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Abstract

Modern information systems allow us to track, often in great detail, the execution of
processes within companies. Consider for example luggage handling in airports, manu-
facturing processes of products and goods, or processes related to service provision, all
of these processes generate traces of valuable event data. Such event data are typically
stored in a company’s information system and describe the execution of the process
at hand. In recent years, the field of process mining has emerged. Process mining
techniques aim to translate the data captured during the process execution, i.e. the
event data, into actionable insights. As such, we identify three main process mining
types of analysis, i.e. process discovery, conformance checking and process enhancement.
In process discovery, we aim to discover a process model, i.e. a formal behavioural
description, which describes the process as captured by the event data. In conformance
checking, we aim to assess to what degree the event data is in correspondence with a
given reference model, i.e. a model describing how the process ought to be executed.
Finally, within process enhancement, the main goal is to improve the view of the
process, i.e. by enhancing process models on the basis of facts derived from event
data.

Recent developments in information technology allow us to capture data at increas-
ing rates, yielding enormous volumes of data, both in terms of size and velocity. In the
context of process mining, this relates to the advent of real-time, online, streams of
events that result in data sets that are no longer efficiently analysable by commodity
hardware. Such types of data pose both opportunities and challenges. On the one
hand, it allows us to get actionable insights into the process, at the moment it is being
executed. On the other hand, conventional process mining techniques do not allow us
to gain these insights, as they are not designed to cope with such a new type of data.
As a consequence, new methods, techniques and tools are needed to allow us to apply
process mining techniques and analyses on streams of event data of arbitrary size.

In this thesis, we explore, develop and analyse process mining techniques that are
able to handle streaming event data. The premise of streaming event data, is the fact
that we assume the stream of events under consideration to be of infinite size. As such,
efficient techniques to temporarily store and use relevant recent subsets of event data
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are needed. The techniques developed in the context of this thesis allow us to apply
process mining techniques using potentially unbounded streams of data with arbitrary
rates of emission. The ability to handle such data allows us to analyse the underlying
process at the exact moment it is being executed. Such analysis paves the way for more
advanced types of process mining techniques such as real-time process monitoring
and real-time prediction. Since the techniques developed are able to handle data of
arbitrary size, as a side-effect, they allow us to handle data sets that are beyond the
size-limitation of conventional process mining techniques.

The contributions of this thesis can be categorized into four separate dimensions,
all having a strong link with the main branches of process mining.

1. The development of techniques for data storage and data quality.

We provide a general formalization for temporal storage of event data. We
furthermore show that we are able to instantiate the proposed formalization
using a vast array of existing data storage techniques. As such, we are able to
lift all conventional process mining technique to the domain of streaming data.
We furthermore present means to filter streaming event data, which allows us to
increase the overall data quality considered.

2. The development of techniques for event stream based process discovery.

We explicitly lift process discovery to the domain of event streams by means of
designing a general purpose architecture, which describes a two-step discovery
approach. The first step consists of constructing an algorithm-specific intermedi-
ate data representation, on the basis of the event stream, whereas the second
step consists of translating the intermediate representation to a process model.
We furthermore show that the proposed architecture covers a wide variety of
process discovery algorithms. We additionally show advanced results for the
class of language-based region theory-based process discovery algorithms, where
we primarily focus on exploiting the intermediate representation of the algorithm
to further improve process discovery results.

3. The development of techniques for event stream based conformance checking.

We propose a greedy computational approach for the purpose of computing
conformance checking statistics on the basis of event streams. We furthermore
prove that the approach is to be seen as an under-estimator, which implies that
when a deviation is observed, we are guaranteed that something went wrong
during the execution of the process.

4. The development of techniques for event stream based process enhancement.

Next to the control-flow perspective, we also provide support for the resource
perspective. In particular, we examine the suitability of a set of existing resource
network metrics in the context of event streams.

For each of the aforementioned contributions, a corresponding prototypical imple-
mentation is provided in both the process mining tool-kits ProM (http://promtools.


http://promtools.org
http://promtools.org

vii

org) and RapidProM (http://rapidprom.org). As such, each technique discussed
has an accompanying publicly available implementation that is used within the corres-
ponding evaluation.


http://promtools.org
http://promtools.org
http://rapidprom.org
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Chapter 1

Introduction

Modern information systems allow us to track, often in great detail, the execution of
processes within companies. Examples of such processes concern luggage handling
in airports, manufacturing processes of products and goods and processes related to
service provision. All of these processes generate traces of valuable event data. Such
event data are typically stored in a company’s information system and describe the
execution of instances of the process at hand. Process mining [4] is a relatively young,
purely data-driven, research discipline within computer science that is positioned
in-between traditional data mining [15] on the one hand and business process man-
agement [51] on the other hand. The main goal of process mining is to gain insights
in, and knowledge of, the behaviour of the processes executed within a company. In
particular, we aim to attain such knowledge based on the event data that is generated
during the execution of the process and stored in a company’s underlying information
system. As such, the diagrams and process models obtained by the application of
process mining, represent, under the assumption that event data is recorded correctly,
what actually happened during execution of the process.

Within process mining, we distinguish three main types of analysis, i.e. process
discovery, conformance checking and process enhancement. These types of analysis
mainly differ in the types of input elements they require, as well as their intended
analysis result. In process discovery, the main goal is to discover a process model
describing the process under study, based on the behaviour captured within the event
data. In conformance checking, the main goal is to verify to what degree a given
process model (possibly discovered) and the process under study, again as captured
by the corresponding event data, conform to one another. In process enhancement,
the main goal is to improve the overall view of the process by improving/extending a
process model based on facts and figures deduced from behaviour captured within the
event data, e.g. by adding performance statistics such as bottleneck information.

Due to the ever increasing performance of computational systems and architectures,
data are being generated at increasingly high rates, yielding data that are challenging
in terms of volume, velocity, variety and veracity. For example, consider the fact that,
with the rise of the use of mobile phones and their connection to the internet, virtually
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everything humans do, and their interaction with other humans and/or machines is
being recorded. Moreover, more and more devices, e.g. televisions, washing machines
and refrigerators, are being connected to the internet, abundantly generating traces
of valuable operational data. This phenomenon, i.e. the generation of massive data
sets containing potentially valuable information, is known as Big Data [57, 65] and
poses several interesting opportunities and challenges, both from an academic- and a
practical perspective.

From an operational point of view, the size of a data set that singular commodity
hardware is able to process efficiently is limited by a computer’s internal memory. In
case a data set’s size exceeds the available internal memory, costly swap operations
need to be performed between internal memory and secondary storage, typically
resulting in substandard, or even poor performance. Moreover, in case a data set
exceeds secondary storage as well, techniques to efficiently distribute, manipulate and
retrieve data across multiple computational entities are needed. Hence, we need tools,
techniques and methodologies that are able to cope with data sets that exceed the
computational capacity of commodity hardware. Moreover, most existing data analysis
techniques are designed under the assumption that the data used for analysis, whether
being huge or not, are of a static nature. As such, results obtained by the analysis
performed represent a static, historical view on the data. However, there is a variety
of application domains in which high-velocity sources of data need to be analysed
on the fly, i.e. at the moment the data is observed. Such types of analysis require a
fundamentally different view on the way we analyse and (temporarily) store the data,
as well as the design of the underlying algorithms that we use in order to do so.

The majority of conventional process mining techniques do not explicitly take into
account and/or envision that the data set(s) used are of large volume and/or velocity.
As a consequence, when applying conventional process mining techniques on such
data sets, often no results are obtained. The extreme volume and the velocity at which
data are generated pose new requirements on the formalization, specification and
design of process mining algorithms. In particular, the techniques need to be able to
store and analyse data streams of potentially unbounded size. Hence, they need to
either incorporate some mechanism to efficiently store, and at some point forget, event
data, or, be able to approximate all behaviour observed on the stream as a whole. In
this thesis we therefore explore, develop and analyse process mining techniques that
are able to handle high-velocity data of arbitrary volume.

Consider Figure 1.1, in which we position the main focus of this thesis and its
relation to conventional process mining. A stream of events, i.e. executed activities of
the underlying process, is generated while executing the process. In the conventional
setting, depicted on the right-hand side of Figure 1.1, this data is stored within
the underlying information system. Subsequently, we perform process discovery,
conformance checking and/or process enhancement on a finite subset of the event
data. In this thesis, we primarily focus on the analysis of online streams of events, i.e.
at the moment these events are generated. Opposed to conventional process mining,
we moreover assume that the stream of events under consideration is unbounded, i.e.
infinite, and is potentially of high-velocity. The techniques we present in this thesis
therefore explicitly assume that the events published on the stream can only be stored
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[Executed Business Process

Conventional Process Mining

Thesis Focus

Stream of Events Conformance Checking

Hi

Process Models

Historical Event Data

\ Process Models /

Figure 1.1: The focus of this thesis and its relation to conventional process mining.

temporarily and need to be processed efficiently. In particular, we aim to discover
and/or interact with process models directly from the stream of events generated
by the execution of the business process, rather than a-posteriori, as is the case in
conventional process mining. As such, the techniques developed in the context of this
thesis enable us to lift process mining to the domain of streaming data. Moreover,
as we are able to generate a data stream out of data sets of arbitrary volume, the
techniques presented in this thesis, as a consequence, additionally allow us to analyse
data of arbitrary volume.

The remainder of this introductory chapter is organized as follows. In section 1.1,
we introduce conventional process mining and its main sub-fields, i.e. process discovery,
conformance checking and process enhancement, in more detail. In section 1.2, we
introduce the concept of arbitrary data streams, which act as a basic underlying data
model for the concepts discussed in this thesis, and define corresponding algorithmic
requirements. In section 1.3, we introduce particular challenges of data streams in the
context of process mining. In section 1.4, we explicitly quantify the main contributions
of this thesis. Finally, in section 1.5, we present an overview of the structure of the
remainder of this thesis.

1.1 Process Mining

The field of process mining revolves around the analysis of (business) processes. In
the context of this thesis, we consider a process to describe a collection of activities,
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Table 1.1: Simplified excerpt of a publicly available real-life event log containing events related
to the treatment of patients suspected of having sepsis in the emergency department
of a Dutch hospital [85].

Event-id Patient-id Activity Time-stamp Resource Leucocytes CRP Lactic Acid
1533 1237 ER Registration 22-10-2014T11:15:41 122A1 %) %] %]
1534 1237 Measure Leucocytes 22-10-2014T11:27:00 122B1 9.6 2] %]
1535 1237 Measure CRP 22-10-2014T11:27:00 122B1 %) 210 @
1536 1237 Measure Lactic Acid 22-10-2014T11:27:00 122B1 %} z 2.2
1537 5427 ER Registration 22-10-2014T11:30:23 122A1 %) %] %]
1538 5427 Measure Leucocytes  22-10-2014T11:37:00 122C1 7.4 1) ]
1539 5427 Measure CRP 22-10-2014T11:37:00 122C1 %) 242 o
1540 5427 Measure Lactic Acid 22-10-2014T11:37:00 122C1 a 2] 3.7
) a %)

1541 1237 ER Triage 22-10-2014T11:42:12  122A1

executed to achieve a certain (business) goal. Such a goal is, for example, the assembly
of a product, the provision/rejection of a loan in a bank or the (successful) treatment
of patients in a hospital. In particular, there is an associated (partial) order in which
these activities are performed, e.g. a product first needs to be assembled after which it
is ready to be packaged. The main aim of process mining is to increase the knowledge
and understanding of a company’s processes by analysing the event data generated
during the execution of the process. As such, we consider event data as a first class
citizen in any process mining technique.

The event data generated during the execution of a process is stored in the com-
pany’s information system. Such data is often in the form of (or, easily translated
to) an event log. Consider Table 1.1, in which we depict a simplified excerpt of a
publicly available real-life event log containing events related to the treatment of
patients suspected to have sepsis in a Dutch hospital [85]. The table shows some
events recorded in the hospital’s information system related to two patients, i.e. the
patients identified by patient-id’s 1237 and 5427 respectively. In the table, each row
corresponds to an event that has been recorded in the context of the execution of an
activity within the corresponding process. For example, the first row shows event 1533
which indicates that on October 227 of 2014, at 11:15:41, the patient with patient-id
1237 was registered in the ER. The Activity column, i.e. describing the ER Registration
activity (in the first row), refers to the activity that was performed as recorded by the
event. In this case, resource 122A1 executed the activity. We observe three additional
columns entitled Leucocytes, CRP and Lactic Acid. For event 1533 no value is recorded
for these data attributes. However, for event 1534, which relates to the execution of the
Measure Leucocytes activity, we observe that a value of 9.6 is recorded in the Leucocytes
column. In this case, the value 9.6 relates to the result of the Leucocytes Measurement
performed for patient 1237. Note that the three measurement activities are actually
recorded at the same time (11:27) in the event log. There are several potential causes
for this, e.g. the activities are actually performed at the same time, or, the events have
been (manually) recorded at a later phase than their actual execution.

Observe that, after a sequence of events performed for patient 1237, we observe
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a similar sequence of events for patient 5427. Moreover, after the sequence of events
observed for patient 5427, we again observe an event performed for patient 1273,
i.e. event 1541. This phenomenon is inherently present in data originating from
the execution of business processes, i.e. often multiple instances of the process are
executed in parallel. As such, events related to the same patient potentially occur
dispersed within the data. Observe that this represents a major difference with respect
to conventional data mining techniques and applications. There, each row in a data
table, i.e. each data point, is often assumed to be relatively independent of all other
data points. However, in process mining, we specifically assume that several different
data points are having a strong interrelation and are even dependent on each other.

Each execution of a process, e.g. the treatment of a patient in the context of
Table 1.1, is referred to as a process instance. Within an event log, the events related
to a process instance are usually tied together by some sort of identifier, which we
refer to as the case identifier. In Table 1.1, the case-identifier is the column entitled
Patient-id. A sequence of events executed in the context of a case identifier is referred
to as a trace of event data. Observe that it is not uncommon, that within an event log,
we are able to define multiple different case identifiers. In the context of medical data,
e.g. Table 1.1, we are able to use the patient as a process instance, however, it is also
possible to track the behavioural processes of the resources (e.g. doctors) active during
the patient treatment process.

As indicated before, we distinguish three main branches of process mining, i.e.
process discovery, conformance checking and process enhancement. In process discovery
the main aim is to discover a process model that accurately describes the underlying
process, based on the data observed in the event log. In conformance checking, the
main aim is to assess to what degree a given process model, potentially discovered,
and the event log conform to one another. Finally, in process enhancement, the main
aim is to improve the view of the process, for example by applying process discovery,
conformance checking, performance analysis and/or simulation techniques.

In the remainder of this section, we discuss the three main branches of process
mining in more detail. We finish the section with a global discussion on typical process
model quality criteria considered in process mining.

1.1.1 Process Discovery

The main aim of process discovery is to discover a process model which accurately
describes the process as captured by an event log. We typically use an event log,
extracted from the company’s information system’s database and try to discover a
corresponding process model. For example, consider the two models depicted in
Figure 1.2, on page 6, which are both discovered by applying a state-of-the-art process
discovery algorithm [78] on the full event log related to the excerpt as presented in
Table 1.1.

The models describe that the Leucocytes, CRP, LacticAcid activities, together with
the ER Triage activity are executed in parallel. Furthermore, they indicate that it
is possible to execute the CRP and Leucocytes activities more than once. The two
modelling formalisms shown in Figure 1.2 are a Petri net [94], cf. Figure 1.2a, and a



6 Introduction

}

X - ‘.
IV Liquid \ Release A A
Release D
: N/
K>

(b) An example BPMN [96]-based model.

ER Registr.,

Figure 1.2: Two example process models, in different process modelling notations, derived from
the full event log related to the excerpt as presented in Table 1.1.
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BPMN [96]!-based model, cf. Figure 1.2b, respectively. Even though the two process
modelling formalisms are different, the models describe the same behaviour. Petri nets
are most commonly used within (process mining) research, whereas BPMN models
are mostly used in business/industry for process modelling and documentation. There
are several reasons for the use of Petri nets within research, e.g. the models are
relatively easily translatable to more high-level business oriented process modelling
formalisms such as BPMN, EPCs [90] and/or commercial vendor-specific modelling
formalisms. Furthermore, due to their non-ambiguous formal nature, specifically when
compared to industry oriented-standards, there is a vast body of literature covering
formal foundational aspects and properties of Petri nets. Moreover, numerous analysis
techniques exist for Petri nets as well. As indicated, modelling formalisms such as
BPMN and EPCs are more often used in business, as their focus is more towards human
understandability and interpretability rather than formal correctness. In the light of
the aforementioned, in this thesis, we solely consider Petri nets, cf. section 2.2, and
specific sub-classes thereof, as a main process modelling formalism.

A wide variety of process discovery techniques has been developed and studied in
recent years [4, Chapters 6&7] [18, 49, 120]. Despite the numerous research efforts
in the domain of process discovery, the task has proven to be far from trivial and,
arguably, a definite process discovery algorithm that accurately discovers a process
model based on arbitrary event data does not exist yet. One of the most challenging
aspects of process discovery is the presence of parallel behaviour in most processes.
In case we are able to execute two activities in parallel, we are able to execute the
activities in any order, and moreover, their execution potentially overlaps. Even if we
abstract from activity duration, the impact of parallelism on the behavioural variety
of a process is enormous. The number of ways in which we are able to schedule
parallel activities is factorial. Thus, if we have 3 possible activities in parallel, there are
31=3x2x1=6 ways to arrange them. However, in case we have 10 possible activities
in parallel, there are 10!=10x9--- x 1 = 3,628,800 possible ways to arrange them.

For most existing process discovery algorithms, which are typically explicitly de-
signed to cope with event data describing behaviour with underlying parallelism, the
most prominent challenge is not necessarily the large variety caused by parallelism.
The most challenging aspect, refers to the fact that the huge variety of possible be-
haviour in a process is often not fully represented within the event log. Namely, it
is very common that the variety of behaviour is not uniformly distributed, in terms
of the execution of a process. It is far more likely, that the variety of behaviour for
example follows a Pareto distribution, cf. Figure 1.3, with a long tail. As an example,
consider a bank providing loans to their (prospective) clients. A majority of the clients
is likely to ask for a similar loan in terms of the amount, e.g. less than $1.000.000, and
therefore, for these clients, the bank roughly executes the same process in order to
determine whether the client is eligible to obtain the loan or not. In some cases, due
to parallelism, certain checks and/or activities are executed in a different order, yet
in general, the vast majority of clients follows the same procedure, and hence, for
multiple different clients the same sequence of activities is executed. Clients needing

1https ://www.omg.org/spec/BPMN/2.0/
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Figure 1.3: Example plot indicating the typical shape of a Pareto distribution. Event data
captured during the execution of a process typically follows such a distribution,
i.e. we observe a large share of similar behaviour and a “long tail” of relatively
infrequently occurring behaviour.

a loan of higher amount are likely to be treated differently, and hence, alternative
checks and/or activities are executed for them. The execution of the process for these
different types of clients also belongs to the overall process executed by the bank
to determine loan eligibility of their clients. Nonetheless, due to the relatively low
amount of these types of customers, it is very unlikely that an event log contains all
possible executions of the process for this type of clients.

Even with the advent of Big Data, which largely motivates this thesis, we are in no
way guaranteed that all possible behaviour is witnessed within an event log and/or
event stream. As indicated, this is due to the fact that it is common that several process
instances share a great deal of similar behaviour and thus, border cases, which are
theoretically possible within the process, are missed. As such, the event log typically
represents a (marginal) fraction of the total variety of possible behaviour, which
hampers the discovery algorithm to properly discover parallel constructs. Additionally,
most process discovery algorithms are designed upon the presumption that the input
event data actually describes a clear underlying process structure. However, data
originating from existing information systems are often not of this form. There are
multiple reasons for this phenomenon, e.g. data quality issues due to erroneous logging,
concept drift, process flexibility and process deviation.

In summary, process discovery strives to discover a representation of a process,

as described by the behaviour captured within an event log. This seemingly straight-
forward task has proven to be inherently complex and challenging. Specifically
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incompleteness and impurity of the event data hamper most existing process discovery
algorithms, when applied on real event data.

Process discovery in the context of this thesis Within this thesis we partially
focus on the aforementioned challenges in process discovery, i.e. data impurity in
particular, cf. chapter 4, yet the main aim is to lift process discovery, in general, to
the streaming domain. In chapter 5, we present a general framework for the purpose
of process discovery on the basis of event streams. The emphasis of the framework
is on a common two-step characterization of process discovery algorithms which we
use as a basis for online process discovery. We focus on learning intermediate data
structures used by different algorithms in the context of event streams, which we
subsequently translate to process models. Furthermore, in chapter 6, we show how
to improve process discovery results by means of exploiting the internal intermediate
data structure used by a state-of-the-art process discovery algorithm. In particular, we
show that we are able to guarantee both structural and behavioural properties of the
discovered process models. Furthermore, we tackle the problem of outlier behaviour
caused by noise/and or rare behaviour by means of filtering directly on top of the
aforementioned internal intermediate representation.

1.1.2 Conformance Checking

The main aim of conformance checking is to assess to what degree a given process
model, supposed to describe the underlying process, and the behaviour as captured
within an event log conform to one-another. Within conformance checking, we typically
use both an event log and a process model as an input and compute their conformance.
In some cases, these conformance statistics are projected back onto the model and/or
the event log.

For example, consider Figure 1.4, in which we show the conformance checking
results for the process model shown in Figure 1.2a and the corresponding event log.?
In Figure 1.4a, we show a projection of the conformance checking results onto the
process model. The size and the yellow colour of the places in the Petri net (visualized
as circles) indicates that in some cases, an activity was performed according to the
event data that was not possible in the state of the model, as represented by these
places. Similarly, the intensity of the blue colour of the transitions (visualized as
rectangles), indicates how often these activities were performed according the data.
Moreover, the green/purple bars indicate how often the execution of an activity in the
event data is aligned with an activity described by the model. In Figure 1.4b, we depict
the conformance checking results, projected onto the event log. Each row in the figure
represents the execution of an instance of the process. The chevrons in the figure,
either green, grey or purple, correspond to the execution of an activity in the context
of that case. The colour indicates whether or not it is possible to map the observed

2Note that the event log was explicitly filtered in order to obtain the models in Figure 1.2 and it therefore
does not accurately describe all the cases present in the input event log.
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(a) Projection onto the input model.

(b) Projection onto the event log (trace-by-trace).

Figure 1.4: Example visualizations of typical conformance checking results, as implemented in
the ProM [113] framework.

execution, i.e. as present in the event log, to an activity execution in the given process
model.

Early work in conformance checking literally replayed the process behaviour as
captured within the event log in terms of the process model [102]. More recently,
the concept of alignments was introduced [13], which quickly developed to the de-
facto standard in conformance checking.® Essentially, an alignment explains the
observed behaviour in the event log in terms of the model as good as possible. As such,
alignments minimize the number of possible mismatches that can be found between
the traces in an event log and the process model. Alignments conceptually resemble
the replay techniques as mentioned earlier, however, by their sheer definition, they
lead to less ambiguous results.

Observe that the data quality issues, mentioned briefly in subsection 1.1.1, i.e.
representing one of the main challenges in process discovery, are also present in
conformance checking, yet play a less significant role. In fact, conformance checking

3The results depicted in Figure 1.4 are based on alignments.
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techniques allow us to track and/or find such problems, be it in terms of a predefined
model. However, the danger exists that logging errors are falsely assumed to be
erroneous executions of the process.

Conformance checking in the context of this thesis In this thesis, in chapter 7,
we present means for online conformance checking, on the basis of the incremental
computation of prefix alignments. Within this contribution, the main emphasis is on
the computability of such prefix-alignments and their potential impact when used as
an approximation scheme on the quality of the final conformance checking result.

1.1.3 Process Enhancement

Within process enhancement, the main aim is to improve the overall view of the
process under study, based on event data recorded in an event log. Here, a process
model, either discovered or designed by hand is combined with event data in order to
obtain a better view of the process. Such a better view can for example be a repaired
process model [44, 56] or the visualization of data-based decision points within the
process model [80].

Not all work in process enhancement focusses on revising a given/discovered
process model. Other approaches in process enhancement oriented studies focus on a
particular category of data present in event logs. For example, a significant amount
of work is devoted to the behaviour and interaction of resources within the process.
In [9, 107] several techniques are presented to discover social networks of interacting
resources as well as the automated identification of resource groups.

For example, consider Figure 1.5, in which we show an example social network,
based on the complete event log corresponding to the excerpt in Table 1.1. The
network represents a subcontracting network. The nodes/vertices, i.e. visualized as
circles, are representing organizational units that are active within the process, i.e. its
members perform certain (medical) activities. Whenever an arc exists between two
organizational units, there is significant evidence in the underlying event data that
subcontracting has taken place between the two units. Here, subcontracting relates to
the situation where a certain unit hands over control of the process to another unit, i.e.
by means of the execution of process activities, after which control is retained by the
first unit. For example, there exists an arc between the node labelled with N, and the
node labelled with Y, implying that at some point in the process, organisational unit
N is subcontracting organisational unit Y. Note that, for example, resource X never
participates in such subcontracting relation.

Process enhancement in the context of this thesis In this thesis, in chapter 8,
we present a study towards computing social networks, i.e. networks of resources
cooperating together during process execution, in the context of event streams. We
show that there exist variations of such networks that lend themselves for incremental
computation, which in turn allows us to adopt these variations in an online, event
stream setting.
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Figure 1.5: Example of a social network [9, 107], based on subcontracting behaviour as recorded
within the event log of Table 1.1.

1.1.4 Quality Dimensions in Process Mining

Process models used within process mining, either discovered or designed by a process
owner/expert, ideally describe the potentially complex behaviour of the process in
a concise and compact manner. To what degree such model is accurate, is not easily
captured in one definite quality metric. A given process model might describe all
behaviour as captured within the event log, yet at the same time, it describes an
abundance of behaviour not present in the event log. The opposite is possible as well,
i.e. the model does not describe too much additional behaviour, yet, only covers a
fraction of the behaviour observed in the event log.

Even if we discover or design a process model that strikes an adequate balance
between coverage of the observed behaviour (replay-fitness) and additionally described
behaviour (precision), it is probable that the model is too complex and incomprehens-
ible for a human analyst. Therefore, a process model additionally needs to be as simple
as possible, yet not too simple (Occam’s razor). Moreover, the model should also be
able to generalize, and allow for unseen, yet likely, behaviour.

In the light of the aforementioned considerations, within process mining, four
quality dimensions are commonly considered that allow us to quantify the quality of
a given process model with respect to the underlying process, as represented by the
event log.
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* Replay-fitness
Quantifies to what degree a given process model describes the behaviour as

captured in an event log. In case all behaviour present in the event log is also
described by the process model, replay-fitness is perfect.

* Precision

Quantifies to what degree a given process model describes behaviour that is not
observed in the event log. In case the model does not describe any additional
behaviour, i.e. all behaviour described by the model is also in the event log,
precision is perfect.

e Generalization

Quantifies to what degree a given process model generalizes beyond the beha-
viour observed in the event log. A model generalizes well in case it describes
certain constructs, e.g. parallelism and/or looping behaviour, that allow us to
deduce behaviour that is likely to be part of the process, yet, not necessarily
observed in the event log.

» Simplicity
Quantifies to what degree a given process model is interpretable by a human
analyst. Ideally, a model is of such simplicity that removing more constructs than

present in the model, jeopardizes the model quality, i.e. in terms of the other
dimensions.

Ideally, a process model strikes an adequate balance between the four quality
dimensions presented. In this regard, such adequate balance is somewhat subjective,
as it to some degree depends on the context in which the model is used. However,
maximizing all of the quality dimensions is often hard, or even impossible. In case we
obtain a model with perfect replay-fitness and precision, it is likely that the model fails
to generalize. Similarly, if we obtain a properly generalizing process model, it is likely
that the precision of the model is not perfect.

1.2 Learning from Data Streams

In this thesis, we primarily focus on the application of process mining techniques in
the context of streaming data, i.e. infinite streams of data elements that potentially
arrive at unprecedented velocity. Such streaming data, as well as its corresponding
formal model, are well-studied concepts in the field of data mining. Based on [64, 95],
we define the general data stream model as follows.

We receive a sequence of input data elements dy, ds, ..., d;, ..., that describe some, typ-
ically unknown, underlying generating function D. In general, two types of streaming
models are recognized, i.e.

* Insertion-Only/Cash Register

Once a data item d; is received, it is not changed, i.e. it remains as-is.
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e Insert-Delete/Turnstile

After a data item d; is received, it is potentially removed and/or updated.

Assume we maintain a bucket of marbles of all kinds of colours. Moreover, assume
that we have a data stream in which the i’* data packet d; describes the colour of a
new marble that we put in the bucket. Let D;(colour) denote the number of marbles
of colour colour stored in the bucket, after receiving the i-th data packet. For example,
D1z0(blue) describes the number of blue-coloured marbles in the bucket after receiving
the first 120 data packets. In the Insertion-Only model, once we observe a marble of a
certain colour at time i, i.e. we observe d;, the colour of the marble remains the same,
i.e. it never changes. In case we adopt the Insert-Delete model, we are able to alter
the colour of a marble that we previously observed on the stream. Moreover, we are
even able to remove the marble of that colour at a later point in time from the bucket.

In general, the aim of any streaming data application and/or algorithm is to design
a function on top of the underlying function D. Observe however that the stream is the
only tangible representation of D. Such function is often a query related to the data
structure, and, due to the nature of data streams, the answer to such query is likely to
change over the course of time. In the context of our example, we are for example
interested to keep track of the number of blue marbles, or, we want to know what are
the most frequent colours of marbles that we observe on the stream. We assume to
receive an infinite number of marbles of different colours, therefore, if we just keep on
throwing the marbles we receive in the bucket, at some point, our bucket of marbles
gets full and starts to overflow. Moreover, we assume that the marbles arrive on a
relatively fast rate, and thus, we need a mechanism to efficiently place a newly arrived
marble (temporarily) in our bucket and asses its colour.

In line with the aforementioned analogy, in terms of performance, we observe three
main components in the data stream model:

* Processing time

The time required to process a newly arrived data item. As we typically construct
some representation of the underlying function D (alternatively referred to as D),
the item processing time can alternatively be seen as the time needed to update
the internal representation after receiving a new data item. In the context of the
aforementioned example, the processing time represents the time of placing a
marble in (the internal representation of) the bucket.

* Memory consumption

The memory consumption represents the amount of memory needed to store the
internal representation of the underlying function D. In general, as we assume
the stream to be potentially infinite, simply storing each each data item on the
stream leads to infinite space consumption. In the context of the aforementioned
example, the space consumption represents the amount of memory needed to
describe (the internal representation of) the bucket.
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Figure 1.6: Schematic overview of the main performance dimensions of handling streaming
data. Processing time (pt) concerns processing the new data element in the previous
internal representation of the underling generating function D, i.e. D, in order to
generate an updated, new internal representation. Memory consumption (mc) rep-
resents the amount of memory needed to store the representation of the underlying
generating function D, i.e. D. Computation time (ct) represents the amount of time
needed to translate the estimation of the underlying function to the desired result,
i.e. translating D into R.

