a
modification, there is an object version with the values after the event
occurrence, start timestamp equal to the event occurrence timestamp, and
end timestamp equal to the one of the next event occurrence that affected the
same object. In case it is the first version of the object, the start timestamp
will be unknown. If it is the last version of the object, the end timestamp
will be unknown instead.

• attValue ∈ (AT ×OV) ̸→ V is a function that maps values to pairs of attributes
and object versions such that, given an attribute at ∈ AT and an object version
ov = (c,map, ts , te), attValue(at,ov) = map(at),

• startTimestamp ∈ OV → GTS is a function that returns the start timestamp
of an object version such that, given an obj. version ov = (c,map, ts , te),
startTimestamp(ov) = ts ,

• endTimestamp ∈ OV → GTS is a function that returns the end timestamp of
an object version such that, given an object version ov = (c,map, ts , te),
endTimestamp(ov) = te ,

210 Mapping from Data Sources to OpenSLEX

• REL ⊆ (RS×OV ×OV) is a set of triples relating pairs of object versions through
specific relationships such that, given a relationship rs ∈ RS, and two object
versions ova = (ca ,mapa, tsa, tea) ∈ OV and ovb = (cb ,mapb, tsb, teb) ∈ OV , it is always
true that (rs,ova,ovb) ∈ REL ⇐⇒ rs ∈ FK ∧ sourceClass(rs) = ca ∧ targetClass(rs) =
cb∧(tsa ≤ tsb ≤ tea∨tsb ≤ tsa ≤ teb)∧∀at ∈ keyAtt(rs) : mapa(at) = mapb(refAttr(rs,at)),
i.e., two object versions are related through a relationship if they belong to the
source and target classes of the relationship respectively, and if there is a mapped
foreign key from the source data model such that both version share the same
values for the key attributes. In addition, both versions must have coexisted in
time.

Finally, in Definition 46 we describe how the events of the meta-model are mapped
to the source change log.

Definition 46 (Mapped Event Collection) Assume V to be some universe of val-
ues, TS a universe of timestamps and SCL a source change log SCL =
< eo1,eo2, ...,eon >. A mapped event collection is a tuple MEC = (EV ,EVAT ,
eventAttributeValue,eventTimestamp) such that:

• EV is a set of events,

• EVAT is a set of event attribute names,

• eventAttributeValue ∈ (EV ×EVAT) ̸→ V is a function that maps a pair of an event
and event attribute name to a value,

• eventTimestamp ∈ EV → TS is a function that maps each event to a timestamp.

And for each event in the mapped event collection, there is an event occur-
rence in the mapped change log that shares timestamp and attribute values,
i.e., ∀ev ∈ EV : ∃eo ∈ SCL : eo = (((evT ,c),mapold,mapnew), ts)∧ ts = eventTimestamp(ev)∧
∀(ev,at) ∈ domain(eventAttributeValue) : mapnew(at) = eventAttributeValue(ev,at).

The presented mapping specifies how data are represented in each of the considered
environments. Also, it shows how this data can be transformed in order to populate
with content our meta-model, with the purpose of performing further analysis in a
more standardized and automated way.

Bibliography

[1] IEEE Standard for eXtensible Event Stream (XES) for Achieving Interoperabil-
ity in Event Logs and Event Streams. IEEE Std 1849-2016, pages 1–50, Nov
2016. (Cited on pages 32, 43, and 45.)

[2] J. F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM,
26(11):832–843, Nov. 1983. (Cited on page 142.)

[3] A. A. Andaloussi, A. Burattin, and B. Weber. Toward an automated labeling of
event log attributes. In Enterprise, Business-Process and Information Systems
Modeling, pages 82–96. Springer, 2018. (Cited on page 107.)

[4] M. A. Assaf, Y. Badr, and Y. Amghar. A continuous query language for stream-
based artifacts. In International Conference on Database and Expert Systems
Applications, pages 80–89. Springer, 2017. (Cited on pages 137 and 138.)

[5] M. Backmann, A. Baumgrass, N. Herzberg, A. Meyer, and M. Weske. Model-
driven event query generation for business process monitoring. In Service-
Oriented Computing–ICSOC 2013 Workshops, pages 406–418. Springer, 2013.
(Cited on pages 137 and 138.)

[6] A. V. Baquero and O. Molloy. Integration of event data from heterogeneous
systems to support business process analysis. In Knowledge Discovery, Knowl-
edge Engineering and Knowledge Management, pages 440–454. Springer, 2012.
(Cited on pages 137 and 138.)

[7] D. Bayomie, I. M. Helal, A. Awad, E. Ezat, and A. ElBastawissi. Deducing case
ids for unlabeled event logs. In International Conference on Business Process
Management, pages 242–254. Springer, 2015. (Cited on page 107.)

[8] B. Benatallah, H. R. Motahari-Nezhad, S. Sakr, et al. A query language for
analyzing business processes execution. In Business Process Management, pages
281–297. Springer, 2011. (Cited on pages 137 and 138.)

[9] A. Bolt and W. M. P. van der Aalst. Multidimensional process mining us-
ing process cubes. In Enterprise, Business-Process and Information Systems
Modeling - 16th International Conference, BPMDS 2015, 20th International
Conference, EMMSAD 2015, Held at CAiSE 2015, Stockholm, Sweden, June
8-9, 2015, Proceedings, pages 102–116, 2015. (Cited on page 46.)

211

212 BIBLIOGRAPHY

[10] A. Bottrighi, L. Canensi, G. Leonardi, S. Montani, and P. Terenziani. Trace
retrieval for business process operational support. Expert Systems with Appli-
cations, 55:212–221, 2016. (Cited on pages 137 and 138.)

[11] S. Bowers, T. McPhillips, B. Ludäscher, S. Cohen, and S. B. Davidson. A
model for user-oriented data provenance in pipelined scientific workflows. In
Provenance and Annotation of Data, pages 133–147. Springer, 2006. (Cited on
pages 137 and 138.)

[12] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001. (Cited on
page 108.)

[13] J. C. A. M. Buijs. Mapping data sources to XES in a generic way. Master’s
thesis, Technische Universiteit Eindhoven, The Netherlands, 2010. (Cited on
page 28.)

[14] P. Buneman, S. Khanna, and T. Wang-Chiew. Why and where: A characteriza-
tion of data provenance. In International conference on database theory, pages
316–330. Springer, 2001. (Cited on page 132.)

[15] A. Burattin and R. Vigo. A framework for semi-automated process instance
discovery from decorative attributes. In Computational Intelligence and Data
Mining (CIDM), 2011 IEEE Symposium on, pages 176–183. IEEE, 2011. (Cited
on page 107.)

[16] C. J. Burges, R. Ragno, and Q. V. Le. Learning to rank with nonsmooth cost
functions. In Advances in neural information processing systems, pages 193–200,
2007. (Cited on page 108.)

[17] C. J. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and
G. Hullender. Learning to rank using gradient descent. In Proceedings of the
22nd international conference on Machine learning, pages 89–96. ACM, 2005.
(Cited on page 108.)

[18] D. Calvanese, T. E. Kalayci, M. Montali, and A. Santoso. Obda for log extrac-
tion in process mining. In Reasoning Web International Summer School, pages
292–345. Springer, 2017. (Cited on page 107.)

[19] D. Calvanese, T. E. Kalayci, M. Montali, and A. Santoso. The onprom toolchain
for extracting business process logs using ontology-based data access. In Pro-
ceedings of the BPM Demo Track and BPM Dissertation Award. CEUR-WS.
org, 2017. (Cited on page 107.)

[20] D. Calvanese, T. E. Kalayci, M. Montali, A. Santoso, and W. Van Der Aalst.
Conceptual schema transformation in ontology-based data access. In Euro-
pean Knowledge Acquisition Workshop, pages 50–67. Springer, 2018. (Cited on
page 197.)

BIBLIOGRAPHY 213

[21] D. Calvanese, T. E. Kalayci, M. Montali, and S. Tinella. Ontology-based data
access for extracting event logs from legacy data: the onprom tool and method-
ology. In International Conference on Business Information Systems, pages
220–236. Springer, 2017. (Cited on page 107.)

[22] F. Chirigati and J. Freire. Towards integrating workflow and database prove-
nance. In Provenance and Annotation of Data and Processes, pages 11–23.
Springer, 2012. (Cited on pages 137 and 138.)

[23] F. Costa, V. Silva, D. De Oliveira, K. Ocaña, E. Ogasawara, J. Dias, and
M. Mattoso. Capturing and querying workflow runtime provenance with prov:
a practical approach. In Proceedings of the Joint EDBT/ICDT 2013 Workshops,
pages 282–289. ACM, 2013. (Cited on pages 137 and 138.)

[24] V. Cuevas-Vicenttin, S. Dey, M. L. Y. Wang, T. Song, and B. Ludascher. Mod-
eling and querying scientific workflow provenance in the D-OPM. In High Per-
formance Computing, Networking, Storage and Analysis (SCC), pages 119–128.
IEEE, 2012. (Cited on pages 137 and 138.)

[25] S. B. Davidson and J. Freire. Provenance and scientific workflows: challenges
and opportunities. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 1345–1350. ACM, 2008. (Cited on
page 132.)

[26] D. Deutch and T. Milo. Top-k projection queries for probabilistic business
processes. In Proceedings of the 12th International Conference on Database
Theory. ACM, 2009. (Cited on pages 137 and 138.)

[27] E. Domínguez, B. Pérez, Á. L. Rubio, M. A. Zapata, A. Allué, and A. López.
Developing provenance-aware query systems: an occurrence-centric approach.
Knowledge and Information Systems, 50(2):661–688, 2017. (Cited on pages 137
and 138.)

[28] J. Eder, G. E. Olivotto, and W. Gruber. A data warehouse for workflow logs. In
Engineering and Deployment of Cooperative Information Systems, pages 1–15.
Springer, 2002. (Cited on page 46.)

[29] B. Fazzinga, S. Flesca, F. Furfaro, E. Masciari, L. Pontieri, and C. Pulice. A
framework supporting the analysis of process logs stored in either relational or
NoSQL DBMSs. In Foundations of Intelligent Systems, pages 52–58. Springer,
2015. (Cited on pages 137 and 138.)

[30] D. R. Ferreira and D. Gillblad. Discovering process models from unlabelled
event logs. In International Conference on Business Process Management, pages
143–158. Springer, 2009. (Cited on page 107.)

[31] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting
algorithm for combining preferences. Journal of machine learning research,
4(Nov):933–969, 2003. (Cited on page 108.)

214 BIBLIOGRAPHY

[32] J. H. Friedman. Greedy function approximation: a gradient boosting machine.
Annals of statistics, pages 1189–1232, 2001. (Cited on page 108.)

[33] L. M. Gadelha Jr, M. Wilde, M. Mattoso, and I. Foster. MTCProv: a practical
provenance query framework for many-task scientific computing. Distributed
and Parallel Databases, 30(5-6):351–370, 2012. (Cited on pages 137 and 138.)

[34] N. Gehrke and N. Mueller-Wickop. Basic principles of financial process mining
a journey through financial data in accounting information systems. In AMCIS,
page 289, 2010. (Cited on page 50.)

[35] A. Gierth and D. Fetter. Cyclic Tag System
http://www.webcitation.org/6Db5tYVpi. Technical report, PostgreSQL
wiki, 2011. (Cited on page 162.)

