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Abstract

Modern information systems allow us to track, often in great detail, the execution of
processes within companies. Consider for example luggage handling in airports, manu-
facturing processes of products and goods, or processes related to service provision, all
of these processes generate traces of valuable event data. Such event data are typically
stored in a company’s information system and describe the execution of the process
at hand. In recent years, the field of process mining has emerged. Process mining
techniques aim to translate the data captured during the process execution, i.e. the
event data, into actionable insights. As such, we identify three main process mining
types of analysis, i.e. process discovery, conformance checking and process enhancement.
In process discovery, we aim to discover a process model, i.e. a formal behavioural
description, which describes the process as captured by the event data. In conformance
checking, we aim to assess to what degree the event data is in correspondence with a
given reference model, i.e. a model describing how the process ought to be executed.
Finally, within process enhancement, the main goal is to improve the view of the
process, i.e. by enhancing process models on the basis of facts derived from event
data.

Recent developments in information technology allow us to capture data at increas-
ing rates, yielding enormous volumes of data, both in terms of size and velocity. In the
context of process mining, this relates to the advent of real-time, online, streams of
events that result in data sets that are no longer efficiently analysable by commodity
hardware. Such types of data pose both opportunities and challenges. On the one
hand, it allows us to get actionable insights into the process, at the moment it is being
executed. On the other hand, conventional process mining techniques do not allow us
to gain these insights, as they are not designed to cope with such a new type of data.
As a consequence, new methods, techniques and tools are needed to allow us to apply
process mining techniques and analyses on streams of event data of arbitrary size.

In this thesis, we explore, develop and analyse process mining techniques that are
able to handle streaming event data. The premise of streaming event data, is the fact
that we assume the stream of events under consideration to be of infinite size. As such,
efficient techniques to temporarily store and use relevant recent subsets of event data



vi

are needed. The techniques developed in the context of this thesis allow us to apply
process mining techniques using potentially unbounded streams of data with arbitrary
rates of emission. The ability to handle such data allows us to analyse the underlying
process at the exact moment it is being executed. Such analysis paves the way for more
advanced types of process mining techniques such as real-time process monitoring
and real-time prediction. Since the techniques developed are able to handle data of
arbitrary size, as a side-effect, they allow us to handle data sets that are beyond the
size-limitation of conventional process mining techniques.

The contributions of this thesis can be categorized into four separate dimensions,
all having a strong link with the main branches of process mining.

1. The development of techniques for data storage and data quality.

We provide a general formalization for temporal storage of event data. We
furthermore show that we are able to instantiate the proposed formalization
using a vast array of existing data storage techniques. As such, we are able to
lift all conventional process mining technique to the domain of streaming data.
We furthermore present means to filter streaming event data, which allows us to
increase the overall data quality considered.

2. The development of techniques for event stream based process discovery.

We explicitly lift process discovery to the domain of event streams by means of
designing a general purpose architecture, which describes a two-step discovery
approach. The first step consists of constructing an algorithm-specific intermedi-
ate data representation, on the basis of the event stream, whereas the second
step consists of translating the intermediate representation to a process model.
We furthermore show that the proposed architecture covers a wide variety of
process discovery algorithms. We additionally show advanced results for the
class of language-based region theory-based process discovery algorithms, where
we primarily focus on exploiting the intermediate representation of the algorithm
to further improve process discovery results.

3. The development of techniques for event stream based conformance checking.

We propose a greedy computational approach for the purpose of computing
conformance checking statistics on the basis of event streams. We furthermore
prove that the approach is to be seen as an under-estimator, which implies that
when a deviation is observed, we are guaranteed that something went wrong
during the execution of the process.

4. The development of techniques for event stream based process enhancement.

Next to the control-flow perspective, we also provide support for the resource
perspective. In particular, we examine the suitability of a set of existing resource
network metrics in the context of event streams.

For each of the aforementioned contributions, a corresponding prototypical imple-
mentation is provided in both the process mining tool-kits ProM (http://promtools.

http://promtools.org
http://promtools.org
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org) and RapidProM (http://rapidprom.org). As such, each technique discussed
has an accompanying publicly available implementation that is used within the corres-
ponding evaluation.

http://promtools.org
http://promtools.org
http://rapidprom.org
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Chapter 1
Introduction

Modern information systems allow us to track, often in great detail, the execution of
processes within companies. Examples of such processes concern luggage handling
in airports, manufacturing processes of products and goods and processes related to
service provision. All of these processes generate traces of valuable event data. Such
event data are typically stored in a company’s information system and describe the
execution of instances of the process at hand. Process mining [4] is a relatively young,
purely data-driven, research discipline within computer science that is positioned
in-between traditional data mining [15] on the one hand and business process man-
agement [51] on the other hand. The main goal of process mining is to gain insights
in, and knowledge of, the behaviour of the processes executed within a company. In
particular, we aim to attain such knowledge based on the event data that is generated
during the execution of the process and stored in a company’s underlying information
system. As such, the diagrams and process models obtained by the application of
process mining, represent, under the assumption that event data is recorded correctly,
what actually happened during execution of the process.

Within process mining, we distinguish three main types of analysis, i.e. process
discovery, conformance checking and process enhancement. These types of analysis
mainly differ in the types of input elements they require, as well as their intended
analysis result. In process discovery, the main goal is to discover a process model
describing the process under study, based on the behaviour captured within the event
data. In conformance checking, the main goal is to verify to what degree a given
process model (possibly discovered) and the process under study, again as captured
by the corresponding event data, conform to one another. In process enhancement,
the main goal is to improve the overall view of the process by improving/extending a
process model based on facts and figures deduced from behaviour captured within the
event data, e.g. by adding performance statistics such as bottleneck information.

Due to the ever increasing performance of computational systems and architectures,
data are being generated at increasingly high rates, yielding data that are challenging
in terms of volume, velocity, variety and veracity. For example, consider the fact that,
with the rise of the use of mobile phones and their connection to the internet, virtually
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everything humans do, and their interaction with other humans and/or machines is
being recorded. Moreover, more and more devices, e.g. televisions, washing machines
and refrigerators, are being connected to the internet, abundantly generating traces
of valuable operational data. This phenomenon, i.e. the generation of massive data
sets containing potentially valuable information, is known as Big Data [57, 65] and
poses several interesting opportunities and challenges, both from an academic- and a
practical perspective.

From an operational point of view, the size of a data set that singular commodity
hardware is able to process efficiently is limited by a computer’s internal memory. In
case a data set’s size exceeds the available internal memory, costly swap operations
need to be performed between internal memory and secondary storage, typically
resulting in substandard, or even poor performance. Moreover, in case a data set
exceeds secondary storage as well, techniques to efficiently distribute, manipulate and
retrieve data across multiple computational entities are needed. Hence, we need tools,
techniques and methodologies that are able to cope with data sets that exceed the
computational capacity of commodity hardware. Moreover, most existing data analysis
techniques are designed under the assumption that the data used for analysis, whether
being huge or not, are of a static nature. As such, results obtained by the analysis
performed represent a static, historical view on the data. However, there is a variety
of application domains in which high-velocity sources of data need to be analysed
on the fly, i.e. at the moment the data is observed. Such types of analysis require a
fundamentally different view on the way we analyse and (temporarily) store the data,
as well as the design of the underlying algorithms that we use in order to do so.

The majority of conventional process mining techniques do not explicitly take into
account and/or envision that the data set(s) used are of large volume and/or velocity.
As a consequence, when applying conventional process mining techniques on such
data sets, often no results are obtained. The extreme volume and the velocity at which
data are generated pose new requirements on the formalization, specification and
design of process mining algorithms. In particular, the techniques need to be able to
store and analyse data streams of potentially unbounded size. Hence, they need to
either incorporate some mechanism to efficiently store, and at some point forget, event
data, or, be able to approximate all behaviour observed on the stream as a whole. In
this thesis we therefore explore, develop and analyse process mining techniques that
are able to handle high-velocity data of arbitrary volume.

Consider Figure 1.1, in which we position the main focus of this thesis and its
relation to conventional process mining. A stream of events, i.e. executed activities of
the underlying process, is generated while executing the process. In the conventional
setting, depicted on the right-hand side of Figure 1.1, this data is stored within
the underlying information system. Subsequently, we perform process discovery,
conformance checking and/or process enhancement on a finite subset of the event
data. In this thesis, we primarily focus on the analysis of online streams of events, i.e.
at the moment these events are generated. Opposed to conventional process mining,
we moreover assume that the stream of events under consideration is unbounded, i.e.
infinite, and is potentially of high-velocity. The techniques we present in this thesis
therefore explicitly assume that the events published on the stream can only be stored
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Figure 1.1: The focus of this thesis and its relation to conventional process mining.

temporarily and need to be processed efficiently. In particular, we aim to discover
and/or interact with process models directly from the stream of events generated
by the execution of the business process, rather than a-posteriori, as is the case in
conventional process mining. As such, the techniques developed in the context of this
thesis enable us to lift process mining to the domain of streaming data. Moreover,
as we are able to generate a data stream out of data sets of arbitrary volume, the
techniques presented in this thesis, as a consequence, additionally allow us to analyse
data of arbitrary volume.

The remainder of this introductory chapter is organized as follows. In section 1.1,
we introduce conventional process mining and its main sub-fields, i.e. process discovery,
conformance checking and process enhancement, in more detail. In section 1.2, we
introduce the concept of arbitrary data streams, which act as a basic underlying data
model for the concepts discussed in this thesis, and define corresponding algorithmic
requirements. In section 1.3, we introduce particular challenges of data streams in the
context of process mining. In section 1.4, we explicitly quantify the main contributions
of this thesis. Finally, in section 1.5, we present an overview of the structure of the
remainder of this thesis.

1.1 Process Mining

The field of process mining revolves around the analysis of (business) processes. In
the context of this thesis, we consider a process to describe a collection of activities,
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Table 1.1: Simplified excerpt of a publicly available real-life event log containing events related
to the treatment of patients suspected of having sepsis in the emergency department
of a Dutch hospital [85].

Event-id Patient-id Activity Time-stamp Resource Leucocytes CRP Lactic Acid
...

...
...

...
...

...
...

...
1533 1237 ER Registration 22-10-2014T11:15:41 122A1 ∅ ∅ ∅
1534 1237 Measure Leucocytes 22-10-2014T11:27:00 122B1 9.6 ∅ ∅
1535 1237 Measure CRP 22-10-2014T11:27:00 122B1 ∅ 21.0 ∅
1536 1237 Measure Lactic Acid 22-10-2014T11:27:00 122B1 ∅ ∅ 2.2
1537 5427 ER Registration 22-10-2014T11:30:23 122A1 ∅ ∅ ∅
1538 5427 Measure Leucocytes 22-10-2014T11:37:00 122C1 7.4 ∅ ∅
1539 5427 Measure CRP 22-10-2014T11:37:00 122C1 ∅ 24.2 ∅
1540 5427 Measure Lactic Acid 22-10-2014T11:37:00 122C1 ∅ ∅ 3.7
1541 1237 ER Triage 22-10-2014T11:42:12 122A1 ∅ ∅ ∅
...

...
...

...
...

...
...

...

executed to achieve a certain (business) goal. Such a goal is, for example, the assembly
of a product, the provision/rejection of a loan in a bank or the (successful) treatment
of patients in a hospital. In particular, there is an associated (partial) order in which
these activities are performed, e.g. a product first needs to be assembled after which it
is ready to be packaged. The main aim of process mining is to increase the knowledge
and understanding of a company’s processes by analysing the event data generated
during the execution of the process. As such, we consider event data as a first class
citizen in any process mining technique.

The event data generated during the execution of a process is stored in the com-
pany’s information system. Such data is often in the form of (or, easily translated
to) an event log. Consider Table 1.1, in which we depict a simplified excerpt of a
publicly available real-life event log containing events related to the treatment of
patients suspected to have sepsis in a Dutch hospital [85]. The table shows some
events recorded in the hospital’s information system related to two patients, i.e. the
patients identified by patient-id’s 1237 and 5427 respectively. In the table, each row
corresponds to an event that has been recorded in the context of the execution of an
activity within the corresponding process. For example, the first row shows event 1533
which indicates that on October 22nd of 2014, at 11:15:41, the patient with patient-id
1237 was registered in the ER. The Activity column, i.e. describing the ER Registration
activity (in the first row), refers to the activity that was performed as recorded by the
event. In this case, resource 122A1 executed the activity. We observe three additional
columns entitled Leucocytes, CRP and Lactic Acid. For event 1533 no value is recorded
for these data attributes. However, for event 1534, which relates to the execution of the
Measure Leucocytes activity, we observe that a value of 9.6 is recorded in the Leucocytes
column. In this case, the value 9.6 relates to the result of the Leucocytes Measurement
performed for patient 1237. Note that the three measurement activities are actually
recorded at the same time (11:27) in the event log. There are several potential causes
for this, e.g. the activities are actually performed at the same time, or, the events have
been (manually) recorded at a later phase than their actual execution.

Observe that, after a sequence of events performed for patient 1237, we observe
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a similar sequence of events for patient 5427. Moreover, after the sequence of events
observed for patient 5427, we again observe an event performed for patient 1273,
i.e. event 1541. This phenomenon is inherently present in data originating from
the execution of business processes, i.e. often multiple instances of the process are
executed in parallel. As such, events related to the same patient potentially occur
dispersed within the data. Observe that this represents a major difference with respect
to conventional data mining techniques and applications. There, each row in a data
table, i.e. each data point, is often assumed to be relatively independent of all other
data points. However, in process mining, we specifically assume that several different
data points are having a strong interrelation and are even dependent on each other.

Each execution of a process, e.g. the treatment of a patient in the context of
Table 1.1, is referred to as a process instance. Within an event log, the events related
to a process instance are usually tied together by some sort of identifier, which we
refer to as the case identifier. In Table 1.1, the case-identifier is the column entitled
Patient-id. A sequence of events executed in the context of a case identifier is referred
to as a trace of event data. Observe that it is not uncommon, that within an event log,
we are able to define multiple different case identifiers. In the context of medical data,
e.g. Table 1.1, we are able to use the patient as a process instance, however, it is also
possible to track the behavioural processes of the resources (e.g. doctors) active during
the patient treatment process.

As indicated before, we distinguish three main branches of process mining, i.e.
process discovery, conformance checking and process enhancement. In process discovery
the main aim is to discover a process model that accurately describes the underlying
process, based on the data observed in the event log. In conformance checking, the
main aim is to assess to what degree a given process model, potentially discovered,
and the event log conform to one another. Finally, in process enhancement, the main
aim is to improve the view of the process, for example by applying process discovery,
conformance checking, performance analysis and/or simulation techniques.

In the remainder of this section, we discuss the three main branches of process
mining in more detail. We finish the section with a global discussion on typical process
model quality criteria considered in process mining.

1.1.1 Process Discovery

The main aim of process discovery is to discover a process model which accurately
describes the process as captured by an event log. We typically use an event log,
extracted from the company’s information system’s database and try to discover a
corresponding process model. For example, consider the two models depicted in
Figure 1.2, on page 6, which are both discovered by applying a state-of-the-art process
discovery algorithm [78] on the full event log related to the excerpt as presented in
Table 1.1.

The models describe that the Leucocytes, CRP, LacticAcid activities, together with
the ER Triage activity are executed in parallel. Furthermore, they indicate that it
is possible to execute the CRP and Leucocytes activities more than once. The two
modelling formalisms shown in Figure 1.2 are a Petri net [94], cf. Figure 1.2a, and a
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(a) An example Petri net [94]-based model.

(b) An example BPMN [96]-based model.

Figure 1.2: Two example process models, in different process modelling notations, derived from
the full event log related to the excerpt as presented in Table 1.1.
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BPMN [96]1-based model, cf. Figure 1.2b, respectively. Even though the two process
modelling formalisms are different, the models describe the same behaviour. Petri nets
are most commonly used within (process mining) research, whereas BPMN models
are mostly used in business/industry for process modelling and documentation. There
are several reasons for the use of Petri nets within research, e.g. the models are
relatively easily translatable to more high-level business oriented process modelling
formalisms such as BPMN, EPCs [90] and/or commercial vendor-specific modelling
formalisms. Furthermore, due to their non-ambiguous formal nature, specifically when
compared to industry oriented-standards, there is a vast body of literature covering
formal foundational aspects and properties of Petri nets. Moreover, numerous analysis
techniques exist for Petri nets as well. As indicated, modelling formalisms such as
BPMN and EPCs are more often used in business, as their focus is more towards human
understandability and interpretability rather than formal correctness. In the light of
the aforementioned, in this thesis, we solely consider Petri nets, cf. section 2.2, and
specific sub-classes thereof, as a main process modelling formalism.

A wide variety of process discovery techniques has been developed and studied in
recent years [4, Chapters 6&7] [18, 49, 120]. Despite the numerous research efforts
in the domain of process discovery, the task has proven to be far from trivial and,
arguably, a definite process discovery algorithm that accurately discovers a process
model based on arbitrary event data does not exist yet. One of the most challenging
aspects of process discovery is the presence of parallel behaviour in most processes.
In case we are able to execute two activities in parallel, we are able to execute the
activities in any order, and moreover, their execution potentially overlaps. Even if we
abstract from activity duration, the impact of parallelism on the behavioural variety
of a process is enormous. The number of ways in which we are able to schedule
parallel activities is factorial. Thus, if we have 3 possible activities in parallel, there are
3! = 3×2×1 = 6 ways to arrange them. However, in case we have 10 possible activities
in parallel, there are 10! = 10×9 · · ·×1 = 3,628,800 possible ways to arrange them.

For most existing process discovery algorithms, which are typically explicitly de-
signed to cope with event data describing behaviour with underlying parallelism, the
most prominent challenge is not necessarily the large variety caused by parallelism.
The most challenging aspect, refers to the fact that the huge variety of possible be-
haviour in a process is often not fully represented within the event log. Namely, it
is very common that the variety of behaviour is not uniformly distributed, in terms
of the execution of a process. It is far more likely, that the variety of behaviour for
example follows a Pareto distribution, cf. Figure 1.3, with a long tail. As an example,
consider a bank providing loans to their (prospective) clients. A majority of the clients
is likely to ask for a similar loan in terms of the amount, e.g. less than $1.000.000, and
therefore, for these clients, the bank roughly executes the same process in order to
determine whether the client is eligible to obtain the loan or not. In some cases, due
to parallelism, certain checks and/or activities are executed in a different order, yet
in general, the vast majority of clients follows the same procedure, and hence, for
multiple different clients the same sequence of activities is executed. Clients needing

1https://www.omg.org/spec/BPMN/2.0/

https://www.omg.org/spec/BPMN/2.0/
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Figure 1.3: Example plot indicating the typical shape of a Pareto distribution. Event data
captured during the execution of a process typically follows such a distribution,
i.e. we observe a large share of similar behaviour and a “long tail” of relatively
infrequently occurring behaviour.

a loan of higher amount are likely to be treated differently, and hence, alternative
checks and/or activities are executed for them. The execution of the process for these
different types of clients also belongs to the overall process executed by the bank
to determine loan eligibility of their clients. Nonetheless, due to the relatively low
amount of these types of customers, it is very unlikely that an event log contains all
possible executions of the process for this type of clients.

Even with the advent of Big Data, which largely motivates this thesis, we are in no
way guaranteed that all possible behaviour is witnessed within an event log and/or
event stream. As indicated, this is due to the fact that it is common that several process
instances share a great deal of similar behaviour and thus, border cases, which are
theoretically possible within the process, are missed. As such, the event log typically
represents a (marginal) fraction of the total variety of possible behaviour, which
hampers the discovery algorithm to properly discover parallel constructs. Additionally,
most process discovery algorithms are designed upon the presumption that the input
event data actually describes a clear underlying process structure. However, data
originating from existing information systems are often not of this form. There are
multiple reasons for this phenomenon, e.g. data quality issues due to erroneous logging,
concept drift, process flexibility and process deviation.

In summary, process discovery strives to discover a representation of a process,
as described by the behaviour captured within an event log. This seemingly straight-
forward task has proven to be inherently complex and challenging. Specifically
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incompleteness and impurity of the event data hamper most existing process discovery
algorithms, when applied on real event data.

Process discovery in the context of this thesis Within this thesis we partially
focus on the aforementioned challenges in process discovery, i.e. data impurity in
particular, cf. chapter 4, yet the main aim is to lift process discovery, in general, to
the streaming domain. In chapter 5, we present a general framework for the purpose
of process discovery on the basis of event streams. The emphasis of the framework
is on a common two-step characterization of process discovery algorithms which we
use as a basis for online process discovery. We focus on learning intermediate data
structures used by different algorithms in the context of event streams, which we
subsequently translate to process models. Furthermore, in chapter 6, we show how
to improve process discovery results by means of exploiting the internal intermediate
data structure used by a state-of-the-art process discovery algorithm. In particular, we
show that we are able to guarantee both structural and behavioural properties of the
discovered process models. Furthermore, we tackle the problem of outlier behaviour
caused by noise/and or rare behaviour by means of filtering directly on top of the
aforementioned internal intermediate representation.

1.1.2 Conformance Checking

The main aim of conformance checking is to assess to what degree a given process
model, supposed to describe the underlying process, and the behaviour as captured
within an event log conform to one-another. Within conformance checking, we typically
use both an event log and a process model as an input and compute their conformance.
In some cases, these conformance statistics are projected back onto the model and/or
the event log.

For example, consider Figure 1.4, in which we show the conformance checking
results for the process model shown in Figure 1.2a and the corresponding event log.2

In Figure 1.4a, we show a projection of the conformance checking results onto the
process model. The size and the yellow colour of the places in the Petri net (visualized
as circles) indicates that in some cases, an activity was performed according to the
event data that was not possible in the state of the model, as represented by these
places. Similarly, the intensity of the blue colour of the transitions (visualized as
rectangles), indicates how often these activities were performed according the data.
Moreover, the green/purple bars indicate how often the execution of an activity in the
event data is aligned with an activity described by the model. In Figure 1.4b, we depict
the conformance checking results, projected onto the event log. Each row in the figure
represents the execution of an instance of the process. The chevrons in the figure,
either green, grey or purple, correspond to the execution of an activity in the context
of that case. The colour indicates whether or not it is possible to map the observed

2Note that the event log was explicitly filtered in order to obtain the models in Figure 1.2 and it therefore
does not accurately describe all the cases present in the input event log.
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(a) Projection onto the input model.

(b) Projection onto the event log (trace-by-trace).

Figure 1.4: Example visualizations of typical conformance checking results, as implemented in
the ProM [113] framework.

execution, i.e. as present in the event log, to an activity execution in the given process
model.

Early work in conformance checking literally replayed the process behaviour as
captured within the event log in terms of the process model [102]. More recently,
the concept of alignments was introduced [13], which quickly developed to the de-
facto standard in conformance checking.3 Essentially, an alignment explains the
observed behaviour in the event log in terms of the model as good as possible. As such,
alignments minimize the number of possible mismatches that can be found between
the traces in an event log and the process model. Alignments conceptually resemble
the replay techniques as mentioned earlier, however, by their sheer definition, they
lead to less ambiguous results.

Observe that the data quality issues, mentioned briefly in subsection 1.1.1, i.e.
representing one of the main challenges in process discovery, are also present in
conformance checking, yet play a less significant role. In fact, conformance checking

3The results depicted in Figure 1.4 are based on alignments.
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techniques allow us to track and/or find such problems, be it in terms of a predefined
model. However, the danger exists that logging errors are falsely assumed to be
erroneous executions of the process.

Conformance checking in the context of this thesis In this thesis, in chapter 7,
we present means for online conformance checking, on the basis of the incremental
computation of prefix alignments. Within this contribution, the main emphasis is on
the computability of such prefix-alignments and their potential impact when used as
an approximation scheme on the quality of the final conformance checking result.

1.1.3 Process Enhancement

Within process enhancement, the main aim is to improve the overall view of the
process under study, based on event data recorded in an event log. Here, a process
model, either discovered or designed by hand is combined with event data in order to
obtain a better view of the process. Such a better view can for example be a repaired
process model [44, 56] or the visualization of data-based decision points within the
process model [80].

Not all work in process enhancement focusses on revising a given/discovered
process model. Other approaches in process enhancement oriented studies focus on a
particular category of data present in event logs. For example, a significant amount
of work is devoted to the behaviour and interaction of resources within the process.
In [9, 107] several techniques are presented to discover social networks of interacting
resources as well as the automated identification of resource groups.

For example, consider Figure 1.5, in which we show an example social network,
based on the complete event log corresponding to the excerpt in Table 1.1. The
network represents a subcontracting network. The nodes/vertices, i.e. visualized as
circles, are representing organizational units that are active within the process, i.e. its
members perform certain (medical) activities. Whenever an arc exists between two
organizational units, there is significant evidence in the underlying event data that
subcontracting has taken place between the two units. Here, subcontracting relates to
the situation where a certain unit hands over control of the process to another unit, i.e.
by means of the execution of process activities, after which control is retained by the
first unit. For example, there exists an arc between the node labelled with N , and the
node labelled with Y , implying that at some point in the process, organisational unit
N is subcontracting organisational unit Y . Note that, for example, resource X never
participates in such subcontracting relation.

Process enhancement in the context of this thesis In this thesis, in chapter 8,
we present a study towards computing social networks, i.e. networks of resources
cooperating together during process execution, in the context of event streams. We
show that there exist variations of such networks that lend themselves for incremental
computation, which in turn allows us to adopt these variations in an online, event
stream setting.
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Figure 1.5: Example of a social network [9, 107], based on subcontracting behaviour as recorded
within the event log of Table 1.1.

1.1.4 Quality Dimensions in Process Mining

Process models used within process mining, either discovered or designed by a process
owner/expert, ideally describe the potentially complex behaviour of the process in
a concise and compact manner. To what degree such model is accurate, is not easily
captured in one definite quality metric. A given process model might describe all
behaviour as captured within the event log, yet at the same time, it describes an
abundance of behaviour not present in the event log. The opposite is possible as well,
i.e. the model does not describe too much additional behaviour, yet, only covers a
fraction of the behaviour observed in the event log.

Even if we discover or design a process model that strikes an adequate balance
between coverage of the observed behaviour (replay-fitness) and additionally described
behaviour (precision), it is probable that the model is too complex and incomprehens-
ible for a human analyst. Therefore, a process model additionally needs to be as simple
as possible, yet not too simple (Occam’s razor). Moreover, the model should also be
able to generalize, and allow for unseen, yet likely, behaviour.

In the light of the aforementioned considerations, within process mining, four
quality dimensions are commonly considered that allow us to quantify the quality of
a given process model with respect to the underlying process, as represented by the
event log.
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• Replay-fitness

Quantifies to what degree a given process model describes the behaviour as
captured in an event log. In case all behaviour present in the event log is also
described by the process model, replay-fitness is perfect.

• Precision

Quantifies to what degree a given process model describes behaviour that is not
observed in the event log. In case the model does not describe any additional
behaviour, i.e. all behaviour described by the model is also in the event log,
precision is perfect.

• Generalization

Quantifies to what degree a given process model generalizes beyond the beha-
viour observed in the event log. A model generalizes well in case it describes
certain constructs, e.g. parallelism and/or looping behaviour, that allow us to
deduce behaviour that is likely to be part of the process, yet, not necessarily
observed in the event log.

• Simplicity

Quantifies to what degree a given process model is interpretable by a human
analyst. Ideally, a model is of such simplicity that removing more constructs than
present in the model, jeopardizes the model quality, i.e. in terms of the other
dimensions.

Ideally, a process model strikes an adequate balance between the four quality
dimensions presented. In this regard, such adequate balance is somewhat subjective,
as it to some degree depends on the context in which the model is used. However,
maximizing all of the quality dimensions is often hard, or even impossible. In case we
obtain a model with perfect replay-fitness and precision, it is likely that the model fails
to generalize. Similarly, if we obtain a properly generalizing process model, it is likely
that the precision of the model is not perfect.

1.2 Learning from Data Streams

In this thesis, we primarily focus on the application of process mining techniques in
the context of streaming data, i.e. infinite streams of data elements that potentially
arrive at unprecedented velocity. Such streaming data, as well as its corresponding
formal model, are well-studied concepts in the field of data mining. Based on [64, 95],
we define the general data stream model as follows.

We receive a sequence of input data elements d1,d2, ...,di , ..., that describe some, typ-
ically unknown, underlying generating function D. In general, two types of streaming
models are recognized, i.e.

• Insertion-Only/Cash Register

Once a data item di is received, it is not changed, i.e. it remains as-is.
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• Insert-Delete/Turnstile

After a data item di is received, it is potentially removed and/or updated.

Assume we maintain a bucket of marbles of all kinds of colours. Moreover, assume
that we have a data stream in which the i th data packet di describes the colour of a
new marble that we put in the bucket. Let Di (colour) denote the number of marbles
of colour colour stored in the bucket, after receiving the i -th data packet. For example,
D120(blue) describes the number of blue-coloured marbles in the bucket after receiving
the first 120 data packets. In the Insertion-Only model, once we observe a marble of a
certain colour at time i , i.e. we observe di , the colour of the marble remains the same,
i.e. it never changes. In case we adopt the Insert-Delete model, we are able to alter
the colour of a marble that we previously observed on the stream. Moreover, we are
even able to remove the marble of that colour at a later point in time from the bucket.

In general, the aim of any streaming data application and/or algorithm is to design
a function on top of the underlying function D. Observe however that the stream is the
only tangible representation of D. Such function is often a query related to the data
structure, and, due to the nature of data streams, the answer to such query is likely to
change over the course of time. In the context of our example, we are for example
interested to keep track of the number of blue marbles, or, we want to know what are
the most frequent colours of marbles that we observe on the stream. We assume to
receive an infinite number of marbles of different colours, therefore, if we just keep on
throwing the marbles we receive in the bucket, at some point, our bucket of marbles
gets full and starts to overflow. Moreover, we assume that the marbles arrive on a
relatively fast rate, and thus, we need a mechanism to efficiently place a newly arrived
marble (temporarily) in our bucket and asses its colour.

In line with the aforementioned analogy, in terms of performance, we observe three
main components in the data stream model:

• Processing time

The time required to process a newly arrived data item. As we typically construct
some representation of the underlying function D (alternatively referred to as D̂),
the item processing time can alternatively be seen as the time needed to update
the internal representation after receiving a new data item. In the context of the
aforementioned example, the processing time represents the time of placing a
marble in (the internal representation of) the bucket.

• Memory consumption

The memory consumption represents the amount of memory needed to store the
internal representation of the underlying function D. In general, as we assume
the stream to be potentially infinite, simply storing each each data item on the
stream leads to infinite space consumption. In the context of the aforementioned
example, the space consumption represents the amount of memory needed to
describe (the internal representation of) the bucket.
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Event Stream S ∞··· di−2 di−1

Current data element

di · · · · · ·

D̂i−2· · · D̂i−1 D̂i
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|D̂i |, (mc)
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Figure 1.6: Schematic overview of the main performance dimensions of handling streaming
data. Processing time (pt) concerns processing the new data element in the previous
internal representation of the underling generating function D, i.e. D̂, in order to
generate an updated, new internal representation. Memory consumption (mc) rep-
resents the amount of memory needed to store the representation of the underlying
generating function D, i.e. D̂. Computation time (ct) represents the amount of time
needed to translate the estimation of the underlying function to the desired result,
i.e. translating D̂ into R.

• Computation time

Often, the function D is used to compute a derived function and/or object, that
uses function D (more particularly its approximation D̂) as a basic input. The
computation time represents the time needed to compute the intended function
of the algorithm on top of the underlying function D. In the context of the
aforementioned example, assume that we aim to predict the number of blue
marbles in the upcoming 500 marbles. The computation time represents the
amount of time we need in order to translate the (internal representation of) the
bucket in to such a prediction.

Consider Figure 1.6, in which we present a schematic overview of the different
performance components of the data stream model. We maintain some representation
of the underlying generating function D, represented by D̂. We update the internal
representation based on newly received events. As such, we have a sequence of
representations of D, i.e. D̂1, D̂2, ..., D̂i , ... The time to incorporate the newly received
data item, i.e. di , in order to transform D̂i−1 into D̂i , is referred to as processing
time. The memory consumption represents the amount of physical memory required
to store the maintained internal representation of the data stream. Finally, as we
are often interested in some derivative result, computed on the basis of the current
representation of the underlying function, we refer to computation time as the time
needed to transform the current representation of the underlying function into such
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Figure 1.7: Two functions, i.e. y=x and y= log2(x), indicating the difference of rate-of-growth of
linear functions versus logarithmic functions.

derivative.
Since we assume the input event stream to be potentially of high-velocity, we are

required to limit the processing time. At the same time, we assume the amount of
data items on the data stream to be potentially infinite. Let N denote the, potentially
infinite, size of the data stream. A streaming algorithm ideally constitutes, at any
point in time, to a processing time and space consumption that are simultaneously
strictly less than linear in the size of N . Preferably, the simultaneous cost of processing
time and space consumption is polylogarithmic, i.e. O(logk (N )). The implication of
this bound on the processing time/space consumption is the fact that the algorithm’s
complexity growth is less than the rate at which packets arrive. For example, consider
Figure 1.7, in which we plot functions y = x and y = log2(x) for 1≤x≤100, which clearly
illustrates the difference of complexity growth of logartihmic and linear functions.
Hence, even after receiving a huge amount of events on the stream, we are guaranteed
that memory usage is orders of magnitude smaller.

The cost of maintaining a representation of an infinite amount of data in ideally
polylogarithmic time and/or space, often impacts the resulting function that the
algorithm implements. In general, the function computed by the algorithm is an
approximation of the actual function when applied on the data stream as observed
thus-far. Therefore, a vast majority of the existing data stream algorithms implements
the (ε,δ)-approximation scheme, i.e. the algorithm’s result is correct within 1±ε of the
actual result with a probability of at least 1−δ. Often, the complexity of algorithms
implementing either one of the presented approximation schemes is specified in terms
of ε and δ, e.g. O

(
1
ε2 log( 1

δ )
)
. Hence, when we reduce the error margins of these
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algorithms, the algorithmic complexity increases.

1.3 Streaming Data in the Context of Process Mining

In the context of this thesis, we assume the notion of an event stream. As such, the
data elements arriving on the stream refer to events, executed in the context of an
underlying (business) process. Hence, a data element di represents an event, i.e. a
row in Table 1.1, and the process itself represents the underlying function D. Events
executed in context of a (business) process are in general executed once, and are
irrevocable. Hence, we can assume the Insertion-Only/Cash Register streaming data
model. Moreover, in the context of this thesis we assume that these events are executed
in an atomic fashion, i.e. we abstract from activity duration.

When considering events originating from the execution of a process, in light of
the general streaming data model, we identify the following non-trivial challenges:

• Interrelated Data Elements

As the data elements present on the event stream originate from the execution of
an underlying process, i.e. they relate to events, multiple events/data elements
relate to the same process instance. Due to the inherent parallel execution of
several process instances, e.g. multiple products are produced at the same time,
batch processing is applied etc., we expect events related to the same process
instance to arrive in a dispersed manner on the event stream. The fact that
multiple data elements are interrelated adds an additional layer of complexity in
terms of event storage, i.e. it is not possible to arbitrarily discard certain data
elements from the data structures maintained.

• Data Incompleteness

As a consequence of the interrelatedness of the different events that are emitted
onto the stream, we identify the notion of data incompleteness. First of all, when
we start observing a stream of events, it is likely that some process instances
are already ongoing. Hence, the first few events observed are likely to relate
to process instances of which the initial set of events has not been observed.
Secondly, for newly started process instances, we observe the behaviour as a
whole over the life-span of the corresponding process instance. Thus, whilst
the process instance is still ongoing, we only possess partial behaviour of that
specific process instance.

• Implicit Start/End

Apart from data incompleteness, we assume that we have no explicit knowledge
of process instance initialization and termination. As such, it is not clear when
a process instance started and when it is safe to assume its termination. This
implies that, when we observe an event on the event stream related to a case
identifier that was not observed before, we have no guarantee that such an
event is indeed the first event of the underlying process instance. Moreover,
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Event Stream S ∞e1 e2 e3
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Projection on the corresponding process instances:

c1:
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Figure 1.8: Schematic overview of the challenges of handling streaming data in the context of
process mining. A O-symbol indicates an unobserved event, i.e. executed prior to
observing the stream, a ©-symbol indicates a stored event, a ×-symbol indicates a
dropped event, i.e. it is not stored, and, a 4-symbol indicates a future event.

since we have no explicit knowledge related to process instance termination, we
potentially remove events related to such an instance, prior to its termination.
As we are likely to receive future behaviour for such a process instance, we may
falsely assume that newly arriving behaviour relates to the start of the process
instance.

• Noise

Most existing data stream algorithms are designed under the assumption that
the input data is free of noise, or, noise plays a less significant role. For example,
techniques allow us to find the most frequent items on the stream simply do
not report noise as the noise is likely to be infrequent. Within process mining
however, during the execution of the process, events are generated that are
potentially spurious, i.e. they did not actually happen. Moreover, some events
that are executed are potentially never received on the event stream, e.g. due to
network issues. Translating the raw data directly into a process model therefore
potentially leads to results of inferior quality.

Consider Figure 1.8, in which we present a schematic overview of (some of) the
different challenges of adopting streaming data in the context of process mining. We
start observing the stream at some point in time, which does not allow us to observe
the full behaviour of each process instance, i.e. some instances are already running
(represented by the O-symbol). For some events, given some strategy, we decide to
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store them in our internal data structure, whereas for other events, we decide to
ignore them (represented by the ©-symbol and the ×-symbol respectively). Since we
consider running instances, some events will only become available in the future, i.e.
as represented by the 4-symbol.

In section 1.4, we characterize the research goals and main contributions of this
thesis, which are partially based on/related to the aforementioned challenges. However,
the majority of these challenges relates to the design of (temporal) data storage, i.e.
what items do we store and for what period in time, which is specifically covered in
one of the research goals.

1.4 Research Goals and Contributions

The main goal of the work performed in the context of this thesis is to enable process
mining techniques to deal with streaming data. As such, we develop algorithms,
methods, tools and techniques that explicitly take into account the requirements as
defined by the general data stream model, cf. section 1.2.

1.4.1 Research Goals

We formalize the main research goals of this thesis along the lines of the main com-
ponents of process mining, i.e. process discovery, conformance checking and process
enhancement. Additionally, we focus on efficient storage of event data. We characterize
the main research goals as follows.

• Research Goal I

Development/design of general purpose techniques for high-quality, efficient event
data storage.

We develop efficient techniques for the storage of events originating from event
streams. These techniques act as a primer for any process mining technique. We
moreover develop techniques that allow us to increase the overall quality of the
data considered in subsequent process mining analyses.

• Research Goal II

Development/design of specialized techniques for efficient, event stream based,
process discovery.

We develop techniques that go beyond efficient event storage and decrease the
memory consumption need for the purpose of process discovery.

• Research Goal III

Development/design of specialized techniques for efficient, event stream based,
conformance checking.

State-of-the-art conformance checking techniques are inherently complex, i.e.
they are of a combinatorial nature. We, therefore, develop techniques that allow
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us to compute and/or approximate conformance checking results in an event
stream based context.

• Research Goal IV

Development/design of specialized techniques for efficient, event stream based,
process enhancement.

We develop and investigate the application of process enhancement techniques
in a streaming context, i.e. by explicitly taking the requirements dictated by the
streaming data model into account.

1.4.2 Contributions

In line with the defined research goals, we present the main contributions of this thesis
here.

• Data Engineering

In chapter 3, we present and formalize the notion of an event store. In essence,
an event store represents a finite view of the event stream, i.e. a subsequence of
the stream as a whole. As such, we are able to apply any conventional process
mining algorithm in the context of event streams. We primarily focus on showing
that we are able to instantiate event stores using a variety of existing data storage
techniques. Moreover, we assess to what degree these storage techniques are
suitable for the purpose of process mining.

In chapter 4, we present means to filter infrequent behaviour from event streams.
The technique presented in chapter 4 acts as a stream processor, i.e. both its
input and output are a stream of events. As such, we are able to apply it prior to
constructing event stores, in order to achieve higher quality event data.

• Process discovery

In chapter 5, we present a general framework for the purpose of online process
discovery. Conceptually, the framework describes a high-level architecture on the
basis of the internal data structures used by the most common process discovery
algorithms. The main aim is to design these algorithms in such a way that we
require a minimal memory footprint, i.e. we store the least amount of data
needed to reconstruct the algorithm’s internal data structure. Moreover, we
show that the proposed architecture covers several different classes of process
discovery algorithms, and, we provide several instantiations of the framework.

In chapter 6, we show that, for a specific class of process discovery algorithms,
we are able to exploit the internal data structure to such extent that this allows
us to guarantee both structural- and behavioural properties of the discovered
process models. We moreover present an internal filtering method, built on top
of the algorithm’s data structure, that allows us to increase the overall quality of
the discovered process models.
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• Conformance checking

In chapter 7, we present a greedy algorithm, alongside different parametrization
options, that allows us to perform online conformance checking. The technique
presented computes prefix-alignments, i.e. explanations of observed behaviour
in terms of a given reference model, whilst accounting for future behaviour.
We primarily focus on the quality of the conformance checking results using
different instantiations of the proposed parametrization of the greedy algorithm.
Furthermore, we show that, under certain conditions, the prefix-alignments
that we compute are an under-estimator for the final deviation costs, i.e. upon
completion of the process instance.

• Process Enhancement

In chapter 8, we present an assessment of the computation of social networks
in streaming settings. We primarily focus on computational feasibility in terms
of incremental network updates of handover-of-work networks. We moreover
show that some of these network variants lend themselves for incremental
computation, which allows us to adopt these variants in an event stream setting.

1.5 Thesis Structure

In line with the research questions and associated contributions identified in section 1.4,
the outline of this thesis, as visualized in Figure 1.9, is as follows. In chapter 2, we
present basic preliminaries that aid the reader in understanding the basic notations
and concepts used throughout the thesis. We furthermore present (two variants of) a
running example, which we use throughout the thesis to exemplify concepts and/or
algorithms, where necessary. We discuss Data Engineering related issues in chapter 3
and chapter 4. In particular, in chapter 3, we present several means to efficiently
store events emitted onto an event stream, which effectively allows us to perform
any existing process mining algorithm in the context of event streams. In chapter 4,
we present means to filter out infrequent behaviour from event streams. The area of
process discovery is covered in two chapters, i.e. chapter 5 and chapter 6. In chapter 5,
we present a generic architecture that enables us to decompose process discovery
into two sub-parts, i.e. learning and maintaining an intermediate representation and
intermediate representation based discovery. In chapter 6, we show that, in some
cases, we are able to explicitly exploit the nature of intermediate representations for
the purpose of improving process discovery results. We cover conformance checking in
chapter 7, where we examine the use of incrementally computed prefix-alignments. We
cover process enhancement in chapter 8, where we study the incremental computation
of social networks in an online setting. We detail on associated implementations of all
techniques presented in this thesis in chapter 9. Finally, in chapter 10, we conclude
the work presented in this thesis.
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Figure 1.9: The general structure of this thesis.



Chapter 2
Preliminaries

The vast majority of process mining concepts, techniques and algorithms, build on a
small set of basic mathematical concepts. In this chapter, we present these concepts,
after which we formally define specific process mining concepts such as event data
and commonly used process modelling formalisms.
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Figure 2.1: The contents of this chapter, i.e. preliminaries, highlighted in the context of the
general structure of this thesis.
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2.1 Basic Mathematical Concepts

In this section, we present some basic, well understood, mathematical concepts in the
field of process mining as well as computer science in general. The main goal of this
section is to familiarize the reader with the notation used throughout this thesis.

2.1.1 Sets, Tuples and Functions

Let X = {x1, x2, ..., xn} denote a set consisting of n different elements. The power
set of a set X , i.e. P (X ), denotes the set containing all possible subsets of X , i.e.
P (X ) = {X ′ | X ′⊆X }. We let Z denote the set of integers, i.e. numbers that we can write
without a fractional component (...,−2,−1,0,1,2, ...). We let N = {1,2, ...} denote the
set of positive integers, i.e. the natural numbers, N0 = {0,1,2, ...} additionally includes
0. We let B = {0,1} denote the set of boolean values. Observe that a boolean value
of 0 corresponds to value false, whereas a value of 1 corresponds to value true.
Let n1,n2∈N0 s.t. n1 < n2 we let {n1, ...,n2} denote the interval of integers between
(and including) n1 and n2. Given n arbitrary sets, i.e. X1, ..., Xn , we define the n-ary
Cartesian product of these n sets as X1 ×·· ·× Xn = {(x1, ..., xn) | ∀1 ≤ i ≤ n (xi∈Xi )}. We
refer to an element in an n-ary Cartesian product as a n-ary tuple. In case n = 2, the
Cartesian product defines the set of all ordered pairs (x1, x2)∈X1 ×X2. Given set X and
Cartesian product X1×·· ·×Xn , if ∀ 1 ≤ i ≤ n(Xi = X ), we simply write X n . In some cases,
we are interested in a particular element of a tuple. To this end we define a projection
function, i.e. given 1 ≤ i ≤ n, πi : X1 × ·· ·× Xn → Xi , s.t. πi ((x1, ..., xi , ..., xn)) = xi , e.g.
for (x, y, z)∈X ×Y × Z , we have π1((x, y, z)) = x, π2((x, y, z)) = y and π3((x, y, z)) = z. In
the remainder of this thesis, we omit the explicit surrounding braces of tuples, when
applying a projection on top of them, i.e. we write π1(x, y, z) rather than π1((x, y, z)).

Any arbitrary subset R⊆X1 ×·· ·Xn is an n-ary relation. In case n = 2 we refer to a
binary relation. Given such a binary relation, if (x1, x2)∈R we alternatively write x1Rx2.
Consider a binary relation R on sets X and Y , i.e. R⊆X ×Y . In the context of this thesis,
we formulate the following properties on a binary relation R:

• R is functional, if and only if, ∀x∈X , y, y ′∈Y
(
xR y ∧xR y ′ =⇒ y = y ′), i.e. if a pair

of the form (x, ...) exists in R, it is the only pair of that form.

• R is injective, if and only if, ∀x, x ′∈X , y∈Y
(
xR y ∧x ′R y =⇒ x = x ′), i.e. there exist

only one pair of the form (..., y) in R.

• R is left-total, if and only if, ∀x∈X ,∃y∈Y
(
xR y

)
, i.e. for each element in X , there

exists a counter-part in Y .

A functional relation is also referred to as a partial function f from X to Y , written as
f : X 9 Y . Instead of x f y , we alternatively write f (x) = y . The domain of f represents
all elements on which f is defined, i.e. dom( f ) = {x∈X | ∃y∈Y

(
f (x) = y

)
} whereas Y

denotes the codomain of f , i.e. codom( f ) = Y . The range of f , represents the values in
Y that actually have a counter-part in X i.e. r ng ( f ) = {y∈Y | ∃x∈X

(
f (x) = y

)
}. A binary

relation that is both left-total and functional is referred to as a total function f from
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X to Y , written as f : X → Y . In the remainder, when we use the term function, we
refer to a total function. Observe that a function, i.e. non-partial, is defined on every
element in X , and each element of X has exactly one corresponding function value in
Y . As such, the domain of a function f : X → Y is equal to X . Similar to projections,
given a function f with characterization f : X ×Y → Z , we write f (x, y) rather than
f ((x, y)).

A binary function R∈X ×X is referred to as an endorelation on X . For such endore-
lations, the following properties are of interest in the context of this thesis.

• R is reflexive, if and only if, ∀x∈X (xRx).

• R is irreflexive, if and only if, Øx∈X (xRx).

• R is symmetric, if and only if, ∀x, y∈X
(
xR y =⇒ yRx

)
.

• R is antisymmetric, if and only if, ∀x, y∈X
(
xR y =⇒ ¬yRx

)
.

• R is transitive, if and only if, ∀x, y, z∈X
(
xR y ∧ yRz =⇒ xRz

)
.

A relation ¹ ⊆X × X , alternatively written (X ,¹), is a partial order, if and only if, it
is reflexive, antisymmetric and transitive. A relation ≺ ⊆X × X , alternatively written
(X ,≺), is a strict partial order, if and only if, it is irreflexive, antisymmetric and transitive.
Finally, given a strict partial order (X ,≺) and a function f : X → X , f is strictly increasing,
if and only if, x < x ′ ⇔ f (x) < f (x ′).

2.1.2 Multisets

A multiset (or bag) generalizes the concept of a set and allows elements to have a
multiplicity, i.e. degree of membership, exceeding one. Let X = {x1, x2, ..., xn} be a set, a
multiset B over X is a function B : X →N0. We write a multiset as B = [xk1

1 , xk2
2 , ..., xkn

n ],
where for each i∈{1, ...,n} we have B(xi ) = ki , however, if B(xi ) = 0, we omit x0

i from
multiset notation, and, if B(xi ) = 1 we simply write xi in multiset notation, i.e. we omit
its superscript. The empty multiset is written as [ ]. If for some x∈X we have B(x) > 0,
we write x∈+B . We define B+ = {x∈X | x ∈+ B}⊆X . If for some x∈X and k∈N, we have
B(x) ≥ k, we write x∈k+B . Finally, if for some x∈X and k∈N, we have B(x) = k, we write
x∈k B . The universe of multisets over some set X , i.e. all possible multisets over X ,
being the multiset equivalence of the notion of the power set, is written as B(X ).

Given multisets B1 and B2 over set X , we write B1⊆B2 if and only if ∀x∈X (B1(x) ≤ B2(x)).
The union of two multisets, i.e. B1∪B2, yields a resulting multiset B ′ with B ′(x) =
max(B1(x),B2(x)). The intersection of two multisets, i.e. B1∩B2, yields a resulting
multiset B ′ with B ′(x) = min(B1(x),B2(x)). The sum of two multisets, i.e. B1]B2, yields
a resulting multiset B ′ with B ′(x) = B1(x)+B2(x). Finally, the difference between two
multisets, i.e. B1 −B2, yields a resulting multiset B ′ with B ′(x) = max(0,B1(x)−B2(x)).

Observe that multisets are defined in terms of a base set X . In some cases we
need to compute operations on multisets defined over different domains, i.e. given
some multiset BX over X and BY over Y , s.t. X 6= Y , we want to compute BX ]BY .
Observe that we are able to extend any multiset BX ′ over X ′⊆X to a multiset over X
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by assigning BX ′ (x) = 0,∀x∈X \X ′. Hence, to compute BX ]BY , we first extend both
BX and BY to be multisets over X∪Y , after which we apply the ]-operator. In case
we apply a multiset operator on a multiset BX and arbitrary and set Y , we, implicitly,
first convert Y into a multiset BY : Y →N0, where BY (y) = 1 if y∈Y and 0 otherwise.
Subsequently we perform the operator of choice on BX and BY .

2.1.3 Sequences

Sequences represent enumerated collections of elements which additionally, like
multisets, allow its elements to appear multiple times. However, within sequences we
explicitly keep track of the order of an element. Given an arbitrary set X , a sequence of
length n over X is defined as a function σ : {1, ...,n} → X . Thus, σ assigns an element of
X to each index i∈{1, ...,n}. We write a sequence as σ= 〈σ(1),σ(2), ...,σ(n)〉. The length
of a sequence is written |σ|. We let ε denote the empty sequence, i.e. |ε| = 0. The set of
all possible sequences over set X , including infinite sequences, is written as X ∗.

Given a sequence σ∈X ∗ and x∈X , we write x∈∗σ if and only if ∃1 ≤ i ≤ |σ| (σ(i ) = x).
Furthermore, we define el em : X ∗ →P (X ), with el em(σ) = {x∈X | x∈∗σ}. We addition-
ally define the Parikh abstraction, which counts the multiplicity of a certain element
within a sequence, i.e. par i kh : X ∗ →B(X ), where:

par i kh(σ) =
[

xn | x∈X ∧n =
|σ|∑
i=1

({
1 if σ(i ) = x

0 otherwise

)]
(2.1)

For simplicity, given σ∈X ∗, we write −→σ to denote its Parikh abstraction, i.e. −→σ =
par i kh(σ).