* Computation time

Often, the function D is used to compute a derived function and/or object, that
uses function D (more particularly its approximation D) as a basic input. The
computation time represents the time needed to compute the intended function
of the algorithm on top of the underlying function D. In the context of the
aforementioned example, assume that we aim to predict the number of blue
marbles in the upcoming 500 marbles. The computation time represents the
amount of time we need in order to translate the (internal representation of) the
bucket in to such a prediction.

Consider Figure 1.6, in which we present a schematic overview of the different
performance components of the data stream model. We maintain some representation
of the underlying generating function D, represented by D. We update the internal
representation based on newly received events. As such, we have a sequence of
representations of D, i.e. Dy, Do, ..., D;, ... The time to incorporate the newly received
data item, i.e. d;, in order to transform D;_; into D;, is referred to as processing
time. The memory consumption represents the amount of physical memory required
to store the maintained internal representation of the data stream. Finally, as we
are often interested in some derivative result, computed on the basis of the current
representation of the underlying function, we refer to computation time as the time
needed to transform the current representation of the underlying function into such
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Figure 1.7: Two functions, i.e. y=x and y=Ilog, (x), indicating the difference of rate-of-growth of
linear functions versus logarithmic functions.

derivative.

Since we assume the input event stream to be potentially of high-velocity, we are
required to limit the processing time. At the same time, we assume the amount of
data items on the data stream to be potentially infinite. Let N denote the, potentially
infinite, size of the data stream. A streaming algorithm ideally constitutes, at any
point in time, to a processing time and space consumption that are simultaneously
strictly less than linear in the size of N. Preferably, the simultaneous cost of processing
time and space consumption is polylogarithmic, i.e. O(log*(N)). The implication of
this bound on the processing time/space consumption is the fact that the algorithm’s
complexity growth is less than the rate at which packets arrive. For example, consider
Figure 1.7, in which we plot functions y = x and y =log,(x) for 1=x=<100, which clearly
illustrates the difference of complexity growth of logartihmic and linear functions.
Hence, even after receiving a huge amount of events on the stream, we are guaranteed
that memory usage is orders of magnitude smaller.

The cost of maintaining a representation of an infinite amount of data in ideally
polylogarithmic time and/or space, often impacts the resulting function that the
algorithm implements. In general, the function computed by the algorithm is an
approximation of the actual function when applied on the data stream as observed
thus-far. Therefore, a vast majority of the existing data stream algorithms implements
the (¢, 8)-approximation scheme, i.e. the algorithm’s result is correct within 1 +¢ of the
actual result with a probability of at least 1—§. Often, the complexity of algorithms
implementing either one of the presented approximation schemes is specified in terms

of € and 4, e.g. O(eizlog(%)). Hence, when we reduce the error margins of these
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algorithms, the algorithmic complexity increases.

1.3 Streaming Data in the Context of Process Mining

In the context of this thesis, we assume the notion of an event stream. As such, the
data elements arriving on the stream refer to events, executed in the context of an
underlying (business) process. Hence, a data element d; represents an event, i.e. a
row in Table 1.1, and the process itself represents the underlying function D. Events
executed in context of a (business) process are in general executed once, and are
irrevocable. Hence, we can assume the Insertion-Only/Cash Register streaming data
model. Moreover, in the context of this thesis we assume that these events are executed
in an atomic fashion, i.e. we abstract from activity duration.

When considering events originating from the execution of a process, in light of
the general streaming data model, we identify the following non-trivial challenges:

e Interrelated Data Elements

As the data elements present on the event stream originate from the execution of
an underlying process, i.e. they relate to events, multiple events/data elements
relate to the same process instance. Due to the inherent parallel execution of
several process instances, e.g. multiple products are produced at the same time,
batch processing is applied etc., we expect events related to the same process
instance to arrive in a dispersed manner on the event stream. The fact that
multiple data elements are interrelated adds an additional layer of complexity in
terms of event storage, i.e. it is not possible to arbitrarily discard certain data
elements from the data structures maintained.

* Data Incompleteness

As a consequence of the interrelatedness of the different events that are emitted
onto the stream, we identify the notion of data incompleteness. First of all, when
we start observing a stream of events, it is likely that some process instances
are already ongoing. Hence, the first few events observed are likely to relate
to process instances of which the initial set of events has not been observed.
Secondly, for newly started process instances, we observe the behaviour as a
whole over the life-span of the corresponding process instance. Thus, whilst
the process instance is still ongoing, we only possess partial behaviour of that
specific process instance.

* Implicit Start/End

Apart from data incompleteness, we assume that we have no explicit knowledge
of process instance initialization and termination. As such, it is not clear when
a process instance started and when it is safe to assume its termination. This
implies that, when we observe an event on the event stream related to a case
identifier that was not observed before, we have no guarantee that such an
event is indeed the first event of the underlying process instance. Moreover,
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Figure 1.8: Schematic overview of the challenges of handling streaming data in the context of

process mining. A V-symbol indicates an unobserved event, i.e. executed prior to
observing the stream, a O-symbol indicates a stored event, a x-symbol indicates a
dropped event, i.e. it is not stored, and, a A-symbol indicates a future event.

since we have no explicit knowledge related to process instance termination, we
potentially remove events related to such an instance, prior to its termination.
As we are likely to receive future behaviour for such a process instance, we may
falsely assume that newly arriving behaviour relates to the start of the process
instance.

Noise

Most existing data stream algorithms are designed under the assumption that
the input data is free of noise, or, noise plays a less significant role. For example,
techniques allow us to find the most frequent items on the stream simply do
not report noise as the noise is likely to be infrequent. Within process mining
however, during the execution of the process, events are generated that are
potentially spurious, i.e. they did not actually happen. Moreover, some events
that are executed are potentially never received on the event stream, e.g. due to
network issues. Translating the raw data directly into a process model therefore
potentially leads to results of inferior quality.

Consider Figure 1.8, in which we present a schematic overview of (some of) the
different challenges of adopting streaming data in the context of process mining. We
start observing the stream at some point in time, which does not allow us to observe
the full behaviour of each process instance, i.e. some instances are already running
(represented by the v-symbol). For some events, given some strategy, we decide to
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store them in our internal data structure, whereas for other events, we decide to
ignore them (represented by the O-symbol and the x-symbol respectively). Since we
consider running instances, some events will only become available in the future, i.e.
as represented by the A-symbol.

In section 1.4, we characterize the research goals and main contributions of this
thesis, which are partially based on/related to the aforementioned challenges. However,
the majority of these challenges relates to the design of (temporal) data storage, i.e.
what items do we store and for what period in time, which is specifically covered in
one of the research goals.

1.4 Research Goals and Contributions

The main goal of the work performed in the context of this thesis is to enable process
mining techniques to deal with streaming data. As such, we develop algorithms,
methods, tools and techniques that explicitly take into account the requirements as
defined by the general data stream model, cf. section 1.2.

1.4.1 Research Goals

We formalize the main research goals of this thesis along the lines of the main com-
ponents of process mining, i.e. process discovery, conformance checking and process
enhancement. Additionally, we focus on efficient storage of event data. We characterize
the main research goals as follows.

¢ Research Goal I

Development/design of general purpose techniques for high-quality, efficient event
data storage.

We develop efficient techniques for the storage of events originating from event
streams. These techniques act as a primer for any process mining technique. We
moreover develop techniques that allow us to increase the overall quality of the
data considered in subsequent process mining analyses.

e Research Goal II

Development/design of specialized techniques for efficient, event stream based,
process discovery.

We develop techniques that go beyond efficient event storage and decrease the
memory consumption need for the purpose of process discovery.
* Research Goal III

Development/design of specialized techniques for efficient, event stream based,
conformance checking.

State-of-the-art conformance checking techniques are inherently complex, i.e.
they are of a combinatorial nature. We, therefore, develop techniques that allow



20

Introduction

us to compute and/or approximate conformance checking results in an event
stream based context.

Research Goal IV

Development/design of specialized techniques for efficient, event stream based,
process enhancement.

We develop and investigate the application of process enhancement techniques
in a streaming context, i.e. by explicitly taking the requirements dictated by the
streaming data model into account.

1.4.2 Contributions

In line with the defined research goals, we present the main contributions of this thesis

here.

* Data Engineering

In chapter 3, we present and formalize the notion of an event store. In essence,
an event store represents a finite view of the event stream, i.e. a subsequence of
the stream as a whole. As such, we are able to apply any conventional process
mining algorithm in the context of event streams. We primarily focus on showing
that we are able to instantiate event stores using a variety of existing data storage
techniques. Moreover, we assess to what degree these storage techniques are
suitable for the purpose of process mining.

In chapter 4, we present means to filter infrequent behaviour from event streams.
The technique presented in chapter 4 acts as a stream processor, i.e. both its
input and output are a stream of events. As such, we are able to apply it prior to
constructing event stores, in order to achieve higher quality event data.

Process discovery

In chapter 5, we present a general framework for the purpose of online process
discovery. Conceptually, the framework describes a high-level architecture on the
basis of the internal data structures used by the most common process discovery
algorithms. The main aim is to design these algorithms in such a way that we
require a minimal memory footprint, i.e. we store the least amount of data
needed to reconstruct the algorithm’s internal data structure. Moreover, we
show that the proposed architecture covers several different classes of process
discovery algorithms, and, we provide several instantiations of the framework.

In chapter 6, we show that, for a specific class of process discovery algorithms,
we are able to exploit the internal data structure to such extent that this allows
us to guarantee both structural- and behavioural properties of the discovered
process models. We moreover present an internal filtering method, built on top
of the algorithm’s data structure, that allows us to increase the overall quality of
the discovered process models.



1.5 Thesis Structure 21

* Conformance checking

In chapter 7, we present a greedy algorithm, alongside different parametrization
options, that allows us to perform online conformance checking. The technique
presented computes prefix-alignments, i.e. explanations of observed behaviour
in terms of a given reference model, whilst accounting for future behaviour.
We primarily focus on the quality of the conformance checking results using
different instantiations of the proposed parametrization of the greedy algorithm.
Furthermore, we show that, under certain conditions, the prefix-alignments
that we compute are an under-estimator for the final deviation costs, i.e. upon
completion of the process instance.

e Process Enhancement

In chapter 8, we present an assessment of the computation of social networks
in streaming settings. We primarily focus on computational feasibility in terms
of incremental network updates of handover-of-work networks. We moreover
show that some of these network variants lend themselves for incremental
computation, which allows us to adopt these variants in an event stream setting.

1.5 Thesis Structure

In line with the research questions and associated contributions identified in section 1.4,
the outline of this thesis, as visualized in Figure 1.9, is as follows. In chapter 2, we
present basic preliminaries that aid the reader in understanding the basic notations
and concepts used throughout the thesis. We furthermore present (two variants of) a
running example, which we use throughout the thesis to exemplify concepts and/or
algorithms, where necessary. We discuss Data Engineering related issues in chapter 3
and chapter 4. In particular, in chapter 3, we present several means to efficiently
store events emitted onto an event stream, which effectively allows us to perform
any existing process mining algorithm in the context of event streams. In chapter 4,
we present means to filter out infrequent behaviour from event streams. The area of
process discovery is covered in two chapters, i.e. chapter 5 and chapter 6. In chapter 5,
we present a generic architecture that enables us to decompose process discovery
into two sub-parts, i.e. learning and maintaining an intermediate representation and
intermediate representation based discovery. In chapter 6, we show that, in some
cases, we are able to explicitly exploit the nature of intermediate representations for
the purpose of improving process discovery results. We cover conformance checking in
chapter 7, where we examine the use of incrementally computed prefix-alignments. We
cover process enhancement in chapter 8, where we study the incremental computation
of social networks in an online setting. We detail on associated implementations of all
techniques presented in this thesis in chapter 9. Finally, in chapter 10, we conclude
the work presented in this thesis.
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Chapter 2
Preliminaries

The vast majority of process mining concepts, techniques and algorithms, build on a
small set of basic mathematical concepts. In this chapter, we present these concepts,
after which we formally define specific process mining concepts such as event data
and commonly used process modelling formalisms.
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2.1 Basic Mathematical Concepts

In this section, we present some basic, well understood, mathematical concepts in the
field of process mining as well as computer science in general. The main goal of this
section is to familiarize the reader with the notation used throughout this thesis.

2.1.1 Sets, Tuples and Functions

Let X = {x1,x2,...,x,} denote a set consisting of n different elements. The power
set of a set X, i.e. 2(X), denotes the set containing all possible subsets of X, i.e.
P(X) ={X'| X'cX}. We let Z denote the set of integers, i.e. numbers that we can write
without a fractional component (...,-2,-1,0,1,2,...). We let N ={1,2,...} denote the
set of positive integers, i.e. the natural numbers, Ny = {0,1,2,...} additionally includes
0. We let B = {0,1} denote the set of boolean values. Observe that a boolean value
of 0 corresponds to value false, whereas a value of 1 corresponds to value true.
Let ny,mpeNy s.t. n; < ny we let {ny, ..., np} denote the interval of integers between
(and including) n; and n,. Given n arbitrary sets, i.e. X, ..., X,;, we define the n-ary
Cartesian product of these n sets as X; x --- x X, = {(x1,..., Xp) | V1 < i < n(x;€X;)}. We
refer to an element in an n-ary Cartesian product as a n-ary tuple. In case n =2, the
Cartesian product defines the set of all ordered pairs (x1, x2)€X; x X». Given set X and
Cartesian product Xj x---x X,, if V 1 < i < n(X; = X), we simply write X". In some cases,
we are interested in a particular element of a tuple. To this end we define a projection
function, i.e. given 1<i<n, n': X x---x X, — X, S.t. (X1, 000y Xiyooor X)) = Xi, €.8.
for (x,y,2)€X x Y x Z, we have n'((x, y,2)) = x, n%((x,,2)) = y and 7°((x,,2)) = z. In
the remainder of this thesis, we omit the explicit surrounding braces of tuples, when
applying a projection on top of them, i.e. we write 7' (x, y, z) rather than ' ((x, y, 2)).

Any arbitrary subset RSXj x --- X}, is an n-ary relation. In case n =2 we refer to a
binary relation. Given such a binary relation, if (x1, x2)€R we alternatively write x; Rx;.
Consider a binary relation R on sets X and Y, i.e. REX x Y. In the context of this thesis,
we formulate the following properties on a binary relation R:

* Ris functional, if and only if, VxeX,y,y'eY (xRy AxRy' = y=y'), i.e. if a pair
of the form (x,...) exists in R, it is the only pair of that form.

* R is injective, if and only if, Vx,x'eX,yeY (xRy Ax'Ry = x=1x'), i.e. there exist
only one pair of the form (...,y) in R.

* Risleft-total, if and only if, VxeX,3yeY (xRy), i.e. for each element in X, there
exists a counter-part in Y.

A functional relation is also referred to as a partial function f from X to Y, written as
f: X-» Y. Instead of xfy, we alternatively write f(x)=y. The domain of f represents
all elements on which f is defined, i.e. dom(f) = {xeX |3yeY (f(x) = y)} whereas Y
denotes the codomain of f, i.e. codom(f) =Y. The range of f, represents the values in
Y that actually have a counter-part in X i.e. rng(f) ={yeY | 3xeX (f(x) = y)}. A binary
relation that is both left-total and functional is referred to as a total function f from
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X to Y, written as f: X — Y. In the remainder, when we use the term function, we
refer to a total function. Observe that a function, i.e. non-partial, is defined on every
element in X, and each element of X has exactly one corresponding function value in
Y. As such, the domain of a function f: X — Y is equal to X. Similar to projections,
given a function f with characterization f: X x Y — Z, we write f(x,y) rather than
F(x ).

A binary function Re X x X is referred to as an endorelation on X. For such endore-
lations, the following properties are of interest in the context of this thesis.

* R is reflexive, if and only if, Vxe X (xRx).

* Ris irreflexive, if and only if, Axe X (xRx).

* R is symmetric, if and only if, Vx, ye X (xRy = yRx).

* R is antisymmetric, if and only if, Vx, ye X (xRy = —yRx).
* Ris transitive, if and only if, Vx, y,ze X (xRy A yRz = xRz).

A relation < <X x X, alternatively written (X, <), is a partial order, if and only if, it
is reflexive, antisymmetric and transitive. A relation < X x X, alternatively written
(X, <), is a strict partial order, if and only if, it is irreflexive, antisymmetric and transitive.
Finally, given a strict partial order (X, <) and a function f: X — X, f is strictly increasing,
if and only if, x < ¥’ © f(x) < f(X).

2.1.2 Multisets

A multiset (or bag) generalizes the concept of a set and allows elements to have a
multiplicity, i.e. degree of membership, exceeding one. Let X = {x1, X, ..., X,} be a set, a
multiset B over X is a function B: X — Ny. We write a multiset as B = [xfl,x§2, ...,x’,ﬁ"],
where for each i€{l,...,n} we have B(x;) = k;, however, if B(x;) =0, we omit x? from
multiset notation, and, if B(x;) =1 we simply write x; in multiset notation, i.e. we omit
its superscript. The empty multiset is written as [ ]. If for some xe X we have B(x) >0,
we write xe, B. We define B, = {xeX | x€, B}cX. If for some xeX and keN, we have
B(x) = k, we write er’ﬁB. Finally, if for some xe X and keN, we have B(x) = k, we write
x€*B. The universe of multisets over some set X, i.e. all possible multisets over X,
being the multiset equivalence of the notion of the power set, is written as %(X).
Given multisets B; and B, over set X, we write B;SB; if and only if Vxe X (B (x) < Bo(x)).
The union of two multisets, i.e. BjUB,, yields a resulting multiset B’ with B'(x) =
max(Bj (x), B2(x)). The intersection of two multisets, i.e. BinB,, yields a resulting
multiset B’ with B'(x) = min(B; (x), B2(x)). The sum of two multisets, i.e. BiwB,, yields
a resulting multiset B’ with B’(x) = By (x) + B2(x). Finally, the difference between two
multisets, i.e. B; — By, yields a resulting multiset B’ with B'(x) = max(0, By (x) — B2(x)).
Observe that multisets are defined in terms of a base set X. In some cases we
need to compute operations on multisets defined over different domains, i.e. given
some multiset Bx over X and By over Y, s.t. X # Y, we want to compute BxBy.
Observe that we are able to extend any multiset By: over X’cX to a multiset over X
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by assigning Bxs(x) = 0,VxeX\X'. Hence, to compute BxwBy, we first extend both
By and By to be multisets over XuY, after which we apply the w-operator. In case
we apply a multiset operator on a multiset By and arbitrary and set Y, we, implicitly,
first convert Y into a multiset By: Y — Ny, where By (y) =1 if yeY and 0 otherwise.
Subsequently we perform the operator of choice on Bx and By.

2.1.3 Sequences

Sequences represent enumerated collections of elements which additionally, like
multisets, allow its elements to appear multiple times. However, within sequences we
explicitly keep track of the order of an element. Given an arbitrary set X, a sequence of
length n over X is defined as a function o: {1,...,n} — X. Thus, ¢ assigns an element of
X to each index i€{l,..., n}. We write a sequence as o = (g (1),0(2),...,a(n)). The length
of a sequence is written |o|. We let ¢ denote the empty sequence, i.e. |¢| = 0. The set of
all possible sequences over set X, including infinite sequences, is written as X*.

Given a sequence g€ X* and xe X, we write x€,o if and only if 31 < i <|o| (o (i) = x).
Furthermore, we define elem: X* — 22(X), with elem(o) = {xe X | x€.0}. We addition-
ally define the Parikh abstraction, which counts the multiplicity of a certain element
within a sequence, i.e. parikh: X* — %(X), where:

x”lxeX/\nzli({1 ifU(i):x)

2.1
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parikh(o) =

For simplicity, given oeX*, we write ¢ to denote its Parikh abstraction, i.e. ¢ =
parikh(o).

Given two sequences 01,02€ X* the concatenation of sequence o, and o,, written
as o1 - 0y, yields sequence (o1(1),01(2),...,01(l01]),02(1),02(2),...,02(|02])). Similar to
multisets, if 1€ X™* and 0,€Y*, then o1 -0,€(XUY)*.

Given two sequences 01,02€X", o1 is a subsequence of o,, written o S, 0>, if there
exists a strictly increasing function:

p: L., 1o — {1, lo2l} s.t. ViE(l, .., lo11} (01(0) = 02(p(i))

Consider for example (a, b, c), which is a subsequence of (a,a,d, b,e,c) as we are
able to construct ¢ ={(1,1),(2,4),(3,6)}. A subsequence is a strict subsequence if the
mapping is consecutive. Given a sequence oceX* and 1 <i < j < |og| we denote its strict
subsequence starting at index i and ending at index j as o;_;, .8. {a,a,b,c,b,d)>..4 =
{a, b, c). A subsequence is a prefix if and only if the mapping function ¢ is an identity
function, i.e. (1) =1,92) =2,...,¢(0ol) = lol, e.g. {a,a,d) is a prefix of (a,a,d, b, e, c),
as we have ¢ ={(1,1),(2,2),(3,3)}. A set of sequences XeZ(Y*) is prefix-closed if
€eXAVoeX(Jo'eX (0' =01 j0-1)). Furthermore, we define the prefix-closure of set
Xe(Y*) as X, with X € X, and, recursively:

_ lo|
X={u Y (U (Ul...i)) (2.2)

gex \i=1
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Observe that, by definition, a prefix-closure is prefix-closed. We overload notation
here, and also define the prefix-closure for multisets of sequences, i.e. given a multiset
B: X* — Ny, we define B: X* — Ny, where:

B(o)=B(@)+ Y. B(o-(x)

o-(x)eBy

For example, for B = [(a,b)°,{(a,c)’], we obtain B = [¢% (a)?,(a,b)° (a,c)®]. A sub-
sequence is a suffix of a sequence if it is a strict subsequence, and its last element is
the last element of the other sequence, i.e. (b, e, c) is a suffix of {(a,a,d, b, e, c).

In some cases, we need to project a sequence of tuples on a sequence of elements of
a specific set within the Cartesian product. To this end we extend projection to the level
of sequences, i.e. given a sequence og€(X; x X2---X,)* and 1 < i < n, we define a pro-
jection function 7 : (X; x Xp++- Xp)* — X} s.t. wl(0) = (n' (1)), 7' (0(2),...,w (@ (|o]))),
e.g. for oe(X x Y x Z)*, we have nl(0)eX*.

Given oeX* and Y<X we define o), €Y* recursively with ¢, =€ and ((x)-0")}, =
(x)-0) if xeY and 0| if x¢ Y. Finally, given a function f: X — Y, we define f,: X* —
Y*, such that, given a sequence o€ X*, we have f, (o) = (f(c(1), f(0(2)),..., f(e(TD)).

2.1.4 Matrices and Vectors

We occasionally use the notions of matrices and vectors in this thesis. We assume
vectors to be n-ary tuples in R”. We define such vector of size n as XeR", e.g. (1, i,2)€R3.
Furthermore, a vector XeR”" represents a column vector whereas X"eR" represents a
row vector:

X1
X2

X = , XM= x  xp) (2.3)
Xn

To access the i element of a vector ¥, we write (i), rather than 7’ (¥).
A matrix is considered a rectangular array of values in R. A matrix consisting of n
rows and m columns, i.e. an n x m matrix AcR”*™  is written as:

arn a2 . ai,m
a1 a2 ... d2m

A= T (2.4)
ap1 Q4p2 ... Aanm

We write A; ; to refer to element a; j, i.e. the value at row i, column j. Observe that a
row vector of size n corresponds to an 1 x n matrix, whereas a column vector of size n
corresponds to an n x 1 matrix.

Multiplication of two matrices is possible if the number of columns of the left
argument coincides with the number of rows of the right argument. Given an n x m
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matrix A and an m x k matrix A’, multiplying the two, i.e. AA’ results in an n x k sized
m

matrix where (AA); j = ¥ A; jA] i Observe that we are thus able to multiply a row
=1 '

vector X7 of size n with a matrix A of the form n x m, i.e. XTA, for arbitrary m. In case
m =1 we are multiplying a row vector with a column vector of size n. Similarly, we are
able to multiply a matrix A of the form n x m with an n-sized column vector, i.e. AX.
In some cases, we define a vector as ¥eN{, which merely indicates that we are
only interested in assigning values to the vector that are in Nyg. Moreover, in several
application scenario’s, given an arbitrary set X, we assume the existence of some
function f: X — R and define a corresponding vector ¥eR'X!. In these cases we assume
that there exists an injective index function ¢: X — {1,...,|X|} s.t. X(t(x)) = f(x). We
furthermore assume that only one such index function exists and is used, i.e. as such
given two vectors ¥, yeR!X!, we assume that % and 7 agree on their indices. This allows
us to directly write and reason about operations such as X'y. For convenience, we
write X(x) as a place-holder for X(:(x)). Note that the concept of indices and sets
extends to matrices. As such, given o€ X*, when working with vectors, we overload
notation and refer to & as the Parikh vector of o, rather than the Parikh abstraction.

2.1.5 Graphs

A graph is an ordered pair G = (V,E) where V is a set of vertices and E is a set of
edges with ECV x V, i.e. an endorelation on V. A graph is undirected if E is irreflexive
and symmetric. As such, in an undirected graph, we write edges as sets rather than
pairs, i.e. {vy, v2} represents the fact that (vy, v), (v2, v1)€E. A directed graph does not
have the aforementioned property and in case of a directed graph we alternatively
refer to the E as a set of arcs. As an example, consider Figure 2.2 in which we depict
an example undirected- and directed graph. Graph G, in Figure 2.2a represents an
undirected graph with three vertices v;, v, and vs, which are graphically represented
as a black dot. The edges, graphically, connect the vertices by means of a line. In
graph G, in Figure 2.2b, we depict a directed graph. The main difference is within
the visualization of the arcs, which are represented by arrows, rather than lines.

The degree of a vertex in an undirected graph is a function deg: V — Ny which
represents the number of edges that are connected to it, i.e.

deg(v)=|{ VeV |{v,v'}eE}| (2.5)

For example, observe that all vertices in G; have a degree of 2. For directed graphs
we take the orientation of an arc into account, and thus we have an indegree deg~
and outdegree deg*, i.e. deg™ (v) = |[{V'eV | (V/,v)eE}| and deg* (v) = [{v'eV | (v, V)€E}|.
In case a vertex has no indegree, i.e. deg™ (v) =0 it is a source. If it has no outdegree,
i.e. deg*(v) =0 it is a sink. Note that in G,, v; is a source whereas vs is a sink, and,
deg™ (1) =deg*(v0) =1.

In an (un)directed graph, a path is a non-empty sequence of edges, which con-
nects a corresponding sequence of vertices. An undirected graph is connected if
there exists a path between any pair of vertices. For example, graph G; in Fig-
ure 2.2a is a connected undirected graph. An undirected graph contains a cycle
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(a) Example undirected graph (b) Example directed graph
Gy = ({vy, v, v}, {{vy, v}, {vy, v3lh {v2, vs}h) G2 = (fv1, v2, v3}, {(v1, v2), (V1, v3), (V2, V3)}
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(c) Example tree (d) Example rooted tree
GI = (lv1,v2, 3, v4, v5)}, GI = ({v1,v2,v3,v4,v5},
{tvr, v} {v1, v} {v2, val, {2, vs}) {(v1,v3), (v2, V1), (V2, v4), (2, v5)}), where vy is

the tree’s root.

Figure 2.2: Two example graphs, i.e. G; and G», and two example trees, i.e. GIT and GZT .

if JveV (FoeE* (o0 = {(v, v1), (11, V2), ..., (U1, V), (Vy, 1)))). Observe that graph G; does
contain a cycle.

If an undirected graph is connected yet does not contain any cycle, such graph is a
tree. As a consequence, given a tree G = (V, E), we have |E| = |V| - 1. Observe that, G,
in Figure 2.2a contains a cycle, and hence, is not a tree. However, the graph depicted
in Figure 2.2c, i.e. GI, is in fact a tree. In some cases we assign a specific vertex v" eV
as the root of the tree. We call such tree a rooted tree, cf. Figure 2.2d. The depth of a
vertex present in a rooted tree is a function depth: V — Ny, s.t. depth(v") =0 and for
any other veV, depth(v) is defined as the length of the path from v" to v. To visualize
a rooted tree, we use arrows instead of lines to connect the vertices, even though a
tree is always an undirected graph. We use arrows to visualize the depth of the tree.
The vertex that has no incoming arcs in such visualization is the root vertex. Observe
that the tree in Figure 2.2d is similar to the tree in Figure 2.2c, yet has vertex v, as
its root. A vertex v in a tree, not equal to the root of the tree, for which we have
deg(v) =1 is a leaf vertex. Other vertices, again except the root, are called internal
vertices. Finally, in Figure 2.2d, observe that the depth of vertices v;, v4 and vs is 1,
whereas the depth of vertex vs is 2.

A special type of tree that allows us to efficiently encode sets of sequences is a
prefix tree. Given an alphabet, i.e. set of characters X, and a set of sequences over X,
i.e. £cX*. A prefix tree is a rooted tree with an additional labelling function A: E— X
and a boolean terminal function term: V — B which allows us to encode £. The
projection of each vertex on a path starting from the root vertex and ending in a vertex
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Figure 2.3: Example prefix-tree GsT encoding £ = {process, prom, patch}. Vertices v with
term(v) = true are visualized as B symbols.

v with term(v) = 1 corresponds to an element of £. As an example of a prefix-tree,
consider prefix-tree G depicted in Figure 2.3. The prefix-tree encodes the set of
sequences £ = {process, prom, patch}. Within prefix-tree GI we depict non-terminal
vertices, i.e. term(v) =0, as *-symbols and terminal vertices as B-symbols. In this
example, only leaves are terminal, however, in general, this need not be the case. For
example, if we add the sequence (p, a) to the language, v, becomes a terminal vertex.
In particular, if ee £ then the root is a terminal vertex. Also, observe that an internal
vertex being a terminal node implies that some strict prefixes of sequences in £ are in
£ to. Moreover, if all vertices are terminal (including the root vertex), the prefix-tree
describes a prefix-closed language.

2.1.6 Integer Linear Programming

An Integer Linear Programming (ILP)-formulation, allows us to specify an optimization
problem, i.e. either a minimization or maximization problem, defined in terms of a set
of integer-valued decision variables. The goal is to find an assignment of the decision
variables that minimizes/maximizes the corresponding objective function and at the
same time adheres to an additionally defined set of constraints. These constraints are
in turn linear (in)equalities, expressed in terms of the decision variables. We further
exemplify the general notion of an ILP-formulation in 2.1.
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Figure 2.4: Visualization of the example ILP-formulation. The grey area highlights the region
in which integer-valued solutions exist, i.e. the feasible region. The black dots
represent (some of the) solutions according to the body of constraints, i.e. feasible
solutions, whereas the red dot represents the optimal solution.