[36] E. González-López de Murillas, J. Fabra, P. Álvarez, and J. Ezpeleta. Par-
allel computation of the reachability graph of petri net models with semantic
information. Software: Practice and Experience, 2016. (Cited on page 228.)

[37] E. González López de Murillas, E. Helm, H. A. Reijers, and J. Küng. Audit trails
in openslex: Paving the road for process mining in healthcare. In Information
Technology in Bio- and Medical Informatics: 8th International Conference,
ITBAM 2017, Lyon, France, 2017. (Cited on page 228.)

[38] E. González López de Murillas, H. A. Reijers, and G. E. Hoogendoorn. Redo log
process mining in real life: Data challenges & opportunities. In Business Pro-
cess Management Workshops: BPM 2017 International Workshops, Barcelona,
Spain, September 11, 2017. Springer International Publishing, 2017. (Cited on
pages 15, 54, and 228.)

[39] E. González López de Murillas, H. A. Reijers, and W. M. P. van der Aalst.
Case notion discovery and recommendation: Automated event log building on
databases. Under review. (Cited on pages 15, 53, 59, and 228.)

[40] E. González López de Murillas, H. A. Reijers, and W. M. P. van der Aalst.
Connecting databases with process mining: A meta model and toolset. In In-
ternational Workshop on Business Process Modeling, Development and Support,
pages 231–249. Springer, 2016. (Cited on pages 15 and 229.)

[41] E. González López de Murillas, H. A. Reijers, and W. M. P. van der Aalst.
Everything you always wanted to know about your process, but did not know
how to ask. In M. Dumas and M. Fantinato, editors, Business Process Man-
agement Workshops, pages 296–309, Cham, 2016. Springer International Pub-
lishing. (Cited on pages 16, 132, and 228.)

[42] E. González López de Murillas, H. A. Reijers, and W. M. P. van der Aalst.
Connecting databases with process mining: a meta model and toolset. Software
& Systems Modeling, Feb 2018. (Cited on pages 15, 86, 138, 152, 163, and 228.)

BIBLIOGRAPHY 215

[43] E. González López de Murillas, H. A. Reijers, and W. M. P. van der Aalst. Data-
Aware Process Oriented Query Language, chapter Process Querying Methods.
Springer International Publishing AG, 2019. Under Review. (Cited on pages 16
and 228.)

[44] E. González López de Murillas, W. M. P. van der Aalst, and H. A. Reijers. Pro-
cess mining on databases: Unearthing historical data from redo logs. In Business
Process Management, pages 367–385. Springer, 2015. (Cited on pages 15, 28,
50, 52, 54, 55, 56, 59, and 229.)

[45] V. Gopalkrishnan, Q. Li, and K. Karlapalem. Star/snow-flake schema driven
object-relational data warehouse design and query processing strategies. In
DataWarehousing and Knowledge Discovery, pages 11–22. Springer, 1999.
(Cited on page 81.)

[46] N. Guarino. On the semantics of ongoing and future occurrence identifiers.
In International Conference on Conceptual Modeling, pages 477–490. Springer,
2017. (Cited on page 46.)

[47] N. Guarino and G. Guizzardi. “We need to discuss the relationship”: Revisiting
relationships as modeling constructs. In International Conference on Advanced
Information Systems Engineering, pages 279–294. Springer, 2015. (Cited on
page 46.)

[48] N. Guarino and G. Guizzardi. Relationships and events: towards a general
theory of reification and truthmaking. In Conference of the Italian Association
for Artificial Intelligence, pages 237–249. Springer, 2016. (Cited on page 46.)

[49] G. Guizzardi, N. Guarino, and J. P. A. Almeida. Ontological considerations
about the representation of events and endurants in business models. In Inter-
national Conference on Business Process Management, pages 20–36. Springer,
2016. (Cited on page 46.)

[50] C. Gunther. Process Mining in Flexible Environments. PhD thesis, Eindhoven
University of Technology, 2009. (Cited on pages 83, 92, and 107.)

[51] N. Herzberg, A. Meyer, and M. Weske. Improving business process intelligence
by observing object state transitions. Data & Knowledge Engineering, 98:144–
164, 2015. (Cited on page 47.)

[52] B. F. Hompes, J. C. A. M. Buijs, and W. M. P. van der Aalst. A generic
framework for context-aware process performance analysis. In OTM Confeder-
ated International Conferences” On the Move to Meaningful Internet Systems”,
pages 300–317. Springer, 2016. (Cited on pages 113 and 128.)

[53] B. F. Hompes, J. C. A. M. Buijs, W. M. P. van der Aalst, P. Dixit, and J. Buur-
man. Discovering deviating cases and process variants using trace clustering. In
27th Benelux Conference on Artificial Intelligence, 5-6 November 2015, Hasselt,
Belgium, 11 2015. (Cited on pages 113 and 123.)

216 BIBLIOGRAPHY

[54] X. Huang, Z. Bao, S. B. Davidson, T. Milo, and X. Yuan. Answering regu-
lar path queries on workflow provenance. In Data Engineering (ICDE), 2015
IEEE 31st International Conference on, pages 375–386. IEEE, 2015. (Cited on
pages 137 and 138.)

[55] J. E. Ingvaldsen and J. A. Gulla. Preprocessing support for large scale process
mining of SAP transactions. In Business Process Management Workshops, pages
30–41. Springer, 2008. (Cited on pages 28, 50, and 107.)

[56] M. Jans and P. Soffer. From relational database to event log: Decisions with
quality impact. In Business Process Management Workshops: BPM 2017 In-
ternational Workshops, Barcelona, Spain, September 11, 2017. Springer Inter-
national Publishing, 2017. (Cited on pages 83, 92, and 106.)

[57] R. Kimball and J. Caserta. The Data Warehouse ETL Toolkit: Practical Tech-
niques for Extracting, Cleaning, Conforming, and Delivering Data. John Wiley
& Sons, 2011. (Cited on page 20.)

[58] R. Koenker and K. F. Hallock. Quantile regression. Journal of economic per-
spectives, 15(4):143–156, 2001. (Cited on page 102.)

[59] P. Koksal, S. N. Arpinar, and A. Dogac. Workflow history management. ACM
Sigmod Record, 27(1):67–75, 1998. (Cited on pages 137 and 138.)

[60] Y. Lederer Antonucci and R. J. Goeke. Identification of appropriate responsi-
bilities and positions for business process management success: Seeking a valid
and reliable framework. Business process management Journal, 17(1):127–146,
2011. (Cited on page 154.)

[61] M. Leemans, W. M. P. van der Aalst, and M. G. van den Brand. Recursion
aware modeling and discovery for hierarchical software event log analysis. In
2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 185–196. IEEE, 2018. (Cited on page 113.)

[62] S. J. J. Leemans. Robust process mining with guarantees. PhD thesis, Eindhoven
University of Technology, May 2017. (Cited on pages xv, 5, 6, and 7.)

[63] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst. Discovering block-
structured process models from event logs-a constructive approach. In Applica-
tion and Theory of Petri Nets and Concurrency, pages 311–329. Springer, 2013.
(Cited on page 163.)

[64] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst. Discovering block-
structured process models from event logs containing infrequent behaviour.
In International conference on business process management, pages 66–78.
Springer, 2013. (Cited on pages xv, 23, 24, 113, and 116.)

[65] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst. Process and deviation
exploration with inductive visual miner. In BPM Demo Sessions 2014, volume
1295, pages 46–50. Springer, 2014. (Cited on page 180.)

BIBLIOGRAPHY 217

[66] G. Li, E. González López de Murillas, R. Medeiros de Carvalho, and W. M. P.
van der Aalst. Extracting object-centric event logs to support process mining on
databases. In Information Systems in the Big Data Era, pages 182–199, Cham,
2018. Springer International Publishing. (Cited on page 228.)

[67] C. Lim, S. Lu, A. Chebotko, and F. Fotouhi. Opql: A first opm-level query
language for scientific workflow provenance. In Services Computing (SCC),
2011 IEEE International Conference on, pages 136–143. IEEE, 2011. (Cited on
pages 137 and 138.)

[68] C. Lim, S. Lu, A. Chebotko, and F. Fotouhi. Storing, reasoning, and querying
OPM-compliant scientific workflow provenance using relational databases. Fu-
ture Generation Computer Systems, 27(6):781–789, 2011. (Cited on pages 137
and 138.)

[69] D. Liu. XQuery meets Datalog: Data relevance query for workflow trustwor-
thiness. In Research Challenges in Information Science (RCIS 2010), pages
169–174. IEEE, 2010. (Cited on pages 137 and 138.)

[70] D. Liu, C. Pedrinaci, and J. Domingue. Semantic enabled complex event lan-
guage for business process monitoring. In Proceedings of the 4th International
Workshop on Semantic Business Process Management, pages 31–34. ACM, 2009.
(Cited on pages 137 and 138.)

[71] X. Lu, D. Fahland, and W. M. P. van der Aalst. Interactively exploring logs
and mining models with clustering, filtering, and relabeling. Proceedings of the
BPM 2016 Tool Demonstration Track, 2016. (Cited on page 113.)

[72] X. Lu, M. Nagelkerke, D. van de Wiel, and D. Fahland. Discovering interacting
artifacts from ERP systems. IEEE Trans. Services Computing, 8(6):861–873,
2015. (Cited on pages 45 and 85.)

[73] E. R. Mahendrawathi, H. M. Astuti, and I. R. K. Wardhani. Material move-
ment analysis for warehouse business process improvement with process mining:
A case study. In Asia Pacific Business Process Management, pages 115–127.
Springer, 2015. (Cited on page 28.)

[74] F. Mannhardt, M. de Leoni, and H. A. Reijers. The multi-perspective process
explorer. In Proceedings of the BPM Demo Session 2015, Co-located with the
13th International Conference on Business Process Management {(BPM} 2015),
Innsbruck, Austria, September 2, 2015, pages 130–134. CEUR Workshop Pro-
ceedings, 2015. (Cited on page 127.)

[75] F. Mannhardt, M. De Leoni, H. A. Reijers, and W. M. P. van der Aalst.
Balanced multi-perspective checking of process conformance. Computing,
98(4):407–437, 2016. (Cited on pages 113 and 127.)

218 BIBLIOGRAPHY

[76] F. Mannhardt, M. de Leoni, H. A. Reijers, and W. M. P. van der Aalst. Data-
driven process discovery-revealing conditional infrequent behavior from event
logs. In International Conference on Advanced Information Systems Engineer-
ing, pages 545–560. Springer, 2017. (Cited on pages 23, 113, and 118.)

[77] R. S. Mans, W. M. P. van der Aalst, R. J. B. Vanwersch, and A. J. Moleman.
Process mining in healthcare: Data challenges when answering frequently posed
questions. In Process Support and Knowledge Representation in Health Care,
pages 140–153. Springer, 2013. (Cited on page 154.)

[78] T. Metzke, A. Rogge-Solti, A. Baumgrass, J. Mendling, and M. Weske. En-
abling semantic complex event processing in the domain of logistics. In Service-
Oriented Computing–ICSOC 2013 Workshops, pages 419–431. Springer, 2013.
(Cited on pages 137 and 138.)

[79] D. Metzler and W. B. Croft. Linear feature-based models for information re-
trieval. Information Retrieval, 10(3):257–274, 2007. (Cited on page 108.)