Given two sequences σ1,σ2∈X ∗ the concatenation of sequence σ1 and σ2, written
as σ1 ·σ2, yields sequence 〈σ1(1),σ1(2), ...,σ1(|σ1|),σ2(1),σ2(2), ...,σ2(|σ2|)〉. Similar to
multisets, if σ1∈X ∗ and σ2∈Y ∗, then σ1 ·σ2∈(X∪Y )∗.

Given two sequences σ1,σ2∈X ∗, σ1 is a subsequence of σ2, written σ1 ⊆∗ σ2, if there
exists a strictly increasing function:

ϕ : {1, ..., |σ1|} → {1, ..., |σ2|} s.t. ∀i∈{1, ..., |σ1|}
(
σ1(i ) =σ2(ϕ(i ))

)
Consider for example 〈a,b,c〉, which is a subsequence of 〈a, a,d ,b,e,c〉 as we are
able to construct ϕ = {(1,1), (2,4), (3,6)}. A subsequence is a strict subsequence if the
mapping is consecutive. Given a sequence σ∈X ∗ and 1 ≤ i ≤ j ≤ |σ| we denote its strict
subsequence starting at index i and ending at index j as σi ... j , e.g. 〈a, a,b,c,b,d〉2...4 =
〈a,b,c〉. A subsequence is a prefix if and only if the mapping function ϕ is an identity
function, i.e. ϕ(1) = 1,ϕ(2) = 2, ...,ϕ(|σ|) = |σ|, e.g. 〈a, a,d〉 is a prefix of 〈a, a,d ,b,e,c〉,
as we have ϕ = {(1,1), (2,2), (3,3)}. A set of sequences X∈P (Y ∗) is prefix-closed if
ε∈X ∧∀σ∈X

(∃σ′∈X
(
σ′ =σ1...|σ|−1

))
. Furthermore, we define the prefix-closure of set

X∈P (Y ∗) as X , with X ⊆ X , and, recursively:

X = {ε}∪ ⋃
σ∈X

( |σ|⋃
i=1

(σ1...i )

)
(2.2)
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Observe that, by definition, a prefix-closure is prefix-closed. We overload notation
here, and also define the prefix-closure for multisets of sequences, i.e. given a multiset
B : X ∗ →N0, we define B : X ∗ →N0, where:

B(σ) = B(σ)+ ∑
σ·〈x〉∈B+

B(σ · 〈x〉)

For example, for B = [〈a,b〉5,〈a,c〉3], we obtain B = [ε8,〈a〉8,〈a,b〉5,〈a,c〉3]. A sub-
sequence is a suffix of a sequence if it is a strict subsequence, and its last element is
the last element of the other sequence, i.e. 〈b,e,c〉 is a suffix of 〈a, a,d ,b,e,c〉.

In some cases, we need to project a sequence of tuples on a sequence of elements of
a specific set within the Cartesian product. To this end we extend projection to the level
of sequences, i.e. given a sequence σ∈(X1 ×X2 · · ·Xn)∗ and 1 ≤ i ≤ n, we define a pro-
jection function πi∗ : (X1 × X2 · · ·Xn)∗ → X ∗

i s.t. πi∗(σ) = 〈πi (σ(1)),πi (σ(2), ...,πi (σ(|σ|)))〉,
e.g. for σ∈(X ×Y ×Z )∗, we have π1∗(σ)∈X ∗.

Given σ∈X ∗ and Y ⊆X we define σ↓Y ∈Y ∗ recursively with ε↓Y = ε and (〈x〉 ·σ′)↓Y =
〈x〉·σ′

↓Y
if x∈Y and σ′

↓Y
if x ∉ Y . Finally, given a function f : X → Y , we define f∗ : X ∗ →

Y ∗, such that, given a sequence σ∈X ∗, we have f∗(σ) = 〈 f (σ(1), f (σ(2)), ..., f (σ(|σ|))〉.

2.1.4 Matrices and Vectors

We occasionally use the notions of matrices and vectors in this thesis. We assume
vectors to be n-ary tuples in Rn . We define such vector of size n as~x∈Rn , e.g. (1, 1

4 ,2)∈R3.
Furthermore, a vector ~x∈Rn represents a column vector whereas ~xᵀ∈Rn represents a
row vector:

~x =


x1

x2
...

xn

 , ~xᵀ = (
x1 x2 · · · xn

)
(2.3)

To access the i th element of a vector ~x, we write ~x(i ), rather than πi (~x).
A matrix is considered a rectangular array of values in R. A matrix consisting of n

rows and m columns, i.e. an n ×m matrix A∈Rn×m , is written as:

A =


a1,1 a1,2 . . . a1,m

a2,1 a2,2 . . . a2,m
...

...
. . .

...
an,1 an,2 . . . an,m

 (2.4)

We write Ai , j to refer to element ai , j , i.e. the value at row i , column j . Observe that a
row vector of size n corresponds to an 1×n matrix, whereas a column vector of size n
corresponds to an n ×1 matrix.

Multiplication of two matrices is possible if the number of columns of the left
argument coincides with the number of rows of the right argument. Given an n ×m
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matrix A and an m ×k matrix A′, multiplying the two, i.e. AA′ results in an n ×k sized

matrix where (AA′)i , j =
m∑

l=1
Ai ,l A′

l , j . Observe that we are thus able to multiply a row

vector ~xᵀ of size n with a matrix A of the form n ×m, i.e. ~xᵀA, for arbitrary m. In case
m = 1 we are multiplying a row vector with a column vector of size n. Similarly, we are
able to multiply a matrix A of the form n ×m with an n-sized column vector, i.e. A~x.

In some cases, we define a vector as ~x∈Nn
0 , which merely indicates that we are

only interested in assigning values to the vector that are in N0. Moreover, in several
application scenario’s, given an arbitrary set X , we assume the existence of some
function f : X →R and define a corresponding vector ~x∈R|X |. In these cases we assume
that there exists an injective index function ι : X → {1, ..., |X |} s.t. ~x(ι(x)) = f (x). We
furthermore assume that only one such index function exists and is used, i.e. as such
given two vectors ~x,~y∈R|X |, we assume that ~x and ~y agree on their indices. This allows
us to directly write and reason about operations such as ~xᵀ~y. For convenience, we
write ~x(x) as a place-holder for ~x(ι(x)). Note that the concept of indices and sets
extends to matrices. As such, given σ∈X ∗, when working with vectors, we overload
notation and refer to −→σ as the Parikh vector of σ, rather than the Parikh abstraction.

2.1.5 Graphs

A graph is an ordered pair G = (V ,E) where V is a set of vertices and E is a set of
edges with E⊆V ×V , i.e. an endorelation on V . A graph is undirected if E is irreflexive
and symmetric. As such, in an undirected graph, we write edges as sets rather than
pairs, i.e. {v1, v2} represents the fact that (v1, v2), (v2, v1)∈E . A directed graph does not
have the aforementioned property and in case of a directed graph we alternatively
refer to the E as a set of arcs. As an example, consider Figure 2.2 in which we depict
an example undirected- and directed graph. Graph G1 in Figure 2.2a represents an
undirected graph with three vertices v1, v2 and v3, which are graphically represented
as a black dot. The edges, graphically, connect the vertices by means of a line. In
graph G2, in Figure 2.2b, we depict a directed graph. The main difference is within
the visualization of the arcs, which are represented by arrows, rather than lines.

The degree of a vertex in an undirected graph is a function deg : V →N0 which
represents the number of edges that are connected to it, i.e.

deg (v) = |{ v ′∈V | {v, v ′}∈E }| (2.5)

For example, observe that all vertices in G1 have a degree of 2. For directed graphs
we take the orientation of an arc into account, and thus we have an indegree deg−
and outdegree deg+, i.e. deg−(v) = |{v ′∈V | (v ′, v)∈E }| and deg+(v) = |{v ′∈V | (v, v ′)∈E }|.
In case a vertex has no indegree, i.e. deg−(v) = 0 it is a source. If it has no outdegree,
i.e. deg+(v) = 0 it is a sink. Note that in G2, v1 is a source whereas v3 is a sink, and,
deg−(v2) = deg+(v2) = 1.

In an (un)directed graph, a path is a non-empty sequence of edges, which con-
nects a corresponding sequence of vertices. An undirected graph is connected if
there exists a path between any pair of vertices. For example, graph G1 in Fig-
ure 2.2a is a connected undirected graph. An undirected graph contains a cycle
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(a) Example undirected graph
G1 = ({v1, v2, v3}, {{v1, v2}, {v1, v3}, {v2, v3}})

•
v1

•
v2

•
v3

(b) Example directed graph
G2 = ({v1, v2, v3}, {(v1, v2), (v1, v3), (v2, v3)}

•
v1

•
v2

•
v3

•
v4

•
v5

(c) Example tree
GT

1 = ({v1, v2, v3, v4, v5},
{{v1, v2}, {v1, v3}, {v2, v4}, {v2, v5}})

•
v1

•
v2

•
v3

•
v4

•
v5

(d) Example rooted tree
GT

2 = ({v1, v2, v3, v4, v5},
{(v1, v3), (v2, v1), (v2, v4), (v2, v5)}), where v2 is
the tree’s root.

Figure 2.2: Two example graphs, i.e. G1 and G2, and two example trees, i.e. GT
1 and GT

2 .

if ∃v∈V (∃σ∈E∗ (σ= 〈(v, v1), (v1, v2), ..., (vn−1, vn), (vn , v)〉)). Observe that graph G1 does
contain a cycle.

If an undirected graph is connected yet does not contain any cycle, such graph is a
tree. As a consequence, given a tree GT = (V ,E), we have |E | = |V |−1. Observe that, G1

in Figure 2.2a contains a cycle, and hence, is not a tree. However, the graph depicted
in Figure 2.2c, i.e. GT

1 , is in fact a tree. In some cases we assign a specific vertex v r∈V
as the root of the tree. We call such tree a rooted tree, cf. Figure 2.2d. The depth of a
vertex present in a rooted tree is a function depth : V →N0, s.t. depth(v r ) = 0 and for
any other v∈V , depth(v) is defined as the length of the path from v r to v . To visualize
a rooted tree, we use arrows instead of lines to connect the vertices, even though a
tree is always an undirected graph. We use arrows to visualize the depth of the tree.
The vertex that has no incoming arcs in such visualization is the root vertex. Observe
that the tree in Figure 2.2d is similar to the tree in Figure 2.2c, yet has vertex v2 as
its root. A vertex v in a tree, not equal to the root of the tree, for which we have
deg (v) = 1 is a leaf vertex. Other vertices, again except the root, are called internal
vertices. Finally, in Figure 2.2d, observe that the depth of vertices v1, v4 and v5 is 1,
whereas the depth of vertex v3 is 2.

A special type of tree that allows us to efficiently encode sets of sequences is a
prefix tree. Given an alphabet, i.e. set of characters Σ, and a set of sequences over Σ,
i.e. L⊆Σ∗. A prefix tree is a rooted tree with an additional labelling function λ : E →Σ

and a boolean terminal function ter m : V → B which allows us to encode L. The
projection of each vertex on a path starting from the root vertex and ending in a vertex
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Figure 2.3: Example prefix-tree GT
3 encoding L = {process, prom, patch}. Vertices v with

ter m(v) = true are visualized as ■ symbols.

v with ter m(v) = 1 corresponds to an element of L. As an example of a prefix-tree,
consider prefix-tree GT

3 depicted in Figure 2.3. The prefix-tree encodes the set of
sequences L= {process, prom, patch}. Within prefix-tree GT

3 we depict non-terminal
vertices, i.e. ter m(v) = 0, as •-symbols and terminal vertices as ■-symbols. In this
example, only leaves are terminal, however, in general, this need not be the case. For
example, if we add the sequence 〈p, a〉 to the language, v4 becomes a terminal vertex.
In particular, if ε∈L then the root is a terminal vertex. Also, observe that an internal
vertex being a terminal node implies that some strict prefixes of sequences in L are in
L to. Moreover, if all vertices are terminal (including the root vertex), the prefix-tree
describes a prefix-closed language.

2.1.6 Integer Linear Programming

An Integer Linear Programming (ILP)-formulation, allows us to specify an optimization
problem, i.e. either a minimization or maximization problem, defined in terms of a set
of integer-valued decision variables. The goal is to find an assignment of the decision
variables that minimizes/maximizes the corresponding objective function and at the
same time adheres to an additionally defined set of constraints. These constraints are
in turn linear (in)equalities, expressed in terms of the decision variables. We further
exemplify the general notion of an ILP-formulation in 2.1.



32 Preliminaries

x-axis

y-
ax

is

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Figure 2.4: Visualization of the example ILP-formulation. The grey area highlights the region
in which integer-valued solutions exist, i.e. the feasible region. The black dots
represent (some of the) solutions according to the body of constraints, i.e. feasible
solutions, whereas the red dot represents the optimal solution.

Example 2.1 (Example ILP-formulation). Consider that we have two integer variables,
i.e. x, y∈Z. We aim at maximizing the sum of these two variables, i.e. x + y . Furthermore,
we want to constrain the value of x to be at most 2, i.e. x ≤ 2. We constrain y in terms of
x, i.e. y ≤ 2x. We are able to construct a corresponding ILP-formulation of the following
form:

maximize x + y objective function
such that x ≤ 2 constraint on x

and 2x + y ≤ 0 constraint on y in terms of x
x, y∈Z x and y are integers

(2.6)

In case of the simple ILP-formulation listed in Equation 2.6, it is easy to see that the
corresponding solution is x = 2, y = 4. For convenience, a corresponding graphical
representation of the example is provided in Figure 2.4. In Figure 2.4, the grey area
indicates all possible variable assignments in R≥0 (we omit negative values in the figure)
that adhere to the two constraints. The black dots indicate the actual integer values that
adhere to the constraints. The total set of solutions to the given body of constraints is also
referred to as the set of feasible solutions. In the example visualization, the black dots
are part of the set of feasible solutions. Finally, the solution that maximizes the objective
function (or, in minimization is minimizing the objective function) is also referred to as
the optimal solution. In Figure 2.4, the optimal solution is visualized by means of a red
dot.
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In the example ILP-formulation presented in 2.1, finding an optimal variable
assignment is rather easy. In the general sense, however, the complexity of finding
such a solution is proven to be NP-complete. In the context of this thesis, we do not go
into detail with respect to the mechanics of finding an optimal solution to a given ILP-
formulation, i.e. we refer to [105]. We merely assume that we are able to solve a given
ILP-formulation, using an ILP-solver, i.e. a dedicated software library that provides
us with an optimal variable assignment given an ILP-formulation. Examples of such
solvers are LPSolve1, Gurobi2 and IBM ILOG CPLEX3. Finally, it is important to note
that, in general, it is possible that no solution exists for an ILP (due to contradicting
constraints), or, a multitude of optimal solutions exist.

2.2 Process Models

Since process mining revolves around event data originating from the execution of
processes, we need a, preferably formal, means of representing and reasoning about
these processes. Hence, within process mining, process models, i.e. formalisms that
describe the behaviour of processes, are, like event data, considered as being a first
class citizen. In essence, a process model describes the intended behaviour of a process.
Reconsider Figure 1.2 (in chapter 1, subsection 1.1.1 on page 6), in which we depict
process models using different formalisms, i.e. a Petri net (Figure 1.2a) and a BPMN
model (Figure 1.2b). In the context of this thesis, we define M as the universe of
process models, i.e. any process model, regardless of its formalism, is a member of
M . Thus, both the Petri net in Figure 1.2a and the BPMN model in Figure 1.2b are
members of M . However, even though many other process modelling formalisms exist
as well, within this thesis we primarily focus on (labelled) Petri nets [94], which allow
us to explicitly model concurrency in a concise and compact manner. In the upcoming
section we introduce Petri nets, in subsequent sections we discuss alternative, process
oriented modelling formalisms which are explicitly used in this thesis.

2.2.1 Petri nets

Consider Figure 2.5, in which we depict an example Petri net. The Petri net describes a
simplified online ID-document verification process. The model describes that the first
activity to be performed should always be receive ID. Subsequently, the scan picture
and scan watermark activities can be performed concurrently. However, we are also
allowed to only perform the scan watermark activity and subsequently perform a
verification, i.e. we are allowed to skip scanning the picture. If a verification results in
a negative verification result, we are able to redo the scan of the watermark/picture.
However, such a decision, i.e. to redo these activities, is not explicitly captured by the
system. This unobservable action is represented by the grey rectangle with label t6.
Eventually, either the activate account or the block account activity is performed.

1http://lpsolve.sourceforge.net/
2http://gurobi.com
3https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer

http://lpsolve.sourceforge.net/
http://gurobi.com
https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
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Figure 2.5: Example process related to an ID verification process, modelled as a labelled Petri
net with initial marking [pi ].

A Petri net consists of places and transitions. Places are used to represent the state
of the described process whereas transitions represent possible executable activities,
subject to the state. Graph-theoretically, a Petri net is a bipartite graph in which places
are only connected to transitions, and, consequently, transitions are only connected
to places. The Petri net in Figure 2.5 consists of 7 places (denoted P), i.e. P =
{pi , p1, ..., p5, po}, visualized as circles. The Petri net furthermore contains 8 transitions
(denoted T ), i.e. {t1, ..., t8}, visualized as boxes. Observe that, indeed, in the example
Petri net depicted in Figure 2.5, places only connect to transitions whereas transitions
only connect to places.

Definition 2.1 (Petri net). Let P denote a set of places and let T denote a set of transitions
s.t. P∩T =;. Let F = (P ×T )∪(T ×P ) denote the flow relation. Furthermore, let Σ denote
the universe of labels, let τ ∉ Σ and let λ : T → Σ∪{τ} denote the transition labelling
function. A Petri net N , is a tuple N = (P,T,F,λ).

Observe that the labelling function maps transitions to a corresponding label, e.g.
the label of transition t1 in Figure 2.5 is receive ID, or a in short-hand notation. In case
a transition t is unobservable, e.g. transition t6 in Figure 2.5, we have λ(t ) = τ, with
τ ∉Σ.

Given any element x∈P∪T of a Petri net N = (P,T,F,λ), i.e. either a place or a
transition, we write •x = {y∈P∪T | (y, x)∈F }. Similarly we define x• = {y∈P∪T | (x, y)∈F }.
For example, in Figure 2.5, we have •p1 = {t1, t6}, whereas t6• = {p1, p2}.

We represent the state of a Petri net in terms of a marking M , which is a multiset
of places, i.e. M∈B(P ). For example, in Figure 2.5, place pi is marked with a token,
visualized by a black dot. Thus, the marking of the Petri net in Figure 2.5, as visualized,
is [pi ]. Given a Petri net N and marking M , we refer to the pair (N , M) as a marked net.
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The transitions of a Petri net allow us to manipulate its state, i.e. its marking. A
transition t∈T is enabled if all places p that have an outgoing arc to t contain a token.
If a transition is enabled in marking M we write (N , M)[t〉. An enabled transition is
able to fire. If we fire a transition t , it consumes a token from each place that has
an outgoing arc to t . Subsequently, a token is produced in each place that has an
incoming arc from t . For example, in Figure 2.5, t1 is the only enabled transition in
marking [pi ], and, if it fires we obtain new marking [p1, p2]. In marking [p1, p2] we are
able to fire both t2 and t3, in any order.

Definition 2.2 (Enabled Transition, Firing Rule). Let N = (P,T,F,λ) be a Petri net with
labelling function λ : T →Σ∪{τ}, and let M∈B(P ) be a marking of N . Transition t∈T is
enabled in M , written as (N , M)[t〉, if and only if ∀p∈•t

(
M(p) > 0

)
. An enabled transition

in marking M is able to fire, which results in marking M ′ = (M −•t )]t•. We write such a
transition firing as (N , M)

t−→ (N , M ′).
Let σ= 〈t1, ..., tn〉∈T ∗ be an arbitrary sequence of transitions. Sequence σ is a firing

sequence of N in marking M , yielding marking M ′, if and only if, we are able to find
markings M1, ..., Mn∈B(P ) s.t. (N , M)

t1−→ (N , M1)
...−→ (N , Mn−1)

tn−→ (N , M ′). We overload
notation and simply write (N , M)

σ−→ (N , M ′).

Reconsider Figure 2.5, in which we are able to generate multiple firing sequences
from marking [p1] that yield marking [p3, p4], e.g. 〈t1, t2, t3〉, 〈t1, t3, t2〉, 〈t1, t3, t4, t6, t2, t3〉.

Given a Petri net N = (P,T,F,λ) and marking M∈B(P ), we define the language of
Petri net N , given (initial) marking M , as:

L(N , M) =
{
σ∈T ∗ | ∃M ′∈B(P )

(
(N , M)

σ−→ (N , M ′)
)}

(2.7)

Observe that the language of a Petri net, as defined in Equation 2.7 is prefix-closed. In
some cases, we are interested to project the elements of the language of a Petri net to
their corresponding labels in Σ. To this end, we additionally define:

LΣ(N , M) = {
σ∈Σ∗ | ∃σ′∈L(N , M)

(
(λ∗(σ′))↓Σ =σ

)}
(2.8)

Furthermore, given a Petri net N = (P,T,F,λ) and marking M∈B(P ), we are, in some
cases, interested in the markings that are reachable, starting from marking M , i.e.

R(N , M) = {M ′∈B(P ) | ∃σ∈T ∗
(
(N , M)

σ−→ (N , M ′)
)
} (2.9)

Observe that, M∈R(N , M), i.e. by means of empty firing sequence ε. A marking
M∈B(P ) is referred to as a deadlock if and only if:

Øt∈T ((N , M)[t〉) (2.10)

Furthermore, a marking M∈B(P ) is referred to as a livelock if and only if:

∀M ′∈R(N , M)
(
R(N , M ′) =R(N , M)

)
(2.11)

Several classes of Petri nets exist, either based on graph-theoretical/structural
properties based on behavioural properties. In the context of this thesis, we consider



36 Preliminaries

the structural notion of workflow nets and several (behavioural) notions of soundness.
We primarily base our definitions on [2, 8].

A workflow net is any arbitrary Petri net that has an additional set of structural
properties. Workflow nets were introduced as a modelling notation for process oriented
information systems and typically describe the behaviour of an instance of such a
process. Therefore, a workflow net needs to specify a clear start- and corresponding
end point of the process it describes. Furthermore, it is not allowed to consist of
multiple detached parts.

Definition 2.3 (Workflow net). Let N = (P,T,F,λ) be a Petri net with labelling function
λ : T →Σ∪{τ}. Let pi , po∈P with pi 6= po . Petri net N is a workflow net (WF-net) if and
only if:

1. •pi =;
2. po• =;
3. Let t ∉ T , the Petri net N ′ = (P,T∪{t },F∪{(t , pi ), (po , t )},λ) is strongly connected, i.e.

there is a directed path between each pair of nodes in N ′.

In some cases, we alternatively write a Petri net, of which we know it is a workflow
net, as N = (P,T,F,λ, pi , po), i.e. to explicitly indicate the unique source- and sink place.
Observe that the Petri net presented in Figure 2.5 in fact adheres to 2.3 and is thus a
workflow net.

2.3 merely specifies structural/graph-theoretical properties of a Petri net, i.e. given
a workflow net, we have limited capabilities to reason about its quality, e.g. whether
or not it is free of deadlocks. To this end, we define several behavioural classes for
Petri nets which allow us to reason about the behaviour described by the Petri net,
as well as its quality and correctness as a process model. Prior to this, we present
two behavioural properties which we subsequently utilize within the definitions of the
behavioural classes.

Definition 2.4 (Liveness, Boundedness). Let N = (P,T,F,λ) be a Petri net with labelling
function λ : T →Σ∪{τ} and let M∈B(P ) be a marking of N .

• Marked net (N , M) is live if and only if:

∀M ′∈R(N , M), t∈T
(∃M ′′∈R(N , M ′)

(
(N , M ′′)[t〉)) (2.12)

• Marked net (N , M) is k-bounded (k∈N) if and only if:

∀M ′∈R(N , M), p∈P
(
M ′(p) ≤ k

)
(2.13)

In case a Petri net is 1-bounded, we call such net safe. Note that any k-bounded
Petri net has a strictly finite set of reachable markings, i.e. R(N , M) is a finite set. As
such, whenever R(N , M) is finite, we know that (N , M) is bounded.

We subsequently define different increasingly strict variants of soundness of work-
flow nets.
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Definition 2.5 (Easy Soundness). Let N = (P,T,F,λ, pi , po) be a workflow net with
labelling function λ : T →Σ∪{τ}. N is easy sound if and only if:

[po]∈R(N , [pi ]) (2.14)

Observe that easy soundness guarantees that if we place a token in the initial place
pi of a workflow net, it is possible to end up in a marking that only marks the sink
place po . As the name suggests, easy soundness is a rather weak correctness property
of a workflow net, i.e. we are only guaranteed that we are able to at least once correctly
mark the sink place po . A slightly stronger notion of behavioural correctness, which
is of particular interest in the context of this thesis, is relaxed soundness. Relaxed
soundness ensures us that we are able to fire each transition within the Petri net at
least once, and that we are, in the end, able to reach marking [po].

Definition 2.6 (Relaxed Soundness). Let N = (P,T,F,λ, pi , po) be a workflow net with
labelling function λ : T →Σ∪{τ}. N is relaxed sound if and only if:

∀t∈T
(
∃σ∈T ∗

(
(N , [pi ])

σ−→ (N , [po])∧ t∈∗σ
))

(2.15)

We finally introduce the notion of soundness which is the strongest correctness
notion defined in terms of workflow nets that we consider in this thesis.

Definition 2.7 (Soundness). Let N = (P,T,F,λ, pi , po) be a workflow net with labelling
function λ : T →Σ∪{τ}. N is sound if and only if:

1. (safeness) (N , [pi ]) is safe (i.e. ∀M∈R(N , [pi ]), p∈P
(
M(p) ≤ 1

)
).

2. (option to complete) ∀M∈R(N , [pi ])
(
[po]∈R(N , M)

)
.

3. (absence of dead parts) ∀t∈T
(∃M∈R(N , [pi ]) ((N , M)[t〉))

Thus, a sound workflow net guarantees us that there is only one deadlock, i.e.
[po]. Furthermore we are guaranteed that any place within the workflow net contains
at most one token at any point in time. Finally, we are guaranteed that we are able
to, from each reachable marking, eventually uniquely mark the sink place po . This
requirement implies an additional property, i.e. proper completion, which is formalized
as:

∀M∈R(N , [pi ])(po ∈+ M =⇒ M = [po]) (2.16)

This requirement is often presented alongside the other requirements, however, since
it is directly implied by the option to complete property, we omit it from 2.7.

Finally, observe that if a workflow net is sound, it is also relaxed sound. Moreover,
any relaxed sound workflow net is in turn easy sound. Observe that the Petri net
depicted in Figure 2.5 is a sound workflow net.
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(a) Example deterministic automaton.
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(b) Example probabilistic automaton.

Figure 2.6: Two example automata based on the underlying (deterministic) automaton A1 =
({q1, ..., q5}, {a,b,c,d}, {((q1, a), q2), ..., ((q4,d), q5)}, q1, {q5}).

2.2.2 Automata

In essence, Petri nets, as presented in subsection 2.2.1 allow us to describe a language,
i.e. a collection of sequences of letters (represented by transitions/labels). Here we
present the notion of (probabilistic) automata, which essentially allow us to describe
languages as well. The main difference with respect to Petri nets is the fact that within
an automaton we do not have the notion of a marking, i.e. it only consists of states
and transitions. Given a certain state, a number of transitions/actions are possible
which in turn define the next state.

Definition 2.8 (Automaton). A non-deterministic automaton (also non-deterministic
finite state machine) is a 5-tuple A = (Q,Σ,δ, q0,F ), where

• Q is a finite set of states,

• Σ is a finite set of symbols,

• δ : Q ×Σ→P (Q) is a transition relation,

• q0∈Q is the initial state,

• F⊆Q is the set of accepting states,

• ∀q∈Q\F (∃q ′∈Q, a∈Σ(q ′∈δ(q, a))): non-accepting states have outgoing arc(s).

In some cases we have |δ(q, a)| ≤ 1,∀q∈Q, a∈Σ. In such case the automaton is
deterministic, and, we alter the transition function to be simply δ : Q ×Σ9Q.

Consider Figure 2.6a, in which we depict an example deterministic automaton.
States of the automaton are visualized as circles, transitions are represented by arcs
with the corresponding label depicted next to the arc. The initial state is depicted by
means of a circle with an incoming arc labelled start. Final states are visualized by
means of a circle with a double border. A sequence σ∈Σ∗ is in the automaton’s lan-
guage if ((q0,σ(1)), q ′), ((q ′,σ(2)), q ′′), ..., ((q ′′′,σ(|σ|)), q f )∈δ and q f ∈F . From a graphical
perspective, any sequence corresponding to a path from the initial state to a accepting
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state is in the automaton’s language. For example, in Figure 2.6a the sequences 〈a,c,d〉
and 〈a,b,b,c,b,d〉 are in the language of the automaton.

In some cases, it is more likely that, within a state, a certain label occurs than
another label. To this end, we additionally define probabilistic automata, which
extend the notion of non-deterministic automata by including an additional transition
probability function.

Definition 2.9 (Probabilistic Automaton). Given a (non-)deterministic automaton
A = (Q,Σ,δ, q0,F ). A probabilistic automaton (PA) is a 6-tuple (Q,Σ,δ, q0,F,γ), where,
γ : Q ×Σ×Q → [0,1] is the transition probability function.

For the probability function we require:

1. If an arc labelled a connects q to q ′, then the corresponding probability is non-zero:

∀q, q ′∈Q, a∈Σ(
q ′∈δ(q, a) ⇔ γ(q, a, q ′) > 0

)
(2.17)

2. The sum of probabilities of outgoing arcs of a state q∈Q\F equals one:

∀q∈Q\F

(
∃a∈Σ(

δ(q, a) 6=;) =⇒
( ∑

a∈Σ

∑
q ′∈Q

γ(q, a, q ′)

)
= 1

)
(2.18)

3. The sum of probabilities of outgoing arcs of an accepting state q∈F is smaller than
one:

∀q∈F

(
∃a∈Σ(

δ(q, a) 6=;) =⇒
( ∑

a∈Σ

∑
q ′∈Q

γ(q, a, q ′)

)
< 1

)
(2.19)

For a given state q∈Q and label a∈Σ, we denote the conditional probability of observing
label a, whilst being in state q, as P (a | q), where:

P (a | q) = ∑
{q ′∈Q|q ′∈δ(q,a)}

γ(q, a, q ′) (2.20)

Consider Figure 2.6b in which we depict an example probabilistic automaton.
The underlying structure of the automaton is equal to the automaton presented in
Figure 2.6a. In this case however, when we are in state s2, label b occurs with
probability 2

3 , whereas label c occurs with probability 1
3 . Clearly, we are able to

compute the probability of the occurrence of a certain sequence of the automaton’s
language as well, i.e. since the transitions are independent we just need to multiply the
probability of occurrence of each transition related to the label present in the sequence.
For example, the probability of the sequence 〈a,c,d〉 is 1× 1

3 × 1
3 = 1

9 .
Observe that an accepting state is allowed to have outgoing arcs. For example,

consider Figure 2.7, in which accepting state q5 describes that an activity with label
e can be observed with probability 1

2 . We accordingly define the probability of not
observing any label for such an accepting state q as P (∅ | q) = 1− ∑

a∈Σ
P (a | q). Observe

that, Equation 2.19 ensures that P (∅ | q) > 0, i.e. P (∅ | q) = 0 contradicts the fact that q
is an accepting state.
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Figure 2.7: Probabilistic automaton in which the accepting state has an outgoing arc. The
accepting state q5 describes that an activity with label e can be observed with
probability 1

2 .

2.3 Event Data

Within process mining, we explicitly study event data recorded during the execution of
a certain (business) process. An event is considered any data record that is generated
during the execution of a process at the lowest possible level of granularity. As such,
we consider events to be the atoms of process mining data. In practice, the granularity
of an event depends on the application domain as well as the way that the behaviour
is recorded. In some cases, an event simply describes what activity of the process was
executed at what point in time. In other cases, events describe different stages of the
execution of a single activity, e.g. events relate to, amongst others, scheduling, starting,
suspending, resuming and completing the activity. Moreover, an event typically records
additional information such as the resource that executed the corresponding activity, a
customer’s account balance, a loan request amount, document ID’s, etc.

2.3.1 Event Logs

As exemplified by the event log provided in Table 1.1 (in chapter 1, section 1.1 on
page 4), an event is a value assignment of a set of (domain specific) attributes. For
example, reconsider the first event depicted for Patient-id 1237. It assigns value 1533 to
attribute Event-id, value 1237 to attribute Patient-id, value ER Registration to attribute
Activity and so on. The number of available event attributes differs per application
domain, i.e. data recorded in healthcare processes differs from the data recorded in a
process originating from the financial domain. Moreover, within the same application
domain, different data are logged across different processes, i.e. for different processes
companies use different supporting information systems, possibly provided by different
vendors. Finally, even within the same process some attribute values, are not available,
or even defined, e.g. due to information system updates, when events are recorded.
Therefore, when formalizing the notion of events, we do not explicitly characterize
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the associated attributes. We merely define an event as a tuple of data values that at
least contains a case identifier which allows us to deduce to what process instance the
event belongs. For example, in Table 1.1, the Patient-id column is a candidate to act as
a case identifier, i.e. it allows us to deduce for what patient, an instance of the process
is executed. Moreover, we assume that each event captured within the data relates
to the execution of an activity within the process. Any other type of data is simply
referred to as additional payload.

Definition 2.10 (Event, Event Projections). Let E denote the universe of events. Given
an event e∈E , we assume the existence of the following projection functions:

• Case projection

Let C denote the set of all possible case identifiers, i.e. a case identifier c∈C

uniquely identifies the process instance to which the event belongs. We define the
corresponding projection function πc : E →C .

• Activity projection

Let A denote the set of all possible activities, i.e. an activity a∈A describes a well-
defined activity within a process. We define the corresponding projection function
πa : E →A .

• Arbitrary payload projection

Let D denote the universe of data values for arbitrary event payload. Let A denote
the universe of data attributes, and, let d∈A denote such arbitrary data attribute.
We define the corresponding projection function πd : E 9D. Observe that πd is a
partial function, as not every event is necessarily describing a value for the data
attribute d.

Observe that, according to 2.10, the case- and activity projection are total functions,
i.e. we are always able to access a corresponding value. Opposed to projection
functions, we use an indicative symbol referring to the name of the data attribute to
access it, rather than its index in the underlying Cartesian product. We primarily do so
for clarity, i.e. from a technical point of view, the universe of events can be seen as a
collection of tuples.

We use one specific attribute that represents the case identifier, i.e. c, which allows
us to identify to what instance of the process the event belongs. However, note that,
depending on the underlying process, multiple case notions exist. Consider that we
store data related to students following several courses offered at a university, e.g.
we record attendance of lectures, results for (practice) exams, etc. In such case, we
are both able to use a student as a case identifier as well as an individual course. In
case we use the student (represented by his/her student identifier) as a case identifier,
we are considering the behaviour of students across several courses. However, if we
consider the course as a case identifier, we study the behaviour of several students
with respect to that course. For the purpose of this thesis, we simply assume that, in
each possible process, for each event at least one primary, unique, case identifier exists.
For any other attribute, except the activity attribute, the corresponding projection
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function is partial, i.e. for some events no value is available. Consider the first
event depicted in Table 1.1, i.e. e1533, for which we have, when taking the Patient-id
as a case identifier: πc(e1533) = 1237, πa(e1533) = ER Registration, πtime stamp(e1533) =
22-10-2014T11:15:41, πresource(e1533) = 122A1, πleucocytes(e1533) =∅, etc.

During the execution of a process, events are recorded in the underlying informa-
tion system, i.e. in event logs. Moreover, the case identifier typically ties a subset of
events together, e.g. reconsider all events in Table 1.1 related to Patient-id 1237. Typic-
ally, even though not explicitly listed in 2.10, a time-stamp attribute is (omni)present
as well. This allows us to order the events recorded into a sequence. In the context
of this thesis, we do not assume that every event comprises of a timestamp, however,
we do assume that there exists a strict partial order amongst the events. Observe that,
such strict partial order can also be obtained by maintaining the order in which the
events are returned by the data base query used to obtain them from the information
system.

Definition 2.11 (Event Log). Let E denote the universe of events and let ≺ be an
associated strict partial order. An event log is a strictly finite sequence of events, i.e. L∈E ∗,
as induced by the strict partial order ≺, such that:

1. ∀1 ≤ i < j ≤ |L|(L(i ) ≺ L( j )
)
; The log respects the corresponding total order.

2. ∀i , j∈{1, ..., |L|}(L(i ) = L( j ) =⇒ i = j
)
; Each event occurs exactly once in the event

log.

Thus, as defined in 2.11, an event log is a finite sequence of events. A large majority
of the existing process mining algorithms however considers an additional projection
on the event log, i.e. the notion of a trace. A trace refers to a subsequence of events of
the event log, all of which are related to the same case identifier, and thus, the same
underlying process instance.

Definition 2.12 (Trace). Let L∈E ∗ be an event log. A trace, related to a process instance
as identified by case identifier c∈C , is a sequence σ∈E ∗ for which:

1. σ⊆∗ L; Traces are subsequences of event logs.

2. el em(σ) = {e∈L |πc(e) = c}; The trace contains all events related to c

Given an event log L, we let tr aces(L)∈P (E ∗) denote the collection of the traces described
by the event log.

A trace is a sequence of events, related to the same case identifier, that respects the
event log’s strict partial order. Therefore, an alternative way to interpret an event log
is as a collection of traces.

2.3.2 Control-Flow Perspective

The explicit notion of traces plays a central role in most process mining algorithms.
Furthermore, several techniques ignore large parts of the additional payload present
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∞· · · (1237, ML A, · · · ), (5427,ERR, · · · ), (5427, ML, · · · ), (5427, MC , · · · ), (5427, ML A, · · · ), (1237,ERT, · · · ) · · ·

Figure 2.8: Example event stream S.

in events and just focus on the activities performed for cases. This view is achieved by
projecting each trace in an event log on its corresponding activities, i.e. given σ∈L we
apply πa∗ (σ). Thus, we transform each trace within the event log into a sequence of
activities, which is known as the control-flow perspective. To this end, we define the
notion of a simple event log, which explicitly adopts the aforementioned control-flow
oriented projection.

Definition 2.13 (Event Log, Simple). Let L∈E ∗ be an event log. A corresponding simple
event log L̃∈B(A ∗) represents the control-flow perspective of event log L, i.e.

L̃ = ⊎
σ∈tr aces(L)

πa∗ (σ) (2.21)

Observe that a simple event log is a multiset of sequences of activities, as multiple
traces of events are able to map to the same sequence of activities. As such, each
member of a simple event log is referred to as a trace, yet each sequence σ∈A ∗ for
which L̃(σ) > 0 is referred to as a trace-variant. Thus, in case we have L̃(σ) = k, there
are k traces describing trace-variant σ, and, the cardinality of trace-variant σ is k.

In some cases, we are only interested in the set of activities A⊆A for which at least
one event is present in the event log that describes such activities. We define such a
set, given an event log L∈E ∗, as AL = {a∈A | ∃e∈∗L (πa(e) = a)}, or equivalently, in case
of a simple event log L̃, we have AL̃ = {a∈A | ∃σ∈L̃(a∈∗σ)}.

2.3.3 Event Streams

In this thesis, we assume the main type of data to be an event stream, rather than
an event log. In essence, an event stream is a data stream (section 1.2) in which we
assume the data packets to be events. We adopt the notion of online/real-time event
stream-based process mining, in which the data is assumed to be an infinite sequence
of events. Since in practice, several instances of a process run in parallel, we have no
guarantees with respect to the arrival of events related to the same process instance.
Thus, new events related to a certain process instance are likely to be emitted onto the
stream in a dispersed manner. This implies, that our knowledge of the activities related
to process instances changes over time. Consider Figure 2.8, in which we depict a few
of the events (compact notation) that we also presented in the event log of Table 1.1.
The first event visualized, i.e. represented as (1237, ML A, · · · ), refers to the event with
event-id 1536 in Table 1.1, i.e. it relates to the execution of the Measure Lactic Acid
activity executed for patient 1237. The four subsequent events relate to the treatment
of the patient with patient-id 5427, after which the final event depicted in Figure 2.8
again relates to patient 1237.

We formally define an event stream, like an event log, as a sequence of unique
events. However, we explicitly assume the stream to be of infinite size.
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Definition 2.14 (Event Stream). An event stream S is an infinite sequence of unique
events, i.e. S∈E ∗ s.t. dom(S) =N∧∀i , j∈N(

S(i ) = S( j ) =⇒ i = j
)
.

Observe that an event stream is infinite both in terms of the past and the future.
This implies that, prior to the point in time at which we start observing an event
stream, an infinite number of events was potentially already emitted onto the stream.
Similarly, in the future, an infinite number of events will be emitted onto the event
stream. Therefore, given an event stream S∈E ∗ and any i∈N, in the remainder of this
thesis, S(i ) relates to the i th event observed on the stream.

Given an event stream S, we define ES = el em(S). In the context of this thesis
we assume that the order of arrival of events defines a strict partial order on the
events emitted, i.e. the stream characterizes strict partial order (ES ,≺). We furthermore
assume that the order of arrival of events on the event stream is in line with the actual
order of execution. We also assume that event arrival is an atomic operation and do
not assume the existence of a multiple channel stream.

2.4 Process Mining

In this section, we present preliminary concepts, specific to the field of process mining,
which are essential for this thesis. We provide a formal definition of process discovery
algorithms, as well as commonly used data structures in process discovery. We further-
more present the notion of alignments, and finally, several quality metrics which are
used for the evaluation of the different techniques presented in this thesis.

2.4.1 Process Discovery

In this section, we introduce preliminary concepts related to process discovery. In
particular, we formalize process discovery as a function, mapping an event log into
a process model. Secondly, we present common data abstractions, used by different
process discovery algorithms.

As described in subsection 1.1.1, the main aim of offline process discovery is to
discover a process model, given an event log. Given that an event log is defined
as a sequence of events, we define process discovery as a function mapping a finite
sequence of events to a process model of an a arbitrary formalism.

Definition 2.15 (Process Discovery Algorithm). Let E denote the universe of events. A
process discovery algorithm α is a function that, given a finite sequence of events, discovers
a process model, i.e. α : E ∗ →M .

Intermediate Representations

The majority of existing conventional process discovery algorithms share a common
underlying algorithmic mechanism. As a first step, the event log is transformed into
a data abstraction of the input event log, in this thesis alternatively referred to as
an intermediate representation, on the basis of which they discover a process model.
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Additionally, several process discovery algorithms actually use the same, or very similar,
intermediate representations. In this section, we therefore formalize the directly follows
relation, i.e. a commonly used intermediate representation. Furthermore, we briefly
discuss alternative intermediate representations and refine process discovery in the
context of intermediate representations.

The directly follows relation The directly follows relation can be considered as a
cornerstone of process discovery algorithms, i.e. numerous discovery algorithms use it
as a primary/supporting artefact, to discover a process model. As an illustrative ex-
ample, consider 2.2, in which we illustrate the notion of the directly follows abstraction,
i.e. as used by the Alpha algorithm [11].

Example 2.2 (The directly follows relation and the Alpha algorithm). Consider a
simple event log describing only two types of traces, i.e. L̃ = [〈a,b,c,d〉,〈a,c,b,d〉]∈B(A ∗).
Given such an event log, the Alpha algorithm computes a directly follows relation, which
counts the number of occurrences of direct precedence relations amongst the different
activities present in the event log. Activity a is directly followed by activity b, written
as a > b, if there exists a simple trace in the given event log of the form σ=σ′ · 〈a,b〉 ·σ′′
(here both σ′ and σ′′ are potentially empty, i.e. ε). Hence, in our example, we deduce
a > b, a > c, b > c, b > d , c > b, c > d , which all occur once. Using these relations as a
basis, the Alpha algorithm constructs a process model, in the form of a Petri net.

As 2.2 shows, an event log is first translated into a directly follows relation, which is
subsequently used to discover a process model. We formally define the directly follows
relation in 2.16.

Definition 2.16 (Directly Follows Relation). Let L∈E ∗ be an event log. The directly
follows relation >L , is a multiset over A ×A , i.e. >L̃ ∈B(A ×A ), for which, given a,b∈A :

>L (a,b) = ∑
σ∈+L

∣∣ {i∈ {1, ..., |σ−1|} |πa(σ(i )) = a ∧πa(σ(i +1)) = b}
∣∣ (2.22)

We write a >L b if (a,b) ∈+>L, and a≯L b if (a,b) ∉+>L.

Process discovery algorithms such as the Inductive Miner [78], the Heuristics
Miner [121, 122], the Fuzzy Miner [66], and most of the commercial process mining
tools use (amongst others) the directly follows relation as an intermediate structure.

Alternative representations Several process discovery algorithms have been pro-
posed [22, 37, 106, 123, 131, 133, 137], that are inspired by language-based region
theory [21]. Region theory and process discovery are conceptually close, i.e. the
goal is to discover a process model from sequential data, yet typically differ on the
requirements posed on the resulting process models. In these approaches, the event
log is typically transformed into its prefix-closure. In some cases, the elements of the
prefix-closure serve as a basis for an additional abstraction, e.g. constraints of an ILP.
We present the exact characterization of these constraints in more detail in section 6.2.
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Other work, translates the event log into an automaton [10].4 Subsequently, on
the basis of state-based region theory[21], such an automaton is transformed into a
Petri net.

Process discovery with intermediate representations We refine conventional pro-
cess discovery, i.e. a presented in 2.15, by splitting the discovery function α into two
steps. In the first step, the event log is translated into the intermediate representation
as used by the discovery algorithm. In the second step, the intermediate representation
is translated into a process model. In the remainder we let TI denote an interme-
diate representation type, whereas, UTI denotes the set of all possible intermediate
representations of type TI.

Definition 2.17 (Abstraction Function; Event Log). Let TI denote an arbitrary interme-
diate representation type. An abstraction function λTI is a function mapping a multiset of
sequences of activities to an intermediate representation of type TI.

λTI : E ∗ →UTI (2.23)

For example, we consider the concept of a directly follows relation as a specific type
of intermediate representation. Any actual directly follows relation is thus part of the
corresponding universe of directly follows relations.

Using 2.17, we define process discovery in terms of intermediate representations
in 2.18.

Definition 2.18 (Process Discovery Algorithm - Intermediate Representation). Let
TI denote an intermediate representation type. Let M denote the universe of process
models. An intermediate representation based process discovery algorithm αTI maps an
intermediate representation of type TI to a process model.

αTI : UTI →M (2.24)

Observe that the second step of the Alpha algorithm as described in 2.2, i.e.
translating the directly follows abstraction into a Petri net, is an example instantiation
of the abstraction function defined in 2.18. Every discovery algorithm that uses an
intermediate representation internally can be expressed as a composition of the λTI

and αTI functions. Thus, given an event log L∈E ∗ and an intermediate representation
type TI, we obtain α(L) =αTI (λTI (L)). For example, consider Figure 2.9 depicting the
Alpha algorithm in terms of αTI and λTI .

2.4.2 Alignments

Reconsider the the Petri net depicted in Figure 2.5. Furthermore, assume we are given
a full trace of events, which, projected onto activities, looks as follows: 〈a,b,c,d ,e〉.
We observe that, by firing transitions t1, t2, t3, t5 and t7, such sequence of activities is

4Also referred to as transition systems, yet typically, an initial state and accepting states are identified as
well.
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Event Log

L∈E ∗
λTI
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b · · ·c
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Directly Follows Relation

αTI

Process Model

Figure 2.9: The Alpha algorithm in terms of its intermediate representation. Here, the interme-
diate representation is a directly follows relation.

γ1 :
a b c d e
t1 t2 t3 t5 t7

γ2 :
x a À d e z
À t1 t3 t4 t7 À

Figure 2.10: Example alignments for 〈a,b,c,d ,e〉 and 〈x, a,d ,e, z〉 with the Petri net presented in
Figure 2.5.

produced by the Petri net in Figure 2.5. Hence, to explain the trace of events in terms
of the process model, it is rather easy to relate it to a sequence of transition firings
which results in the same sequence of activity labels, after applying the Petri net’s
corresponding labelling function λ. Consider γ1 in Figure 2.10, in which we present
such a relation, i.e. an alignment of the simple trace 〈a,b,c,d ,e〉 and the example net
N1 of Figure 2.5.

If we alternatively consider another example trace, e.g. 〈x, a,d ,e, z〉, we observe
several problems. For example, activities x and z are not labels of the Petri net, and
thus never correspond to the execution of a transition within the Petri net. Furthermore,
according to the Petri net, at least an activity c (represented by transition t3) must be
executed in-between activity a and d . Alignments allow us to identify and quantify the
aforementioned problems, and moreover, allow us to express deviations in terms of
the reference model. Conceptually, an alignment relates the execution of transitions
in a Petri net and the activities observed in a simple trace σ∈A ∗ in a given (simple)
event log. Observe Figure 2.10, in which we present alignments for the simple traces
〈a,b,c,d ,e〉 and 〈x, a,d ,e, z〉 with respect to the Petri net presented in Figure 2.5.

Alignments are sequences of pairs, e.g. γ1 = 〈(a, t1), (b, t2), ..., (e, t7)〉. Each pair within
an alignment is referred to as a move. The first element of a move refers to an activity
of the trace, whereas the second element refers to a transition. The goal is to create
pairs of the form (a, t ) s.t. λ(t ) = a, e.g. all moves in γ1 are of this form. The sequence
of activity labels in the alignment needs to equal the input trace (when ignoring the
À-symbols). The sequence of transitions in the alignment needs to correspond to a
σ∈T ∗, such that, given the designated initial marking Mi and final marking M f of the
process model, we have Mi

σ−→ M f (again ignoring the À-symbols). For the Petri net
presented in Figure 2.5, we have Mi = [pi ] and M f = [po]. In some cases, we are not
able to construct a move of the form (a, t ) s.t. λ(t ) = a. In case of trace 〈x, a,d ,e, z〉,
we are not able to relate x and z to any transition in the Petri net. Furthermore, we
at least need to execute transition t3, with activity label c (not present in the trace),
in order to form a sequence of transitions that leads to marking M f , starting from
Mi . In such cases, we use the skip-symbol À in either the activity- or the transition
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γ2 :
x a À d e z
À t1 t3 t4 t7 À γ3 :
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Figure 2.11: Two possible alignments for 〈x, a,d ,e, z〉 and N1, as presented in Figure 2.5.

part of a move, in order to indicate that either an activity is observed that we are not
able to relate to the execution of a transition, or, an activity was not observed that
should have been observed, according to the process model. For example, consider γ2

in Figure 2.10, which contains three skip-symbols. Verify that again, when ignoring
skip-symbols, the sequence of activity labels equals the input trace, and, the sequence
of transitions is valid firing sequence for Mi and M f . If a move is of the form (a, t ) we
call this a synchronous move, (a,À) is an activity move and (À, t ) is a model move.

Note that, in some cases, we need to construct activity moves, even though the label
of the activity move is part of the Petri net. In the example, any simple trace of the form
〈a, a, ...〉, either has a corresponding alignment 〈(a, t1), (a,À), ...〉 or 〈(a,À), (a, t1), ...〉,
i.e. an alignment of the form 〈(a, t1), (a, t1), ...〉 violates the fact that the transition part
of the alignment corresponds to an element of the net’s language, since such a trace
cannot contain two executions of t1. Furthermore, note that, some transitions have
no observable activity label, i.e. transitions t with λ(t ) = τ. These transitions are often
used for routing purposes, e.g. we use t6 in the Petri net presented in Figure 2.5 to
loop back in the process. Clearly, it is not possible to observe the execution of such
a transition. Hence, we always construct moves of the form (À, t ), e.g. (À, t6) in the
context of the Petri net presented in Figure 2.5. Even-though these moves are model
moves, we often treat them as synchronous moves in the underlying algorithm that is
used to compute alignments.

Definition 2.19 (Alignment [13]). Let σ∈A ∗. Let N = (P,T,F,λ) be a Petri net and
let Mi , M f denote N ′s initial and final marking. Let À∉ A∪T∪Σ∪{τ}. A sequence
γ∈((A∪{À})× (T∪{À}))∗ is an alignment if and only if:

1. (π1(γ))↓A
=σ; activity part (excluding À’s) equals σ.