Example 2.1 (Example ILP-formulation). Consider that we have two integer variables,
i.e. x,yeZ. We aim at maximizing the sum of these two variables, i.e. x+ y. Furthermore,
we want to constrain the value of x to be at most 2, i.e. x <2. We constrain y in terms of
x, i.e. y<2x. We are able to construct a corresponding ILP-formulation of the following
form:

maximize xX+y objective function
such that x<2 constraint on x (2.6)
and 2x+y=<0 constraint on y in terms of x )
X, yeZ x and y are integers

In case of the simple ILP-formulation listed in Equation 2.6, it is easy to see that the
corresponding solution is x =2, y = 4. For convenience, a corresponding graphical
representation of the example is provided in Figure 2.4. In Figure 2.4, the grey area
indicates all possible variable assignments in Rxo (we omit negative values in the figure)
that adhere to the two constraints. The black dots indicate the actual integer values that
adhere to the constraints. The total set of solutions to the given body of constraints is also
referred to as the set of feasible solutions. In the example visualization, the black dots
are part of the set of feasible solutions. Finally, the solution that maximizes the objective
function (or, in minimization is minimizing the objective function) is also referred to as
the optimal solution. In Figure 2.4, the optimal solution is visualized by means of a red
dot.
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In the example ILP-formulation presented in 2.1, finding an optimal variable
assignment is rather easy. In the general sense, however, the complexity of finding
such a solution is proven to be NP-complete. In the context of this thesis, we do not go
into detail with respect to the mechanics of finding an optimal solution to a given ILP-
formulation, i.e. we refer to [105]. We merely assume that we are able to solve a given
ILP-formulation, using an ILP-solver, i.e. a dedicated software library that provides
us with an optimal variable assignment given an ILP-formulation. Examples of such
solvers are LPSolve!, Gurobi? and IBM ILOG CPLEX®. Finally, it is important to note
that, in general, it is possible that no solution exists for an ILP (due to contradicting
constraints), or, a multitude of optimal solutions exist.

2.2 Process Models

Since process mining revolves around event data originating from the execution of
processes, we need a, preferably formal, means of representing and reasoning about
these processes. Hence, within process mining, process models, i.e. formalisms that
describe the behaviour of processes, are, like event data, considered as being a first
class citizen. In essence, a process model describes the intended behaviour of a process.
Reconsider Figure 1.2 (in chapter 1, subsection 1.1.1 on page 6), in which we depict
process models using different formalisms, i.e. a Petri net (Figure 1.2a) and a BPMN
model (Figure 1.2b). In the context of this thesis, we define .# as the universe of
process models, i.e. any process model, regardless of its formalism, is a member of
. Thus, both the Petri net in Figure 1.2a and the BPMN model in Figure 1.2b are
members of .#. However, even though many other process modelling formalisms exist
as well, within this thesis we primarily focus on (labelled) Petri nets [94], which allow
us to explicitly model concurrency in a concise and compact manner. In the upcoming
section we introduce Petri nets, in subsequent sections we discuss alternative, process
oriented modelling formalisms which are explicitly used in this thesis.

2.2.1 Petri nets

Consider Figure 2.5, in which we depict an example Petri net. The Petri net describes a
simplified online ID-document verification process. The model describes that the first
activity to be performed should always be receive ID. Subsequently, the scan picture
and scan watermark activities can be performed concurrently. However, we are also
allowed to only perform the scan watermark activity and subsequently perform a
verification, i.e. we are allowed to skip scanning the picture. If a verification results in
a negative verification result, we are able to redo the scan of the watermark/picture.
However, such a decision, i.e. to redo these activities, is not explicitly captured by the
system. This unobservable action is represented by the grey rectangle with label .
Eventually, either the activate account or the block account activity is performed.

1http ://1psolve.sourceforge.net/
2http://gurobi .com
Bhttps ://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
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Figure 2.5: Example process related to an ID verification process, modelled as a labelled Petri
net with initial marking [p;].

A Petri net consists of places and transitions. Places are used to represent the state
of the described process whereas transitions represent possible executable activities,
subject to the state. Graph-theoretically, a Petri net is a bipartite graph in which places
are only connected to transitions, and, consequently, transitions are only connected
to places. The Petri net in Figure 2.5 consists of 7 places (denoted P), i.e. P =
{pi, P1,--» P5, Po}, Visualized as circles. The Petri net furthermore contains 8 transitions
(denoted T), i.e. {1, ..., tg}, visualized as boxes. Observe that, indeed, in the example
Petri net depicted in Figure 2.5, places only connect to transitions whereas transitions
only connect to places.

Definition 2.1 (Petri net). Let P denote a set of places and let T denote a set of transitions
s.t. PNT=¢@. Let F= (P x T)U(T x P) denote the flow relation. Furthermore, let ¥ denote
the universe of labels, let T ¢ X and let A: T — Zu{t} denote the transition labelling
function. A Petri net N, is a tuple N= (B T,EA).

Observe that the labelling function maps transitions to a corresponding label, e.g.
the label of transition # in Figure 2.5 is receive ID, or a in short-hand notation. In case
a transition ¢ is unobservable, e.g. transition # in Figure 2.5, we have A(¢) = 7, with
TEZ.

Given any element xePUT of a Petri net N = (B T,EA), i.e. either a place or a
transition, we write ex = {ye PUT | (y, x)F}. Similarly we define xe = {ye PUT | (x, y)€F}.
For example, in Figure 2.5, we have ep; = {1;, t5}, whereas tge = {p1, p2}.

We represent the state of a Petri net in terms of a marking M, which is a multiset
of places, i.e. Me2B(P). For example, in Figure 2.5, place p; is marked with a token,
visualized by a black dot. Thus, the marking of the Petri net in Figure 2.5, as visualized,
is [p;]. Given a Petri net N and marking M, we refer to the pair (N, M) as a marked net.
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The transitions of a Petri net allow us to manipulate its state, i.e. its marking. A
transition t€T is enabled if all places p that have an outgoing arc to ¢ contain a token.
If a transition is enabled in marking M we write (N, M)[f). An enabled transition is
able to fire. If we fire a transition ¢, it consumes a token from each place that has
an outgoing arc to t. Subsequently, a token is produced in each place that has an
incoming arc from ¢. For example, in Figure 2.5, 1, is the only enabled transition in
marking [p;], and, if it fires we obtain new marking [p1, p2]. In marking [p;, p2] we are
able to fire both #, and #3, in any order.

Definition 2.2 (Enabled Transition, Firing Rule). Let N = (P, T,F, A) be a Petri net with
labelling function A: T — Zu{t}, and let Me%(P) be a marking of N. Transition teT is
enabled in M, written as (N, M)[t), if and only if Vpeeot (M (p) > 0). An enabled transition
in marking M is able to fire, which results in marking M' = (M — et)wte. We write such a
transition firing as (N, M) 4 (N, M.

Let 0 =(11,..., tp)eT* be an arbitrary sequence of transitions. Sequence o is a firing
sequence of N in marking M, yielding marking M’, if and only if, we are able to find
markings M, .., Mpe@B(P) s.t. (N, M) 2 (N, My) = (N, My_1) 2 (N, M'). We overload
notation and simply write (N, M) Z (N, M.

Reconsider Figure 2.5, in which we are able to generate multiple firing sequences
from marking [p;] that yield marking [ps, p4l, €.8. {t1, t2, t3), {t1, I3, t2), {11, 13, L4, I, 2, 13).

Given a Petri net N = (P, T, F,A) and marking MeZ(P), we define the language of
Petri net N, given (initial) marking M, as:

SN, M) = {ae T* |3IM'eB(P) ((N, M Z (N, M’))} 2.7)

Observe that the language of a Petri net, as defined in Equation 2.7 is prefix-closed. In
some cases, we are interested to project the elements of the language of a Petri net to
their corresponding labels in X. To this end, we additionally define:

£5(N,M) ={oex* |30'eL(N,M) (A (0")|; =0)} (2.8)

Furthermore, given a Petri net N = (B T, F, A1) and marking MeZ%(P), we are, in some
cases, interested in the markings that are reachable, starting from marking M, i.e.

R(N, M) = (M'eB(P) | 3o€T* (N, M) Z (N, M)} (2.9)

Observe that, MeR(N, M), i.e. by means of empty firing sequence ¢. A marking
MeZB(P) is referred to as a deadlock if and only if:

AteT (N, M)[1)) (2.10)
Furthermore, a marking Me2(P) is referred to as a livelock if and only if:
YM'eR(N, M) (RN, M) = RN, M)) (2.11)

Several classes of Petri nets exist, either based on graph-theoretical/structural
properties based on behavioural properties. In the context of this thesis, we consider
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the structural notion of workflow nets and several (behavioural) notions of soundness.
We primarily base our definitions on [2, 8].

A workflow net is any arbitrary Petri net that has an additional set of structural
properties. Workflow nets were introduced as a modelling notation for process oriented
information systems and typically describe the behaviour of an instance of such a
process. Therefore, a workflow net needs to specify a clear start- and corresponding
end point of the process it describes. Furthermore, it is not allowed to consist of
multiple detached parts.

Definition 2.3 (Workflow net). Let N = (B T, F A) be a Petri net with labelling function
A: T — Zu{t}. Let p;, po€P with p; # po. Petri net N is a workflow net (WF-net) if and

only if:
1 epi=0¢
2_ pO‘ = @

3. Let t ¢ T, the Petri net N' = (P, Tu{t}, FU{(t, p;), (po, 1)}, A) is strongly connected, i.e.
there is a directed path between each pair of nodes in N'.

In some cases, we alternatively write a Petri net, of which we know it is a workflow
net, as N=(P.T,EA, p;, po), i.e. to explicitly indicate the unique source- and sink place.
Observe that the Petri net presented in Figure 2.5 in fact adheres to 2.3 and is thus a
workflow net.

2.3 merely specifies structural/graph-theoretical properties of a Petri net, i.e. given
a workflow net, we have limited capabilities to reason about its quality, e.g. whether
or not it is free of deadlocks. To this end, we define several behavioural classes for
Petri nets which allow us to reason about the behaviour described by the Petri net,
as well as its quality and correctness as a process model. Prior to this, we present
two behavioural properties which we subsequently utilize within the definitions of the
behavioural classes.

Definition 2.4 (Liveness, Boundedness). Let N = (B, T,F, A) be a Petri net with labelling
function A: T — Zu{t} and let Me%(P) be a marking of N.

* Marked net (N, M) is live if and only if:

VM'eR(N, M), teT (IM"eR(N, M) (N, M")[1))) (2.12)

* Marked net (N, M) is k-bounded (keN) if and only if:

VM'eR(N, M), peP (M'(p) < k) (2.13)

In case a Petri net is 1-bounded, we call such net safe. Note that any k-bounded
Petri net has a strictly finite set of reachable markings, i.e. JR(N, M) is a finite set. As
such, whenever SR(N, M) is finite, we know that (N, M) is bounded.

We subsequently define different increasingly strict variants of soundness of work-
flow nets.
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Definition 2.5 (Easy Soundness). Let N = (B T,F A, p;, po) be a workflow net with
labelling function A: T — Zu{r}. N is easy sound if and only if:

[Pol€R(N, [pi]) (2.14)

Observe that easy soundness guarantees that if we place a token in the initial place
pi of a workflow net, it is possible to end up in a marking that only marks the sink
place p,. As the name suggests, easy soundness is a rather weak correctness property
of a workflow net, i.e. we are only guaranteed that we are able to at least once correctly
mark the sink place p,. A slightly stronger notion of behavioural correctness, which
is of particular interest in the context of this thesis, is relaxed soundness. Relaxed
soundness ensures us that we are able to fire each transition within the Petri net at
least once, and that we are, in the end, able to reach marking [p,].

Definition 2.6 (Relaxed Soundness). Let N = (B T,F A, p;, po) be a workflow net with
labelling function A: T — Zu{r}. N is relaxed sound if and only if:

VteT(EIUET* ((N, [pih) < (N, [po) A IE*U)) (2.15)

We finally introduce the notion of soundness which is the strongest correctness
notion defined in terms of workflow nets that we consider in this thesis.

Definition 2.7 (Soundness). Let N = (P, T, F A, p;, po) be a workflow net with labelling
function A: T — Zu{r}. N is sound if and only if:

1. (safeness) (N, [p;]) is safe (i.e. YMeR(N,[p;]), peP (M(p) < 1)).
2. (option to complete) YMeR(N, [p;]) ([pol€R(N, M)).
3. (absence of dead parts) Ve T (IMeR(N, [p;]) (N, M)[1)))

Thus, a sound workflow net guarantees us that there is only one deadlock, i.e.
[po]. Furthermore we are guaranteed that any place within the workflow net contains
at most one token at any point in time. Finally, we are guaranteed that we are able
to, from each reachable marking, eventually uniquely mark the sink place p,. This
requirement implies an additional property, i.e. proper completion, which is formalized
as:

VMEeR(N, [pil)(po €+ M = M =[p,)) (2.16)

This requirement is often presented alongside the other requirements, however, since
it is directly implied by the option to complete property, we omit it from 2.7.

Finally, observe that if a workflow net is sound, it is also relaxed sound. Moreover,
any relaxed sound workflow net is in turn easy sound. Observe that the Petri net
depicted in Figure 2.5 is a sound workflow net.
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(a) Example deterministic automaton. (b) Example probabilistic automaton.

Figure 2.6: Two example automata based on the underlying (deterministic) automaton A; =
(g1, g5} {a, b, c,d}, {((q1,a), g2), ..., (g4, d), g5)}, q1,1g5})-

2.2.2 Automata

In essence, Petri nets, as presented in subsection 2.2.1 allow us to describe a language,
i.e. a collection of sequences of letters (represented by transitions/labels). Here we
present the notion of (probabilistic) automata, which essentially allow us to describe
languages as well. The main difference with respect to Petri nets is the fact that within
an automaton we do not have the notion of a marking, i.e. it only consists of states
and transitions. Given a certain state, a number of transitions/actions are possible
which in turn define the next state.

Definition 2.8 (Automaton). A non-deterministic automaton (also non-deterministic
finite state machine) is a 5-tuple A=(Q,%,6,q°, F), where

* Q is a finite set of states,

* 3 is a finite set of symbols,

* §: QxZX— Q) is a transition relation,

* ¢°€Q is the initial state,

* FcQ is the set of accepting states,

* YqeQ\F(3q'€Q, acx(q'€b(q, a))): non-accepting states have outgoing arc(s).

In some cases we have |6(g,a)| <1,VqeQ,acX. In such case the automaton is
deterministic, and, we alter the transition function to be simply §: Q x £ -» Q.

Consider Figure 2.6a, in which we depict an example deterministic automaton.
States of the automaton are visualized as circles, transitions are represented by arcs
with the corresponding label depicted next to the arc. The initial state is depicted by
means of a circle with an incoming arc labelled start. Final states are visualized by
means of a circle with a double border. A sequence o€X* is in the automaton’s lan-
guage if ((¢°,0(1)), ¢, (q',0(2)),q"),....((q", (o)), q))ed and g/ €F. From a graphical
perspective, any sequence corresponding to a path from the initial state to a accepting
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state is in the automaton’s language. For example, in Figure 2.6a the sequences (a, ¢, d)
and {a, b, b,c, b, d) are in the language of the automaton.

In some cases, it is more likely that, within a state, a certain label occurs than
another label. To this end, we additionally define probabilistic automata, which
extend the notion of non-deterministic automata by including an additional transition
probability function.

Definition 2.9 (Probabilistic Automaton). Given a (non-)deterministic automaton
A=(Q,2,8,q° F). A probabilistic automaton (PA) is a 6-tuple (Q,X,5, qo, F,y), where,
Y: QxZ xQ— [0,1] is the transition probability function.

For the probability function we require:

1. If an arc labelled a connects q to q', then the corresponding probability is non-zero:

Yq,q'€Q,acz(q'€é(q,a) < y(q,a,q") >0) (2.17)

2. The sum of probabilities of outgoing arcs of a state qe Q\F equals one:

YqeQ\F (Jaex (6(q, a)#9) (Z Y y(q,a.q )) = 1) (2.18)
acz q'eQ
3. The sum of probabilities of outgoing arcs of an accepting state geF is smaller than
one:
YgeF|3acz (6(q, a)#0) (Z Y y(q,aq )) < 1) (2.19)
aeZ q'eQ

For a given state geQ and label acX, we denote the conditional probability of observing
label a, whilst being in state ¢, as P(a| q), where:

P(alq) = > y(q,a,q") (2.20)
{q'€Qlq’ed(g,a)}

Consider Figure 2.6b in which we depict an example probabilistic automaton.
The underlying structure of the automaton is equal to the automaton presented in
Figure 2.6a. In this case however, when we are in state s, label b occurs with
probability %, whereas label ¢ occurs with probability % Clearly, we are able to
compute the probability of the occurrence of a certain sequence of the automaton’s
language as well, i.e. since the transitions are independent we just need to multiply the
probability of occurrence of each transition related to the label present in the sequence.
For example, the probability of the sequence (a,c,d) is 1 x  x 3 = 1.

Observe that an accepting state is allowed to have outgoing arcs. For example,
consider Figure 2.7, in which accepting state g5 describes that an activity with label
e can be observed with probability §. We accordingly define the probability of not

observing any label for such an accepting state g as P(& | q) =1— Y. P(al q). Observe
€X

a
that, Equation 2.19 ensures that P(& | q) >0, i.e. P(& | g) = 0 contradicts the fact that ¢
is an accepting state.
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Figure 2.7: Probabilistic automaton in which the accepting state has an outgoing arc. The
accepting state g5 describes that an activity with label e can be observed with
probability %
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2.3 Event Data

Within process mining, we explicitly study event data recorded during the execution of
a certain (business) process. An event is considered any data record that is generated
during the execution of a process at the lowest possible level of granularity. As such,
we consider events to be the atoms of process mining data. In practice, the granularity
of an event depends on the application domain as well as the way that the behaviour
is recorded. In some cases, an event simply describes what activity of the process was
executed at what point in time. In other cases, events describe different stages of the
execution of a single activity, e.g. events relate to, amongst others, scheduling, starting,
suspending, resuming and completing the activity. Moreover, an event typically records
additional information such as the resource that executed the corresponding activity, a
customer’s account balance, a loan request amount, document ID’s, etc.

2.3.1 Event Logs

As exemplified by the event log provided in Table 1.1 (in chapter 1, section 1.1 on
page 4), an event is a value assignment of a set of (domain specific) attributes. For
example, reconsider the first event depicted for Patient-id 1237. It assigns value 1533 to
attribute Event-id, value 1237 to attribute Patient-id, value ER Registration to attribute
Activity and so on. The number of available event attributes differs per application
domain, i.e. data recorded in healthcare processes differs from the data recorded in a
process originating from the financial domain. Moreover, within the same application
domain, different data are logged across different processes, i.e. for different processes
companies use different supporting information systems, possibly provided by different
vendors. Finally, even within the same process some attribute values, are not available,
or even defined, e.g. due to information system updates, when events are recorded.
Therefore, when formalizing the notion of events, we do not explicitly characterize
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the associated attributes. We merely define an event as a tuple of data values that at
least contains a case identifier which allows us to deduce to what process instance the
event belongs. For example, in Table 1.1, the Patient-id column is a candidate to act as
a case identifier, i.e. it allows us to deduce for what patient, an instance of the process
is executed. Moreover, we assume that each event captured within the data relates
to the execution of an activity within the process. Any other type of data is simply
referred to as additional payload.

Definition 2.10 (Event, Event Projections). Let & denote the universe of events. Given
an event ec&, we assume the existence of the following projection functions:

* Case projection

Let ¢ denote the set of all possible case identifiers, i.e. a case identifier ce€
uniquely identifies the process instance to which the event belongs. We define the
corresponding projection function n.: & — 6.

* Activity projection

Let of denote the set of all possible activities, i.e. an activity ac.<f describes a well-
defined activity within a process. We define the corresponding projection function
Mg: E— A.

* Arbitrary payload projection

Let @ denote the universe of data values for arbitrary event payload. Let 4 denote
the universe of data attributes, and, let de 4 denote such arbitrary data attribute.
We define the corresponding projection function n4: & - 9. Observe that m4 is a
partial function, as not every event is necessarily describing a value for the data
attribute d.

Observe that, according to 2.10, the case- and activity projection are total functions,
i.e. we are always able to access a corresponding value. Opposed to projection
functions, we use an indicative symbol referring to the name of the data attribute to
access it, rather than its index in the underlying Cartesian product. We primarily do so
for clarity, i.e. from a technical point of view, the universe of events can be seen as a
collection of tuples.

We use one specific attribute that represents the case identifier, i.e. ¢, which allows
us to identify to what instance of the process the event belongs. However, note that,
depending on the underlying process, multiple case notions exist. Consider that we
store data related to students following several courses offered at a university, e.g.
we record attendance of lectures, results for (practice) exams, etc. In such case, we
are both able to use a student as a case identifier as well as an individual course. In
case we use the student (represented by his/her student identifier) as a case identifier,
we are considering the behaviour of students across several courses. However, if we
consider the course as a case identifier, we study the behaviour of several students
with respect to that course. For the purpose of this thesis, we simply assume that, in
each possible process, for each event at least one primary, unique, case identifier exists.
For any other attribute, except the activity attribute, the corresponding projection



42 Preliminaries

function is partial, i.e. for some events no value is available. Consider the first
event depicted in Table 1.1, i.e. e;533, for which we have, when taking the Patient-id
as a case identifier: m(e1533) = 1237, ma(e1533) = ER Registration, tine stamp(€1533) =
22-10-2014T11:15:41, mresource(€1533) = 122A1, ﬂleucocytes(e1533) =y, etc.

During the execution of a process, events are recorded in the underlying informa-
tion system, i.e. in event logs. Moreover, the case identifier typically ties a subset of
events together, e.g. reconsider all events in Table 1.1 related to Patient-id 1237. Typic-
ally, even though not explicitly listed in 2.10, a time-stamp attribute is (omni)present
as well. This allows us to order the events recorded into a sequence. In the context
of this thesis, we do not assume that every event comprises of a timestamp, however,
we do assume that there exists a strict partial order amongst the events. Observe that,
such strict partial order can also be obtained by maintaining the order in which the
events are returned by the data base query used to obtain them from the information
system.

Definition 2.11 (Event Log). Let & denote the universe of events and let < be an
associated strict partial order. An event log is a strictly finite sequence of events, i.e. Le§*,
as induced by the strict partial order <, such that:

1. V1<i<j<|LI(LG) < L(})); The log respects the corresponding total order.

2. Vi, jefl,...,|LI}(LG) = L(j) = i = j); Each event occurs exactly once in the event
log.

Thus, as defined in 2.11, an event log is a finite sequence of events. A large majority
of the existing process mining algorithms however considers an additional projection
on the event log, i.e. the notion of a trace. A trace refers to a subsequence of events of
the event log, all of which are related to the same case identifier, and thus, the same
underlying process instance.

Definition 2.12 (Trace). Let Le&™* be an event log. A trace, related to a process instance
as identified by case identifier ce%, is a sequence ge&* for which:

1. 0 S« L; Traces are subsequences of event logs.
2. elem(o) ={eeL|m¢(e) = c}; The trace contains all events related to ¢

Given an event log L, we let traces(L)eZ(&*) denote the collection of the traces described
by the event log.

A trace is a sequence of events, related to the same case identifier, that respects the
event log’s strict partial order. Therefore, an alternative way to interpret an event log
is as a collection of traces.

2.3.2 Control-Flow Perspective

The explicit notion of traces plays a central role in most process mining algorithms.
Furthermore, several techniques ignore large parts of the additional payload present
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--- (1237, MLA,---),(5427,ERR,--+), (5427, ML,---), (5427, MC,--+), (5427, MLA, ---), (1237, ERT,---) --- oo

Figure 2.8: Example event stream S.

in events and just focus on the activities performed for cases. This view is achieved by
projecting each trace in an event log on its corresponding activities, i.e. given o€l we
apply 7a, (). Thus, we transform each trace within the event log into a sequence of
activities, which is known as the control-flow perspective. To this end, we define the
notion of a simple event log, which explicitly adopts the aforementioned control-flow
oriented projection.

Definition 2.13 (Event Log, Simple). Let Le&* be an event log. A corresponding simple
event log Le B (/*) represents the control-flow perspective of event log L, i.e.

L= | 74.(0) (2.21)

oetraces(L)

Observe that a simple event log is a multiset of sequences of activities, as multiple
traces of events are able to map to the same sequence of activities. As such, each
member of a simple event log is referred to as a trace, yet each sequence ge«/* for
which L(o) > 0 is referred to as a trace-variant. Thus, in case we have L(o) = k, there
are k traces describing trace-variant o, and, the cardinality of trace-variant o is k.

In some cases, we are only interested in the set of activities Ac«/ for which at least
one event is present in the event log that describes such activities. We define such a
set, given an event log Le&*, as Ay = {acs/ | Jec, L(ma(e) = a)}, or equivalently, in case
of a simple event log L, we have A; = {ae«/ | Jo€L(ac.0)}.

2.3.3 Event Streams

In this thesis, we assume the main type of data to be an event stream, rather than
an event log. In essence, an event stream is a data stream (section 1.2) in which we
assume the data packets to be events. We adopt the notion of online/real-time event
stream-based process mining, in which the data is assumed to be an infinite sequence
of events. Since in practice, several instances of a process run in parallel, we have no
guarantees with respect to the arrival of events related to the same process instance.
Thus, new events related to a certain process instance are likely to be emitted onto the
stream in a dispersed manner. This implies, that our knowledge of the activities related
to process instances changes over time. Consider Figure 2.8, in which we depict a few
of the events (compact notation) that we also presented in the event log of Table 1.1.
The first event visualized, i.e. represented as (1237, MLA,---), refers to the event with
event-id 1536 in Table 1.1, i.e. it relates to the execution of the Measure Lactic Acid
activity executed for patient 1237. The four subsequent events relate to the treatment
of the patient with patient-id 5427, after which the final event depicted in Figure 2.8
again relates to patient 1237.

We formally define an event stream, like an event log, as a sequence of unique
events. However, we explicitly assume the stream to be of infinite size.
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Definition 2.14 (Event Stream). An event stream S is an infinite sequence of unique
events, i.e. SE€* s.t. dom(S) =NAVi, jeN(S() = S(j) = i=j).

Observe that an event stream is infinite both in terms of the past and the future.
This implies that, prior to the point in time at which we start observing an event
stream, an infinite number of events was potentially already emitted onto the stream.
Similarly, in the future, an infinite number of events will be emitted onto the event
stream. Therefore, given an event stream Se&* and any i€N, in the remainder of this
thesis, S(i) relates to the i'" event observed on the stream.

Given an event stream S, we define Eg = elem(S). In the context of this thesis
we assume that the order of arrival of events defines a strict partial order on the
events emitted, i.e. the stream characterizes strict partial order (Es, <). We furthermore
assume that the order of arrival of events on the event stream is in line with the actual
order of execution. We also assume that event arrival is an atomic operation and do
not assume the existence of a multiple channel stream.

2.4 Process Mining

In this section, we present preliminary concepts, specific to the field of process mining,
which are essential for this thesis. We provide a formal definition of process discovery
algorithms, as well as commonly used data structures in process discovery. We further-
more present the notion of alignments, and finally, several quality metrics which are
used for the evaluation of the different techniques presented in this thesis.

2.4.1 Process Discovery

In this section, we introduce preliminary concepts related to process discovery. In
particular, we formalize process discovery as a function, mapping an event log into
a process model. Secondly, we present common data abstractions, used by different
process discovery algorithms.

As described in subsection 1.1.1, the main aim of offline process discovery is to
discover a process model, given an event log. Given that an event log is defined
as a sequence of events, we define process discovery as a function mapping a finite
sequence of events to a process model of an a arbitrary formalism.

Definition 2.15 (Process Discovery Algorithm). Let & denote the universe of events. A
process discovery algorithm a is a function that, given a finite sequence of events, discovers
a process model, i.e. a: &* — M.

Intermediate Representations

The majority of existing conventional process discovery algorithms share a common
underlying algorithmic mechanism. As a first step, the event log is transformed into
a data abstraction of the input event log, in this thesis alternatively referred to as
an intermediate representation, on the basis of which they discover a process model.
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Additionally, several process discovery algorithms actually use the same, or very similar,
intermediate representations. In this section, we therefore formalize the directly follows
relation, i.e. a commonly used intermediate representation. Furthermore, we briefly
discuss alternative intermediate representations and refine process discovery in the
context of intermediate representations.

The directly follows relation The directly follows relation can be considered as a
cornerstone of process discovery algorithms, i.e. numerous discovery algorithms use it
as a primary/supporting artefact, to discover a process model. As an illustrative ex-
ample, consider 2.2, in which we illustrate the notion of the directly follows abstraction,
i.e. as used by the Alpha algorithm [11].

Example 2.2 (The directly follows relation and the Alpha algorithm). Consider a
simple event log describing only two types of traces, i.e. L= [{a,b,c,d),{a,c,b,d)|€B (™).
Given such an event log, the Alpha algorithm computes a directly follows relation, which
counts the number of occurrences of direct precedence relations amongst the different
activities present in the event log. Activity a is directly followed by activity b, written
as a> b, if there exists a simple trace in the given event log of the form o =o¢’-{a,b)-o"
(here both ¢' and o” are potentially empty, i.e. €). Hence, in our example, we deduce
a>b, a>c, b>c, b>d, ¢c>b, c>d, which all occur once. Using these relations as a
basis, the Alpha algorithm constructs a process model, in the form of a Petri net.

As 2.2 shows, an event log is first translated into a directly follows relation, which is
subsequently used to discover a process model. We formally define the directly follows
relation in 2.16.

Definition 2.16 (Directly Follows Relation). Let Le&* be an event log. The directly
follows relation >, is a multiset over of x of, i.e. >; €B (s x ), for which, given a, besd :

>p(a,b)= ) |{i€{l,...,l0 -1} | ma(0(@) = aAma(o(i+1) = b}| (2.22)

oeyL
We write a>1 b if (a,b) €.>1, and a L b if (a,b) ¢+>].

Process discovery algorithms such as the Inductive Miner [78], the Heuristics
Miner [121, 122], the Fuzzy Miner [66], and most of the commercial process mining
tools use (amongst others) the directly follows relation as an intermediate structure.

Alternative representations Several process discovery algorithms have been pro-
posed [22, 37, 106, 123, 131, 133, 1371, that are inspired by language-based region
theory [21]. Region theory and process discovery are conceptually close, i.e. the
goal is to discover a process model from sequential data, yet typically differ on the
requirements posed on the resulting process models. In these approaches, the event
log is typically transformed into its prefix-closure. In some cases, the elements of the
prefix-closure serve as a basis for an additional abstraction, e.g. constraints of an ILP.
We present the exact characterization of these constraints in more detail in section 6.2.
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Other work, translates the event log into an automaton [10].# Subsequently, on
the basis of state-based region theory[21], such an automaton is transformed into a
Petri net.

Process discovery with intermediate representations We refine conventional pro-
cess discovery, i.e. a presented in 2.15, by splitting the discovery function « into two
steps. In the first step, the event log is translated into the intermediate representation
as used by the discovery algorithm. In the second step, the intermediate representation
is translated into a process model. In the remainder we let Ty denote an interme-
diate representation type, whereas, %r, denotes the set of all possible intermediate
representations of type Tj.

Definition 2.17 (Abstraction Function; Event Log). Let Ty denote an arbitrary interme-
diate representation type. An abstraction function Ar, is a function mapping a multiset of
sequences of activities to an intermediate representation of type Ty.

/1’[[2 éa* —>OZZTI (2.23)

For example, we consider the concept of a directly follows relation as a specific type
of intermediate representation. Any actual directly follows relation is thus part of the
corresponding universe of directly follows relations.

Using 2.17, we define process discovery in terms of intermediate representations
in 2.18.