[80] A. Meyer, L. Pufahl, D. Fahland, and M. Weske. Modeling and enacting complex
data dependencies in business processes. In Proceedings of the 11th international
conference on Business Process Management, pages 171–186. Springer-Verlag,
2013. (Cited on page 47.)

[81] B. Meyer. Introduction to the Theory of Programming Languages. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1990. (Cited on pages 144 and 146.)

[82] M. Momotko and K. Subieta. Process query language: A way to make workflow
processes more flexible. In Advances in Databases and Information Systems,
pages 306–321. Springer, 2004. (Cited on pages 137 and 138.)

[83] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwasnikowska,
S. Miles, P. Missier, J. Myers, et al. The open provenance model core specifica-
tion (v1. 1). Future generation computer systems, 27(6):743–756, 2011. (Cited
on page 135.)

[84] H. R. Motahari-Nezhad, R. Saint-Paul, F. Casati, and B. Benatallah. Event
correlation for process discovery from web service interaction logs. The VLDB
Journal, 20(3):417–444, June 2011. (Cited on page 107.)

[85] N. Mueller-Wickop and M. Schultz. ERP event log preprocessing: Timestamps
vs. accounting logic. In Design Science at the Intersection of Physical and
Virtual Design, volume 7939 of Lecture Notes in Computer Science, pages 105–
119. Springer Berlin Heidelberg, 2013. (Cited on page 28.)

[86] O. Müller, T. Schmiedel, E. Gorbacheva, and J. vom Brocke. Towards a typol-
ogy of business process management professionals: identifying patterns of com-
petences through latent semantic analysis. Enterprise IS, 10(1):50–80, 2016.
(Cited on pages xxii, 154, and 155.)

BIBLIOGRAPHY 219

[87] T. Neumuth, S. Mansmann, M. H. Scholl, and O. Burgert. Data warehousing
technology for surgical workflow analysis. In Computer-Based Medical Systems,
2008. CBMS’08. 21st IEEE International Symposium on, pages 230–235. IEEE,
2008. (Cited on page 46.)

[88] A. Y. Ng. Feature selection, l1 vs. l2 regularization, and rotational invariance. In
Proceedings of the Twenty-first International Conference on Machine Learning,
ICML ’04, pages 78–, New York, NY, USA, 2004. ACM. (Cited on page 108.)

[89] L. Niedrite, D. Solodovnikova, M. Treimanis, and A. Niedritis. Goal-driven de-
sign of a data warehouse-based business process analysis system. In Proceedings
of the 6th Conference on 6th WSEAS Int. Conf. on Artificial Intelligence, Knowl-
edge Engineering and Data Bases, pages 243–249, 2007. (Cited on page 46.)

[90] M. J. Panik. Advanced statistics from an elementary point of view, volume 9.
Academic Press, 2005. (Cited on page 93.)

[91] J. M. Perez-Alvarez, M. T. Gomez-Lopez, L. Parody, and R. M. Gasca. Process
instance query language to include process performance indicators in dmn. In
Enterprise Distributed Object Computing Workshop (EDOCW), 2016 IEEE 20th
International, pages 1–8. IEEE, 2016. (Cited on pages 137 and 138.)

[92] V. Popova, D. Fahland, and M. Dumas. Artifact lifecycle discovery. Inter-
national Journal of Cooperative Information Systems, 24(01):1550001, 2015.
(Cited on page 45.)

[93] O. Poppe, S. Giessl, E. A. Rundensteiner, and F. Bry. The HIT model:
workflow-aware event stream monitoring. In Transactions on Large-Scale Data-
and Knowledge-Centered Systems XI, pages 26–50. Springer, 2013. (Cited on
pages 137 and 138.)

[94] S. Radeschütz, H. Schwarz, and F. Niedermann. Business impact analysis: a
framework for a comprehensive analysis and optimization of business processes.
Computer Science-Research and Development, 30(1):69–86, 2015. (Cited on
pages 137 and 138.)

[95] M. Räim, C. Di Ciccio, F. M. Maggi, M. Mecella, and J. Mendling. Log-based
understanding of business processes through temporal logic query checking. In
On the Move to Meaningful Internet Systems: OTM 2014 Conferences, pages
75–92. Springer, 2014. (Cited on pages 137 and 138.)

[96] M. Ray, M. Liu, E. Rundensteiner, D. J. Dougherty, C. Gupta, S. Wang,
A. Mehta, and I. Ari. Optimizing complex sequence pattern extraction using
caching. In Data Engineering Workshops (ICDEW), 2011 IEEE 27th Interna-
tional Conference on, pages 243–248. IEEE, 2011. (Cited on pages 137 and 138.)

[97] A. Roest. A practitioner’s guide for process mining on ERP systems : the case
of SAP order to cash. Master’s thesis, Technische Universiteit Eindhoven, The
Netherlands, 2012. (Cited on page 50.)

220 BIBLIOGRAPHY

[98] M. Rosemann and M. Zur Muehlen. Evaluation of workflow management
systems-a meta model approach. Australian Journal of Information Systems,
6(1), 1998. (Cited on page 45.)

[99] M. A. Sakka and B. Defude. Towards a scalable semantic provenance man-
agement system. In Transactions on Large-Scale Data-and Knowledge-Centered
Systems VII, pages 96–127. Springer, 2012. (Cited on pages 137 and 138.)

[100] I. Segers. Investigating the application of process mining for auditing pur-
poses. Master’s thesis, Technische Universiteit Eindhoven, The Netherlands,
2007. (Cited on page 50.)

[101] Y. Sismanis, P. Brown, P. J. Haas, and B. Reinwald. Gordian: efficient and
scalable discovery of composite keys. In Proceedings of the 32nd international
conference on Very large data bases, pages 691–702. VLDB Endowment, 2006.
(Cited on pages 52 and 169.)

[102] M. Solanki and C. Brewster. A knowledge driven approach towards the valida-
tion of externally acquired traceability datasets in supply chain business pro-
cesses. In Knowledge Engineering and Knowledge Management, pages 503–518.
Springer, 2014. (Cited on pages 137 and 138.)

[103] L. Song, J. Wang, L. Wen, W. Wang, S. Tan, and H. Kong. Querying process
models based on the temporal relations between tasks. In Enterprise Distributed
Object Computing Conference Workshops (EDOCW), 2011 15th IEEE Interna-
tional, pages 213–222. IEEE, 2011. (Cited on pages 137 and 138.)

[104] J. Štolfa, M. Kopka, S. Štolfa, O. Koběrskỳ, and V. Snášel. An application of
process mining to invoice verification process in sap. In Innovations in Bio-
inspired Computing and Applications, pages 61–74. Springer, 2014. (Cited on
page 28.)

[105] Y. Tang, I. Mackey, and J. Su. Querying workflow logs. Information, 9(2):25,
2018. (Cited on pages 137 and 138.)

[106] N. Tax, S. Bockting, and D. Hiemstra. A cross-benchmark comparison of 87
learning to rank methods. Information Processing & Management, 51(6):757 –
772, 2015. (Cited on page 104.)

[107] W. M. P. van der Aalst. Process cubes: Slicing, dicing, rolling up and drilling
down event data for process mining. In Asia Pacific Business Process Manage-
ment - First Asia Pacific Conference, AP-BPM 2013, Beijing, China, August
29-30, 2013. Selected Papers, pages 1–22, 2013. (Cited on page 46.)

[108] W. M. P. van der Aalst. Extracting event data from databases to unleash
process mining. In J. vom Brocke and T. Schmiedel, editors, BPM - Driving
Innovation in a Digital World, Management for Professionals, pages 105–128.
Springer International Publishing, 2015. (Cited on page 54.)

BIBLIOGRAPHY 221

[109] W. M. P. van der Aalst. Process mining: data science in action. Springer, 2016.
(Cited on pages 4, 21, 22, 23, and 111.)

[110] W. M. P. van der Aalst, A. Adriansyah, A. K. A. de Medeiros, F. Arcieri, et al.
Process Mining Manifesto, pages 169–194. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012. (Cited on pages 8, 9, 11, and 12.)

[111] W. M. P. van der Aalst, A. Adriansyah, and B. F. van Dongen. Replaying history
on process models for conformance checking and performance analysis. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(2):182–
192, 2012. (Cited on pages 6, 24, 113, and 125.)

[112] W. M. P. van der Aalst and M. Song. Mining social networks: Uncovering in-
teraction patterns in business processes. In International conference on business
process management, pages 244–260. Springer, 2004. (Cited on page 113.)

[113] B. F. van Dongen and W. M. P. van der Aalst. A meta model for process mining
data. Proceedings of the CAiSE’05 Workshops (EMOI-INTEROP Workshop),
2:309–320, 2005. (Cited on page 45.)

[114] M. L. van Eck, X. Lu, S. J. J. Leemans, and W. M. P. van der Aalst. PM2: A
process mining project methodology. In International Conference on Advanced
Information Systems Engineering, pages 297–313. Springer, 2015. (Cited on
pages xv and 2.)

[115] R. J. B. Vanwersch, K. Shahzad, K. Vanhaecht, P. W. P. J. Grefen, L. M.
Pintelon, J. Mendling, G. G. Van Merode, and H. A. Reijers. Methodological
support for business process redesign in health care: a literature review proto-
col. International Journal of Care Pathways, 15(4):119–126, 2011. (Cited on
page 133.)

[116] H. M. W. Verbeek, J. C. A. M. Buijs, B. F. van Dongen, and W. M. P. van der
Aalst. XES, XESame, and ProM 6. In Information Systems Evolution, pages
60–75. Springer, 2011. (Cited on page 50.)

[117] T. Vogelgesang and H. Appelrath. PMCube: A data-warehouse-based approach
for multidimensional process mining. In Business Process Management Work-
shops - BPM 2015, 13th International Workshops, Innsbruck, Austria, Au-
gust 31 - September 3, 2015, Revised Papers, pages 167–178, 2015. (Cited on
page 46.)

[118] T. Vogelgesang and H. Appelrath. A relational data warehouse for multidimen-
sional process mining. In Proceedings of the 5th International Symposium on
Data-driven Process Discovery and Analysis (SIMPDA 2015), Vienna, Austria,
December 9-11, 2015., pages 64–78, 2015. (Cited on page 46.)

[119] T. Vogelgesang, G. Kaes, S. Rinderle-Ma, and H. Appelrath. Multidimensional
process mining: Questions, requirements, and limitations. In Proceedings of

222 BIBLIOGRAPHY

the CAiSE’16 Forum, at the 28th International Conference on Advanced Infor-
mation Systems Engineering (CAiSE 2016), Ljubljana, Slovenia, June 13-17,
2016., pages 169–176, 2016. (Cited on page 46.)

[120] M. Walicki and D. R. Ferreira. Sequence partitioning for process mining with
unlabeled event logs. Data & Knowledge Engineering, 70(10):821–841, 2011.
(Cited on page 107.)

[121] H. J. Watson and B. H. Wixom. The current state of business intelligence.
Computer, 40(9):96–99, Sept 2007. (Cited on page 1.)

[122] A. J. M. M. Weijters, W. M. P. van der Aalst, and A. K. Alves De Medeiros.
Process mining with the HeuristicsMiner algorithm. BETA publicatie : working
papers. Technische Universiteit Eindhoven, 2006. (Cited on pages 23 and 118.)