2. (N , Mi )
(π2(γ))↓T−−−−−−→ (N , M f ); transition part (excluding À’s) in Petri net language.

3. ∀(a, t )∈∗γ (a 6=À∨t 6=À); (À,À) is not valid in an alignment.

We let Γ denote the universe of alignments and let Γ(N ,σ, Mi , M f ) denote all alignments
of N and σ given Mi and M f .

Given the definition of alignments as presented in 2.19, several alignments, i.e.
sequences of moves adhering to 2.19, exist for a given trace and Petri net. For example,
consider alignment γ3 depicted in Figure 2.11 which, according to 2.19 is an alignment
of 〈x, a,d ,e, z〉 and N1 as well. The main difference between γ2 and γ3, i.e. both
aligning trace 〈x, a,d ,e, z〉 with N1, is the fact that γ2 binds the execution of t4 to the
observed activity d , whereas γ3 binds the execution of t5 to the observed activity
d . Clearly, both explanations are possible, however, to be able to bind the executed
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activity d to t5, alignment γ3 requires the explicit execution of transition t2 as well.
Since activity b is not observed in the given trace, we observe the presence of move
(À, t2) in γ3, which is not needed in γ2. Both alignments are feasible, however, we
prefer alignment γ2 over γ3 as it minimizes non-synchronous moves, i.e. moves of the
form (a,À) or (À, t ).

As exemplified by alignments γ2 and γ3, we need means to be able to rank and
compare alignments and somehow express our preference of certain alignments with
respect to others. To this end we define a cost-function over the moves of an alignment.
The cost of an alignment is simply the sum of the costs of its individual moves. Typically,
synchronous moves are assigned a low, or even 0, cost. The costs of model- and activity
moves are usually higher than the costs of synchronous moves. We formalize these
notions in 2.20.

Definition 2.20 (Alignment cost function [13]). Let A denote the universe of activities.
Let N = (P,T,F,λ) denote a labelled Petri net, where λ : T →Σ∪{τ} is the Petri net labelling
function. Let À∉A∪Σ∪{τ}. We define the move-cost-function as a function:

cm : (A∪{À})× (T∪{À}) →R≥0 (2.25)

Furthermore, given an instantiation of a cost-move-function cm , we define alignment cost
function

cΓ : ((A∪{À})× (T∪{À}))∗ →R≥0 (2.26)

We characterize ccm
Γ

, for a given γ∈((A∪{À})× (T∪{À}))∗, as:

ccm
Γ

(γ) =
|γ|∑

i=1
cm(γ(i )) (2.27)

Assume we assign cost 0 to synchronous moves and cost 1 to activity/model moves.
In this case the cost of γ1 is 0. The cost of alignment γ2 is 3, whereas the cost of
alignment γ3 is 4. Hence, the cost of γ2 is lower than the cost of γ3 and we prefer it
over γ2. In general, we are able to use an arbitrary instantiation of cm , however, in the
context of this chapter we explicitly assume the usage of the unit cost function.

Definition 2.21 (Alignment unit cost function). The unit cost function of alignments is
a function c1

move : (A∪{À})× (T∪{À}) →R≥0, where:

1. cm(a, t ) = 0 ⇔ a∈A , t∈T and λ(t ) = a or a =À, t∈T and λ(t ) = τ,

2. cm(a, t ) =∞⇔ a∈A , t∈T and λ(t ) 6= a,

3. cm(a, t ) = 1 otherwise.

Since we assume unit-costs throughout this chapter, for simplicity, we omit the
cost function sub- and superscript and simply write c(γ), rather than ccm

Γ
(γ). We

write γ? to refer to an optimal alignment, i.e. γ? = arg minγ∈Γ(N ,σ,Mi ,M f )c(γ). Thus, an
optimal alignment minimizes alignment costs. Consequently, computing an optimal



50 Preliminaries

γ1 :
a c d
t1 t3 t4

γ2 :
a À c d
t1 t2 t3 t5

Figure 2.12: Two prefix-alignments for 〈a,c,d〉 and N1.

alignment is simply defined as a minimization problem. It is important to note that
optimality in alignments is not a unique property, i.e. multiple optimal alignments
exist. Furthermore, in this thesis, we don’t discuss actually finding optimal alignments
in detail, i.e. we merely use the fact that an algorithm to find an optimal alignment
exists and we use it as a black-box.

In some cases, an event log contains fragments of behaviour related to process
instances that are not completed yet, i.e. processes that were still running when the
event data was extracted. Furthermore, when considering the topic of this thesis, i.e.
streams of events, it is likely that the behaviour we observe on the event stream largely
relates to uncompleted process instances. To this end, prefix-alignments, i.e. a relaxed
alternative to conventional alignments, can be used as an alternative. In essence, we
relax requirement two of 2.19 in such a way that after executing the transition part of
the alignment, the final marking M f can still be reached.

Definition 2.22 (Prefix-Alignment [13]). Let σ∈A ∗ be a (unfinished) sequence of
activities. Let N = (P,T,F,λ) be a Petri net with labelling function λ : T → Σ∪{τ} and
let Mi , M f denote N ′s initial and final marking. Let À∉ A∪T∪Σ∪{À}. A sequence
γ∈((A∪{À})× (T∪{À}))∗ is a prefix-alignment if and only if:

1. (π1(γ))↓A
=σ; activity part (excluding À’s) equals σ.

2. ∃σ′∈T ∗
(
(N , Mi )

(π2(γ))↓T ·σ′
−−−−−−−−→ (N , M f )

)
; the final marking M f can still be reached

after firing the sequence of transitions described in the prefix-alignment in the
given Petri net.

3. ∀(a, t )∈∗γ (a 6=À∨t 6=À); (À,À) is not valid in a prefix-alignment.

We let Γ denote the universe of prefix-alignments and let Γ(N ,σ, Mi , M f ) denote all
prefix-alignments of N and σ given Mi and M f .

Consider Figure 2.12, in which we depict two example prefix-alignments of in-
complete trace 〈a,c,d〉 and the running example Petri net of Figure 2.5. Observe
that, for both alignments we need to either append 〈t7〉 or 〈t8〉 to obtain marking
M f , and thus, the relaxed requirement 2 of 2.22 is satisfied. Similar to conventional
alignments, several prefix-alignments exist that correctly align a prefix and a Petri net.
Hence, we again need means to rank and compare prefix-alignments. For example, in
Figure 2.12, we prefer γ1 over γ2, since it only contains synchronous moves whereas
γ2 contains a (unnecessary) model move. Since a prefix-alignment, like a conventional
alignment, is a sequence of moves, the cost of a prefix-alignment is defined in the
exact same manner as the costs of conventional alignments, i.e. it is simply the sum
of the costs of its individual moves. Observe that cost function cΓ is, in 2.20, defined
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over a sequence of moves, and thus, given some prefix-alignment γ, cΓ(γ) is readily
defined. As a consequence, we again have the notion of optimality. For example, γ1
is an optimal prefix-alignment for 〈a,c,d〉 and N1. In this case we denote an optimal
prefix-alignment for a given σ∈A ∗ and Petri net N as γ?.

2.4.3 Computing (Prefix-)Alignments

In [13] it is shown that computing an optimal, conventional, alignment is equivalent
to solving a shortest path problem on the state-space of the synchronous product net of N
and σ. The exact nature of such synchronous product net and an equivalence proof
of the two problems is outside of the scope of this thesis, i.e. we merely use existing
algorithms for the purpose of (prefix-)alignment computation as a black box. We
therefore refer to [13] for these definitions and proofs. However, note that, to be able
to compute optimal alignments, the process model, i.e. Petri net N , is required to be
easy sound, cf. 2.5. Moreover, since within an easy sound Petri net, token generators
potentially exist, in practice the costs of a synchronous move, and moves of the form
(À, t ) where λ(t ) = τ in particular, are set to a very small number r∈R>0, where r << 1
(much smaller than 1, close to 0).

Any shortest path algorithm to compute conventional alignments, is easily altered
to compute prefix-alignments. In fact, in line with the relaxation of requirement two of
2.19, such alteration only consists of adding more states to the set of final states of the
search problem. Hence, to compute optimal (prefix-)alignments we are able to use any
algorithm designed for finding shortest paths in a graph. However, in [13, 127] the
A∗ algorithm [68] is proposed and evaluated. To compute conventional alignments,
the states in the state-space that correspond to the final marking of the Petri net
(together with explaining all behaviour of the trace) are used as the target states of
the shortest-path-search. In case of prefix-alignments, any state that still allows for
reaching a state that represents the final marking of the Petri net (again together with
explaining all behaviour of the prefix) is considered a target state.

As a concrete implementation for the purpose of alignment calculation exists, we
simply assume that we are able to utilize an oracle function ω, e.g. the algorithm
proposed in [13]. Since we primarily focus on the notion of prefix-alignments in
the remainder of this thesis, cf. chapter 7, we only define such an oracle for the
computation of prefix-alignments.

Definition 2.23 (Prefix-alignment oracle). Let N denote the universe of Petri nets, A

the universe of activities and let M denote the universe of markings. A prefix-alignment
oracle ω is a function of the form:

ω : N ×A ∗×M ×M → Γ (2.28)

Where ω(N ,σ, Mi , M f )∈Γ(N ,σ, Mi , M f ) and optimal for σ and N .

Observe that, the alignment oracle takes a Petri net, a trace and two markings,
one representing the start- and one representing the target marking of the underlying
search. We assume it is able to return an optimal prefix-alignment.
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2.4.4 Measuring Quality in Process Mining

In this section, we describe the different means that are used to evaluate the results
of the different algorithms proposed in this thesis. Some of these techniques and/or
quality metrics originate from the more broad domain of data mining, whereas others
are more process mining specific.

Evaluation of Binary Classification

A commonly studied problem in data mining, is binary classification. In binary classific-
ation, one aims to predict, for unlabelled data instances, a corresponding classification
which is only allowed to be one of two values.

For example, assume that we are given certain data attributes related to the
characteristics of a natural person, e.g. the type of sports he/she performs (if any),
height, weight, etc. Based on this data, we construct an algorithm that predicts
whether or not the person smokes. When the algorithm predicts a value true, this
represents the prediction that the person is expected to smoke. When the algorithm
predicts a value false, this represents the prediction that the person is not expected to
smoke. Furthermore, in the context of this example, we assume that a predicted value
true is alternatively referred to as a positive prediction.5 If we now run the algorithm
on a large body of data, of which we actually know whether the people described in
the data smoke or not, we are able to categorize each prediction in the following way:

• True Positive (TP)

The prediction is a positive label, and, the data element is actually of this type.
In the context of our example, we predict a smoker to smoke.

• False Positive (FP)

The prediction is a positive label, yet, the data element actually has a negative
label. In the context of our example, we predict a non-smoker to smoke.

• True Negative (TN)

The prediction is a positive label, and, the data element is actually of this type.
In the context of our example, we predict a non-smoker not to smoke.

• False Negative (FN)

The predict is a negative label, yet, the data element actually has a positive label.
In the context of our example, we predict a smoker to be a non-smoker.

Clearly, a perfect predictor only predicts the classes T P and T N , i.e. it always
predicts correctly. However, since such a perfect predictor often does not exist, there
exist several quality metrics, derived from the label classification, that allow us to judge
the quality of a predictor. In the remainder, let |T P | denote the number of predictions
of the T P class, let |F P | denote the number of predictions of the F P class, etc. Here,
we list the derived quality metrics that are of interest in the context of this thesis.

5Even-though this in no way implies that smoking needs to be perceived as being positive.
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• recall = |T P |
|T P |+|F N | .

Ratio of correctly predicted positive instances, relative to all positive instances in
the data. Recall is a value in the range [0,1] and is 0 if none of the instances is
correctly predicted to be positive. It is 1, if all positive instances in the data are
predicted as such.

• precision = |T P |
|T P |+|F P | .

Ratio of correctly predicted positive instances, relative to all predicted positive
instances in the data. Precision is a value in the range [0,1] and is 0 if none of
the instances is correctly predicted to be positive. It is 1, if no negative instance
is falsely predicted to be positive.

• F1 Score = 2 · precision·recall
precision+recall

The F1 Score represents the harmonic mean of precision and recall. It allows us
to measure the accuracy of a binary classifier.

To evaluate some experiments conducted in the context of this thesis, we use the
aforementioned binary classification with the corresponding accuracy metrics. Clearly,
the definition of T P , F P , etc., depends on the particular aim of the algorithm under
study.

Process-Mining-Based Replay-Fitness and Precision

Apart from the metrics described in the previous section, i.e. originating from binary
classification, the majority of the techniques presented in this thesis is evaluated on
the basis of process mining quality metrics, i.e. as briefly presented in subsection 1.1.4.
Here, we again highlight these quality metrics, and indicate, if applicable, their
interaction with the different process mining artefacts, i.e. event data and/or process
models.

• Replay-Fitness

Quantifies to what degree a given process model describes the behaviour as
captured in the event log. Let L∈E ∗ and let L̃∈A ∗ denote the corresponding
simple view on the event log. Furthermore, let M∈M denote a model of arbitrary
formalism over set of labels Σ, and let L(M)∈Σ∗ denote the model’s language.6

In case L̃⊆L(M), the replay-fitness equals 1. In case L̃∩L(M) = ;, the replay-
fitness equals 0. Furthermore, in case ;⊂ L̃\L(M) ⊂ L̃, the replay-fitness value
f is typically 0 < f < 1, and gets closer to 1 for small values of |L̃\L(M)|. The
exact value fitness value in such a case typically depends on the underlying
implementation of the metric.

• Precision

6Observe that the set of labels Σ used in a model and the set of possible activities A are not necessarily
equal.
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Quantifies to what degree a given process model describes behaviour that is not
observed in the event log. Let L∈E ∗ and let L̃∈A ∗ denote the corresponding
simple view on the event log. Furthermore, let M∈M denote a model of arbitrary
formalism over set of labels Σ, and let L(M)∈Σ∗ denote the model’s language. In
case L(M)⊆L̃, the precision equals 1. Furthermore, in general, when |L(M)\L̃|
increases, the precision value is expected to decrease. Again, the exact value
depends on the underlying implementation of the metric.

• Generalization

Quantifies to what degree a given process model generalizes beyond the beha-
viour observed in the event log. Let L∈E ∗ and let L̃∈A ∗ denote the corresponding
simple view on the event log. Furthermore, let M∈M denote a model of arbitrary
formalism over set of labels Σ, and let L(M)∈Σ∗ denote the model’s language.
We assume that M was constructed, in some way, on the basis of L. Finally, let
L′∈E ∗ be an event log from the same underlying process, i.e. with respect to L,
s.t. L∩L′ =;. In general, the larger |L̃′∩L(M)|, the higher the generalizing ability
of the model.

• Simplicity

Quantifies to what degree a given process model is interpretable by a human
analyst. Simplicity typically only considers the model, i.e. it ignores the underly-
ing event log. There is no definitive simplicity measure defined, however, often
metrics such as average number of transitions/places are used. Furthermore,
graph complexity measures are used as well.

A more detailed discussion on the theoretical foundations and properties of the afore-
mentioned metrics, in particular regarding replay-fitness, precision and generalization,
we refer to [5, 109].

2.5 Running Example

In this thesis, we use a simple running example to clarify, where needed, complex
concepts. The running example is based on a simplified, fictive, process related to an
online ID verification process, i.e. as already presented in Figure 2.5. However, we
introduce two variants of the running example, as shown in Figure 2.13 on page 55.

The model in Figure 2.13a is the same as the model presented earlier, i.e. Figure 2.5.
It describes that after receiving the ID, we are able to perform the scan picture- and
scan watermark activity concurrently, of which scanning the picture is optional. After
a verification step, we either activate- or block the account, or, we again scan the
picture and watermark. However, the decision to rescan these artefacts is not explicitly
captured within the information system.

The main difference between the models depicted in respectively Figure 2.13a and
Figure 2.13b relates to the presence of duplicate transition labels and unobservable
transitions. In Figure 2.13b we do not have an unobservable transition, i.e. such as t6

in Figure 2.13a, nor duplicate transition labels, i.e. such as t4 and t5 in Figure 2.13a.
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(a) Running example; A Petri net with unobservable transitions and duplicated transition labels.
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(b) Simplified running example; A Petri net without unobservable transitions and only consisting of unique
transition labels.

Figure 2.13: Running example processes related to an online ID verification process, modelled
as Petri nets.
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Figure 2.14: A Petri net with an unobservable transition and a duplicate transition label, de-
scribing the same behaviour as the Petri net depicted in Figure 2.13b.

As a consequence, in the Petri net of Figure 2.13b, we always need to execute both
the picture and the watermark scan. Moreover, when rescanning the picture and
watermark, we always observe a preceding retry activity.

Finally, note that, it is also possible to construct a Petri net with similar behaviour
with respect to Figure 2.13b, that does have silent transitions and/or duplicate labels.
For example, consider Figure 2.14, in which we present such a Petri net. In this case,
we have a (non)-functional unobservable transition t ′1 in the beginning of the process,
i.e. after transition t1. Moreover, transition t ′4, like transition t4, describes label d .



Chapter 3
Efficient Event Storage: A Primer
for General Purpose Process
Mining

Conventional process mining techniques were designed to use event logs as an input.
As such, these techniques assume their source of data to be finite and static, rather than
infinite and dynamic and/or evolving. As a result, a direct adoption of offline process
mining techniques to the domain of event streams is not possible. In this chapter, we
propose a generic formal model that allows us to transform the events emitted on
an event stream into an event log. Such an event log can subsequently be used by
any arbitrary process mining algorithm. Moreover, the vast majority of techniques
presented in the subsequent chapters use and/or extend the formalism presented in
this chapter. We present several instantiations of the formal model using existing data
storage techniques ranging from different areas of data stream mining. We additionally
present a memory efficient instantiation that explicitly exploits behavioural similarity
among the different running process instances.
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Figure 3.1: The contents of this chapter, i.e. efficient event data storage techniques, highlighted
in the context of the general structure of this thesis.
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3.1 Introduction

The vast majority of offline process mining techniques is defined in the context of
event logs. Recall that an event log is defined as a finite sequence of events induced
by an underlying strict partial order, cf. 2.11 on page 42. Similarly, an event stream
is a sequence of events, yet it is of a strictly infinite fashion. Consequently, a natural
approach to lift existing process mining techniques to the domain of online event
stream based process mining, is to directly store the events emitted onto the event
stream in memory.

Storing the stream as a whole allows offline process mining algorithms to be
applied directly, as we store the same type of artefact, i.e. a sequence of events. Note
however, that this potentially requires an infinite amount of memory, i.e. it violates the
requirements as defined in the general streaming data model, cf. section 1.2.

To avoid the need for infinite memory, in this chapter, we present several approaches
to utilize existing methods and algorithms, originating from the field of data stream
mining/analysis, for the purpose of stream-based event storage. In particular, we
formalize the notion of an event store and show that the methods discussed comply
to the proposed formalization. An event store essentially describes a subsequence
of all events observed on the event stream so far, and thus, represents a finite view
on the stream under study. We additionally present new means to efficiently store
event data originating from the execution of a process by exploiting control-flow based
behavioural similarity among different running process instances.

We evaluate the proposed approach by means of several experiments. In particular,
we focus on the impact of the newly proposed storage technique with respect to. the
quality of the behavioural structure it allows us to deduce. Second, we investigate
the impact with respect to. memory usage. Our experiments show that we are able to
achieve comparable quality when using the newly proposed technique whilst needing
a considerably smaller memory footprint.

The remainder of this chapter is organized as follows. In section 3.2, we formalize
the notion of event stores, which represent subsequences of the events observed
thus-far on the input event stream. In section 3.3, we present several data storage
oriented techniques, originating from the data streaming domain, that fit the event
store formalization. In section 3.4, we present a newly designed storage technique
that exploits behavioural similarity amongst running process instances to decrease
memory usage and enhance process mining results. In section 3.6, we discuss related
work. Finally, section 3.7, concludes this chapter.

3.2 Event Stores

Throughout this chapter, we present several approaches that allow us to temporarily
store events emitted on an event stream and translate the corresponding set of events
into an event log. In this section, we present the notion of an event store, which
formalizes and generically captures the techniques presented.

We consider an event stream S∈E ∗ on which we, over time, receive new events.
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Table 3.1: Requirements and desiderata for instantiations/implementations of event stores.

Requirements
Requirement Description
RQ 1 Events in an event store respect the order as imposed by the stream.
Desiderata
Desideratum Description
DS 1 Events are not re-inserted after deletion.
DS 2 Removal of events respects the order as imposed by the underlying process instance.

We temporarily store these events in an event store Φ, which describes a time-evolving
sequence of events, based on the events observed on the stream in the past. The
sequence of events described by an event store is a finite subsequence of the input
event stream. Ideally, the event store represents a sequence of events recently emitted
on the event stream, however, this is not a necessity. We formalize the notion of an
event store in 3.1.

Definition 3.1 (Event Store). Let E denote the universe of events, let i , N∈N0 and let
S∈E ∗ be an event stream. An event store of size N at time i , describes a subsequence of
events, of maximal size N , of the first i events observed on S, i.e. Φi

N : E ∗ → E ∗, s.t.:

Φi
N (S)∈{σ∈E ∗ |σ⊆∗ S1...i ∧|σ| ≤ N } (3.1)

An event store describes a subsequence of the event stream, bounded by a maximum
size limit N . Observe that, even though we define an event stream as a function, we
only characterize the set of eligible sequences for any possible event store Φi

N . As
indicated in section 1.2, ideally N is polylogarithmic in the size of the stream, as in
such case, memory consumption grows with a strictly slower rate as the stream’s size.
However, in practice, we are also able to base N on the amount of available memory.
This ensures that, even though the input sequence of an event store is potentially
infinite, an event store describes a strictly finite sequence of events.

Observe that the fact that an event store represents a subsequence of its input,
implicitly poses a strict behavioural requirement on any instantiation/implementation
of an event store, i.e. the original order of the events within the stream needs to be
maintained. Apart from this strict behavioural requirement, we propose the following
desiderata for any instantiation/implementation of an event store.

1. When we remove an event from the event store, it remains removed forever, i.e.
it cannot be reinserted (e.g. from secondary storage).

2. Removal of events related to the same process instance is performed in-order,
i.e. an event e related to case identifier c that is observed on the stream, prior to
another event e ′ that is also related to case identifier c is removed before, or, at
the same time as e ′.

We list the requirements and desiderata for event stores in Table 3.1.
Even though an event store is allowed to describe an arbitrary subsequence of its

input, we additionally define an event store update function. We utilize such function
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to define event stores incrementally, i.e. for input stream S we compute an event store
at data point i , based on the previous event store at i −1 combined with (new) event
S(i ).

Definition 3.2 (Event Store Update Function). Let E denote the universe of events, and
let N∈N0. An event store update function

−→
ΦN is a function

−→
ΦN : E ∗×E → E ∗, s.t. given

a stored sequence σ∈E ∗ and new event e∈E ,
−→
ΦN (σ,e) ⊆∗ σ · 〈e〉, and |−→ΦN (σ,e)| ≤ N .

Observe that the update function, even though defined for arbitrary input se-
quences, typically operates on the previously stored sequence in the underlying event
store. Moreover, it yields, given a sequence of events and a new event, a new sequence
of events. Furthermore, this new sequence is a subsequence of the input sequence
concatenated with the new event. Given the notion of an event store and an event
store update function, we aim to characterize the event store for element i in terms of
an update of the event store at i −1, i.e.

Φi
N (S) =−→

ΦN (Φi−1
N (S),S(i )) (3.2)

An event store update function needs to be able to compute Φi
N (S) on the basis of

Φi−1
N (S) (potentially by updating the underlying data structure representing Φi−1

N (S)),
the newly received event S(i ), and, possibly the value of i . Given that we incrementally
compute event stores for increasing i∈N0, we are able to quantify any new member
Φi+

N ∈P (E ) and/or removed member(s) Φi−
N ∈E ∗ of the event store for any of such i .

Therefore, given Φi
N (S) which is, incrementally, based on Φi−1

N (S), we define:

Φi+
N = el em(Φi

N (S)) \ el em(Φi−1
N (S)) (3.3)

Φi−
N =σ∈E ∗ s.t . σ⊆∗ Φi−1

N ∧∀e ∈∗ Φi−1
N

(
e ∉∗ Φi

N =⇒ e∈σ
)

(3.4)

Observe that, when explicitly using/implementing the incremental update function,
cf. 3.2, then by definition 0 ≤ |Φi+

N | ≤ 1. Hence, either Φi+
N =;, or, it is a singleton set

containing the i th element, i.e. Φi+
N = {S(i )}. The elements of Φi−

N are those elements
that are no longer part of Φi

N , yet that were part of Φi−1
N . Moreover, it contains these

events in order, i.e. adhering to their original position in the event stream (as implicitly
maintained by the event store).

Observe that, as mentioned in subsection 2.3.1, most process mining algorithms
operate on the notion of traces, rather than (partial) orders of events. In essence,
such trace is just a projection of the (partial) order of events onto sequences of events
sharing the same case identifier. Clearly, we are able to perform such projection on
an event store as well. We, therefore, assume the existence of an additional function
Φi

C ,N : E ∗×C → E ∗ that allows us to fetch the sequence of events related to a given
case identifier c∈C . In particular, given c∈C and an event store Φi

N , we enforce:

1. Φi
C ,N (S,c) ⊆∗ Φi

N (S)
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Event Stream S ∞e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 · · · · · · · · ·

Event Store ΦN

e4 e5 e6 e9 e10 e11

Case View of ΦN

c1:
e4 e6 e10

c2:
e5 e9

c3:
e11

Figure 3.2: Schematic overview of the notion of an event store Φi
N and its corresponding case

projection (with i = 11 and arbitrary size N ≥ 6).

2. ∀e ∈∗ Φi
N (S)(πc(e) = c =⇒ e ∈∗ Φi

C ,N (S,c))

3. ∀e ∈∗ Φi
C ,N (S,c)(πc(e) = c)

In the remainder, we simply write Φi
N (S,c) for Φi

C ,N (S,c), i.e. we omit the C subscript,
as it is clear from the input arguments. Moreover, if in some case the value of i and N
is of minor or zero influence, we omit these values/variables as well, i.e. we simply
write Φ(S) or Φ(S,c). Observe that, in some instantiations of Φ(S) it is more natural to
let the corresponding internal structures directly store the events on a case level. As
such, when iteratively querying the collection of cases maintained within the event
store, we do not need to additionally project the event store on the requested case
identifier, i.e. we are able to directly access it from memory.

Consider Figure 3.2, in which we present a schematic overview of an event store, as
well as its projection on the universe of case identifiers. Observe that in the example,
we visualize Φ11

N (S). Within the figure, events labelled × are not part of the event store,
e.g. e1 ∉∗ Φ11

N (S), whereas events marked # are part of the event store. We observe that
Φ11

N (S) = 〈e4,e5,e6,e9,e10,e11〉, and moreover, Φ11
N (S,c1) = 〈e4,e6,e10〉, Φ11

N (S,c2) = 〈e5,e9〉
and Φ11

N (S,c3) = 〈e11〉.
In line with simple event logs, cf. subsection 2.3.2, we define a simple event store

Φ̃i
N (S)∈B(A ∗), which represents the control-flow perspective based projection of the

event store Φi
N at time i . Similarly, we assume to be able to fetch such simple trace for
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a given case identifier c∈C , i.e. Φ̃i
N (S,c)∈A ∗. It should be clear that, in principle, both

simple event stores Φ̃i
N , as well as the case level event stores Φi

C ,N presented earlier
are derived artefacts of any event store, i.e. we are able to obtain them by (iteratively)
applying a number of projections. However, as already mentioned, in some cases it is
more efficient to primarily store the events emitted on the event stream indexed on a
per-case basis.

3.3 Conventional Storage Techniques

In this section, we present several instantiations of event stores and associated update
functions. The underlying techniques originate from the streaming domain, intended
for general, stream-based, data storage. Therefore, different techniques are applicable
in different settings, i.e. depending on the intent of the process mining analysis
performed. In some cases, we need to slightly alter and/or extend the original
algorithms to make them effectively implement an event store. We discuss four
different types of storage, i.e. sliding windows, reservoirs, frequent item-set based
approaches and time decay based approaches.

3.3.1 Sliding Windows

Arguably the easiest way to store a recent subset of events emitted onto an event
stream is by means of a sliding window. Within a sliding window, recent behaviour, i.e.
behaviour that is observed within a recent period of time, is maintained in-memory.
We formalize the notion of a sliding window, in terms of the notion of an event store
update function, in 3.3.

Definition 3.3 (Event Store Update Function; Sliding Window). Let E denote the
universe of events. Let N∈N0, we define a sliding window-based event store update
function

−→
ΦN ,sw : E ∗×E → E ∗, where, given σ∈E ∗,

−→
ΦN ,sw (σ,e) =

{
σ · 〈e〉 if |σ| < N

〈σ(|σ|−N +2), ...,σ(|σ|),e〉 otherwise
(3.5)

Observe that, by definition, the result of applying
−→
ΦN ,sw is always a subsequence of

its input sequence concatenated with the newly described event. Moreover, regardless
of the length of the input sequence of the update function, the resulting sequence is
always of length N (or smaller if the input sequence’s length is strictly smaller than
N). Consider algorithm 3.1 in which we provide a concise algorithmic description of
an event store based on the concept of a sliding window.

The algorithm expects an event stream S and a maximum window size N as an
input. The algorithm maintains a list of events, which is initially empty. Whenever
we receive a new event e at index i of the stream, we append it to the tail of the list.
However, if i > N we subsequently remove the head of the list. Note that, within the
algorithmic description, the list w itself represents Φi

N (S).
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Algorithm 3.1: Sliding Window-Based Event Store

input : S ⊆ E ∗, N∈N0

begin
1 i ← 1;
2 w← empty list of events;
3 while true do
4 if |w| = N then
5 remove w(1);

6 append S(i ) to w;
7 i ← i +1;

The sliding window, as described previously, is also known as a sequence-based
sliding window, i.e. the stream/window itself defines what elements are part of the
window. An alternative approach is to use the event arrival-time as a criterion for
membership of the window. In such case, we only maintain all events with an arrival
time within a time interval ∆ with respect to. the current time t , i.e. all events e with
t −∆≤ πtimestamp(e) ≤ t . Note that, in case the number of events arriving within the
specified time window ∆ exceeds the available memory budget N , we resort to saving
Observe that both models are static since either the number of elements to consider, or,
the time interval to consider, is fixed.

When formalizing a time-based sliding window, we additionally need access to a
global clock that allows us to assess the current time. The criterion for event deletion
now changes into checking whether the time-difference of the time of arrival of the
oldest events of the window and the current time exceeds the given time interval.
Observe that, as is the case with sequence-based sliding windows, a time-based sliding
window is a subsequence of its input.

There also exist variants of sliding window approaches that are dynamic, i.e. the
window size changes over time [25]. However, the emphasis of such techniques, is
on finding an accurate representation of the underlying generating data distribution
that is subject to concept drift. This means, that as soon as a concept drift within the
underlying distribution is detected, i.e. either sudden or gradual, the older parts of the
window describing the distribution prior to the detected drift are removed. Note that
finding and/or characterizing drifts in the context of event streams is very challenging
due to the fact that events related to the same process instance arrive dispersed over
the stream. This does not align well with the general model used in data streams
where data items are often assumed to be independently sampled from the underlying
distribution. Despite this challenge, dealing with concept drift in the context of event
streams is not covered (extensively) within this thesis.

The relatively simple nature of the sliding window is, at the same time, the largest
limiting factor from a process mining perspective. As indicated in section 1.3, we
expect events related to multiple different process instances to arrive dispersed on the
stream. As such, we do not have any guarantee with respect to the completeness of the
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traces present in the sliding window. It is likely that, at some point, we drop fragments
behaviour for a certain process instance that is still ongoing, i.e. for which other events
are present in the sliding window as well. Observe that this has a potential negative
impact with respect to. process mining algorithms, as most algorithms assume the
traces to represent complete executions of the underlying process.

3.3.2 Reservoir Sampling

The concept of reservoir sampling is presented by numerous authors [76, Section 3.4.2]
[88, 115]. It is a sampling method that allows us to pick a random sample of size N
out of a set consisting of K elements (where K > N), in one-pass. In particular, the
assumption is that the exact value of K is unknown, and, it is inefficient to determine
it. The general idea of the approach is to maintain a reservoir, i.e. typically simply
an array, of size N . Any algorithm maintaining a reservoir is a reservoir sampling
algorithm if, after inspecting and processing the i th element of the total of unknown K
elements with i > N , the reservoir represents a true random sample of size N of the i
items seen so far. Therefore, by induction, after receiving all K items, the reservoir is a
true random sample of all K items, even though K is potentially infinite.

The concept of reservoir sampling, by its sheer definition, aligns well with the data
stream model, i.e. we aim at one-pass handling of events whilst using finite, ideally
bounded, memory. The standard approach of reservoir sampling is to place the first
N elements of the stream in the reservoir. Subsequently, element i +1 with i ≥ N is
added with probability N

i+1 . Observe that, for increasing i , the probability of addition
decreases, which ensures that after completion, in the finite scenario, the reservoir
in fact represents a true random sample of size N of the items seen so far. If we
decide to add an element to the reservoir, its index is determined randomly, using a
uniform distribution over {1, ..., N }, i.e. unif{0, N }. Consider 3.4, in which we formalize
reservoir sampling in terms of an event store update function

−→
ΦN .

Definition 3.4 (Event Store Update Function; Reservoir Sampling). Let E denote the
universe of events, let i , N∈N0 and let e∈E , σ∈E ∗. Furthermore, let r∈unif{1, i } denote a
random variable drawn from a uniform discrete distribution with ranges 1 and i and let
j∈unif{1, |σ|} denote a random variable drawn from a uniform discrete distribution with
ranges 1 and |σ|. We define a reservoir sampling-based event store update function

−→
ΦN ,r s

as a function
−→
ΦN ,r s : E ∗×E → E ∗, where

−→
ΦN ,r s (σ,e) =


σ · 〈e〉 if |σ| < N

σ if |σ| ≥ N ∧ r > N

〈σ(1), ...,σ( j −1),σ( j +1), ...,σ(|σ|)〉 · 〈e〉 otherwise
(3.6)

Observe that the update function requires random variable r , drawn from a discrete
uniform distribution, i.e. unif{0, ..., i }, where i is used to determine the probability of
inclusion, i.e. N

i . Note that, when using the update function on top of an event store,
i.e. Φi

N (S) = −→
ΦN (Φi−1

N (S),S(i )), the value of i used in the update function equals the
index of the event store. In case the input sequence is of length strictly smaller than N
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Algorithm 3.2: Reservoir Sampling-Based Event Store

input : S ⊆ E ∗, N∈N
begin

1 i ← 0;
2 a← ε; // reservoir

3 w← ε; // internal sliding window

4 while true do
5 i ← i +1;
6 e ← S(i );
7 if |a| < N then
8 append e to both a and w;

9 else
10 r ← discrete random value from unif {1, i };
11 if r ≤ N then
12 j ← discrete random value from unif {1, N };
13 remove a( j ) from w;
14 a( j ) ← e;
15 append e to w;

the update function returns the sequence concatenated with the new event. If this is
not the case and the random variable r exceeds the value of N we simply return the
input sequence. In any other case, i.e. the sequence size is at least N and r ≤ N , we
remove the element of the sequence at position j and include the new event as the last
element of the returned sequence. Observe that, by iteratively applying the update
function, we are guaranteed that the corresponding event store never exceeds size N .

Consider algorithm 3.2, in which we present an algorithmic description of a
reservoir sampling based event store. The reservoir itself is represented by an array a,
which we keep on filling until its size equals N . Subsequently we sample variable r
from the uniform distribution over range {1, ..., i }, i.e. unif{1, i }. Whenever we obtain a
value r ≤ N , we sample variable j from the uniform distribution over range {1, ..., N },
i.e. unif{1, N }, and replace the element at position j in a. Due to the random nature
of a reservoir, a is not a valid instantiation of an event store, i.e. it violates RQ 1, cf.
Table 3.1. We, therefore, maintain an internal sliding window w that actually captures
the event store. When we remove a certain event from the reservoir, we also remove it
from w and append the new event to w.

The aforementioned approach indeed allows us to construct an event store, using
reservoir sampling as an underlying basis. Observe that, contrary to the use of a sliding
window, it is not necessarily meaningful to adopt such a reservoir in the context of
process mining. Assume that we add an event at position i > N related to some process
instance identified by case identifier c∈C . Also assume that we decide not to add the
next event e ′ on the stream related to the same process instance. Furthermore, we do
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decide to add the subsequent event e ′′, again related to the same process instance. If
we subsequently derive the trace related to the case identifier c∈C , it is not containing
e ′, whereas ideally, it should. In fact, from a certain point of view, this may even be
regarded as faulty. It moreover violates DS 2 of Table 3.1.

We therefore alternatively propose to perform the sampling based on the case-
id’s present in events, rather than for each event individually. We hence maintain
a reservoir of case-id’s, and, additionally incorporate an internal sliding window to
represent Φi

N . When a new event arrives we check whether its case-id is present in the
reservoir. If this is the case, we forward the event to the sliding window. If the case-id
is not in the reservoir, yet we still have open spaces in the reservoir, we add the event’s
case-id to the reservoir and subsequently forward the event to the sliding window.
However, if the maximum capacity of the reservoir is reached, we decide whether
the case-id needs to be added to the reservoir or not, i.e. we add it with probability

N
i+1 . If we decide not to add it, nothing happens, i.e. the event is not forwarded to
the internal sliding window. If we decide to add it, we replace, randomly, one of the
existing case-id’s in the reservoir with the new case-id. We subsequently traverse the
sliding window and remove all events related to the removed case-id. Finally, we
forward the newly received event to the internal sliding window.

The internal sliding window of the approach represents the event store maintained
by the reservoir sampling-based approach. However, when replacing a case-id, we
need to traverse the internal sliding window and remove each event that corresponds
to the removed case-id. Moreover, when translating the reservoir based event-level
store to a case level, we need an additional iteration through the sliding window.

We therefore alternatively propose to implement Φi
C ,N directly, by grouping the

events that are eligible for storage in the event store, i.e. according to the fact that their
case-id is present in the reservoir, by case. The main idea is to maintain a separate list
of events for each case-id in the reservoir. In this case, when a new event arrives and
its case-id is present in the reservoir, we append the event to the list that is maintained
for its case-id. If the event triggers removal of a case-id in the reservoir, the event is the
new head element of a new list that is stored corresponding to its case-id. Whenever
an event’s case-id is not present in the reservoir and neither added to the reservoir, the
event is ignored.

Consider algorithm 3.3 on page 68 in which we present an algorithmic description
of applying reservoir sampling for the purpose of directly storing a case-level event
store. The algorithm expects an event stream S∈E ∗ as an input and two additional
parameters k, N ∈N, subject to k < N , and ideally N mod k = 0. Here, k represents the
number of positions in the reservoir, i.e. representing the number of process instances
maintained, and N represents the maximum number of events present in the event
store. For each incoming event, the algorithm checks whether it already maintains an
entry related to the event’s case-id. If this is the case, it simply appends the new event
to the sequence of events already stored for that case. To ensure strictly using finite
memory, we limit the length of such sequence to N

k . Thus, whenever the new event
yields a sequence length exceeding bN

k c, we remove the head element of the list. As
such, the algorithm needs O(N ) memory.

The algorithm as presented does not allow us to reconstruct the event store Φi
N ,
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Algorithm 3.3: Reservoir Sampling-Based Event Store (Case Level)

input : S ⊆ E ∗, N ,k∈N
begin

1 i ← 0;
2 ac ← ε; // sequence of case-id's

3 aσ← ε; // sequence of sequences of events (max. length bN
k c)

4 while true do
5 i ← i +1;
6 e ← S(i );
7 if πc(e) ∈∗ ac then
8 j ← index of c in ac ;
9 aσ( j ) ← aσ( j ) · 〈e〉;

10 if |aσ( j )| > bN
k c then

11 aσ( j ) ← aσ( j )2...|aσ( j )|;

12 else
13 if |ac | < k then
14 ac ← ac ·πc(e);
15 aσ← aσ · 〈〈e〉〉;
16 else
17 r ← discrete random value from unif{1, i };
18 if r ≤ N then
19 r ← discrete random value from unif{1,k};
20 ac (r ) ←πc(e);
21 aσ(r ) ←〈e〉;

i.e. such information is lost. We are only able to query the case view, Φi
C ,N , directly.

Thus, in case we aim at storing Φi
N , we again need to resort to using an internal sliding

window to represent Φi
N . Also note that, when sampling on a case level, the original

property of reservoir sampling, i.e. being a true random sample is, from an event
perspective, no longer guaranteed.

In [115] it is observed that after inserting an element at position i in the stream
within the reservoir, with i > N , it is more efficient to compute the subsequent j
elements to ignore, rather than doing a single random trial upon receiving each new
event. As such, three alternative approaches are presented that allow us to generate
such value j∈N. In [14], it is argued that a uniform sample is in several application
domains undesirable, since the stream under study is likely to evolve. Therefore, given
the r th item at time t (i.e. r ≤ t), to prioritize recent items, the use of a bias function
f (r, t ) that relates to the probability p(r, t ) of the r th element being in the reservoir at
time t is proposed. Clearly, these optimizations/alterations are applicable on top of
the basic framework as presented here, i.e. in algorithm 3.2 and algorithm 3.3.
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3.3.3 Maintaining Frequent Cases

By using reservoir sampling, we obtain a sample of the data emitted onto the stream.
In our context, this implies either a sample of the events or the cases emitted on
the stream. Since each event amounts to the occurrence of a case, cases that relate
to process instances with the largest number of executed activities have the highest
probability of being included within the reservoir. Such property is interesting in
case we aim to track these types of cases, yet the result of the reservoir algorithm is
non-deterministic. As an alternative, algorithms exist that are designed to approximate
the most frequent items on an event stream [41], i.e. the SpaceSaving algorithm [91],
the Frequent algorithm [45, 74] and the Lossy Counting [84] algorithm respectively.
Here, we do not present a formal definition of an event store update function in terms
of frequency approximation, yet we do provide an algorithmic sketch of each of the
aforementioned algorithms.

Consider algorithm 3.4, in which we provide an algorithmic description of a case-
level event store based on the SpaceSaving algorithm. The algorithm maintains a
set of pairs X of the form X ⊆ C ×N. A pair (c, j )∈X represents that the sequence
of events observed, related to case identifier c is stored in array aσ at index j . For
each case identifier c∈C , we define a counter v(c), which is initialized at 0. These
case identifier-based counters are used to determine what case identifier is eligible for
replacement, when the set X reaches the maximal allowed size k. When a new event is
received, we check whether the event’s corresponding case identifier is already present
in X , i.e. in cases there exists a pair of the form (c, j )∈X (cf. line 8). If this is the case,
we append the new event to the corresponding sequence of events as stored in aσ( j ).
In case the addition leads to storing more than bN

k c elements within aσ, we remove
the head element of aσ( j ). If there is no pair in X that relates to πc(e), we check if
X contains less than k events. If this is the case, we add a new pair (c, |X |) to X and
create a new sequence representing c, by appending 〈〈e〉〉 to aσ, i.e. line 13 - line 16.
If the size of X equals k we search for the case identifier c∈C that has an entry in X
and has the minimal v(c) value, i.e. line 17. We replace the corresponding pair (c, j )
in X , by (πc(e), j ), i.e. the case related to the newly received event is taking over the
position of the removed case identifier c in aσ. Hence, we reset the value of aσ( j ) to
〈e〉, and moreover, we set the value of vπC (e) to v(c)+1.

It is important to note the subtle difference of the impact of the v(c)-counter in
the context of the process mining inspired version of the Space Saving algorithm
with respect to. the conventional use of the algorithm in streaming applications. In
the conventional setting, the stream is assumed to contain multiple equally valued
data points, e.g. multiple data points relate to the same product available in an online
shop. For each observable data point d , a counter v(d) is maintained. The algorithm
then guarantees that the actual data points stored, according to the corresponding
v(d)-values, are the most frequent ones (subject to approximation). As in process
mining we assume each event to be unique, the only multiple appearing omni-present
data object is the case identifier. As such, we use the case identifier’s value as the v-
counter’s range. The side-effect of this approach is that the algorithm has the tendency
to store the longest traces, again subject to approximation error.
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Algorithm 3.4: Frequency-Based Event Store (Space Saving)

input : S ⊆ E ∗, N ,k∈N
begin

1 X ←;; // set of (case-id,index) pairs, i.e. X ⊆C × {1, ...,k}

2 aσ← ε; // sequence of sequences of events (max. length bN
k c)

3 initialize v(c) ← 0,∀c∈C ;
4 i ← 0;
5 while true do
6 i ← i +1;
7 e ← S(i );
8 if ∃(c, j )∈X (c =πc(e)) then
9 v(c) ← v(c)+1;

10 aσ( j ) ← aσ( j ) · 〈e〉;
11 if |aσ( j )| > bN

k c then
12 aσ( j ) ← aσ( j )2...|aσ( j )|;

13 else if |X | < k then
14 X ← X ∪ (c, |X |+1);
15 v(c) ← 1;
16 aσ← aσ · 〈〈e〉〉;
17 else
18 (c, j ) ← argmin

(c, j )∈X
(v(c));

19 v(πc(e)) ← vc +1;
20 X ← (X ∪ {(πC (e), j )}) \ {(c, j )};
21 aσ( j ) ←〈e〉;
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The Frequent algorithm, which we depict in algorithm 3.5 on page 72, operates
in a similar fashion. It again maintains a set of pairs X of the form X ⊆ C ×N. A
pair (c, j )∈X represents that the sequence of events observed, related to case identifier
c is stored in array aσ at index j . It however additionally stores a set J , which
represents those j∈{1, ...,k}, for which Ø(c, j )∈X . As such, initially, when X = ;, we
have J = {1, ...,k}. When an event arrives related to a case identifier c that is already
present in X , i.e. (c, j )∈X , exactly the same procedure is applied as in the case of the
SpaceSaving algorithm, i.e. v(c) is increased and the new event is simply appended
to aσ( j ). In the case the new event relates to a case identifier that is not present in X ,
we simply add a pair (c, j ) to X , where j is a “free” index, i.e. line 14 - line 19.

However, the main difference is in the use, and update strategy of, the v(c)-counters,
cf. line 21 - line 26. Whenever the set X is of size k, and a new event arrives related to
a case identifier that is not present in X , we decrease the counters of all case identifiers
present in X by one. Whenever such counter gets 0, i.e. for some c∈C , we have v(c) = 0,
we remove its entry, i.e. (c, j ) from X . We add the corresponding index j back to the
set of free indices J , and set aσ( j ) to ε. Observe that, this difference in counter strategy
leads to the fluctuation of the size of set X in case of the Frequent algorithm. On the
contrary, in the SpaceSaving algorithm, once the size of set X reaches k, it remains of
size k.

Finally, the Lossy Counting algorithm, cf. algorithm 3.6 on page 73, adopts a
relatively different strategy, yet it again maintains a similar base set X ⊆C ×N and uses
the notion of case identifier-specific counters, i.e. v(c). When an event arrives related
to a case identifier c that is already present in X , i.e. (c, j )∈X , v(c) is increased and
the new event is simply appended to aσ( j ). The length of any entry in aσ is however
bounded by user-specified value w rather than bN

k c.
The algorithm conceptually divides the stream into buckets of length k and keeps

track to which bucket the currently arriving event belongs. Regardless of the actual size
of X , whenever an event arrives on the event stream that relates to a case identifier
c that is not present in X , an entry (c, j ) is added to X . Note that in this context,
j again refers to a “free index”. The corresponding counter, i.e. v(c) gets a value
assigned ∆+1, i.e. where ∆ represents the current bucket-id. As such, we potentially
over-approximate the number of occurrences of the new case identifier c by at most
∆. When we observe that a newly arriving event enters a new bucket, i.e. given its
index i , we have i mod k = 0, the algorithm starts cleaning set X . Upon clean-up, in
order to be retained within X , an element on average needs to occur in each previous
bucket at least once, i.e. v(c) ≥ ∆ needs to hold in order to be maintained in set X .
However, note that, for some case identifiers we actually overestimate this value, i.e.
as we initialize the corresponding counter with ∆.

Note that the Lossy Counting algorithm, due to its clean-up strategy, has a differ-
ent space complexity compared to the Frequent- and Space Saving algorithms. Both
of the latter algorithms guarantee that we maintain at most k case identifiers. Since
we cap the length of each of the traces stored in aσ at bN

k c, we are guaranteed that, in
terms of events, both algorithms have O(N ) space complexity. However, in case of the
Lossy Counting algorithm, the worst-case space complexity of (conventional) Lossy
Counting, i.e. the number of entries that is present in X , is O(k log( 1

k |S|)). In fact,
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Algorithm 3.5: Frequency-Based Event Store (Frequent)

input : S ⊆ E ∗, N ,k∈N
begin

1 X ←;; // set of (case-id,index) pairs, i.e. X ⊆C × {1, ...,k}
2 J ← {1,2, ...,k}; // set of free indices

3 aσ← ε; // sequence of sequences of events (max. length bN
k c)

4 initialize v(c) ← 0,∀c∈C ;
5 i ← 0;
6 while true do
7 i ← i +1;
8 e ← S(i );
9 if ∃(c, j )∈X (c =πc(e)) then

10 v(c) ← v(c)+1;
11 aσ( j ) ← aσ( j ) · 〈e〉;
12 if |aσ( j )| > bN

k c then
13 aσ( j ) ← aσ( j )2...|aσ( j )|;

14 else if |X | < k then
15 j ← some value present in J ;
16 J ← J \ j ;
17 X ← X ∪ (c, j );
18 v(c) ← 1;
19 aσ( j ) ←〈e〉;
20 else
21 foreach (c, j )∈X do
22 v(c) ← v(c)−1;
23 if v(c) = 0 then
24 X ← X \ (c, j );
25 J ← J ∪ { j };
26 aσ( j ) ← ε;
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Algorithm 3.6: Frequency-Based Event Store (Lossy Counting)

input : S ⊆ E ∗, k, w∈N
begin

1 X ←;; // set of (case-id,index) pairs, i.e. X ⊆C ×N
2 J ←N; // set of free indices

3 ∆← 0;
4 aσ← ε; // sequence of sequences of events

5 initialize v(c) ← 0,∀c∈C ;
6 i ← 0;
7 while true do
8 i ← i +1;
9 e ← S(i );

10 if ∃(c, j )∈X (c =πc(e)) then
11 v(c) ← v(c)+1;
12 if |aσ( j )| = w then
13 aσ( j ) ← aσ( j )2...|aσ( j )|;

14 aσ( j ) ← aσ( j ) · 〈e〉;
15 else
16 j ← some value present in J ;
17 J ← J \ j ;
18 X ← X ∪ (c, j );
19 v(c) ← 1+∆;
20 aσ( j ) ←〈e〉;
21 if b i

k c 6=∆ then
22 ∆←b i

k c;
23 foreach (c, j )∈X do
24 if v(c) <∆ then
25 X ← X \ (c, j );
26 J ← J ∪ { j };
27 aσ( j ) ← ε;
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therefore, we use J ←N, rather than J ← {1, ...,k} in algorithm 3.6, line 2. Often, given
a user-specified maximal error value ε∈[0,1], a value of k = 1

ε is used as the bucket size
parameter. Using such value provides certain guarantees with respect to. the approx-
imation quality of an element’s frequency, i.e. v(c) in the context of algorithm 3.6.1

Moreover, when using k = 1
ε , we obtain O( 1

ε log(ε|S|)) as space complexity. Observe
that, when we also use a maximum number of w = 1

ε of events per case identifier in
algorithm 3.6, we deduce its corresponding space complexity to be O( 1

ε2 log(ε|S|)).

Finally, observe that the practical applicability of the algorithms discussed here, and
other similar algorithms that allow us to track/approximate the most frequent items
on a stream, is potentially limited from a process mining perspective. As indicated, by
design, they track the most frequent elements on stream. Hence, if we use the case
identifiers as elements in this context, we are implicitly tracking those cases for which
the most activities are performed. This is not necessarily unusable, i.e. these types of
process instances typically relate to outliers and/or problematic cases, and they are
therefore interesting for further investigation. However, the majority of the process
mining algorithms is explicitly designed under the assumption that such type of cases
are not part of the input event data.