Definition 2.18 (Process Discovery Algorithm - Intermediate Representation). Let
Ty denote an intermediate representation type. Let .4 denote the universe of process
models. An intermediate representation based process discovery algorithm ary, maps an
intermediate representation of type Ty to a process model.

ary - %TI — M (224)

Observe that the second step of the Alpha algorithm as described in 2.2, i.e.
translating the directly follows abstraction into a Petri net, is an example instantiation
of the abstraction function defined in 2.18. Every discovery algorithm that uses an
intermediate representation internally can be expressed as a composition of the A,
and ar, functions. Thus, given an event log Le&* and an intermediate representation
type Ty, we obtain a(L) = ar, (A1, (L)). For example, consider Figure 2.9 depicting the
Alpha algorithm in terms of at, and Ar,.

2.4.2 Alignments

Reconsider the the Petri net depicted in Figure 2.5. Furthermore, assume we are given
a full trace of events, which, projected onto activities, looks as follows: (a, b, c,d, e).
We observe that, by firing transitions #, 2, 3, t5 and 7, such sequence of activities is

4Also referred to as transition systems, yet typically, an initial state and accepting states are identified as
well.
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Figure 2.9: The Alpha algorithm in terms of its intermediate representation. Here, the interme-
diate representation is a directly follows relation.
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Figure 2.10: Example alignments for (a, b, ¢, d, e) and (x, a,d, e, z) with the Petri net presented in
Figure 2.5.

produced by the Petri net in Figure 2.5. Hence, to explain the trace of events in terms
of the process model, it is rather easy to relate it to a sequence of transition firings
which results in the same sequence of activity labels, after applying the Petri net’s
corresponding labelling function A. Consider y; in Figure 2.10, in which we present
such a relation, i.e. an alignment of the simple trace (a, b, ¢, d, ¢) and the example net
N, of Figure 2.5.

If we alternatively consider another example trace, e.g. (x,a,d, e, z), we observe
several problems. For example, activities x and z are not labels of the Petri net, and
thus never correspond to the execution of a transition within the Petri net. Furthermore,
according to the Petri net, at least an activity ¢ (represented by transition #;) must be
executed in-between activity a and d. Alignments allow us to identify and quantify the
aforementioned problems, and moreover, allow us to express deviations in terms of
the reference model. Conceptually, an alignment relates the execution of transitions
in a Petri net and the activities observed in a simple trace ce<«/* in a given (simple)
event log. Observe Figure 2.10, in which we present alignments for the simple traces
{a,b,c,d,e) and (x, a,d, e, z) with respect to the Petri net presented in Figure 2.5.

Alignments are sequences of pairs, e.g. y1 = {(a, t1), (b, 1), ..., (e, t7)). Each pair within
an alignment is referred to as a move. The first element of a move refers to an activity
of the trace, whereas the second element refers to a transition. The goal is to create
pairs of the form (a, t) s.t. A(t) = a, e.g. all moves in y; are of this form. The sequence
of activity labels in the alignment needs to equal the input trace (when ignoring the
>-symbols). The sequence of transitions in the alignment needs to correspond to a
oeT", such that, given the designated initial marking M; and final marking My of the

process model, we have M; = M + (again ignoring the >-symbols). For the Petri net
presented in Figure 2.5, we have M; = [p;] and M¢ = [p,]. In some cases, we are not
able to construct a move of the form (a, 1) s.t. A(f) = a. In case of trace {x,a,d, e, z),
we are not able to relate x and z to any transition in the Petri net. Furthermore, we
at least need to execute transition f3, with activity label ¢ (not present in the trace),
in order to form a sequence of transitions that leads to marking My, starting from
M;. In such cases, we use the skip-symbol > in either the activity- or the transition
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Y2: v3:

Figure 2.11: Two possible alignments for (x,a,d, e, z) and Nj, as presented in Figure 2.5.

part of a move, in order to indicate that either an activity is observed that we are not
able to relate to the execution of a transition, or, an activity was not observed that
should have been observed, according to the process model. For example, consider y,
in Figure 2.10, which contains three skip-symbols. Verify that again, when ignoring
skip-symbols, the sequence of activity labels equals the input trace, and, the sequence
of transitions is valid firing sequence for M; and My. If a move is of the form (a, 1) we
call this a synchronous move, (a,>>) is an activity move and (>, t) is a model move.

Note that, in some cases, we need to construct activity moves, even though the label
of the activity move is part of the Petri net. In the example, any simple trace of the form
{a,a,...), either has a corresponding alignment ((a, t1), (a,>),...) or {(a,>),(a, t1),...),
i.e. an alignment of the form ((a, 1), (a, t1), ...} violates the fact that the transition part
of the alignment corresponds to an element of the net’s language, since such a trace
cannot contain two executions of #;. Furthermore, note that, some transitions have
no observable activity label, i.e. transitions ¢ with A(#) = 7. These transitions are often
used for routing purposes, e.g. we use t; in the Petri net presented in Figure 2.5 to
loop back in the process. Clearly, it is not possible to observe the execution of such
a transition. Hence, we always construct moves of the form (>, 1), e.g. (>, fg) in the
context of the Petri net presented in Figure 2.5. Even-though these moves are model
moves, we often treat them as synchronous moves in the underlying algorithm that is
used to compute alignments.

Definition 2.19 (Alignment [13]). Let ce«/*. Let N = (P T,F A) be a Petri net and
let M;, My denote N's initial and final marking. Let >¢ «/UTUZU{T}. A sequence
Ye((LU{>}) x (Tu{>})* is an alignment if and only if:

1. (mi(y)),, = 0; activity part (excluding >’s) equals o.

(w20

2. (N,M;) (N, My); transition part (excluding >’s) in Petri net language.

3. V(a, ey (a#> vt #3); (>,>) is not valid in an alignment.

We let T denote the universe of alignments and let I'(N, o, M;, My) denote all alignments
of N and o given M; and M.

Given the definition of alignments as presented in 2.19, several alignments, i.e.
sequences of moves adhering to 2.19, exist for a given trace and Petri net. For example,
consider alignment y3 depicted in Figure 2.11 which, according to 2.19 is an alignment
of (x,a,d,e,z) and N; as well. The main difference between y, and ys, i.e. both
aligning trace (x, a,d, e, zy with Ny, is the fact that y, binds the execution of #; to the
observed activity d, whereas y3; binds the execution of #; to the observed activity
d. Clearly, both explanations are possible, however, to be able to bind the executed
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activity d to ts, alignment y3 requires the explicit execution of transition , as well.
Since activity b is not observed in the given trace, we observe the presence of move
(>, 1) in y3, which is not needed in y,. Both alignments are feasible, however, we
prefer alignment y, over y3 as it minimizes non-synchronous moves, i.e. moves of the
form (a,>) or (>, 1).

As exemplified by alignments y, and y3;, we need means to be able to rank and
compare alignments and somehow express our preference of certain alignments with
respect to others. To this end we define a cost-function over the moves of an alignment.
The cost of an alignment is simply the sum of the costs of its individual moves. Typically,
synchronous moves are assigned a low, or even 0, cost. The costs of model- and activity
moves are usually higher than the costs of synchronous moves. We formalize these
notions in 2.20.

Definition 2.20 (Alignment cost function [13]). Let «f denote the universe of activities.
Let N = (P, T,F A) denote a labelled Petri net, where A: T — Zuf{t} is the Petri net labelling
function. Let >¢ o/ UZu{r}. We define the move-cost-function as a function:

Cm: (LU x (Tu{>}) — Rsg (2.25)

Furthermore, given an instantiation of a cost-move-function cp,, we define alignment cost
function

cr: (U=} x (Tuf>})" - Rxo (2.26)
We characterize cf"’, for a given ye((«/U{>}) x (TU{>})*, as:
[yl

cm(y) = ;cm(y(in (2.27)

Assume we assign cost 0 to synchronous moves and cost 1 to activity/model moves.
In this case the cost of y; is 0. The cost of alignment vy, is 3, whereas the cost of
alignment vy3 is 4. Hence, the cost of y, is lower than the cost of y3 and we prefer it
over y,. In general, we are able to use an arbitrary instantiation of c,,, however, in the
context of this chapter we explicitly assume the usage of the unit cost function.

Definition 2.21 (Alignment unit cost function). The unit cost function of alignments is
a function cl,,,.: (LU} x (TU{>}) — Rsg, where:

1. cpu(a,)=0< acet,teT and A(t) =aor a=>,teT and A(t) =1,
2. cpla,t) =co < acd,teT and A(1) # a,
3. cm(a,t) =1 otherwise.

Since we assume unit-costs throughout this chapter, for simplicity, we omit the
cost function sub- and superscript and simply write c(y), rather than clf’” (y). We
write y* to refer to an optimal alignment, i.e. y* = arg min ¢y 4 u;,, My Thus, an
optimal alignment minimizes alignment costs. Consequently, computing an optimal
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Figure 2.12: Two prefix-alignments for (a,c,d) and Nj.

alignment is simply defined as a minimization problem. It is important to note that
optimality in alignments is not a unique property, i.e. multiple optimal alignments
exist. Furthermore, in this thesis, we don’t discuss actually finding optimal alignments
in detail, i.e. we merely use the fact that an algorithm to find an optimal alignment
exists and we use it as a black-box.

In some cases, an event log contains fragments of behaviour related to process
instances that are not completed yet, i.e. processes that were still running when the
event data was extracted. Furthermore, when considering the topic of this thesis, i.e.
streams of events, it is likely that the behaviour we observe on the event stream largely
relates to uncompleted process instances. To this end, prefix-alignments, i.e. a relaxed
alternative to conventional alignments, can be used as an alternative. In essence, we
relax requirement two of 2.19 in such a way that after executing the transition part of
the alignment, the final marking My can still be reached.

Definition 2.22 (Prefix-Alignment [13]). Let e« be a (unfinished) sequence of
activities. Let N = (B T,FA) be a Petri net with labelling function A: T — Zu{r} and
let M;, My denote N's initial and final marking. Let >¢ «/UTUZU{>}. A sequence
Ye((L U} x (Tu{>}))* is a prefix-alignment if and only if:

1. (m (), = 0; activity part (excluding >’s) equals o.

(w2 ,.-0"
2. 30'eT* (N, M;) =T

(N,M f)); the final marking My can still be reached

after firing the sequence of transitions described in the prefix-alignment in the
given Petri net.

3. Y(a, ey (a#> VvVt #£>); (>,>) is not valid in a prefix-alignment.

We let T denote the universe of prefix-alignments and let f(N,U,Mi,Mf) denote all
prefix-alignments of N and o given M; and Mj.

Consider Figure 2.12, in which we depict two example prefix-alignments of in-
complete trace {a,c,d) and the running example Petri net of Figure 2.5. Observe
that, for both alignments we need to either append (#;) or (fg) to obtain marking
My, and thus, the relaxed requirement 2 of 2.22 is satisfied. Similar to conventional
alignments, several prefix-alignments exist that correctly align a prefix and a Petri net.
Hence, we again need means to rank and compare prefix-alignments. For example, in
Figure 2.12, we prefer ¥, over ¥,, since it only contains synchronous moves whereas
Y, contains a (unnecessary) model move. Since a prefix-alignment, like a conventional
alignment, is a sequence of moves, the cost of a prefix-alignment is defined in the
exact same manner as the costs of conventional alignments, i.e. it is simply the sum
of the costs of its individual moves. Observe that cost function cr is, in 2.20, defined
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over a sequence of moves, and thus, given some prefix-alignment ¥, cr(y) is readily
defined. As a consequence, we again have the notion of optimality. For example, ¥,
is an optimal prefix-alignment for (a,c,d) and N;. In this case we denote an optimal
prefix-alignment for a given oe«/* and Petri net N as y*.

2.4.3 Computing (Prefix-)Alignments

In [13] it is shown that computing an optimal, conventional, alignment is equivalent
to solving a shortest path problem on the state-space of the synchronous product net of N
and o. The exact nature of such synchronous product net and an equivalence proof
of the two problems is outside of the scope of this thesis, i.e. we merely use existing
algorithms for the purpose of (prefix-)alignment computation as a black box. We
therefore refer to [13] for these definitions and proofs. However, note that, to be able
to compute optimal alignments, the process model, i.e. Petri net N, is required to be
easy sound, cf. 2.5. Moreover, since within an easy sound Petri net, token generators
potentially exist, in practice the costs of a synchronous move, and moves of the form
(>, 1) where A(t) = 7 in particular, are set to a very small number reR.q, where r <<1
(much smaller than 1, close to 0).

Any shortest path algorithm to compute conventional alignments, is easily altered
to compute prefix-alignments. In fact, in line with the relaxation of requirement two of
2.19, such alteration only consists of adding more states to the set of final states of the
search problem. Hence, to compute optimal (prefix-)alignments we are able to use any
algorithm designed for finding shortest paths in a graph. However, in [13, 127] the
A* algorithm [68] is proposed and evaluated. To compute conventional alignments,
the states in the state-space that correspond to the final marking of the Petri net
(together with explaining all behaviour of the trace) are used as the target states of
the shortest-path-search. In case of prefix-alignments, any state that still allows for
reaching a state that represents the final marking of the Petri net (again together with
explaining all behaviour of the prefix) is considered a target state.

As a concrete implementation for the purpose of alignment calculation exists, we
simply assume that we are able to utilize an oracle function w, e.g. the algorithm
proposed in [13]. Since we primarily focus on the notion of prefix-alignments in
the remainder of this thesis, cf. chapter 7, we only define such an oracle for the
computation of prefix-alignments.

Definition 2.23 (Prefix-alignment oracle). Let A denote the universe of Petri nets, <f
the universe of activities and let .4 denote the universe of markings. A prefix-alignment
oracle w is a function of the form:

W:NxA*x Mx M—T (2.28)
Where w(N, o, Mi,Mf)ef(N,a,Mi,Mf) and optimal for o and N.

Observe that, the alignment oracle takes a Petri net, a trace and two markings,
one representing the start- and one representing the target marking of the underlying
search. We assume it is able to return an optimal prefix-alignment.
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2.4.4 Measuring Quality in Process Mining

In this section, we describe the different means that are used to evaluate the results
of the different algorithms proposed in this thesis. Some of these techniques and/or
quality metrics originate from the more broad domain of data mining, whereas others
are more process mining specific.

Evaluation of Binary Classification

A commonly studied problem in data mining, is binary classification. In binary classific-
ation, one aims to predict, for unlabelled data instances, a corresponding classification
which is only allowed to be one of two values.

For example, assume that we are given certain data attributes related to the
characteristics of a natural person, e.g. the type of sports he/she performs (if any),
height, weight, etc. Based on this data, we construct an algorithm that predicts
whether or not the person smokes. When the algorithm predicts a value true, this
represents the prediction that the person is expected to smoke. When the algorithm
predicts a value false, this represents the prediction that the person is not expected to
smoke. Furthermore, in the context of this example, we assume that a predicted value
true is alternatively referred to as a positive prediction.® If we now run the algorithm
on a large body of data, of which we actually know whether the people described in
the data smoke or not, we are able to categorize each prediction in the following way:

¢ True Positive (TP)
The prediction is a positive label, and, the data element is actually of this type.
In the context of our example, we predict a smoker to smoke.

e False Positive (FP)
The prediction is a positive label, yet, the data element actually has a negative
label. In the context of our example, we predict a non-smoker to smoke.

* True Negative (TN)
The prediction is a positive label, and, the data element is actually of this type.
In the context of our example, we predict a non-smoker not to smoke.

* False Negative (FN)
The predict is a negative label, yet, the data element actually has a positive label.
In the context of our example, we predict a smoker to be a non-smoker.

Clearly, a perfect predictor only predicts the classes TP and TN, i.e. it always
predicts correctly. However, since such a perfect predictor often does not exist, there
exist several quality metrics, derived from the label classification, that allow us to judge
the quality of a predictor. In the remainder, let | TP| denote the number of predictions
of the TP class, let |FP| denote the number of predictions of the FP class, etc. Here,
we list the derived quality metrics that are of interest in the context of this thesis.

5Even-though this in no way implies that smoking needs to be perceived as being positive.
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|TP|
|TP|+|FN|*

Ratio of correctly predicted positive instances, relative to all positive instances in
the data. Recall is a value in the range [0,1] and is 0 if none of the instances is
correctly predicted to be positive. It is 1, if all positive instances in the data are
predicted as such.

e recall =

|TP|
|TP|+|FP|"*

Ratio of correctly predicted positive instances, relative to all predicted positive
instances in the data. Precision is a value in the range [0,1] and is 0 if none of
the instances is correctly predicted to be positive. It is 1, if no negative instance
is falsely predicted to be positive.

* precision =

_ o precision-recall
* FI Score =2 precision+recall

The F1 Score represents the harmonic mean of precision and recall. It allows us
to measure the accuracy of a binary classifier.

To evaluate some experiments conducted in the context of this thesis, we use the
aforementioned binary classification with the corresponding accuracy metrics. Clearly,
the definition of TP, FP, etc., depends on the particular aim of the algorithm under
study.

Process-Mining-Based Replay-Fitness and Precision

Apart from the metrics described in the previous section, i.e. originating from binary
classification, the majority of the techniques presented in this thesis is evaluated on
the basis of process mining quality metrics, i.e. as briefly presented in subsection 1.1.4.
Here, we again highlight these quality metrics, and indicate, if applicable, their
interaction with the different process mining artefacts, i.e. event data and/or process
models.

* Replay-Fitness

Quantifies to what degree a given process model describes the behaviour as
captured in the event log. Let Le&* and let Les/* denote the corresponding
simple view on the event log. Furthermore, let Me.# denote a model of arbitrary
formalism over set of labels %, and let £(M)eX* denote the model’s language.®
In case Lc£(M), the replay-fitness equals 1. In case LnL(M) = @, the replay-
fitness equals 0. Furthermore, in case @ c L\£(M) c L, the replay-fitness value
f is typically 0 < f < 1, and gets closer to 1 for small values of |[L\L(M)|. The
exact value fitness value in such a case typically depends on the underlying
implementation of the metric.

* Precision

60bserve that the set of labels £ used in a model and the set of possible activities < are not necessarily
equal.
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Quantifies to what degree a given process model describes behaviour that is not
observed in the event log. Let Le€* and let Le«/* denote the corresponding
simple view on the event log. Furthermore, let Me.# denote a model of arbitrary
formalism over set of labels X, and let £(M)eX* denote the model’s language. In
case £(M)cL, the precision equals 1. Furthermore, in general, when |£(M)\L|
increases, the precision value is expected to decrease. Again, the exact value
depends on the underlying implementation of the metric.

¢ Generalization

Quantifies to what degree a given process model generalizes beyond the beha-
viour observed in the event log. Let Le&* and let Le.«/* denote the corresponding
simple view on the event log. Furthermore, let Me.# denote a model of arbitrary
formalism over set of labels X, and let £(M)eXZ* denote the model’s language.
We assume that M was constructed, in some way, on the basis of L. Finally, let
L'e&* be an event log from the same underlying process, i.e. with respect to L,
s.t. LnL' = @. In general, the larger |I'n£(M)|, the higher the generalizing ability
of the model.

» Simplicity
Quantifies to what degree a given process model is interpretable by a human
analyst. Simplicity typically only considers the model, i.e. it ignores the underly-
ing event log. There is no definitive simplicity measure defined, however, often

metrics such as average number of transitions/places are used. Furthermore,
graph complexity measures are used as well.

A more detailed discussion on the theoretical foundations and properties of the afore-
mentioned metrics, in particular regarding replay-fitness, precision and generalization,
we refer to [5, 109].

2.5 Running Example

In this thesis, we use a simple running example to clarify, where needed, complex
concepts. The running example is based on a simplified, fictive, process related to an
online ID verification process, i.e. as already presented in Figure 2.5. However, we
introduce two variants of the running example, as shown in Figure 2.13 on page 55.

The model in Figure 2.13a is the same as the model presented earlier, i.e. Figure 2.5.
It describes that after receiving the ID, we are able to perform the scan picture- and
scan watermark activity concurrently, of which scanning the picture is optional. After
a verification step, we either activate- or block the account, or, we again scan the
picture and watermark. However, the decision to rescan these artefacts is not explicitly
captured within the information system.

The main difference between the models depicted in respectively Figure 2.13a and
Figure 2.13b relates to the presence of duplicate transition labels and unobservable
transitions. In Figure 2.13b we do not have an unobservable transition, i.e. such as f
in Figure 2.13a, nor duplicate transition labels, i.e. such as t, and 5 in Figure 2.13a.
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(a) Running example; A Petri net with unobservable transitions and duplicated transition labels.
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(b) Simplified running example; A Petri net without unobservable transitions and only consisting of unique
transition labels.

Figure 2.13: Running example processes related to an online ID verification process, modelled
as Petri nets.
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Figure 2.14: A Petri net with an unobservable transition and a duplicate transition label, de-
scribing the same behaviour as the Petri net depicted in Figure 2.13b.

As a consequence, in the Petri net of Figure 2.13b, we always need to execute both
the picture and the watermark scan. Moreover, when rescanning the picture and
watermark, we always observe a preceding retry activity.

Finally, note that, it is also possible to construct a Petri net with similar behaviour
with respect to Figure 2.13b, that does have silent transitions and/or duplicate labels.
For example, consider Figure 2.14, in which we present such a Petri net. In this case,
we have a (non)-functional unobservable transition ¢ in the beginning of the process,
i.e. after transition #;. Moreover, transition t,, like transition #, describes label d.



Chapter 3

Efficient Event Storage: A Primer
for General Purpose Process
Mining

Conventional process mining techniques were designed to use event logs as an input.
As such, these techniques assume their source of data to be finite and static, rather than
infinite and dynamic and/or evolving. As a result, a direct adoption of offline process
mining techniques to the domain of event streams is not possible. In this chapter, we
propose a generic formal model that allows us to transform the events emitted on
an event stream into an event log. Such an event log can subsequently be used by
any arbitrary process mining algorithm. Moreover, the vast majority of techniques
presented in the subsequent chapters use and/or extend the formalism presented in
this chapter. We present several instantiations of the formal model using existing data
storage techniques ranging from different areas of data stream mining. We additionally
present a memory efficient instantiation that explicitly exploits behavioural similarity
among the different running process instances.
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Figure 3.1: The contents of this chapter, i.e. efficient event data storage techniques, highlighted
in the context of the general structure of this thesis.
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3.1 Introduction

The vast majority of offline process mining techniques is defined in the context of
event logs. Recall that an event log is defined as a finite sequence of events induced
by an underlying strict partial order, cf. 2.11 on page 42. Similarly, an event stream
is a sequence of events, yet it is of a strictly infinite fashion. Consequently, a natural
approach to lift existing process mining techniques to the domain of online event
stream based process mining, is to directly store the events emitted onto the event
stream in memory.

Storing the stream as a whole allows offline process mining algorithms to be
applied directly, as we store the same type of artefact, i.e. a sequence of events. Note
however, that this potentially requires an infinite amount of memory; i.e. it violates the
requirements as defined in the general streaming data model, cf. section 1.2.

To avoid the need for infinite memory, in this chapter, we present several approaches
to utilize existing methods and algorithms, originating from the field of data stream
mining/analysis, for the purpose of stream-based event storage. In particular, we
formalize the notion of an event store and show that the methods discussed comply
to the proposed formalization. An event store essentially describes a subsequence
of all events observed on the event stream so far, and thus, represents a finite view
on the stream under study. We additionally present new means to efficiently store
event data originating from the execution of a process by exploiting control-flow based
behavioural similarity among different running process instances.

We evaluate the proposed approach by means of several experiments. In particular,
we focus on the impact of the newly proposed storage technique with respect to. the
quality of the behavioural structure it allows us to deduce. Second, we investigate
the impact with respect to. memory usage. Our experiments show that we are able to
achieve comparable quality when using the newly proposed technique whilst needing
a considerably smaller memory footprint.

The remainder of this chapter is organized as follows. In section 3.2, we formalize
the notion of event stores, which represent subsequences of the events observed
thus-far on the input event stream. In section 3.3, we present several data storage
oriented techniques, originating from the data streaming domain, that fit the event
store formalization. In section 3.4, we present a newly designed storage technique
that exploits behavioural similarity amongst running process instances to decrease
memory usage and enhance process mining results. In section 3.6, we discuss related
work. Finally, section 3.7, concludes this chapter.

3.2 Event Stores

Throughout this chapter, we present several approaches that allow us to temporarily
store events emitted on an event stream and translate the corresponding set of events
into an event log. In this section, we present the notion of an event store, which
formalizes and generically captures the techniques presented.

We consider an event stream Se&* on which we, over time, receive new events.
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Table 3.1: Requirements and desiderata for instantiations/implementations of event stores.

Requirements

Requirement Description

RQ 1 Events in an event store respect the order as imposed by the stream.
Desiderata

Desideratum Description

DS 1 Events are not re-inserted after deletion.

DS 2 Removal of events respects the order as imposed by the underlying process instance.

We temporarily store these events in an event store ®, which describes a time-evolving
sequence of events, based on the events observed on the stream in the past. The
sequence of events described by an event store is a finite subsequence of the input
event stream. Ideally, the event store represents a sequence of events recently emitted
on the event stream, however, this is not a necessity. We formalize the notion of an
event store in 3.1.

Definition 3.1 (Event Store). Let & denote the universe of events, let i, NeNy and let
Se&* be an event stream. An event store of size N at time i, describes a subsequence of
events, of maximal size N, of the first i events observed on S, i.e. ®};: &* — &%, s.t.

@l (S)E{oeE™ |0 S, Sy1i Aol < N} (3.1

An event store describes a subsequence of the event stream, bounded by a maximum
size limit N. Observe that, even though we define an event stream as a function, we
only characterize the set of eligible sequences for any possible event store ®%. As
indicated in section 1.2, ideally N is polylogarithmic in the size of the stream, as in
such case, memory consumption grows with a strictly slower rate as the stream’s size.
However, in practice, we are also able to base N on the amount of available memory.
This ensures that, even though the input sequence of an event store is potentially
infinite, an event store describes a strictly finite sequence of events.

Observe that the fact that an event store represents a subsequence of its input,
implicitly poses a strict behavioural requirement on any instantiation/implementation
of an event store, i.e. the original order of the events within the stream needs to be
maintained. Apart from this strict behavioural requirement, we propose the following
desiderata for any instantiation/implementation of an event store.

1. When we remove an event from the event store, it remains removed forever, i.e.
it cannot be reinserted (e.g. from secondary storage).

2. Removal of events related to the same process instance is performed in-order,
i.e. an event e related to case identifier ¢ that is observed on the stream, prior to
another event ¢’ that is also related to case identifier ¢ is removed before, or, at
the same time as e'.

We list the requirements and desiderata for event stores in Table 3.1.
Even though an event store is allowed to describe an arbitrary subsequence of its
input, we additionally define an event store update function. We utilize such function
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to define event stores incrementally, i.e. for input stream S we compute an event store
at data point i, based on the previous event store at i — 1 combined with (new) event
S(i).

Definition 3.2 (Event Store Update Function). Let & denote the universe of events, and
let NeNy. An event store update function @ y is a function @ n: &* x & — &%, s.t. given
a stored sequence ge&* and new event e€&, ® ny(0,e) S. 0-{e), and |® (0, e)| < N.

Observe that the update function, even though defined for arbitrary input se-
quences, typically operates on the previously stored sequence in the underlying event
store. Moreover, it yields, given a sequence of events and a new event, a new sequence
of events. Furthermore, this new sequence is a subsequence of the input sequence
concatenated with the new event. Given the notion of an event store and an event
store update function, we aim to characterize the event store for element i in terms of
an update of the event store at i — 1, i.e.

DL(S) = B N(@L(S), () (3.2)

An event store update function needs to be able to compute <1>§V(S) on the basis of
@ 1(S) (potentially by updating the underlying data structure representing ' (S)),
the newly received event S(i), and, possibly the value of i. Given that we incrementally
compute event stores for increasing ieNy, we are able to quantify any new member
e (&) and/or removed member(s) ®';e&* of the event store for any of such i.
Therefore, given @' (S) which is, incrementally, based on ®/;!(S), we define:

f = elem(@y(5)\ elem(@iy!(s) (3.3)

O =0eg* s.t.oc, Oy AVee, @f;l(eet* ol = eea) (3.4)

Observe that, when explicitly using/implementing the incremental update function,
cf. 3.2, then by definition 0 < Id)j'(; | < 1. Hence, either @f\}f =@, or, it is a singleton set
containing the i'" element, i.e. @ﬁ ={S(i)}. The elements of CI>§\; are those elements
that are no longer part of ®’,, yet that were part of (195\71. Moreover, it contains these
events in order, i.e. adhering to their original position in the event stream (as implicitly
maintained by the event store).

Observe that, as mentioned in subsection 2.3.1, most process mining algorithms
operate on the notion of traces, rather than (partial) orders of events. In essence,
such trace is just a projection of the (partial) order of events onto sequences of events
sharing the same case identifier. Clearly, we are able to perform such projection on
an event store as well. We, therefore, assume the existence of an additional function
CDEg, N 6" x€ — & that allows us to fetch the sequence of events related to a given

case identifier ce6. In particular, given ce% and an event store @ , we enforce:

1. @1, \(S,0) . D(S)
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Figure 3.2: Schematic overview of the notion of an event store ﬁl)jv and its corresponding case
projection (with i =11 and arbitrary size N =6).
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In the remainder, we simply write ®4(S, ¢) for d)fgy ~(S,0), i.e. we omit the € subscript,
as it is clear from the input arguments. Moreover, if in some case the value of i and N
is of minor or zero influence, we omit these values/variables as well, i.e. we simply
write ®(S) or ®(S, ¢). Observe that, in some instantiations of ®(S) it is more natural to
let the corresponding internal structures directly store the events on a case level. As
such, when iteratively querying the collection of cases maintained within the event
store, we do not need to additionally project the event store on the requested case
identifier, i.e. we are able to directly access it from memory.

Consider Figure 3.2, in which we present a schematic overview of an event store, as
well as its projection on the universe of case identifiers. Observe that in the example,
we visualize CD}\} (S). Within the figure, events labelled x are not part of the event store,
e.g. e; ¢* @} (S), whereas events marked O are part of the event store. We observe that
(I)Il\} (8) = (eq, €5, €5, €9, €10, €11), and moreover, (D}\} (S, c1) = (e, €5, €107, (I)Il\} (S, C2) = (es, e9)
and @y (S, ¢3) = (er1).

In line with simple event logs, cf. subsection 2.3.2, we define a simple event store
D! (S)eB(«£*), which represents the control-flow perspective based projection of the
event store ®%; at time i. Similarly, we assume to be able to fetch such simple trace for
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a given case identifier ce%, i.e. éj\,(s, c)esd*. Tt should be clear that, in principle, both
simple event stores ® , as well as the case level event stores d)fg, v presented earlier
are derived artefacts of any event store, i.e. we are able to obtain them by (iteratively)
applying a number of projections. However, as already mentioned, in some cases it is
more efficient to primarily store the events emitted on the event stream indexed on a
per-case basis.

3.3 Conventional Storage Techniques

In this section, we present several instantiations of event stores and associated update
functions. The underlying techniques originate from the streaming domain, intended
for general, stream-based, data storage. Therefore, different techniques are applicable
in different settings, i.e. depending on the intent of the process mining analysis
performed. In some cases, we need to slightly alter and/or extend the original
algorithms to make them effectively implement an event store. We discuss four
different types of storage, i.e. sliding windows, reservoirs, frequent item-set based
approaches and time decay based approaches.