[123] Q. Wu, C. J. Burges, K. M. Svore, and J. Gao. Adapting boosting for informa-
tion retrieval measures. Information Retrieval, 13(3):254–270, 2010. (Cited on
page 108.)

[124] J. Xu and H. Li. Adarank: a boosting algorithm for information retrieval.
In Proceedings of the 30th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 391–398. ACM, 2007.
(Cited on page 108.)

[125] K. Yano, Y. Nomura, and T. Kanai. A practical approach to automated busi-
ness process discovery. In Enterprise Distributed Object Computing Conference
Workshops (EDOCW), 2013 17th IEEE International, pages 53–62, Sept 2013.
(Cited on page 50.)

[126] M. Zhang, M. Hadjieleftheriou, B. C. Ooi, C. M. Procopiuc, and D. Srivastava.
On multi-column foreign key discovery. Proceedings of the VLDB Endowment,
3(1-2):805–814, 2010. (Cited on pages 52 and 169.)

[127] M. Zur Muehlen. Process-driven management information systems combining
data warehouses and workflow technology. In Proceedings of the International
Conference on Electronic Commerce Research (ICECR-4), pages 550–566, 2001.
(Cited on page 46.)

[128] M. zur Muehlen. Workflow-based process controlling-or: What you can measure
you can control. Workflow handbook, pages 61–77, 2001. (Cited on page 46.)

[129] M. Zur Muehlen and M. Rosemann. Workflow-based process monitoring and
controlling-technical and organizational issues. In Proceedings of the 33rd Annual
Hawaii International Conference on System Sciences, pages 10–pp. IEEE, 2000.
(Cited on page 46.)

[130] M. zur Muhlen. Evaluation of workflow management systems using meta mod-
els. In Systems Sciences. HICSS-32. Proceedings of the 32nd Annual Hawaii
International Conference on, pages 11–pp. IEEE, 1999. (Cited on page 45.)

Summary

Process Mining on Databases: Extracting Event Data from
Real-Life Data Sources

Process mining as a discipline is gaining importance in recent years. Its focus is on
the analysis of business processes by means of process execution data. It is a common
misconception to think that a process mining project starts as soon as the data are
available. We tend to underestimate the time, knowledge, and number of iterations
needed to gather relevant data and build an event log suitable for analysis. In many
cases, the data extraction and preparation phase can take up to 80% of the project
duration. Improving this time-consuming initial phase will have a large impact on
the whole process mining project in terms of time, cost, and quality of insights.

In this thesis, we take on several challenges related to data extraction, multi-
perspective event log building, and event data querying. We consider environments
in which many business processes coexist, sharing data both in a centralized and
distributed storage. The aim of this work is twofold. First, to ease the path for
practitioners to get started with a process mining project in unknown environments
when domain knowledge is not always available. Second, to provide the tools needed
for event data querying and to build specialized event logs for a more effective process
mining analysis. We propose several techniques that, together, constitute a pipeline
connecting databases with existing process mining techniques:

• A meta-model for process mining on databases (in Chapter 3). This meta-model
aims to standardize the way to capture and structure both data and process
aspects of an organization.

• Data extraction adapters for several scenarios (in Chapter 4). These adapters
developed for some mainstream scenarios allow us to extract and transform data
from databases to comply with the proposed meta-model structure.

• A technique to discover and recommend case notions in order to build event logs
for process mining (in Chapter 5). This is achieved by exploring possible views
on the data, correlating events by means of the underlying relations extracted
from the original database, and assessing their “interestingness” with respect to
some metrics.

224 Summary

• A data-aware process oriented query language (in Chapter 7). This query lan-
guage provides a compact and easy way to express relevant queries in the busi-
ness context by means of constructs that exploit the underlying meta-model.

The techniques presented in this thesis have been evaluated using representative
sample datasets that resemble the most relevant challenges that can be found in real-
life environments, as well as case studies with real databases. The results show that
these techniques succeed at capturing a more comprehensive picture of the systems
under study, improving the quality of the generated event logs, and supporting the
user in the process of data extraction and log building. Moreover, they are a step
ahead towards the goal of automatic data extraction and process mining analysis of
complex IT systems. Implementations of our techniques are publicly available and
licensed as open source.

Acknowledgements

First of all, I want to thank my first promotor, Hajo Reijers, for his inestimable
supervision and support during the whole project. In good and bad times, you were
there to reassure me and to guide me in the right direction. Both your commitment
and your warmth make you not only a formidable supervisor, but also a good friend.
Second in the list of promotors, but not less important, is Wil van der Aalst. Thank
you for your invaluable contribution to this thesis, the constructive discussions, your
guidance, and your support in moments of uncertainty.

I must not forget those who introduced me to the research world. Thanks to my
master’s thesis supervisors, Francisco Javier Fabra Caro and Joaquín Ezpeleta from
the University of Zaragoza. Without your help and sponsorship, I would have not
had the opportunity to pursue this PhD project.

The defense of this PhD thesis would have not been possible without the external
PhD committee members: Avidor Gal, Marco Montali, George Fletcher, and Joaquín
Ezpeleta. Thank you all for accepting to be part of the committee and for taking the
time to read this PhD thesis.

Special thanks to the secretaries, Ine, Riet and José. You all make the life of
everyone at the department much easier, and you do it with a smile. Thanks specially
to Ine for being such a nice person. You are always willing to help and even to do
what is beyond your duties, like proofreading this thesis. Without people like you,
the university would collapse.

I must thank my new colleagues at Accha for giving me the opportunity to be
part of a great team. Thank you for your understanding during the last stages of my
PhD and for letting me take some time to finalize the thesis. I hope we can build nice
things together.

A PhD would be almost impossible to bear without its social component. Thanks
to all past and present colleagues and friends at the AIS group and at the TU/e in
general. You all made the experience so much more pleasant and enjoyable with the
innumerable Friday afternoon drinks, barbecues, borrels, trips, and karaoke nights.
A special mention goes to my two paranymphs, Bas and Laura. Thank you for your
friendship and for accepting the task. I know you will protect me well if things go
south during the defense. And of course, special thanks go to Alfredo. During these
years we shared a roof, an office and a lasting friendship. All this would have been
very different without you. Come back soon, Europe needs you.

Pursuing a PhD can be quite an absorbing experience. Luckily, we have friends to
remind us that there is more in life than research. Whenever I went back to Calahorra,
Zaragoza, Madrid, or Barcelona, I had friends I could count on. A special mention

225

226 Acknowledgements

goes to the wine, liquor, and piña colada lovers, my little family in Eindhoven. Thank
you all for your unconditional friendship, that is what matters the most.

It would have been impossible to obtain this degree without the unconditional love
and support of my family: my parents Luis and Rosa, my brother Chelis, my sisters
María and Pilar, and all the other members of the family. You always backed me up
along the course of my life and studies. From you I learned the most valuable lessons.
You all were my best teachers. Thanks to the newcomer too, Mateo. You constantly
teach us the importance of every little step.

No hubiera sido posible alcanzar esta meta sin el amor y apoyo incondicional de mi
familia: mis padres Luis y Rosa, mi hermano Chelis, mis hermanas María y Pilar, y
el resto de miembros de la familia. Siempre me habéis apoyado a lo largo de mi vida y
estudios. De vosotros aprendí las lecciones más valiosas. Vosotros fuisteis mis mejores
profesores. Gracias también al recién llegado, Mateo. Día a día nos demuestras la
importancia de cada pequeño paso.

E ultima, ma non per importanza, Simona. Sei instancabile, esattamente come
un’ape, sempre impegnata a fare mille cose: lavorare, fare sport, cucinare, viaggiare,
e dimenticarti di alcune cose lungo la strada. E, nonostante tutto, riesci sempre a
trovare il tempo per noi. Tu hai fatto si che questa esperienza valesse davvero la pena
di essere vissuta. Grazie per essere sempre presente, per avermi supportato quando
ne ho avuto bisogno, e per avermi mostrato quanto può essere bella la vita insieme.
Grazie Amore.

Eduardo González López de Murillas
Eindhoven, February 2019

Curriculum Vitae

Eduardo González López de Murillas was born on 17th September 1986 and grew up
in Calahorra, Spain. In 2011 he received the Master of Science in Computer Science
and Engineering at University of Zaragoza, in Zaragoza, Spain. During his studies,
he also participated in the Erasmus program and spent the academic year 2009-2010
at Tampere University of Technology, in Tampere, Finland. From 2011 until 2014 he
worked as a researcher at University of Zaragoza.

In February 2014, he started a PhD project at Eindhoven University of Technology,
in Eindhoven, The Netherlands of which this thesis is the result. Since October 2017
he is working as a machine learning engineer at Precedence B.V. in Eindhoven.

227

List of Publications
E. González López de Murillas has the following publications:

Book Chapters
• E. González López de Murillas, H. A. Reijers, and W. M. P. van der Aalst. Data-

Aware Process Oriented Query Language, chapter Process Querying Methods.
Springer International Publishing AG, 2019. Under Review

Journals
• E. González López de Murillas, H. A. Reijers, and W. M. P. van der Aalst.

Case notion discovery and recommendation: Automated event log building on
databases. Under review

• E. González López de Murillas, H. A. Reijers, and W. M. P. van der Aalst.
Connecting databases with process mining: a meta model and toolset. Software
& Systems Modeling, Feb 2018

• E. González-López de Murillas, J. Fabra, P. Álvarez, and J. Ezpeleta. Par-
allel computation of the reachability graph of petri net models with semantic
information. Software: Practice and Experience, 2016

Proceedings and Workshop Contributions
• G. Li, E. González López de Murillas, R. Medeiros de Carvalho, and W. M. P.

van der Aalst. Extracting object-centric event logs to support process mining on
databases. In Information Systems in the Big Data Era, pages 182–199, Cham,
2018. Springer International Publishing

• E. González López de Murillas, H. A. Reijers, and G. E. Hoogendoorn. Redo log
process mining in real life: Data challenges & opportunities. In Business Pro-
cess Management Workshops: BPM 2017 International Workshops, Barcelona,
Spain, September 11, 2017. Springer International Publishing, 2017

• E. González López de Murillas, E. Helm, H. A. Reijers, and J. Küng. Audit
trails in openslex: Paving the road for process mining in healthcare. In Informa-
tion Technology in Bio- and Medical Informatics: 8th International Conference,
ITBAM 2017, Lyon, France, 2017

• E. González López de Murillas, H. A. Reijers, and W. M. P. van der Aalst. Ev-
erything you always wanted to know about your process, but did not know how
to ask. In M. Dumas and M. Fantinato, editors, Business Process Management
Workshops, pages 296–309, Cham, 2016. Springer International Publishing

• E. González López de Murillas, H. A. Reijers, and W. M. P. van der Aalst.
Connecting databases with process mining: A meta model and toolset. In In-
ternational Workshop on Business Process Modeling, Development and Support,
pages 231–249. Springer, 2016

• E. González López de Murillas, W. M. P. van der Aalst, and H. A. Reijers.
Process mining on databases: Unearthing historical data from redo logs. In
Business Process Management, pages 367–385. Springer, 2015