3.3.4 Time Decay

The time-based sliding window, as briefly described in subsection 3.3.1, is an instanti-
ation of a broader class of storage algorithms, known as decay functions. The essence
of such functions/algorithms is to assign a weight to data items that arrive on the
stream, based on their age. The older a data item is, the higher its weight is and, the
higher an item’s weight, the less importance the item gets. A function assigning weights
to data items, based on their timestamp, is a decay function, if the function assigns a
weight 1 at the moment of arrival. Furthermore, the function needs to be monotone
non-increasing, for increasing time, i.e. if event e arrives later than e ′, the weight of e
is smaller or equal to the weight of e ′.

In some cases, the weight of the data items is adopted directly within the function
intended to be computed on top of the data stream. For example, deriving some
numeric value in which the influence of data items with respect to. that value is scaled
using the decay function. However, in the context of process mining the weight of an
event has no particular meaning. Nonetheless, the weight of an event can be used in
order to determine whether or not an event, or set of events is eligible to be removed
from the event store, i.e. to be part of Φi−

N . As shown in [42], by using the concept
of landmarks, it is possible to compute such decay efficiently, i.e. we compute an
intermediary weight value upon arrival and scale it to obtain the true decay value as
time increases.

1Using such value k = 1
ε in fact also provides such approximation quality guarantees for the Frequency

and Space Saving algorithm.
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Table 3.2: Guarantees of the different techniques presented here with respect to. the quality
requirements for event stores as quantified in Table 3.1.

Technique RQ 1 DS 1 DS 2
(respect order) (no re-insertion) (removal case compliant)

Sliding Window (cf. subsection 3.3.1) � � �
Reservoir Event-Level (cf. subsection 3.3.2) � � ×
Reservoir Case-Level (cf. subsection 3.3.2) � � �
Frequency Approximation (cf. subsection 3.3.3) � � �
Time Decay (cf. subsection 3.3.4) � � �

3.3.5 Guarantees

In this section, we quantify to what degree the different types of techniques as presen-
ted in this section allow us to guarantee the requirements and desiderata as defined
for event stores in section 3.2, in Table 3.1. We schematically depict this quantification
in Table 3.2. We observe that all techniques allow us to guarantee all requirements/de-
siderata as defined in Table 3.1, except for reservoir sampling on event level. Clearly,
in such case, we are able to ignore events related to certain cases for which we are
already maintaining some events. Hence, removal of events from the event store, not
compliant to the ordering imposed by the process instance (in this case instant removal
due to ignoring the events), is possible.

3.4 Exploiting Behavioural Similarity

section 3.3 shows that we are able to instantiate both event-level and case-level event
stores using existing data storage techniques originating from different areas of data
stream processing. Note however that, so far, we have not touched upon the actual
quality of the event store maintained. The sliding window approach, either from an
event-level or case-level perspective, is likely to only maintain snippets of traces, rather
than complete trace behaviour. Similarly, it is possible to delete the events related to
a certain case-id from a reservoir sample and/or frequent item-based approach and,
in a later phase, inserting an event related to the same case-id. For some process
mining algorithms, this is not necessarily a problem, i.e. certain algorithms only look
at local relations between at most two consecutive events. However, other algorithms
do heavily rely on the notion of completeness of cases and/or the explicit knowledge
of when a trace starts and/or ends.

We are able to partly solve the aforementioned quality problems related to con-
ventional data stream storage techniques, by assuming that we are explicitly aware
of a set of unique start- and end events of the process. For example, assume a new
event e∈E arrives with πc(e) = c, and furthermore, c is not yet described by any event
currently present in the event store. In such case, event e is only eligible for addition
to the event store, if the corresponding activity is a unique start event. Even more
so, in case we have explicit knowledge of end events we are able to use this to select
candidates for removal from the event store. Note that, by additionally adapting such
strategies, it is likely that the behaviour of the storage algorithms starts to deviate
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Figure 3.3: Schematic overview of the proposed prefix-tree based case-level event store. We
maintain a prefix-tree that represents the process behaviour. For each case, we keep
track of the oldest and newest received event, i.e. still present in the underlying
event store. By creating paths from the root to leaves of the prefix-tree, we are able
to create behaviour that exceeds the behaviour stored in the underlying event store.

significantly from their original design and/or intent, and, as a consequence, certain
underlying theoretical properties and/or guarantees are invalidated. However, regard-
less of the assumption of the explicit availability of unique start- and/or end-activities,
size parameter N does only allow us to store a bounded share of recent events for the
corresponding case-id. Even when applying a dynamic scheme that allows us to exceed
this value, if space permits, the inherent requirement to maintain the event data in
finite memory at some point requires us to drop fragments of cases, or uncompleted
cases as a whole.

Within real-life processes, multiple instances of the process exhibit similar beha-
viour, e.g. first a certain set of activities needs to be performed in order to perform
a different subsequent set of activities. In this section, we, therefore, propose an
alternative storage strategy that aims to exploit inter-process instance similarity, in
order to increase the overall quality and completeness of the data stored related to
the currently running process instances. Consider Figure 3.3, in which we depict
a schematic overview of the proposed approach. We store the events arriving on
the event stream in an event store, i.e. any event store as described in section 3.3,
which adheres to DS 2. However, we replicate the behaviour using a prefix-tree, cf.
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subsection 2.1.5, as an internal representation of the underlying process. We propose
to use the control-flow perspective as a main driver for defining the edges and nodes
of the prefix-tree, however, theoretically any form of omni-present payload is usable.
Whenever we remove an event e from the event store and the prefix-tree, we aim to
identify whether there are other process instances describing some event e ′, which is
still in the event store, that actually describes the same behaviour. If this is the case,
we use such event, i.e. its presence in the stored prefix-tree, as place-holder for the
removed event e. Thus, even though event e is no longer present in the underlying
event store, when we fetch the trace corresponding to the case identifier of e, we let
event e ′ act as a replacement for event e. This allows us to obtain, from the start of
traces, trace completeness for the active active process instances.

3.4.1 Maintaining Control-Flow Oriented Prefix-Trees

As indicated and illustrated in Figure 3.3, we maintain a prefix-tree that represents the
process behaviour. Moreover, we propose to use the control-flow perspective as a main
driver for defining the edges and nodes of the prefix-tree. To determine what behaviour
needs to be represented by the prefix-tree, we additionally maintain a regular event
store, e.g. a sliding window. The main idea of the approach is that, each process
instance captured within the underlying event store, represented by its case identifier,
describes a path in the prefix-tree. Furthermore, in case multiple process instances
describe the same sequence of activities in the beginning of the process, these instances
share (a part of) a path in the prefix-tree. When at some point certain events are
removed from the underlying event store, we are still able to, given the fragment of
current behaviour, walk back to the root of the prefix-tree and thus assess the removed
history of the corresponding process instance. The enhanced completeness, i.e. from
the start of traces, in turn has a potential beneficial impact on the process mining
algorithm used.

The approach roughly works as follows. We maintain an internal event store that
adheres to DS 2, e.g. a sliding window, and a prefix-tree in which each arc represents
the execution of an activity. For each case-id c that is active, i.e. there is some event
present in the internal event store Φi

N that is related to c, we maintain two pointers that
point to a node in the tree. One pointer, i.e. ~pr , points to the vertex that represents the
most recently received event observed on the event stream for case c. The other pointer,
i.e. ~po , relates to the case’s oldest event related to case c that is still present in the
underlying event store. Whenever we receive a new event, we assess the vertex in the
tree pointed at by ~pr , i.e. related to the most recent event for the case. Subsequently,
we check whether or not that corresponding vertex has an outgoing edge that describes
the same activity as the newly received event. If so, we shift pointer ~pr to that vertex,
if not, we create an outgoing arc decorated with the activity of the newly received
event from the current vertex to the new vertex. After creating the vertex, we update
pointer ~pr to the new vertex. In case an event is dropped from the event store, we
shift the oldest-event-pointer to the vertex that is reached by the activity described by
the deleted event.

Consider Figure 3.4 in which exemplify maintaining a prefix-tree based event store.
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Figure 3.4: Example of maintaining a prefix-tree based event store. Note that, we assume all
arriving events to be stored in the (initially empty) underlying event store. Single-
headed arrows indicate start-pointers, i.e. pointers ~po representing the oldest event
of the case identifier in the corresponding event store, double headed arrows indicate
end-pointers, i.e. pointers ~pr representing the most recently received event.

In Figure 3.4, we represent events as a (case identifier, activity)-pair (depicted as
(c, a, ...)), since these are the event attributes effectively used in construction of the
prefix-tree. When we tap into the stream, i.e. situation 1.) Initial state, we have not
yet received any events and hence the prefix-tree only contains a root node. Moreover,
we do not maintain any pointers to the tree.

In situation 2.), we receive a new event (c1, a, ...) which we assume to be temporarily
stored in the backing event-level event store. We first add an entry for case c1 in the
Cases-array. Since there is no behaviour recorded yet for c1, we know the new event
is the first event (at least at this point in time) related to case-id c1. We create a new
vertex and connect it to the root by means of an incoming edge with label a. We add
two pointers for case c1, the recent pointer points to the newly added vertex. The
other pointer, i.e. referring to the oldest possible behaviour seen for the case points to
the root vertex.

In situation 3.) we receive a new event related to case identifier c1, i.e. (c1,b, ...).
We observe that c1 is already present within the Cases-array. We traverse the recent
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behaviour pointer of case c1, i.e. pointing to vertex v1. Since v1 does not have any
outgoing arcs, we create a new vertex, i.e. v2 with an incoming arc labelled b from v1.

In situation 4.) we receive an event related to case identifier c2, i.e. (c2, a, ...). Since
there is no entry for c2 in the Cases-array, we create a new entry for c2. Like c1, the
first event for c2 describes the execution of activity a. Therefore, there is no need to
modify the prefix-tree. We only create two pointers for c2, one pointing to the root r
of the tree, and one pointing to v1.

In situation 5.) we again receive an event for case c2, i.e. (c2,c, ...). In this case, we
create a new vertex v3 with an incoming arc labelled with c from v1. Furthermore, we
assume that the arrival of the new event causes the event-level store to drop the first
received event, i.e. (c1, a, ...). To account for the removal, we shift the oldest behaviour
pointer of case c1 to vertex v1 (which we visualize in 6.)).

Observe that, even though event (c1, a, ...) is removed from the backing event-level
event store, we are still able to reconstruct the trace 〈a,b〉 for case-id c1. We are able
to do this by traversing back to the root r from v2, i.e. the vertex pointed at by c1.
This is the main advantage of the described approach, i.e. without additional memory
load, we are able to reconstruct traces, even though some corresponding events are
removed from the underlying event store.

3.4.2 Accounting for Event Removal

In the example in Figure 3.4, receiving event (c2,c, ...) yields the removal of event
(c1, a, ...) in the internal event store. As such, we shift the start pointer of case c1 to
vertex v1. In the example, the edge leading into vertex v1 is still covered by a different
case, i.e. also case c2 describes that activity at that position. However, this does not
always happen. Hence, we propose a mechanism that allows us to account for removal
that results in parts of the tree that are no longer covered by any case identifier in the
underlying event store. In one of the approaches, we simply drop any possible subtree
that is no longer covered. In the other approach, we shift the subtree underneath the
root of the prefix-tree.

Consider Figure 3.5, in which we continue the example presented in Figure 3.5. In
7.), we receive a new event related to case identifier c1, describing the execution of
an activity labelled c. We thus create a new vertex, i.e. v4, and connect vertex v2 to
vertex v4 by means of an arc labelled c. We also update the terminal pointer of case
identifier c1. We subsequently, in 8.), receive an event related to case c2, for which we
update the prefix-tree and the pointers accordingly. Observe that, in 9.), event (c2, a, ...)
is dropped. Hence, we shift the corresponding start pointer of c2.

In this new situation the edge from vertex r to v1, labelled with a is no longer
covered by any case identifier, i.e. both cases c1 and c2 start at v1. In general, it
is possible that the removal of a certain event leads to the presence of parts of the
prefix-tree that are no longer covered by any case. We propose two strategies to
account for such situation.

1. Drop; In the drop strategy, we completely drop the sub-tree formed by the
uncovered component. in the context of the example, this implies that we decide
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Figure 3.5: Example of removal a prefix-tree based event store, causing parts of the prefix-tree
to be uncovered.

to drop all events related to cases c1 and c2, yielding an empty tree, i.e. we just
retain the root.

2. Shift; In the shift strategy, we position the sub-tree that is actually covered by
one or more cases directly below the root, i.e. we start shifting the behaviour
within the tree such that the events present in the internal event store are still
present in the prefix-tree. in the context of the example, this implies that vertex
v1 is removed from the prefix-tree. Moreover, two new edges connecting vertex
r to vertices v1 and v2, labelled b and c respectively, are added.

Observe that, when adopting the drop strategy, we potentially remove events from
the prefix-tree based event store that are present within the internal event store. This
implies that we potentially describe fewer events than are actually present in the
underlying event store, however, those traces that we describe are in fact complete from
the start of the cases. Similarly, when adopting the shift strategy we always describe
everything present in the internal event store, at the potential cost of incompleteness
at the start of cases.

Note that, as indicated, it is only possible to adopt the aforementioned strategies, if
we assume that removal of events in the underlying event store is case compliant, i.e.
DS 2 of Table 3.1. As such, the event-level reservoir sampling based event store is not
eligible to be used as an underlying event store, as it does not guarantee this. All other
event stores described in section 3.2 are in principle usable as an underlying store.

3.4.3 Reducing the Overall Memory Footprint

Thus far, we have illustrated how to maintain a prefix-tree representing process
behaviour, on the basis of an underlying event store. We have proposed to only
represent the events in the prefix-tree as activities, and to leave the events, as-is,
in the event store. This does however only allow us to reconstruct the control-flow
perspective of events that are described by the prefix-tree, but not present in the event
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store any-more. Therefore, in this section, we briefly illustrate how to integrate the
additional payload directly into the prefix-tree. We furthermore illustrate how to avoid
event duplication in prefix-tree based event storage.

Within the example, cf. Figure 3.4 and Figure 3.5, we, for the ease of simplicity,
only store events as a (case identifier, activity)-pair. As presented in 2.10, an event
is considered to be a tuple of arbitrary size, with arbitrary payload, which mainly
depends on the process under study. Hence we aim to store the event payload within
the tree as well, as it allows us to fully reconstruct the events. As such, we simply store
the payload of each event within the vertices of the prefix-tree. For example, we are
able to store, in each vertex, for each case-id a set of key-value pairs representing the
additional event payload.

When events start to be removed from the underlying event store, i.e. pointers
are being shifted, if space permits, we retain the event payload stored in the vertices
until the corresponding case identifier is completely removed from storage. Note
however, that if we do not do this, we are effectively cheating as we are not really
removing the events from memory. If memory does not permit, we aim at removing
the corresponding payload from the vertex, upon a pointer shift. The edges of the
prefix-tree itself however only describe the control-flow, and not the additional data
perspectives. As such, when reconstructing traces, we are unaware what payload
relates to the events that we derive on the basis the edges of the prefix-tree. Hence,
whenever we reconstruct the case-level event log, we need to apply sampling for those
vertices that no longer contain payload information for a certain case.

To use the prefix-tree based storage, we do not need to duplicate all events and
their payload, i.e. as conventionally stored in the internal event store. Consider the
example in which we use a sliding window as an event store. To effectively apply the
prefix-tree based storage on top of the sliding window, we in fact only need to store
case identifiers within the sliding window, i.e. C ∗. When an event arrives, we append
the corresponding case identifier to the sliding window and store all the payload within
vertices in the prefix-tree. In this way, we only duplicate the case identifiers. Observe
that, since we use a pointer structure from the case identifiers to the prefix-tree,
whenever a case identifier is dropped, we are able to shift the pointer(s) accordingly.

3.5 Evaluation

In this section, we evaluate the performance of different storage approaches in terms of
data quality and memory usage. In particular, we assess the effect of using prefix-tree
based storage on top of a sliding window.

3.5.1 Data Quality

In this section, we evaluate the impact of several different storage techniques on data
quality. In particular, we focus on how well the different storage techniques are able to
accurately describe the event data, as complete as possible. As we expect the event
data to describe incomplete process instances in several cases, we do not measure
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process mining specific quality measures, such as replay-fitness and/or precision of
some derived model, based on the event store. Rather, we use the directly follows
relation, as described in section 2.4.1, as a proxy to measure trace completeness. Recall
that the directly follows relation describes what activities are able to directly follow
what other activities. For example, given a simple trace in a simple event store Φ̃, e.g.
〈..., a,b, ...〉, we observe that a is directly followed by b, and hence a >Φ̃ b holds. Hence,
within the experiments performed, we assess to what degree the storage techniques
under study allow us to reconstruct the directly follows relation of the underlying
event log that is used to generate the stream.

Within the experiments performed, we first compute the complete directly fol-
lows relation, based on the underlying event logs used, i.e. the ground truth. We
subsequently generate a stream, ordered on timestamps present in the event data. This
ensures that multiple cases run in parallel within the event stream. For each of the
storage techniques used, i.e. sliding window and prefix-tree based storage (using a
sliding window internally) with sizes 500, 1000, 2500, we construct a corresponding
event log after each received event. Based on such event log we again compute
a directly follows relation, which we compare against the directly follows relation
computed on the event log as a whole. We track the first 5000 events of the stream for
each technique.

We compute precision and recall, cf. section 2.4.4, i.e. r ecal l = |T P |
|T P |+|F N | and

pr eci si on = |T P |
|T P |+|F P | , on the basis of the discovered directly follows relation and the

directly follows relation based on the whole event log. We moreover explicitly keep
track of start- and end activities, i.e. the set of activities that occur at least once at
the start/end of a trace within the event log. We use the following classification to
evaluate the approach:

• True Positive (TP)

We observe a relation of the form a > b in the discovered relation that is also
observed in the ground truth, and/or, we observe a start/end activity in the event
log based on the event stream that is also a start activity in the ground truth.

• False Positive (FP)

We observe a relation of the form a > b in the discovered relation that is not
observed in the ground truth, and/or, we observe a start/end activity in the event
log based on the event stream that is not in the ground truth.

• True Negative (TN)

We do not observe a relation of the form a > b, which is also not described in
the ground truth, and/or, we do not observe a start/end activity in the event log
based on the event stream, which is also not described in the ground truth.

• False Negative (FN)

We do not observe a relation of the form a > b, which is observed in the ground
truth, and/or, we do not observe a start/end activity in the event log based on
the event stream, which is in fact observed in the ground truth.
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Observe that we expect the false positives to only be related to wrongly discovered
start/end activities. Due to trace incompleteness, we are able to observe an activity a
the last position of a trace, currently stored in the event store, that in the underlying
event log never occurs as a last activity. We are unable to observe directly follows
relations in the data that are not in the underlying event log. Observe that we expect
the recall of the different techniques to be rather low. It is likely that the event store
only stores a fraction of the behaviour present in the original event log, and thus the
ground truth. As such, we expect the event stores to describe a large portion of false
negatives, thus lowering the overall recall value throughout the experiment. On the
other hand, we expect the precision to be rather high. In particular, we never observe
any directly follows relation that is not part of the ground truth, as it reflects the same
portion of data. However, we do expect the event stores to describe different start/end
activities due to trace-incompleteness of the data. Moreover, we expect to see the
prefix-tree to have higher precision values than the standard sliding window, as it aims
to keep traces within its store a bit longer by exploiting shared prefixes.

In Figure 3.6 and Figure 3.7, on page 84 and page 85, we present quality experi-
ments related to the sliding window based event store and prefix-tree based storage,
respectively. All experiments involve real data, i.e. extracted from different information
systems. For all sizes investigated, i.e. 500, 1000 and 2500, we observe that overall,
precision values of the prefix-tree based storage to be slightly higher than the sliding
window based event store, yet the difference is not significant. Also for recall values,
the prefix-tree based event store outperforms the sliding window based event store,
however, the difference in quality is again negligible. For both data sets used, we
observe that the prefix-tree based storage allows us to obtain slightly higher recall /
precision values, yet the difference is negligible and non-significant.

In Table 3.3, we show the average results in terms of recall, precision and f1-score
(harmonic mean of recall and precision). The results include the event logs used in
Figure 3.6 and Figure 3.7, together with additional event logs.

3.5.2 Memory Usage

Aside from the experiments related to quality in terms of the directly follows relation,
we assess the memory usage of both techniques, i.e. sliding window versus prefix-based
storage. Clearly, the sliding window based approach has a constant memory footprint.
However, the prefix-tree based event store needs potentially fewer memory entries
compared to the sliding window based store, since some process instances cover a
similar prefix within the tree. In Figure 3.8 and Figure 3.9, on page 86 and page 87,
we present experiments related to the memory usage of the sliding window based
event store and prefix-tree based storage, respectively. We use the same event logs
as the ones used in Figure 3.6 and Figure 3.7. In particular, we assess the number of
events described for both techniques as well as the number of memory entries needed
to do so. In case of the sliding window, the number of memory entries needed equals
the window size. In case of the prefix-tree based storage, we measure the number of
edges present in the tree.

We observe that in all cases, the prefix-tree based storage allows us to describe a
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(a) Recall, size = 500.
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(b) Precision, size = 500.
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(c) Recall, size = 1000.
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(d) Precision, size = 1000.
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(e) Recall, size = 2500.
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(f) Precision, size = 2500.

Figure 3.6: Precision and recall of sliding window versus prefix-tree based storage using window
sizes of 500, 1000 and 2500, based on the BPI Challenge 2015 Municipality 1 event
log [48].
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(a) Recall, size = 500.
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(b) Precision, size = 500.
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(c) Recall, size = 1000.
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(d) Precision, size = 1000.
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(e) Recall, size = 2500.
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(f) Precision, size = 2500.

Figure 3.7: Precision and recall of sliding window versus prefix-tree based storage using window
sizes of 500, 1000 and 2500, based on the BPI Challenge 2015 Municipality 2 event
log [48].
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(a) Number of events described, size = 500.
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(b) Number of memory entries, size = 500.
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(c) Number of events described, size = 1000.
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(d) Number of memory entries, size = 1000.
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(e) Number of events described, size = 2500.
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(f) Number of memory entries, size = 2500.

Figure 3.8: Memory usage of sliding window versus prefix-tree based storage using window
sizes of 500, 1000 and 2500, based on the BPI Challenge 2015 Municipality 1 event
log [48].
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(a) Number of events described, size = 500.
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(b) Number of memory entries, size = 500.
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(c) Number of events described, size = 1000.
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(d) Number of memory entries, size = 1000.
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(e) Number of events described, size = 2500.
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(f) Number of memory entries, size = 2500.

Figure 3.9: Memory usage of sliding window versus Prefix-tree based storage using window
sizes of 500, 1000 and 2500, based on the BPI Challenge 2015 Municipality 2 event
log [48].
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Table 3.3: Average Quality results for different event logs studied, computed over the first 5000
events of each generated event stream.

Technique Size Recall (Avg.) Precision (Avg.) F1-Score (Avg.)
BPI 2015 Municipality 1 [48] Sliding Window 500 0.03 0.91 0.06

Sliding Window 1000 0.05 0.93 0.09
Sliding Window 2500 0.07 0.96 0.12
Prefix-Tree 500 0.03 0.92 0.07
Prefix-Tree 1000 0.05 0.94 0.09
Prefix-Tree 2500 0.07 0.97 0.12

BPI 2015 Municipality 2 [48] Sliding Window 500 0.03 0.91 0.07
Sliding Window 1000 0.05 0.93 0.09
Sliding Window 2500 0.07 0.96 0.13
Prefix-Tree 500 0.03 0.91 0.07
Prefix-Tree 1000 0.05 0.93 0.09
Prefix-Tree 2500 0.07 0.96 0.13

BPI 2015 Municipality 3 [48] Sliding Window 500 0.03 0.92 0.06
Sliding Window 1000 0.04 0.93 0.07
Sliding Window 2500 0.06 0.96 0.10
Prefix-Tree 500 0.03 0.92 0.06
Prefix-Tree 1000 0.04 0.94 0.07
Prefix-Tree 2500 0.06 0.96 0.10

small fraction of additional behaviour. This is in line with the results in Figure 3.8
and Figure 3.9, i.e. the slightly higher precision values. Note that we do not observe a
clear relation between the size of the (underlying) sliding window and the amount of
additional described behaviour. We furthermore observe that in all cases, the prefix-
tree based event store needs fewer memory entries to describe behaviour. This implies
that in the event data used, there is indeed shared behaviour in terms of trace prefixes,
which we are able to exploit within the prefix-tree.

3.6 Related Work

Little work has been done in the context of explicit temporal storage of streaming data
originating from the execution of processes. In [34, 35] the Lossy Counting algorithm
is used to store an algorithmic-specific abstraction for the purpose of online process
discovery. Furthermore, in [69] prefix-trees are used as well, however, not with the
intention to store full trace history. Rather, after receiving a few events related to the
same case a clean-up action is performed. In [69] it is merely shown that using such
prefix-tree oriented structure is more efficient for the corresponding process discovery
algorithm, compared to [35].

In offline process mining, little work has been published in the context of (effi-
cient) storage of event data. Most academic and commercial process mining tools
support the IEEE eXtensible Event Stream (XES) [1] standard, which specifies an
XML-based storage standard for event data. Several open-source java-libraries have
been written and documented with the specific aim to implement lightweight effi-
cient implementations of the standard [86]. For example, the XESLite - Database

(XL-DB) implementation allows us to use secondary storage on a single node computer.
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As such, the implementation allows us to analyse event data that exceeds internal
memory, yet it does not allow us to distribute it over multiple nodes.

Additionally, some work has been performed with respect to large-scale storage, i.e.
particularly in the light of big event logs, i.e. event logs that no longer fit the memory
of a single computer. In [54, 70] the authors assess process discovery in the context of
data intensive environments. In particular, both works focus on the applicability of
using the Hadoop2 distributed data storage framework, in order to apply the flexible
heuristic miner [122]. As such, the main focus of these works is towards computing
the underlying data abstractions rather than actual storage. However, a connector
to any Hadoop ecosystem has been implemented and published in the light of the
aforementioned work [71]

In light of large scale storage, recently some studies have investigated the applic-
ability of relational databases in the context of event log storage [50, 108]. In [50]
a first relational database based event log storage design was proposed, i.e. RXES. It
adheres to the XES standard, yet allows for storage of the event data in a relational
database. In RXES, an event is allowed to belong to different process instances, i.e.
which is often the case in practice. The work in [108] also presents a storage design
on the bases of relational databases, i.e. DBXES. Moreover, the authors motivate that
a lot of discovery algorithms use intermediate data structures, and thus propose to
pre-compute these structures at event insertion time, to reduce overall computational
complexity of several discovery techniques. The aforementioned rationale is also
applied in this thesis, i.e. in chapter 5, where we propose a similar, stream-based
architecture. Additionally, work has been performed on translation of conventional
relational databases into XES-based event logs [114]. Note however, that this work in
principle does not aim to solve big data problems. The primary focus of the work is
to extract event data from complex databases, not tailored towards process mining.
Similarly, work has been done in the design of process/event-aware versions of OLAP
cubes [27, 116, 117]. In these works, the emphasis is more on efficient event selection
for the purpose of multi-perspective process mining, instead of the actual size of the
underlying event data.

3.7 Conclusion

In recent years, several different process mining techniques have been proposed. All
of these techniques operate on the notion of an event log, i.e. a collection of executed
business process events, describing traces of process behaviour. Such an event log is a
static, historical source of information. Being based on such event logs, offline process
mining techniques cannot be applied on event streams, without any modification.
Therefore, new techniques are required that allow us to (temporarily) store events
emitted onto an event stream, and subsequently apply any process mining technique
on top of such storage.

2htttp://hadoop.apache.org/

htttp://hadoop.apache.org/
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3.7.1 Contributions

In this chapter, we have presented several ways to store stream-based event data
originating from live execution of (business) processes. We have constructed a formal
definition, i.e. event stores, and defined a corresponding incremental update scheme.
Moreover, we have shown several possible instantiations of such an event store, using
different existing data storage techniques originating from different areas of data
stream processing. We have identified what are, from a process mining perspective, the
main problems of using these techniques “out of the box”. Based on these observations,
combined with the potential presence of similar behaviour in process oriented event
data, we have proposed a new data storage technique that overcomes these short-
comings. Using real event data we have conducted experiments with the proposed
technique. We observe that we are able to slightly improve the quality of the process
mining analyses applied on top of such storage, yet the increase is not significant.
However, the use of prefix-tree based storage does allow us to use less memory, as
the real data used for the experiments indeed shows some shared behaviour among
different process instances.

3.7.2 Limitations

One of the main challenges in process mining is adequately discovering and visualizing
the inherent parallelism present in processes. Such parallelism, together with loop
behaviour, i.e. repeated executions of certain parts of the process, form challenges
for the applicability of the proposed techniques. Parallelism yields a large variety in
terms of behaviour. As a consequence, in the context of prefix-tree based storage, a
large amount of unique paths, i.e. sequences of edges from the root to a leaf of the
process trees, are constructed. Hence, we are not able to effectively exploit behavioural
similarity.

The aforementioned problem is partly solved by representing the vertices as the
Parikh representation of the sequence they represent. For example, if traversing the
edges leading to a specific vertex, starting from the root, yields sequence 〈a,b,c,b,d〉,
we transform it to multiset [a,b2,c,d ]. All possible permutations of 〈a,b,c,b,d〉 now
lead to the vertex representing [a,b2,c,d ]. Using such abstraction on top of the state
represented by vertices in the prefix-tree yields an acyclic graph instead of a tree. This
allows us to compress the prefix-tree and handle parallelism. However, reconstructing
cases is possibly more computationally complex since vertices potentially have multiple
incoming arcs.

Storage of additional payload within the prefix-tree also poses problems with
respect to removal of events. As indicated in subsection 3.4.3, we either keep payload
in memory for an extended period of time, or remove it and resort to sampling. Clearly,
when we store the payload for an additional period of time, this potentially causes
us to exceed available memory. At the same time, when removing it from vertices
no longer covered by the corresponding case identifier, sampling potentially leads to
misleading results.
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3.7.3 Open Challenges & Future Work

The techniques covered in this chapter solely focus on temporal storage of events. In
particular, we assess the applicability of existing techniques to do so, and, compare it
with prefix-tree based storage, which exploits the fact that an event stream originates
from a running process instance. None of the techniques however explicitly focusses on
intelligently removing traces of event behaviour. The prefix-tree based storage allows
us to approximate the past behaviour of a process instance that is already removed
from the underlying event store. However, whenever such event store completely
removes everything related to a certain process instance, it is removed from the prefix-
tree as well. In that sense the prefix-tree based storage completely depends on the
quality of the underlying event store, with respect to. its own behaviour.

In light of the aforementioned, it remains a challenge to estimate:

1. For events related to a completely new case identifier, whether or not it is likely that
this is indeed new behaviour, or it relates to ongoing, already stored, behaviour.

2. For traces of behaviour that are already present in the event store, how likely it
is that new events are to be expected related to the case identifier.

When we are able to estimate the two main focal points, i.e. related to process instance
initialization and termination, we are able to build a new type of event store. Such an
event store needs to be able to selectively ignore certain events from insertion if these
are likely to jeopardize data quality, i.e. not due to noise yet due to the high likelihood
that data was missed. Moreover, it needs to be able to assess what parts of the
behaviour are safe to remove, i.e. which process instances are most likely terminated
and thus are not likely to generate new events. Hence, we envision tailor-made
techniques for the purpose of event storage, i.e. more advanced means of temporal
event storage.





Chapter 4
Filtering Infrequent Behaviour
From Event Streams

The techniques introduced in chapter 3, allow us to temporarily store the events
emitted on the event stream. As a consequence, the techniques allow us to lift process
mining to the domain of streaming data. However, in practice, noise, infrequent
behaviour and/or other types of anomalies are present within streaming event data.
Therefore, in this chapter, we present an online filtering technique that allows us to
identify and remove events that relate to infrequent behaviour. The technique acts as
an event processor, i.e. we are able to plug the filtering technique on top of an input
stream and generate an output event stream out of which infrequent behaviour is
removed.

The contents presented in this chapter are based on the following publication:

S.J. van Zelst, M. Fani Sani, A. Ostovar, R. Conforti, and M. La Rosa. Filtering Spurious
Events from Event Streams of Business Processes. Advanced Information Systems Engineering,
30th International Conference, CAiSE 2018, Tallinn, Estonia, June 11-15, 2018, Proceedings,
volume 10816 of Lecture Notes in Computer Science, pages 35-52. Springer, 2018;
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Figure 4.1: The contents of this chapter, i.e. techniques for the purpose of event stream filtering,
highlighted in the context of the general structure of this thesis.
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4.1 Introduction

In the previous chapter, we presented several techniques that allow us to temporarily store
events emitted onto an event stream, originating from the underlying process. Thus far, we
have assumed an event stream to be free of noise and anomalous behaviour. However, in reality,
several factors cause this assumption to be wrong, e.g. the supporting information system may
trigger the execution of an inappropriate activity that does not belong to the process, or the
system may be overloaded resulting in logging errors. The existence of these anomalies in event
streams, and event data in general, easily leads to unreliable results.

For example, reconsider the running example process as presented in Figure 2.13a, on
page 55. When we apply a state-of-the art process discovery algorithm, i.e. the Inductive
Miner [78], on an event log containing noise-free behaviour, i.e. only traces that are in the
language of the example process, we obtain the model depicted in Figure 4.2a.

Observe that the Petri net depicted in Figure 4.2a is slightly different compared to the model
as presented in Figure 2.13a. This is due to the fact that the algorithm used to discover the
model does not allow us to discover duplicate labels, i.e. in Figure 2.13a both transition t4 and
t5 have a label d . However, the language described by both models is the same. The model
depicted in Figure 4.2b is discovered using the same algorithm, and almost the same data.
However, we added a duplicate c- and e activity to one of the traces in the input data. As a
result, the model now describes that we are able to always repeat both activity c and e infinitely
often, even though in the data, both activities were duplicated only once. Hence, only a slight
fraction of infrequent noisy behaviour in the event data easily leads to process models that are
severely under-fitting with respect to the input data.

In the case of the Inductive Miner, the resulting process model is still a sound workflow net
(cf. 2.5). This is due to the algorithm itself, i.e. the Inductive Miner by definition returns sound
workflow nets. Other algorithms do not provide such guarantees and are therefore even more
affected by the presence of noisy behaviour. For example, in case of the Alpha algorithm [11],
the duplication of the c-activity does not allow us to find any Petri net place connected to a
transition with the corresponding label, i.e. a transition labelled c.1 As such, that transition is
enabled at any point in time and hence such model is even more imprecise than the model as
discovered by the Inductive Miner (cf. Figure 4.2b).

To tackle the aforementioned problem in the context of event streams, we present a general-
purpose event stream filter designed to detect and remove infrequent behaviour from event
streams. The presented approach relies on a time-evolving subset of the behaviour of the
total event stream, out of which we infer an incrementally-updated model that represents this
behaviour. In particular, we build a collection of dynamically updated probabilistic automata
(cf. 2.9) that represent the subset of behaviour and are used to filter out infrequent behaviour.
The filter we propose primarily focuses on the control-flow of the process (i.e. the sequential
ordering of activities). As such we aim to determine whether an activity executed in the context
of a certain process instance is plausible, given the recent history of executed activities for that
same process instance.

Using a corresponding implementation of the approach, we evaluate the accuracy and
performance of the filter by means of multiple quantitative experiments. To this end, we
evaluate the proposed filter using a set of streams generated from a collection of synthetic
process models inspired by real-life business processes. Moreover, to illustrate the applicability

1As the Alpha algorithm has difficulty to (re)discover the running example model, i.e. on the basis of
noise-free behaviour, we do not explicitly show its result here, we merely indicate the additional problems
caused by the presence of noise.
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(a) Discovered based on data without infrequent noisy behaviour.

(b) Discovered based on data containing infrequent noisy behaviour.

Figure 4.2: Result of applying the Inductive Miner [78] on data obtained from the running ex-
ample process (cf. Figure 2.13a), with (cf. Figure 4.2a) and without (cf. Figure 4.2b)
the presence of infrequent noisy behaviour.

of the approach with respect to existing online process mining techniques, we asses the benefits
of the proposed filter when applied prior to the application of online drift detection.

The remainder of this chapter is organized as follows. First, in section 4.2, we present a
general taxonomy of behaviour, on the basis of control-flow, and indicate, which classes of
behaviour are potentially identified and removed by the proposed filter. In section 4.3 we
present the general architecture of the proposed filtering method. In section 4.4, we present
the main, automaton based, approach, which we evaluate in section 4.5. We present related
work in the domain of event-based filtering in section 4.6. We conclude this chapter and discuss
directions for future work in section 4.7.

4.2 A Control-Flow-Oriented Taxonomy of Behaviour
Prior to presenting the general architecture of the proposed filter, we present a control-flow-
oriented behavioural taxonomy, specifically tailored towards process mining data. We further-
more highlight which of the identified classes of the taxonomy, are covered by the proposed
filter.

In general, we identify three major data characteristics, along the lines of which we are able
to classify process mining data.

• Trustworthiness
Indicates to what degree the recorded behaviour corresponds to reality, i.e. what actually
happened during the execution of the process. In the case that the behaviour, e.g. emitted
on an event stream, correctly reflects reality, e.g. no erroneous duplication of events, we
consider the behaviour as trustworthy.

• Compliance
Indicates to what degree the recorded behaviour is in accordance with predefined rules
and/or expectations of the process. In some cases, rules and/or legislations dictate that
explicit forms of behaviour are required. In other cases, service level agreements dictate
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Figure 4.3: Control-flow-oriented taxonomy of behaviour. The types of behaviour that, ideally,
are used in process mining are marked with �. Behaviour that is ideally removed is
marked with ×. Behaviour of which the type of process mining analysis determines
inclusion, is marked with ∼. The types of behaviour that are identified by the
proposed filter, i.e. infrequent behaviour, are highlighted in blue.

an idealized and/or expected execution of behaviour. In the case that the behaviour
correctly corresponds to such rules/expectations, we consider the behaviour as compliant.

• Frequency
Indicates the relative frequency of the behaviour, i.e. compared to other observed execu-
tions of the same process.

In Figure 4.3, we present a graphical overview of the different characteristics, and their
relation. It depends on the type of process mining task one performs, to what degree we aim to
include certain types of behaviour in the analysis. However, observe that, when behaviour is
untrustworthy, in general, we are not interested in including it, i.e. we are not able to trust the
behaviour, and thus draw any significant meaningful conclusions from it. Hence, even in the case
of conformance-checking-oriented process mining studies, we aim to remove the untrustworthy
behaviour. In fact, we aim to omit any form of untrustworthy behaviour. However, note that,
even though behaviour is untrustworthy, systematic errors may cause it to occur frequently.
Therefore, in Figure 4.3, we do distinguish between frequent and infrequent forms. In the case
that behaviour is trustworthy, frequent and compliant, we always aim to include it. When we
perform process discovery, it is most likely that we aim to only include such frequent compliant
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Figure 4.4: Schematic overview of the proposed filtering architecture.

behaviour and leave out any other type of trustworthy behaviour. When we apply conformance
checking, it is more likely that all trustworthy behaviour is required to be included. Observe
that in Figure 4.3, we explicitly highlight the types of behaviour, i.e. infrequent behaviour, that
the presented filter is able to identify and remove.

4.3 Architecture
In this section, we present the basic architecture of the proposed event filter. The filter uses
the behaviour stored in an underlying event store to identify and remove infrequent behaviour.
Moreover, it is intended to be updated incrementally when new events are added to the event
store. Based on the behaviour stored in the event store, we construct multiple probabilistic
automata (cf. subsection 2.2.2, 2.9), which describe the behaviour captured within the event
store. A state within a probabilistic automaton represents a view on recently observed behaviour
of a specific process instance as represented by its corresponding case identifier. The outgoing
transition probabilities of a state are based on observed behaviour for that state, as temporarily
described by the event store. If, for a certain process instance, a new event arrives, we check
whether that event is probable, based on the recorded probability distributions. If it is probable,
we forward the event to the output stream, if not, we refrain from forwarding it.

In Figure 4.4, we depict a high-level overview of the architecture of the proposed filter. We
assume that the input event stream S contains both proper- and spurious events. We maintain
an event store Φ as defined and presented in chapter 3. In particular, within the filter, we use
the case view of such store, i.e. ΦC . A new event e is, in case it is stored within the event
store Φ, forwarded to event filter g. From an architectural point of view, we do not pose any
strict requirements on the dynamics of the filter. We do however aim to let filter g reflect the
behaviour captured within the event store Φ. Hence, the filter typically needs to process a new
event within its internal representation, prior to applying the actual filtering. Furthermore,
when events are removed from the underlying event store, i.e. caused by the addition of the
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newly received event e, we aim to process such removal within the filter as well. For the newly
received event, the filter g either decides to emit the event onto output stream S′, or, to discard
it. In any case, it is always incorporated in the internal representation of the filter. We mainly
do so because of the fact that typically, concept drift initially seems to be outlier behaviour, i.e.
only over time, the concept drift becomes clear.

4.4 Automaton Based Filtering

Given the general architecture as presented in Figure 4.4, in this section we propose an instanti-
ation of filter g. We first present the conceptual idea of the use of collections of probabilistic
automata for the purpose of spurious event filtering, after which we describe how to increment-
ally maintain the collection of automata, and, how to effectively filter.

4.4.1 Prefix-Based Automata

Within the proposed filter instantiation, a collection of probabilistic automata represents recent,
control-flow oriented, behaviour observed on the event stream. These automata are used to
determine whether new events are, according to their probability distributions, likely to be
spurious or not. Each state within an automaton refers to a view on the (recent) historical
behaviour of the process instances described by recently received events on the event stream.
Such a state, for example, represents the three most recent activities performed for a certain
process instance. The automata considered here can be regarded as extended/decorated variants
of the transition systems described in [10].

The probabilities of the outgoing arcs of a state are based on the behaviour exhibited by
process instances that have been in that state before and subsequently moved on to a new
state by means of a new event. Upon receiving a new event, we assess the state of the process
instance described by the event and check, based on the distribution as defined by that state’s
outgoing arcs, whether the new event is likely to be spurious or not. As an example, consider
Figure 4.5a on page 100. Within the example automaton, for each process instance, the most
recent event represents its state, e.g. if we have observed 〈a,b,c〉 for some process instance, the
corresponding state is 〈c〉. Observe that for that state within the example automaton, based on
historical behaviour, i.e. previously observed process instances, we recorded that in 2

3 of these
instances activity d was observed and in 1

3 of these instances we observed activity b. Thus, if we
observe, for the process instance with behaviour 〈a,b,c〉, a new event describing c, we deem it
rather likely that the new event is spurious.

The probabilistic automata that we construct contain states that represent recent control-flow
oriented behaviour for the process instances currently captured within the event store. As such,
each state refers to a (partial) prefix of the process instance’s most recent behaviour, and hence,
we deem these automata prefix-based automata. Therefore, in prefix-based automata, a state q
represents a (abstract view on a) prefix of executed activities, whereas outgoing arcs represent
those activities a∈A that are likely to follow the prefix represented by q, and their associated
probability of occurrence. We define two types of parameters, that allow us to deduce the exact
state in the corresponding prefix automaton based on a prefix, i.e.

1. Maximal Abstraction Window Size

Represents the size of the window to take into account when constructing states in the
automaton. For example, if we use a maximal window size of 5, we only take into account
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(a) Automaton based on three full (simple) traces of the running
example, cf. Figure 2.13, i.e. 〈a,b,c,d ,e〉, 〈a,c,b,d , f 〉 and 〈a,c,d ,e〉
and one partial (i.e. ongoing) trace 〈a〉.
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(b) Similar automaton to Figure 4.5a, after receiving a new event c for
incomplete trace 〈a〉 (i.e. yielding trace 〈a,c〉). As a consequence,
the outgoing arcs of 〈a〉 get different probabilities.

Figure 4.5: Example of maintaining a prefix-based automaton, using a window size of 1 (the
same for all abstractions).

the five most recent events present in the event store for the process instance under
consideration as being recent behaviour.

2. Abstraction
Represents the abstraction that we apply on top of the derived window of recent historical
behaviour, i.e. subject to the maximal window size parameter, in order to define a state.
We identify the following abstractions:

• Identity
Given window size w∈N and a trace σ∈A ∗, present in Φ̃, the identity abstraction
i d w yields the prefix as a state, i.e. i d w : A ∗ →A ∗, where i d(σ) =σ|σ|−(w+1)...|σ|.

• Set
Given window size w∈N and a trace σ∈A ∗, present in Φ̃, the set abstraction indicates
the presence of a∈A in the last w elements of σ, i.e. we apply el em(σ|σ|−(w+1)...|σ|).

• Parikh
Given window size w∈N and a trace σ∈A ∗, present in Φ̃, the Parikh abstraction
par i kh yields a multiset describing the number of occurrences of a∈A within σ, i.e.
we apply ~σ|σ|−(w+1)...|σ|.
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(a) Automaton based on three full (simple) traces of the running example, cf.
Figure 2.13, i.e. 〈a,b,c,d ,e〉, 〈a,c,b,d , f 〉 and 〈a,c,d ,e〉 and one partial (i.e.
ongoing) trace 〈a,c〉.
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(b) Similar automaton to Figure 4.6a, after receiving a new event d for incomplete
trace 〈a,c〉 (i.e. yielding trace 〈a,c,d〉). As a consequence, the outgoing arcs
of {a,c} get different probabilities.

Figure 4.6: Example of maintaining a prefix-based automaton, using a window size of 2 with a
set abstraction.

Consider Figure 4.5 and Figure 4.6, in which we present different examples of prefix-
automata. The automata in Figure 4.5 are based on four traces of behaviour, which are based on
the running example depicted in Figure 2.13a. Three of these traces, i.e. 〈a,b,c,d ,e〉, 〈a,c,b,d , f 〉
and 〈a,c,d ,e〉, are based on full process behaviour, i.e. these traces related to termination of
the process instance. Finally, we also assume we maintain behaviour to a running instance of
the process, for which only the (first) activity a is observed. In the automaton in Figure 4.5b,
the effect of receiving a new event (an event describing activity c for trace 〈a〉), with respect
to the transition probabilities is visualized, which is detailed on in the subsequent section, i.e.
subsection 4.4.2. In Figure 4.6, we visualize the effect of subsequently receiving a d activity
for the incomplete process instance 〈a,c〉. In Figure 4.5, we use a maximal window size of 1,
together with the identity abstraction. Note that, due to this window size, each of the abstractions
mentioned, i.e. identity, set and Parikh, yields the same automaton. In Figure 4.6, we use a
maximal window size of 2, together with a set abstraction. For the traces of behaviour used
in the two examples, a window size of 2 combined with a Parikh or set view retains the same
automata. However, combining it with the identity abstraction yields a different automaton, e.g.
using the set/Parikh abstraction yields {b,c} or [b,c] based on both 〈b,c〉 or 〈c,b〉. Furthermore,
it is important to note that, when using a window size of k, we only start effectively using
the automaton in filtering when the received events for a certain process instance describe a
sequence of length k. Hence, in Figure 4.6, only the states describing two events, e.g. {a,c},
{a,b} etc. are used when filtering.
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As exemplified by the automata depicted in Figure 4.5 and Figure 4.6, the window size
influences the degree of generalization of the automaton. For example, the automata in
Figure 4.5 allow for an infinite repetition of b and c activities in states 〈c〉 and 〈b〉, respectively.
The automata in Figure 4.6 do not allow this, i.e. they are more precise with respect to their
training data. Observe that, increasing the maximal window size is likely to generate automata
of larger size, i.e. we are able to distinguish a wider variety of states, and is thus likely to be
more memory intensive. Hence, we have a trade-off between precision of the automata with
respect to training data and memory complexity.

4.4.2 Incrementally Maintaining Collections of Automata

In this section, we indicate how we aim to maintain a collection of automata which we use to
filter. Prior to this, we motivate the need for using multiple automata within filtering.

Consider that we observe an event stream, running on the basis of just two simple traces, i.e.
〈a,c,d〉 and 〈b,c,e〉. Furthermore, observe that within the data, there is a long-term dependency
between, on the one hand, a and d , and, b and e, on the other hand. Consider Figure 4.7,
in which we present two automata constructed on the basis of the two simple traces. In both
automata we use an identity abstraction, yet in Figure 4.7a, we use window size of 1, whereas
in Figure 4.7b, we use a window size of 2. For simplicity, we have omitted the probabilities of
the edges of the automata. Note that, when only using the automaton depicted in Figure 4.7a,
we no longer observe the long-term dependency. As a result, whenever an event describes
the occurrence of activity e after earlier observed prefix 〈a,c〉, we are not able to identify this
as being infrequent behaviour, i.e. both 〈a,c〉 and 〈b,c〉 are translated into state 〈c〉. In the
automaton in Figure 4.7b, this is however possible. Hence, we aim to use automata using
different window sizes, which allows us to generalize on the one hand (smaller window sizes),
yet, also allows us to detect certain long-distance patterns (larger window sizes).

As new events are emitted on the stream, we aim to keep the automata up-to-date in such way
that they reflect the behaviour present in the event store at time i , i.e. Φi (S). Let k > 0 represent
the maximal abstraction window size we want to take into account when building automata.
We maintain k prefix-automata, where for 1 ≤ j ≤ k, automaton PA j = (Q j ,Σ j ,δ j , q0

j ,F j ,γ j ) uses
maximal abstraction window size j to define its state set Q j . Upon receiving a new event, we
incrementally update the k maintained automata. Consider receiving the i th event S(i ) = e, with
πc(e) = c and πa(e) = a. Moreover, assume that the event is added to the event store Φi , i.e.
Φi+ = {e}, and hence we aim at processing it within the collection of automata. We additionally
let σ=σ′ · 〈a〉 =π∗a(Φi (S,c)), i.e. σ represents the current trace (control-flow perspective) known
for case c whereas σ′ represents the complete prefix of the current trace stored for case c,
excluding the activity described by the newly received event e.

To update automaton PA j we apply the abstraction of choice on the prefix of length j of
the newly received event in σ′, i.e. 〈σ′(|σ′|− j +1), ...,σ′(|σ′|)〉, to deduce the corresponding state
qσ′∈Q j . The newly received event influences the probability distribution as defined by the
outgoing arcs of qσ′ , i.e. it describes that qσ′ can be followed by activity a. Therefore, instead
of storing the probabilities of each γ j , we store weighted outdegree of each state q j∈Q j , i.e.
deg+j (q j ). Moreover, we store the individual contribution of each a∈A to the outdegree of q j ,

i.e. deg+j (q j , a) with deg+j (q j , a) = 0 ⇔ δ(q j , a) =;. Observe that deg+j (q j ) = ∑
a∈A

deg+j (q j , a), and,

that deducing the empirical probability of activity a in state q j is trivial, i.e. P (a | q j ) = deg+j (q j ,a)

deg+j (q j )
.

Reconsider the example automaton in Figure 4.5, and consider that we receive an event
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(a) Automaton (probabilities omitted) describing the behaviour of the
process, i.e. traces 〈a,c,d〉 and 〈b,c,e〉, using a window size of 1.
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(b) Automaton (probabilities omitted) describing the behaviour of the
process, i.e. traces 〈a,c,d〉 and 〈b,c,e〉, using a window size of 2.

Figure 4.7: Two automata, using different window lengths, i.e. length 1 and 2, describing the
behaviour of the process, i.e. traces 〈a,c,d〉 and 〈b,c,e〉. Only using a window length
of 2 allows us to observe the long-term dependencies as described by the data.

related to activity c, which in turn belongs to the same case as the simple trace 〈a〉. Hence, we
obtain a new simple trace 〈a,c〉 for the corresponding case identifier. As we use a window size
of 1, we deduce that the corresponding abstraction, and thus the new state in the automaton
related to that case is 〈c〉. Clearly, the previous state is 〈a〉. We observe a total of 4 traces that
describe an action out of state 〈a〉, three of which describe activity c, i.e. 〈a,c,b,d , f 〉, 〈a,c,d ,e〉
and 〈a,c〉. Only one of the simple traces describes activity b after state a, i.e. 〈a,b,c,d ,e〉. Hence,
we deduce empirical probability 3

4 for activity c and 1
4 for activity b.