3.3.1 Sliding Windows

Arguably the easiest way to store a recent subset of events emitted onto an event
stream is by means of a sliding window. Within a sliding window, recent behaviour, i.e.
behaviour that is observed within a recent period of time, is maintained in-memory.
We formalize the notion of a sliding window, in terms of the notion of an event store
update function, in 3.3.

Definition 3.3 (Event Store Update Function; Sliding Window). Let & denote the
universe of events. Let NeN, we define a sliding window-based event store update
function @y g E* x & — &*, where, given 0€&*,

g-{e) iflol<N

. (3.5)
(oc(lo|-=N+2),...,0(cl),e) otherwise

E;N,sw(a, e)= {

Observe that, by definition, the result of applying @ N,sw is always a subsequence of
its input sequence concatenated with the newly described event. Moreover, regardless
of the length of the input sequence of the update function, the resulting sequence is
always of length N (or smaller if the input sequence’s length is strictly smaller than
N). Consider algorithm 3.1 in which we provide a concise algorithmic description of
an event store based on the concept of a sliding window.

The algorithm expects an event stream S and a maximum window size N as an
input. The algorithm maintains a list of events, which is initially empty. Whenever
we receive a new event e at index i of the stream, we append it to the tail of the list.
However, if i > N we subsequently remove the head of the list. Note that, within the
algorithmic description, the list w itself represents ®(S).
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Algorithm 3.1: Sliding Window-Based Event Store

input: Sc&*, NeNj

begin
i—1;
w — empty list of events;
while true do

if |w| = N then
L remove w(1);

a A W N =

(=)}

append S(i) to w;
7 i—i+1;

The sliding window, as described previously, is also known as a sequence-based
sliding window, i.e. the stream/window itself defines what elements are part of the
window. An alternative approach is to use the event arrival-time as a criterion for
membership of the window. In such case, we only maintain all events with an arrival
time within a time interval A with respect to. the current time ¢, i.e. all events e with
t— A < Ttinestamp(€) < t. Note that, in case the number of events arriving within the
specified time window A exceeds the available memory budget N, we resort to saving
Observe that both models are static since either the number of elements to consider, or,
the time interval to consider, is fixed.

When formalizing a time-based sliding window, we additionally need access to a
global clock that allows us to assess the current time. The criterion for event deletion
now changes into checking whether the time-difference of the time of arrival of the
oldest events of the window and the current time exceeds the given time interval.
Observe that, as is the case with sequence-based sliding windows, a time-based sliding
window is a subsequence of its input.

There also exist variants of sliding window approaches that are dynamic, i.e. the
window size changes over time [25]. However, the emphasis of such techniques, is
on finding an accurate representation of the underlying generating data distribution
that is subject to concept drift. This means, that as soon as a concept drift within the
underlying distribution is detected, i.e. either sudden or gradual, the older parts of the
window describing the distribution prior to the detected drift are removed. Note that
finding and/or characterizing drifts in the context of event streams is very challenging
due to the fact that events related to the same process instance arrive dispersed over
the stream. This does not align well with the general model used in data streams
where data items are often assumed to be independently sampled from the underlying
distribution. Despite this challenge, dealing with concept drift in the context of event
streams is not covered (extensively) within this thesis.

The relatively simple nature of the sliding window is, at the same time, the largest
limiting factor from a process mining perspective. As indicated in section 1.3, we
expect events related to multiple different process instances to arrive dispersed on the
stream. As such, we do not have any guarantee with respect to the completeness of the
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traces present in the sliding window. It is likely that, at some point, we drop fragments
behaviour for a certain process instance that is still ongoing, i.e. for which other events
are present in the sliding window as well. Observe that this has a potential negative
impact with respect to. process mining algorithms, as most algorithms assume the
traces to represent complete executions of the underlying process.

3.3.2 Reservoir Sampling

The concept of reservoir sampling is presented by numerous authors [76, Section 3.4.2]
[88, 115]. It is a sampling method that allows us to pick a random sample of size N
out of a set consisting of K elements (where K > N), in one-pass. In particular, the
assumption is that the exact value of K is unknown, and, it is inefficient to determine
it. The general idea of the approach is to maintain a reservoir, i.e. typically simply
an array, of size N. Any algorithm maintaining a reservoir is a reservoir sampling
algorithm if, after inspecting and processing the i element of the total of unknown K
elements with i > N, the reservoir represents a true random sample of size N of the i
items seen so far. Therefore, by induction, after receiving all K items, the reservoir is a
true random sample of all K items, even though K is potentially infinite.

The concept of reservoir sampling, by its sheer definition, aligns well with the data
stream model, i.e. we aim at one-pass handling of events whilst using finite, ideally
bounded, memory. The standard approach of reservoir sampling is to place the first
N elements of the stream in the reservoir. Subsequently, element i +1 with i = N is
added with probability % Observe that, for increasing i, the probability of addition
decreases, which ensures that after completion, in the finite scenario, the reservoir
in fact represents a true random sample of size N of the items seen so far. If we
decide to add an element to the reservoir, its index is determined randomly, using a
uniform distribution over {1,..., N}, i.e. unif{0, N}. Consider 3.4,_i)n which we formalize
reservoir sampling in terms of an event store update function @ .

Definition 3.4 (Event Store Update Function; Reservoir Sampling). Let & denote the
universe of events, let i, NeNy and let e, oe&*. Furthermore, let reuntf{1,i} denote a
random variable drawn from a uniform discrete distribution with ranges 1 and i and let
jeunif{l,|ol} denote a random variable drawn from a uniform discrete distribution with

ranges 1 and |o|. We define a reservoir sampling-based event store update function @ Nrs
as a function @ N rs: 8* x & — &*, where

o-(e) iflol<N
E;N,rs(g're): (o} l:f|0'|2N/\r>N (3.6)
(1), ..,c(j—1),0( +1),...,a(lo]))-{e) otherwise

Observe that the update function requires random variable r, drawn from a discrete
uniform distribution, i.e. unif{0, ..., i}, where i is used to determine the probability of
inclusion, i.e. ? Note that, when using the update function on top of an event store,

ie @\ (S) = @ N(@51(S), (1)), the value of i used in the update function equals the
index of the event store. In case the input sequence is of length strictly smaller than N
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Algorithm 3.2: Reservoir Sampling-Based Event Store
input: Sc&*, NeN

begin

1 i—0;

2 a<—e; // reservoir
3 W€ // internal sliding window
4 while true do

5 i—i+1;

6 e—S(i);

7 if |a| < N then

8 | append e to both a and w;

9 else
10 r — discrete random value from unif {1, i};
11 if r < N then

12 j < discrete random value from unif {1, N};

13 remove a(j) from w;

14 a(j) —e;

15 append e to w;

the update function returns the sequence concatenated with the new event. If this is
not the case and the random variable r exceeds the value of N we simply return the
input sequence. In any other case, i.e. the sequence size is at least N and r = N, we
remove the element of the sequence at position j and include the new event as the last
element of the returned sequence. Observe that, by iteratively applying the update
function, we are guaranteed that the corresponding event store never exceeds size N.

Consider algorithm 3.2, in which we present an algorithmic description of a
reservoir sampling based event store. The reservoir itself is represented by an array a,
which we keep on filling until its size equals N. Subsequently we sample variable r
from the uniform distribution over range {1,..., i}, i.e. unif{1,i}. Whenever we obtain a
value r < N, we sample variable j from the uniform distribution over range {1,..., N},
i.e. unif{l, N}, and replace the element at position j in a. Due to the random nature
of a reservoir, a is not a valid instantiation of an event store, i.e. it violates RQ 1, cf.
Table 3.1. We, therefore, maintain an internal sliding window w that actually captures
the event store. When we remove a certain event from the reservoir, we also remove it
from w and append the new event to w.

The aforementioned approach indeed allows us to construct an event store, using
reservoir sampling as an underlying basis. Observe that, contrary to the use of a sliding
window, it is not necessarily meaningful to adopt such a reservoir in the context of
process mining. Assume that we add an event at position i > N related to some process
instance identified by case identifier ce%. Also assume that we decide not to add the
next event ¢’ on the stream related to the same process instance. Furthermore, we do
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decide to add the subsequent event e¢”, again related to the same process instance. If
we subsequently derive the trace related to the case identifier ce<%, it is not containing
¢', whereas ideally, it should. In fact, from a certain point of view, this may even be
regarded as faulty. It moreover violates DS 2 of Table 3.1.

We therefore alternatively propose to perform the sampling based on the case-
id’s present in events, rather than for each event individually. We hence maintain
a reservoir of case-id’s, and, additionally incorporate an internal sliding window to
represent ®,,. When a new event arrives we check whether its case-id is present in the
reservoir. If this is the case, we forward the event to the sliding window. If the case-id
is not in the reservoir, yet we still have open spaces in the reservoir, we add the event’s
case-id to the reservoir and subsequently forward the event to the sliding window.
However, if the maximum capacity of the reservoir is reached, we decide whether
the case-id needs to be added to the reservoir or not, i.e. we add it with probability
%. If we decide not to add it, nothing happens, i.e. the event is not forwarded to
the internal sliding window. If we decide to add it, we replace, randomly, one of the
existing case-id’s in the reservoir with the new case-id. We subsequently traverse the
sliding window and remove all events related to the removed case-id. Finally, we
forward the newly received event to the internal sliding window.

The internal sliding window of the approach represents the event store maintained
by the reservoir sampling-based approach. However, when replacing a case-id, we
need to traverse the internal sliding window and remove each event that corresponds
to the removed case-id. Moreover, when translating the reservoir based event-level
store to a case level, we need an additional iteration through the sliding window.

We therefore alternatively propose to implement ¢>Zg'  directly, by grouping the
events that are eligible for storage in the event store, i.e. according to the fact that their
case-id is present in the reservoir, by case. The main idea is to maintain a separate list
of events for each case-id in the reservoir. In this case, when a new event arrives and
its case-id is present in the reservoir, we append the event to the list that is maintained
for its case-id. If the event triggers removal of a case-id in the reservoir, the event is the
new head element of a new list that is stored corresponding to its case-id. Whenever
an event’s case-id is not present in the reservoir and neither added to the reservoir, the
event is ignored.

Consider algorithm 3.3 on page 68 in which we present an algorithmic description
of applying reservoir sampling for the purpose of directly storing a case-level event
store. The algorithm expects an event stream Se&* as an input and two additional
parameters k, N € N, subject to k < N, and ideally N mod k = 0. Here, k represents the
number of positions in the reservoir, i.e. representing the number of process instances
maintained, and N represents the maximum number of events present in the event
store. For each incoming event, the algorithm checks whether it already maintains an
entry related to the event’s case-id. If this is the case, it simply appends the new event
to the sequence of events already stored for that case. To ensure strictly using finite
memory, we limit the length of such sequence to % Thus, whenever the new event
yields a sequence length exceeding L%J, we remove the head element of the list. As
such, the algorithm needs O(N) memory.

The algorithm as presented does not allow us to reconstruct the event store @,
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Algorithm 3.3: Reservoir Sampling-Based Event Store (Case Level)
input: Sc&*, N, keN

begin
1 i—0;
2 ac —€; // sequence of case-id’s
3 ag —e€; // sequence of sequences of events (max. length L%J)
4 while true do
5 i—i+1;
6 e — S(i);
7 if 7.(e) €, a. then
8 j < index of ¢ in a;
9 ag(j) —ag(j)-(e);
10 if |as(j)| > | {] then
1 | a0() —as(a..ta, (s
12 else
13 if |ac| < k then
14 ac —ac-mcle);
15 | o —ag-{e));
16 else
17 r — discrete random value from unif{l,i};
18 if r < N then
19 r — discrete random value from unif{1, k};
20 ac(r) —mcle);
21 ag(r) < (e);
i.e. such information is lost. We are only able to query the case view, (ng, - directly.

Thus, in case we aim at storing @}, we again need to resort to using an internal sliding
window to represent (I)jv. Also note that, when sampling on a case level, the original
property of reservoir sampling, i.e. being a true random sample is, from an event
perspective, no longer guaranteed.

In [115] it is observed that after inserting an element at position i in the stream
within the reservoir, with i > N, it is more efficient to compute the subsequent j
elements to ignore, rather than doing a single random trial upon receiving each new
event. As such, three alternative approaches are presented that allow us to generate
such value jeN. In [14], it is argued that a uniform sample is in several application
domains undesirable, since the stream under study is likely to evolve. Therefore, given
the r™ item at time ¢ (i.e. r < ), to prioritize recent items, the use of a bias function
f(r,v) that relates to the probability p(r, r) of the rth element being in the reservoir at
time ¢ is proposed. Clearly, these optimizations/alterations are applicable on top of
the basic framework as presented here, i.e. in algorithm 3.2 and algorithm 3.3.
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3.3.3 Maintaining Frequent Cases

By using reservoir sampling, we obtain a sample of the data emitted onto the stream.
In our context, this implies either a sample of the events or the cases emitted on
the stream. Since each event amounts to the occurrence of a case, cases that relate
to process instances with the largest number of executed activities have the highest
probability of being included within the reservoir. Such property is interesting in
case we aim to track these types of cases, yet the result of the reservoir algorithm is
non-deterministic. As an alternative, algorithms exist that are designed to approximate
the most frequent items on an event stream [41], i.e. the SpaceSaving algorithm [91],
the Frequent algorithm [45, 74] and the Lossy Counting [84] algorithm respectively.
Here, we do not present a formal definition of an event store update function in terms
of frequency approximation, yet we do provide an algorithmic sketch of each of the
aforementioned algorithms.

Consider algorithm 3.4, in which we provide an algorithmic description of a case-
level event store based on the SpaceSaving algorithm. The algorithm maintains a
set of pairs X of the form X € € xN. A pair (c, j)eX represents that the sequence
of events observed, related to case identifier c is stored in array a, at index j. For
each case identifier ce¢, we define a counter v(c), which is initialized at 0. These
case identifier-based counters are used to determine what case identifier is eligible for
replacement, when the set X reaches the maximal allowed size k. When a new event is
received, we check whether the event’s corresponding case identifier is already present
in X, i.e. in cases there exists a pair of the form (c, j)e X (cf. line 8). If this is the case,
we append the new event to the corresponding sequence of events as stored in a,(j).
In case the addition leads to storing more than L%J elements within a,, we remove
the head element of a,(j). If there is no pair in X that relates to n.(e), we check if
X contains less than k events. If this is the case, we add a new pair (c,|X|) to X and
create a new sequence representing c¢, by appending ({e)) to a,, i.e. line 13 - line 16.
If the size of X equals k we search for the case identifier ce% that has an entry in X
and has the minimal v(c) value, i.e. line 17. We replace the corresponding pair (c, j)
in X, by (nc(e), j), i.e. the case related to the newly received event is taking over the
position of the removed case identifier c in a,. Hence, we reset the value of a;(j) to
(e), and moreover, we set the value of vy () to v(c)+1.

It is important to note the subtle difference of the impact of the v(c)-counter in
the context of the process mining inspired version of the Space Saving algorithm
with respect to. the conventional use of the algorithm in streaming applications. In
the conventional setting, the stream is assumed to contain multiple equally valued
data points, e.g. multiple data points relate to the same product available in an online
shop. For each observable data point d, a counter v(d) is maintained. The algorithm
then guarantees that the actual data points stored, according to the corresponding
v(d)-values, are the most frequent ones (subject to approximation). As in process
mining we assume each event to be unique, the only multiple appearing omni-present
data object is the case identifier. As such, we use the case identifier’s value as the v-
counter’s range. The side-effect of this approach is that the algorithm has the tendency
to store the longest traces, again subject to approximation error.
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Algorithm 3.4: Frequency-Based Event Store (Space Saving)
input :S<é&*, N, keN

begin
1 X —@; // set of (case-id,index) pairs, i.e. X< ¥ x{l,..,k}
2 ag—¢€; // sequence of sequences of events (max. length I_%J)
3 initialize v(c) < 0,VYce¥€;
4 i —0;
5 while true do
6 i—i+1;
7 e—S(i);
8 if 3(c, )eX(c =n.(e)) then
9 v(ic) —v(c)+1;
10 ag(j) —ag(j)-(e);
11 if |as(j)| > | {] then
12 | as() —ao(D2..ja, ()15
13 else if | X| < k then
14 X—XU(c|X|+1);
15 v(c) —1;
16 L ag —ag-{({e));
17 else
18 (¢, j) < argmin(v(c));
(c,j)eX
19 v(rte(e)) —ve+1;
20 X — (Xu{lmg(e), HH\ e )}
21 | ao(j) —(e);
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The Frequent algorithm, which we depict in algorithm 3.5 on page 72, operates
in a similar fashion. It again maintains a set of pairs X of the form X <4 xN. A
pair (c, j)eX represents that the sequence of events observed, related to case identifier
¢ is stored in array a, at index j. It however additionally stores a set J, which
represents those je{l,...,, k}, for which A(c, j)eX. As such, initially, when X = @, we
have J={1,...,k}. When an event arrives related to a case identifier c that is already
present in X, i.e. (c, j)e X, exactly the same procedure is applied as in the case of the
SpaceSaving algorithm, i.e. v(c) is increased and the new event is simply appended
to a5 (j). In the case the new event relates to a case identifier that is not present in X,
we simply add a pair (c, j) to X, where j is a “free” index, i.e. line 14 - line 19.

However, the main difference is in the use, and update strategy of, the v(c)-counters,
cf. line 21 - line 26. Whenever the set X is of size k, and a new event arrives related to
a case identifier that is not present in X, we decrease the counters of all case identifiers
present in X by one. Whenever such counter gets 0, i.e. for some ce%¢, we have v(c) =0,
we remove its entry, i.e. (¢, j) from X. We add the corresponding index j back to the
set of free indices J, and set a;(j) to €. Observe that, this difference in counter strategy
leads to the fluctuation of the size of set X in case of the Frequent algorithm. On the
contrary, in the SpaceSaving algorithm, once the size of set X reaches k, it remains of
size k.

Finally, the Lossy Counting algorithm, cf. algorithm 3.6 on page 73, adopts a
relatively different strategy, yet it again maintains a similar base set X <% xN and uses
the notion of case identifier-specific counters, i.e. v(c). When an event arrives related
to a case identifier ¢ that is already present in X, i.e. (¢, j)€X, v(c) is increased and
the new event is simply appended to a,(j). The length of any entry in a, is however
bounded by user-specified value w rather than L%J.

The algorithm conceptually divides the stream into buckets of length k and keeps
track to which bucket the currently arriving event belongs. Regardless of the actual size
of X, whenever an event arrives on the event stream that relates to a case identifier
¢ that is not present in X, an entry (c, j) is added to X. Note that in this context,
j again refers to a “free index”. The corresponding counter, i.e. v(c) gets a value
assigned A +1, i.e. where A represents the current bucket-id. As such, we potentially
over-approximate the number of occurrences of the new case identifier ¢ by at most
A. When we observe that a newly arriving event enters a new bucket, i.e. given its
index i, we have i mod k =0, the algorithm starts cleaning set X. Upon clean-up, in
order to be retained within X, an element on average needs to occur in each previous
bucket at least once, i.e. v(c) = A needs to hold in order to be maintained in set X.
However, note that, for some case identifiers we actually overestimate this value, i.e.
as we initialize the corresponding counter with A.

Note that the Lossy Counting algorithm, due to its clean-up strategy, has a differ-
ent space complexity compared to the Frequent- and Space Saving algorithms. Both
of the latter algorithms guarantee that we maintain at most k case identifiers. Since
we cap the length of each of the traces stored in a, at L%J, we are guaranteed that, in
terms of events, both algorithms have O(N) space complexity. However, in case of the
Lossy Counting algorithm, the worst-case space complexity of (conventional) Lossy
Counting, i.e. the number of entries that is present in X, is O(klog(%lSl)). In fact,
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Algorithm 3.5: Frequency-Based Event Store (Frequent)
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input :S<é&*, N,keN
begin

X —@; // set of (case-id,index) pairs, i.e. X< ¥ x{l,...,k}
J<—1{1,2,...,k}; // set of free indices
ag —e€; // sequence of sequences of events (max. length L%J)
initialize v(c) < 0,VYce¥;
i—0;
while true do

i—i+1;

e— S(i);

if 3(c, )eX(c =n.(e)) then

vic) —v(c)+1;
ag(j) —ag(j)-<e);
if |as(j)| > | §] then
| a0() —as(Da..tas (5

Ise if | X| < k then
j < some value present in J;
J<=TJ\];
X —=XUul(cj);
vic)—1;
| ac(j) —(e);
else
foreach (c, j)eX do
v(c) —v(c)—1;
if v(c) =0 then
X—X\(c));
J—=Juij}

ag(j) —e;

[¢]
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Algorithm 3.6: Frequency-Based Event Store (Lossy Counting)
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input :Scé&”, k, weN
begin

X —@; // set of (case-id,index) pairs, i.e. X<S%¥ xN

J—N;
A —0;

// set of free indices

ag —€; // sequence of sequences of events

initialize v(c) < 0,VYceE;
i—0;
while true do
i—i+1;
e— S(i);
if A(c, )eX(c =n.(e)) then
v(c) —v(c)+1;
if |ax (j)| = w then
| as() —ac(Da..ia, (15
| ac(j) —ag(j)-(e);
else
j < some value present in J;
J—TJ\j;
X—=Xul(c));
v(c) —1+A;
| ao(j) —<(e);
if LLI;J # A then
A—Izl;
foreach (c, j)eX do
if v(c) < A then
X —X\(c j);
J—Juij};

ag(j) —e€;

-
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therefore, we use J — N, rather than J —{1,..., k} in algorithm 3.6, line 2. Often, given
a user-specified maximal error value €€[0, 1], a value of k = % is used as the bucket size
parameter. Using such value provides certain guarantees with respect to. the approx-
imation quality of an element’s frequency, i.e. v(c) in the context of algorithm 3.6.!
Moreover, when using k = %, we obtain O(%log(elSI)) as space complexity. Observe
that, when we also use a maximum number of w =1 of events per case identifier in
algorithm 3.6, we deduce its corresponding space complexity to be O(elzlog(els D).

Finally, observe that the practical applicability of the algorithms discussed here, and
other similar algorithms that allow us to track/approximate the most frequent items
on a stream, is potentially limited from a process mining perspective. As indicated, by
design, they track the most frequent elements on stream. Hence, if we use the case
identifiers as elements in this context, we are implicitly tracking those cases for which
the most activities are performed. This is not necessarily unusable, i.e. these types of
process instances typically relate to outliers and/or problematic cases, and they are
therefore interesting for further investigation. However, the majority of the process
mining algorithms is explicitly designed under the assumption that such type of cases
are not part of the input event data.

3.3.4 Time Decay

The time-based sliding window, as briefly described in subsection 3.3.1, is an instanti-
ation of a broader class of storage algorithms, known as decay functions. The essence
of such functions/algorithms is to assign a weight to data items that arrive on the
stream, based on their age. The older a data item is, the higher its weight is and, the
higher an item’s weight, the less importance the item gets. A function assigning weights
to data items, based on their timestamp, is a decay function, if the function assigns a
weight 1 at the moment of arrival. Furthermore, the function needs to be monotone
non-increasing, for increasing time, i.e. if event e arrives later than ¢/, the weight of e
is smaller or equal to the weight of ¢'.

In some cases, the weight of the data items is adopted directly within the function
intended to be computed on top of the data stream. For example, deriving some
numeric value in which the influence of data items with respect to. that value is scaled
using the decay function. However, in the context of process mining the weight of an
event has no particular meaning. Nonetheless, the weight of an event can be used in
order to determine whether or not an event, or set of events is eligible to be removed
from the event store, i.e. to be part of ®;. As shown in [42], by using the concept
of landmarks, it is possible to compute such decay efficiently, i.e. we compute an
intermediary weight value upon arrival and scale it to obtain the true decay value as
time increases.

1Using such value k = % in fact also provides such approximation quality guarantees for the Frequency
and Space Saving algorithm.
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Table 3.2: Guarantees of the different techniques presented here with respect to. the quality
requirements for event stores as quantified in Table 3.1.

Technique RQ1 DS 1 DS 2

(respect order) | (no re-insertion) | (removal case compliant)
Sliding Window (cf. subsection 3.3.1) v v v
Reservoir Event-Level (cf. subsection 3.3.2) v v x
Reservoir Case-Level (cf. subsection 3.3.2) v N v
Frequency Approximation (cf. subsection 3.3.3) v v v
Time Decay (cf. subsection 3.3.4) v v v

3.3.5 Guarantees

In this section, we quantify to what degree the different types of techniques as presen-
ted in this section allow us to guarantee the requirements and desiderata as defined
for event stores in section 3.2, in Table 3.1. We schematically depict this quantification
in Table 3.2. We observe that all techniques allow us to guarantee all requirements/de-
siderata as defined in Table 3.1, except for reservoir sampling on event level. Clearly,
in such case, we are able to ignore events related to certain cases for which we are
already maintaining some events. Hence, removal of events from the event store, not
compliant to the ordering imposed by the process instance (in this case instant removal
due to ignoring the events), is possible.

3.4 Exploiting Behavioural Similarity

section 3.3 shows that we are able to instantiate both event-level and case-level event
stores using existing data storage techniques originating from different areas of data
stream processing. Note however that, so far, we have not touched upon the actual
quality of the event store maintained. The sliding window approach, either from an
event-level or case-level perspective, is likely to only maintain snippets of traces, rather
than complete trace behaviour. Similarly, it is possible to delete the events related to
a certain case-id from a reservoir sample and/or frequent item-based approach and,
in a later phase, inserting an event related to the same case-id. For some process
mining algorithms, this is not necessarily a problem, i.e. certain algorithms only look
at local relations between at most two consecutive events. However, other algorithms
do heavily rely on the notion of completeness of cases and/or the explicit knowledge
of when a trace starts and/or ends.

We are able to partly solve the aforementioned quality problems related to con-
ventional data stream storage techniques, by assuming that we are explicitly aware
of a set of unique start- and end events of the process. For example, assume a new
event ee& arrives with ¢ (e) = ¢, and furthermore, ¢ is not yet described by any event
currently present in the event store. In such case, event e is only eligible for addition
to the event store, if the corresponding activity is a unique start event. Even more
so, in case we have explicit knowledge of end events we are able to use this to select
candidates for removal from the event store. Note that, by additionally adapting such
strategies, it is likely that the behaviour of the storage algorithms starts to deviate
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Figure 3.3: Schematic overview of the proposed prefix-tree based case-level event store. We
maintain a prefix-tree that represents the process behaviour. For each case, we keep
track of the oldest and newest received event, i.e. still present in the underlying
event store. By creating paths from the root to leaves of the prefix-tree, we are able
to create behaviour that exceeds the behaviour stored in the underlying event store.

significantly from their original design and/or intent, and, as a consequence, certain
underlying theoretical properties and/or guarantees are invalidated. However, regard-
less of the assumption of the explicit availability of unique start- and/or end-activities,
size parameter N does only allow us to store a bounded share of recent events for the
corresponding case-id. Even when applying a dynamic scheme that allows us to exceed
this value, if space permits, the inherent requirement to maintain the event data in
finite memory at some point requires us to drop fragments of cases, or uncompleted
cases as a whole.

Within real-life processes, multiple instances of the process exhibit similar beha-
viour, e.g. first a certain set of activities needs to be performed in order to perform
a different subsequent set of activities. In this section, we, therefore, propose an
alternative storage strategy that aims to exploit inter-process instance similarity, in
order to increase the overall quality and completeness of the data stored related to
the currently running process instances. Consider Figure 3.3, in which we depict
a schematic overview of the proposed approach. We store the events arriving on
the event stream in an event store, i.e. any event store as described in section 3.3,
which adheres to DS 2. However, we replicate the behaviour using a prefix-tree, cf.
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subsection 2.1.5, as an internal representation of the underlying process. We propose
to use the control-flow perspective as a main driver for defining the edges and nodes
of the prefix-tree, however, theoretically any form of omni-present payload is usable.
Whenever we remove an event e from the event store and the prefix-tree, we aim to
identify whether there are other process instances describing some event ¢’, which is
still in the event store, that actually describes the same behaviour. If this is the case,
we use such event, i.e. its presence in the stored prefix-tree, as place-holder for the
removed event e. Thus, even though event e is no longer present in the underlying
event store, when we fetch the trace corresponding to the case identifier of e, we let
event ¢’ act as a replacement for event e. This allows us to obtain, from the start of
traces, trace completeness for the active active process instances.

3.4.1 Maintaining Control-Flow Oriented Prefix-Trees

As indicated and illustrated in Figure 3.3, we maintain a prefix-tree that represents the
process behaviour. Moreover, we propose to use the control-flow perspective as a main
driver for defining the edges and nodes of the prefix-tree. To determine what behaviour
needs to be represented by the prefix-tree, we additionally maintain a regular event
store, e.g. a sliding window. The main idea of the approach is that, each process
instance captured within the underlying event store, represented by its case identifier,
describes a path in the prefix-tree. Furthermore, in case multiple process instances
describe the same sequence of activities in the beginning of the process, these instances
share (a part of) a path in the prefix-tree. When at some point certain events are
removed from the underlying event store, we are still able to, given the fragment of
current behaviour, walk back to the root of the prefix-tree and thus assess the removed
history of the corresponding process instance. The enhanced completeness, i.e. from
the start of traces, in turn has a potential beneficial impact on the process mining
algorithm used.

The approach roughly works as follows. We maintain an internal event store that
adheres to DS 2, e.g. a sliding window, and a prefix-tree in which each arc represents
the execution of an activity. For each case-id c that is active, i.e. there is some event
present in the internal event store @ that is related to ¢, we maintain two pointers that
point to a node in the tree. One pointer, i.e. p,, points to the vertex that represents the
most recently received event observed on the event stream for case c. The other pointer,
i.e. p,, relates to the case’s oldest event related to case c that is still present in the
underlying event store. Whenever we receive a new event, we assess the vertex in the
tree pointed at by p,, i.e. related to the most recent event for the case. Subsequently,
we check whether or not that corresponding vertex has an outgoing edge that describes
the same activity as the newly received event. If so, we shift pointer 5, to that vertex,
if not, we create an outgoing arc decorated with the activity of the newly received
event from the current vertex to the new vertex. After creating the vertex, we update
pointer p, to the new vertex. In case an event is dropped from the event store, we
shift the oldest-event-pointer to the vertex that is reached by the activity described by
the deleted event.

Consider Figure 3.4 in which exemplify maintaining a prefix-tree based event store.
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Figure 3.4: Example of maintaining a prefix-tree based event store. Note that, we assume all
arriving events to be stored in the (initially empty) underlying event store. Single-
headed arrows indicate start-pointers, i.e. pointers p, representing the oldest event
of the case identifier in the corresponding event store, double headed arrows indicate
end-pointers, i.e. pointers p, representing the most recently received event.

In Figure 3.4, we represent events as a (case identifier, activity)-pair (depicted as
(¢,a,...)), since these are the event attributes effectively used in construction of the
prefix-tree. When we tap into the stream, i.e. situation 1.) Initial state, we have not
yet received any events and hence the prefix-tree only contains a root node. Moreovet,
we do not maintain any pointers to the tree.

In situation 2.), we receive a new event (cy, a,...) which we assume to be temporarily
stored in the backing event-level event store. We first add an entry for case ¢ in the
Cases-array. Since there is no behaviour recorded yet for ¢;, we know the new event
is the first event (at least at this point in time) related to case-id ¢;. We create a new
vertex and connect it to the root by means of an incoming edge with label a. We add
two pointers for case ¢, the recent pointer points to the newly added vertex. The
other pointer, i.e. referring to the oldest possible behaviour seen for the case points to
the root vertex.