SIKS dissertations

2011

2011-01 Botond Cseke (RUN), Varia-
tional Algorithms for Bayesian Inference
in Latent Gaussian Models.
2011-02 Nick Tinnemeier(UU), Organiz-
ing Agent Organizations. Syntax and Op-
erational Semantics of an Organization-
Oriented Programming Language.
2011-03 Jan Martijn van der Werf
(TUE), Compositional Design and Verifi-
cation of Component-Based Information
Systems.
2011-04 Hado van Hasselt (UU), Insights
in Reinforcement Learning; Formal anal-
ysis and empirical evaluation of temporal-
difference.
2011-05 Base van der Raadt (VU), En-
terprise Architecture Coming of Age -
Increasing the Performance of an Emerg-
ing Discipline..
2011-06 Yiwen Wang (TUE), Semantically-
Enhanced Recommendations in Cultural
Heritage.
2011-07 Yujia Cao (UT), Multimodal In-
formation Presentation for High Load
Human Computer Interaction.
2011-08 Nieske Vergunst (UU), BDI-
based Generation of Robust Task-
Oriented Dialogues.
2011-09 Tim de Jong (OU), Contextu-
alised Mobile Media for Learning.
2011-10 Bart Bogaert (UvT), Cloud Con-
tent Contention.
2011-11 Dhaval Vyas (UT), Designing for

Awareness: An Experience-focused HCI
Perspective.
2011-12 Carmen Bratosin (TUE), Grid
Architecture for Distributed Process Min-
ing.
2011-13 Xiaoyu Mao (UvT), Airport un-
der Control. Multiagent Scheduling for
Airport Ground Handling.
2011-14 Milan Lovric (EUR), Behavioral
Finance and Agent-Based Artificial Mar-
kets.
2011-15 Marijn Koolen (UvA), The
Meaning of Structure: the Value of Link
Evidence for Information Retrieval.
2011-16 Maarten Schadd (UM), Selective
Search in Games of Different Complexity.
2011-17 Jiyin He (UVA), Exploring Topic
Structure: Coherence, Diversity and Re-
latedness.
2011-18 Mark Ponsen (UM), Strategic
Decision-Making in complex games.
2011-19 Ellen Rusman (OU), The Mind ’
s Eye on Personal Profiles.
2011-20 Qing Gu (VU), Guiding service-
oriented software engineering - A view-
based approach.
2011-21 Linda Terlouw (TUD), Modu-
larization and Specification of Service-
Oriented Systems.
2011-22 Junte Zhang (UVA), System
Evaluation of Archival Description and
Access.
2011-23 Wouter Weerkamp (UVA), Find-
ing People and their Utterances in Social
Media.

231

2011-24 Herwin van Welbergen (UT),
Behavior Generation for Interpersonal
Coordination with Virtual Humans On
Specifying, Scheduling and Realizing Mul-
timodal Virtual Human Behavior.
2011-25 Syed Waqar ul Qounain Jaffry
(VU)), Analysis and Validation of Models
for Trust Dynamics.
2011-26 Matthijs Aart Pontier (VU), Vir-
tual Agents for Human Communication
- Emotion Regulation and Involvement-
Distance Trade-Offs in Embodied Conver-
sational Agents and Robots.
2011-27 Aniel Bhulai (VU), Dynamic
website optimization through autonomous
management of design patterns.
2011-28 Rianne Kaptein(UVA), Effective
Focused Retrieval by Exploiting Query
Context and Document Structure.
2011-29 Faisal Kamiran (TUE),
Discrimination-aware Classification.
2011-30 Egon van den Broek (UT), Affec-
tive Signal Processing (ASP): Unraveling
the mystery of emotions.
2011-31 Ludo Waltman (EUR), Compu-
tational and Game-Theoretic Approaches
for Modeling Bounded Rationality.
2011-32 Nees-Jan van Eck (EUR),
Methodological Advances in Bibliomet-
ric Mapping of Science.
2011-33 Tom van der Weide (UU), Argu-
ing to Motivate Decisions.
2011-34 Paolo Turrini (UU), Strategic
Reasoning in Interdependence: Logical
and Game-theoretical Investigations.
2011-35 Maaike Harbers (UU), Explain-
ing Agent Behavior in Virtual Training.
2011-36 Erik van der Spek (UU), Experi-
ments in serious game design: a cognitive
approach.
2011-37 Adriana Burlutiu (RUN), Ma-
chine Learning for Pairwise Data, Ap-
plications for Preference Learning and
Supervised Network Inference.
2011-38 Nyree Lemmens (UM), Bee-

inspired Distributed Optimization.
2011-39 Joost Westra (UU), Organiz-
ing Adaptation using Agents in Serious
Games.
2011-40 Viktor Clerc (VU), Architectural
Knowledge Management in Global Soft-
ware Development.
2011-41 Luan Ibraimi (UT), Crypto-
graphically Enforced Distributed Data Ac-
cess Control.
2011-42 Michal Sindlar (UU), Explaining
Behavior through Mental State Attribu-
tion.
2011-43 Henk van der Schuur (UU), Pro-
cess Improvement through Software Op-
eration Knowledge.
2011-44 Boris Reuderink (UT), Robust
Brain-Computer Interfaces.
2011-45 Herman Stehouwer (UvT), Sta-
tistical Language Models for Alternative
Sequence Selection.
2011-46 Beibei Hu (TUD), Towards Con-
textualized Information Delivery: A Rule-
based Architecture for the Domain of Mo-
bile Police Work.
2011-47 Azizi Bin Ab Aziz(VU), Explor-
ing Computational Models for Intelligent
Support of Persons with Depression.
2011-48 Mark Ter Maat (UT), Response
Selection and Turn-taking for a Sensitive
Artificial Listening Agent.
2011-49 Andreea Niculescu (UT), Con-
versational interfaces for task-oriented
spoken dialogues: design aspects influenc-
ing interaction quality.

2012
2012-01 Terry Kakeeto (UvT), Relation-
ship Marketing for SMEs in Uganda.
2012-02 Muhammad Umair(VU), Adap-
tivity, emotion, and Rationality in Hu-
man and Ambient Agent Models.

2012-03 Adam Vanya (VU), Supporting
Architecture Evolution by Mining Soft-
ware Repositories.
2012-04 Jurriaan Souer (UU), Develop-
ment of Content Management System-
based Web Applications.
2012-05 Marijn Plomp (UU), Maturing
Interorganisational Information Systems.
2012-06 Wolfgang Reinhardt (OU),
Awareness Support for Knowledge Work-
ers in Research Networks.
2012-07 Rianne van Lambalgen (VU),
When the Going Gets Tough: Exploring
Agent-based Models of Human Perfor-
mance under Demanding Conditions.
2012-08 Gerben de Vries (UVA), Kernel
Methods for Vessel Trajectories.
2012-09 Ricardo Neisse (UT), Trust
and Privacy Management Support for
Context-Aware Service Platforms.
2012-10 David Smits (TUE), Towards a
Generic Distributed Adaptive Hypermedia
Environment.
2012-11 J.C.B. Rantham Prabhakara
(TUE), Process Mining in the Large: Pre-
processing, Discovery, and Diagnostics.
2012-12 Kees van der Sluijs (TUE),
Model Driven Design and Data Integra-
tion in Semantic Web Information Sys-
tems.
2012-13 Suleman Shahid (UvT), Fun and
Face: Exploring non-verbal expressions of
emotion during playful interactions.
2012-14 Evgeny Knutov(TUE), Generic
Adaptation Framework for Unifying
Adaptive Web-based Systems.
2012-15 Natalie van der Wal (VU), So-
cial Agents. Agent-Based Modelling of
Integrated Internal and Social Dynamics
of Cognitive and Affective Processes..
2012-16 Fiemke Both (VU), Helping peo-
ple by understanding them - Ambient
Agents supporting task execution and de-
pression treatment.
2012-17 Amal Elgammal (UvT), Towards

a Comprehensive Framework for Business
Process Compliance.
2012-18 Eltjo Poort (VU), Improving So-
lution Architecting Practices.
2012-19 Helen Schonenberg (TUE),
What’s Next? Operational Support for
Business Process Execution.
2012-20 Ali Bahramisharif (RUN),
Covert Visual Spatial Attention, a Robust
Paradigm for Brain-Computer Interfac-
ing.
2012-21 Roberto Cornacchia (TUD),
Querying Sparse Matrices for Informa-
tion Retrieval.
2012-22 Thijs Vis (UvT), Intelligence,
politie en veiligheidsdienst: verenigbare
grootheden?.
2012-23 Christian Muehl (UT), Toward
Affective Brain-Computer Interfaces: Ex-
ploring the Neurophysiology of Affect dur-
ing Human Media Interaction.
2012-24 Laurens van der Werff (UT),
Evaluation of Noisy Transcripts for Spo-
ken Document Retrieval.
2012-25 Silja Eckartz (UT), Managing
the Business Case Development in Inter-
Organizational IT Projects: A Methodol-
ogy and its Application.
2012-26 Emile de Maat (UVA), Making
Sense of Legal Text.
2012-27 Hayrettin Gurkok (UT), Mind
the Sheep! User Experience Evaluation &
Brain-Computer Interface Games.
2012-28 Nancy Pascall (UvT), Engender-
ing Technology Empowering Women.
2012-29 Almer Tigelaar (UT), Peer-to-
Peer Information Retrieval.
2012-30 Alina Pommeranz (TUD), De-
signing Human-Centered Systems for Re-
flective Decision Making.
2012-31 Emily Bagarukayo (RUN), A
Learning by Construction Approach for
Higher Order Cognitive Skills Improve-
ment, Building Capacity and Infrastruc-
ture.

2012-32 Wietske Visser (TUD), Qualita-
tive multi-criteria preference representa-
tion and reasoning.
2012-33 Rory Sie (OUN), Coalitions in
Cooperation Networks (COCOON).
2012-34 Pavol Jancura (RUN), Evolu-
tionary analysis in PPI networks and
applications.
2012-35 Evert Haasdijk (VU), Never Too
Old To Learn – On-line Evolution of Con-
trollers in Swarm- and Modular Robotics.
2012-36 Denis Ssebugwawo (RUN), Anal-
ysis and Evaluation of Collaborative Mod-
eling Processes.
2012-37 Agnes Nakakawa (RUN), A Col-
laboration Process for Enterprise Archi-
tecture Creation.
2012-38 Selmar Smit (VU), Parameter
Tuning and Scientific Testing in Evolu-
tionary Algorithms.
2012-39 Hassan Fatemi (UT), Risk-aware
design of value and coordination net-
works.
2012-40 Agus Gunawan (UvT), Informa-
tion Access for SMEs in Indonesia.
2012-41 Sebastian Kelle (OU), Game De-
sign Patterns for Learning.
2012-42 Dominique Verpoorten (OU),
Reflection Amplifiers in self-regulated
Learning.
2012-43 Withdrawn, .
2012-44 Anna Tordai (VU), On Combin-
ing Alignment Techniques.
2012-45 Benedikt Kratz (UvT), A Model
and Language for Business-aware Trans-
actions.
2012-46 Simon Carter (UVA), Explo-
ration and Exploitation of Multilingual
Data for Statistical Machine Translation.
2012-47 Manos Tsagkias (UVA), Mining
Social Media: Tracking Content and Pre-
dicting Behavior.
2012-48 Jorn Bakker (TUE), Handling
Abrupt Changes in Evolving Time-series
Data.

2012-49 Michael Kaisers (UM), Learning
against Learning - Evolutionary dynam-
ics of reinforcement learning algorithms
in strategic interactions.
2012-50 Steven van Kervel (TUD), On-
tologogy driven Enterprise Information
Systems Engineering.
2012-51 Jeroen de Jong (TUD), Heuris-
tics in Dynamic Sceduling; a practical
framework with a case study in elevator
dispatching.