Updating the automata based on events that are removed from the event store, i.e. based on
the elements of Φi−, is performed as follows. Again, assume that we receive a new event e at
time i > 0 related to a process instance identified by some case identifier c. For all c∈C , we let
σ′

c =Φi−1(S,c), σc =Φi (S,c) and moreover, we let ∆c (i ) = |σ′
c |− |σc |. Observe that for any case

identifier c∈C , that does not relate to the newly received event, we have:

∆c (i ) ≥ 0 (4.1)

Observe that this is the case since events are potentially dropped for such case, yet no new
events are received, hence |σc | ≤ |σ′

c |. In a similar fashion, for the process instance identified by
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case c that relates to the new event e, we have:

∆c (i ) ≥−1 (4.2)

Observe that this is the case since either |σc | = |σ′
c |+1, or, |σc | ≤ |σ′

c |.
Thus, to keep the automata in line with the events stored in the event window, in the

former case we need to update the automata if ∆c i > 0, i.e. at least one event is removed for
the corresponding case identifier, whereas in the latter case we need to update the automata if
∆c i ≥ 0. Therefore, we define ∆′

c (i ) =∆c (i ) for the former case and ∆′
c (i ) =∆c (i )+1 in the latter

case. Henceforth, if for any c∈C , we need to update the maintained automata to account for
removed events in case:

∆′
c (i ) > 0 (4.3)

To update the collection of k maintained automata, for each 1 ≤ j ≤∆′
c (i ) we generate sequences

〈σ′( j )〉, 〈σ′( j ),σ′( j )+1〉, ..., 〈σ′( j ), ...,σ′( j +k)〉 (subject to |σ′| > j +k). For each generated se-
quence, we apply the abstraction of choice to determine corresponding state q, and subsequently
reduce the value of deg+(q) by 1. Moreover, assume that the state q corresponds to sequence
〈σ′( j ),σ′( j +1), ...,σ′( j + l )〉 with 1 ≤ j ≤∆′

c (i ) and 1 ≤ l < k, we additionally reduce deg+(q, a) by
1, where a =σ′( j + l +1).

4.4.3 Filtering Events

After receiving an event and subsequently updating the collection of automata, we determine
whether the new event is spurious or not. To determine whether the newly arrived event is spuri-
ous, we assess to what degree the empirical probability of occurrence of the activity described
by the new event is an outlier with respect to the probabilities of other outgoing activities of
the current state. Given the set of k automata, for automaton PA j = (Q j ,Σ j ,δ j , q0

j ,F j ,γ j ) with

prefix-length j (1 ≤ j ≤ k), we characterize an automaton specific filter as g j : Q j ×Σ j → B.2

Note that an instantiation of a filter g j often needs additional input, e.g. a threshold value or
range. The exact characterization of g j is a parameter of the approach, however, we propose
and evaluate the following instantiations:

• Fractional;

Considers whether the probability obtained is higher than a given threshold, i.e. gF
j : Q j ×

Σ j × [0,1] →B, where:

gF
j (q j , a,κ) = 1 if P (a | q j ) < κ (4.4)

• Heavy Hitter;

Considers whether the probability obtained is higher than a fraction of the maximum
outgoing probability, i.e. gH

j : Q j ×Σ j × [0,1] →B, where:

gH
j (q j , a,κ) = 1 if P (a | q j ) < κ · max

a′∈A
P (a′ | q j ) (4.5)

2It is also possible to have r ng (gi ) = [0,1], i.e. indicating the probability of an event being spurious,
however, the filters we propose here all map to boolean values.
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• Smoothed Heavy Hitter;
Considers whether the probability obtained is higher than a fraction of the maximum
outgoing probability subtracted with the non-zero average probability. Let N Z = {a∈Σ j |
P (a | q j ) > 0}, we define gSH

j : Q j ×Σ j × [0,1] →B, where:

gSH
j (q j , a,κ) = 1 if P (a | q j ) < κ ·

max
a′∈A

P (a′ | q j )−

∑
a′∈N Z

P (a′ | q j )

|N Z |

 (4.6)

For a newly received event, each automaton, combined with a filter of choice yields a boolean
result indicating whether or not the new event is spurious. In the remainder, we assume that we
apply the same filter on each automaton and we assume that when any of the k maintained
automata signals an event to be spurious, the event itself is spurious. However, observe that this
is not a strict necessity, i.e. different filters can be applied and alternative noise classifications
schemes are eligible as well, e.g. majority vote. Finally, note that maintaining/filtering the
automata can be performed in parallel, e.g. we maintain an automaton on each node within a
cluster.

4.5 Evaluation
In this section, we evaluate the proposed event filter in two ways. First, we assess filtering
accuracy and time performance on randomly generated event streams, based on synthetic process
models, i.e. a collection of process models that resemble business processes often present in
organizations. Second, we assess the applicability of our filter in combination with an existing
class of online process mining techniques, i.e. concept drift detection techniques. In the latter
experiment, we consider both synthetic and real-life datasets.

4.5.1 Filtering Accuracy and Time Performance
For this first set of experiments, we generated several event streams using 21 variations of the
loan application process model presented in [51]. These variations are inspired by the change
patterns as presented in [119]. Out of 21 stable models, we generated 5 different random event
streams, each describing 5000 process instances, with a varying amount of events. For each
generated stream, we randomly inserted spurious events with insertion probabilities ranging
from 0.025 to 0.15 in steps of 0.025. In these experiments, we use a simple sliding window with
fixed size as an implementation for Φ. We internally maintain a projection of the form C →A ∗
to accommodate for the case-view of Φ, i.e. ΦC . Given a sliding window of maximal-size N , the
first N events are used to construct an initial set of automata and are not considered within the
evaluation. Moreover, each event arriving after the first N events that relates to any process
instance that was observed within the first N events is ignored as well. As such we only consider
new process instances within the filter.

Accuracy

We assess the impact of a wide variety of parameters on filtering accuracy. These are the
maximal abstraction window size, the particular abstraction of use, the filtering technique and
the filter threshold. The values of these parameters, used within the experiments, are presented
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Table 4.1: Parameters of Data Generation and Experiments with Synthetic Data

Data Generation
Artefact/Parameter Value
Number of Models 21
Number of Event Logs, generated per model 5
Probability of spurious event injection, per event log {0.025,0.05, ...,0.15}

Experiments
Sliding Window Size {2500,5000}
Maximal Abstraction Window Size {1,3,5}
Abstraction {Identity (i d), Parikh (par i kh), Set (el em)}

Filter
{Fractional (gF ), Heavy Hitter (gH ),

Smoothed Heavy Hitter (gSH }
Filter Threshold (κ) {0.05,0.1, ...,0.5}

in Table 4.1. Here, we mainly focus on the degree in which maximal abstraction size, abstraction,
filtering method and window size influence the filtering quality. The results for each of these
parameters are presented in Figures 4.8 − 4.11 on pages 107 − 110. Note that, to reduce the
amount of data points and ease interpretability of the figures, we show results for noise levels
0.025, 0.05, 0.1 and 0.15, and threshold levels 0.05−0.25.

For the maximal abstraction window size (cf. Figure 4.8), we observe that a prefix-size of 1
tends to outperform prefix-sizes of 3 and 5. This is an interesting observation as it shows that,
for this collection of models and associated streams, ignoring large parts of a trace’s history
improves the results. Note that, for maximal prefix length k, we use k automata, and signal an
event to be spurious whenever one of these signals that this is the case. Using a larger maximal
prefix-length potentially identifies more spurious events, yielding higher recall values. However,
a side effect is potentially lower precision values. Upon inspection, this indeed turns out to
be the case, i.e. the differences in F1 score are explained by higher recall values for increased
maximal prefix lengths, however, at the cost of lower precision.

As for the abstraction used (cf. Figure 4.9), we observe that the Identity- outperforms both
the Parikh- and the Set abstraction (for these results a maximal window size of 1 is ignored, as
all of the abstractions yield the same automaton). The results are explained by the fact that
within the collection of models used, the amount of parallelism is rather limited, which does
not allow us to make full use of the generalizing power of both the Parikh- and Set abstraction.
At the same time, loops of short length exist in which order indeed plays an important role,
which is ignored by the two aforementioned abstractions. Upon inspection, the recall values of
all three abstractions are relatively equal, however, precision is significantly lower for both the
Parikh- and Set abstraction. This can be explained by the aforementioned generalizing power of
these abstractions, and, in turn, explains the difference in F1 score.

For the filter method used (cf. Figure 4.10), we observe that the Smoothed Heavy Hitter and
Heavy Hitter outperform the Fractional filter for increasing threshold values. This is explained
by the fact that the fractional filter poses a rigorous requirement on events to be considered
non-spurious, e.g. a threshold value of 1

4 requires an activity to occur at least in 25% of all
behaviour in a certain state. The other two filters solve this by using the maximal observed value,
i.e. if a lot of behaviour is possible, the maximum value is lower and hence the requirement to
be labelled non-spurious is lower.
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Figure 4.8: Average F1 score for different abstraction window sizes.
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Figure 4.9: Average F1 score for different abstractions.
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Figure 4.10: Average F1 score for different filter types.
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Figure 4.11: Average F1 score for different sliding window sizes.
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Finally, we observe that an increased sliding window size does not affect the filter results
significantly (cf. Figure 4.11). Since the process is stable, i.e. there is no concept-drift within
the generated streams, this indicates that both window sizes used are large enough to deduce
automata that allow us to accurately filter the event stream.

Figure 4.12, on page 112, shows how the average F1 score varies based on the percentage of
noise and the threshold level. We observe that the F1 score slightly converges for the different
threshold levels as noise increases (cf. Figure 4.12a). Interestingly, in Figure 4.12b, we observe
that for relatively low threshold values, the range of F1 score values for various noise levels
is very narrow, i.e. the filtering accuracy is less sensitive to changes in the noise level. This
effect diminishes as the threshold increases, leading to more scattered yet lower F1 score
values. Observe that, these observations coincide with the Kendall rank correlation coefficient
values [12, 75] of 0,1792 (Figure 4.12a) and −0,8492 (Figure 4.12b) respectively. We conclude
that, for the dataset used, the threshold level seems to be the most dominant factor in terms of
the F1 score.

Time Performance

The sliding window maintains a finite representation of the stream, thus, memory consumption
of the proposed filter is finite as well. Hence, we focus on time performance, using one stream
per base model with 15% noise, and several different parameter values. The experiments were
performed on an Intel Xeon CPU (6 cores) 3.47GHz system with 24GB memory. Average event
handling time was ∼ 0.017 ms, leading to handling ∼ 58.8 events per ms. These results confirm
that automaton-based filtering is suitable to work in real-time/event stream based settings.

4.5.2 Drift Detection Accuracy
In a second set of experiments, we evaluate the impact of our filter on the accuracy of process
drift detection. For this, we use a state-of-the-art technique for drift detection that works on
event streams [97]. We apply our filter to the event streams generated from a variety of synthetic
and real-life logs, with different levels of noise, and compare drift detection accuracy with and
without the use of the proposed filter. We first discuss the experimental setup, after which we
compare drift detection results obtained with and without the use of our filter.

Experimental Setup

For these experiments, we used the 18 event logs proposed in [97] as a basis. The event data
are generated by simulating a model featuring 28 different activities (combined with different
intertwined structural patterns). Additionally, each event log contains nine drifts obtained by
injecting control-flow changes into the model. Each event log features one of the twelve simple
change patterns [119] or a combination of them. Simple change patterns may be combined
through the insertion (“I”), resequentialization (“R”) and optionalization (“O”) of a pattern. This
produces a total of six possible nested change patterns, i.e. “IOR”, “IRO”, “OIR”, “ORI”, “RIO”,
and “ROI”. For a detailed description of each change pattern, we refer to [97].

Starting from these 18 event logs, we generated 36 additional event logs i.e. two for each
original event log. One of the two generated event log contains 2.5% noise and the other
contains 5% of noise. Noise is generated by means of inserting random events into traces of
each log. Hence, the final corpus of data consists of 54 event logs, i.e. 12 simple patterns and 6
composite patterns with 0%, 2.5%, and 5% noise, each containing 9 drifts and approximately
250,000 events.
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Figure 4.12: Average F1 score per noise- and threshold level.
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Results on Synthetic Data

In this experiment, we evaluate the impact of the proposed filter on the accuracy of the drift
detection technique proposed in [97]. We use the previously described corpus of data for the
experiments. Figure 4.13 on page 114 illustrates the F1 score and mean delay of the drift
detection, before and after the application of our filter over each change pattern.

The filter, on average, successfully removes 95% of the injected noise, maintaining and even
improving the accuracy of the drift detection (with F1 score of above 0.9 in all but two change
patterns). This is achieved whilst delaying the detection of a drift by less than 720 events on
average (approximately 28 traces).

When considering noise-free event streams (cf. Figure 4.13a), the filter preserves the
accuracy of the drift detection. For some change patterns (“rp”, “cd”, “IOR”, and “OIR”), our
filter improves the accuracy of the detection by increasing its precision. This is due to the
removal of sporadic event relations, that cause stochastic oscillations in the statistical test
used for drift detection. Figure 4.13b and Figure 4.13c show that noise negatively affects drift
detection, causing the F1 score to drop, on average, to 0.61 and 0.55 for event streams with 2.5%
and 5% of noise, respectively. This is not the case when our filter is applied, where an F1 score
of 0.9 on average is achieved.

Finally, in terms of detection delay, the filter on average increases the delay by 370, 695, and
1087 events (15, 28, and 43 traces) for the logs with 0%, 2.5%, and 5% noise, respectively. This
is the case since changes in process behaviour immediately following a drift are treated as noise.

Results on Real-Life Data

In this experiment, we assess whether the positive effects of our filter on drift detection, observed
on synthetic data, translate to real-life data. For this, we used an event log containing cases of
Sepsis (a life-threatening complication of an infection) from the ERP system of a hospital [85],
i.e. as presented earlier in Table 1.1. The event log contains 1,050 cases with a total of 15,214
events belonging to 16 different activities.

For this experiment, we attempt to detect concept drift over the last 5,214 events, as the first
10,000 events are used to train the filter. Figure 4.14 plots the significance probability p-value
curves of the statistical tests used for drift detection, both without (Figure 4.14a) and with
(Figure 4.14b) the use of our filter. In order to detect a drift, the p-value of the drift detection
technique needs to be below a user-specified significance probability threshold, commonly set
to 0.05. Moreover,the p-value needs to be lower than the threshold for a given window of φ
events. In the unfiltered case, cf. Figure 4.14a, we see two clear regions of p-values below the
threshold, i.e. after the 2067th event and after the 4373rd event. In the case when applying the
filter, cf. Figure 4.14b, we observe that there is much more oscillation in the p-value and we do
not detect a clear drift.

In the experiments with synthetic logs, we observed that the filter reduced the number of
false positives (drift detected when it did actually not occur). To verify if this is also the case for
the real-life event log, we profiled the direct-follows dependencies occurring before and after
the drifts. The profiling indicates that while direct-follows dependencies “IV Antibiotics −→
Admission NC” and “ER Sepsis Triage −→ IV Liquid” are observed several times across the entire
event stream, the infrequent direct-follows dependencies “Admission NC −→ IV Antibiotics”
and “IV Liquid −→ ER Sepsis Triage” appear only in the proximity of the two drifts. These two
infrequent dependencies cause a change in the underlying α+ relations between the activities,
which we use to detect the drifts (in this case changing from causal to concurrent). This change
in the relation results in the detection of the drifts. These infrequent dependencies are removed
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Figure 4.13: Drift detection F1 score and mean delay (in number of events) per change pattern,
obtained from the drift detection technique in [97] over filtered versus unfiltered
event streams.
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when applying the filter, which in turn does not lead to a clear concept drift. In light of these
insights, we can argue that the two drifts detected over the unfiltered event stream are indeed
false positives, confirming what we already observed on the experiments with synthetic logs, i.e.
that our filter has a positive effect on the accuracy of drift detection.

4.6 Related Work
With respect to noise filtering in the context of conventional process mining, i.e. using event
logs, several approaches are described in literature [40, 58, 118]. The approach proposed by
Wang et al. [118] relies on a reference process model to repair a log whose events are affected
by labels that do not match the expected behaviour of the reference model. The approach
proposed by Conforti et al. [40] removes events that cannot be reproduced by an automaton
constructed using frequent process behaviour recorded in the log. Fani Sani et al. [58] propose
an approach that uses conditional probabilities between sequences of activities to remove events
that are unlikely to occur in a given sequence. Finally, in [61] Fani Sani et al. propose to repair
fragments of traces containing infrequent behaviour by means of replacing these fragments with
more dominantly observed behaviour.

The problem of detecting spurious events from event streams of business processes shares
similarities with the problem of outlier detection in temporal data, e.g. reading sensor data. In
this context, we observe three types of techniques:

1. Techniques to detect if entire sequences of events are anomalous.

2. Techniques to detect if a single data point within a sequence is an outlier.

3. Techniques to detect anomalous patterns within a sequence.

For a detailed discussion regarding techniques for outlier detection in temporal data, we refer to
the works by Gupta et al. [67] for events with continuous values, and by Chandola et al. [38]
for events with discrete values.

4.7 Conclusion
The existence of noise in event data typically causes the results of process mining algorithms
to be inaccurate. Just the sheer existence of a fraction of noisy behaviour in a single trace,
potentially significantly reduces the accuracy of process mining artefacts such as discovered
process models. As such, the reliability of process mining results, based on event streams
containing noise, is affected considerably.

4.7.1 Contributions

We proposed an event stream based filter for online process mining, based on probabilistic
non-deterministic automata which are updated dynamically as the event stream evolves. A state
in one of these automata represents a potentially abstract view on the recent history of process
instances observed on the stream. The empirical probability distribution defined by the outgoing
arcs of a state is used to classify new behaviour as being spurious or not.

The time measurements of the corresponding implementation indicate that our filter is
suitable to work in real-time settings. Moreover, our experiments on accuracy show that, on
a set of stable event streams, we achieve high filtering accuracy for different instantiations of
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Figure 4.14: P-values without filtering and with the proposed filter, for the Sepsis event log [85].
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the filter. Finally, we show that our filter significantly increases the accuracy of state-of-the-art
online drift detection techniques.

4.7.2 Limitations

In this section, we discuss the filtering technique presented in this chapter. In particular, we
highlight the limitations and boundaries of the applicability of the approach and provide insights
in potential solutions to overcome these limitations. Furthermore, we discuss the threats to
validity of the experiments conducted in the context of this chapter.

Approach

The technique presented in this chapter is particularly designed to detect spurious events,
i.e. events that are observed, yet their occurrence seems unlikely. As-is, the technique does
not incorporate domain-specific knowledge, i.e. it solely uses data abstractions combined with
occurrence frequencies to determine whether events are spurious or not. As such, rare events, i.e.
related to infrequent process executions and/or ad-hoc solutions to eminent problems are likely
to be filtered out of the resulting event stream. In some cases this is not a problem, i.e. in case
we aim to obtain an overall view on the process containing only mainstream behaviour. However,
note, that in some cases, e.g. in process monitoring, such deviant cases are of particular interest.
Hence, we always need to carefully assess the exact intent of the process mining analysis, prior
to adopting the paper as presented here as a stream processor.

The filter incorporates all behaviour observed within the collection of maintained automata.
Again, this helps to accommodate for concept drift, i.e. after observing changed behaviour for
a while, the behaviour becomes mainstream and proper events are no longer falsely filtered.
However, this also poses challenges in filtering. It is likely that a spurious event either generates
a new state in one of the automata, or, the next event after the spurious event is deemed to
be noisy as we did not often observe such event following the spurious event. In the case we
generate a new state in an automaton, any subsequent event is trivially frequent and is not
filtered. Thus, this potentially causes the filter to no longer identify spurious events. We are
able to accommodate for this problem, for example by tagging the case identifier related to the
spurious event to be spurious. If we subsequently block all events related to the case identifier,
we overcome the aforementioned problem, yet we are likely to generate incomplete traces of
behaviour in the output stream. In case a spurious event does map into an existing state in the
automaton, it is likely that any following behaviour is infrequent. Thus, in such case, we falsely
label proper events as being spurious.

Finally, note that spurious events only cover a relatively small part of the full spectrum
of noise within (streaming) process mining. Hence, in case an event was, for some unknown
reason, not observed for a particular process instance, it is likely that any subsequent proper
event is labelled spurious. This is due to the fact that we miss information for a specific process
instance, and thus are effectively in an incorrect state for that given process instance within the
automata. Such a problem is potentially solved, by trying to observe whether a spurious event
is easily explainable in terms of relatively close neighbour states within the automata. In such
case, generating an artificial event, prior to the current event even restores the behaviour as
described by the stream.
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Experiments

Here, we primarily focus on potential threats to validity of the experiments performed in the
context of this thesis chapter.

The collection of models used for the synthetic experiments related to filtering accuracy (see
subsection 4.5.1) represents a set of closely related process models. As such these results are
only representative for data that originates from processes that exhibit similar types and relative
amounts of control-flow constructs compared to the process models used.

Similarly, within these experiments, the events are streamed trace by trace, rather than
using event-level time stamps. Note that, since the process is stable we expect the automata to
be based on a sufficient amount of behaviour, similar to streaming parallel cases.

Finally note that, we do observe that our filter can be applied on real-life data, i.e. in order
to enhance concept drift detection accuracy. However, due to the absence of a ground-truth, it is
hard to determine whether the results obtained are valid and/or improve with respect to the
unfiltered case.

4.7.3 Open Challenges & Future Work
In the approach presented, filtering is immediately applied when an event arrives, taking into
account only the recent history for that event. As shown in our experiments, the filter already
enhances concept drift detection. However, it is very likely that events originating from a newly
occurred drift are labelled as noise. A potential solution to this problem, is to apply a (dynamic)
filtering delay. Using such a delay, an event is immediately processed within the maintained
collection of automata. However, the actual filtering of such event is delayed. Note that such
delay, only partially solves the problem, i.e. if the delay is chosen wrongly, events related to the
last execution of the “old” version of the process are likely to be filtered out.

Currently, we use one specific abstraction for each maintained automaton. Moreover,
whenever we observe a spurious event in either one of these automata, we signal the event to
be spurious. It is interesting to assess whether it is possible to further improve filtering accuracy
by using an ensemble of automata where different abstractions are used for each maximal
abstraction window size. Moreover, it is interesting to assess whether certain dynamic voting
schemes are applicable in such settings, i.e. to consider the event to be spurious if the majority
of automata agrees on this.

Another interesting direction for future work is towards large-scale experiments, using a
larger collection of models and associated event streams. In such a way, we are able to quantify
to what degree the filter is applicable if the underlying process depicts certain levels of control-
flow behaviour. In particular, as automata are in principle not designed to model parallelism in
a compact manner, it is expected that the filtering accuracy decreases upon processes exhibiting
more parallel behaviour.

Finally, in line with the limitations, it is interesting to study techniques that allow us to
specify, in some way, a degree of belief with respect to an event being spurious. A potential
solution could be the following approach. When we observe that an event is spurious, we
create two pointers from a case identifier to the automata. One represents the state prior to the
observed spurious event and one corresponds to the state after receiving the spurious event. If
the new event, according to one of the two states is non-spurious, we proceed from that specific
state and forward the new event to the output stream.



Chapter 5
Avoiding Data Redundancy by
Learning Intermediate
Representations

Event stores, as defined in chapter 3, allow us to apply any type of process mining algorithm
on the basis of an event stream. However, to effectively apply these algorithms, we need to
iteratively forward the event store to the process mining algorithm of choice. Even if we aim
to apply the algorithm in a batch fashion, i.e. we discover a model after receiving a batch of k
events, it is likely that we reuse events that were already analysed in the previous execution of
the algorithm of choice. Therefore, in this chapter, we define conventional process discovery
as a two-step approach consisting of a translation of the input event data into an intermediate
data structure, i.e. intermediate representations, and a subsequent translation into a process
model. Such a characterization thus transposes the challenge of event stream-based process
discovery into learning intermediate representations in an online fashion. We present a generic
architecture that allows us to adopt several classes of existing process discovery techniques in the
context of event streams, on the basis of learning intermediate representations. We furthermore
show that, indeed, the architecture covers a wide class of process discovery algorithms.

The contents presented in this chapter are based on the following publication:

S.J. van Zelst, B.F. van Dongen, W.M.P. van der Aalst. Event Stream-Based Process Discovery
using Abstract Representations. Knowl. Inf. Syst., 54(2):407-435, 2018
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5.1 Introduction
A multitude of process discovery algorithms have been developed in the context of conventional,
offline process mining [10, 11, 78, 122, 123]. These algorithms all use an event log as an input,
i.e. a static collection of events with an associated strict partial order (cf. subsection 2.3.1).1

The techniques presented in chapter 3 allow us to (temporarily) store events emitted onto the
stream. We are hence able to apply the aforementioned existing process discovery algorithms
directly on top of such a subsequence of the event stream. However, whilst doing so, it is
likely that we introduce unnecessary rework. Consider the case in which we maintain a sliding
window based event store of size N , and are interested in discovering a process model after
receiving each batch of N

4 events. This implies that each event within the stream is handled
exactly 4 times by the process discovery algorithm of choice.

In this chapter, we address the aforementioned problem by defining process discovery as
a two-step approach, i.e. translation of the event data into the algorithm-specific intermediary
representation, cf. subsection 2.4.1, which is subsequently translated into a process model. As a
consequence, we shift the focus of online process discovery towards designing data structures
and associated update mechanisms that solely store the bare minimum amount of data, i.e.
the intermediary representation itself, to be able to perform the discovery task. We show that
several classes of process discovery algorithms apply the aforementioned two-step computational
scheme. For example, both the Alpha algorithm [11] and the Inductive Miner [78] discover
Petri nets by means of analysing (direct) precedence relations of the activities captured within
the event log. Other approaches, like the Heuristic Miner [121, 122], the Fuzzy Miner [66],
and most of the commercial process mining tools use (amongst others) the same precedence
relations as an intermediate structure. Based on this generic two-phase computational model,
we focus on efficient storage of the intermediate data structures used by these algorithms, rather
than the event data as a whole.

To adopt algorithms that employ such computational scheme in a streaming context, it
suffices to derive and/or approximate the intermediate representation based on the event stream.
Apart from lowering the overall memory footprint, using intermediate representations as a basis
for process discovery has several advantages:

1. Reusability;
We reuse existing process discovery techniques as much as possible by predominantly
focusing on learning the intermediate representations from event streams.

2. Extensibility;
Once we design and implement a method for approximating a certain intermediate
representation, any (future) algorithm using the same intermediate representation is
automatically ported to event streams.

3. Anonymity;
In some cases, laws and regulations dictate that we are not allowed to store all event data.
Some intermediate representations ignore large parts of the data, effectively storing a
summary of the actual event data, and therefore comply with anonymity regulations.

The remainder of this chapter is organized as follows. In section 5.2, we present the general
architecture of intermediate representation-based process discovery. In section 5.3, we provide
several instantiations of the architecture. In section 5.4, we present an empirical evaluation
of several instantiations of the architecture. In section 5.5, we present related work. Finally,
section 5.6 concludes this chapter.

1Note that most algorithms use simple traces, i.e. sequences of executed activities, for discovery.
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5.2 Architecture

In this section, we present the general architecture of online process discovery on the basis
of intermediate representations. The proposed architecture captures the use of intermediate
representations in the context of event streams in a generic manner. In the remainder, given an
arbitrary data structure type TD, we let UTD denote the universe of data structures of type TD. A
data type TD might refer to an array or a (collection of) hash table(s), yet it might also refer to
some implementation of a stream-based frequent-item approximation algorithm such as Lossy
Counting [84], i.e. as presented in subsection 3.3.3. We require any instance iTD∈UTD of such
typed data structure to use finite memory.

Definition 5.1 (Abstraction Function; Event Stream). Let E denote the universe of events, let
TD denote an arbitrary data structure type, let TI denote an intermediate representation type, let
i∈N0 and let S∈E∗ be an event stream. An event stream-based abstraction function ψi is a function
mapping the first i observed events on an event stream onto an instance of TD and an intermediate
representation of type TI, i.e.

ψi : E∗ →UTD ×UTI (5.1)

Given the abstraction function at time i , i.e. ψi as described in 5.1, we are able to discover
a corresponding process model. As such, we quantify αi as:

αi =αTI (π2(ψi (S))) (5.2)

Observe that, we are able to apply the aforementioned discovery function on any instantiation of
ψi , given that the discovery algorithm and the abstraction function use the same intermediate
representation. Furthermore, note that 5.1 resembles the definition of an event store (as
presented in 3.1). However, in the case of an event stream-based abstraction function, we
have more freedom, i.e. we are required to map the first i events onto some data structure and
corresponding intermediate representation. Such a data structure is potentially a subsequence
of the input stream, as described by event stores, yet this is not necessarily the case. On the
contrary, we aim at designing these data structures in such a way that we store only the bare
minimum information to be able to construct the corresponding intermediate representation.

In line with event stores, we define an additional update function which allows us to update
a given data structure and corresponding intermediate abstraction on the basis of an individual
event.

Definition 5.2 (Abstraction Update Function; Event Stream). Let E denote the universe of events,
let TD denote an arbitrary data structure type and let TI denote an intermediate representation
type. An event stream-based abstraction update function −→

ψ is a function that updates a given data
structure and intermediate representation on the basis of an individual event, i.e.

−→
ψ : UTD ×UTI ×E →UTD ×UTI (5.3)

Given the notion of an event stream-based abstraction function and an event stream-based
abstraction update function, we incrementally characterize the abstraction function for element
i in terms of an update of the underlying data structure and intermediate representation derived
at element i −1, i.e.

ψi (S) =−→
ψ(ψi−1(S),S(i )) (5.4)
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Figure 5.2: Detailed overview of the proposed architecture.

As indicated, we are able to quantify online process discovery on the basis of event stream-
based abstraction functions, using both event stores and conventional process discovery al-
gorithms as a basis. In such case, the data structure type is simply a sequence of events, i.e.
represented by E∗. As such, the event stream-based abstraction function for element i , is refined
to ψi : E∗ → E∗×UTI , with corresponding characterization ψi (S) = (Φi (S),λTI (Φi (S))).

Consider Figure 5.2, in which we present a schematic overview of the proposed architecture.
The first incremental update component −→

ψ , highlighted in grey on the left-hand side of Fig-
ure 5.2, incrementally updates a data structure (of type TD) and the corresponding intermediate
representation (of type TI) when new events arrive on the event stream. Using conventional pro-
cess discovery on the basis of intermediate representations, i.e. αTI , we translate the maintained
intermediate representation into a process model.

5.3 Instantiating Intermediate Representation Based
Discovery

When using an event store based instantiation of the architecture, as briefly described in
section 5.2, the corresponding intermediate representation is always in direct correspondence
with the events present within the event store. This is the case, because we (re)compute
the abstraction on the basis of the contents of the event store, i.e. ψi (S) = (Φi (S),λTI (Φi (S))).
Alternatively, we are able to incrementally design the corresponding update function in such
way, that it explicitly utilizes the previous intermediate representation, together with the newly
received event. Nonetheless, we still store all events as emitted to the event stream.

It is however often the case that, when we aim at incrementally maintaining intermediate
representations on the basis of event streams, we need a significantly smaller representation of
the event stream to actually do so. For example, to update an existing directly follows relation
for some new event e = (c, a, ...), it suffices to check whether there exists some event of the form
e′ = (c, a′, ...), that was the most recent event received for case identifier c. If so, we deduce
that (a′, a) needs to be part of the directly follows abstraction. As a side-effect of such design
however, we need to employ a separate ageing mechanism on the intermediate representation
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that we maintain, i.e. we no longer keep track of the full history related to case identifier c. As
such, the exact relation of the instantiation of UTI and the intermediate representation becomes
less clear.

In the remainder of this section, we show the applicability of the proposed architecture by
presenting several instantiations for different existing process discovery algorithms. Since a large
class of conventional process discovery algorithms is based on the directly follows abstraction,
or some derivative thereof, we first present how to compute it. Subsequently we highlight,
for each algorithm using the directly follows abstraction as a basis, the main changes and/or
extensions that need to be applied with respect to the basic scheme. To illustrate the generality
of the architecture, we also show a completely different class of discovery approaches, i.e.
region-based techniques [10, 123]. These techniques work fundamentally different compared
to the aforementioned class of algorithms and use different intermediate representations.

5.3.1 The Directly Follows Abstraction

Recall that the directly follows relation describes pairs of activities (a, a′), with a, a′ ∈A , written
as a > a′, if there exists some trace σ in an event log of the form σ=σ′ ·〈e,e′〉·σ′′ where πa(e) = a
and πa(e′) = a′.

In an event stream-based setting, assume that we maintain an event store Φ as presented in
chapter 3 as an instantiation for UTD . As an instantiation of the directly follows relation, i.e.
UTI , we maintain a multiset of activity-pairs, i.e. of the form B(A ×A ). Given some multiset
B∈B(A ×A ), B(a, a′) indicates how often the a > a′ occurs within the behaviour as captured by
the underlying event store Φ. When a new event e∈E with πc(e) = c arrives on the stream at
index i , we are able to derive a possible new activity pair by inspecting event store Φi (c). We
simply deduce such pair by inspecting the last two elements of Φi (c) (under the assumption
that e is added to the event store). Similarly, the elements of Φi− allow us to keep the directly
follows relation up to date with the contents of the event store.

As indicated, the main problem with using an event store as an instantiation for UTD

is memory redundancy. For each case identifier c∈C , we store multiple events whereas we
effectively only need the last event related to each case identifier in order to derive a new directly
follows relation. We therefore alternatively instantiate ψi for the directly follows relation as
follows:

ψi
d f r : E∗ →P (C ×A )×B(A ×A ) (5.5)

Here, the first argument of the range of ψi
d f r , i.e. P (C ×A ), represents a set of pairs of the

form (c, a)∈C ×A , that represent the last activity a seen for the process instance identified by
case identifier c. As such, we have at most one entry for each case identifier within the set. We
are able to use several storage techniques as presented in chapter 3 to effectively implement
P (C ×A ). For example, consider algorithm 5.1, in which we construct a sliding window which
consists of elements that are pairs of the form (c, a)∈C ×A . When we receive a new event,
related to case identifier c, we check whether a tuple of the form (c, a) is present in the window.
If this is the case, we are able to deduce a new directly follows relation of the form (a,πa(e)). The
newly deduced directly follows relation needs to be subsequently forwarded to the component
that implements the second component of ψi

d f r , i.e. B(A ×A ). We subsequently remove (c, a)

from the sliding window. We always add the new event, i.e. (πc(e),πa(e)) at the end of the
sliding window, and we remove the first element of the sliding window if the size of the window
exceeds N .
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Algorithm 5.1: Sliding Window Based Instantiation of P (C ×A )

input : S ⊆ E ∗, N∈N0

begin
1 i ← 1;
2 w ← ε ; // empty list of tuples in C ×A

3 while true do
4 e ← S(i );
5 if |w | ≥ N then
6 remove w(1);

7 if ∃(c, a) ∈∗ w (c =πc(e)) then
8 deduce new relation (a,πa(e));
9 remove corresponding tuple (c, a) from w;

10 append (πc(e),πa(e)) to w;
11 i ← i +1;

Observe that, algorithm 5.1 is inspired by the notion of a sliding window, yet it does
not implement a sliding window directly, i.e. some elements are removed earlier than in a
conventional setting. Additionally, we have O(N ) time complexity (where N represents the
maximum sliding window size) to actually find a pair (c, a) if a new event comes in. In fact,
observe that the mechanism in algorithm 5.1 effectively removes the entry related to the
oldest/recently most inactive process instance.

We are also able to instantiate the set of (case identifier, activity)-pairs by means of other
storage-oriented streaming algorithms such as reservoir sampling, decay based techniques and
frequency approximation algorithms. For example, consider algorithm 5.2, in which we show
a corresponding implementation on the basis of the Space Saving algorithm. Recall that the
Space Saving algorithm counts the frequency of case identifiers by means of the vc -counters,
cf. subsection 3.3.3, which are used as a criterion for insertion/deletion in the underlying
storage component. In this case, we store the elements of C ×A in the internal set X , yet for
each case identifier c∈C we maintain an associated counter vc . Upon receiving a new event,
we check whether there already exists a (case identifier, activity)-pair that relates to the case
identifier of the new event. If this is the case, we update the corresponding counter, deduce a
new directly follows relation and replace the existing (case identifier, activity)-pair on the basis
of the new event, cf. lines 8-10. In any other case, we are not able to deduce any new directly
follows relation, yet we update set X , depending on its size. Note that when set X reaches its
maximum allowed size, the pair (c, a) for which the corresponding v(c) is minimal amongst all
case identifiers present in X is removed. Furthermore, the counter of the newly arrived case
identifier is equal to the counter of the removed case identifier, increased by one.

As both algorithm 5.1 and algorithm 5.2 signify, we are able to maintain a collection of
(case identifier, activity)-pairs, using a multitude of existing data storage algorithms. From
time to time, within these algorithms, we are able to deduce a new directly follows relation.
As such, the two algorithms, in essence, generate a stream of directly follows relations. As a
consequence, to maintain the actual multiset of pairs (a, a′)∈A ×A , we are again able to utilize
any existing stream-based storage algorithm. A concrete implementation of the update function−→
ψ , as defined in Equation 5.3, is therefore achieved by appending the deduced directly follows
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Algorithm 5.2: Space Saving Based Instantiation of P (C ×A )

input : S∈E ∗, N∈N0

begin
1 X ←; ; // empty set of tuples, i.e. X∈P (C ×A )
2 i ← 0;
3 vc ← 0,∀c∈C ;
4 while true do
5 i ← i +1;
6 e ← S(i );
7 if ∃(c,a)∈X (c =πc(e)) then
8 vc ← vc +1;
9 deduce new relation (a,πa(e));

10 X ← (X \ {(c, a)})∪ {(c,πa(e))};

11 else if |X | < k then
12 X ← X ∪ {(πc(e),πa(e))};
13 vπc (e) ← 1;

14 else
15 (c, a) ← argmin

(c,a)∈X
(vc );

16 vπc(e) ← vc +1;
17 X ← (X \ {(c, a)})∪ {(πc(e),πa(e))};

relations to the corresponding output stream. We are thus able to instantiate the update function
using an arbitrary combination of stream-based storage methods. For example, we are able
to store pairs of the form (c, a)∈C ×A using a sliding window, and the actual directly follows
relation by means of a reservoir sample. The exact choice of such combination of algorithms
mainly depends on the aim of the process discovery, i.e. discovery of recent behaviour versus
discovery of predominant behaviour.

In the remainder of this section, we describe existing process discovery algorithms that
function on the basis of the directly follows relation. These algorithms differ in the way they
use/interpret the relation, and in some cases need auxiliary input to be able to discover a
process model. We, therefore, highlight, for each of these algorithms, the main changes and/or
extensions that need to be applied with respect to the basic scheme presented here.

The Alpha algorithm

The Alpha algorithm [11] transforms the directly follows abstraction into a Petri net. When
adopting the Alpha algorithm to an event stream context, we directly adopt the scheme described
in the previous section. However, the algorithm explicitly needs a set of start- and end activities.

Approximating the start activities seems rather simple, i.e. whenever we receive an event
related to a new case identifier, the corresponding activity represents a start activity. However,
given that we at some point remove (case, activity)-pairs from the underlying data structure,
we might designate some activities falsely as start activities, i.e. a new case identifier may in
fact refer to a previously removed case identifier. Similarly, approximating the end activities is



5.3 Instantiating Intermediate Representation Based Discovery 127
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Figure 5.3: Instantiation of online intermediate representation based discovery for the dir-
ectly follows relation. We store pairs of the form (c, a)∈C ×A using existing data
stream storage techniques. Using such store, we deduce new relations of the form
(a, a′)∈A ×A , which we forward to a stream of the form (A ,A )∗.

rather complex, as we are often not aware when a case terminates. A potential solution is to
apply a warm-up period in which we try to observe cases that seem to be terminated, e.g. by
identifying cases that have long periods of inactivity or by assuming that (case, activity)-pairs
that are dropped out of the underlying data structure are terminated. However, this also largely
depends on the actual implementation that we use for this. In the general sense, since we
approximate case termination, this approach potentially leads to falsely select certain activities
as end activities.

We can also deduce start- and end activities from the directly follows abstraction. A start
activity is an activity a∈A with Øa′∈A (a′ 6= a∧a′ > a) and an end activity is an activity a∈A with
Øa′∈A (a′ 6= a ∧a > a′). This works if these activities are only executed once at the beginning,
respectively the end, of the process. In case of loops or multiple executions of start/end activities
within the process, we potentially falsely neglect certain activities as being either start and/or
end activities. In section 5.6.2, we discuss this problem in more depth.

The Heuristics Miner

The Heuristics Miner [121, 122] is designed to cope with noise in event logs. To do this, it
effectively counts the number of occurrences of activities, as well as the >-relation. Based on the
directly follows abstraction it computes a derived metric a ⇒ b = |a>b|−|b>a|

|a>b|+|b>a|+1 that describes
the relative causality between two activities a and b (|a > b| denotes the number of occurrences
of a > b). The basic scheme presented in subsection 5.3.1 suffices for computing a ⇒ b, as long
as we explicitly track, or, approximate, the frequencies of (activity, activity)-pairs.

The Inductive Miner

The Inductive Miner [78], like the Alpha algorithm, uses the directly follows abstraction together
with start- and end activities. It tries to find patterns within the directly follows abstraction
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that indicate certain behaviour, e.g. parallelism. Using these patterns, the algorithm splits an
event log into several smaller event logs and repeats the procedure. Due to its iterative nature,
the Inductive Miner guarantees to find sound workflow nets, cf. 2.7. The Inductive Miner has
also been extended to handle noise and/or infrequent behaviour [79]. This requires, like the
Heuristics Miner, to explicitly count the >-relation.

Observe that, the standard Inductive Miner algorithm, only works when storing event stores
as defined in chapter 3, i.e. due to the recursive use of the event data. However, in [77], a
version of the Inductive Miner is presented in which the inductive steps are directly performed
on the directly follows abstraction. In the context of event streams this is the most adequate
version to use as we only need to maintain a frequency-aware directly follows abstraction.

5.3.2 Region Theory
Several process discovery algorithms [10, 22, 37, 123, 137] are based on region theory which
is a solution method for the Petri net synthesis problem [20]. In Petri net synthesis, given a
behavioural description of a system, i.e. either a transition system or a language, one aims
to synthesize a Petri net that exactly describes the same behaviour as described by the input
behavioural description. Hence, classical region theory techniques ensure strict formal properties
with respect to the resulting process models. Process discovery algorithms based on region
theory aim to relax these properties, in order to improve the resulting models from a process
mining perspective, e.g. avoiding overfitting of the model with respect to the input data. We
identify two different region theory approaches, i.e. language-based and state-based region theory,
which use different forms of intermediate representations.

Language-Based Approaches

Algorithms based on language-based region theory [22, 123, 137] rely on a control-flow based
prefix-closure, cf. Equation 2.2, of the input event log, i.e. the set of all prefixes of all traces.
Clearly, we are able to (incrementally) construct such set of prefixes by simply using an event
store as a backing storage component. However, in the case of ILP-Based process discovery [123,
137], which we discuss in greater detail in chapter 6, such a collection of prefixes is further
abstracted. In particular, given a sequence of activities σ∈A ∗, the ILP-based process discovery
algorithm abstracts it into a constraint, which we are able to represent by a pair (~σ1...|σ|−1,σ(|σ|)),
i.e. the Parikh representation of the prefix of σ, combined with the last activity in the sequence
σ. As such, instantiating the architecture for this algorithm is relatively similar to the directly
follows relation instantiation, i.e.

ψi
i l p : E∗ →P (C ×B(A )×A )×B(B(A )×A ) (5.6)

Observe that, we store per case identifier the latest constraint, i.e. as represented by P (C ×
B(A )×A ). The second component we store is the actual (frequency aware) intermediate
abstraction of the algorithm, i.e. the constraints of the form (~σ1...|σ|−1,σ(|σ|)), represented by
B(B(A )×A ). Note that we are again able to use any existing stream-based storage technique
to instantiate ψi

i l p and the corresponding update function −→
ψ .

State-Based Approaches

Within process discovery based on state-based regions [10], a transition system is constructed
based on a specific view of each trace present within the input data. Examples of a view are the
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Figure 5.4: Example transition systems based on simple event store Φ̃= [〈a,b,c,d〉,〈a,c,b,d〉].

complete prefix of the trace, the multiset projection of the prefix of the trace, etc. The future
of a trace can be used as well, i.e. given an event within a trace, the future of the event are all
events happening after the event. However, future-based views are not applicable in an event
stream setting, as the future behaviour of process instances is unknown.

As an example, based on a simple event store Φ̃= [〈a,b,c,d〉,〈a,c,b,d〉], consider Figure 5.4.
In Figure 5.4a, states are represented by a multiset view of the prefixes of the traces, i.e. the
state is determined by the multiset of activities seen before. Activities make up the transitions
within the system, i.e. the first activity in both traces is a, thus the empty multiset is connected
to multiset [a] by means of a transition labelled a. In Figure 5.4a we do not limit the maximum
size of the multisets. Figure 5.4b shows a set view of the traces with a maximum set size of
1. Again the empty set is connected with set {a} by means of a transition labelled a. For trace
〈a,b,c,d〉 for example, the second activity is a b and thus state {a} has an outgoing transition
labelled b to state {b}. This is the case, i.e. a connection to state {b} rather than {a,b}, due to the
size restriction of size 1.2

In case we aim at instantiating the architecture for the purpose of state-based region theory,
we store the most recent abstraction derived for a case identifier. As such, when a new event
occurs for a given case identifier, we are able to derive a new abstraction. Again, we are able to
generate a stream of derived artefacts, in this case being trace abstractions. Hence, as a second
component, we employ some arbitrary data storage technique that keeps a collection of such
abstractions in memory.

Note that, the set of abstractions itself does not allow us to derive the underlying transition
system, i.e. once a new trace abstraction is created for a case identifier, the previous abstraction
is removed. As such, we are not able to derive the underlying relations between these states.
We, therefore, need to maintain the constructed transition system in memory. Whenever we
derive a new abstraction on the basis of a new event, we know from which abstraction the
new abstraction is derived. Moreover, the event describes an activity, hence the new event
allows us to connect the old abstraction to the new abstraction by means of an arc labelled
with the activity that is described by the new event. Ageing of the transition system is in line
with the contents of the storage of the abstractions, i.e. whenever an abstraction gets removed,

2Observe the similarity of transition systems and the probabilistic automata used in chapter 4.
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the corresponding state and all its associated arcs need to be removed from the transition
system. Note that, within this instantiation, depending on the underlying storage technique
of choice, the transition system potentially contains disconnected components, which likely
leads to complex process models. Moreover, the exact semantics of such disconnected transition
system is unclear.

5.4 Evaluation
In this section, we present an evaluation of several instantiations of the architecture. We also
consider performance aspects of the implementation.

5.4.1 Structural Analysis
As a first visual experiment we investigate the steady-state behaviour of the Inductive Miner [78].
Within this experiment we use the Lossy Counting algorithm [84] as an implementation for
both the collection of pairs of the form (c, a)∈C ×A as well as for storage of the directly
follows relation itself. To create an event stream, we created a timed Coloured Petri Net [72]
in CPN-Tools [126] which simulates a synthetic process model describing a process related
to a loan application process [51]. The event stream, and all other event streams used for
experiments, are free of noise. The CPN model used is able to simulate multiple cases being
executed simultaneously.

In Figure 5.5, we show the behaviour of the Inductive Miner over time based on a random
simulation of the CPN model. We configured the algorithm with |X |C×A ≤ 75 and |X |A×A ≤ 75,
i.e. we have at most 75 elements in the underlying sets used in the Lossy Counting algorithm.
Initially (Model 1) the Inductive Miner only observes a few directly follows relations, all executed
in sequence. After a while (Model 2) the Inductive Miner observes that there is a choice between
Prepare acceptance pack and Reject Application. In Model 3, the first signs of parallel behaviour of
activities Appraise property, Check credit history and Assess loan risk become apparent. However,
an insufficient amount of behaviour is emitted onto the stream to effectively observe the parallel
behaviour yet. In Model 4, we identify a large block of activities within a choice construct.
Moreover, an invisible transition loops back into this block. The Inductive Miner tends to show
this type of behaviour given an incomplete directly follows abstraction. Finally, after sufficient
behaviour is emitted onto the stream, Model 5 shows a Petri net version that in fact describes
the same behaviour as the process model generating the event stream.

Figure 5.5 shows that the Inductive Miner is able to find the original model based on the
event stream. We now focus on comparing the Inductive Miner with other algorithms described
in the paper. All discovery techniques discover a Petri net or some alternative process model
that is translatable to a Petri net. The techniques, however, differ in terms of guarantees with
respect to the resulting process model. The Inductive Miner guarantees that the resulting Petri
nets are sound workflow nets, whereas the ILP Miner and the Transition System Miner do not
necessarily yield sound process models. To perform a proper behavioural comparative analysis,
the soundness property is often a prerequisite. Hence, we perform a structural analysis of all the
algorithms by measuring structural properties of the resulting Petri nets.

Using the off-line variant of each algorithm we first compute a reference Petri net. We
generated an event log which contains a sufficient amount of behaviour such that the discovered
Petri nets describe all behaviour of the model used within the experiment reported on in Fig-
ure 5.5 Based on the reference Petri net we create a structure matrix in which each row/column
corresponds to a transition in the reference model. If, in the Petri net, two labelled transitions
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Figure 5.5: Visual results of applying the Inductive Miner on a stream.

are connected by means of a place, the corresponding cells in the matrix get value 1. For
example, given the first Petri net of Figure 5.5, the transitions labelled start and Check_applica-
tion_completeness (in the figure this is “Check_appl”) are connected by means of a place. Hence,
the distance between the two labels is set to 1 in the corresponding matrix. If two transitions
are not connected, the corresponding value is set to 0.

Using an event stream-based on the CPN-Model, after each newly received event, we use
each algorithm to discover a Petri net. For each Petri net, we again construct the structure matrix.
We apply the same procedure as applied on the reference model. However, if in a discovered
Petri net a certain label is not present, we set all cells in the corresponding row/column to −1,
e.g. in model 1 of Figure 5.5 there is no transition labelled end, thus the corresponding row and
column consist of −1 values. Given a matrix M based on the streaming variant of an algorithm,
we compute the distance to the reference matrix MR as:

dM ,MR =
√ ∑

i , j∈{1,2,...,15}
((M(i , j )−MR (i , j ))2

For all algorithms, the internal data structures used were based on Lossy Counting, with size
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100.
Since the Inductive Miner and the Alpha algorithm are completely based on the same

abstraction, we expect them to behave similarly. Hence, we plot their corresponding results
together in Figure 5.6a. Interestingly, the distance metric follows the same pattern for both
algorithms. Initially, there is a steep decline in the distance metric after which it becomes
zero. This means that the reference matrix equals the matrix based on the discovered Petri
net. The distance shows some peaks in the area between 400 until 1000 received events.
Analysing the resulting Petri nets at these points in time showed that some activities were not
present in the resulting Petri nets at those points. The results for the Transition Systems Miner
(TS), the ILP Miner and the Heuristics Miner are depicted in Figure 5.6b. We observe that the
algorithms behave similarly to the Alpha- and Inductive Miner, which intuitively makes sense as
the algorithms all have the same data structure capacity. However, the peeks in the distance
metric occur at different locations. For the Heuristics Miner, this is explained by the fact that
it takes frequency into account and thus uses the directly follows abstraction differently. The
Transition System Miner and the ILP Miner use different intermediate representations, and have
a different update mechanism than the directly follows abstraction, i.e. they always update their
abstraction whereas the directly follows abstraction only updates if, for a given case, we already
received a preceding activity.