In situation 3.) we receive a new event related to case identifier ¢, i.e. (¢, b,...).
We observe that c; is already present within the Cases-array. We traverse the recent
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behaviour pointer of case ci, i.e. pointing to vertex v;. Since v; does not have any
outgoing arcs, we create a new vertex, i.e. v, with an incoming arc labelled b from v;.

In situation 4.) we receive an event related to case identifier ¢, i.e. (¢, a,...). Since
there is no entry for ¢, in the Cases-array, we create a new entry for c,. Like ¢y, the
first event for ¢, describes the execution of activity a. Therefore, there is no need to
modify the prefix-tree. We only create two pointers for ¢, one pointing to the root r
of the tree, and one pointing to v;.

In situation 5.) we again receive an event for case ¢, i.e. (¢, ¢,...). In this case, we
create a new vertex vs with an incoming arc labelled with ¢ from v;. Furthermore, we
assume that the arrival of the new event causes the event-level store to drop the first
received event, i.e. (¢, a,...). To account for the removal, we shift the oldest behaviour
pointer of case ¢ to vertex v; (which we visualize in 6.)).

Observe that, even though event (cy, a,...) is removed from the backing event-level
event store, we are still able to reconstruct the trace (a, b) for case-id ¢;. We are able
to do this by traversing back to the root r from vy, i.e. the vertex pointed at by c;.
This is the main advantage of the described approach, i.e. without additional memory
load, we are able to reconstruct traces, even though some corresponding events are
removed from the underlying event store.

3.4.2 Accounting for Event Removal

In the example in Figure 3.4, receiving event (cp,c,...) yields the removal of event
(¢1,a,...) in the internal event store. As such, we shift the start pointer of case ¢; to
vertex v;. In the example, the edge leading into vertex v; is still covered by a different
case, i.e. also case ¢, describes that activity at that position. However, this does not
always happen. Hence, we propose a mechanism that allows us to account for removal
that results in parts of the tree that are no longer covered by any case identifier in the
underlying event store. In one of the approaches, we simply drop any possible subtree
that is no longer covered. In the other approach, we shift the subtree underneath the
root of the prefix-tree.

Consider Figure 3.5, in which we continue the example presented in Figure 3.5. In
7.), we receive a new event related to case identifier ¢;, describing the execution of
an activity labelled c. We thus create a new vertex, i.e. v4, and connect vertex v, to
vertex v, by means of an arc labelled c¢. We also update the terminal pointer of case
identifier ¢;. We subsequently, in 8.), receive an event related to case c,, for which we
update the prefix-tree and the pointers accordingly. Observe that, in 9.), event (¢, a, ...)
is dropped. Hence, we shift the corresponding start pointer of c,.

In this new situation the edge from vertex r to v;, labelled with a is no longer
covered by any case identifier, i.e. both cases ¢; and ¢, start at v;. In general, it
is possible that the removal of a certain event leads to the presence of parts of the
prefix-tree that are no longer covered by any case. We propose two strategies to
account for such situation.

1. Drop; In the drop strategy, we completely drop the sub-tree formed by the
uncovered component. in the context of the example, this implies that we decide
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Figure 3.5: Example of removal a prefix-tree based event store, causing parts of the prefix-tree
to be uncovered.

to drop all events related to cases c; and ¢, yielding an empty tree, i.e. we just
retain the root.

2. Shift; In the shift strategy, we position the sub-tree that is actually covered by
one or more cases directly below the root, i.e. we start shifting the behaviour
within the tree such that the events present in the internal event store are still
present in the prefix-tree. in the context of the example, this implies that vertex
v; is removed from the prefix-tree. Moreover, two new edges connecting vertex
r to vertices v, and vy, labelled b and c respectively, are added.

Observe that, when adopting the drop strategy, we potentially remove events from
the prefix-tree based event store that are present within the internal event store. This
implies that we potentially describe fewer events than are actually present in the
underlying event store, however, those traces that we describe are in fact complete from
the start of the cases. Similarly, when adopting the shift strategy we always describe
everything present in the internal event store, at the potential cost of incompleteness
at the start of cases.

Note that, as indicated, it is only possible to adopt the aforementioned strategies, if
we assume that removal of events in the underlying event store is case compliant, i.e.
DS 2 of Table 3.1. As such, the event-level reservoir sampling based event store is not
eligible to be used as an underlying event store, as it does not guarantee this. All other
event stores described in section 3.2 are in principle usable as an underlying store.

3.4.3 Reducing the Overall Memory Footprint

Thus far, we have illustrated how to maintain a prefix-tree representing process
behaviour, on the basis of an underlying event store. We have proposed to only
represent the events in the prefix-tree as activities, and to leave the events, as-is,
in the event store. This does however only allow us to reconstruct the control-flow
perspective of events that are described by the prefix-tree, but not present in the event
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store any-more. Therefore, in this section, we briefly illustrate how to integrate the
additional payload directly into the prefix-tree. We furthermore illustrate how to avoid
event duplication in prefix-tree based event storage.

Within the example, cf. Figure 3.4 and Figure 3.5, we, for the ease of simplicity,
only store events as a (case identifier, activity)-pair. As presented in 2.10, an event
is considered to be a tuple of arbitrary size, with arbitrary payload, which mainly
depends on the process under study. Hence we aim to store the event payload within
the tree as well, as it allows us to fully reconstruct the events. As such, we simply store
the payload of each event within the vertices of the prefix-tree. For example, we are
able to store, in each vertex, for each case-id a set of key-value pairs representing the
additional event payload.

When events start to be removed from the underlying event store, i.e. pointers
are being shifted, if space permits, we retain the event payload stored in the vertices
until the corresponding case identifier is completely removed from storage. Note
however, that if we do not do this, we are effectively cheating as we are not really
removing the events from memory. If memory does not permit, we aim at removing
the corresponding payload from the vertex, upon a pointer shift. The edges of the
prefix-tree itself however only describe the control-flow, and not the additional data
perspectives. As such, when reconstructing traces, we are unaware what payload
relates to the events that we derive on the basis the edges of the prefix-tree. Hence,
whenever we reconstruct the case-level event log, we need to apply sampling for those
vertices that no longer contain payload information for a certain case.

To use the prefix-tree based storage, we do not need to duplicate all events and
their payload, i.e. as conventionally stored in the internal event store. Consider the
example in which we use a sliding window as an event store. To effectively apply the
prefix-tree based storage on top of the sliding window, we in fact only need to store
case identifiers within the sliding window, i.e. ¥*. When an event arrives, we append
the corresponding case identifier to the sliding window and store all the payload within
vertices in the prefix-tree. In this way, we only duplicate the case identifiers. Observe
that, since we use a pointer structure from the case identifiers to the prefix-tree,
whenever a case identifier is dropped, we are able to shift the pointer(s) accordingly.

3.5 Evaluation

In this section, we evaluate the performance of different storage approaches in terms of
data quality and memory usage. In particular, we assess the effect of using prefix-tree
based storage on top of a sliding window.

3.5.1 Data Quality

In this section, we evaluate the impact of several different storage techniques on data
quality. In particular, we focus on how well the different storage techniques are able to
accurately describe the event data, as complete as possible. As we expect the event
data to describe incomplete process instances in several cases, we do not measure
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process mining specific quality measures, such as replay-fitness and/or precision of
some derived model, based on the event store. Rather, we use the directly follows
relation, as described in section 2.4.1, as a proxy to measure trace completeness. Recall
that the directly follows relation describes what activities are able to directly follow
what other activities. For example, given a simple trace in a simple event store ®, e.g.
(.., a,b,...), we observe that a is directly followed by b, and hence a >4 b holds. Hence,
within the experiments performed, we assess to what degree the storage techniques
under study allow us to reconstruct the directly follows relation of the underlying
event log that is used to generate the stream.

Within the experiments performed, we first compute the complete directly fol-
lows relation, based on the underlying event logs used, i.e. the ground truth. We
subsequently generate a stream, ordered on timestamps present in the event data. This
ensures that multiple cases run in parallel within the event stream. For each of the
storage techniques used, i.e. sliding window and prefix-tree based storage (using a
sliding window internally) with sizes 500, 1000, 2500, we construct a corresponding
event log after each received event. Based on such event log we again compute
a directly follows relation, which we compare against the directly follows relation
computed on the event log as a whole. We track the first 5000 events of the stream for
each technique.

. . . . _ ‘TP|
We compute precision and recall, cf. section 2.4.4, i.e. recall = TTPILTEN and
precision = %, on the basis of the discovered directly follows relation and the

directly follows relation based on the whole event log. We moreover explicitly keep
track of start- and end activities, i.e. the set of activities that occur at least once at
the start/end of a trace within the event log. We use the following classification to
evaluate the approach:

¢ True Positive (TP)

We observe a relation of the form a > b in the discovered relation that is also
observed in the ground truth, and/or, we observe a start/end activity in the event
log based on the event stream that is also a start activity in the ground truth.

e False Positive (FP)

We observe a relation of the form a > b in the discovered relation that is not
observed in the ground truth, and/or, we observe a start/end activity in the event
log based on the event stream that is not in the ground truth.

* True Negative (TN)

We do not observe a relation of the form a > b, which is also not described in
the ground truth, and/or, we do not observe a start/end activity in the event log
based on the event stream, which is also not described in the ground truth.

* False Negative (FN)

We do not observe a relation of the form a > b, which is observed in the ground
truth, and/or, we do not observe a start/end activity in the event log based on
the event stream, which is in fact observed in the ground truth.
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Observe that we expect the false positives to only be related to wrongly discovered
start/end activities. Due to trace incompleteness, we are able to observe an activity a
the last position of a trace, currently stored in the event store, that in the underlying
event log never occurs as a last activity. We are unable to observe directly follows
relations in the data that are not in the underlying event log. Observe that we expect
the recall of the different techniques to be rather low. It is likely that the event store
only stores a fraction of the behaviour present in the original event log, and thus the
ground truth. As such, we expect the event stores to describe a large portion of false
negatives, thus lowering the overall recall value throughout the experiment. On the
other hand, we expect the precision to be rather high. In particular, we never observe
any directly follows relation that is not part of the ground truth, as it reflects the same
portion of data. However, we do expect the event stores to describe different start/end
activities due to trace-incompleteness of the data. Moreover, we expect to see the
prefix-tree to have higher precision values than the standard sliding window, as it aims
to keep traces within its store a bit longer by exploiting shared prefixes.

In Figure 3.6 and Figure 3.7, on page 84 and page 85, we present quality experi-
ments related to the sliding window based event store and prefix-tree based storage,
respectively. All experiments involve real data, i.e. extracted from different information
systems. For all sizes investigated, i.e. 500, 1000 and 2500, we observe that overall,
precision values of the prefix-tree based storage to be slightly higher than the sliding
window based event store, yet the difference is not significant. Also for recall values,
the prefix-tree based event store outperforms the sliding window based event store,
however, the difference in quality is again negligible. For both data sets used, we
observe that the prefix-tree based storage allows us to obtain slightly higher recall /
precision values, yet the difference is negligible and non-significant.

In Table 3.3, we show the average results in terms of recall, precision and f1-score
(harmonic mean of recall and precision). The results include the event logs used in
Figure 3.6 and Figure 3.7, together with additional event logs.

3.5.2 Memory Usage

Aside from the experiments related to quality in terms of the directly follows relation,
we assess the memory usage of both techniques, i.e. sliding window versus prefix-based
storage. Clearly, the sliding window based approach has a constant memory footprint.
However, the prefix-tree based event store needs potentially fewer memory entries
compared to the sliding window based store, since some process instances cover a
similar prefix within the tree. In Figure 3.8 and Figure 3.9, on page 86 and page 87,
we present experiments related to the memory usage of the sliding window based
event store and prefix-tree based storage, respectively. We use the same event logs
as the ones used in Figure 3.6 and Figure 3.7. In particular, we assess the number of
events described for both techniques as well as the number of memory entries needed
to do so. In case of the sliding window, the number of memory entries needed equals
the window size. In case of the prefix-tree based storage, we measure the number of
edges present in the tree.

We observe that in all cases, the prefix-tree based storage allows us to describe a
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Figure 3.6: Precision and recall of sliding window versus prefix-tree based storage using window
sizes of 500, 1000 and 2500, based on the BPI Challenge 2015 Municipality 1 event
log [48].
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Table 3.3: Average Quality results for different event logs studied, computed over the first 5000
events of each generated event stream.

Technique Size | Recall (Avg.) | Precision (Avg.) | F1-Score (Avg.)
BPI 2015 Municipality 1 [48] | Sliding Window | 500 0.03 0.91 0.06
Sliding Window | 1000 0.05 0.93 0.09
Sliding Window | 2500 0.07 0.96 0.12
Prefix-Tree 500 0.03 0.92 0.07
Prefix-Tree 1000 0.05 0.94 0.09
Prefix-Tree 2500 0.07 0.97 0.12
BPI 2015 Municipality 2 [48] | Sliding Window | 500 0.03 0.91 0.07
Sliding Window | 1000 0.05 0.93 0.09
Sliding Window | 2500 0.07 0.96 0.13
Prefix-Tree 500 0.03 0.91 0.07
Prefix-Tree 1000 0.05 0.93 0.09
Prefix-Tree 2500 0.07 0.96 0.13
BPI 2015 Municipality 3 [48] | Sliding Window | 500 0.03 0.92 0.06
Sliding Window | 1000 0.04 0.93 0.07
Sliding Window | 2500 0.06 0.96 0.10
Prefix-Tree 500 0.03 0.92 0.06
Prefix-Tree 1000 0.04 0.94 0.07
Prefix-Tree 2500 0.06 0.96 0.10

small fraction of additional behaviour. This is in line with the results in Figure 3.8
and Figure 3.9, i.e. the slightly higher precision values. Note that we do not observe a
clear relation between the size of the (underlying) sliding window and the amount of
additional described behaviour. We furthermore observe that in all cases, the prefix-
tree based event store needs fewer memory entries to describe behaviour. This implies
that in the event data used, there is indeed shared behaviour in terms of trace prefixes,
which we are able to exploit within the prefix-tree.

3.6 Related Work

Little work has been done in the context of explicit temporal storage of streaming data
originating from the execution of processes. In [34, 35] the Lossy Counting algorithm
is used to store an algorithmic-specific abstraction for the purpose of online process
discovery. Furthermore, in [69] prefix-trees are used as well, however, not with the
intention to store full trace history. Rather, after receiving a few events related to the
same case a clean-up action is performed. In [69] it is merely shown that using such
prefix-tree oriented structure is more efficient for the corresponding process discovery
algorithm, compared to [35].

In offline process mining, little work has been published in the context of (effi-
cient) storage of event data. Most academic and commercial process mining tools
support the IEEE eXtensible Event Stream (XES) [1] standard, which specifies an
XML-based storage standard for event data. Several open-source java-libraries have
been written and documented with the specific aim to implement lightweight effi-
cient implementations of the standard [86]. For example, the XESLite - Database
(XL-DB) implementation allows us to use secondary storage on a single node computer.
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As such, the implementation allows us to analyse event data that exceeds internal
memory, yet it does not allow us to distribute it over multiple nodes.

Additionally, some work has been performed with respect to large-scale storage, i.e.
particularly in the light of big event logs, i.e. event logs that no longer fit the memory
of a single computer. In [54, 70] the authors assess process discovery in the context of
data intensive environments. In particular, both works focus on the applicability of
using the Hadoop? distributed data storage framework, in order to apply the flexible
heuristic miner [122]. As such, the main focus of these works is towards computing
the underlying data abstractions rather than actual storage. However, a connector
to any Hadoop ecosystem has been implemented and published in the light of the
aforementioned work [71]

In light of large scale storage, recently some studies have investigated the applic-
ability of relational databases in the context of event log storage [50, 108]. In [50]
a first relational database based event log storage design was proposed, i.e. RXES. It
adheres to the XES standard, yet allows for storage of the event data in a relational
database. In RXES, an event is allowed to belong to different process instances, i.e.
which is often the case in practice. The work in [108] also presents a storage design
on the bases of relational databases, i.e. DBXES. Moreover, the authors motivate that
a lot of discovery algorithms use intermediate data structures, and thus propose to
pre-compute these structures at event insertion time, to reduce overall computational
complexity of several discovery techniques. The aforementioned rationale is also
applied in this thesis, i.e. in chapter 5, where we propose a similar, stream-based
architecture. Additionally, work has been performed on translation of conventional
relational databases into XES-based event logs [114]. Note however, that this work in
principle does not aim to solve big data problems. The primary focus of the work is
to extract event data from complex databases, not tailored towards process mining.
Similarly, work has been done in the design of process/event-aware versions of OLAP
cubes [27, 116, 117]. In these works, the emphasis is more on efficient event selection
for the purpose of multi-perspective process mining, instead of the actual size of the
underlying event data.

3.7 Conclusion

In recent years, several different process mining techniques have been proposed. All
of these techniques operate on the notion of an event log, i.e. a collection of executed
business process events, describing traces of process behaviour. Such an event log is a
static, historical source of information. Being based on such event logs, offline process
mining techniques cannot be applied on event streams, without any modification.
Therefore, new techniques are required that allow us to (temporarily) store events
emitted onto an event stream, and subsequently apply any process mining technique
on top of such storage.

thttp ://hadoop.apache.org/
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3.7.1 Contributions

In this chapter, we have presented several ways to store stream-based event data
originating from live execution of (business) processes. We have constructed a formal
definition, i.e. event stores, and defined a corresponding incremental update scheme.
Moreover, we have shown several possible instantiations of such an event store, using
different existing data storage techniques originating from different areas of data
stream processing. We have identified what are, from a process mining perspective, the
main problems of using these techniques “out of the box”. Based on these observations,
combined with the potential presence of similar behaviour in process oriented event
data, we have proposed a new data storage technique that overcomes these short-
comings. Using real event data we have conducted experiments with the proposed
technique. We observe that we are able to slightly improve the quality of the process
mining analyses applied on top of such storage, yet the increase is not significant.
However, the use of prefix-tree based storage does allow us to use less memory, as
the real data used for the experiments indeed shows some shared behaviour among
different process instances.

3.7.2 Limitations

One of the main challenges in process mining is adequately discovering and visualizing
the inherent parallelism present in processes. Such parallelism, together with loop
behaviour, i.e. repeated executions of certain parts of the process, form challenges
for the applicability of the proposed techniques. Parallelism yields a large variety in
terms of behaviour. As a consequence, in the context of prefix-tree based storage, a
large amount of unique paths, i.e. sequences of edges from the root to a leaf of the
process trees, are constructed. Hence, we are not able to effectively exploit behavioural
similarity.

The aforementioned problem is partly solved by representing the vertices as the
Parikh representation of the sequence they represent. For example, if traversing the
edges leading to a specific vertex, starting from the root, yields sequence {a, b, c, b, d),
we transform it to multiset [a, b?, c,d]. All possible permutations of {a, b, ¢, b, d) now
lead to the vertex representing [a, b?, ¢, d]. Using such abstraction on top of the state
represented by vertices in the prefix-tree yields an acyclic graph instead of a tree. This
allows us to compress the prefix-tree and handle parallelism. However, reconstructing
cases is possibly more computationally complex since vertices potentially have multiple
incoming arcs.

Storage of additional payload within the prefix-tree also poses problems with
respect to removal of events. As indicated in subsection 3.4.3, we either keep payload
in memory for an extended period of time, or remove it and resort to sampling. Clearly,
when we store the payload for an additional period of time, this potentially causes
us to exceed available memory. At the same time, when removing it from vertices
no longer covered by the corresponding case identifier, sampling potentially leads to
misleading results.
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3.7.3 Open Challenges & Future Work

The techniques covered in this chapter solely focus on temporal storage of events. In
particular, we assess the applicability of existing techniques to do so, and, compare it
with prefix-tree based storage, which exploits the fact that an event stream originates
from a running process instance. None of the techniques however explicitly focusses on
intelligently removing traces of event behaviour. The prefix-tree based storage allows
us to approximate the past behaviour of a process instance that is already removed
from the underlying event store. However, whenever such event store completely
removes everything related to a certain process instance, it is removed from the prefix-
tree as well. In that sense the prefix-tree based storage completely depends on the
quality of the underlying event store, with respect to. its own behaviour.
In light of the aforementioned, it remains a challenge to estimate:

1. For events related to a completely new case identifier, whether or not it is likely that
this is indeed new behaviour, or it relates to ongoing, already stored, behaviour.

2. For traces of behaviour that are already present in the event store, how likely it
is that new events are to be expected related to the case identifier.

When we are able to estimate the two main focal points, i.e. related to process instance
initialization and termination, we are able to build a new type of event store. Such an
event store needs to be able to selectively ignore certain events from insertion if these
are likely to jeopardize data quality, i.e. not due to noise yet due to the high likelihood
that data was missed. Moreover, it needs to be able to assess what parts of the
behaviour are safe to remove, i.e. which process instances are most likely terminated
and thus are not likely to generate new events. Hence, we envision tailor-made
techniques for the purpose of event storage, i.e. more advanced means of temporal
event storage.






Chapter 4

Filtering Infrequent Behaviour
From Event Streams

The techniques introduced in chapter 3, allow us to temporarily store the events
emitted on the event stream. As a consequence, the techniques allow us to lift process
mining to the domain of streaming data. However, in practice, noise, infrequent
behaviour and/or other types of anomalies are present within streaming event data.
Therefore, in this chapter, we present an online filtering technique that allows us to
identify and remove events that relate to infrequent behaviour. The technique acts as
an event processor, i.e. we are able to plug the filtering technique on top of an input
stream and generate an output event stream out of which infrequent behaviour is
removed.

The contents presented in this chapter are based on the following publication:

S.J. van Zelst, M. Fani Sani, A. Ostovar, R. Conforti, and M. La Rosa. Filtering Spurious
Events from Event Streams of Business Processes. Advanced Information Systems Engineering,
30th International Conference, CAISE 2018, Tallinn, Estonia, June 11-15, 2018, Proceedings,
volume 10816 of Lecture Notes in Computer Science, pages 35-52. Springer, 2018;
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4.1 Introduction

In the previous chapter, we presented several techniques that allow us to temporarily store
events emitted onto an event stream, originating from the underlying process. Thus far, we
have assumed an event stream to be free of noise and anomalous behaviour. However, in reality,
several factors cause this assumption to be wrong, e.g. the supporting information system may
trigger the execution of an inappropriate activity that does not belong to the process, or the
system may be overloaded resulting in logging errors. The existence of these anomalies in event
streams, and event data in general, easily leads to unreliable results.

For example, reconsider the running example process as presented in Figure 2.13a, on
page 55. When we apply a state-of-the art process discovery algorithm, i.e. the Inductive
Miner [78], on an event log containing noise-free behaviour, i.e. only traces that are in the
language of the example process, we obtain the model depicted in Figure 4.2a.

Observe that the Petri net depicted in Figure 4.2a is slightly different compared to the model
as presented in Figure 2.13a. This is due to the fact that the algorithm used to discover the
model does not allow us to discover duplicate labels, i.e. in Figure 2.13a both transition #; and
t5 have a label d. However, the language described by both models is the same. The model
depicted in Figure 4.2b is discovered using the same algorithm, and almost the same data.
However, we added a duplicate c- and e activity to one of the traces in the input data. As a
result, the model now describes that we are able to always repeat both activity ¢ and e infinitely
often, even though in the data, both activities were duplicated only once. Hence, only a slight
fraction of infrequent noisy behaviour in the event data easily leads to process models that are
severely under-fitting with respect to the input data.

In the case of the Inductive Miner, the resulting process model is still a sound workflow net
(cf. 2.5). This is due to the algorithm itself, i.e. the Inductive Miner by definition returns sound
workflow nets. Other algorithms do not provide such guarantees and are therefore even more
affected by the presence of noisy behaviour. For example, in case of the Alpha algorithm [11],
the duplication of the c-activity does not allow us to find any Petri net place connected to a
transition with the corresponding label, i.e. a transition labelled ¢.! As such, that transition is
enabled at any point in time and hence such model is even more imprecise than the model as
discovered by the Inductive Miner (cf. Figure 4.2b).

To tackle the aforementioned problem in the context of event streams, we present a general-
purpose event stream filter designed to detect and remove infrequent behaviour from event
streams. The presented approach relies on a time-evolving subset of the behaviour of the
total event stream, out of which we infer an incrementally-updated model that represents this
behaviour. In particular, we build a collection of dynamically updated probabilistic automata
(cf. 2.9) that represent the subset of behaviour and are used to filter out infrequent behaviour.
The filter we propose primarily focuses on the control-flow of the process (i.e. the sequential
ordering of activities). As such we aim to determine whether an activity executed in the context
of a certain process instance is plausible, given the recent history of executed activities for that
same process instance.

Using a corresponding implementation of the approach, we evaluate the accuracy and
performance of the filter by means of multiple quantitative experiments. To this end, we
evaluate the proposed filter using a set of streams generated from a collection of synthetic
process models inspired by real-life business processes. Moreover, to illustrate the applicability

1As the Alpha algorithm has difficulty to (re)discover the running example model, i.e. on the basis of
noise-free behaviour, we do not explicitly show its result here, we merely indicate the additional problems
caused by the presence of noise.
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(b) Discovered based on data containing infrequent noisy behaviour.

Figure 4.2: Result of applying the Inductive Miner [78] on data obtained from the running ex-
ample process (cf. Figure 2.13a), with (cf. Figure 4.2a) and without (cf. Figure 4.2b)
the presence of infrequent noisy behaviour.

of the approach with respect to existing online process mining techniques, we asses the benefits
of the proposed filter when applied prior to the application of online drift detection.

The remainder of this chapter is organized as follows. First, in section 4.2, we present a
general taxonomy of behaviour, on the basis of control-flow, and indicate, which classes of
behaviour are potentially identified and removed by the proposed filter. In section 4.3 we
present the general architecture of the proposed filtering method. In section 4.4, we present
the main, automaton based, approach, which we evaluate in section 4.5. We present related
work in the domain of event-based filtering in section 4.6. We conclude this chapter and discuss
directions for future work in section 4.7.

4.2 A Control-Flow-Oriented Taxonomy of Behaviour

Prior to presenting the general architecture of the proposed filter, we present a control-flow-
oriented behavioural taxonomy, specifically tailored towards process mining data. We further-
more highlight which of the identified classes of the taxonomy, are covered by the proposed
filter.

In general, we identify three major data characteristics, along the lines of which we are able
to classify process mining data.

* Trustworthiness
Indicates to what degree the recorded behaviour corresponds to reality, i.e. what actually
happened during the execution of the process. In the case that the behaviour, e.g. emitted
on an event stream, correctly reflects reality, e.g. no erroneous duplication of events, we
consider the behaviour as trustworthy.

* Compliance

Indicates to what degree the recorded behaviour is in accordance with predefined rules
and/or expectations of the process. In some cases, rules and/or legislations dictate that
explicit forms of behaviour are required. In other cases, service level agreements dictate
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Behaviour

Figure 4.3: Control-flow-oriented taxonomy of behaviour. The types of behaviour that, ideally,
are used in process mining are marked with /. Behaviour that is ideally removed is
marked with x. Behaviour of which the type of process mining analysis determines
inclusion, is marked with ~. The types of behaviour that are identified by the
proposed filter, i.e. infrequent behaviour, are highlighted in blue.

an idealized and/or expected execution of behaviour. In the case that the behaviour
correctly corresponds to such rules/expectations, we consider the behaviour as compliant.

¢ Frequency

Indicates the relative frequency of the behaviour, i.e. compared to other observed execu-
tions of the same process.

In Figure 4.3, we present a graphical overview of the different characteristics, and their
relation. It depends on the type of process mining task one performs, to what degree we aim to
include certain types of behaviour in the analysis. However, observe that, when behaviour is
untrustworthy, in general, we are not interested in including it, i.e. we are not able to trust the
behaviour, and thus draw any significant meaningful conclusions from it. Hence, even in the case
of conformance-checking-oriented process mining studies, we aim to remove the untrustworthy
behaviour. In fact, we aim to omit any form of untrustworthy behaviour. However, note that,
even though behaviour is untrustworthy, systematic errors may cause it to occur frequently.
Therefore, in Figure 4.3, we do distinguish between frequent and infrequent forms. In the case
that behaviour is trustworthy, frequent and compliant, we always aim to include it. When we
perform process discovery, it is most likely that we aim to only include such frequent compliant
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Figure 4.4: Schematic overview of the proposed filtering architecture.

behaviour and leave out any other type of trustworthy behaviour. When we apply conformance
checking, it is more likely that all trustworthy behaviour is required to be included. Observe
that in Figure 4.3, we explicitly highlight the types of behaviour, i.e. infrequent behaviour, that
the presented filter is able to identify and remove.

4.3 Architecture

In this section, we present the basic architecture of the proposed event filter. The filter uses
the behaviour stored in an underlying event store to identify and remove infrequent behaviour.
Moreover, it is intended to be updated incrementally when new events are added to the event
store. Based on the behaviour stored in the event store, we construct multiple probabilistic
automata (cf. subsection 2.2.2, 2.9), which describe the behaviour captured within the event
store. A state within a probabilistic automaton represents a view on recently observed behaviour
of a specific process instance as represented by its corresponding case identifier. The outgoing
transition probabilities of a state are based on observed behaviour for that state, as temporarily
described by the event store. If, for a certain process instance, a new event arrives, we check
whether that event is probable, based on the recorded probability distributions. If it is probable,
we forward the event to the output stream, if not, we refrain from forwarding it.

In Figure 4.4, we depict a high-level overview of the architecture of the proposed filter. We
assume that the input event stream S contains both proper- and spurious events. We maintain
an event store @ as defined and presented in chapter 3. In particular, within the filter, we use
the case view of such store, i.e. . A new event e is, in case it is stored within the event
store @, forwarded to event filter Y. From an architectural point of view, we do not pose any
strict requirements on the dynamics of the filter. We do however aim to let filter Y reflect the
behaviour captured within the event store ®. Hence, the filter typically needs to process a new
event within its internal representation, prior to applying the actual filtering. Furthermore,
when events are removed from the underlying event store, i.e. caused by the addition of the



4.4 Automaton Based Filtering 99

newly received event e, we aim to process such removal within the filter as well. For the newly
received event, the filter Y either decides to emit the event onto output stream S, or, to discard
it. In any case, it is always incorporated in the internal representation of the filter. We mainly
do so because of the fact that typically, concept drift initially seems to be outlier behaviour, i.e.
only over time, the concept drift becomes clear.

4.4 Automaton Based Filtering

Given the general architecture as presented in Figure 4.4, in this section we propose an instanti-
ation of filter Y. We first present the conceptual idea of the use of collections of probabilistic
automata for the purpose of spurious event filtering, after which we describe how to increment-
ally maintain the collection of automata, and, how to effectively filter.

4.4.1 Prefix-Based Automata

Within the proposed filter instantiation, a collection of probabilistic automata represents recent,
control-flow oriented, behaviour observed on the event stream. These automata are used to
determine whether new events are, according to their probability distributions, likely to be
spurious or not. Each state within an automaton refers to a view on the (recent) historical
behaviour of the process instances described by recently received events on the event stream.
Such a state, for example, represents the three most recent activities performed for a certain
process instance. The automata considered here can be regarded as extended/decorated variants
of the transition systems described in [10].