2013
2013-01 Viorel Milea (EUR), News Ana-
lytics for Financial Decision Support.
2013-02 Erietta Liarou (CWI), Monet-
DB/DataCell: Leveraging the Column-
store Database Technology for Efficient
and Scalable Stream Processing.
2013-03 Szymon Klarman (VU), Reason-
ing with Contexts in Description Logics.
2013-04 Chetan Yadati(TUD), Coordi-
nating autonomous planning and schedul-
ing.
2013-05 Dulce Pumareja (UT), Group-
ware Requirements Evolutions Patterns.
2013-06 Romulo Goncalves(CWI), The
Data Cyclotron: Juggling Data and
Queries for a Data Warehouse Audience.
2013-07 Giel van Lankveld (UvT), Quan-
tifying Individual Player Differences.
2013-08 Robbert-Jan Merk(VU), Making
enemies: cognitive modeling for opponent
agents in fighter pilot simulators.
2013-09 Fabio Gori (RUN), Metagenomic
Data Analysis: Computational Methods
and Applications.
2013-10 Jeewanie Jayasinghe Arachchige
(UvT), A Unified Modeling Framework
for Service Design..
2013-11 Evangelos Pournaras(TUD),
Multi-level Reconfigurable Self-

organization in Overlay Services.
2013-12 Marian Razavian(VU),
Knowledge-driven Migration to Services.
2013-13 Mohammad Safiri(UT), Service
Tailoring: User-centric creation of in-
tegrated IT-based homecare services to
support independent living of elderly.
2013-14 Jafar Tanha (UVA), Ensemble
Approaches to Semi-Supervised Learning
Learning.
2013-15 Daniel Hennes (UM), Multiagent
Learning - Dynamic Games and Applica-
tions.
2013-16 Eric Kok (UU), Exploring the
practical benefits of argumentation in
multi-agent deliberation.
2013-17 Koen Kok (VU), The Power-
Matcher: Smart Coordination for the
Smart Electricity Grid.
2013-18 Jeroen Janssens (UvT), Outlier
Selection and One-Class Classification.
2013-19 Renze Steenhuizen (TUD), Co-
ordinated Multi-Agent Planning and
Scheduling.
2013-20 Katja Hofmann (UvA), Fast and
Reliable Online Learning to Rank for In-
formation Retrieval.
2013-21 Sander Wubben (UvT), Text-to-
text generation by monolingual machine
translation.
2013-22 Tom Claassen (RUN), Causal
Discovery and Logic.
2013-23 Patricio de Alencar Silva(UvT),
Value Activity Monitoring.
2013-24 Haitham Bou Ammar (UM),
Automated Transfer in Reinforcement
Learning.
2013-25 Agnieszka Anna Latoszek-
Berendsen (UM), Intention-based Deci-
sion Support. A new way of representing
and implementing clinical guidelines in a
Decision Support System.
2013-26 Alireza Zarghami (UT), Archi-
tectural Support for Dynamic Homecare
Service Provisioning.

2013-27 Mohammad Huq (UT),
Inference-based Framework Managing
Data Provenance.
2013-28 Frans van der Sluis (UT), When
Complexity becomes Interesting: An In-
quiry into the Information eXperience.
2013-29 Iwan de Kok (UT), Listening
Heads.
2013-30 Joyce Nakatumba (TUE),
Resource-Aware Business Process Man-
agement: Analysis and Support.
2013-31 Dinh Khoa Nguyen (UvT),
Blueprint Model and Language for En-
gineering Cloud Applications.
2013-32 Kamakshi Rajagopal (OUN),
Networking For Learning; The role of
Networking in a Lifelong Learner’s Pro-
fessional Development.
2013-33 Qi Gao (TUD), User Modeling
and Personalization in the Microblogging
Sphere.
2013-34 Kien Tjin-Kam-Jet (UT), Dis-
tributed Deep Web Search.
2013-35 Abdallah El Ali (UvA), Minimal
Mobile Human Computer Interaction.
2013-36 Than Lam Hoang (TUe), Pat-
tern Mining in Data Streams.
2013-37 Dirk Börner (OUN), Ambient
Learning Displays.
2013-38 Eelco den Heijer (VU), Au-
tonomous Evolutionary Art.
2013-39 Joop de Jong (TUD), A Method
for Enterprise Ontology based Design of
Enterprise Information Systems.
2013-40 Pim Nijssen (UM), Monte-Carlo
Tree Search for Multi-Player Games.
2013-41 Jochem Liem (UVA), Support-
ing the Conceptual Modelling of Dynamic
Systems: A Knowledge Engineering Per-
spective on Qualitative Reasoning.
2013-42 Léon Planken (TUD), Algo-
rithms for Simple Temporal Reasoning.
2013-43 Marc Bron (UVA), Exploration
and Contextualization through Interac-
tion and Concepts.

2014
2014-01 Nicola Barile (UU), Studies in
Learning Monotone Models from Data.
2014-02 Fiona Tuliyano (RUN), Com-
bining System Dynamics with a Domain
Modeling Method.
2014-03 Sergio Raul Duarte Torres (UT),
Information Retrieval for Children:
Search Behavior and Solutions.
2014-04 Hanna Jochmann-Mannak (UT),
Websites for children: search strategies
and interface design - Three studies on
children’s search performance and evalu-
ation.
2014-05 Jurriaan van Reijsen (UU),
Knowledge Perspectives on Advancing
Dynamic Capability.
2014-06 Damian Tamburri (VU), Sup-
porting Networked Software Development.
2014-07 Arya Adriansyah (TUE), Align-
ing Observed and Modeled Behavior.
2014-08 Samur Araujo (TUD), Data In-
tegration over Distributed and Heteroge-
neous Data Endpoints.
2014-09 Philip Jackson (UvT), Toward
Human-Level Artificial Intelligence: Rep-
resentation and Computation of Meaning
in Natural Language.
2014-10 Ivan Salvador Razo Zapata
(VU), Service Value Networks.
2014-11 Janneke van der Zwaan (TUD),
An Empathic Virtual Buddy for Social
Support.
2014-12 Willem van Willigen (VU), Look
Ma, No Hands: Aspects of Autonomous
Vehicle Control.
2014-13 Arlette van Wissen (VU), Agent-
Based Support for Behavior Change:
Models and Applications in Health and
Safety Domains.
2014-14 Yangyang Shi (TUD), Language

Models With Meta-information.
2014-15 Natalya Mogles (VU), Agent-
Based Analysis and Support of Human
Functioning in Complex Socio-Technical
Systems: Applications in Safety and
Healthcare.
2014-16 Krystyna Milian (VU), Support-
ing trial recruitment and design by auto-
matically interpreting eligibility criteria.
2014-17 Kathrin Dentler (VU), Comput-
ing healthcare quality indicators automat-
ically: Secondary Use of Patient Data
and Semantic Interoperability.
2014-18 Mattijs Ghijsen (VU), Methods
and Models for the Design and Study of
Dynamic Agent Organizations.
2014-19 Vincius Ramos (TUE), Adaptive
Hypermedia Courses: Qualitative and
Quantitative Evaluation and Tool Sup-
port.
2014-20 Mena Habib (UT), Named En-
tity Extraction and Disambiguation for
Informal Text: The Missing Link.
2014-21 Kassidy Clark (TUD), Negotia-
tion and Monitoring in Open Environ-
ments.
2014-22 Marieke Peeters (UT), Person-
alized Educational Games - Developing
agent-supported scenario-based training.
2014-23 Eleftherios Sidirourgos (UvA /
CWI), Space Efficient Indexes for the Big
Data Era.
2014-24 Davide Ceolin (VU), Trusting
Semi-structured Web Data.
2014-25 Martijn Lappenschaar (RUN),
New network models for the analysis of
disease interaction.
2014-26 Tim Baarslag (TUD), What to
Bid and When to Stop.
2014-27 Rui Jorge Almeida (EUR), Con-
ditional Density Models Integrating Fuzzy
and Probabilistic Representations of Un-
certainty.
2014-28 Anna Chmielowiec (VU), Decen-
tralized k-Clique Matching.

2014-29 Jaap Kabbedijk (UU), Variabil-
ity in Multi-Tenant Enterprise Software.
2014-30 Peter de Kock Berenschot
(UvT), Anticipating Criminal Behaviour.
2014-31 Leo van Moergestel (UU), Agent
Technology in Agile Multiparallel Manu-
facturing and Product Support.
2014-32 Naser Ayat (UVA), On Entity
Resolution in Probabilistic Data.
2014-33 Tesfa Tegegne Asfaw (RUN),
Service Discovery in eHealth.
2014-34 Christina Manteli (VU), The Ef-
fect of Governance in Global Software De-
velopment: Analyzing Transactive Mem-
ory Systems.
2014-35 Joost van Oijen (UU), Cognitive
Agents in Virtual Worlds: A Middleware
Design Approach.
2014-36 Joos Buijs (TUE), Flexible Evo-
lutionary Algorithms for Mining Struc-
tured Process Models.
2014-37 Maral Dadvar (UT), Experts and
Machines United Against Cyberbullying.
2014-38 Danny Plass-Oude Bos (UT),
Making brain-computer interfaces bet-
ter: improving usability through post-
processing..
2014-39 Jasmina Maric (UvT), Web
Communities, Immigration, and Social
Capital.
2014-40 Walter Omona (RUN), A Frame-
work for Knowledge Management Using
ICT in Higher Education.
2014-41 Frederic Hogenboom (EUR), Au-
tomated Detection of Financial Events in
News Text.
2014-42 Carsten Eijckhof (CWI/TUD),
Contextual Multidimensional Relevance
Models.
2014-43 Kevin Vlaanderen (UU), Sup-
porting Process Improvement using
Method Increments.
2014-44 Paulien Meesters (UvT), In-
telligent Blauw. Met als ondertitel:
Intelligence-gestuurde politiezorg in ge-

biedsgebonden eenheden..
2014-45 Birgit Schmitz (OUN), Mobile
Games for Learning: A Pattern-Based
Approach.
2014-46 Ke Tao (TUD), Social Web Data
Analytics: Relevance, Redundancy, Di-
versity.
2014-47 Shangsong Liang (UVA), Fusion
and Diversification in Information Re-
trieval.