5.4.2 Behavioural Analysis
Although the previous experiments provide interesting insights with respect to the functioning
of the algorithms in a streaming setting, they only consider structural model quality. A distance
value of 0 in Figure 5.6 indicates that the resulting model is very similar to the reference
model. It does not guarantee that the model is in fact equal, or, entails the same behaviour
as the reference model. Hence, in this section, we focus on measuring quantifiable similarity
in terms of behaviour. We use the Inductive Miner as it provides formal guarantees with
respect to initialization and termination of the resulting process models. This, in particular, is
a requirement to measure behavioural similarity in a reliable manner. We adapt the Inductive
Miner to a streaming setting by instantiating the architecture as presented in this chapter, using
the scheme described in subsection 5.3.1, combined with its algorithm-specific modifications.
For finding start- and end activities we inspect the directly follows relation and select those
activities that have no predecessor, or, successor, respectively. We again use Lossy Counting [84]
to implement both underlying data structures, i.e. the elements (c, a)∈C ×A , and the directly
follows relation itself, i.e. pairs (a, a′)∈A ×A .

We assess under what conditions the Inductive Miner instantiation is able to discover a
process model with the same behaviour as the model generating the stream. In the experiment,
after each received event, we query the miner for its current result and compute replay-fitness
and precision measures based on a complete corresponding event log describing the behaviour
of the underlying process. Recall that replay-fitness, cf. subsection 1.1.4, quantifies the amount
of behaviour present in an event log that is also described by the process model. A replay-fitness
value of 1 indicates that all behaviour in the event log is described by the process model, a value
of 0 indicates that none of the behaviour is described. Precision on the other hand refers to the
amount of behaviour described by the process model that is also present in the event log. A
precision value of 1 indicates that all behaviour described by the model is present in the event
log. The lower the precision value, the more the model allows for additional behaviour.

In Figure 5.7 and Figure 5.8 (pages 134−135), the results are presented for varying capacity
sizes of the underlying data structures.

For the smallest data structure sizes, i.e. Figure 5.7a, we identify that the replay-fitness
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Figure 5.6: Distance measurements for the Alpha algorithm, Inductive Miner (IM), ILP Miner
(ILP), Transition Systems Miner (TS) and Heuristics Miner.
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(a) Size constraints |X |C×A = 25 and |X |A×A = 25.
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(b) Size constraints |X |C×A = 75 and |X |A×A = 75.

Figure 5.7: Replay-fitness measures based on applying the Stream Inductive Miner: Increasing
memory helps to improve fitness.
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(a) Size constraints 25/25.
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(b) Precision results with size constraints 75/75.

Figure 5.8: Precision measures based on applying the Stream Inductive Miner: Increasing
memory helps to improve precision.
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does not stabilize. When the data structure size increases, i.e. Figure 5.7b, we identify the
replay-fitness to reach a value of 1 rapidly. The high variability in the precision measurements
present in Figure 5.8a suggests that the algorithm is not capable of storing the complete directly
follows abstraction. As a result, the Inductive Miner tends to create flower-like patterns, thus
greatly under-fitting the actual process. This is confirmed by the relatively high values for
replay-fitness in Figure 5.7a. The stable pattern present in Figure 5.8b, suggests that the sizes
used within the experiment are sufficient to store the complete directly follows abstraction.
Given that the generating process model is within the class of re-discoverable process models of
the Inductive Miner, both a replay-fitness and a precision value of 1 indicate that the model is
completely discovered by the algorithm.

In the previous experimental setting, we chose to use the same capacity for both supporting
data structures. We additionally study the influence of the individual sizes of the collection
of pairs of the form (c, a)∈C ×A versus the directly follows relation itself. We denote these
sizes as |X |C×A and |X |A×A respectively. In Figure 5.9 we depict the results of two different
experiments in which we fixed the size of one of the two data structures and varied the size
of the other data structure. Figure 5.9a depicts the results for a fixed value |X |C×A ≤ 100 and
varying sizes of the directly follows abstraction |X |A×A ≤ 10,20, ...,50. Figure 5.9b depicts the
results for a fixed value |X |A×A ≤ 100 and varying sizes |X |C×A ≤ 10,20, ...,50. As the results
show, the lack of conversion to a replay-fitness value of 1 mostly depends on the size of directly
follows relation and is relatively independent of the supporting data structure that allows us to
construct it. Intuitively this makes sense as we only need one entry (c, a)∈C ×A to deduce a > a′,
given that the newly received event is (c, a′). Even if some case identifier c is dropped at some
point in time, and reinserted later, still information regarding the directly follows abstraction can
be deduced. However, if insufficient space is reserved for storing the directly follows relation,
then the data structure is incapable of storing the complete directly follows abstraction, which
negatively impacts the replay-fitness results.

5.4.3 Concept Drift
In the previous experiments, we focused on a process model that describes observed steady state
behaviour, i.e. the process model from which events are sampled does not change during the
experiments. In this section, we assess to what extent the Inductive Miner based instantiation
of the framework is able to handle concept drift [29, 104]. We focus on a gradual drift, i.e.
the behaviour of the process model changes at some point in time, though the change is only
applicable for new instances of the process, i.e. already active cases follow the old behaviour.
In order to obtain a gradual drift, we manipulated the CPN simulation model that is used to
generate the stream. In particular, we change a choice construct within the model into a parallel
construct, and vice-versa. The first 500 process instances that are simulated follow the original
model. All later cases are routed to the altered model are simulated accordingly.

Figure 5.10 depicts the results of applying the Inductive Miner on the described gradual drift.
In Figure 5.10a, we depict the results using data structure sizes |X |C×A ≤ 100 and |X |A×A ≤ 50
(using Lossy Counting for both data structures). The blue solid line depicts the replay-fitness
with respect to an event log containing behaviour prior to the drift, the red dashed line represents
replay-fitness with respect to an event log containing behaviour after the drift. We observe
that the algorithm again needs some time to stabilize in terms of behaviour with respect to the
pre-drift model. Interestingly, at the moment that the algorithm seems to be stabilized with
respect to the pre-drift model, the replay-fitness with respect to the post-drift model fluctuates.
This indicates that the algorithm is not able to fully rediscover the pre-drift model, yet it produces
a generalizing model which includes more behaviour, i.e. even behaviour that is part of the
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(a) |X |C×A = 100, |X |A×A = 10,20, ...,50.
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(b) |X |C×A = 10,20, ...,50, |X |A×A = 100.

Figure 5.9: Replay-fitness measures for the Stream Inductive Miner with varying sizes of the
internal data structures used.
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Figure 5.10: Replay-fitness measures for the Stream Inductive Miner, given an event stream
containing concept drift.
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Table 5.1: Aggregate performance measures for the Stream Inductive Miner.

25x25 50x50 75x75
Avg. processing time (ns.): 4.7167,77 3.866,45 3.519,22
Stdev. processing time (ns.): 3.245,80 2.588,76 2.690,54

Avg. memory usage (byte): 75.391,75 81.013,60 84.695,86
Stdev. memory usage (byte): 762,55 1.229,60 1.724,98

post-drift model. The first event in the stream related to the new execution of the process,
is the 6.415th event. Indeed, replay-fitness with respect to the pre-drift model starts to drop
around this point in Figure 5.10a. Likewise, the replay-fitness with respect to the post-drift
model rapidly increases to a value of 1.0. Finally, around event 15.000 the replay-fitness with
respect to the pre-drift model stabilizes completely, indicating that the prior knowledge related
to the pre-drift model is completely erased from the underlying data structure. In Figure 5.10b,
we depict results for the Inductive miner using sizes |X |C×A = 100 and |X |A×A = 100. In this
case, we observe more stable behaviour, i.e. both the pre- and post-model behaviour stabilizes
quickly. Interestingly, due to the use of a bigger size capacity of the Lossy Counting Algorithm,
the drift is reflected longer in the replay-fitness values. Only after roughly the 30.000th event
the replay-fitness with respect to the pre-drift model stabilizes.

5.4.4 Performance Analysis

The main goal of the performance evaluation is to assess whether memory usage and processing
times of the implementations are acceptable. As the implementations are of a prototypical fash-
ion, we focus on trends in processing time and memory usage, rather than absolute performance
measures. For both processing time and memory usage, we expect stabilizing behaviour, i.e.
over time we expect to observe some non-increasing asymptote. If the processing time/memory
usage keeps increasing over time, this implies that we are potentially unable to handle data on
the stream or need infinite memory.

In this experiment, we measured the processing time and memory usage for handling the
first 25.000 events emitted onto the stream. We again use the Inductive Miner with Lossy
Counting and varying window sizes (parameter k): |X |C×A = 25 and |X |A×A = 25, |X |C×A = 50
and |X |A×A = 50 and |X |C×A = 75, |X |A×A = 75 (represented in the Figures as 25x25, 50x50
and 75x75 respectively). We measured the time the algorithm needs to update both data
structures. The measured memory is the combined size of both data structures in bytes. The
results of the experiments are depicted in Figure 5.11. Both figures depict the total number of
events received on the x-axis. In Figure 5.11a, the processing time in nanoseconds is shown on
the y-axis, whereas in Figure 5.11b, the memory usage in bytes is depicted. The aggregates of
the experiments are depicted in Table 5.1.

As Figure 5.11a shows, there is no observable increase in processing times as more events
have been processed. The average processing time seems to slightly decrease when the window
size of the Lossy Counting data structure increases (see Table 5.1). Intuitively this makes sense as
a bigger window size of the Lossy Counting algorithm implies less frequent clean-up operations.

Like processing time, memory usage of the Lossy Counting data structures does not show an
increasing trend (Figure 5.11b). In this case however, memory usage seems to increase when
the window size of the Lossy Counting algorithm is bigger. Again this makes sense, as fewer
clean-up operations imply more active elements within the data structures, and hence, a higher
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(a) Processing times in nanoseconds.

(b) Memory usage in bytes.

Figure 5.11: Performance measurements based on the Stream Inductive Miner.
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memory usage.

5.5 Related Work

Several researchers have worked on the topic of stream-based process discovery. Hence, in
that regard, the architecture presented in this chapter may be regarded as a generalization and
standardization effort of some of the related work mentioned in this section.

In [35] an event stream-based variant of the Heuristics Miner is presented. The algorithm
uses three internal data structures using both Lossy Counting [84] and Lossy Counting with
Budget [103]. The authors use these structures to approximate a causal graph based on an
event stream. The authors additionally present a sliding window based approach, which is
comparable in nature to using a sliding window-based event store. However, the authors do not
consider building the directly follows relation on top of the window, i.e. it is mainly considering
the use of a sliding window as described in chapter 3. Built on top of the aforementioned work,
an alternative data structure has been proposed based on prefix-trees [69]. In this work the
authors deduce the directly follows abstraction directly from a prefix tree which is maintained in
memory. The main advantage of using the prefix-trees is the reduced processing time and usage
of memory. The prefix tree is however cleaned up at regular intervals and as such significantly
differs from the prefix-based storage as described in this thesis, cf. section 3.4. Although the
aforementioned method is designed to specifically construct a directly follows abstraction, it
is straightforward to extend it to support length-k distance relations. Furthermore, in [55],
Evermann et al. present an adaptation of the Flexible Heuristics Miner [122] in the context
of large-scale distributed event stream settings. They provide an associated implementation
using a distributed cloud-service based web service (Amazon Kinesis) and assert the associated
performance.

In [100], Redlich et al. design an event stream-based variant of the CCM algorithm [99].
The authors identify the need to compute dynamic footprint information based on the event
stream, which can be seen as the intermediate representation used by CCM. The dynamic
footprint is translated to a process model using a translation step called footprint interpretation.
The footprint interpretation step mainly reduces the overall complexity of the conventional
CCM divide and conquer steps to allow the algorithm to be adapted in a streaming setting. The
authors additionally apply an ageing factor to the collected trace information to fade out the
behaviour extracted from older traces. Although the authors define event streams similarly to
the notion adopted within this thesis, the evaluation relies heavily on the concept of completed
traces. Similarly, in [31] Boushaba et al. developed an incremental extension of their block
structured miner [30], which aims at finding patterns in a matrix representation of the directly
follows relation. Within this work the authors assume the stream to be a sequence of event logs
containing completed traces, rather than a stream of events.

In [34] Burattin et al. propose an event stream-based process discovery algorithm to discover
declarative process models, i.e. models that constrain behaviour rather than specifying behaviour
exactly. The structure described to maintain events and their relation to cases is comparable with
the one used in [35]. The authors present several declarative constraints that can be updated
on the basis of newly arriving events instead of an event log consisting of full traces.
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5.6 Conclusion
In this chapter, we presented a generic architecture that allows for adopting existing process
discovery algorithms in an event stream setting. The architecture is based on the observation
that many existing process discovery algorithms translate a given event log into an intermediate
representation and subsequently translate such intermediate representation into a process model.
Thus, in an event stream-based setting, it suffices to approximate an intermediate representation
on the basis of the event stream, in order to apply existing process discovery algorithms to
streams of events. The exact behaviour present in the resulting process model greatly depends on
the instantiation of the underlying techniques that approximate the intermediate representation.

5.6.1 Contributions
The architecture as proposed within this chapter can be regarded as both a generalization and
standardization effort of existing and/or future event stream-based process discovery algorithms.
As such, it describes a computational mechanism that is applicable to a large class of process
discovery algorithms. Moreover, several instantiations of the architecture have been proposed
and implemented in the process mining tool-kits ProM and RapidProM.

Within the experiments performed in the context of this chapter, we primarily focused
on intermediate representation approximations using underlying algorithms designed for the
purpose of frequent item mining on data streams. However, as presented, other types of
data storage techniques can be used as well. We structurally evaluated and compared five
different instantiations of the framework. From a behavioural perspective we focused on the
Inductive Miner as it guarantees to produce sound workflow nets. The experiments show that
the instantiation is able to capture process behaviour originating from a steady state-based
process. Moreover, convergence of replay-fitness to a stable value depends on parametrization
of the internal data structure. In case of concept drift, the size of the internal data structure
of use impacts both model quality and the drift detection point. We additionally studied the
performance of the Inductive Miner-based instantiation of the architecture. The experiments
show that both processing time of new events and memory usage are non-increasing as more
data is received.

5.6.2 Limitations
In this section, we discuss interesting phenomena observed during experimentation which
should be taken into account when adopting the architecture presented in this paper, and, in
event-stream-based process discovery in general. We discuss limitations with respect to the
complexity of intermediate representation computation and discuss the impact of the absence of
trace initialization and termination information.

Complexity of Abstract Representation Computation

In terms of minimizing the memory footprint needed to compute intermediate representations,
there are limitations with respect to the algorithms we are able to adopt. This is mainly related
to the computation of the intermediate representation within the conventional algorithm.

As an example, consider the Alpha+ algorithm [89] which extends the original Alpha
algorithm such that it is able to handle self-loops and length-1-loops. For handling self-loops,
the Alpha+ algorithm traverses the event log and identifies activities that are within a self-
loop. Subsequently, it removes these from the log and after that calculates the directly follows
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Figure 5.12: Two directly follows relations derived by the (online) Alpha+ algorithm based
on simple traces 〈a,b,b,c〉 and 〈a,e,b,d〉. One is purely event log based (Fig-
ure 5.12a) the other one is deduced on the basis of the directly follows relation
itself (Figure 5.12b).

abstraction. For example, if we are given a simple event log (events projected onto activities)
L̃ = [〈a,b,c〉,〈a,b,b,c〉], the algorithm will construct L̃′ = [〈a,c〉] and compute directly follows
metrics based on L̃′. Based on the full trace 〈a,b,b,c〉, the algorithm deduces that b > b holds
and thus it is removed completely from the directly follows relation.

In a streaming setting, we are able to handle this as follows. Whenever we observe some
activity a to be in a self-loop and want to generate the directly follows abstraction, then for
every pair (a′, a)∈A ×A and (a, a′′) ∈ A ×A , s.t. a 6= a′ and a 6= a′′, we deduce that (a′, a′′) is
part of the directly follows abstraction whereas (a, a), (a′, a) and (a, a′′) are not. Although this
procedure approximates the directly follows relation on the event stream, a simple example
reveals that the relation is not always equal.

Imagine that we study an event stream, originating from a process consisting of just two
simple trace-variants, i.e. 〈a,b,b,c〉 and 〈a,e,b,d〉. Any noise-free event log over this process
is just a multiset over the two given traces. In case of the conventional Alpha+ algorithm,
removing the b-activity leads to the two simple trace-variants 〈a,c〉 and 〈a,e,d〉. Consider the
corresponding directly follows abstraction, depicted in Figure 5.12a. Observe that all possible
directly follows pairs that we are able to observe on any stream generated by the process are:
(a,b), (a,e), (b,b), (b,c), (b,d), (e,b). Applying the described procedure yields the directly follows
relation depicted in Figure 5.12b. Due to the information that is lost by only maintaining directly
follows pairs, we deduce non-existing relations (a,d) and (e,c).

In general, it is preferable to adopt process discovery algorithms that constructs the inter-
mediate representation in one pass over the event log. This is due to the fact that algorithms
using more passes typically use some aggregate information derived from the previous pass into
the next pass. Such information typically involves the event log as a whole. Hence, for this
type of algorithms, it is more suitable to instantiate the framework using event stores, i.e. by
maintaining an event log based on the stream.

Initialization and Termination

For the definitions presented in this paper, we abstract from trace initialization and/or ter-
mination, i.e. we do not assume the existence of explicit start/end events. Apart from the
technical challenges related to finding these events, i.e. as described earlier regarding start/end
activity sets used by the Alpha algorithm and Inductive Miner, this can have a severe impact on
computing the intermediate representation as well.

If we assume the existence and knowledge of unique start and end activities, adopting any
algorithm to cope with this type of knowledge is trivial. We only consider cases of which we
identify a start event and we only remove knowledge related to cases of which we have seen
the end event. The only challenge is to cope with the need to remove an unfinished case due
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to memory issues, i.e. how to incorporate this deletion into the data structure/intermediate
representation that is approximated.

If we do not assume and/or know of the existence of start/end activities, whenever we
encounter a case for which our data structure indicates that we have not seen it before, this
case is identified as being a “new case”. Similarly, whenever we decide to drop a case from a
data structure, we implicitly assume that this case has terminated. Clearly, when there is a long
period of inactivity, a case might be falsely assumed to be terminated. If the case becomes active
again, it is treated as a new case again. The experiments reported on in Figure 5.9 show that in
case of the directly follows abstraction, this type of behaviour has limited impact on the results.
However, in a more general sense, e.g. when approximating a prefix-closure on an event stream,
this type of behaviour might be of greater influence with respect to resulting model. The ILP
Miner likely suffers from such errors and, as a result, produces models of inferior quality.

In fact, for the ILP Miner the concept of termination is of particular importance. To guarantee
a single final state of a process model, the ILP Miner needs to be aware of completed traces. This
corresponds to explicit knowledge of when a case is terminated in an event stream setting. Like
in the case of initialization, the resulting models of the ILP miner are greatly influenced by a
faulty assumption on case termination.

5.6.3 Open Challenges & Future Work
The architecture presented in this chapter focuses on approximating intermediate representations
and exploiting existing algorithms to discover a process model. As such, we strive to minimize
the overall memory footprint used in order to perform the discovery algorithms. However, the
bulk of the work might still be performed multiple times, i.e. several new events emitted to the
stream might not change the abstract representation.

An interesting avenue for future work is therefore related to a completely incremental
instantiation of the architecture, i.e. are we able to immediately identify whether new changes
to the abstraction have an impact with respect to resulting model. For example, in case of the
Alpha miner, if we deduce a directly follows relation that is already observed in the past, we are
guaranteed that the resulting model is not changing with respect to any previously found model.
However, deriving a new directly follows relation is more likely to generate either a new place
in the corresponding Petri net, or, invalidate some of the previously found places. In case of the
Inductive Miner, which iteratively partitions the directly follows abstraction, when an existing
directly follows relation is observed, such partition is not violated. Moreover, if a new relation
is observed, or a relation is removed, the impact of such modification is potentially local, i.e.
the model has an associated hierarchy and a modification potentially only affects a local part of
the model. Similarly, the constraints that we derive for ILP based process discovery allow us to
validate Petri net places. Thus, given that we have already discovered a set of Petri net places,
upon deducing a new constraint, we need O(|P |) to at least verify the correctness of the previous
model.



Chapter 6
Improving Process Discovery
Results by Exploiting
Intermediate Representations

In the previous chapter, we have presented an architectural framework that allows us to reduce
and bound the memory footprint of online event stream based process discovery algorithms. In
this chapter, we show that, for the class of process discovery approaches based on language-based
region theory, we are able to significantly improve process discovery results by exploiting the
intermediate representations used by the algorithm. We show that we are able to, under certain
conditions, guarantee both structural and behavioural properties of the discovered process
model. Moreover, we show that the intermediate representation related to language-based
region theory allows us to effectively filter out outlier behaviour from event data.

The contents presented in this chapter are based on the following publications:

S.J. van Zelst, B.F. van Dongen, W.M.P. van der Aalst, and H.M.W. Verbeek. Discovering
Workflow Nets using Integer Linear Programming. Computing, 100(5):529-556, 2018; https:
//doi.org/10.1007/s00607-017-0582-5

S.J. van Zelst, B.F. van Dongen, W.M.P. van der Aalst. Avoiding Over-Fitting in ILP-Based Process
Discovery. Business Process Management - 13th International Conference, BPM 2015, Innsbruck,
Austria, August 31 - September 3, 2015, Proceedings, volume 9253 of Lecture Notes in Computer
Science, pages 163–171. Springer, 2015; http://doi.org/10.1007/978-3-319-23063-4_10

S.J. van Zelst, B.F. van Dongen, and W.M.P. van der Aalst. ILP-Based Process Discovery Using
Hybrid Regions. ATAED 2015, volume 1371 of CEUR Workshop Proceedings, pages 47-61. CEUR-
WS.org, 2015; http://ceur-ws.org/Vol-1371/paper04.pdf

https://doi.org/10.1007/s00607-017-0582-5
https://doi.org/10.1007/s00607-017-0582-5
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http://ceur-ws.org/Vol-1371/paper04.pdf
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Figure 6.1: The contents of this chapter (highlighted in grey), i.e. exploiting intermediate
representations in the context of ILP-based process discovery, in the context of the
general structure of this thesis.
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6.1 Introduction

The previous chapter highlights the importance of intermediate representations within process
discovery. Thus far, we have considered intermediate representations from a fairly high level,
i.e. we provided a basic description of the directly follows relation and language/state-based
region theory and their subsequent use in process discovery. In this chapter, we go beyond
such high-level consideration and dive deeper into a specific intermediate representation. In
particular, we focus on process discovery based on language-based region theory [19, 43].

Language-based region theory, and in a broader context region theory (which also covers
state-based region theory), represents a solution method to the classical Petri net synthesis
problem [20]. Here the problem is to, given a behavioural system description, decide whether
there exists a Petri net that allows for all behaviour of the given system description. Moreover,
the resulting Petri net needs to exactly describe the behavioural system description, i.e. it must
not allow for additional behaviour. If however, such Petri net does not exist, the resulting Petri
net needs to minimize additional behaviour. Applying classical region theory using an event
store as a system description results in Petri nets with maximal replay-fitness, i.e. a value of 1.0.1

Moreover, precision is maximized. This is likely to result in models with poor generalization and
poor simplicity. Using these techniques directly on real event data, therefore, results in process
models that are not an adequate representation of the event data and do not allow us to reach
the global goal of process mining, i.e. turning data into actionable knowledge.

In [123] a process discovery algorithm is proposed on top of language-based region theory.
In particular, the concept of language-based region theory is translated to an Integer Linear
Programming (ILP) [105] formulation. Such ILP formulation represents a mathematical op-
timisation problem and allows us to find an optimal solution, in terms of a set of variables,
subject to a given set of constraints. The main contribution of the aforementioned work is
a relaxation of the precision maximization property of language-based region theory. The
algorithm still guarantees that the resulting process model is able to replay all behaviour in the
event store. Opposed to state-of-the-art process discovery algorithms, the algorithm provides
limited guarantees with respect to structural and behavioural properties of the resulting process
models. Moreover, the algorithm only works well under the assumption that the event store
only holds frequent behaviour that fits nicely into some underlying process model.

As motivated in chapter 4, real event data typically include low-frequent exceptional beha-
viour, e.g. caused by people deviating from the normative process, cases that require special
treatment, employees/resources solving unexpected issues in an ad-hoc fashion etc. Considering
all these irregularities together with “normal behaviour” yields incomprehensible models, both
in classical region-based synthesis and region-based process discovery techniques. Therefore, in
this chapter, we propose to tackle these problems by further extending and improving existing,
region theory-based process discovery algorithms [123, 131, 133]. As such, the contents and
contributions of this chapter are summarized into two main branches, i.e.

1. Providing guarantees with respect to structural and behavioural properties of discovered
models;
We prove that we are, under certain assumptions, able to discover Workflow nets (struc-
tural, cf. 2.3) which we prove to be relaxed sound (behavioural, cf. 2.6).

2. Improving the quality of discovered process models in terms of process mining quality
dimensions;
We present an integrated filter, that explicitly exploits the nature of the intermediate

1Recall the process mining quality dimensions as described in subsection 1.1.4.
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Figure 6.2: Visualization of the decision variables and their relation to Petri net places in ILP-
based process discovery.

representation used in ILP-based process discovery. As such, we improve the quality of
the discovered models in terms of process mining quality dimensions, cf. subsection 1.1.4

The techniques we present in this chapter are based on the conventional event log assumption,
i.e. we assume the input event data to be a static collection of traces. Note that, as we elaborately
described in chapter 3, there are several ways to obtain a static view on the basis of an event
stream, i.e. by means of event stores. Therefore, when integrated with these event stores, the
contents of this paper are implicitly applicable in a streaming setting.

The remainder of this chapter is organized as follows. In section 6.2, we describe the basic
mechanics of process discovery using integer linear programming. In section 6.3, we prove that,
constraint to certain assumptions, we are able to guarantee that ILP-based process discovery is
able to produce relaxed-sound workflow nets. In section 6.4, we show that we are able to improve
ILP-based process discovery results by exploiting the underlying intermediate representation
used. In section 6.5, we evaluate the impact of the proposed filter on the corresponding process
discovery results. In section 6.6, we present related work, primarily focussing on Petri net
synthesis and its application to process discovery. Finally, in section 6.7, we conclude this
chapter.

6.2 ILP-Based Process Discovery
In this section, we describe the basics of ILP-based process discovery. We first explain integer
linear programming and the concept of regions, originating from classical region theory, and
discuss their relation. Subsequently we show that we are able to construct a corresponding
generalized objective function that is guaranteed to find minimal regions.

6.2.1 Regions and Integer Linear Programming
In [123] an Integer Linear Programming (ILP)-formulation [105] is presented which allows us
to discover the places of a Petri net, based on event data stored in a (simple) event store. In
case of ILP-based process discovery, the (optimal) solution to an ILP-formulation corresponds to
a place in the resulting Petri net, i.e. the process model that we construct. The variables of the
corresponding ILP-formulation are expressed in terms of the initial marking of the place and the
arcs connected from/to the place. Consider Figure 6.2, in which we schematically introduce the
variables used in ILP-based process discovery. For each activity label a∈A , which is also present
within the (simple) event store used within discovery, we have two boolean variables. Variable
~x(a) is a boolean variable representing the presence of an incoming arc from a transition with
label a to the place corresponding to the solution of the ILP-formulation, whereas variable ~y(a)
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represents a corresponding outgoing arc. Variable m is a boolean variable representing the initial
marking of the place.2 Observe that, due to the coupling between variables and activity labels
a∈A , we have at most one transition within the resulting model that describes such label, i.e.
no label duplication. Moreover, we are not able to discover invisible transitions, i.e. transitions
t∈T with λ(t ) = τ.

As indicated in section 6.1, language-based region theory forms a fundamental basis of
ILP-based process discovery. In line with the concept of an ILP-formulation, we present the
notion of regions in terms of the aforementioned set of binary decision variables. Subsequently
we show how to utilize regions in the context of an ILP-formulation. The premise of a region is
the fact that its corresponding place, given the prefix-closure of the current event store, does
not block the execution of any sequence within the prefix-closure.

Definition 6.1 (Region). Let Φ̃∈B(A ∗) be a simple event store. Furthermore, let m∈B and let
~x,~y∈B|AΦ̃|. A triple r = (m,~x,~y) is a region, if and only if:

∀σ=σ′ · 〈a〉∈Φ̃+
(
m + ~σ′ᵀ~x −~σᵀ~y ≥ 0

)
(6.1)

We let F (Φ̃) denote the set of all variable assignments adhering to Equation 6.1, i.e. the set of
feasible regions, given Φ̃.

Observe that Equation 6.1 is defined in terms of the Parikh representation of a non-empty
activity sequence in the prefix-closure of the simple event store. In particular, it states that the
prefix of such sequence (σ′) needs to be able to account for firing the sequence as a whole (σ).
Note that this is the case because the ~x vector represents incoming arcs, and thus if ~x(a) = 1 and
~σ′(a) = 2, in total, two tokens are produced in the corresponding place. Similarly, if ~y(b) = 1 and
~σ(b) = 1, we know that a transition labelled with b consumes one token. Observe that the Parikh
vectors abstract from the ordering of activities within the activity sequences. However, since we
generate an inequality for each element of the prefix-closure of the simple event store, i.e. Φ̃+,
the ordering of activities as exhibited by the traces is implicitly accounted for.

A region r , i.e. a triple of variable assignments that adheres to Equation 6.1, is translated
to a Petri net place p as follows. Given some Petri net N = (P,T,F,λ), in which we represent
the unique transition with label a as ta∈T . If ~x(a) = 1, we add ta to •p, i.e. F ← F ∪ {(ta , p)}.
Symmetrically, if ~y(a) = 1, we add ta to p•, i.e. F ← F ∪ {(p, ta )}. Finally, if m = 1, place p is
initially marked. Since translating a region to a place is deterministic, we are also able to
translate a place to a region, e.g. a place p with t∈•p and λ(t ) = a corresponds to a region in
which ~x(a) = 1.

Prior to presenting the basic ILP-formulation for finding regions, we formulate regions in
terms of matrices, which we use in the ILP-formulation.

Definition 6.2 (Region (Matrix Form)). Let Φ̃∈B(A ∗) be a simple event store. Let M and M′

be two |Φ̃+ \ {ε}|× |AΦ̃| matrices with M(σ, a) =~σ(a) and M′(σ, a) = ~σ′(a) (where σ=σ′ · 〈a′〉∈Φ̃+).
Tuple r = (m,~x,~y) is a region if and only if:

m~1+M′~x −M~y ≥~0 (6.2)

We additionally define matrix MΦ̃ which is an |Φ̃+|× |AΦ̃| matrix with MΦ̃(σ, a) =~σ(a) for
σ ∈+ Φ̃, i.e. MΦ̃ is the equivalent of M for all complete traces in the event store. We define

2In the context of this thesis we restrict the variables to be boolean, i.e. B, however, when adopting the
notion of arc weights and multiple tokens within the initial marking, we are able to use the set of natural
numbers as well, i.e. N0.
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a general process discovery ILP-formulation that guarantees to find a non-trivial region, i.e.
regions not equal to (0,~0,~0) or (1,~1,~1), with the property that its corresponding place is always
empty after replaying each trace within the event store.

Definition 6.3 (Process Discovery ILP-formulation [123]). Let Φ̃∈B(A ∗) be a simple event store
and let M, M′ and MΦ̃ be the matrices defined in 6.2. Let cm∈R and ~cx , ~cy∈R|AΦ̃|. The process
discovery ILP-formulation, I LPΦ̃, is defined as:

minimize z = cm m + ~cx
ᵀ~x + ~cy

ᵀ~y objective function
such that m~1+M′~x −M~y ≥~0 theory of regions

and m~1+MΦ̃(~x −~y) =~0 corresp. place is empty after each trace
3 ~1ᵀ~x +~1ᵀ~y ≥ 1 at least one arc connected

~0 ≤~x ≤~1 i.e. ~x∈{0,1}|AΦ̃|
~0 ≤~y ≤~1 i.e. ~y∈{0,1}|AΦ̃|
0 ≤ m ≤ 1 i.e. m∈{0,1}

We let FI LP (Φ̃) denote the set of all variable assignments (i.e. corresponding to regions)
adhering to the constraints of the ILP-formulation as presented in 6.3, i.e. the feasible regions
of the ILP. Thus, note that (0,~0,~0), (1,~1,~1) ∉ FI LP (Φ̃), i.e. it only contains non-trivial regions.
Furthermore, we let r∗∈FI LP (Φ̃) denote the region that minimizes the objective function z as
defined in 6.3, i.e. the optimal region4. In the upcoming section, we show that we are able to
characterize a generalized objective function, which allows us to discover places with certain
characteristics, beneficial for process discovery, i.e. minimal regions

6.2.2 Guarantees on Discovering Minimal Regions

6.3 allows us to find a region that minimizes objective function z = cm m + ~cx
ᵀ~x + ~cy

ᵀ~y . Multiple
instantiations of z, i.e. in terms of objective coefficients cm , ~cx and ~cy , are possible. In [123], an
objective function is proposed that minimizes the number of 1-valued entries in ~x and maximizes
1-valued entries in ~y, i.e. in the region’s corresponding place the number of incoming arcs is
minimized whereas the number of outgoing arcs is maximized. In this section, we show that
we are able to instantiate the aforementioned function with an arbitrary positive scalar and are
guaranteed to find minimal regions. Prior to this, we define the notion of minimal regions.5

Definition 6.4 (Minimal region). Let Φ̃∈B(A ∗) be a simple event store and let r = (m,~x,~y)∈F (Φ̃).
Region r is minimal if and only if it is not a linear combination of two other regions, i.e.

Ør ′ = (m′,~x′,~y ′),r ′′ = (m′′,~x′′,~y ′′) ∈F (Φ̃)
(
m = m′+m′′∧~x =~x′+~x′′∧~y =~y ′+~y ′′)

To exemplify the notion of minimal regions, and our preference in finding these types
of regions, consider Figure 6.3. Observe that for region r2, corresponding to place p2, we
have ~x2(a) = ~y2(b) = 1 and for region r3, corresponding to place p3, we have ~x3(b) = ~y3(c) = 1.
Furthermore, observe that the region r2,3, representing place p2,3, is a non-negative linear
combination of the former two regions, i.e. ~x2,3 = ~x2 + ~x3 and ~y2,3 = ~y2 + ~y3. From a process
discovery perspective, we prefer to find the places p2 and p3 as they, when viewed in isolation,

4We deem this region the optimal region to avoid confusion with respect to the well understood concept
of minimal regions, cf. 6.4.

5Observe that the contents presented here origin from [133], in which we prove the theorems provided
here for the class of hybrid variables.
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Figure 6.3: A labelled Petri net, where place p2,3 represents a non-negative linear combination
of places p2 and p3.

describe less behaviour and are thus more restrictive. Moreover, after adding places p2 and p3,
place p2,3 does not further constrain the behaviour of the Petri net.

We, therefore, propose a generalized prefix-closure-based objective function that incorporates
a strictly positive trace-level scaling function β with signature β : Φ̃+ →R>0, which guarantees
to find such minimal regions. The scaling function β is required to map all sequences in the
prefix-closure of the event store to some positive real value. The actual implementation is up to
the user, although we present an instantiation of β that works well for process discovery. We
show that the proposed generalized weighted prefix-closure-based objective function favours
minimal regions, given any scaling function β.

Definition 6.5 (Generalized weighted prefix-closure-based objective function). Let Φ̃∈B(A ∗)

be a simple event store. Let r = (m,~x,~y)∈F (Φ̃) be a region and let β : Φ̃+ → R>0 be a scaling
function over Φ̃+. We instantiate the generalized weighted prefix-closure-based objective function as
cm =∑

σ∈Φ̃β(σ), ~cx =∑
σ∈Φ̃β(σ)~σ and ~cy =−~cx , i.e.

zβ(r ) = ∑
σ∈Φ̃+

β(σ)(m +~σᵀ(~x −~y)) (6.3)

Note that, if we let β(σ) = 1 for all σ∈Φ̃+, which we denote as z1, we instantiate the
generalized objective function as the objective function proposed in [123].

To relate the behaviour in an event store to the objective function defined in 6.5, we
instantiate the scaling function β making use of the frequencies of the traces present in the
event store, i.e. we let β(σ) = Φ̃(σ) leading to:

z
Φ̃

(r ) = ∑
σ∈Φ̃+

Φ̃(σ)(m +~σᵀ(~x −~y)) (6.4)

To assess the difference between z1 and the alternative objective function z
Φ̃

, consider the

Petri net depicted in Figure 6.4. Assume we are given a simple event store Φ̃= [〈a,b,d〉5,〈a,c,d〉3].
Let r1 denote the region corresponding to place p1, let r2 correspond to p2 and let r3 correspond
to p3. In this case we have z1(r1) = 1, z1(r2) = 1 and z1(r3) = 2. For the alternative objective
function instantiation, we have z

Φ̃
(r1) = z

Φ̃
(r2) = z

Φ̃
(r3) = 8. Thus, using z

Φ̃
leads to more

intuitive objective values compared to using z1 as z
Φ̃

evaluates to the absolute number of
discrete time-steps a token remains in the corresponding place when replaying the event store Φ̃
with respect to the place.

In [123] it is shown that objective function z1 favours minimal regions. However, it does
not provide a means to show that any arbitrary instantiation of zβ favours minimal regions. We,
therefore, show that any instantiation of the generalized weighted prefix-closure-based objective
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Figure 6.4: A simple labelled Petri net N , with LΣ(N , [p1]) = {ε,〈a〉,〈a,b〉,〈a,c〉〈a,b,d〉,〈a,c,d〉}.

function with an arbitrary scaling function β : Φ̃+ →R>0 favours minimal regions. We first show
that the objective value of a non-minimal region equals the sum of the two minimal regions
defining it, after which we show that the given objective function maps each region to some
positive real value, i.e. r ng (zβ) ⊆R>0.

Lemma 6.1 (Objective value composition of non-minimal regions). Let Φ̃∈B(A ∗) be a simple
event store and let r1 = (m1,~x1,~y1), r2 = (m2,~x1,~y2) and r3 = (m1 + m2,~x1 +~x2,~y1 +~y2) with
r1,r2,r3∈F (Φ̃). Let zβ : F (Φ̃) →R where zβ is an instantiation of the generalized weighted objective
function as defined in 6.5, then zβ(r3) = zβ(r1)+ zβ(r2).
Proof (By definition of zβ)
Let us denote zβ(r3):∑

σ∈Φ̃+

β(σ)
(
(m1 +m2)+~σᵀ((~x1 +~x2)− (~y1 +~y2))

)
∑

σ∈Φ̃+

β(σ)
(
m1 +~σᵀ(~x1 −~y1)+m2 +~σᵀ(~x2 −~y2)

)
∑

σ∈Φ̃+

β(σ)
(
m1 +~σᵀ(~x1 −~y1)

)+ ∑
σ∈Φ̃+

β(σ)
(
m2 +~σᵀ(~x2 −~y2)

)
Hence, zβ(r3) = zβ(r1)+ zβ(r2). ä

6.1 shows that the value of zβ for a non-minimal region equals the sum of the zβ values of
the two regions it is composed of. If we additionally show that zβ can only evaluate to positive
values, we show that zβ favours minimal regions.

Lemma 6.2 (Range of zβ is strictly positive). Let Φ̃∈B(A ∗) be a simple event store and let
r = (m,~x,~y)∈F (Φ̃) be a non-trivial region. If zβ is an instantiation of the generalized weighted
objective function as defined in 6.5, then it is characterized by zβ : F (Φ̃) →R>0.
Proof (By definition of regions combined with zβ)
Let r = (m,~x,~y) be a non-trivial region, i.e. r∈F (Φ̃). As r is a region, we have:

∀σ=σ′ · 〈a〉∈Φ̃
(
m + ~σ′ᵀ~x −~σᵀ~y ≥ 0

)
(6.5)

Furthermore, observe that, given σ=σ′ · 〈a〉, we have ~σ(a′) ≥ ~σ′(a′), ∀a′∈A , i.e. the Parikh value
of any arbitrary activity in a sequence exceeds/is equal to the corresponding value in the prefix of
the sequence. Thus, given Φ̃, we have:

∀σ=σ′ · 〈a〉∈Φ̃, a′∈A
(
~σ(a′) ≥ ~σ′(a′)

)
(6.6)
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Using Equation 6.6, we substitute ~σ′ᵀ~x with ~σᵀ~x in Equation 6.5:

∀σ=σ′ · 〈a〉∈Φ̃(
m +~σᵀ(~x −~y) ≥ 0

)
(6.7)

Combining r ng (β) ⊆R>0, ~p(ε) =~0 and m∈N with Equation 6.7, we find zβ(r ) ≥ 0:∑
σ∈Φ̃

β(σ)
(
m +~σᵀ(~x −~y)

)≥ 0 (6.8)

If m > 0 then β(ε)(m+~p(ε)ᵀ(~x−~y)) =β(ε)m. As β(ε)m > 0, this, together with Equation 6.7 and
Equation 6.8 leads to zβ(r ) > 0.

Observe that if m = 0 then for r to be a non-trivial region, i.e. r∈F (Φ̃), then ~x 6=~0, i.e. ∃a∈A

s.t. ~x(a) > 0. Thus, given m = 0, let a∈A s.t. ~x(a) > 0. We know ∃σ=σ′ · 〈a〉∈Φ̃ and thus we have
~σᵀ~x = ~σ′ᵀ~x +~x(a) and consequently ~σ′ᵀ~x =~σᵀ~x −~x(a). From Equation 6.5, we deduce:

m + ~σ′ᵀ~x −~σᵀ~y ≥ 0

m +~σᵀ~x −~x(a)−~σᵀ~y ≥ 0

m +~σᵀ~x −~σᵀ~y ≥~x(a)

m +~σᵀ(~x −~y) > 0

This, together with Equation 6.7 and Equation 6.8 again leads to zβ(r ) > 0. ä
By combining 6.1 and 6.2, we easily show that any instantiation of zβ favours minimal

regions.

Theorem 6.1 (Any instantiation of zβ favours minimal regions). Let Φ̃∈B(A ∗) be a simple
event store and let r1 = (m1,~x1,~y1), r2 = (m2,~x1,~y2) and r3 = (m1 + m2,~x1 +~x2,~y1 +~y2) with
r1,r2,r3∈F (Φ̃). For any zβ : F (Φ̃) →R, being an instantiation of the generalized weighted objective
function as defined in 6.5, we have zβ(r3) > zβ(r1) and zβ(r3) > zβ(r2).
Proof (By composition of 6.1 and 6.2)
By 6.1 we know zβ(r3) = zβ(r1)+ zβ(r2). By 6.2 we know that zβ(r1) > 0, zβ(r2) > 0 and zβ(r3) > 0.
Thus we deduce zβ(r3) > zβ(r1) and zβ(r3) > zβ(r2). Consequently, any instantiation of the objective
function as defined in 6.5 favours minimal regions. ä

Both objective functions presented, i.e. z1 and z
Φ̃

, are expressible in terms of the more
general objective function zβ as presented in 6.5. As we have shown, the two objective functions
potentially favour different, yet minimal, regions. Combining an objective function with the
ILP-formulation presented in 6.3 establishes means to find Petri net places. However, solving one
ILP only yields one solution and hence we need means to find a set of places, which together
form a Petri net that accurately describes the input event store Φ̃. In the next section, we
therefore present means to find multiple regions, which we prove to together form a relaxed
sound workflow net.

6.3 Discovering Relaxed Sound Workflow Nets
Using the basic ILP-formulation with an instantiation of the generalized weighted objective
function only yields one, optimal, result. However, we are interested in finding multiple places
that together form a workflow net. Therefore, in this section, we describe to effectively find
multiple places that together constitute to a workflow net. We start by illustrating the causal-
relation-based discovery strategy, after which we present the conditions necessary to discovery
workflow nets. We furthermore characterize the behavioural guarantees with respect to the
discovered workflow nets.
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6.3.1 Discovering Multiple Places Based on Causal Relations
In [123] multiple approaches are presented to find multiple, different Petri net places. Here
we adopt and generalize, the causal approach. One of the most suitable techniques to find
multiple regions in a controlled and structured manner, is by exploiting causal relations present
within an event store. A causal relation between activities a and b implies that activity a causes
b, i.e. b is likely to follow (somewhere) after activity a. Several approaches exist to compute
causalities [49]. For example, in case of the Alpha miner [11], the directly follows relation, cf.
2.16, is used to derive a causal relation, i.e. a causal relation from activity a to activity b, a → b
holds, if a > b and not b > a. As indicated, within the heuristic miner [121, 122], this relation
was further developed to take frequencies into account as well. Given these multiple definitions,
we assume the existence of a causal relation oracle which, given an event store, produces a set
of pairs (a,b) indicating that activity a may have a causal relation with (to) activity b.

Definition 6.6 (Causal relation oracle). A causal oracle % maps a simple event store to a set of
activity pairs, i.e. % : B(A ∗) →P (A ×A ).

A causal oracle only considers activities present in an event store, i.e. %(Φ̃)∈P (AΦ̃× AΦ̃).
It defines a directed graph with AΦ̃ as vertices and each pair (a,b)∈%(Φ̃) as an arc between a
and b. Later we exploit the graph-based view, for now, we refer to %(Φ̃) as a collection of pairs.
When adopting a causal ILP process discovery strategy, we try to find net places that represent a
causality found in the event store. Given an event store Φ̃, for each pair (a,b)∈%(Φ̃) we enrich the
constraint body of the process discovery ILP-formulation, cf. 6.3, with three constraints [123]:

1. m = 0;
The place representing the causal relation is not initially marked.

2. ~x(a) = 1;
The place representing the causal relation always has an incoming arc from the transition
with label a.

3. ~y(b) = 1;
The place representing the causal relation always has an outgoing arc to the transition
with label b.

The three constraints ensure that if we find a solution to the ILP, it corresponds to a place which
is not marked and connects transition a to transition b. Given pair (a,b)∈%(Φ̃) we denote the
corresponding extended causality based ILP-formulation as I LP(Φ̃,a→b).

After solving I LP(Φ̃,a→b) for each (a,b)∈%(Φ̃), we end up with a set of regions that we are able
to transform into places in a resulting Petri net. Since we enforce m = 0 for each causality, none
of these places is initially marked. Moreover, due to constraints based on m~1+MΦ̃(~x −~y) =~0, the
resulting place is empty after replaying each trace in the input event store within the resulting
Petri net. Since we additionally enforce ~x(a) = 1 and ~y(b) = 1, if we find a solution to the ILP, the
corresponding place has both input and output arcs and is not eligible for being a source/sink
place. Hence, the approach as-is does not allow us to find workflow nets. In the next section,
we show that a simple pre-processing step performed on the event store, together with specific
instances of %(Φ̃), allows us to discover workflow nets which are relaxed sound.

6.3.2 Discovering Workflow Nets
Recall that for a Petri net to be a workflow net, cf. 2.3, it has to have a unique source/sink place,
and, each element within the Petri net needs to be on a path from the start place to the sink
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Figure 6.5: Visualizations of trivial solutions to I LP( fuse (Φ̃),a→b) in terms of Petri net places.

place. Given an arbitrary simple event store, it is rather hard to determine how to construct such
sink/source place, i.e. multiple activities usually happen at the start/end of a trace. Moreover,
such activities are potentially repeated throughout a trace, which doesn’t allow us to enable
them only once at the beginning of a case. However, in case there exists a well-defined unique
start activity as and end-activity ae , we are guaranteed that each instance of the process is,
when projected onto the control-flow perspective, is of the form 〈as , ..., ae 〉.

Clearly, not every (simple) event store describes event data of the form as described earlier,
i.e. not every process instance defines a unique start/end activity. We therefore first define a
class of event stores which consists of a unique start/end activity, cf. 6.7, after which we describe
a (trivial) projection of arbitrary event stores into such event store.

Definition 6.7 (Unique start/end event store). Let Φ̃∈B(A ∗) be a simple event store with a
corresponding set of activities AΦ̃. Φ̃ is a Unique Start/End event store (USE-store) if there exist
as , a f ∈AΦ̃ s.t. as 6= a f and:

∀σ∈Φ̃ (σ(1) = as ∧∀i∈{2,3, ..., |σ|}(σ(i ) 6= as )) (6.9)

∀σ∈Φ̃
(
σ(|σ|) = a f ∧∀i∈{1,2, ..., |σ|−1}(σ(i ) 6= a f )

)
(6.10)

Since the set of activities AΦ̃ is finite, it is trivial to transform any event store to a USE-store.
Assume we have an event store Φ̃ over AΦ̃ that is not a USE-store. We generate two “fresh”
activities as , a f ∈A s.t. as , a f ∉ AΦ̃ and create a new event store Φ̃′∈B(A ∗) over AΦ̃∪ {as , a f },
by adding 〈as〉 ·σ · 〈a f 〉 to Φ̃′ for each σ∈Φ̃, i.e.

Φ̃′ =
[
σk∈A ∗ | ∃σ′ ∈+ Φ̃

(
σ= 〈as〉 ·σ′ · 〈a f 〉∧ Φ̃(σ′) = k

)]
(6.11)

We let fuse : B(A ∗) →B(A ∗) denote such USE-transformation. We omit as and a f from the
domain of fuse and assume that given some USE-transformation the two symbols are known.

Clearly, after applying a USE-transformation, finding a unique source- and sink place is
trivial. It also provides an additional advantage considering the ability to find workflow nets. In
fact, an instance I LP(Φ̃,a→b) always has a solution if Φ̃ is a USE-store. We provide the proof of
this property in 6.3, after which we present an algorithm that, given specific instantiations of %,
is guaranteed to discover a workflow net.

Lemma 6.3 (A USE-store based causality has a solution). Let Φ̃∈B(A ∗) be a USE-store, cf. 6.7,
with corresponding set of activities AΦ̃, unique start activity as and unique end activity a f . For
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every (a,b)∈%(Φ̃) with a 6= a f and b 6= as , I LP(Φ̃,a→b) has a solution.
Proof (By construction)
We consider the case a 6= as and b 6= a f . We show that variable assignment ~x(as ) =~x(a) =~x(b) =
~y(a) =~y(b) =~y(a f ) = 1, all other variables 0 (Figure 6.5a), adheres to all constraints of I LP(Φ̃,a→b).

First of all, observe that the constraints of the form: ~1ᵀ~x +~1ᵀ~y ≥ 1, ~0 ≤~x ≤~1, ~0 ≤ ~y ≤~1 and
0 ≤ m ≤ 1 are trivially satisfied. Moreover, the variable assignment indeed represents the causal
relation between a and b, i.e. it adheres to m = 0, ~x(a) = 1 and ~y(b) = 1.

Consider constraints related to the notion of a region, i.e. constraints of the form

∀σ=σ′ · 〈a′〉∈Φ̃+(m +~p(σ′)ᵀ~x −~p(σ)ᵀ~y ≥ 0)

(corresponding to m~1+M′~x −M~y ≥~0) and let σ=σ′ · 〈a′〉∈Φ̃+.
Case I: a′ 6= a, a′ 6= b, a′ 6= a f . Since a′ 6= a f we know ~σ(a f ) = 0. Moreover, since a′ 6= a, a′ 6= b,

we know that ~σ′(a) =~σ(a) and ~σ′(b) =~σ(b), and hence ~σ′(a)~x(a)−~σ(a)~y(a) = 0 and ~σ′(b)~x(b)−
~σ(b)~y(b) = 0. Since ~x(as ) = 1 and as occurs uniquely at the start of each trace, if σ′ = ε such
constraint equals 0, and, 1 otherwise.

Case II: a′ = a. We know ~σ(a f ) = 0 and ~σ′(b) =~σ(b). Now ~σ′(a) =~σ(a)−1 and thus ~σ′(a)~x(a)−
~σ(a)~y(a) =−1. Since as∈σ′ we have ~σ′(as )~x(as ) = 1, and thus the constraint equals 0.

Case III: a′ = b Similar to Case II.
Case IV: a′ = a f . We again have ~σ′(a) =~σ(a) and ~σ′(b) =~σ(b). Since~σ(a f )~y(a f ) = ~σ′(as )~x(as ) =

1, each constraint equals 0.
For all constraints of the form ∀σ∈ fuse (Φ̃)(m+~σᵀ(~x−~y) = 0) (corresponding to m~1+MΦ̃(~x−~y) =

~0), we observe that these all correspond to Case IV. As we have seen in Case IV, all constraints of the
form m+~p(σ′)ᵀ~x−~p(σ)ᵀ~y are equal to 0. In this case, the constraints are of the form m+~σᵀ(~x−~y),
however, since ~x(a f ) = 0, we again deduce that indeed for the given variable assignment these
constraints equal 0.