The probabilities of the outgoing arcs of a state are based on the behaviour exhibited by
process instances that have been in that state before and subsequently moved on to a new
state by means of a new event. Upon receiving a new event, we assess the state of the process
instance described by the event and check, based on the distribution as defined by that state’s
outgoing arcs, whether the new event is likely to be spurious or not. As an example, consider
Figure 4.5a on page 100. Within the example automaton, for each process instance, the most
recent event represents its state, e.g. if we have observed (a, b, ¢) for some process instance, the
corresponding state is (c). Observe that for that state within the example automaton, based on
historical behaviour, i.e. previously observed process instances, we recorded that in % of these
instances activity d was observed and in % of these instances we observed activity b. Thus, if we
observe, for the process instance with behaviour (a, b, ¢), a new event describing ¢, we deem it
rather likely that the new event is spurious.

The probabilistic automata that we construct contain states that represent recent control-flow
oriented behaviour for the process instances currently captured within the event store. As such,
each state refers to a (partial) prefix of the process instance’s most recent behaviour, and hence,
we deem these automata prefix-based automata. Therefore, in prefix-based automata, a state ¢
represents a (abstract view on a) prefix of executed activities, whereas outgoing arcs represent
those activities ac<f that are likely to follow the prefix represented by ¢, and their associated
probability of occurrence. We define two types of parameters, that allow us to deduce the exact
state in the corresponding prefix automaton based on a prefix, i.e.

1. Maximal Abstraction Window Size

Represents the size of the window to take into account when constructing states in the
automaton. For example, if we use a maximal window size of 5, we only take into account
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(a) Automaton based on three full (simple) traces of the running
example, cf. Figure 2.13, i.e. (a, b, c,d, e}, {a,c,b,d, f) and {(a, c,d, e)
and one partial (i.e. ongoing) trace (a).

@ d3)e3)

(b) Similar automaton to Figure 4.5a, after receiving a new event c for
incomplete trace (a) (i.e. yielding trace (a,c)). As a consequence,
the outgoing arcs of (a) get different probabilities.

Figure 4.5: Example of maintaining a prefix-based automaton, using a window size of 1 (the
same for all abstractions).

the five most recent events present in the event store for the process instance under
consideration as being recent behaviour.
2. Abstraction

Represents the abstraction that we apply on top of the derived window of recent historical
behaviour, i.e. subject to the maximal window size parameter, in order to define a state.
We identify the following abstractions:

* Identity
Given window size weN and a trace oes/*, present in @, the identity abstraction
id" yields the prefix as a state, i.e. id": o * — o/ *, where id(0) = 0|g|—(w+1)...|o]-
e Set
Given window size weN and a trace o€/ *, present in @, the set abstraction indicates
the presence of aceo/ in the last w elements of o, i.e. we apply elem (05— (w+1)..|0])-
* Parikh
Given window size weN and a trace oes/*, present in @, the Parikh abstraction
parikh yields a multiset describing the number of occurrences of ae.«/ within o, i.e.
we apply 0\g|-(w+1)..l0]-
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(a) Automaton based on three full (simple) traces of the running example, cf.
Figure 2.13, i.e. (a,b,c,d,e), (a,c,b,d, f) and (a,c,d,e) and one partial (i.e.
ongoing) trace {(a,c).
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(b) Similar automaton to Figure 4.6a, after receiving a new event d for incomplete
trace (a,c) (i.e. yielding trace (a,c,d)). As a consequence, the outgoing arcs
of {a, ¢} get different probabilities.

Figure 4.6: Example of maintaining a prefix-based automaton, using a window size of 2 with a
set abstraction.

Consider Figure 4.5 and Figure 4.6, in which we present different examples of prefix-
automata. The automata in Figure 4.5 are based on four traces of behaviour, which are based on
the running example depicted in Figure 2.13a. Three of these traces, i.e. {a, b, c,d, e), {a,c,b,d, f)
and {(a,c,d,e), are based on full process behaviour, i.e. these traces related to termination of
the process instance. Finally, we also assume we maintain behaviour to a running instance of
the process, for which only the (first) activity a is observed. In the automaton in Figure 4.5b,
the effect of receiving a new event (an event describing activity ¢ for trace (a)), with respect
to the transition probabilities is visualized, which is detailed on in the subsequent section, i.e.
subsection 4.4.2. In Figure 4.6, we visualize the effect of subsequently receiving a d activity
for the incomplete process instance (a,c). In Figure 4.5, we use a maximal window size of 1,
together with the identity abstraction. Note that, due to this window size, each of the abstractions
mentioned, i.e. identity, set and Parikh, yields the same automaton. In Figure 4.6, we use a
maximal window size of 2, together with a set abstraction. For the traces of behaviour used
in the two examples, a window size of 2 combined with a Parikh or set view retains the same
automata. However, combining it with the identity abstraction yields a different automaton, e.g.
using the set/Parikh abstraction yields {b, ¢} or [b, c] based on both (b, c) or {(c, b). Furthermore,
it is important to note that, when using a window size of k, we only start effectively using
the automaton in filtering when the received events for a certain process instance describe a
sequence of length k. Hence, in Figure 4.6, only the states describing two events, e.g. {a,c},
{a, b} etc. are used when filtering.
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As exemplified by the automata depicted in Figure 4.5 and Figure 4.6, the window size
influences the degree of generalization of the automaton. For example, the automata in
Figure 4.5 allow for an infinite repetition of b and ¢ activities in states {(c) and (b), respectively.
The automata in Figure 4.6 do not allow this, i.e. they are more precise with respect to their
training data. Observe that, increasing the maximal window size is likely to generate automata
of larger size, i.e. we are able to distinguish a wider variety of states, and is thus likely to be
more memory intensive. Hence, we have a trade-off between precision of the automata with
respect to training data and memory complexity.

4.4.2 Incrementally Maintaining Collections of Automata

In this section, we indicate how we aim to maintain a collection of automata which we use to
filter. Prior to this, we motivate the need for using multiple automata within filtering.

Consider that we observe an event stream, running on the basis of just two simple traces, i.e.
{a,c,d) and (b, c, e). Furthermore, observe that within the data, there is a long-term dependency
between, on the one hand, a and d, and, b and e, on the other hand. Consider Figure 4.7,
in which we present two automata constructed on the basis of the two simple traces. In both
automata we use an identity abstraction, yet in Figure 4.7a, we use window size of 1, whereas
in Figure 4.7b, we use a window size of 2. For simplicity, we have omitted the probabilities of
the edges of the automata. Note that, when only using the automaton depicted in Figure 4.7a,
we no longer observe the long-term dependency. As a result, whenever an event describes
the occurrence of activity e after earlier observed prefix (a, c), we are not able to identify this
as being infrequent behaviour, i.e. both (a,c¢) and (b,c) are translated into state (c). In the
automaton in Figure 4.7b, this is however possible. Hence, we aim to use automata using
different window sizes, which allows us to generalize on the one hand (smaller window sizes),
yet, also allows us to detect certain long-distance patterns (larger window sizes).

As new events are emitted on the stream, we aim to keep the automata up-to-date in such way
that they reflect the behaviour present in the event store at time i, i.e. ®!(S). Let k > 0 represent
the maximal abstraction window size we want to take into account when building automata.
We maintain k prefix-automata, where for 1 = j < k, automaton PA; = (Q;,2;,0;, q?,Fj,yj) uses
maximal abstraction window size j to define its state set Q ;. Upon receiving a new event, we
incrementally update the k maintained automata. Consider receiving the i event S(i) = e, with
7c(e) = ¢ and 7a(e) = a. Moreover, assume that the event is added to the event store @, i.e.
®!* = {e}, and hence we aim at processing it within the collection of automata. We additionally
let 0 =0’ - (a) = n%(®!(S, ), i.e. o represents the current trace (control-flow perspective) known
for case ¢ whereas ¢’ represents the complete prefix of the current trace stored for case c,
excluding the activity described by the newly received event e.

To update automaton PA; we apply the abstraction of choice on the prefix of length j of
the newly received event in ¢’, i.e. (¢'(|o/| - j +1),...,0"(ld"])}, to deduce the corresponding state
Gs€Qj. The newly received event influences the probability distribution as defined by the
outgoing arcs of ¢, i.e. it describes that g, can be followed by activity a. Therefore, instead
of storing the probabilities of each y;, we store weighted outdegree of each state q;€Qj, i.e.
deg}“(q ). Moreover, we store the individual contribution of each ae«/ to the outdegree of g,

i.e. deg?(qj,a) with deg? (qj,a) =0« 5(qj,a) = @. Observe that deg? (q;) = L deg}(q;,a), and,
j j j aeey S
deg]f(qj,a)
deg;(q)
Reconsider the example automaton in Figure 4.5, and consider that we receive an event

that deducing the empirical probability of activity a in state q; is trivial, i.e. P(al g;) =
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(a) Automaton (probabilities omitted) describing the behaviour of the
process, i.e. traces (a, c,d) and (b, ¢, e), using a window size of 1.

:

a

start —

e

(b) Automaton (probabilities omitted) describing the behaviour of the
process, i.e. traces (a, c,d) and (b, ¢, e), using a window size of 2.

Figure 4.7: Two automata, using different window lengths, i.e. length 1 and 2, describing the
behaviour of the process, i.e. traces (a, ¢, d) and (b, c, e). Only using a window length
of 2 allows us to observe the long-term dependencies as described by the data.

related to activity ¢, which in turn belongs to the same case as the simple trace (a). Hence, we
obtain a new simple trace (a, c) for the corresponding case identifier. As we use a window size
of 1, we deduce that the corresponding abstraction, and thus the new state in the automaton
related to that case is (c). Clearly, the previous state is (a). We observe a total of 4 traces that
describe an action out of state (a), three of which describe activity c, i.e. {a,c, b, d, ), {(a,c,d, e)
and (a, c¢). Only one of the simple traces describes activity b after state a, i.e. {a, b, c,d, e). Hence,
we deduce empirical probability % for activity ¢ and % for activity b.

Updating the automata based on events that are removed from the event store, i.e. based on
the elements of ®/~, is performed as follows. Again, assume that we receive a new event e at
time i > 0 related to a process instance identified by some case identifier c. For all ce€¢, we let
ol = ®71(S,¢), oo = D (S, ¢) and moreover, we let Aq(i) = lol.| —|o¢|. Observe that for any case
identifier ce€, that does not relate to the newly received event, we have:

Ac(i)=0 4.1

Observe that this is the case since events are potentially dropped for such case, yet no new
events are received, hence |o| < |o%|. In a similar fashion, for the process instance identified by
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case c that relates to the new event e, we have:
Ac(i)=-1 4.2)

Observe that this is the case since either |o¢| =0 +1, ot |o¢| < |oh].

Thus, to keep the automata in line with the events stored in the event window, in the
former case we need to update the automata if Aci >0, i.e. at least one event is removed for
the corresponding case identifier, whereas in the latter case we need to update the automata if
Aci = 0. Therefore, we define Al (i) = Ac(i) for the former case and Al(i) = A¢(i) +1 in the latter
case. Henceforth, if for any ce¢, we need to update the maintained automata to account for
removed events in case:

AL >0 (4.3)

To update the collection of k maintained automata, for each 1 < j < AL(i) we generate sequences
@', &'(i,o'(H+1), ..., (&' (..o’ (j+ k)) (subject to |6'| > j+ k). For each generated se-
quence, we apply the abstraction of choice to determine corresponding state g, and subsequently
reduce the value of deg* (g) by 1. Moreover, assume that the state g corresponds to sequence
(@' (), o' (j+1),...,0'(j+ 1)) with 1 < j <AL(@) and 1 < I < k, we additionally reduce deg* (g, a) by
1, where a=o'(j+1+1).

4.4.3 Filtering Events

After receiving an event and subsequently updating the collection of automata, we determine
whether the new event is spurious or not. To determine whether the newly arrived event is spuri-
ous, we assess to what degree the empirical probability of occurrence of the activity described
by the new event is an outlier with respect to the probabilities of other outgoing activities of
the current state. Given the set of k automata, for automaton PA; = (Q;,2;,0;, q?,Fj,y ) with
prefix-length j (1 = j < k), we characterize an automaton specific filter as v ;: Qj xZ; — B.2
Note that an instantiation of a filter Y ; often needs additional input, e.g. a threshold value or
range. The exact characterization of Y ; is a parameter of the approach, however, we propose
and evaluate the following instantiations:

* Fractional,
Considers whether the probability obtained is higher than a given threshold, i.e. Yf 1Qj x
Z;x[0,1]—B, where:

Yf(qj,a,x):lifp(amj)q 4.9
* Heavy Hitter;
Considers whether the probability obtained is higher than a fraction of the maximum

outgoing probability, i.e. Y;{: Qj xZj x[0,1] — B, where:

H 1 !
Yi (q]-.a,K)—l1fP(a|qj)<1<-;r,1€a;P(a lq;) (4.5)

21t is also possible to have rng(Y;) = [0,1], i.e. indicating the probability of an event being spurious,
however, the filters we propose here all map to boolean values.
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* Smoothed Heavy Hitter;

Considers whether the probability obtained is higher than a fraction of the maximum
outgoing probability subtracted with the non-zero average probability. Let NZ = {a€Z; |

P(alq;) >0}, we define Y?H: Qj xXj % [0,1] — B, where:

Y P lq;
a'eNZ

NZ] (4.6)

SH 1
Y1 g ax) =1if P(al gj) <x- brlr/leaéP(a’lqj)—

For a newly received event, each automaton, combined with a filter of choice yields a boolean
result indicating whether or not the new event is spurious. In the remainder, we assume that we
apply the same filter on each automaton and we assume that when any of the k maintained
automata signals an event to be spurious, the event itself is spurious. However, observe that this
is not a strict necessity, i.e. different filters can be applied and alternative noise classifications
schemes are eligible as well, e.g. majority vote. Finally, note that maintaining/filtering the
automata can be performed in parallel, e.g. we maintain an automaton on each node within a
cluster.

4.5 Evaluation

In this section, we evaluate the proposed event filter in two ways. First, we assess filtering
accuracy and time performance on randomly generated event streams, based on synthetic process
models, i.e. a collection of process models that resemble business processes often present in
organizations. Second, we assess the applicability of our filter in combination with an existing
class of online process mining techniques, i.e. concept drift detection techniques. In the latter
experiment, we consider both synthetic and real-life datasets.

4.5.1 Filtering Accuracy and Time Performance

For this first set of experiments, we generated several event streams using 21 variations of the
loan application process model presented in [51]. These variations are inspired by the change
patterns as presented in [119]. Out of 21 stable models, we generated 5 different random event
streams, each describing 5000 process instances, with a varying amount of events. For each
generated stream, we randomly inserted spurious events with insertion probabilities ranging
from 0.025 to 0.15 in steps of 0.025. In these experiments, we use a simple sliding window with
fixed size as an implementation for ®. We internally maintain a projection of the form € — «/*
to accommodate for the case-view of @, i.e. ®. Given a sliding window of maximal-size N, the
first N events are used to construct an initial set of automata and are not considered within the
evaluation. Moreover, each event arriving after the first N events that relates to any process
instance that was observed within the first N events is ignored as well. As such we only consider
new process instances within the filter.

Accuracy

We assess the impact of a wide variety of parameters on filtering accuracy. These are the
maximal abstraction window size, the particular abstraction of use, the filtering technique and
the filter threshold. The values of these parameters, used within the experiments, are presented
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Table 4.1: Parameters of Data Generation and Experiments with Synthetic Data

Data Generation

Artefact/Parameter Value

Number of Models 21

Number of Event Logs, generated per model 5

Probability of spurious event injection, per event log {0.025,0.05,...,0.15}

Experiments

Sliding Window Size {2500, 5000}

Maximal Abstraction Window Size {1,3,5}

Abstraction {Identity (id), Parikh (parikh), Set (elem)}

. {Fractional (YF), Heavy Hitter (YH),

Filter . SH
Smoothed Heavy Hitter (Y°"}

Filter Threshold (k) {0.05,0.1, ...,0.5}

in Table 4.1. Here, we mainly focus on the degree in which maximal abstraction size, abstraction,
filtering method and window size influence the filtering quality. The results for each of these
parameters are presented in Figures 4.8 — 4.11 on pages 107 — 110. Note that, to reduce the
amount of data points and ease interpretability of the figures, we show results for noise levels
0.025, 0.05, 0.1 and 0.15, and threshold levels 0.05—0.25.

For the maximal abstraction window size (cf. Figure 4.8), we observe that a prefix-size of 1
tends to outperform prefix-sizes of 3 and 5. This is an interesting observation as it shows that,
for this collection of models and associated streams, ignoring large parts of a trace’s history
improves the results. Note that, for maximal prefix length k, we use k automata, and signal an
event to be spurious whenever one of these signals that this is the case. Using a larger maximal
prefix-length potentially identifies more spurious events, yielding higher recall values. However,
a side effect is potentially lower precision values. Upon inspection, this indeed turns out to
be the case, i.e. the differences in F1 score are explained by higher recall values for increased
maximal prefix lengths, however, at the cost of lower precision.

As for the abstraction used (cf. Figure 4.9), we observe that the Identity- outperforms both
the Parikh- and the Set abstraction (for these results a maximal window size of 1 is ignored, as
all of the abstractions yield the same automaton). The results are explained by the fact that
within the collection of models used, the amount of parallelism is rather limited, which does
not allow us to make full use of the generalizing power of both the Parikh- and Set abstraction.
At the same time, loops of short length exist in which order indeed plays an important role,
which is ignored by the two aforementioned abstractions. Upon inspection, the recall values of
all three abstractions are relatively equal, however, precision is significantly lower for both the
Parikh- and Set abstraction. This can be explained by the aforementioned generalizing power of
these abstractions, and, in turn, explains the difference in F1 score.

For the filter method used (cf. Figure 4.10), we observe that the Smoothed Heavy Hitter and
Heavy Hitter outperform the Fractional filter for increasing threshold values. This is explained
by the fact that the fractional filter poses a rigorous requirement on events to be considered
non-spurious, e.g. a threshold value of % requires an activity to occur at least in 25% of all
behaviour in a certain state. The other two filters solve this by using the maximal observed value,
i.e. if a lot of behaviour is possible, the maximum value is lower and hence the requirement to
be labelled non-spurious is lower.
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Figure 4.8: Average F1 score for different abstraction window sizes.
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Finally, we observe that an increased sliding window size does not affect the filter results
significantly (cf. Figure 4.11). Since the process is stable, i.e. there is no concept-drift within
the generated streams, this indicates that both window sizes used are large enough to deduce
automata that allow us to accurately filter the event stream.

Figure 4.12, on page 112, shows how the average F1 score varies based on the percentage of
noise and the threshold level. We observe that the F1 score slightly converges for the different
threshold levels as noise increases (cf. Figure 4.12a). Interestingly, in Figure 4.12b, we observe
that for relatively low threshold values, the range of F1 score values for various noise levels
is very narrow, i.e. the filtering accuracy is less sensitive to changes in the noise level. This
effect diminishes as the threshold increases, leading to more scattered yet lower F1 score
values. Observe that, these observations coincide with the Kendall rank correlation coefficient
values [12, 75] of 0,1792 (Figure 4.12a) and —0,8492 (Figure 4.12b) respectively. We conclude
that, for the dataset used, the threshold level seems to be the most dominant factor in terms of
the F1 score.

Time Performance

The sliding window maintains a finite representation of the stream, thus, memory consumption
of the proposed filter is finite as well. Hence, we focus on time performance, using one stream
per base model with 15% noise, and several different parameter values. The experiments were
performed on an Intel Xeon CPU (6 cores) 3.47GHz system with 24GB memory. Average event
handling time was ~ 0.017 ms, leading to handling ~ 58.8 events per ms. These results confirm
that automaton-based filtering is suitable to work in real-time/event stream based settings.

4.5.2 Drift Detection Accuracy

In a second set of experiments, we evaluate the impact of our filter on the accuracy of process
drift detection. For this, we use a state-of-the-art technique for drift detection that works on
event streams [97]. We apply our filter to the event streams generated from a variety of synthetic
and real-life logs, with different levels of noise, and compare drift detection accuracy with and
without the use of the proposed filter. We first discuss the experimental setup, after which we
compare drift detection results obtained with and without the use of our filter.

Experimental Setup

For these experiments, we used the 18 event logs proposed in [97] as a basis. The event data
are generated by simulating a model featuring 28 different activities (combined with different
intertwined structural patterns). Additionally, each event log contains nine drifts obtained by
injecting control-flow changes into the model. Each event log features one of the twelve simple
change patterns [119] or a combination of them. Simple change patterns may be combined
through the insertion (“I”), resequentialization (“R”) and optionalization (“O”) of a pattern. This
produces a total of six possible nested change patterns, i.e. “IOR”, “IRO”, “OIR”, “ORI”, “RIO”,
and “ROI”. For a detailed description of each change pattern, we refer to [97].

Starting from these 18 event logs, we generated 36 additional event logs i.e. two for each
original event log. One of the two generated event log contains 2.5% noise and the other
contains 5% of noise. Noise is generated by means of inserting random events into traces of
each log. Hence, the final corpus of data consists of 54 event logs, i.e. 12 simple patterns and 6
composite patterns with 0%, 2.5%, and 5% noise, each containing 9 drifts and approximately
250,000 events.
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Results on Synthetic Data

In this experiment, we evaluate the impact of the proposed filter on the accuracy of the drift
detection technique proposed in [97]. We use the previously described corpus of data for the
experiments. Figure 4.13 on page 114 illustrates the F1 score and mean delay of the drift
detection, before and after the application of our filter over each change pattern.

The filter, on average, successfully removes 95% of the injected noise, maintaining and even
improving the accuracy of the drift detection (with F1 score of above 0.9 in all but two change
patterns). This is achieved whilst delaying the detection of a drift by less than 720 events on
average (approximately 28 traces).

When considering noise-free event streams (cf. Figure 4.13a), the filter preserves the
accuracy of the drift detection. For some change patterns (“rp”, “cd”, “IOR”, and “OIR”), our
filter improves the accuracy of the detection by increasing its precision. This is due to the
removal of sporadic event relations, that cause stochastic oscillations in the statistical test
used for drift detection. Figure 4.13b and Figure 4.13c show that noise negatively affects drift
detection, causing the F1 score to drop, on average, to 0.61 and 0.55 for event streams with 2.5%
and 5% of noise, respectively. This is not the case when our filter is applied, where an F1 score
of 0.9 on average is achieved.

Finally, in terms of detection delay, the filter on average increases the delay by 370, 695, and
1087 events (15, 28, and 43 traces) for the logs with 0%, 2.5%, and 5% noise, respectively. This
is the case since changes in process behaviour immediately following a drift are treated as noise.

Results on Real-Life Data

In this experiment, we assess whether the positive effects of our filter on drift detection, observed
on synthetic data, translate to real-life data. For this, we used an event log containing cases of
Sepsis (a life-threatening complication of an infection) from the ERP system of a hospital [85],
i.e. as presented earlier in Table 1.1. The event log contains 1,050 cases with a total of 15,214
events belonging to 16 different activities.

For this experiment, we attempt to detect concept drift over the last 5,214 events, as the first
10,000 events are used to train the filter. Figure 4.14 plots the significance probability p-value
curves of the statistical tests used for drift detection, both without (Figure 4.14a) and with
(Figure 4.14b) the use of our filter. In order to detect a drift, the p-value of the drift detection
technique needs to be below a user-specified significance probability threshold, commonly set
to 0.05. Moreover,the p-value needs to be lower than the threshold for a given window of ¢
events. In the unfiltered case, cf. Figure 4.14a, we see two clear regions of p-values below the
threshold, i.e. after the 2067 event and after the 4373'4 event. In the case when applying the
filter, cf. Figure 4.14b, we observe that there is much more oscillation in the p-value and we do
not detect a clear drift.

In the experiments with synthetic logs, we observed that the filter reduced the number of
false positives (drift detected when it did actually not occur). To verify if this is also the case for
the real-life event log, we profiled the direct-follows dependencies occurring before and after
the drifts. The profiling indicates that while direct-follows dependencies “IV Antibiotics —
Admission NC” and “ER Sepsis Triage — IV Liquid” are observed several times across the entire
event stream, the infrequent direct-follows dependencies “Admission NC — IV Antibiotics”
and “IV Liquid — ER Sepsis Triage” appear only in the proximity of the two drifts. These two
infrequent dependencies cause a change in the underlying a+ relations between the activities,
which we use to detect the drifts (in this case changing from causal to concurrent). This change
in the relation results in the detection of the drifts. These infrequent dependencies are removed
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when applying the filter, which in turn does not lead to a clear concept drift. In light of these
insights, we can argue that the two drifts detected over the unfiltered event stream are indeed
false positives, confirming what we already observed on the experiments with synthetic logs, i.e.
that our filter has a positive effect on the accuracy of drift detection.

4.6 Related Work

With respect to noise filtering in the context of conventional process mining, i.e. using event
logs, several approaches are described in literature [40, 58, 118]. The approach proposed by
Wang et al. [118] relies on a reference process model to repair a log whose events are affected
by labels that do not match the expected behaviour of the reference model. The approach
proposed by Conforti et al. [40] removes events that cannot be reproduced by an automaton
constructed using frequent process behaviour recorded in the log. Fani Sani et al. [58] propose
an approach that uses conditional probabilities between sequences of activities to remove events
that are unlikely to occur in a given sequence. Finally, in [61] Fani Sani et al. propose to repair
fragments of traces containing infrequent behaviour by means of replacing these fragments with
more dominantly observed behaviour.

The problem of detecting spurious events from event streams of business processes shares
similarities with the problem of outlier detection in temporal data, e.g. reading sensor data. In
this context, we observe three types of techniques:

1. Techniques to detect if entire sequences of events are anomalous.
2. Techniques to detect if a single data point within a sequence is an outlier.
3. Techniques to detect anomalous patterns within a sequence.

For a detailed discussion regarding techniques for outlier detection in temporal data, we refer to
the works by Gupta et al. [67] for events with continuous values, and by Chandola et al. [38]
for events with discrete values.

4.7 Conclusion

The existence of noise in event data typically causes the results of process mining algorithms
to be inaccurate. Just the sheer existence of a fraction of noisy behaviour in a single trace,
potentially significantly reduces the accuracy of process mining artefacts such as discovered
process models. As such, the reliability of process mining results, based on event streams
containing noise, is affected considerably.

4.7.1 Contributions

We proposed an event stream based filter for online process mining, based on probabilistic
non-deterministic automata which are updated dynamically as the event stream evolves. A state
in one of these automata represents a potentially abstract view on the recent history of process
instances observed on the stream. The empirical probability distribution defined by the outgoing
arcs of a state is used to classify new behaviour as being spurious or not.

The time measurements of the corresponding implementation indicate that our filter is
suitable to work in real-time settings. Moreover, our experiments on accuracy show that, on
a set of stable event streams, we achieve high filtering accuracy for different instantiations of
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the filter. Finally, we show that our filter significantly increases the accuracy of state-of-the-art
online drift detection techniques.

4.7.2 Limitations

In this section, we discuss the filtering technique presented in this chapter. In particular, we
highlight the limitations and boundaries of the applicability of the approach and provide insights
in potential solutions to overcome these limitations. Furthermore, we discuss the threats to
validity of the experiments conducted in the context of this chapter.

Approach

The technique presented in this chapter is particularly designed to detect spurious events,
i.e. events that are observed, yet their occurrence seems unlikely. As-is, the technique does
not incorporate domain-specific knowledge, i.e. it solely uses data abstractions combined with
occurrence frequencies to determine whether events are spurious or not. As such, rare events, i.e.
related to infrequent process executions and/or ad-hoc solutions to eminent problems are likely
to be filtered out of the resulting event stream. In some cases this is not a problem, i.e. in case
we aim to obtain an overall view on the process containing only mainstream behaviour. However,
note, that in some cases, e.g. in process monitoring, such deviant cases are of particular interest.
Hence, we always need to carefully assess the exact intent of the process mining analysis, prior
to adopting the paper as presented here as a stream processor.

The filter incorporates all behaviour observed within the collection of maintained automata.
Again, this helps to accommodate for concept drift, i.e. after observing changed behaviour for
a while, the behaviour becomes mainstream and proper events are no longer falsely filtered.
However, this also poses challenges in filtering. It is likely that a spurious event either generates
a new state in one of the automata, or, the next event after the spurious event is deemed to
be noisy as we did not often observe such event following the spurious event. In the case we
generate a new state in an automaton, any subsequent event is trivially frequent and is not
filtered. Thus, this potentially causes the filter to no longer identify spurious events. We are
able to accommodate for this problem, for example by tagging the case identifier related to the
spurious event to be spurious. If we subsequently block all events related to the case identifier,
we overcome the aforementioned problem, yet we are likely to generate incomplete traces of
behaviour in the output stream. In case a spurious event does map into an existing state in the
automaton, it is likely that any following behaviour is infrequent. Thus, in such case, we falsely
label proper events as being spurious.

Finally, note that spurious events only cover a relatively small part of the full spectrum
of noise within (streaming) process mining. Hence, in case an event was, for some unknown
reason, not observed for a particular process instance, it is likely that any subsequent proper
event is labelled spurious. This is due to the fact that we miss information for a specific process
instance, and thus are effectively in an incorrect state for that given process instance within the
automata. Such a problem is potentially solved, by trying to observe whether a spurious event
is easily explainable in terms of relatively close neighbour states within the automata. In such
case, generating an artificial event, prior to the current event even restores the behaviour as
described by the stream.
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Experiments

Here, we primarily focus on potential threats to validity of the experiments performed in the
context of this thesis chapter.

The collection of models used for the synthetic experiments related to filtering accuracy (see
subsection 4.5.1) represents a set of closely related process models. As such these results are
only representative for data that originates from processes that exhibit similar types and relative
amounts of control-flow constructs compared to the process models used.

Similarly, within these experiments, the events are streamed trace by trace, rather than
using event-level time stamps. Note that, since the process is stable we expect the automata to
be based on a sufficient amount of behaviour, similar to streaming parallel cases.

Finally note that, we do observe that our filter can be applied on real-life data, i.e. in order
to enhance concept drift detection accuracy. However, due to the absence of a ground-truth, it is
hard to determine whether the results obtained are valid and/or improve with respect to the
unfiltered case.

4.7.3 Open Challenges & Future Work

In the approach presented, filtering is immediately applied when an event arrives, taking into
account only the recent history for that event. As shown in our experiments, the filter already
enhances concept drift detection. However, it is very likely that events originating from a newly
occurred drift are labelled as noise. A potential solution to this problem, is to apply a (dynamic)
filtering delay. Using such a delay, an event is immediately processed within the maintained
collection of automata. However, the actual filtering of such event is delayed. Note that such
delay, only partially solves the problem, i.e. if the delay is chosen wrongly, events related to the
last execution of the “old” version of the process are likely to be filtered out.

Currently, we use one specific abstraction for each maintained automaton. Moreover,
whenever we observe a spurious event in either one of these automata, we signal the event to
be spurious. It is interesting to assess whether it is possible to further improve filtering accuracy
by using an ensemble of automata where different abstractions are used for each maximal
abstraction window size. Moreover, it is interesting to assess whether certain dynamic voting
schemes are applicable in such settings, i.e. to consider the event to be spurious if the majority
of automata agrees on this.