2015
2015-01 Niels Netten (UvA), Machine
Learning for Relevance of Information
in Crisis Response.
2015-02 Faiza Bukhsh (UvT), Smart au-
diting: Innovative Compliance Checking
in Customs Controls.
2015-03 Twan van Laarhoven (RUN),
Machine learning for network data.
2015-04 Howard Spoelstra (OUN), Col-
laborations in Open Learning Environ-
ments.
2015-05 Christoph Bösch (UT), Crypto-
graphically Enforced Search Pattern Hid-
ing.
2015-06 Farideh Heidari (TUD), Busi-
ness Process Quality Computation - Com-
puting Non-Functional Requirements to
Improve Business Processes.
2015-07 Maria-Hendrike Peetz (UvA),
Time-Aware Online Reputation Analy-
sis.
2015-08 Jie Jiang (TUD), Organizational
Compliance: An agent-based model for
designing and evaluating organizational
interactions.
2015-09 Randy Klaassen (UT), HCI Per-
spectives on Behavior Change Support
Systems.
2015-10 Henry Hermans (OUN), OpenU:
design of an integrated system to support

lifelong learning.
2015-11 Yongming Luo (TUE), Designing
algorithms for big graph datasets: A study
of computing bisimulation and joins.
2015-12 Julie M. Birkholz (VU), Modi
Operandi of Social Network Dynamics:
The Effect of Context on Scientific Col-
laboration Networks.
2015-13 Giuseppe Procaccianti (VU),
Energy-Efficient Software.
2015-14 Bart van Straalen (UT), A cog-
nitive approach to modeling bad news con-
versations.
2015-15 Klaas Andries de Graaf (VU),
Ontology-based Software Architecture
Documentation.
2015-16 Changyun Wei (UT), Cogni-
tive Coordination for Cooperative Multi-
Robot Teamwork.
2015-17 André van Cleeff (UT), Physical
and Digital Security Mechanisms: Prop-
erties, Combinations and Trade-offs.
2015-18 Holger Pirk (CWI), Waste Not,
Want Not! - Managing Relational Data
in Asymmetric Memories.
2015-19 Bernardo Tabuenca (OUN),
Ubiquitous Technology for Lifelong Learn-
ers.
2015-20 Lois Vanhée (UU), Using Culture
and Values to Support Flexible Coordina-
tion.
2015-21 Sibren Fetter (OUN), Using
Peer-Support to Expand and Stabilize On-
line Learning.
2015-22 Zhemin Zhu (UT), Co-
occurrence Rate Networks.
2015-23 Luit Gazendam (VU), Cata-
loguer Support in Cultural Heritage.
2015-24 Richard Berendsen (UVA), Find-
ing People, Papers, and Posts: Vertical
Search Algorithms and Evaluation.
2015-25 Steven Woudenberg (UU),
Bayesian Tools for Early Disease De-
tection.
2015-26 Alexander Hogenboom (EUR),

Sentiment Analysis of Text Guided by Se-
mantics and Structure.
2015-27 Sándor Héman (CWI), Updating
compressed colomn stores.
2015-28 Janet Bagorogoza (TiU), Knowl-
edge Management and High Performance;
The Uganda Financial Institutions Model
for HPO.
2015-29 Hendrik Baier (UM), Monte-
Carlo Tree Search Enhancements for One-
Player and Two-Player Domains.
2015-30 Kiavash Bahreini (OU), Real-
time Multimodal Emotion Recognition in
E-Learning.
2015-31 Yakup Koç (TUD), On the ro-
bustness of Power Grids.
2015-32 Jerome Gard (UL), Corporate
Venture Management in SMEs.
2015-33 Frederik Schadd (TUD), Ontol-
ogy Mapping with Auxiliary Resources.
2015-34 Victor de Graaf (UT), Gesocial
Recommender Systems.
2015-35 Jungxao Xu (TUD), Affective
Body Language of Humanoid Robots:
Perception and Effects in Human Robot
Interaction.

2016
2016-01 Syed Saiden Abbas (RUN),
Recognition of Shapes by Humans and
Machines.
2016-02 Michiel Christiaan Meulendijk
(UU), Optimizing medication reviews
through decision support: prescribing a
better pill to swallow.
2016-03 Maya Sappelli (RUN), Knowl-
edge Work in Context: User Centered
Knowledge Worker Support.
2016-04 Laurens Rietveld (VU), Publish-
ing and Consuming Linked Data.
2016-05 Evgeny Sherkhonov (UVA), Ex-
panded Acyclic Queries: Containment

and an Application in Explaining Missing
Answers.
2016-06 Michel Wilson (TUD), Robust
scheduling in an uncertain environment.
2016-07 Jeroen de Man (VU), Measuring
and modeling negative emotions for vir-
tual training.
2016-08 Matje van de Camp (TiU), A
Link to the Past: Constructing Historical
Social Networks from Unstructured Data.
2016-09 Archana Nottamkandath (VU),
Trusting Crowdsourced Information on
Cultural Artefacts.
2016-10 George Karafotias (VUA), Pa-
rameter Control for Evolutionary Algo-
rithms.
2016-11 Anne Schuth (UVA), Search En-
gines that Learn from Their Users.
2016-12 Max Knobbout (UU), Logics
for Modelling and Verifying Normative
Multi-Agent Systems.
2016-13 Nana Baah Gyan (VU), The
Web, Speech Technologies and Rural De-
velopment in West Africa - An ICT4D
Approach.
2016-14 Ravi Khadka (UU), Revisiting
Legacy Software System Modernization.
2016-15 Steffen Michels (RUN), Hybrid
Probabilistic Logics - Theoretical Aspects,
Algorithms and Experiments.
2016-16 Guangliang Li (UVA), Socially
Intelligent Autonomous Agents that Learn
from Human Reward.
2016-17 Berend Weel (VU), Towards Em-
bodied Evolution of Robot Organisms.
2016-18 Albert Meroño Peñuela (VU),
Refining Statistical Data on the Web.
2016-19 Julia Efremova (Tu/e), Mining
Social Structures from Genealogical Data.
2016-20 Daan Odijk (UVA), Context &
Semantics in News & Web Search.
2016-21 Alejandro Moreno Célleri
(UT), From Traditional to Interactive
Playspaces: Automatic Analysis of Player
Behavior in the Interactive Tag Play-

ground.
2016-22 Grace Lewis (VU), Software Ar-
chitecture Strategies for Cyber-Foraging
Systems.
2016-23 Fei Cai (UVA), Query Auto
Completion in Information Retrieval.
2016-24 Brend Wanders (UT), Repurpos-
ing and Probabilistic Integration of Data;
An Iterative and data model independent
approach.
2016-25 Julia Kiseleva (TU/e), Using
Contextual Information to Understand
Searching and Browsing Behavior.
2016-26 Dilhan Thilakarathne (VU), In
or Out of Control: Exploring Computa-
tional Models to Study the Role of Human
Awareness and Control in Behavioural
Choices, with Applications in Aviation
and Energy Management Domains.
2016-27 Wen Li (TUD), Understanding
Geo-spatial Information on Social Media.
2016-28 Mingxin Zhang (TUD), Large-
scale Agent-based Social Simulation - A
study on epidemic prediction and control.
2016-29 Nicolas Höning (TUD), Peak re-
duction in decentralised electricity sys-
tems - Markets and prices for flexible
planning.
2016-30 Ruud Mattheij (UvT), The Eyes
Have It.
2016-31 Mohammad Khelghati (UT),
Deep web content monitoring.
2016-32 Eelco Vriezekolk (UT), Assess-
ing Telecommunication Service Availabil-
ity Risks for Crisis Organisations.
2016-33 Peter Bloem (UVA), Single Sam-
ple Statistics, exercises in learning from
just one example.
2016-34 Dennis Schunselaar (TUE), Con-
figurable Process Trees: Elicitation, Anal-
ysis, and Enactment.
2016-35 Zhaochun Ren (UVA), Monitor-
ing Social Media: Summarization, Clas-
sification and Recommendation.
2016-36 Daphne Karreman (UT), Beyond

R2D2: The design of nonverbal interac-
tion behavior optimized for robot-specific
morphologies.
2016-37 Giovanni Sileno (UvA), Aligning
Law and Action - a conceptual and com-
putational inquiry.
2016-38 Andrea Minuto (UT), Materials
that Matter - Smart Materials meet Art
& Interaction Design.
2016-39 Merijn Bruijnes (UT), Believable
Suspect Agents; Response and Interper-
sonal Style Selection for an Artificial Sus-
pect.
2016-40 Christian Detweiler (TUD), Ac-
counting for Values in Design.
2016-41 Thomas King (TUD), Govern-
ing Governance: A Formal Framework
for Analysing Institutional Design and
Enactment Governance.
2016-42 Spyros Martzoukos (UVA),
Combinatorial and Compositional Aspects
of Bilingual Aligned Corpora.
2016-43 Saskia Koldijk (RUN), Context-
Aware Support for Stress Self-
Management: From Theory to Practice.
2016-44 Thibault Sellam (UVA), Auto-
matic Assistants for Database Explo-
ration.
2016-45 Bram van de Laar (UT), Expe-
riencing Brain-Computer Interface Con-
trol.
2016-46 Jorge Gallego Perez (UT),
Robots to Make you Happy.
2016-47 Christina Weber (UL), Real-time
foresight - Preparedness for dynamic in-
novation networks.
2016-48 Tanja Buttler (TUD), Collecting
Lessons Learned.
2016-49 Gleb Polevoy (TUD), Partici-
pation and Interaction in Projects. A
Game-Theoretic Analysis.
2016-50 Yan Wang (UVT), The Bridge
of Dreams: Towards a Method for Op-
erational Performance Alignment in IT-
enabled Service Supply Chains.

2017
2017-01 Jan-Jaap Oerlemans (UL), In-
vestigating Cybercrime.
2017-02 Sjoerd Timmer (UU), Design-
ing and Understanding Forensic Bayesian
Networks using Argumentation.
2017-03 Daniël Harold Telgen (UU), Grid
Manufacturing; A Cyber-Physical Ap-
proach with Autonomous Products and
Reconfigurable Manufacturing Machines.
2017-04 Mrunal Gawade (CWI), Multi-
core Parallelism in a Column-store.
2017-05 Mahdieh Shadi (UVA), Collabo-
ration Behavior.
2017-06 Damir Vandic (EUR), Intelligent
Information Systems for Web Product
Search.
2017-07 Roel Bertens (UU), Insight in
Information: from Abstract to Anomaly.
2017-08 Rob Konijn (VU), Detecting
Interesting Differences:Data Mining in
Health Insurance Data using Outlier De-
tection and Subgroup Discovery.
2017-09 Dong Nguyen (UT), Text as So-
cial and Cultural Data: A Computational
Perspective on Variation in Text.
2017-10 Robby van Delden (UT), (Steer-
ing) Interactive Play Behavior.
2017-11 Florian Kunneman (RUN), Mod-
elling patterns of time and emotion in
Twitter #anticipointment.
2017-12 Sander Leemans (TUE), Robust
Process Mining with Guarantees.
2017-13 Gijs Huisman (UT), Social
Touch Technology - Extending the reach
of social touch through haptic technology.
2017-14 Shoshannah Tekofsky (UvT),
You Are Who You Play You Are: Mod-
elling Player Traits from Video Game
Behavior.
2017-15 Peter Berck (RUN), Memory-