In case we have a = as and b 6= a f the region ~x(as ) =~x(b) =~y(b) =~y(a f ) = 1, all other variables
0 (Figure 6.5b), is a solution. The proof is similar to the proof of the previous case.

In case we have a 6= as and b = a f the region ~x(as ) =~x(a) =~y(a) =~y(a f ) = 1, all other variables
0 (Figure 6.5b), is a solution. Again the proof is similar to the proof in the first case.

Finally in case we have a = as and b = a f the region ~x(as ) =~y(a f ) = 1, all other variables 0
(Figure 6.5c), is a solution. Again the proof is similar to the proof in the first case. ä

In algorithm 6.1, on page 157, we present an ILP-Based process discovery approach that
uses a USE-store internally in order to find multiple Petri net places. For every (a,b)∈%( fuse (Φ̃))
with a 6= a f and b 6= as it solves I LP( fuse (Φ̃),a→b). Moreover, it finds a unique source and sink
place.

The algorithm constructs an initially empty labelled Petri net N = (P,T,F,λ). Subsequently
for each a∈AΦ̃∪ {as , a f } a transition ta is added to T , with λ(ta ) = a. For each causal pair in the
USE-variant of input event store Φ̃, a place p(a,b) is discovered by solving I LP( fuse (Φ̃),a→b) after
which P and F are updated accordingly. The algorithm adds an initial place pi and connects it
to tas and similarly creates sink place po which is connected to ta f . For transition ta related to
a∈AΦ̃, we have λ(ta ) = a, whereas λ(tas ) =λ(ta f ) = τ.

The algorithm is guaranteed to always find a solution to I LP( fuse (Φ̃),a→b), hence for each
causal relation a place is found. Additionally, a unique source and sink place are constructed.
However, the algorithm does not guarantee that we find a connected component, i.e. requirement
3 of 2.3. In fact, the nature of % determines whether or not we discover a workflow net.
In Theorem 6.2 we characterize this nature and prove, by exploiting 6.3, that we are able to
discover workflow nets.
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Algorithm 6.1: ILP-Based Process Discovery

input : Φ̃∈B(A ∗), % : B(A ∗) →P (A ×A )
output : N = (P,T,F,λ)
begin

1 P,T,F ←;;
2 let as , a f ∉ AΦ̃;
3 T ← {ta | a∈AΦ̃∪ {as , a f }};
4 foreach (a,b)∈%( fuse (Φ̃)) do
5 if a 6= a f ∧b 6= as then
6 (m,~x,~y) ← solution to I LP( fuse (Φ̃),a→b);
7 let p(a,b) ∉ P ;
8 P ← P ∪p(a,b);
9 foreach a′∈AΦ̃∪ {as , a f } do

10 if ~x(a′) = 1 then
11 F ← F ∪ {(ta′ , p(a,b)};

12 if ~y(a′) = 1 then
13 F ← F ∪ {(p(a,b), ta′ )};

14 let pi , po ∉ P ;
15 P ← P ∪ {pi , po};
16 F ← F ∪ {(pi , tas )};
17 F ← F ∪ {(ta f , po)};
18 let λ : T →A ∪ {τ};
19 foreach a∈AΦ̃ do
20 λ(ta) ← a;

21 λ(tas ),λ(ta f ) ← τ;
22 return (P,T,F,λ);

Theorem 6.2 (There exist sufficient conditions for finding workflow nets). Let Φ̃∈B(A ∗) be
a simple event store with a corresponding set of activities AΦ̃. Let fuse : B(A ∗) →B(A ∗) denote
a USE-transformation function. Let as , a f ∈A denote the unique start and end activity implicitly
defined by fuse (Φ̃). Let % : B(A ∗) → P (A ×A ) be a causal oracle and consider %( fuse (Φ̃)) as a
directed graph. If each a∈AΦ̃ is on a path from as to a f in %( fuse (Φ̃)), and there is no path from
as to itself, nor a path from a f to itself, then ILP-Based Process Discovery(Φ̃,%) returns a
workflow net.
Proof (On the structure of the causal relation)
By the nature of %( fuse (Φ̃)), i.e. each a∈AΦ̃ is on a path from as to a f , combined with 6.3, we know
that for each (a,b)∈%( fuse (Φ̃)) a corresponding place is found that has a transition labelled with a
as an input and a transition labelled b as an output. Hence, every path in %( fuse (Φ̃)) corresponds
to a path in the resulting net and as a consequence, every transition is on a path from as to a f . As
every place that is added has input transition (~x(a) = 1) and an output transition (~y(b) = 1), every
place is also on a path from as to a f . By construction this then also holds from pi to po . ä
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Theorem 6.2 proves that if we use a causal structure that, when interpreting it as a graph,
has the property that each a∈AΦ̃ is on a path from as to a f , the result of algorithm 6.1 is a
workflow net. The aforementioned property seems rather strict. However, there exists a causal
graph definition that, in fact, guarantees this property [122]. Hence, we are able to use this
definition as an instantiation for %. As a consequence, we are always able to discover workflow
nets, given an arbitrary event log/store.

Theorem 6.2 does not provide any behavioural guarantees, i.e. a workflow net is a purely
graph-theoretical property. Recall that the premise of a region is that it does not block the
execution of any sequence within the prefix-closure of an event store. Intuitively we deduce
that we are therefore able to fire each transition in the workflow net at least once. Moreover,
since we know that a f is the final transition of each sequence in fuse (Φ̃), and after firing the
transition each place based on any I LP( fuse (Φ̃),a→b) is empty, we know that we are able to mark
po , and, po is the only place containing a token at that point in time. These two observations
hint on the fact that the workflow net is relaxed sound, which we prove in Theorem 6.3

Theorem 6.3. Let Φ̃∈B(A ∗) be a simple event store with a corresponding set of activities AΦ̃. Let
fuse : B(A ∗) →B(A ∗) denote a USE-transformation function and let as , a f denote the unique start
and end activity implicitly defined by fuse (Φ̃). Let % : B(A ∗) →P (A ×A ) be a causal oracle. Let
N = (P,T,F,λ) = ILP-Based Process Discovery(Φ̃,%). If N is a workflow net, then N is relaxed
sound.
Proof (By construction of traces in the (simple) event store)
Recall that a workflow net N is relaxed sound if and only if (2.6):

∀t∈T
(∃M , M ′∈R(N , [pi ])

(
(N , M)[t〉(N , M ′)∧ [po ]∈R(N , M ′)

))
Observe that tas is trivially enabled in initial marking [pi ] since •tas = {pi }.

Consider an arbitrary t∈T \ {tas , ta f }. We know ∃σ ∈+ fuse (Φ̃)
(
σ= 〈as〉 ·σ′ · 〈λ(t )〉 ·σ′′ · 〈a f 〉

)
.

Let 〈t ′1, t ′2, ..., t ′n〉 s.t. 〈λ(t ′1),λ(t ′2), ...,λ(t ′n )〉 =σ′. The fact that each place p∈P \ {pi , po } corresponds

to a region yields that we may deduce [pi ]
tas−−→ M ′

1,M ′
1

t ′1−→ M ′
2,...,M ′

n
t ′n−→ M ′ s.t. M ′ ⊇ •t (if there

exists p∈• t s.t. M ′(p) = 0, then p does not correspond to a region). Hence for any t∈T \ {tas , ta f }
there exists a marking reachable from [pi ] that enables t .

Now let 〈t ′′1 , t ′′2 , ..., t ′′n〉 s.t. 〈λ(t ′′1 ),λ(t ′′2 ), ...,λ(t ′′n )〉 =σ′′. Note that also, again by the fact that each

place p∈P \{pi , po } corresponds to a region, we may deduce M ′ t ′′1−→ M ′′
1 , M ′′

1

t ′′2−→ M ′′
2 ,...,M ′′

n−1
t ′′n−→ M ′′

n .

Clearly, we have M ′′
n

ta f−−→ M f with M f (po ) = 1 since ta f • = {po }, and this is the first time we fire
ta f , i.e. a f ∉∗ 〈as〉 ·σ′ · 〈λ(t )〉 ·σ′′. Clearly M f (pi ) = 0 and because of constraints of the form
m~1+MΦ̃(~x −~y) =~0 we have ∀p∈P \ {pi , po }(M f (p) = 0). Hence M f = [po ] and thus after firing t
there exists a firing sequence that leads to marking [po ] which proves that N is relaxed sound. ä

We have shown that with a few pre- and post-processing steps and a specific class of causal
structures we are able to guarantee to find workflow nets that are relaxed sound. These results
are interesting since several process mining techniques require workflow nets as an input. The
ILP problems solved still require their solutions to allow for all possible behaviour in the event
store. As a result, the algorithm incorporates all infrequent exceptional behaviour and still
results in over-fitting complex workflow nets. Hence, in the upcoming section we show how
to efficiently prune the ILP constraint body to identify and eliminate infrequent exceptional
behaviour.
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(a) Result based on event store Φ̃1.

(b) Result based on event store Φ̃′
1.

Figure 6.6: Results of applying algorithm 6.1 based on Φ̃1 and Φ̃′
1.

6.4 Dealing with Infrequent Behaviour
In this section, we present an efficient pruning technique that identifies and eliminates con-
straints related to infrequent exceptional behaviour. We first present the impact of infrequent
exceptional behaviour after which we present the pruning technique.

6.4.1 The Impact of Infrequent Exceptional Behaviour
In this section, we highlight the main cause of ILP-based discovery’s inability to handle infrequent
behaviour and we devise a filtering mechanism that exploits the nature of the underlying body
of constraints. Consider for example the simple event store Φ̃1, which only contains traces that
are part of the behaviour described by the running example net presented in Figure 2.13b:

Φ̃1 =


〈a,b,c,d ,e〉10,
〈a,c,b,d , f 〉9,

〈a,b,c,d , g ,c,b,d , f 〉12,
〈a,c,b,d , g ,b,c,d ,e〉11,
〈a,b,c,d , g ,b,c,d , f 〉13


When we apply the ILP-based process discovery algorithm as described in the previous

sections, with a suitable causal relation, we obtain the sound workflow net depicted in Figure 6.6a.
Observe that the model we obtain is equal, in terms of behaviour, to the simplified running
example model of Figure 2.13b. In this case, however, we have an additional invisible start
and end transition, due to the addition of as and a f to each trace in the event store. If we
create a simple event store Φ̃′

1 by simply adding one instance of the trace 〈a,b,b,c,d ,d ,e〉, i.e.
by duplicating the b and d activities, we obtain the Petri net depicted in Figure 6.6b.

Because of these two duplicated activities, some of the places found in Figure 6.6a are no
longer a feasible solution to the ILP-formulation on the basis of Φ̃′

1. Consider Table 6.1, in which
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Table 6.1: Constraints based on trace 〈a,b,b,c,d ,d ,e〉 in event store Φ̃′
1 (observe that we show

the constraints based on fuse (Φ̃′
1)).

(1) m −~y(as ) ≥ 0
(2) m +~x(as )−~y(as )−~y(a) ≥ 0
(3) m +~x(as )+~x(a)−~y(as )−~y(a)−~y(b) ≥ 0
(4) m +~x(as )+~x(a)+~x(b)−~y(as )−~y(a)−2~y(b) ≥ 0
(5) m +~x(as )+~x(a)+2~x(b)−~y(as )−~y(a)−2~y(b)−~y(c) ≥ 0
(6) m +~x(as )+~x(a)+2~x(b)+~x(c)−~y(as )−~y(a)−2~y(b)−~y(c)−~y(d) ≥ 0
(7) m +~x(as )+~x(a)+2~x(b)+~x(c)+~x(d)−~y(as )−~y(a)−2~y(b)−~y(c)−2~y(d) ≥ 0
(8) m +~x(as )+~x(a)+2~x(b)+~x(c)+2~x(d)−~y(as )−~y(a)−2~y(b)−~y(c)−2~y(d)−~y(e) ≥ 0
(9) m +~x(as )+~x(a)+2~x(b)+~x(c)+2~x(d)+~x(e)−~y(as )−~y(a)−2~y(b)−~y(c)−2~y(d)−~y(e)−~y(a f ) ≥ 0
(10) m +~x(as )+~x(a)+2~x(b)+~x(c)+2~x(d)+~x(e)+~x(a f )−~y(as )−~y(a)−2~y(b)−~y(c)−2~y(d)−~y(e)−~y(a f ) = 0

we depict all constraints related to the simple trace 〈a,b,b,c,d ,d ,e〉. Moreover, consider the
place p({a,g },{b}) with •p({a,g },{b}) = {a, g } and p({a,g },{b})• = {b} in Figure 6.6a. We observe that
constraints (4) to (10) evaluate to −1 for the variable assignment related to place p({a,g },{b}), i.e.
~x(a) = 1, ~x(g ) = 1 and ~y(b) = 1. Hence, we are not able to find the place after addition of simple
trace 〈a,b,b,c,d ,d ,e〉. Moreover, note that the Petri net in Figure 6.6b contains a token generator,
i.e. the place that is a selfloop of the transition with label b allowing for the production of
any number of tokens on the input place of the transition with label d . Note that, similar
problems occur for the place connecting the transition with label c to the transition with label d
in Figure 6.6a.

The example shows that the addition of the simple trace 〈a,b,b,c,d ,d ,e〉 to Φ̃1, yields
constraints that invalidate several places that are found in the workflow net in Figure 6.6a.
As a result, the workflow net based on event store Φ̃′

1 contains places with self-loops on the
transitions labelled with b, c, d and g . In particular the self-loop on b is problematic, as firing
the corresponding transition is unconstrained, as long as the token remains in the connected
place, i.e. as long as we do not fire the transitions labelled with e or f . As indicated, this
results in a token generator construct. In fact, the model in Figure 6.6a is a sound workflow net,
whereas the model in Figure 6.6b, due to the presence of the token generator, is not, i.e. it is
relaxed sound.

Due to the relative infrequency of trace 〈a,b,b,c,d ,d ,e〉 it is arguably acceptable to trade-off
the perfect replay-fitness guarantee of ILP-based process discovery and return the workflow net
of Figure 6.6a, given Φ̃′

1. Hence, we need filtering techniques and/or trace clustering techniques
in order to remove exceptional behaviour. However, apart from simple pre-processing, i.e. as
presented in chapter 4 we aim at adapting the ILP-based process discovery approach itself to be
able to cope with infrequent behaviour.

By manipulating the constraint body such that it no longer allows for all behaviour present
in the input event store, we are able to deal with infrequent behaviour within event stores.
Given the problems that arise because of the presence of exceptional traces, a natural next
step is to leave out the constraints related to the problematic traces. An advantage of filtering
the constraint body directly, i.e. rather than applying general-purpose filtering techniques
such as the filtering technique we presented in chapter 4, is the fact that the constraints are
based on the prefix-closure of the event store. Thus, even if all traces are unique yet they do
share prefixes, we are able to filter. Moreover, the internal representation of the ILP-based
process discovery algorithm, i.e. constraints, largely ignores ordering relations. Thus, even in the
case of parallelism, some constraints at later phases of traces map onto the same constraints.
Additionally, leaving out constraints decreases the size of the ILP’s constraint body, which has a
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potential positive effect on the time needed to solve an ILP. We devise a graph-based filtering
technique, i.e. sequence encoding filtering, that allows us to prune constraints based on trace
frequency information. In this context, a sequence encoding is a formalization of the information
present in traces required to construct region theory based constraints.

6.4.2 Sequence Encoding Graphs
As a first step towards sequence encoding filtering we define the relationship between sequences
and constraints. We do this in terms of sequence encodings. A sequence encoding is a vector-
based representation of a sequence in terms of region theory, i.e. representing the sequence’s
corresponding constraint.

Definition 6.8 (Sequence encoding). Let Φ̃∈B(A ∗) be a simple event store and let AΦ̃ ⊆ A

denote the corresponding set of activities that occur in the event store. ~φ : A∗
Φ̃
→N

2|AΦ̃|+1
0 denotes

the sequence encoding function mapping every σ ∈ A∗
Φ̃

to a 2 · |AΦ̃|+1-sized vector. We define ~φ as:

~φ(σ′ · 〈a〉) =

 1
~σ′

−~1ᵀ ~σ′ · 〈a〉

 ~φ(ε) =


1
0
...
0

 (6.12)

As an example of a sequence encoding vector consider sequence 〈as , a,b〉 originating from
fuse (Φ̃′

1), for which we have ~φ(〈as , a,b〉)ᵀ = (1,1,1,0,0,0,0,0,0,0,−1,−1,−1,0,0,0,0,0,0). Sequence
encoding vectors directly correspond to region theory based constraints, e.g. if we are given
m∈{0,1} and ~x,~y∈{0,1}|AΦ̃| and create a vector ~r where ~r (1) = m, ~r (2) = ~x(as ), ~r (3) = ~x(a), ...,
~r (9) =~x(g ), ~r (10) =~x(a f ), ~r (11) =~y(as ), ..., ~r (19) =~y(a f ), then ~φ(〈as , a,b〉)ᵀ~r = m +~x(as )+~x(a)−
~y(as )−~y(a)−~y(b). As a compact notation for σ = σ′ · 〈a〉 we write ~φ(σ) as a pair of the bag
representation of the Parikh vector of σ′ and a, i.e. ~φ(〈as , a,b〉) is written as ([as , a],b) whereas
~φ(〈as , a,b,c〉) is written as ([as , a,b],c). We do so, because the ~x and ~y vectors have the same
value for all elements of the prefix of a sequence σ. Furthermore, for ~φ(ε) we write ([],⊥).

Consider the prefix-closure of fuse (Φ̃′
1) which generates the linear inequalities presented in

Table 6.2. The table shows each sequence present in fuse (Φ̃′
1) accompanied by its ~φ-value and

the number of occurrences of the sequence in fuse (Φ̃′
1), e.g. fuse (Φ̃′

1)(〈as , a〉) = 56. Observe that
there is a relationship between the occurrence of a sequence and its corresponding postfixes,
i.e. after the 56 times that sequence 〈as , a〉 occurred, 〈as , a,b〉 occurred 36 times and 〈as , a,c〉
occurred 20 times (note: 56 = 36+20). Furthermore, observe that multiple sequences actually
map to the same constraint. For example, both 〈as , a,b,c,d〉 and 〈as , a,c,b,d〉 map to sequence
encoding ([a,b,c],d). Due to coupling of sequences to constraints, i.e. by means of sequence
encoding, we are able to count the number of occurrences of each constraint. Moreover, we
are able to relate constraints related to a certain sequence to their predecessor and successor
constraints, i.e. by means of coupling them to their underlying traces. The frequencies in
fuse (Φ̃′

1) thus allow us to decide whether the presence of a certain constraint is in line with
predominant behaviour in the event store. For example, in Table 6.2, ~φ(〈as , a,b,b〉) relates to
infrequent behaviour as it appears only once, whereas the other constraints related to prefixes of
the same length are more frequent.

To apply filtering, we construct a weighted directed graph in which each sequence encoding
acts as a vertex. We connect two vertices by means of an arc if the source constraint corresponds
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Table 6.2: Schematic overview of sequence encodings based on fuse (Φ̃′
1).

σ∈ fuse (Φ̃′
1) ~φ(σ)ᵀ, i.e. (m,~x(as ),~x(a), ...,~y(g ),~y(a f )) ~φ(σ) (shorthand) fuse (Φ̃′

1)(σ)
ε (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) ([],⊥) 56
〈as〉 (1,0,0,0,0,0,0,0,0,0,−1,0,0,0,0,0,0,0,0) ([], as ) 56
〈as , a〉 (1,1,0,0,0,0,0,0,0,0,−1,−1,0,0,0,0,0,0,0) ([as ], a) 56
〈as , a,b〉 (1,1,1,0,0,0,0,0,0,0,−1,−1,−1,0,0,0,0,0,0) ([as , a],b) 36
〈as , a,c〉 (1,1,1,0,0,0,0,0,0,0,−1,−1,0,−1,0,0,0,0,0) ([as , a],c) 20
〈as , a,b,b〉 (1,1,1,1,0,0,0,0,0,0,−1,−1,−2,0,0,0,0,0,0) ([as , a,b],b) 1
〈as , a,b,c〉 (1,1,1,1,0,0,0,0,0,0,−1,−1,−1,−1,0,0,0,0,0) ([as , a,b],c) 35
〈as , a,c,b〉 (1,1,1,0,1,0,0,0,0,0,−1,−1,−1,−1,0,0,0,0,0) ([as , a,c],b) 20
〈as , a,b,b,c〉 (1,1,1,2,0,0,0,0,0,0,−1,−1,−2,−1,0,0,0,0,0) ([as , a,b2],c) 1
〈as , a,b,c,d〉 (1,1,1,1,1,0,0,0,0,0,−1,−1,−1,−1,−1,0,0,0,0) ([as , a,b,c],d) 35
〈as , a,c,b,d〉 (1,1,1,1,1,0,0,0,0,0,−1,−1,−1,−1,−1,0,0,0,0) ([as , a,b,c],d) 20
〈as , a,b,b,c,d〉 (1,1,1,2,1,0,0,0,0,0,−1,−1,−2,−1,−1,0,0,0,0) ([as , a,b2,c],d) 1
〈as , a,b,c,d ,e〉 (1,1,1,1,1,1,0,0,0,0,−1,−1,−1,−1,−1,−1,0,0,0) ([as , a,b,c,d ],e) 10
〈as , a,b,c,d , g 〉 (1,1,1,1,1,1,0,0,0,0,−1,−1,−1,−1,−1,0,0,−1,0) ([as , a,b,c,d ], g ) 25
〈as , a,c,b,d , f 〉 (1,1,1,1,1,1,0,0,0,0,−1,−1,−1,−1,−1,0,−1,0,0) ([as , a,b,c,d ], f ) 9
〈as , a,c,b,d , g 〉 (1,1,1,1,1,1,0,0,0,0,−1,−1,−1,−1,−1,0,0,−1,0) ([as , a,b,c,d ], g ) 11
〈as , a,b,b,c,d ,d〉 (1,1,1,2,1,1,0,0,0,0,−1,−1,−2,−1,−2,0,0,0,0) ([as , a,b2,c,d ],d) 1
〈as , a,b,c,d ,e, a f 〉 (1,1,1,1,1,1,1,0,0,0,−1,−1,−1,−1,−1,−1,0,0,−1) ([as , a,b,c,d ,e], a f ) 10
〈as , a,b,c,d , g ,b〉 (1,1,1,1,1,1,0,0,1,0,−1,−1,−2,−1,−1,0,0,−1,0) ([as , a,b,c,d , g ],b) 13
〈as , a,b,c,d , g ,c〉 (1,1,1,1,1,1,0,0,1,0,−1,−1,−1,−2,−1,0,0,−1,0) ([as , a,b,c,d , g ],c) 12
〈as , a,c,b,d , f , a f 〉 (1,1,1,1,1,1,0,1,0,0,−1,−1,−1,−1,−1,0,−1,0,−1) ([as , a,b,c,d , f ], a f ) 9
〈as , a,c,b,d , g ,b〉 (1,1,1,1,1,1,0,0,1,0,−1,−1,−2,−1,−1,0,0,−1,0) ([as , a,b,c,d , g ],b) 11
〈as , a,b,b,c,d ,d ,e〉 (1,1,1,2,1,2,0,0,0,0,−1,−1,−2,−1,−2,−1,0,0,0) ([as , a,b2,c,d 2],e) 1
〈as , a,b,c,d , g ,b,c〉 (1,1,1,2,1,1,0,0,1,0,−1,−1,−2,−2,−1,0,0,−1,0) ([as , a,b2,c,d , g ],c) 13
〈as , a,b,c,d , g ,c,b〉 (1,1,1,1,2,1,0,0,1,0,−1,−1,−2,−2,−1,0,0,−1,0) ([as , a,b,c2,d , g ],b) 12
〈as , a,c,b,d , g ,b,c〉 (1,1,1,2,1,1,0,0,1,0,−1,−1,−2,−2,−1,0,0,−1,0) ([as , a,b2,c,d , g ],c) 11
〈as , a,b,b,c,d ,d ,e, a f 〉 (1,1,1,2,1,2,1,0,0,0,−1,−1,−2,−1,−2,−1,0,0,−1) ([as , a,b2,c,d 2,e], a f ) 1
〈as , a,b,c,d , g ,b,c,d〉 (1,1,1,2,2,1,0,0,1,0,−1,−1,−2,−2,−2,0,0,−1,0) ([as , a,b2,c2,d , g ],d) 13
〈as , a,b,c,d , g ,c,b,d〉 (1,1,1,2,2,1,0,0,1,0,−1,−1,−2,−2,−2,0,0,−1,0) ([as , a,b2,c2,d , g ],d) 12
〈as , a,c,b,d , g ,b,c,d〉 (1,1,1,2,2,1,0,0,1,0,−1,−1,−2,−2,−2,0,0,−1,0) ([as , a,b2,c2,d , g ],d) 11
〈as , a,b,c,d , g ,b,c,d , f 〉 (1,1,1,2,2,2,0,0,1,0,−1,−1,−2,−2,−2,0,−1,−1,0) ([as , a,b2,c2,d 2, g ], f ) 13
〈as , a,b,c,d , g ,c,b,d , f 〉 (1,1,1,2,2,2,0,0,1,0,−1,−1,−2,−2,−2,0,−1,−1,0) ([as , a,b2,c2,d 2, g ], f ) 12
〈as , a,c,b,d , g ,b,c,d ,e〉 (1,1,1,2,2,2,0,0,1,0,−1,−1,−2,−2,−2,−1,0,−1,0) ([as , a,b2,c2,d 2, g ],e) 11
〈as , a,b,c,d , g ,b,c,d , f , a f 〉 (1,1,1,2,2,2,0,1,1,0,−1,−1,−2,−2,−2,0,−1,−1,−1) ([as , a,b2,c2,d 2, f , g ], a f ) 13
〈as , a,b,c,d , g ,c,b,d , f , a f 〉 (1,1,1,2,2,2,0,1,1,0,−1,−1,−2,−2,−2,0,−1,−1,−1) ([as , a,b2,c2,d 2, f , g ], a f ) 12
〈as , a,c,b,d , g ,b,c,d ,e, a f 〉 (1,1,1,2,2,2,1,0,1,0,−1,−1,−2,−2,−2,−1,0,−1,−1) ([as , a,b2,c2,d 2,e, g ], a f ) 11

to a sequence that is a prefix of a sequence corresponding to the target constraint, i.e. we
connect ~φ(〈as , a〉) to ~φ(〈as , a,b〉) as 〈as , a〉 is a prefix of 〈as , a,b〉. The arc weight corresponds to
trace frequency in the input event store.

Definition 6.9 (Sequence encoding graph). Let Φ̃∈B(A ∗) be a simple event store and let AΦ̃ ⊆A

denote the corresponding set of described activities. A sequence encoding graph is a directed graph
G = (V ,E ,ψ) where V = {~φ(σ) | σ∈Φ̃}, E ⊆ V ×V s.t. (~φ(σ′),~φ(σ))∈E ⇔ ∃a∈AΦ̃

(
σ′ · 〈a〉 =σ)

and
ψ : E →N where, for (v1, v2)∈E :

ψ(v1, v2) = ∑
σ ∈+ Φ̃
~φ(σ) = v2

Φ̃(σ)− ∑
σ′ ∈+ Φ̃

σ′ · 〈a〉 ∈+ Φ̃
~φ(σ′ · 〈a〉) = v2

~φ(σ′) 6= v1

Φ̃(σ′) (6.13)

Consider the sequence encoding graph in Figure 6.7 on page 163, based on fuse (Φ̃′
1), as

an example. By definition, ([],⊥) is the root node of the graph and connects to all one-sized
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Figure 6.7: An example sequence encoding graph G ′
1, based on example event store Φ̃′
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Algorithm 6.2: SEF-BFS
input :G = (V ,E ,ψ), κ : V →P(V )
output :C ⊆V
begin

1 C ←;
2 Let Q be a FIFO queue
3 Q.enqueue(([],⊥))
4 while Q 6= ; do
5 v ←Q.dequeue()
6 for v ′∈κ(v) do
7 C ←C ∪ {v ′}
8 Q.enqueue(v ′)

9 return C

sequences. Within the graph we observe the relation among different constraints, combined
with their absolute frequencies based on Φ̃′

1 Furthermore, observe that in multiple cases, certain
behaviour maps on the same constraint, then diverges, and later again merges into the same
constraint. Because of this, in case certain parts of behaviour are noisy, at later phases, such
behaviour still contributes to the filtering distribution.

6.4.3 Filtering

Given a sequence encoding graph, we are able to filter out constraints. In algorithm 6.2
we devise a simple breadth-first traversal algorithm, i.e. Sequence Encoding Filtering -

Breadth-First Search (SEF-BFS), that traverses the sequence encoding graph and concur-
rently constructs a set of ILP constraints. The algorithm needs a function as an input that is able
to determine, given a vertex in the sequence encoding graph, what portion of adjacent vertices
remains in the graph and which are removed.

Definition 6.10 (Sequence encoding filter). Given simple event store Φ̃ over set of activities AΦ̃
and a corresponding sequence encoding graph G = (V ,E ,ψ). A sequence encoding filter is a function
κ : V →P (V ).

Note that κ is an abstract function and might be parametrized. Observe that in principle, we
are able to apply the same filters on a vertex in the sequence encoding graph as described in
chapter 4, i.e. Fractional, Heavy Hitter and Smoothened Heavy Hitter. Recall that in fractional
filtering, we ignore any outgoing arc that has a value smaller than a certain, user specified,
fraction level of the sum of all outgoing arcs. In case of (smoothened) heavy hitter filtering,
we take such fraction of the maximum outgoing value (possibly corrected). In general, it is
desirable that κ(v) ⊆ {v ′ | (v, v ′)∈E }, i.e. it only considers vertices reached by v by means of an
arc. Given any instantiation of κ, it is straightforward to construct a filtering algorithm based on
breadth-first graph traversal, i.e. SEF-BFS.

The algorithm inherits its worst-case complexity of breadth-first search, multiplied by the
worst-case complexity of κ. Thus, in case κ’s worst-case complexity is O(1) then we have
O(|V |+ |E |) for the SEF-BFS-algorithm. It is trivial to prove, by means of induction on the length
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of a sequence encoding’s corresponding sequence, that a sequence encoding graph is acyclic.
Hence, termination is guaranteed.

As an example of executing the SEF-BFS algorithm, reconsider Figure 6.7. Assume we use
heavy hitter filtering with a threshold value of 0.35. Vertex ([],⊥) is initially present in Q and will
be analysed. Since ([], as ) is the only child of ([],⊥), it is added to Q. Vertex ([],⊥) is removed
from the queue and is never inserted in the queue again due to the acyclic property of the graph.
Similarly, since ([as ], a) is the only child of ([], as ) it is added to Q. Both children of ([as ], a), i.e.
([as , a],b) and ([as , a],c) are added to the queue since the maximum corresponding arc value
is 36, and, 0.35∗ 36 = 12.6, which is smaller than the lowest arc value 20. When analysing
([as , a],b) we observe a maximum outgoing arc with value 35 to vertex ([as , a,b],c) which is
enqueued in Q. Since 0.35∗35 = 8.75, the algorithm does not enqueue ([as , a,b],b). Note that
the whole path of vertices from ([as , a,b],b) to ([as , a,b2,c,d2,e], a f ) is never analysed and is
stripped from the constraint body, i.e. they are never inserted in C . Observe that all other arcs
and constraints in the graph remain in the constraint body. As the example shows, choosing the
right threshold level is essential, yet not trivial. For example, when using a threshold 0.35, some
proper constraints, e.g. [(as , a,b,c,d ], f ), are removed from the constraint body as well.

When applying ILP-based process discovery based on event store Φ̃′
1 with sequence encoding

filtering with heavy hitter filtering with threshold value 0.25, we indeed obtain the workflow
net depicted in Figure 6.6a. As explained, the filter leaves out all constraints related to vertices
on the path from ([as , a,b],b) to ([as , a,b2,c,d2,e], a f ). Hence, we find a similar model to the
model found on event store Φ̃1 and are able to filter out infrequent exceptional behaviour.

6.5 Evaluation
algorithm 6.1, together with sequence encoding filtering, cf. algorithm 6.2, has a corresponding
implementation in the ProM framework, which we describe in more detail in subsection 9.5.2.
As a filter, we have implemented heavy hitter filtering. However, note that it is implemented as
follows:

κ(v) = {v ′ | (v, v ′)∈E ∧ψ(v, v ′) ≥ (1− t ) · max
v ′′∈V

ψ(v, v ′′)}, t∈[0,1] (6.14)

This implies that, to obtain the same results as discussed in subsection 6.4.3, we need to
use a threshold value of 0.75, rather than 0.25, i.e. 1−0.75 = 0.25. To evaluate the approach,
we conducted several experiments, using the aforementioned code as a basis. Experiments
are conducted on machines with 8 Intel Xeon CPU E5-2407 v2 2.40 GHz processors and
64 GB RAM. In an artificial setting, we evaluated the quality of models discovered and the
efficiency of applying sequence encoding filtering. We also compare sequence encoding to the
Inductive Miner Infrequent (IMi) [79] algorithm, i.e. inductive miner with integrated filtering,
and automaton-based filtering [40]. Finally, we assess the performance of sequence encoding
filtering on real event data [81, 85]. Observe that in all cases, we use event logs in these
experiments, rather than event streams.

6.5.1 Model Quality
The event logs used in the empirical evaluation of model quality are artificially generated
event logs and originate from a study related to the impact of exceptional behaviour to rule-
based approaches in process discovery [87]. Three event logs were generated out of three
different process models, i.e. the ground truth event logs. These event logs do not consist of any
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exceptional behaviour, i.e. every trace fits the originating model. The ground truth event logs
are called a12f0n00, a22f0n00 and a32f0n00. The two digits behind the a character indicate
the number of distinct activities present in the event log, i.e. a12f0n00 contains 12 different
activities. From each ground truth event log, by means of trace manipulation, four other
event logs are created that do contain exceptional behaviour. Manipulation concerns tail/head
of trace removal, random part of the trace body removal and interchanging two randomly
chosen events [87]. The percentages of trace manipulation are 5%, 10%, 20% and 50%. The
manipulation percentage is incorporated in the last two digits of the event log’s name, i.e. the
5% manipulation version of the a22f0n00 event log is called a22f0n05.

The existence of ground truth event logs, free of exceptional behaviour, is of utmost import-
ance for the evaluation. We need to be able to distinguish normal from exceptional behaviour
in an unambiguous manner. Within evaluation, these event logs, combined with the quality
dimension precision, allow us to judge how well a technique is able to filter out exceptional
behaviour. Recall that precision is defined as the number of traces producible by the process
model that are also present in the event log. Thus if all traces producible by a process model are
present in an event log, precision is maximal, i.e. the precision value is 1. If the model allows
for traces that are not present in the event log, precision is lower than 1.

If exceptional behaviour is present in an event log, the conventional ILP-based process
discovery algorithm produces a workflow net that allows for all exceptional behaviour. As a
result, the algorithm is typically unable to find any meaningful patterns within the event log.
This typically leads to places with a lot of self-loops. The acceptance of exceptional behaviour
by the workflow net, combined with the inability to find meaningful patterns yields a low
level of precision, when using the ground truth log as a basis for precision computation. On the
other hand, if we discover models using an algorithm that is better in handling the presence
of exceptional behaviour, we expect the algorithm to allow for less exceptional behaviour and
find more meaningful patterns. Thus, with respect to the ground truth model, we expect higher
precision values.

To evaluate the sequence encoding filtering approach, we have applied the ILP-based process
discovery algorithm with sequence encoding filtering using filter thresholds 0,0.05,0.1, ...,0.95,1.
Moreover, we performed similar experiments for IMi [79] and automaton-based event log
filtering [40] combined with ILP-based discovery. We measured precision [92] and replay-
fitness [6] based on the ground truth event logs. The results for the different event logs are
presented in Figure 6.8, Figure 6.9 and Figure 6.10. In the charts, we plot replay-fitness/precision
against the noise level and filter threshold. We additionally use a colour scheme to highlight the
differences in value.

In Figure 6.8, on page 167, we present the replay-fitness and precision results of the
experiments with the a12f0nXX event logs. Sequence encoding filtering shows low replay-fitness
values for all event logs when using a filter threshold of 0. The replay-fitness values of the
discovered models quickly rise to 1 and remain 1 for all filter thresholds above 0.2. In case of IMi,
for a filter value of 1.0 we observe some values of 1 for replay-fitness.6 Non-perfect replay-fitness
seems to be more local, concentrated around noise levels 5% and 10% with corresponding
threshold levels in-between 0.4 and 0.8. Finally, automaton-based filtering rapidly loses perfect
replay-fitness when the filter threshold exceeds 0.2. Only for a noise-level of 0 it seems to retain
high replay-values. Upon inspection, it turns out the filter returns empty event logs for the
corresponding threshold and noise levels.

For the precision results, the charts of the sequence encoding filter show expected behaviour,

6Note that the IMi filter threshold works inverted with respect to sequence encoding filtering, i.e. a value
of 1 implies most rigorous filtering, and thus a threshold value of 1 comparable to 0.0 for sequence encoding.
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(a) Sequence Encoding - Replay-fitness.
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(b) Sequence Encoding - Precision.
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(c) IMi [79] - Replay-fitness.
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(d) IMi [79] - Precision.
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(e) ILP with AFA [40] - Replay-fitness.
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(f) ILP with AFA [40] - Precision.

Figure 6.8: Replay-fitness and precision measurements based on a12f0nXX for Sequence Encod-
ing, IMi [79] and ILP with AFA [40]. We observe that IMi quickly leads to imprecise
models when noise increases. AFA quickly leads to non-fitting models when noise
increases. Sequence encoding finds perfectly fitting and precise models, for most
threshold values.
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i.e. with high noise levels and high filter thresholds precision is low. There is, however, an
unexpected drop in precision for noise-level 0 with a filter threshold around 0.2. The IMi filter
behaves less predictable since the drop in precision seems mainly depending on the noise level
rather than the filter setting. We expect the precision to be higher in case a filter threshold of 1.0
is chosen. There is only a slight increase for the 50% noise log when comparing a filter threshold
of 0 to a filter threshold of 1. Finally, the precision of the automaton filter behaves as expected,
i.e. precision rapidly increases together with an increase in the filter threshold.

In Figure 6.9, on page 169, we present the replay-fitness and precision results of the
experiments with the a22f0nXX event logs. For the sequence encoding filter (Figure 6.9a and
Figure 6.9b) we again observe that replay-fitness is often 1, except for very rigorous levels of
filtering, i.e. t = 0 and t = 0.05. When applying filtering as rigorous as possible, i.e. t = 0, we
observe relatively stable replay-fitness values of around 0.6, for different levels of noise. The
discovered model at 0% noise level has a precision value of 1. This implies that the filter, in the
case of 0% noise, removes behaviour that is present in the ground-truth event log. Precision
drops to around 0.7 for increasing levels of noise. The relatively stable levels of replay-fitness and
precision for increasing levels of noise when using t = 0 suggest that the filter only incorporates
a few branches of most frequent behaviour, which is the same throughout different levels of
noise. Since the precision values are lower than 1, combined with the fact that parallelism exists
in the original model, it seems that the most frequent branches do incorporate some form of
parallelism that allow for behaviour not observed in the event log.

For the 5% and 10% noise levels we observe that threshold values in between 0 and 0.6
achieve acceptable levels of precision. These values are slightly lower than the precision values
related to 0% noise, which implies that the filter in these cases is not able to remove all noise.
The rapid trend towards precision values close to 0 for threshold levels above 0.6 suggests that
the filter does not remove any or very little noise. For higher levels of noise, we observe a
steeper drop in precision. Only very low threshold levels (up to 0.2) achieve precision values
around 0.3. The results suggest that these levels of noise introduce levels of variety in the data
that no longer allow the sequence encoding filter to identify (in)frequent behaviour. Hence,
even for low threshold values the filter still incorporates noise into the resulting process models.

For IMi (Figure 6.9c and Figure 6.9d) we observe similar behaviour (as indicated, the filter
threshold works inverted with respect to sequence encoding filtering). However, replay-fitness
drops a little earlier compared to sequence encoding filtering. The drop in the precision of
the sequence encoding filtering is smoother than the drop in precision of IMi, i.e. there exist
some spikes within the graph. Hence, applying filtering within IMi, on these data, behaves less
deterministic.

Finally, automaton based filtering (Figure 6.9e and Figure 6.9f) rapidly drops to replay-
fitness values of 0. Upon inspection, it again turns out that the filter returns empty event logs for
the corresponding threshold and noise levels. Hence, the filter seems to be very sensitive around
a threshold value in-between 0 and 0.2. The precision results for the automaton based filter are
as expected. For a low threshold value, we have very low precision, except when we have a 0%
noise level. Towards a threshold level of 0.2, precision increases after which it maximizes out to
a value of 1. This is in line with the replay-fitness measurements.

Finally, in Figure 6.10 we present the replay-fitness and the precision results of the experi-
ments with the a32f0nXX event logs. Due to excessive computation time the automaton based
filter [40] is left out of the analysis. We observe that sequence encoding filtering behaves similar
to the experiments performed with the a12f0nXX and a22f0nXX event logs. Replay-fitness again
quickly increase to 1 for increasing filter threshold values. We observe that IMi seems to filter
out more behaviour related to the underlying system model when the filter threshold increases.
Observe that, due to loop structures, the precision of a model that equals the originating model
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(a) Sequence Encoding - Replay-fitness.
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(b) Sequence Encoding - Precision.
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(c) IMi [79] - Replay-fitness.
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(d) IMi [79] - Precision.
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(e) ILP with AFA [40] - Replay-fitness.
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(f) ILP with AFA [40] - Precision.

Figure 6.9: Replay-fitness and precision measurements based on a22f0nXX for Sequence Encod-
ing, IMi [79] and ILP with AFA [40]. We observe that both Sequence encoding and
IMi quickly lead to imprecise models when noise increases. AFA quickly leads to
non-fitting models when noise increases.
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(a) Sequence Encoding - Replay-fitness.
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(b) Sequence Encoding - Precision.
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(c) IMi [79] - Replay-fitness.
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(d) IMi [79] - Precision.

Figure 6.10: Replay-fitness and precision measurements based on a32f0nXX for Sequence En-
coding and IMi [79]. We observe that both Sequence encoding and IMi quickly
lead to imprecise models when noise increases.

is only roughly 0.6. Sequence encoding filtering shows a smooth decrease in precision when
both noise and filter-thresholds are increased, which is as expected. With low noise levels and a
low threshold value, sequence encoding seems to be able to filter out the infrequent behaviour,
however, if there is too much noise and too little is removed we start finding workflow nets
with self-loop places. IMi seems to result in models with a slightly higher precision compared
to sequence encoding filtering. As is the case in the a22f0nXX event logs, we observe spike
behaviour in precision of IMi based models hinting at non-deterministic behaviour of the filter.

We conclude that the sequence encoding filter and IMi lead to comparable results. However,
the sequence encoding filter provides more expected results, i.e. IMi behaves somewhat less
deterministic. The automaton based filter does provide good results, however, sensitivity of the
filter threshold is much higher compared to sequence encoding filtering and IMi.

6.5.2 Computation time

Using sequence encoding filtering, we leave out constraints that refer to exceptional behaviour.
Hence, we reduce the size of the core ILP constraint body and thus expect a decrease in
computation time when applying rigorous filtering, i.e. heavy hitter filtering with filter threshold
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towards a value of 0. Using RapidMiner we repeated similar experiments to the experiments
performed for model quality, and measured cpu-execution time for the three techniques. However,
we only use threshold values 0, 0.25, 0.75 and 1.

In Figure 6.11, on page 172, we present the average cpu-execution time, based on 50
experiment repetitions, needed to obtain a process model from the a22f0nXX event logs. For
each level of noise, we depict computation time for different filter threshold settings. For IMi,
we measured the inductive miner algorithm with integrated filtering. For sequence encoding
and automaton filtering, we measure the time needed to filter, discover a causal graph and solve
underlying ILP problems. Observe that for IMi and the automaton-based filter, filtering most
rigorously is performed with threshold levels of 1, as opposed to sequence encoding filtering
which filters most rigorously at threshold 0.

We observe that IMi is fastest in most cases. Computation time slightly increases when the
amount of noise increases within the event logs. For sequence encoding filtering we observe that
lower threshold values lead to faster computation times. This is as expected since a low threshold
value removes more constraints from the ILP constraint body than a high threshold value. The
automaton-based filter is slowest in all cases. The amount of noise seems to have little impact
on the computation time of the automaton-based filter, it seems to be predominantly depending
on the filter threshold. From Figure 6.11 we conclude that IMi in general out-performs sequence
encoding in terms of computation time. However, sequence encoding, in turn, out-performs
automaton-based filtering.

6.5.3 Application to Real-Life Event Logs

We tested the applicability of sequence encoding filtering using real-life event logs. We used an
event log related to a road fines administration process [81] and one regarding the treatment of
patients suspected to have sepsis [85].

The results are presented in Figure 6.12 and Figure 6.13.
In case of the Road Fines event log, presented in Figure 6.12, we observe that replay-fitness

is around 0.46 whereas precision is around 0.4 for threshold values from 0 to 0.5. The number
of arcs for the models of these threshold values remains constant (as well as the number of
places and the number of transitions) suggesting that the models found are the same. After
this, the replay-fitness increases further to around 0.8 and reaches 1 for a threshold value of
1. Interestingly, precision shows a little increase around threshold values between 0.5 and 0.75
after which it drops slightly below its initial value. In this case, a threshold value in-between 0.5
and 0.75 seems most appropriate in terms of replay-fitness, precision and simplicity.

In case of the Sepsis event log, presented in Figure 6.13, we observe that replay-fitness
and precision are roughly behaving as each-other’s inverse, i.e. replay-fitness increases whereas
precision decreases for increasing threshold values. We moreover observe that the number of
arcs within the process models increases, for larger threshold values. In this case, a threshold
value in-between 0.1 and 0.4 seems most appropriate in terms of replay-fitness, precision and
simplicity.

Finally, for each experiment, we measured the associated computation time of solving all ILP
problems. In case of the Road Fines event log, solving all ILP problems takes roughly 5 seconds.
In case of the Sepsis event log, obtaining a model ILP problems takes less than 1 second.

As our experiments show, there is no specific threshold most suitable for sequence encoding,
i.e. this greatly depends on the event log. However, we do observe that using lower threshold
values, e.g. 0−0.4, leads to less complex models. We, therefore, in practical settings, advise
to use a lower threshold value first, which also reduces computation time due to a smaller



172
Improving Process Discovery Results by Exploiting Intermediate

Representations

0 0.25 0.5 0.75 1

103

104

Noise Level: 0.0

0 0.25 0.5 0.75 1

103

104

Noise Level: 0.05

0 0.25 0.5 0.75 1

103

104

105 Noise Level: 0.1

0 0.25 0.5 0.75 1

104

Noise Level: 0.2

0 0.25 0.5 0.75 1
Threshold

104

C
om

pu
ta

tio
n 

Ti
m

e 
(m

s.
)

Noise Level: 0.5

Window Size
IMi
Sequence Encoding
Automaton

Figure 6.11: CPU-Execution Time (ms.) for a22f0nXX event logs (logarithmic scale) for different
levels of noise. The percentage of noise is depicted on top of each bar chart.
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Figure 6.12: Replay-fitness, precision and complexity based on the Road Fines log [81].
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Figure 6.13: Replay-fitness, precision and complexity based on the Sepsis log [85].
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constraint body size, and based on the obtained result increase or decrease the threshold value
if necessary.

6.6 Related Work

Several process discovery techniques, based on region theory, have been proposed based on
region theory. Region theory comes in two forms, i.e. state-based region theory [24, 52, 53]
using transition systems as an input and language-based region theory [19, 23, 43, 82, 83]
using languages as an input. The main difference between the synthesis problem and process
discovery is related to the generalization of the discovered models. Process models found by
classical region theory approaches have perfect replay-fitness and maximal precision. Process
discovery on the other hand, aims at extracting a generalizing process model, i.e. precision, and
in some cases replay-fitness, need not to be maximized.

In [10] a process discovery approach is presented that transforms an event log into a
transition system, after which state-based region theory is applied. Constructing the transition
system is strongly parametrized, i.e. using different parameters yields different process discovery
results. In [106] a similar approach is presented. The main contribution is a complexity
reduction with respect to conventional region-based techniques. In [22] a process discovery
approach is presented based on language-based region theory. The method finds a minimal
linear basis of a polyhedral cone of integer points, based on the event log. It guarantees perfect
replay-fitness, whereas it does not maximize precision. The worst-case time complexity of the
approach is exponential in the size of the event log. In [37] a process discovery algorithm
is proposed based on the concept of numerical abstract domains. Based on the event log’s
prefix-closure, a convex polyhedron is approximated by means of calculating a convex hull. The
convex hull is used to compute causalities in the input event log by deducing a set of linear
inequalities which represent places. In [123] a first design of a process discovery ILP-formulation
is presented. An objective function is presented, which is generalized in [133], that allows for
expressing a preference for finding certain Petri net places. The work also presents means to
formulate ILP constraints that help finding more advanced Petri net-types, e.g. Petri nets with
reset- and inhibitor arcs.

All aforementioned techniques leverage the strict implications of region theory with respect
to process discovery, i.e. precision maximization, poor generalization and poor simplicity, to
some extent. However, the techniques still perform suboptimal. Since the techniques guarantee
perfect replay-fitness, they tend to fail if exceptional behaviour is present in the event log, i.e.
they produce models that are incorporating infrequent behaviour (outliers).

6.7 Conclusion

The work presented in this chapter is motivated by the observation that existing region-based
process discovery techniques are useful, as they are able to find non-local complex control flow
patterns. However, the techniques do not provide any structural guarantees with respect to the
resulting process models, and, they are unable to cope with infrequent, exceptional behaviour
in event stores.
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6.7.1 Contributions

The approach presented in this chapter, extends techniques presented in [123, 131, 133]. We
have proven that our approach is able to discover relaxed sound workflow nets, i.e. we are
now able to guarantee structural properties of the resulting process model. Additionally, we
presented the sequence encoding filtering technique which enables us to filter out exceptional
behaviour within the ILP-based process discovery algorithm. The experiments conducted in
the context of this chapter confirm that the technique enables us to find meaningful Petri net
structures in data consisting of exceptional behaviour, using ILP-based process discovery as an
underlying technique. Sequence encoding filtering proves to be comparable to the IMi [79]
approach, i.e. an integrated filter of the Inductive Miner [78], in terms of filtering behaviour.
Moreover, it is considerably faster than the general purpose filtering approach of [40] and less
sensitive to variations in the filter threshold.

6.7.2 Limitations

The algorithm as presented here, i.e. ILP-based process discovery on the basis of the causal
relations present in a (simple) event store, are all defined on the notion of static data. As
indicated, since we presented means to capture streaming data into a temporal finite static
collection, i.e. by means of event stores as defined in chapter 3, we are able to perform the
ILP-based process discovery approach presented here in a streaming setting. Note however that
there are some challenges related to such adoption, regarding trace completion and computational
feasibility.

Trace Completeness

Classical region theory assumes that the input system description is the complete behaviour of
the given system. This assumption is partially adopted in ILP-based process discovery, i.e. we
assume there exists behaviour in the process that is not reflected by the event store and we
assume noise to exist within the data. Nonetheless, ILP-based process discovery does assume
the traces present within the (simple) event store to refer to completed process instances. Note
that this is mainly due to the constraints formed by m~1+MΦ̃(~x −~y) =~0, which ensure us to find
places that are empty after a trace is completed.

In a streaming setting, we observe incompleteness on both the start of cases and the
termination, i.e. we typically store fragments of behaviour rather than full behaviour. As we
have shown in chapter 3, we are partially able to account for incompleteness at the start of
traces by using prefix-trees as an underlying data structure. However, incompleteness is an
inherent challenge in event stream based process mining. To cope with this problem, two
potential solutions are applicable, which work on different dimensions of the problem.

1. Data dimension; We integrate an additional component that monitors inactive cases. Such
inactivity is an indicator for trace completeness. For those traces that are estimated to be
incomplete, we predict the most likely remaining sequence of activities. In such a way,
we partially base the constraint body based on predicted behaviour.