Another interesting direction for future work is towards large-scale experiments, using a
larger collection of models and associated event streams. In such a way, we are able to quantify
to what degree the filter is applicable if the underlying process depicts certain levels of control-
flow behaviour. In particular, as automata are in principle not designed to model parallelism in
a compact manner, it is expected that the filtering accuracy decreases upon processes exhibiting
more parallel behaviour.

Finally, in line with the limitations, it is interesting to study techniques that allow us to
specify, in some way, a degree of belief with respect to an event being spurious. A potential
solution could be the following approach. When we observe that an event is spurious, we
create two pointers from a case identifier to the automata. One represents the state prior to the
observed spurious event and one corresponds to the state after receiving the spurious event. If
the new event, according to one of the two states is non-spurious, we proceed from that specific
state and forward the new event to the output stream.



Chapter 5

Avoiding Data Redundancy by
Learning Intermediate
Representations

Event stores, as defined in chapter 3, allow us to apply any type of process mining algorithm
on the basis of an event stream. However, to effectively apply these algorithms, we need to
iteratively forward the event store to the process mining algorithm of choice. Even if we aim
to apply the algorithm in a batch fashion, i.e. we discover a model after receiving a batch of k
events, it is likely that we reuse events that were already analysed in the previous execution of
the algorithm of choice. Therefore, in this chapter, we define conventional process discovery
as a two-step approach consisting of a translation of the input event data into an intermediate
data structure, i.e. intermediate representations, and a subsequent translation into a process
model. Such a characterization thus transposes the challenge of event stream-based process
discovery into learning intermediate representations in an online fashion. We present a generic
architecture that allows us to adopt several classes of existing process discovery techniques in the
context of event streams, on the basis of learning intermediate representations. We furthermore
show that, indeed, the architecture covers a wide class of process discovery algorithms.

The contents presented in this chapter are based on the following publication:

S.J. van Zelst, B.F. van Dongen, W.M.P. van der Aalst. Event Stream-Based Process Discovery
using Abstract Representations. Knowl. Inf Syst., 54(2):407-435, 2018
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5.1 Introduction

A multitude of process discovery algorithms have been developed in the context of conventional,
offline process mining [10, 11, 78, 122, 123]. These algorithms all use an event log as an input,
i.e. a static collection of events with an associated strict partial order (cf. subsection 2.3.1).1
The techniques presented in chapter 3 allow us to (temporarily) store events emitted onto the
stream. We are hence able to apply the aforementioned existing process discovery algorithms
directly on top of such a subsequence of the event stream. However, whilst doing so, it is
likely that we introduce unnecessary rework. Consider the case in which we maintain a sliding
window based event store of size N, and are interested in discovering a process model after
receiving each batch of % events. This implies that each event within the stream is handled
exactly 4 times by the process discovery algorithm of choice.

In this chapter, we address the aforementioned problem by defining process discovery as
a two-step approach, i.e. translation of the event data into the algorithm-specific intermediary
representation, cf. subsection 2.4.1, which is subsequently translated into a process model. As a
consequence, we shift the focus of online process discovery towards designing data structures
and associated update mechanisms that solely store the bare minimum amount of data, i.e.
the intermediary representation itself, to be able to perform the discovery task. We show that
several classes of process discovery algorithms apply the aforementioned two-step computational
scheme. For example, both the Alpha algorithm [11] and the Inductive Miner [78] discover
Petri nets by means of analysing (direct) precedence relations of the activities captured within
the event log. Other approaches, like the Heuristic Miner [121, 122], the Fuzzy Miner [66],
and most of the commercial process mining tools use (amongst others) the same precedence
relations as an intermediate structure. Based on this generic two-phase computational model,
we focus on efficient storage of the intermediate data structures used by these algorithms, rather
than the event data as a whole.

To adopt algorithms that employ such computational scheme in a streaming context, it
suffices to derive and/or approximate the intermediate representation based on the event stream.
Apart from lowering the overall memory footprint, using intermediate representations as a basis
for process discovery has several advantages:

1. Reusability;
We reuse existing process discovery techniques as much as possible by predominantly
focusing on learning the intermediate representations from event streams.

2. Extensibility;
Once we design and implement a method for approximating a certain intermediate
representation, any (future) algorithm using the same intermediate representation is
automatically ported to event streams.

3. Anonymity;
In some cases, laws and regulations dictate that we are not allowed to store all event data.
Some intermediate representations ignore large parts of the data, effectively storing a
summary of the actual event data, and therefore comply with anonymity regulations.

The remainder of this chapter is organized as follows. In section 5.2, we present the general
architecture of intermediate representation-based process discovery. In section 5.3, we provide
several instantiations of the architecture. In section 5.4, we present an empirical evaluation
of several instantiations of the architecture. In section 5.5, we present related work. Finally,
section 5.6 concludes this chapter.

INote that most algorithms use simple traces, i.e. sequences of executed activities, for discovery.
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5.2 Architecture

In this section, we present the general architecture of online process discovery on the basis
of intermediate representations. The proposed architecture captures the use of intermediate
representations in the context of event streams in a generic manner. In the remainder, given an
arbitrary data structure type Tp, we let %, denote the universe of data structures of type Tp. A
data type Tp might refer to an array or a (collection of) hash table(s), yet it might also refer to
some implementation of a stream-based frequent-item approximation algorithm such as Lossy
Counting [84], i.e. as presented in subsection 3.3.3. We require any instance i, €%y, of such
typed data structure to use finite memory.

Definition 5.1 (Abstraction Function; Event Stream). Let & denote the universe of events, let
Tp denote an arbitrary data structure type, let Ty denote an intermediate representation type, let
ieNg and let Se&* be an event stream. An event stream-based abstraction function v is a function
mapping the first i observed events on an event stream onto an instance of Tp and an intermediate
representation of type Ty, i.e.

yl & — Ay x Uy, (5.1

Given the abstraction function at time i, i.e. u/" as described in 5.1, we are able to discover
a corresponding process model. As such, we quantify a' as:

al = agy (2 (W' (9) (5.2)

Observe that, we are able to apply the aforementioned discovery function on any instantiation of
w!, given that the discovery algorithm and the abstraction function use the same intermediate
representation. Furthermore, note that 5.1 resembles the definition of an event store (as
presented in 3.1). However, in the case of an event stream-based abstraction function, we
have more freedom, i.e. we are required to map the first i events onto some data structure and
corresponding intermediate representation. Such a data structure is potentially a subsequence
of the input stream, as described by event stores, yet this is not necessarily the case. On the
contrary, we aim at designing these data structures in such a way that we store only the bare
minimum information to be able to construct the corresponding intermediate representation.

In line with event stores, we define an additional update function which allows us to update
a given data structure and corresponding intermediate abstraction on the basis of an individual
event.

Definition 5.2 (Abstraction Update Function; Event Stream). Let & denote the universe of events,
let Tp denote an arbitrary data structure type and let Ty denote an intermediate representation
type. An event stream-based abstraction update function y is a function that updates a given data
structure and intermediate representation on the basis of an individual event, i.e.

Y Uty x Uty X E — Uty x U, (5.3)

Given the notion of an event stream-based abstraction function and an event stream-based
abstraction update function, we incrementally characterize the abstraction function for element
i in terms of an update of the underlying data structure and intermediate representation derived
at element i -1, i.e.

v S =y wiT(9),83)) (5.4)
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Figure 5.2: Detailed overview of the proposed architecture.

As indicated, we are able to quantify online process discovery on the basis of event stream-
based abstraction functions, using both event stores and conventional process discovery al-
gorithms as a basis. In such case, the data structure type is simply a sequence of events, i.e.
represented by £*. As such, the event stream-based abstraction function for element i, is refined
toy': &% — & x Uy, with corresponding characterization v i(8) = @!(s), Ay (@ £(9)).

Consider Figure 5.2, in which we present a schematic overview of the proposed architecture.
The first incremental update component v, highlighted in grey on the left-hand side of Fig-
ure 5.2, incrementally updates a data structure (of type Tp) and the corresponding intermediate
representation (of type Ty) when new events arrive on the event stream. Using conventional pro-
cess discovery on the basis of intermediate representations, i.e. at;, we translate the maintained
intermediate representation into a process model.

5.3 Instantiating Intermediate Representation Based
Discovery

When using an event store based instantiation of the architecture, as briefly described in
section 5.2, the corresponding intermediate representation is always in direct correspondence
with the events present within the event store. This is the case, because we (re)compute
the abstraction on the basis of the contents of the event store, i.e. u/i(S) = (<I>"(S),7LTl (@1(9))).
Alternatively, we are able to incrementally design the corresponding update function in such
way, that it explicitly utilizes the previous intermediate representation, together with the newly
received event. Nonetheless, we still store all events as emitted to the event stream.

It is however often the case that, when we aim at incrementally maintaining intermediate
representations on the basis of event streams, we need a significantly smaller representation of
the event stream to actually do so. For example, to update an existing directly follows relation
for some new event e = (¢, a,...), it suffices to check whether there exists some event of the form
e =(c,d,...), that was the most recent event received for case identifier c. If so, we deduce
that (@, @) needs to be part of the directly follows abstraction. As a side-effect of such design
however, we need to employ a separate ageing mechanism on the intermediate representation
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that we maintain, i.e. we no longer keep track of the full history related to case identifier c. As
such, the exact relation of the instantiation of %7, and the intermediate representation becomes
less clear.

In the remainder of this section, we show the applicability of the proposed architecture by
presenting several instantiations for different existing process discovery algorithms. Since a large
class of conventional process discovery algorithms is based on the directly follows abstraction,
or some derivative thereof, we first present how to compute it. Subsequently we highlight,
for each algorithm using the directly follows abstraction as a basis, the main changes and/or
extensions that need to be applied with respect to the basic scheme. To illustrate the generality
of the architecture, we also show a completely different class of discovery approaches, i.e.
region-based techniques [10, 123]. These techniques work fundamentally different compared
to the aforementioned class of algorithms and use different intermediate representations.

5.3.1 The Directly Follows Abstraction

Recall that the directly follows relation describes pairs of activities (a, a'), with a,a’ € of, written
as a> d', if there exists some trace ¢ in an event log of the form o = o’-(e,e’)-o" where n5(e) = a
and na(e)=a'.

In an event stream-based setting, assume that we maintain an event store ® as presented in
chapter 3 as an instantiation for %r,. As an instantiation of the directly follows relation, i.e.
%r,, we maintain a multiset of activity-pairs, i.e. of the form %(s/ x o). Given some multiset
Be%B(of x o), B(a,a’) indicates how often the a > a’ occurs within the behaviour as captured by
the underlying event store ®. When a new event e€& with 7 (e) = ¢ arrives on the stream at
index i, we are able to derive a possible new activity pair by inspecting event store & (c). We
simply deduce such pair by inspecting the last two elements of ®i(c) (under the assumption
that e is added to the event store). Similarly, the elements of ®'~ allow us to keep the directly
follows relation up to date with the contents of the event store.

As indicated, the main problem with using an event store as an instantiation for %/,
is memory redundancy. For each case identifier ce¢, we store multiple events whereas we
effectively only need the last event related to each case identifier in order to derive a new directly
follows relation. We therefore alternatively instantiate y’ for the directly follows relation as
follows:

Wippy: 8 = P(E x ) x Bl x ) (5.5)

Here, the first argument of the range of wfifr’ i.e. P(€ x of), represents a set of pairs of the

form (¢, a)e€¢ x of, that represent the last activity a seen for the process instance identified by
case identifier c. As such, we have at most one entry for each case identifier within the set. We
are able to use several storage techniques as presented in chapter 3 to effectively implement
P (€ x of). For example, consider algorithm 5.1, in which we construct a sliding window which
consists of elements that are pairs of the form (c,a)e€ x «/. When we receive a new event,
related to case identifier ¢, we check whether a tuple of the form (c, a) is present in the window.
If this is the case, we are able to deduce a new directly follows relation of the form (a, 74 (e)). The
newly deduced directly follows relation needs to be subsequently forwarded to the component
that implements the second component of wfi e i.e. B(of x of). We subsequently remove (c, a)
from the sliding window. We always add the new event, i.e. (n¢(e),7a(e)) at the end of the

sliding window, and we remove the first element of the sliding window if the size of the window
exceeds N.
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Algorithm 5.1: Sliding Window Based Instantiation of (¥ x &)
input: Sc&*, NeNj
begin
i—1;
W—e€; // empty list of tuples in ¥ x.«f
while true do
e — S(i);
if |w| = N then
L remove w(l);

o Ul A W N e

if 3(c,a) €, w(c=7m.(e) then
deduce new relation (a, 7 (e));
remove corresponding tuple (c, a) from w;

N

10 append (¢ (e),m4(e)) to w;
11 i—i+1;

Observe that, algorithm 5.1 is inspired by the notion of a sliding window, yet it does
not implement a sliding window directly, i.e. some elements are removed earlier than in a
conventional setting. Additionally, we have O(N) time complexity (where N represents the
maximum sliding window size) to actually find a pair (c, a) if a new event comes in. In fact,
observe that the mechanism in algorithm 5.1 effectively removes the entry related to the
oldest/recently most inactive process instance.

We are also able to instantiate the set of (case identifier, activity)-pairs by means of other
storage-oriented streaming algorithms such as reservoir sampling, decay based techniques and
frequency approximation algorithms. For example, consider algorithm 5.2, in which we show
a corresponding implementation on the basis of the Space Saving algorithm. Recall that the
Space Saving algorithm counts the frequency of case identifiers by means of the v.-counters,
cf. subsection 3.3.3, which are used as a criterion for insertion/deletion in the underlying
storage component. In this case, we store the elements of € x «/ in the internal set X, yet for
each case identifier ce¢ we maintain an associated counter v.. Upon receiving a new event,
we check whether there already exists a (case identifier, activity)-pair that relates to the case
identifier of the new event. If this is the case, we update the corresponding counter, deduce a
new directly follows relation and replace the existing (case identifier, activity)-pair on the basis
of the new event, cf. lines 8-10. In any other case, we are not able to deduce any new directly
follows relation, yet we update set X, depending on its size. Note that when set X reaches its
maximum allowed size, the pair (c, a) for which the corresponding v(c) is minimal amongst all
case identifiers present in X is removed. Furthermore, the counter of the newly arrived case
identifier is equal to the counter of the removed case identifier, increased by one.

As both algorithm 5.1 and algorithm 5.2 signify, we are able to maintain a collection of
(case identifier, activity)-pairs, using a multitude of existing data storage algorithms. From
time to time, within these algorithms, we are able to deduce a new directly follows relation.
As such, the two algorithms, in essence, generate a stream of directly follows relations. As a
consequence, to maintain the actual multiset of pairs (a,a’)es/ x o/, we are again able to utilize
any existing stream-based storage algorithm. A concrete implementation of the update function
¥, as defined in Equation 5.3, is therefore achieved by appending the deduced directly follows
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Algorithm 5.2: Space Saving Based Instantiation of (¥ x &)
input :Se&*, NeNy

begin

1 X—¢; // empty set of tuples, i.e. Xe€ZP(¥ x of)
2 i—0;

3 ve —0,Yces;

4 while true do

5 i—i+1;

6 e— S(i);

7 if A, pex(c=mc(e)) then

8 Ve <— Uc+1;

9 deduce new relation (a,wa(e));
10 | X — X \(c,a))uflc,male)};
11 else if | X| < k then

12 X — XU{(rc(e), male)};

13 Un, (&) < 1;
14 else

15 (¢, a) — argmin(v,);

(c,a)eX
16 Un(e) < Uct 1;
17 | X=X \(c,a)}) u{(mc(e), male)};

relations to the corresponding output stream. We are thus able to instantiate the update function
using an arbitrary combination of stream-based storage methods. For example, we are able
to store pairs of the form (c,a)e€ x of using a sliding window, and the actual directly follows
relation by means of a reservoir sample. The exact choice of such combination of algorithms
mainly depends on the aim of the process discovery, i.e. discovery of recent behaviour versus
discovery of predominant behaviour.

In the remainder of this section, we describe existing process discovery algorithms that
function on the basis of the directly follows relation. These algorithms differ in the way they
use/interpret the relation, and in some cases need auxiliary input to be able to discover a
process model. We, therefore, highlight, for each of these algorithms, the main changes and/or
extensions that need to be applied with respect to the basic scheme presented here.

The Alpha algorithm

The Alpha algorithm [11] transforms the directly follows abstraction into a Petri net. When
adopting the Alpha algorithm to an event stream context, we directly adopt the scheme described
in the previous section. However, the algorithm explicitly needs a set of start- and end activities.

Approximating the start activities seems rather simple, i.e. whenever we receive an event
related to a new case identifier, the corresponding activity represents a start activity. However,
given that we at some point remove (case, activity)-pairs from the underlying data structure,
we might designate some activities falsely as start activities, i.e. a new case identifier may in
fact refer to a previously removed case identifier. Similarly, approximating the end activities is
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Figure 5.3: Instantiation of online intermediate representation based discovery for the dir-
ectly follows relation. We store pairs of the form (¢, a)e¢ x o/ using existing data
stream storage techniques. Using such store, we deduce new relations of the form
(a,a)ed x o, which we forward to a stream of the form (o, «/)*.

rather complex, as we are often not aware when a case terminates. A potential solution is to
apply a warm-up period in which we try to observe cases that seem to be terminated, e.g. by
identifying cases that have long periods of inactivity or by assuming that (case, activity)-pairs
that are dropped out of the underlying data structure are terminated. However, this also largely
depends on the actual implementation that we use for this. In the general sense, since we
approximate case termination, this approach potentially leads to falsely select certain activities
as end activities.

We can also deduce start- and end activities from the directly follows abstraction. A start
activity is an activity aes/ with da’e<f (a' # ana’ > a) and an end activity is an activity ae«/ with
Add'esd (@ # ana>a'). This works if these activities are only executed once at the beginning,
respectively the end, of the process. In case of loops or multiple executions of start/end activities
within the process, we potentially falsely neglect certain activities as being either start and/or
end activities. In section 5.6.2, we discuss this problem in more depth.

The Heuristics Miner

The Heuristics Miner [121, 122] is designed to cope with noise in event logs. To do this, it
effectively counts the number of occurrences of activities, as well as the >-relation. Based on the
: . : : : _ _la>bl=|b>al -
directly follows abstraction it computes a derived metric a= b = Ta>bltb>al+1 that describes
the relative causality between two activities a and b (|a > b| denotes the number of occurrences
of a > b). The basic scheme presented in subsection 5.3.1 suffices for computing a = b, as long

as we explicitly track, or, approximate, the frequencies of (activity, activity)-pairs.

The Inductive Miner

The Inductive Miner [78], like the Alpha algorithm, uses the directly follows abstraction together
with start- and end activities. It tries to find patterns within the directly follows abstraction
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that indicate certain behaviour, e.g. parallelism. Using these patterns, the algorithm splits an
event log into several smaller event logs and repeats the procedure. Due to its iterative nature,
the Inductive Miner guarantees to find sound workflow nets, cf. 2.7. The Inductive Miner has
also been extended to handle noise and/or infrequent behaviour [79]. This requires, like the
Heuristics Miner, to explicitly count the >-relation.

Observe that, the standard Inductive Miner algorithm, only works when storing event stores
as defined in chapter 3, i.e. due to the recursive use of the event data. However, in [77], a
version of the Inductive Miner is presented in which the inductive steps are directly performed
on the directly follows abstraction. In the context of event streams this is the most adequate
version to use as we only need to maintain a frequency-aware directly follows abstraction.

5.3.2 Region Theory

Several process discovery algorithms [10, 22, 37, 123, 137] are based on region theory which
is a solution method for the Petri net synthesis problem [20]. In Petri net synthesis, given a
behavioural description of a system, i.e. either a transition system or a language, one aims
to synthesize a Petri net that exactly describes the same behaviour as described by the input
behavioural description. Hence, classical region theory techniques ensure strict formal properties
with respect to the resulting process models. Process discovery algorithms based on region
theory aim to relax these properties, in order to improve the resulting models from a process
mining perspective, e.g. avoiding overfitting of the model with respect to the input data. We
identify two different region theory approaches, i.e. language-based and state-based region theory,
which use different forms of intermediate representations.

Language-Based Approaches

Algorithms based on language-based region theory [22, 123, 137] rely on a control-flow based
prefix-closure, cf. Equation 2.2, of the input event log, i.e. the set of all prefixes of all traces.
Clearly, we are able to (incrementally) construct such set of prefixes by simply using an event
store as a backing storage component. However, in the case of ILP-Based process discovery [123,
1371, which we discuss in greater detail in chapter 6, such a collection of prefixes is further
abstracted. In particular, given a sequence of activities o€/ *, the ILP-based process discovery
algorithm abstracts it into a constraint, which we are able to represent by a pair (3. j5-1,0(I01)),
i.e. the Parikh representation of the prefix of o, combined with the last activity in the sequence
o. As such, instantiating the architecture for this algorithm is relatively similar to the directly
follows relation instantiation, i.e.

Wiy 85— P(E x Blsl) x sd) x B(B(A) x o) (5.6)

Observe that, we store per case identifier the latest constraint, i.e. as represented by & (€ x
B() x ). The second component we store is the actual (frequency aware) intermediate
abstraction of the algorithm, i.e. the constraints of the form (5. s|-1,0(0])), represented by
PB(B(f) x of). Note that we are again able to use any existing stream-based storage technique
to instantiate w;lp and the corresponding update function v .

State-Based Approaches

Within process discovery based on state-based regions [10], a transition system is constructed
based on a specific view of each trace present within the input data. Examples of a view are the



5.3 Instantiating Intermediate Representation Based Discovery 129

so:l]

l S0:9D
a

s3:la,cl] $2 s :{a}
NS
:la, b,
S4:1a, b, c] s3:1{c} sp 1 {b}
d
s5:la,b,c,d] Fsy:{d}
(a) Multiset abstraction (unbounded). (b) Set abstraction (max. set size 1).

Figure 5.4: Example transition systems based on simple event store ® = [{(a, b, ¢, d),{a, c, b, d)].

complete prefix of the trace, the multiset projection of the prefix of the trace, etc. The future
of a trace can be used as well, i.e. given an event within a trace, the future of the event are all
events happening after the event. However, future-based views are not applicable in an event
stream setting, as the future behaviour of process instances is unknown.

As an example, based on a simple event store ® = [{(a, b, ¢, d), {a, c, b, d)], consider Figure 5.4.
In Figure 5.4a, states are represented by a multiset view of the prefixes of the traces, i.e. the
state is determined by the multiset of activities seen before. Activities make up the transitions
within the system, i.e. the first activity in both traces is a, thus the empty multiset is connected
to multiset [a] by means of a transition labelled a. In Figure 5.4a we do not limit the maximum
size of the multisets. Figure 5.4b shows a set view of the traces with a maximum set size of
1. Again the empty set is connected with set {a} by means of a transition labelled a. For trace
{a,b,c,d)y for example, the second activity is a b and thus state {a} has an outgoing transition
labelled b to state {b}. This is the case, i.e. a connection to state {b} rather than {a, b}, due to the
size restriction of size 1.2

In case we aim at instantiating the architecture for the purpose of state-based region theory,
we store the most recent abstraction derived for a case identifier. As such, when a new event
occurs for a given case identifier, we are able to derive a new abstraction. Again, we are able to
generate a stream of derived artefacts, in this case being trace abstractions. Hence, as a second
component, we employ some arbitrary data storage technique that keeps a collection of such
abstractions in memory.

Note that, the set of abstractions itself does not allow us to derive the underlying transition
system, i.e. once a new trace abstraction is created for a case identifier, the previous abstraction
is removed. As such, we are not able to derive the underlying relations between these states.
We, therefore, need to maintain the constructed transition system in memory. Whenever we
derive a new abstraction on the basis of a new event, we know from which abstraction the
new abstraction is derived. Moreover, the event describes an activity, hence the new event
allows us to connect the old abstraction to the new abstraction by means of an arc labelled
with the activity that is described by the new event. Ageing of the transition system is in line
with the contents of the storage of the abstractions, i.e. whenever an abstraction gets removed,

20bserve the similarity of transition systems and the probabilistic automata used in chapter 4.
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the corresponding state and all its associated arcs need to be removed from the transition
system. Note that, within this instantiation, depending on the underlying storage technique
of choice, the transition system potentially contains disconnected components, which likely
leads to complex process models. Moreover, the exact semantics of such disconnected transition
system is unclear.

5.4 Evaluation

In this section, we present an evaluation of several instantiations of the architecture. We also
consider performance aspects of the implementation.

5.4.1 Structural Analysis

As a first visual experiment we investigate the steady-state behaviour of the Inductive Miner [78].
Within this experiment we use the Lossy Counting algorithm [84] as an implementation for
both the collection of pairs of the form (c,a)e€ x o«f as well as for storage of the directly
follows relation itself. To create an event stream, we created a timed Coloured Petri Net [72]
in CPN-Tools [126] which simulates a synthetic process model describing a process related
to a loan application process [51]. The event stream, and all other event streams used for
experiments, are free of noise. The CPN model used is able to simulate multiple cases being
executed simultaneously.

In Figure 5.5, we show the behaviour of the Inductive Miner over time based on a random
simulation of the CPN model. We configured the algorithm with |X|¢, s <75 and |X| s <75,
i.e. we have at most 75 elements in the underlying sets used in the Lossy Counting algorithm.
Initially (Model 1) the Inductive Miner only observes a few directly follows relations, all executed
in sequence. After a while (Model 2) the Inductive Miner observes that there is a choice between
Prepare acceptance pack and Reject Application. In Model 3, the first signs of parallel behaviour of
activities Appraise property, Check credit history and Assess loan risk become apparent. However,
an insufficient amount of behaviour is emitted onto the stream to effectively observe the parallel
behaviour yet. In Model 4, we identify a large block of activities within a choice construct.
Moreover, an invisible transition loops back into this block. The Inductive Miner tends to show
this type of behaviour given an incomplete directly follows abstraction. Finally, after sufficient
behaviour is emitted onto the stream, Model 5 shows a Petri net version that in fact describes
the same behaviour as the process model generating the event stream.

Figure 5.5 shows that the Inductive Miner is able to find the original model based on the
event stream. We now focus on comparing the Inductive Miner with other algorithms described
in the paper. All discovery techniques discover a Petri net or some alternative process model
that is translatable to a Petri net. The techniques, however, differ in terms of guarantees with
respect to the resulting process model. The Inductive Miner guarantees that the resulting Petri
nets are sound workflow nets, whereas the ILP Miner and the Transition System Miner do not
necessarily yield sound process models. To perform a proper behavioural comparative analysis,
the soundness property is often a prerequisite. Hence, we perform a structural analysis of all the
algorithms by measuring structural properties of the resulting Petri nets.

Using the off-line variant of each algorithm we first compute a reference Petri net. We
generated an event log which contains a sufficient amount of behaviour such that the discovered
Petri nets describe all behaviour of the model used within the experiment reported on in Fig-
ure 5.5 Based on the reference Petri net we create a structure matrix in which each row/column
corresponds to a transition in the reference model. If, in the Petri net, two labelled transitions
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Figure 5.5: Visual results of applying the Inductive Miner on a stream.

are connected by means of a place, the corresponding cells in the matrix get value 1. For
example, given the first Petri net of Figure 5.5, the transitions labelled start and Check_applica-
tion_completeness (in the figure this is “Check_appl”) are connected by means of a place. Hence,
the distance between the two labels is set to 1 in the corresponding matrix. If two transitions
are not connected, the corresponding value is set to 0.

Using an event stream-based on the CPN-Model, after each newly received event, we use
each algorithm to discover a Petri net. For each Petri net, we again construct the structure matrix.
We apply the same procedure as applied on the reference model. However, if in a discovered
Petri net a certain label is not present, we set all cells in the corresponding row/column to -1,
e.g. in model 1 of Figure 5.5 there is no transition labelled end, thus the corresponding row and
column consist of —1 values. Given a matrix M based on the streaming variant of an algorithm,
we compute the distance to the reference matrix My as:

Ay = Y (MG, ) - Mg, j)?
i,jell,2,...,15}

For all algorithms, the internal data structures used were based on Lossy Counting, with size
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100.

Since the Inductive Miner and the Alpha algorithm are completely based on the same
abstraction, we expect them to behave similarly. Hence, we plot their corresponding results
together in Figure 5.6a. Interestingly, the distance metric follows the same pattern for both
algorithms. Initially, there is a steep decline in the distance metric after which it becomes
zero. This means that the reference matrix equals the matrix based on the discovered Petri
net. The distance shows some peaks in the area between 400 until 1000 received events.
Analysing the resulting Petri nets at these points in time showed that some activities were not
present in the resulting Petri nets at those points. The results for the Transition Systems Miner
(TS), the ILP Miner and the Heuristics Miner are depicted in Figure 5.6b. We observe that the
algorithms behave similarly to the Alpha- and Inductive Miner, which intuitively makes sense as
the algorithms all have the same data structure capacity. However, the peeks in the distance
metric occur at different locations. For the Heuristics Miner, this is explained by the fact that
it takes frequency into account and thus uses the directly follows abstraction differently. The
Transition System Miner and the ILP Miner use different intermediate representations, and have
a different update mechanism than the directly follows abstraction, i.e. they always update their
abstraction whereas the directly follows abstraction only updates if, for a given case, we already
received a preceding activity.

5.4.2 Behavioural Analysis

Although the previous experiments provide interesting insights with respect to the functioning
of the algorithms in a streaming setting, they only consider structural model quality. A distance
value of 0 in Figure 5.6 indicates that the resulting model is very similar to the reference
model. It does not guarantee that the model is in fact equal, or, entails the same behaviour
as the reference model. Hence, in this section, we focus on measuring quantifiable similarity
in terms of behaviour. We use the Inductive Miner as it provides formal guarantees with
respect to initialization and termination of the resulting process models. This, in particular, is
a requirement to measure behavioural similarity in a reliable manner. We adapt the Inductive
Miner to a streaming setting by instantiating the architecture as presented in this chapter, using
the scheme described in subsection 5.3.1, combined with its algorithm-specific modifications.
For finding start- and end activities we inspect the directly follows relation and select those
activities that have no predecessor, or, successor, respectively. We again use Lossy Counting [84]
to implement both underlying data structures, i.e. the elements (c, a)e € x ¢, and the directly
follows relation itself, i.e. pairs (a,a’)ess x o .

We assess under what conditions the Inductive Miner instantiation is able to discover a
process model with the same behaviour as the model generating the stream. In the experiment,
after each received event, we query the miner for its current result and compute replay-fitness
and precision measures based on a complete corresponding event log describing the behaviour
of the underlying process. Recall that replay-fitness, cf. subsection 1.1.4, quantifies the amount
of behaviour present in an event log that is also described by the process model. A replay-fitness
value of 1 indicates that all behaviour in the event log is described by the process model, a value
of 0 indicates that none of the behaviour is described. Precision on the other hand refers to the
amount of behaviour described by the process model that is also present in the event log. A
precision value of 1 indicates that all behaviour described by the model is present in the event
log. The lower the precision value, the more the model allows for additional behaviour.

In Figure 5.7 and Figure 5.8 (pages 134-135), the results are presented for varying capacity
sizes of the underlying data structures.

For the smallest data structure sizes, i.e. Figure 5.7a, we identify that the replay-fitness