Based Text Correction.
2017-16 Aleksandr Chuklin (UVA), Un-
derstanding and Modeling Users of Mod-
ern Search Engines.
2017-17 Daniel Dimov (UL), Crowd-
sourced Online Dispute Resolution.
2017-18 Ridho Reinanda (UVA), Entity
Associations for Search.
2017-19 Jeroen Vuurens (UT), Proximity
of Terms, Texts and Semantic Vectors in
Information Retrieval.
2017-20 Mohammadbashir Sedighi
(TUD), Fostering Engagement in Knowl-
edge Sharing: The Role of Perceived Ben-
efits, Costs and Visibility.
2017-21 Jeroen Linssen (UT), Meta Mat-
ters in Interactive Storytelling and Seri-
ous Gaming (A Play on Worlds).
2017-22 Sara Magliacane (VU), Logics
for causal inference under uncertainty.
2017-23 David Graus (UVA), Entities of
Interest — Discovery in Digital Traces.
2017-24 Chang Wang (TUD), Use of Af-
fordances for Efficient Robot Learning.
2017-25 Veruska Zamborlini (VU),
Knowledge Representation for Clinical
Guidelines, with applications to Multi-
morbidity Analysis and Literature Search.
2017-26 Merel Jung (UT), Socially intel-
ligent robots that understand and respond
to human touch.
2017-27 Michiel Joosse (UT), Investigat-
ing Positioning and Gaze Behaviors of
Social Robots: People’s Preferences, Per-
ceptions and Behaviors.
2017-28 John Klein (VU), Architecture
Practices for Complex Contexts.
2017-29 Adel Alhuraibi (UvT), From IT-
BusinessStrategic Alignment to Perfor-
mance: A Moderated Mediation Model of
Social Innovation, and Enterprise Gover-
nance of IT”.
2017-30 Wilma Latuny (UvT), The
Power of Facial Expressions.
2017-31 Ben Ruijl (UL), Advances in

computational methods for QFT calcu-
lations.
2017-32 Thaer Samar (RUN), Access to
and Retrievability of Content in Web
Archives.
2017-33 Brigit van Loggem (OU), To-
wards a Design Rationale for Software
Documentation: A Model of Computer-
Mediated Activity.
2017-34 Maren Scheffel (OU), The Evalu-
ation Framework for Learning Analytics.
2017-35 Martine de Vos (VU), Interpret-
ing natural science spreadsheets.
2017-36 Yuanhao Guo (UL), Shape Anal-
ysis for Phenotype Characterisation from
High-throughput Imaging.
2017-37 Alejandro Montes Garcia (TUE),
WiBAF: A Within Browser Adaptation
Framework that Enables Control over Pri-
vacy.
2017-38 Alex Kayal (TUD), Normative
Social Applications.
2017-39 Sara Ahmadi (RUN), Exploiting
properties of the human auditory system
and compressive sensing methods to in-
crease noise robustness in ASR .
2017-40 Altaf Hussain Abro (VUA), Steer
your Mind: Computational Exploration of
Human Control in Relation to Emotions,
Desires and Social Support For applica-
tions in human-aware support systems .
2017-41 Adnan Manzoor (VUA), Mind-
ing a Healthy Lifestyle: An Exploration
of Mental Processes and a Smart Envi-
ronment to Provide Support for a Healthy
Lifestyle.
2017-42 Elena Sokolova (RUN), Causal
discovery from mixed and missing data
with applications on ADHD datasets.
2017-43 Maaike de Boer (RUN), Seman-
tic Mapping in Video Retrieval.
2017-44 Garm Lucassen (UU), Under-
standing User Stories - Computational
Linguistics in Agile Requirements Engi-
neering.

2017-45 Bas Testerink (UU), Decentral-
ized Runtime Norm Enforcement.
2017-46 Jan Schneider (OU), Sensor-
based Learning Support.
2017-47 Jie Yang (TUD), Crowd Knowl-
edge Creation Acceleration.
2017-48 Angel Suarez (OU), Collabora-
tive inquiry-based learning.

2018
2018-01 Han van der Aa (VUA), Compar-
ing and Aligning Process Representations.
2018-02 Felix Mannhardt (TUE), Multi-
perspective Process Mining.
2018-03 Steven Bosems (UT), Causal
Models For Well-Being: Knowledge Mod-
eling, Model-Driven Development of
Context-Aware Applications, and Behav-
ior Prediction.
2018-04 Jordan Janeiro (TUD), Flexi-
ble Coordination Support for Diagno-
sis Teams in Data-Centric Engineering
Tasks.
2018-05 Hugo Huurdeman (UVA), Sup-
porting the Complex Dynamics of the
Information Seeking Process.
2018-06 Dan Ionita (UT), Model-Driven
Information Security Risk Assessment of
Socio-Technical Systems.
2018-07 Jieting Luo (UU), A formal ac-
count of opportunism in multi-agent sys-
tems.
2018-08 Rick Smetsers (RUN), Advances
in Model Learning for Software Systems.
2018-09 Xu Xie (TUD), Data Assimila-
tion in Discrete Event Simulations.
2018-10 Julienka Mollee (VUA), Mov-
ing forward: supporting physical activity
behavior change through intelligent tech-
nology.
2018-11 Mahdi Sargolzaei (UVA), En-
abling Framework for Service-oriented

Collaborative Networks.
2018-12 Xixi Lu (TUE), Using behavioral
context in process mining.
2018-13 Seyed Amin Tabatabaei (VUA),
Computing a Sustainable Future.
2018-14 Bart Joosten (UVT), Detecting
Social Signals with Spatiotemporal Gabor
Filters.
2018-15 Naser Davarzani (UM),
Biomarker discovery in heart failure.
2018-16 Jaebok Kim (UT), Automatic
recognition of engagement and emotion
in a group of children.
2018-17 Jianpeng Zhang (TUE), On
Graph Sample Clustering.
2018-18 Henriette Nakad (UL), De No-
taris en Private Rechtspraak.
2018-19 Minh Duc Pham (VUA), Emer-
gent relational schemas for RDF.
2018-20 Manxia Liu (RUN), Time and
Bayesian Networks.
2018-21 Aad Slootmaker (OUN),
EMERGO: a generic platform for au-
thoring and playing scenario-based seri-
ous games.
2018-22 Eric Fernandes de Mello Araujo
(VUA), Contagious: Modeling the Spread
of Behaviours, Perceptions and Emotions
in Social Networks.
2018-23 Kim Schouten (EUR),
Semantics-driven Aspect-Based Senti-
ment Analysis.
2018-24 Jered Vroon (UT), Responsive
Social Positioning Behaviour for Semi-
Autonomous Telepresence Robots.
2018-25 Riste Gligorov (VUA), Serious
Games in Audio-Visual Collections.
2018-26 Roelof Anne Jelle de Vries (UT),
Theory-Based and Tailor-Made: Moti-
vational Messages for Behavior Change
Technology.
2018-27 Maikel Leemans (TUE), Hierar-
chical Process Mining for Scalable Soft-
ware Analysis.

2019
2019-01 Rob van Eijk (UL), Web Privacy
Measurement in Real-Time Bidding Sys-
tems. A Graph-Based Approach to RTB
system classification.
2019-02 Emmanuelle Beauxis-Aussalet

(CWI), Statistics and Visualizations for
Assessing Class Size Uncertainty.
2019-03 Eduardo González López de
Murillas (TUE), Process Mining on
Databases: Extracting Event Data from
Real-Life Data Sources.

	List of Figures
	List of Tables
	1 Introduction
	1.1 Event Data and Process Mining
	1.1.1 Event Data
	1.1.2 Process Mining

	1.2 Process Mining on Databases
	1.3 Challenges in Process Mining on Databases
	1.3.1 Challenge 1: Finding, Merging, and Cleaning Event Data
	1.3.2 Challenge 2: Dealing with Complex Event Logs Having Diverse Characteristics
	1.3.3 Challenge 3: Cross-Organizational Mining
	1.3.4 Challenge 4: Multi-Perspective Event Log Building
	1.3.5 Challenge 5: Improve Usability for Non-Experts
	1.3.6 Challenge 6: Fill the Domain Knowledge Gap in Event Log Extraction
	1.3.7 Challenge 7: Question-Driven Log Extraction

	1.4 Contributions and Structure of this Thesis
	1.4.1 Thesis Contributions
	1.4.2 Thesis Structure

	2 Preliminaries
	2.1 Notations
	2.2 Databases
	2.3 ETL: Extract, Transform, Load
	2.4 Event Logs
	2.5 Process Models
	2.6 Process Mining
	2.6.1 Process Discovery
	2.6.2 Conformance Checking and Alignments

	2.7 Chapter Summary

	3 OpenSLEX: A Meta-Model for Process Mining
	3.1 Introduction
	3.2 Running Example
	3.3 Meta-Model
	3.3.1 Requirements
	3.3.2 Formalization

	3.4 Implementation
	3.5 Related Work
	3.6 Chapter Summary

	4 OpenSLEX in Practice: Data Extraction and Querying
	4.1 Introduction
	4.2 Evaluation in Real-life Environments
	4.2.1 Meta-Model Completion Scenarios
	4.2.2 Database Redo-Logs
	4.2.3 In-Table Versioning
	4.2.4 Change Table
	4.2.5 Merging Data Sources

	4.3 Analysis of the Resulting Populated Meta-Model
	4.3.1 Standardized Querying
	4.3.2 Process Mining Results

	4.4 Chapter Summary

	5 Case Notion Discovery and Recommendation
	5.1 Introduction
	5.2 Running Example
	5.3 Case Notions and Log Building
	5.3.1 Defining Case Notions
	5.3.2 Building a Log

	5.4 Log Quality: Is my Log Interesting?
	5.5 Predicting Log Interestingness
	5.6 Evaluation
	5.6.1 Features for Log Quality Prediction
	5.6.2 Evaluation of Predictors' Accuracy
	5.6.3 Evaluation of Ranking Quality
	5.6.4 Discussion

	5.7 Related Work
	5.8 Chapter Summary

	6 Process Mining Techniques Applied: Data Properties and Opportunities
	6.1 Introduction
	6.2 Data Properties and Process Mining Techniques
	6.3 A Sample Event Log
	6.4 Process Mining Techniques Applied
	6.4.1 Model Discovery
	6.4.2 Trace Clustering
	6.4.3 Conformance Analysis
	6.4.4 Performance Analysis

	6.5 Chapter Summary

	7 Data-Aware Process Oriented Querying
	7.1 Introduction
	7.2 Systematic Literature Review
	7.3 DAPOQ-Lang
	7.3.1 Syntax
	7.3.2 Semantics

	7.4 Implementation & Evaluation
	7.5 Application / Use Cases
	7.5.1 Business Questions in Process Mining
	7.5.2 Exporting Logs
	7.5.3 Specialized Sublogs
	7.5.4 Metrics, Artifacts & Provenance
	7.5.5 DAPOQ-Lang vs. SQL

	7.6 Chapter Summary

	8 Case Study: Process Mining on a Health Information System
	8.1 Introduction
	8.2 From Database to Event Log in Six Commands
	8.2.1 Data Exploration
	8.2.2 Data Schema Discovery
	8.2.3 Data Extraction
	8.2.4 Event Discovery
	8.2.5 Case Notion Discovery
	8.2.6 Event Log Building

	8.3 Results
	8.4 Data Querying
	8.5 Chapter Summary

	9 Conclusion
	9.1 Contributions
	9.1.1 Data Extraction
	9.1.2 Event Log Building
	9.1.3 Data Querying

	9.2 Limitations and Open Issues
	9.2.1 Data Extraction
	9.2.2 Event Log Building
	9.2.3 Data Querying

	9.3 Future Work
	9.3.1 Data Extraction
	9.3.2 Event Log Building
	9.3.3 Data Querying
	9.3.4 Beyond Data Preprocessing

	9.4 Reflection

	A Mapping from Data Sources to OpenSLEX
	A.1 Common Definitions to the three Environments
	A.2 Database Redo-Logs: Formalization
	A.3 In-Table Versioning: Formalization
	A.4 SAP-style Change Table: Formalization
	A.5 Common Meta-Model Mapping for the three Environments

	Bibliography
	Summary
	Acknowledgements
	Curriculum Vitae
	SIKS dissertations