2. Algorithmic dimension; We are able to drop the constraints of the form m~1+MΦ̃(~x −~y) =~0,
in fact, in [123], these constraints are presented as an extension tailored towards finding
workflow nets. By doing so, we lose the aforementioned property related to empty places
after traces are completed. The main downside of this solution is related to the fact that
we are no longer able to find workflow nets, nor guarantee relaxed soundness, which in
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turn potentially hampers the use of the discovered models in subsequent process mining
analyses.

Computational Feasibility

Aside from the potential challenges related to trace completeness, computational feasibility is
another potential problem when adopting the techniques presented in this chapter in combina-
tion with an event store. ILP is known to be NP-Complete, which implies that finding a solution
in general is time consuming. The main complexity is in the number of variables, which in turn
depends on the number of activities observed. When positioned in the general data stream
model, cf. section 1.2, applying ILP-based process discovery on top of a event store is in the
computation time category. As such, it is advisable to apply it in a batch fashion, rather than in a
continuous fashion.

6.7.3 Open Challenges & Future Work
An interesting direction for future work concerns combining ILP-based process discovery tech-
niques with other process discovery techniques. The Inductive Miner discovers sound workflow
nets, however, these models lack the ability to express complex control flow patterns such as a
milestone pattern. Some of these patterns are however reconstructible using ILP-based process
discovery. Hence, it is interesting to combine these approaches with possibly synergetic effects
with respect to the process mining quality dimensions.

As discussed in subsection 6.7.2, ILP-based process discovery is not feasible to be applied
from scratch after receiving a new event. However, given that we have discovered a model
using ILP, we are able to use the underlying constraints for validation purposes. If a new event
does not introduce any new behaviour, we are guaranteed that all of the places are still valid,
according to region theory. Moreover, removal of behaviour never invalidates the places found,
i.e. the constraint body gets reduced and is thus less restrictive. When new behaviour is added,
at most two new constraints are added, i.e. one related to the main constraint body, and possibly
one related to constraints of the form m~1+MΦ̃(~x −~y) =~0. Hence, in O(|P |) time we are able to
verify whether the places within the current Petri net still accurately describe the behaviour
within the event stream. Moreover, it serves as an indicator which specific ILP needs to be solved,
i.e. to replace an invalid place. In such a way we are able to gradually shift ILP-based process
discovery to a continuous incremental approach, rather than a batch approach. Furthermore,
it is interesting to assess whether or not addition/removal of behaviour has an impact on the
optimality of the regions found thus far.





Chapter 7
Online Conformance Checking
using Prefix-Alignments

Thus far, we have presented online process mining techniques related to data storage and quality,
cf. chapter 3 and chapter 4, and process discovery, cf. chapter 5 and chapter 6. In this chapter,
we focus on conformance checking, i.e. we aim to compare a given process model with a stream
of events and indicate whether or not the model accurately describes the behaviour captured
by the event stream. In particular, we present an approach to incrementally compute prefix-
alignments, which paves the way for accurate real-time online conformance checking and/or
process monitoring. The corresponding experiments show that the reuse of previously computed
prefix-alignments enhances memory efficiency, whilst preserving prefix-alignment optimality.
Moreover, we show that, in the case of computing approximations of optimal prefix-alignments,
there is a clear trade-off between memory efficiency and approximation error.

The contents presented in this chapter are based on the following publication:

S.J. van Zelst, A. Bolt, M. Hassani, B.F. van Dongen, and W.M.P. van der Aalst. Online Conform-
ance Checking: Relating Event Streams to Process Models Using Prefix-Alignments. International
Journal of Data Science and Analytics, 2017 https://doi.org/10.1007/s41060-017-0078-6

https://doi.org/10.1007/s41060-017-0078-6
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incremental prefix-alignments, highlighted in the context of the general structure of
this thesis.
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7.1 Introduction

The techniques discussed so far allow us to store event data, preferably free of noise. Moreover,
in chapter 5 and chapter 6, we described how to learn process models from event data, i.e.
process discovery. As we introduced in section 1.1, process mining also covers the area of
conformance checking. In conformance checking, we aim at assessing to what degree the
behaviour described by a process model is in line with the behaviour as captured within event
data and thus, in the context of this thesis, an event stream.

Existing conformance techniques were developed based on the conventional, offline, process
mining notion, i.e. on the basis of static event logs. Clearly, we are able to apply these techniques
in a streaming setting by maintaining event stores as presented in chapter 3, and iteratively
apply existing, conventional, conformance checking techniques. Applying these techniques
in such a way, however, does not allow us to obtain conformance statistics on the fly, i.e. to
observe deviations with respect to the reference model at the moment they occur. At the same
time, early process-oriented deviation detection is critical for many organizations in different
domains. Similarly, within highly complex administrative processes, e.g. provision of mortgages,
notary processes and unemployment administration, deviant behaviour often leads to excessive
process execution time and costs. Upon detection of a deviation, a process owner, or the
supporting information system, is able to take adequate actions such as blocking the current
process instance, assigning a case manager for an additional specialized intervention and/or
even restarting the process instance.

In this chapter, we, therefore, focus on the incremental computation of prefix-alignments [13],
cf. subsection 2.4.2. Recall that, prefix-alignments are a relaxed variant of conventional
alignments. In particular, conventional alignments relate the traces of behaviour observed in an
event log to a reference model by mapping them on the most likely corresponding execution path
of the model. The main premise of prefix-alignments, as opposed to conventional alignments, is
the fact that we explicitly take into account that the future behaviour of a process instance is
unknown. Within prefix-alignments, we, therefore, map the behaviour seen thus-far onto an
execution path of the model that most accurately describes the behaviour observed up until that
point in time. Since we, in a streaming setting, typically consider incomplete process instance
behaviour, computing prefix-alignments rather than conventional alignments is a natural fit.
However, as we aim to obtain conformance checking results in an online fashion, exploiting the
conventional, offline oriented, alignment computation is infeasible.

Consider Figure 7.2, in which we present a schematic overview of the proposed online
conformance checking approach. We have two main sources of input, i.e. an event stream
generated by the information system under study and a reference process model. Over time, we
observe events emitted on the event stream which tell us what activity has been performed in
the context of which case, i.e. we again focus on the control-flow perspective. For each case, we
maintain a prefix-alignment. Whenever we receive a new event for a case, we recompute its
prefix-alignment. We try to recompute prefix-alignments greedily, however, in some cases we
need to resort to solving a shortest path problem. The main focus of this chapter is towards the
efficiency of solving such shortest path problems.

The proposed approach entails an incremental algorithm that allows for computing both
optimal and approximate prefix-alignments. We additionally show that the cost of an optimal
prefix-alignment is always an underestimate for the cost of a conventional alignment of any
of its possible suffixes, i.e. its future behaviour. As a consequence, when computing optimal
prefix-alignments, our approach underestimates alignment costs for completed cases. This
implies that once we detect a deviation from the reference model, we are guaranteed that the
behaviour related to the case is not compliant with the reference model. Computing approximate
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Figure 7.2: Schematic overview of online conformance checking.

prefix-alignments leads to an improvement in memory efficiency, however, at the cost of losing
prefix-alignment optimality.

We experimentally assess the trade-off between memory efficiency and optimality loss using
several artificially generated process models. We additionally assess the applicability of the
algorithm using real event data. The experiments show that reusing previously computed prefix-
alignments positively impacts the efficiency of computing new prefix-alignments. Moreover,
in case of using approximations, we observe a clear trade-off between memory usage and
prefix-alignment optimality loss.

The remainder of this chapter is structured as follows. In section 7.2, we present an
incremental algorithm to compute prefix-alignments, i.e. tailored towards event streams. In
section 7.3, we evaluate the algorithm in terms of memory behaviour and optimality loss under
approximation. In section 7.4 we discuss related work in the area of (event stream based)
conformance checking. Finally, section 7.5 concludes this chapter.

7.2 Online Prefix-Alignments Computation

Alignments do not only provide us with an indication of behavioural deviations with respect to
a given reference model, they also provide us with an explicit explanation of such deviations.
This is of great interest in the context of conformance checking, as we are able to observe,
and explain, deviations. When applying conventional alignments in a streaming setting, the
underlying algorithm that computes conventional alignments, by design, “finishes” the behaviour
in the model. This leads to falsely detecting, and explaining, deviations.

Assume that we are observing an event stream, and we receive the events related to a process
instance of the running example with duplicate/invisible labels, i.e. Figure 2.13a. Furthermore,
the process instance relates to correct behaviour, according to the model, e.g. it describes simple
trace 〈a,b,c,d ,e〉. However, since we use an event stream, we observe the corresponding events
one-by-one, i.e. first an event describing activity a, secondly an event describing activity b,
etc. Consider Figure 7.3, in which we depict what happens when computing conventional
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γ1 :
a À À À
t1 t3 t4 t7

(a) An optimal (conventional) alignment for simple trace 〈a〉, with respect to the running example model.

γ2 :
a b À À À
t1 t2 t3 t5 t8

(b) An optimal (conventional) alignment for simple trace 〈a,b〉, with respect to the running example model.

γ2 :
a b c À À
t1 t2 t3 t5 t7

(c) An optimal (conventional) alignment for simple trace 〈a,b,c〉, with respect to the running example
model.

γ2 :
a b c d À
t1 t2 t3 t5 t8

(d) An optimal (conventional) alignment for simple trace 〈a,b,c,d〉, with respect to the running example
model.

γ2 :
a b c d e
t1 t2 t3 t5 t7

(e) An optimal (conventional) alignment for simple trace 〈a,b,c,d ,e〉, with respect to the running example
model.

Figure 7.3: Example of continuously computing optimal conventional alignments in an online
setting. We gradually observe that the alignment-costs of the optimal alignments for
the trace of behaviour decreases and eventually becomes zero. As multiple optimal
alignments exist, the explanation of the “missing behaviour”, potentially changes
across the different alignments computed, i.e. as represented by the alternating use
of transitions t7 and t8.

alignments repeatedly, after each received event for the process instance. After receiving the first
event (Figure 7.3a), i.e. resulting in trace 〈a〉, we obtain an optimal alignment that describes
that we are missing an execution of transitions t3, t4 and t7, representing activities c, d and e,
respectively. After receiving the second event (Figure 7.3b), the alignment indicates that we are
missing an execution of transitions t3, t5 and t8, representing activities c, d and f , respectively.
Observe that, when assuming unit-costs for the alignment moves, the estimated deviation is
equal for both traces 〈a〉 and 〈a,b〉. However, the explanation of the expected missing behaviour
in this case differs. After receiving the third event (Figure 7.3c), the alignment indicates that
we are missing an execution of transitions t5 and t7, representing activities d and e. In this
case, the estimated deviation is reduced, yet the explanation again differs with respect to the
previously computed alignment. Finally, after receiving all behaviour related to the example
trace, we observe that it is correct, and hence, we have consistently been overestimating the
deviation, with different explanations.

When using prefix-alignments, we avoid the aforementioned problems. Consider Figure 7.4,
where we present the optimal prefix-alignments, on the basis of aligning the same simple trace,
i.e. 〈a,b,c,d ,e〉 on the running example model. Observe that, in this case, we never observe any
deviation. This is the case, because every prefix considered, indeed allows us to correctly finish
the behaviour of the model. Moreover, we never observe any other type of deviation, e.g. a log



184 Online Conformance Checking using Prefix-Alignments

γ1 :
a
t1

(a) An optimal prefix-alignment for simple trace 〈a〉, with respect to the running example model.

γ2 :
a b
t1 t2

(b) An optimal prefix-alignment for simple trace 〈a,b〉, with respect to the running example model.

γ2 :
a b c
t1 t2 t3

(c) An optimal prefix-alignment for simple trace 〈a,b,c〉, with respect to the running example model.

γ2 :
a b c d
t1 t2 t3 t5

(d) An optimal prefix-alignment for simple trace 〈a,b,c,d〉, with respect to the running example model.

γ2 :
a b c d e
t1 t2 t3 t5 t7

(e) An optimal prefix-alignment, which also represents the final, conventional, alignment, cf. Figure 7.3e,
for simple trace 〈a,b,c,d ,e〉, with respect to the running example model.

Figure 7.4: Example of continuously computing optimal prefix-alignments in an online setting.
We never get notified of any problems with the observed trace, which is in accordance
with reality.

move. Hence, computing the prefix-alignments, in this case, reduces the number of false alarms
during process monitoring.

The main aim of the algorithm presented in this chapter relates to online conformance
checking, and, efficient prefix-alignment computation in particular. As explained in subsec-
tion 2.4.2, the minimal requirement to compute (prefix)-alignments, is that the Petri net is easy
sound. Recall that this implies that at least one sequence of transition firings exists that, given
the initial marking, allows us to reach the final marking of the Petri net. However, given a
Petri net that is only easy sound, i.e. not weak sound nor sound, when computing an optimal
prefix-alignment, the computational complexity increases.1 This, specifically in an online setting,
is disadvantageous. As in general, the models we use in conformance checking are considered to
be designed by a human, preferably experienced, process designer, we assume them, arguably,
to be of a certain level of quality. We therefore assume that the Petri nets used in this chapter
are sound workflow nets, cf. 2.7. Under this assumption, given an arbitrary marking in the state
space of such net, determining whether we are still able to reach the final marking is not needed,
i.e. we are by definition able to reach such final marking.

In the remainder of this section, we present an algorithmic framework that allows us to com-
pute prefix-alignments on the basis of event streams, in an incremental fashion. Subsequently,
we present effective parametrization of the algorithm that allows us to reduce memory usage and
computation time, in some cases at the cost of losing prefix-alignment optimality, i.e. resulting
prefix-alignments that overestimate the cost with respect to the optimal prefix-alignment.

1This relates to the fact that we need to assess for each reachable state in the state-space of the underlying
search problem, whether we are still able to reach the final marking.
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7.2.1 An Incremental Framework
We aim at computing a prefix-alignment for each sequence of events seen so far on the event
stream, for each case c∈C . A basic approach to do this, is to use a (case-view) event store ΦC

that allows us to query the recent history of behaviour for each case. Upon receiving the i th

event e on the event stream, we simply calculate ω(N ,Φi
C

(πc(e)), Mi , M f ). The downside of this
approach, however, is that we recompute a prefix-alignment from scratch, each time a new
event arrives.

We, therefore, propose the use of a prefix-alignment store, defined in a similar fashion as
event stores, of the form:

Φi
Γ

: E∗×C → Γ (7.1)

Observe that Φ0
Γ

(S,c) = ε,∀e∈E , i.e. initially there are no prefix-alignments. We additionally
define a prefix-alignment store update function, that allows us to incrementally update the
contents of the prefix-alignment store, i.e.

−→
Φ
Γ

: Γ×E → Γ (7.2)

As such, we characterize Φi
Γ

(S,c) =−→
Φ
Γ

(Φi−1
Γ

(S,c),S(i )).
Consider algorithm 7.1, in which we present a greedy algorithm for the purpose of prefix-

alignment calculation, which includes an instantiation of the
−→
Φ
Γ
-function. Within the algorithm,

we conceptually perform the following steps. When we receive an event related to a certain
case, we check whether we previously computed a prefix-alignment for that case. In case we
are guaranteed that the event refers to an activity move, i.e. because the activity simply has
no corresponding label in the reference model, we append such activity move to the prefix-
alignment. If this is not the case, we fetch the marking in the reference model, corresponding
to the previous prefix-alignment. For example, given prefix-alignment 〈(a, t1)〉 based on the
running example net (Figure 2.13a), the corresponding marking is [p1, p2]. If the event is the
first event received for the case, we simply obtain marking Mi . In case we are able to directly fire
a transition within the obtained marking with the same label as the activity that the event refers
to, we append a corresponding synchronous move to the previously computed prefix-alignment.
Otherwise, we use a shortest path algorithm, of which we present some parametrization in
subsection 7.2.2, to find a new (optimal) prefix-alignment. The algorithm expects a Petri net,
initial- and final marking, an algorithm that computes optimal prefix-alignments and an event
stream as an input. Note that, after receiving a new event, the prefix-alignment store for index
i −1 is copied into the i th version, i.e. line 5. This operation is O(1) in practice.

In general, we are able to use any of the techniques described in chapter 3, e.g. sliding
windows, reservoir sampling, on the level of cases. Thus, we maintain a sliding window of
case identifiers rather than events, and an associated counter per case identifier present in
the window. Whenever such a counter reaches zero, we set Φi

Γ
(S,c) to be ε, i.e. we remove

the currently known prefix-alignment. Observe that we are also able to do this using other
stream-based data storage techniques. Note however, that the proposed scheme works under
the assumption that process instances are of a finite fashion. In the remainder of this chapter,
we are primarily interested in the design of the

−→
Φ
Γ
-function, in terms of computing the actual

new prefix-alignment of the newly arrived case.
Since optimal prefix-alignments underestimate conventional alignment costs (7.1), we are

interested to what extent algorithm 7.1 guarantees optimality of the prefix-alignments stored in
Φ
Γ
.
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Algorithm 7.1: Incremental Prefix-Alignment Computation

input : N = (P,T,F,λ), Mi , M f ∈B(P ),ω : N ×A ∗×M ×M → Γ,S∈E ∗
begin

1 i ← 0;
2 while true do
3 i ← i +1;
4 e ← S(i );
5 copy all alignments of Φi−1

Γ
(S,c) to Φi

Γ
(S,c) for all c∈C ;

6 c ←πc(e);
7 a ←πa(e);
8 γ←Φi−1

Γ
(S,c);

9 let M be the marking of N obtained by γ, i.e. such that Mi
(π2(γ))↓T−−−−−−→ M;

10 if ∃t∈T (λ(t ) = a) then
11 if ∃t∈T (λ(t ) = a ∧ (N , M)[t〉) then
12 let t denote such transition;
13 Φi

Γ
(S,c) ← γ · 〈(a, t )〉;

14 else
15 σ← (π1(γ))↓A

;
16 Φi

Γ
(S,c) ←ω(N ,σ · 〈a〉, Mi , M f );

17 else
18 Φi

Γ
(S,c) ← γ · 〈(a,À)〉;

Theorem 7.1 (algorithm 7.1 guarantees optimal prefix-alignments). Let E denote the universe
of events, let C denote the universe of case identifiers and let Γ denote the universe of prefix-
alignments. Furthermore, given N = (P,T,F,λ), Mi , M f ∈B(P ),ω : N ×A ∗×M ×M → Γ,S∈E∗, and,
given Φi

Γ
: E∗×C → Γ being a prefix-alignment store, cf. Equation 7.1, with Φ0

Γ
(S,c) = ε, ∀c∈C ,

which is updated according to algorithm 7.1. For any S∈E∗, c∈C , i∈N and γ=Φi
Γ

(S,c) we have

γ∈Γ(N ,σ, Mi , M f ) and γ is optimal for (π1(γ))↓A
.

Proof (Induction on i)

• Base Case I : i = 0; All alignments are ε.
• Base Case I I : i = 1; Let e = (c, a, ...) = S(i ). We know Φi−1

Γ
(S,c) = Φ0

Γ
(S,c) = ε. In case

we are able to fire some t with λ(t ) = a in M0, we obtain alignment 〈(a, t )〉, which, under the
unit-cost function is optimal. In case Øt∈T (λ(t ) = a), we obtain 〈(a,À)〉 which is trivially an
optimal prefix-alignment for trace 〈a〉. In any other case we compute ω(N ,〈a〉, Mi , M f ) (optimal by
definition).

• Induction Hypothesis; Let i > 1. For any c∈C , we assume that for γ=Φi
Γ

(S,c), we have γ∈Γ
and γ is optimal.

• Inductive Step; We prove that, for any c∈C , for γ=Φi+1
Γ

(S,c), we have γ∈Γ and γ is optimal.
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Let e = (c, a, ...) = S(i +1). In case Φi
Γ

(S,c) = ε we know that γ is optimal (Base Case i = 1). Let

Φi
Γ

(S,c) = γ′ s.t. γ′ 6= ε. In case we are able to fire some t with λ(t ) = a in M , cf. line 11, we

obtain γ= γ′ · 〈(a, t )〉. Since, under unit-cost function, c(a, t ) = 0, if γ is non-optimal, then also γ′ is
non-optimal which contradicts the IH. A similar rationale holds in case Øt∈T (λ(t ) = a). In any other
case, we compute ω(N , Mi , M f ,σ · 〈a〉) which is optimal by definition. ä

Theorem 7.1 proves that algorithm 7.1 always computes optimal prefix-alignments for
(π1(γ))↓A

, i.e. the sequence of activities currently stored within Φi
Γ

for some c∈C . Hence,
combining this result with 7.1, we conclude that whenever the algorithm observes certain
alignment costs exceeding 0, i.e. under unit cost function, the corresponding conventional
alignment has at least the same costs, or higher.

Interestingly, any optimal prefix-alignment of any prefix of a trace is always underestimating
the costs of the optimal alignment of any of its possible suffixes, and thus, of the eventually
completed trace.

Proposition 7.1 (Prefix-alignments underestimate alignment costs). Let σ∈A ∗ be a sequence of
activities. Let N = (P,T,F,λ) be a Petri net with labelling function λ : T →Σ∪ {τ} and corresponding
initial- and final marking Mi , M f ∈B(P ). Let γ∗∈Γ(N ,σ, Mi , M f ) be an optimal alignment of σ and
N . If σ is a prefix of σ and γ∗∈Γ(N ,σ, Mi , M f ) is a corresponding optimal prefix-alignment, then
c(γ) ≤ c(γ).
Proof (Contradiction)
Let us write γ∗ as γ∗ = γ′ ·γ′′, s.t. (π1(γ′))↓A

=σ. Observe that by definition, γ′ is a prefix-alignment
of σ. Furthermore, as γ∗ is an optimal prefix-alignment for σ, we know that c(γ∗) ≤ c(γ′). For
c(γ∗) > c(γ∗) to hold, we deduce that c(γ′′) < 0, which is impossible, i.e. as r ng (c) =R≥0. Hence, in
case c(γ∗) > c(γ∗), then also c(γ∗) > c(γ′), which contradicts optimality of γ∗. ä

The property, presented in 7.1, is useful since, in an online setting, once an optimal prefix-
alignment has non-zero costs, it guarantees that a deviation from the reference model is present.
On the other hand, if a case is not properly terminated, and, will never terminate, yet the
sequence of activities seen so far has a prefix-alignment cost of zero, we do not observe this type
of deviation until we compute a corresponding conventional (optimal) alignment.

7.2.2 Parametrization
In the previous section, we used ω completely as a black box, and, always solved a shortest path
problem starting from Mi . In this section, we show that we are able to exploit the previously
calculated alignment for a case c in order to prune the search state-space. Moreover, we show
means to limit the search by changing its starting point.

Cost Upper Bounds

Assume that we receive the i th event e = (c, a, ...) on the stream and we let γ′ =Φi−1
Γ

(S,c) and

γ=Φi
Γ

(S,c). Let us write the corresponding sequence of activities as σ=σ′ · 〈a〉. By 7.1 we know

that γ′ is an optimal prefix-alignment for σ′. It is easy to see that the costs of γ′ together with an
activity move on a are an upper bound for the costs of γ, i.e. c(γ) ≤ c(γ′)+c(a,À). We are able
to utilize this knowledge within the shortest path search algorithm ω. Whenever we encounter
a path within the search that is (guaranteed to be) exceeding c(γ′)+c(a,À), we simply ignore it,
and all paths extending it.
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a b x c d
t1 t2 À t3 t5

Recei ve b−−−−−−−→
a b x c d À b
t1 t2 À t3 t5 t6 t2

Figure 7.5: Partially reverting (k = 2) the prefix-alignment of 〈a,b, x,c,d〉 and N1 in case of re-
ceiving new activity b. The grey coloured moves are not considered when computing
the new alignment.

As indicated, in alignment computation, the A∗ algorithm is often used as an instantiation
for ω. The A∗ algorithm traverses the state-space in an implicit manner, i.e. it expects each
state it visits to tell which states are their neighbours, and, at what distance. Moreover, it
assumes that each state is able to estimate its distance to the closest final state, i.e. each state
has a heuristic distance estimation to the closest final state. For the purpose of computing
(prefix-)alignments, there are two of these heuristic distance functions defined [13, Chapter 4].
The exact characterization of these heuristic functions is out of this chapter’s scope, i.e. it suffices
to know that we are able to, for each marking in the synchronous product net, compute the
estimated distance (in terms of alignment costs) to final marking M f . Moreover, such estimation
is always underestimating the true distance. Thus, whenever we encounter a marking M in the
state space of which the distance to reach M from Mi , combined with the estimated distance to
M f , exceeds c(γ′)+ c(a,À), we ignore it and all of its possible subsequent markings.

Limiting the Search

Again, assume we receive the i th event e = (c, a, ...) and we let marking M be the marking
obtained by executing the transitions of γ′ =Φi−1

Γ
(S,c). In case there exist transitions t with

λ(t ) = a, yet none of these transitions are enabled in M , the basic algorithm simply utilizes
ω(N ,σ · 〈a〉, Mi , M f ). In general, the shortest path algorithm does not need Mi as a start state,
i.e. we are able to choose any marking of N as a start state. Hence, we propose to partially
revert alignment γ′ up to a maximal revert distance k and start the shortest path search from
the corresponding marking. Doing so however no longer guarantees optimality as we are no
longer searching for a global optimum in the state-space.

Consider Figure 7.5, where we depict a prefix-alignment for 〈a,b, x,c,d〉 and the running
example Petri net (Figure 2.13a). Assume we receive a new event that states that activity b
follows 〈a,b, x,c,d〉 and we use a revert window size of k = 2. Note that the marking related to
the alignment is [p5]. In this marking, no transition with label b is enabled and the algorithm
normally calls ω(N1,〈a,b, x,c,d ,b〉, [pi ], [po ]). However, we revert the alignment two moves, i.e.
we revert (d , t5) and (c, t3) and call ω(N1,〈c,d ,b〉, [p2, p3], [po ]) instead. The result of this call is
〈(c, t3), (d , t5), (À, t6), (b, t2)〉, depicted on the right-hand-side of Figure 7.5. Note that after this
call, the window shifts, i.e. the call appended two moves and thus (c, t3) and (d , t5) are no longer
considered upon receiving of new events.

7.3 Evaluation
We have evaluated the proposed algorithm, including its parametrization, using a corresponding
prototypical implementation. We primarily focus on the behaviour of the algorithm as a
deviation monitoring tool, i.e. to what degree does the parametrization influence the calculated
prefix-alignment costs? Moreover, we focus on the impact of the parametrization on the
computational performance of the algorithm. As an underlying search algorithm, we use the A∗
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Table 7.1: Parameters used in experiments.

Parameter Type Values
Use Upper Bound boolean true, false
Window Size integer {1,2,3,4,5,10,20,∞}

algorithm implementation as provided by hipster4j [101]. To evaluate the proposed algorithm,
we generated several process models with different characteristics, i.e. different degrees of
parallelism, choice and loops. Additionally, we evaluated our approach using real event data,
related to the treatment of hospital patients suspected of having sepsis. In this experiment, we
additionally compare computing prefix-alignments with repeatedly computing conventional
alignments on an event stream.

7.3.1 Experimental Set-up

We used a scientific workflow which, conceptually, performs the following steps:

1. Generate a (block-structured) workflow net with k labelled transitions, where k is drawn
from a triangular distribution with parameters {10,20,30}, for increasing levels of Parallel-
ism, Choice and Loops (from 0 to 50% in steps of 10%) [73].

2. For each workflow net, generate an event log with 1000 cases.

3. For each event log, add increasing levels (from 0 to 50% in steps of 10%) of one type of
noise, i.e. remove activity, add activity or swap activities.

4. For each noisy event log, do incremental conformance checking against the workflow net
it was generated from, using all parameter combinations presented in Table 7.1.

Observe that within the experiments we mimic event streams by visiting each event in a trace,
one-by-one, e.g. if we consider simple event log L̃ = [〈a,b,c〉,〈a,c,b〉] we generate event stream
〈(1, a), (1,b), (1,c), (2, a), (2,c), (2,b)〉. Moreover, we align every trace-variant once, i.e. if 〈a,b,c〉
occurs multiple times in the event log, we only align it once. Note that this is feasible, since
we aim to assess the impact of the algorithm’s parametrization with respect to computational
complexity and the prefix-alignment cost overestimation. As such, we to some degree, abstract
from the explicit streaming notion, i.e. handling multiple process instances in parallel is not of
influence on the global aim of the evaluation. In total, we have generated 18 different models,
for which we generate 18 different event logs, each containing 1000 traces, yielding 18.000 noise-
free traces. After applying the different types of noise we obtain a total of 324.000 traces. Clearly,
the number of events per trace greatly varies depending on the generated model, however,
within our experiments, in total 44.537.728 events were processed (with varying algorithm
parametrization). Out of these events, 12.151.510 state-space searches were performed.

7.3.2 Results

Here, we present the results of the experiments, in line with the parametrization options as
described in subsection 7.2.2. We first present results related to using cost upper bounds, later
we present the results related to limited search.
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Cost Upper Bounds

In this section, we present the results related to the performance of using cost upper bounds.
Within these results we only focus on execution of ω with M0 as a start state, i.e. we do not
incorporate results related to varying window sizes. In Figure 7.6, on page 191, we present,
in terms of the level of introduced noise, the average number of enqueued states, queue size,
visited nodes and traversed arcs for each search in the state-space.

Clearly, using the upper bound as a cut-off value in state-space traversal greatly enhances the
memory efficiency. We observe that, when using the upper bound defined in subsection 7.2.2,
the average number of states enqueued during the search is less than half compared to not
using the upper bound. The average queue size, i.e. the average number of states in the queue
throughout the search, is much lower in case of using a lower bound. We observe that the
search efficiency, i.e. in terms of the number of visited states and traversed arcs, is positively
affected by using the upper bound, however, the difference is smaller when compared to the
number of enqueued states and average queue size, and in some cases negligible (0% noise
level). Thus, using previously computed prefix-alignment values for a case allows effective
states-space pruning in the shortest path algorithm.

In Figure 7.7, on page 192, we show the effect of the length of the prefix that needs to be
aligned in terms of memory consumption. We only show results for length ≤ 100. Both in case
of using and not using the upper bound we observe a linear increase in the number of states
queued (Figure 7.7a) and average queue size (Figure 7.7b). However, the rate of growth is
much lower when using an upper bound. We observe a small region of spikes in both charts
around prefix-length 20-25. After investigating the distribution of prefix-length with respect to
type of process model, i.e. containing loops versus not containing loops, we observed that most
traces exceeding such length are related to the models containing loops. As the other group of
models describes relatively more parallelism and/or choice constructs, the complexity of the
underlying shortest path search is expected to be slightly more complex, which explains the
spikes for relatively short prefix-lengths.

Reverting Alignments

In this section, we present results related to the performance and approximation quality of
using revert windows as described in section 7.2.2. In Figure 7.8, we present performance
results in terms of memory efficiency and approximation error, plotted against noise level. In
Figure 7.8a, we show the average number of states enqueued when using different revert window
sizes. Clearly, the memory usage increases when we increase the window size. Interestingly
this increase seems linear. The approximation error (Figure 7.8b) shows an inverse pattern,
however, the decrease in approximation error seems non-linear, when the window size increases.
Moreover, in case we set the window size to 5 we observe that the approximation error, within
this experiment, is negligible, whereas memory-wise window sizes of 10 and 20 use much more
memory while hardly improving the quality of the result.

In Figure 7.9, we present performance results in terms of memory efficiency and approx-
imation error, plotted against prefix length. We observe that in terms of enqueued nodes
(Figure 7.9a), at first a rapid increase appears, after which a steep decline is present. Stabiliza-
tion around lengths ≥ 25 is again due to the fact that all traces of such length originate from
models with loops. The peak and decline behaviour is explained by the fact that the complexity
of solving state-space based search within the models is most likely to be most complex in
the middle of the trace. Towards the end of a model’s behaviour, we expect less state-space
complexity, which explains the decline in the chart around a prefix length of 10 to 20.
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Figure 7.6: Performance results (averaged) of using-, versus not using prefix-alignment cost
upper bounds while searching for optimal prefix-alignments. The difference in
performance of using upper bounds is most notable in the number of enqueued states
and the average queue size.
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Figure 7.7: Memory performance per prefix-length (1 ≤ length ≤ 100).
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(b) Average cost difference.

Figure 7.8: Memory performance and cost difference with respect to optimal prefix-alignments
when using different revert window sizes.
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Figure 7.9: Memory usage and cost difference with respect to optimal prefix-alignments per
prefix-length (≥ 1), with different revert window sizes.



7.3 Evaluation 195

In Figure 7.9b we observe similar results as observed in Figure 7.8b. A window size of 1 is
simply too small and it seems that, when the prefix length increases, the costs increase linearly.
However, when using a window ≥ 2 we observe asymptotic behaviour in terms of approximation
error. Again we observe that using a window of at least size 5 leads to negligible approximation
errors.

7.3.3 Evaluation using Real Event Data

In this section, we discuss the results of applying incremental alignment calculation based on
real event data. We focus on the under/overestimation of true eventual conventional alignment
cost, as well as the method’s performance. Note that, the under/overestimation of the eventual
conventional alignment cost allows us to judge the applicability of the presented algorithm
(and its parametrization in particular) as a deviation monitoring tool. Therefore, as a baseline,
we compute conventional alignments each time we receive a new event. We use an event
log originating from a Dutch hospital related to the treatment of patients suspected of having
sepsis [85]. Since we do not have a reference model, we generated one based on a subset
of the data. This generated process model still describes around 90% of the behaviour within
the event log (computed using conventional alignments). The dataset contains 15.214 events
divided over 1.050 cases. Prefix-alignments were computed for 13.775 different events. We plot
all results with respect to the aligned prefix length as noise percentages, i.e. used in Figure 7.6
and Figure 7.8, are unknown when using real event data. Finally note, that the distribution of
trace length within the data is heavily skewed and has a long infrequent tail. The majority of the
trace’s length is below 30, hence, figures for prefix lengths above this value refer to a relatively
limited set of cases. Nonetheless, we plot all results for all possible prefix lengths observed.

In Figure 7.10 we present results related to computed alignment costs. We show results for
using the incremental scheme proposed in this chapter with window sizes 5, 10 and 20, and, the
baseline (“Conventional”). In Figure 7.10a we show the average absolute alignment costs per
prefix length. We observe that using a window size of 5, in general, leads to higher alignment
costs. This is explained by the fact that the relatively little window size does not allow us to
revert any choices made in previous alignments which consequently does not allow us to find
an eventual global optimum. Interestingly, both window sizes 10 and 20 lead to, on average,
comparable alignment costs to simply computing conventional alignments. However, at the
beginning of cases, i.e. for small prefixes, as expected, computing conventional alignments leads
to higher values. In Figure 7.10b, we show the average cost difference with respect to the
eventual alignment costs, i.e. after case completion. Interestingly, after initially over-estimating
eventual costs, conventional alignments underestimate the costs of conventional alignments
quite severely. This can be explained by the fact that partial traces are aligned by a short path of
model moves through the model combined with a limited set of activity moves.

In order to quantify the potential business impact of applying the (prefix-)alignment ap-
proach we derive several different measures of relevance for the three different window sizes
and the baseline. These figures are presented in Table 7.2. To obtain the results as presented,
for each received event we define:

• If the difference between the current (prefix-)alignment cost with the eventual alignment
cost is zero, and the eventual costs exceed zero, we define a True Positive; i.e. we have an
exact estimate of non-compliant behaviour.

• If the difference between the current (prefix-)alignment cost with the eventual alignment
cost is greater than zero, we define a False Positive, i.e. we overestimate non-compliant
behaviour.
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Figure 7.10: Average cost results per prefix-length (≥ 1), with different revert window sizes.
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Table 7.2: Measures of relevance for different window-sized approaches versus computing
conventional alignments.

Variant Window ∼ 5 Window ∼ 10 Window ∼ 20 Conventional
True Positive 1517 2060 2110 3179
False Positive 2076 204 13 5215
True Negative 2962 3340 3377 1424
False Negative 7220 8171 8275 3957

Recall 0.17 0.20 0.20 0.45
Specificity 0.59 0.94 0.99 0.21
Precision 0.42 0.91 0.99 0.38
Negative Predictive Value 0.29 0.29 0.29 0.26

False Negative Rate 0.83 0.80 0.80 0.55
Fall-out 0.41 0.06 0.004 0.79
False Discovery Rate 0.58 0.09 0.006 0.62
False Omission Rate 0.71 0.71 0.71 0.74

Accuracy 0.33 0.40 0.40 0.33
F1-Score 0.25 0.33 0.34 0.41

• If the difference between the current (prefix-)alignment cost with the eventual alignment
cost is zero, and the eventual costs equals zero, we define a True Negative; i.e. we have an
exact estimate of the fact that no deviation occurs.

• If the difference between the current (prefix-)alignment cost with the eventual alignment
cost is lower than zero, we define a False Negative, i.e. we underestimate non-compliant
behaviour.

We acknowledge that alternative definitions of True/False Positives/Negatives are possible.
Therefore, the results obtained are specific for the definition provided, as well as the data
set we used. We observe that computing conventional alignments, for every event received,
leads to a better recall, i.e. T P

T P+F N . This implies that the ratio of correctly observed deviations
with respect to neglected deviations is better for the conventional approach. However, using
the incremental scheme, leads to significantly higher specificity ( T N

T N+F P ) and precision values
( T P

T P+F P ). Specifically for window sizes 10 and 20 we observe very high precision values. This, in
fact, is in line with 7.1 and, moreover, shows that the results obtained with these window sizes
are close to results for an infinite window size. Finally, we observe that the accuracies of window
sizes 10 and 20 are comparable and higher than the alternative approaches, i.e. window size 5
and conventional. However, in terms of F 1-score, simply calculating conventional alignments
outperforms using the incremental scheme as proposed.

In Figure 7.11, we show the performance of the different approaches in terms of enqueued
states and visited states. Note that, the results presented consider the full incremental scheme,
i.e. if we are able to execute a synchronous move directly, queued/visited states equals 0. As
expected, using a window size of 5 is most efficient. Window sizes 10 and 20 are less efficient
yet for longer prefix lengths, they outperform computing conventional alignments. For window
size 20, we do observe peaks in terms of computational complexity for prefix lengths of 10-20.
Such peaks can be explained by the relatively inaccurate heuristic used within the A∗-searches
performed for prefix-alignment computation. The drops in the chart relate to purely incremental
alignment updates. We observe that computational complexity of conventional alignment
computation is in general increasing when prefix length increases. The incremental based
approach seems not to suffer from this and shows relatively stabilizing behaviour.

Based on the experiments using real hospital data, we conclude that, for this specific dataset,
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Figure 7.11: Performance results based on the hospital dataset (logarithmic scales).
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a window size of 10 is appropriate. As opposed to computing conventional alignments, it
achieves precise results, i.e. whenever a deviation is detected it is reasonable to assume that this
is indeed the case. Moreover, it outperforms computing conventional alignments in terms of
computational complexity and memory usage.

7.4 Related Work
Early work in conformance checking uses token-based replay [102]. The techniques replay a
trace of executed events in a process model (Petri net) and add missing tokens if transitions
are not able to fire. After replay, remaining tokens are counted and a conformance statistic is
computed based on missing and remaining tokens.

Alignments, as discussed in this chapter, were introduced in [6, 13] and have rapidly
developed into the de-facto standard for conformance checking. In [3, 93] decomposition
techniques are proposed together with computing alignments. Using decomposition techniques
greatly enhances computation time, i.e. the techniques successfully apply the divide-and-conquer
paradigm, however, the techniques provide lower bounds on conformance checking statistics,
rather than computing alignments. More recently, general approximation schemes for align-
ments, i.e. computation of near-optimal alignments, have been proposed in [111].

In the realm of online conformance checking, limited work is done. In [32, 33] a framework
(and corresponding implementation) for online conformance checking is proposed on the basis
of explaining the behaviour observed on a stream in terms of an enriched transition system,
on the basis of the process model. The authors propose to enrich the reachability graph of
the process model in such way that for each possible combination of state in the graph and
observable label, there is exactly one transition specified. Such transition potentially relates to
modelled behaviour, in which it has zero-costs, in other cases, it relates to deviance and thus
has an associated cost. The advantage of the approach is that, given a precomputed extended
reachability graph, there are clear bounds on memory and processing time per event. The
downside is that the technique merely gives an indication of conformance, and, computing the
extended reachability graph is an expensive computational problem.

7.5 Conclusion
The work presented in this chapter is motivated by the observation that applying conventional
conformance checking techniques, i.e. in a batch fashion on the basis of event stores as defined
in chapter 3, does not lead to accurate results. In particular, computing conventional alignments,
i.e. the de-facto standard conformance checking approach, does not account for the fact that the
behaviour stored within the event store relates to unfinished process instances. As such, the
results computed by means of conventional conformance checking techniques potentially lead
to falsely rejecting correct process instances.

7.5.1 Contributions
We proposed an online, event stream based, conformance checking technique based on the use
of prefix-alignments. The algorithm only performs a state-space search to compute a new prefix-
alignment if no direct label- or synchronous move is possible. We presented two techniques
to increase the search efficiency of the underlying shortest-path problems solved. The first
technique, i.e. deriving prefix-alignment cost upper bounds, preserves optimality and allows for
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effective state-space pruning. The second technique uses an approximation scheme providing a
balance between optimality and memory usage. In our evaluation, we primarily focused on the
performance of the underlying shortest path problems solved. Our results show that we are able
to effectively prune the state-space by using previously computed alignment results. Particularly
in terms of memory efficiency, these results are promising. When using our approximation
approach, we observe a linear trend in the amount of memory needed, for increasing window
sizes used. However, the approximation error seems to decrease more rapidly, i.e. in a non-linear
fashion when increasing window sizes.

7.5.2 Limitations

The aim of the incremental technique presented in this chapter is to compute approximations of
alignments, by means of utilizing the concept of prefix-alignments, based on event streams. In
particular, we aim at computing these approximations more efficiently with respect to simply
computing conventional alignments, whilst at the same time limiting the loss in result accuracy.

In general, we conclude that the use of the technique proposed is justified in cases where
computational resources are limited, and/or there is a need for high precision, i.e. we aim at high
degrees of certainty when we observe a deviation. In cases where computational complexity
is not an urgent issue, and/or high recall is more preferable, one can resort to computing
conventional alignments. However, recall that conventional alignments tend to overestimate
alignment costs, and thus, are not able to properly detect deviations in early stages of a case.
Hence, when resorting to using conventional alignments, a buffering strategy, i.e. we only start
aligning trace of which we have observed sufficient behaviour, is advisable. However, note that,
to be able to do this, we need some trace-completeness estimator.

In the experiments performed using real data, we observe a certain unpredictability with
respect to memory usage/computational efficiency of prefix-alignment computation, i.e. consider
the peeks for window size 20 in Figure 7.11. In general, although the search algorithm used in
prefix-alignment computation is A∗ [68], the practical search performance is, however, equal to
the performance of Dijkstra’s shortest path algorithm [46]. This is mainly related to the fact that
when computing prefix-alignments we need to resort to a rather inaccurate heuristic function.
By partially reverting the alignments, combined with applying the upper bound pruning, we are
able to reduce the search complexity, however, at the cost of losing accuracy. When computing
conventional alignments, we are able to resort to a more accurate heuristic which explains the
more predictable computational efficiency trends in Figure 7.11.

7.5.3 Open Challenges & Future Work

The main downside of the approach presented in this chapter, as briefly mentioned in subsec-
tion 7.5.2, is the fact that we have little guarantees on the memory bounds and/or processing
time of the algorithm. This is mainly due to the fact that the heuristic function that we need to
use is not able to use the marking equation internally, i.e. because of the fact that we consider
incomplete trace behaviour. It is therefore interesting to study alternative techniques and
methods, i.e. in the lines of [33], in which we are able to provide explicit bounds in terms of
memory usage and/or processing time.

In this chapter, we primarily focus on computing conformance diagnostics on the basis
of prefix-alignments. However, there exist other techniques for the purpose of conformance
checking, cf. section 7.4, e.g. on the basis of simple token-based replay. Hence, an interesting
direction for future work is a comparison of these different approaches in context of conformance
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checking oriented monitoring, i.e. to investigate which of these techniques is most accurately
predicting non-conformance in a streaming setting.

Another interesting direction for future work, partly related to the aforementioned direction,
concerns the development and definition of alternative accuracy measures regarding under/over-
estimation of conventional alignments to more accurately measure the indicative behaviour of
prefix-alignments. Within the current evaluation, we choose a rather straightforward classifica-
tion of true/false positives/negatives. In some cases, however, a more advanced classification
may be of interest.

Observe that the state of a prefix-alignment, in terms of the underlying reference model,
carries some predictive value with respect to case termination. Thus, in cases we do not know
explicit case termination, it is interesting to study the effect of using prefix-alignments as a case
termination predictor.

Finally, observe that given the model, apart from deciding upon conformance, it is also
interesting to consider the certainty of the current conformance value of a prefix-value.





Chapter 8
Discovering Social Networks

Thus far, we have considered event-stream-based techniques for the purpose of process discovery
and conformance checking. Moreover, the main focus of the techniques presented, strongly
leans towards the control-flow dimension. In this chapter, we turn our focus to the realm of
process enhancement. In particular, we focus on discovering social networks, describing resources
that perform the different events executed in the context of processes, together. We do so, by
means of presenting a general framework that defines the problem in a generic way. Moreover,
by empirically evaluating different social networks, we show the applicability of the framework,
and, social networks in the streaming domain. As we focus on incrementally updating the
networks, the techniques presented in this chapter enable us to effectively handle streaming
event data.

The contents presented in this chapter are based on the following publication:

S.J. van Zelst, B.F. van Dongen, and W.M.P. van der Aalst. Online Discovery of Cooperat-
ive Structures in Business Processes. CoopIS 2016, volume 10033 of Lecture Notes in Computer
Science, pages 210-228. Springer, 2016, https://doi.org/10.1007/978-3-319-48472-3_12

https://doi.org/10.1007/978-3-319-48472-3_12
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Figure 8.1: The contents of this chapter, i.e. online discovery of social networks from event
stream data, highlighted in the context of the general structure of this thesis.
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Figure 8.2: Result of calculating a handover-of-work-based social network on the BPI Challenge
2012 [47].

8.1 Introduction

The majority of the techniques presented in this thesis, apart from the general purpose storage
techniques presented in chapter 3, focus on the control-flow perspective. For example, the filter
as presented in chapter 4, uses control-flow to build the automata used within filtering, all
discovery algorithms considered in chapter 5 are control-flow based, etc. However, as motivated
in chapter 1, and exemplified in Table 1.1, typically many additional data attributes are available
in the context of process mining data.

A variety of studies is applicable in the context of online/stream-based-process mining,
e.g. bottleneck detection and/or prediction, real-time performance measurement, online KPI-
based case routing etc. However, in this chapter, we focus on the discovery of social networks,
describing resources that are active, and cooperate together, within a process, i.e. a topic that is
well-studied in offline process mining. As an example, consider the handover-of-work network
based on the BPI Challenge 2012 [47] event log, presented in Figure 8.2. Within the graph, each
node represents a resource, whereas each arc represents a handover of work. Such handover
of work, represented by a directed arc (r1,r2), indicates that at some point in time, resource r2
started working on an activity for a given process instance, after resource r1 finished an activity
for the same process instance. The main problem of applying social network discovery in an
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Figure 8.3: Schematic overview of the architecture proposed in this chapter. The active social
networkis highlighted in grey and is incrementally updated by means of Φi+ and
Φi−.

offline setting is related to the interpretability of the result. In the case of Figure 8.2, apart
from observing that various resources handover work to each other, we are not able to gain
any valuable insights. Moreover, we are not able to deduce whether certain resources became
more/less active, stopped working etc. Therefore, we aim to discover these social networks on
the basis of event streams, as it additionally helps us to visualize the dynamics of the network.

The techniques presented in chapter 3, allow us to iteratively discover networks of resources,
i.e. in a batch fashion. Even though this partially solves the aforementioned problem, still
this results in a sequence of static resource networks. Therefore, in this chapter, we primarily
focus on the design of an efficient incremental architecture, that allows us to seamlessly switch
between different perspective on resource cooperation within the process. We present a generic
architecture, cf. Figure 8.3, which allows us to incrementally build different networks of
interacting resources. The framework allows the user to view multiple social networks, based
on a single event stream. In this context, we assume that any event e∈E at least contains
information about:

1. Case c∈C for which the event occurred, i.e. accessed by πc(e), cf. 2.10.

2. Activity a∈A that was performed, i.e. accessed by πa(e), cf. 2.10.

3. Resource r∈R that performed the activity, i.e. accessed by πr(e).1

We assume that, there are n different types of resource networks that we aim to discover
on the basis of event data. The user inspects a social network SN

j
i at time i , for some social

network type identified by value 1 ≤ j ≤ n. New events are incorporated within the network as
fast as possible, i.e. in a real-time and incremental fashion. Such an update is performed by
the corresponding social network update function υ j , which uses Φi+ and Φi− to update the
resource network. The information stored within the event store Φ allows the user to switch,
after having received i events, the current network SN

j
i to some other type of social network

1Here, we let R denote the universe of resources.



8.2 Social Networks 207

SN
j ′
i , e.g changing from a handover of work network to a reassignment network. As we use the

event store as a whole, a property of the framework is that such switch does not need any form
of warm-up period, i.e. after initialization of the network based on Φi , new events are again
incorporated in the network in a real-time fashion.

The remainder of this chapter is organized as follows. In section 8.2, we generically
introduce the notion of social networks, and provide a concrete instantiation. In section 8.3,
we describe the proposed architecture for online social network discovery, i.e. the architecture.
In section 8.4, we evaluate the scalability of a collection of specific resource networks. Finally,
section 8.6 concludes this chapter.

8.2 Social Networks

In this chapter, we primarily focus on the construction of social networks as defined in [9], on
the basis of event streams. We therefore first present a general definition of social networks,
after which we illustrate different types of instantiations of such a network, from a streaming
data perspective. In essence, all social network metrics are defined over pairs of resources, e.g
given a certain pair of resources, what is the value for the handover of work metric?, how strong
is the working together metric?, what is the Minkowski distance for the joint case metric of two
resources? etc.

Definition 8.1 (Social Network Metric). Let R denote the universe of resources. A social network
metric µ is a function µ : R×R →R≥0.

Based on a social network metric, we define social networks, which are formally repres-
ented by means of (un)directed graphs. Whether such a graph is directed or not, depends
on whether the metric is symmetric, i.e. if it is the case that, by definition of the metric,
∀r1,r2∈R

(
µ(r1,r2) =µ(r2,r1)

)
, it can be represented by undirected graph. Within a social net-

work, the active resources of the process, i.e. as described within the underlying event stream,
define the vertices. The metric itself defines the edges of the network, i.e. whenever we have a
pair (r1,r2)∈R×R, with µ(r1,r2) > 0, there is a corresponding edge within the graph.

Definition 8.2 (Social Network). Let R ⊆ R denote a set of resources, let µ : R×R → R≥0 be a
social network metric and let E ⊆ R ×R. A social network SN is an (un)directed graph SN = (R,E),
where:

µ(r1,r2) > 0 ⇔ (r1,r2)∈E (8.1)

As an example of a social network metric, we consider the notion of the handover of work
metric, i.e. a metric describing networks such as the social network presented in section 8.1, in
Figure 8.2, in more detail. Consider an event store (case-projection) Φi

C
and a trace σ within

the store, i.e. σ∈Φi
C

. We define the absolute number of handovers from a given resource r1 to
resource r2 as:

|r1 Âσ r2| =
|σ|−1∑
i=1

{
1, if πr(σ(i )) = r1 ∧πr(σ(i +1)) = r2

0, otherwise
(8.2)

The relation |r1 Âσ r2| denotes the number of times a handover occurs from resource r1
to resource r2 within σ. In general |r1 Âσ r2| describes a local trace-based metric. To express
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handover of work in a global, event store based metric, we define r1 Bi r2:

r1 B
i r2 =

 ∑
σ∈Φi

C

|r1 Âσ r2|
/ ∑

σ∈Φi
C

(|σ|−1)

 (8.3)

Observe that, for the aforementioned relations, the traces considered are assumed to be of
length greater than 1.

In [9], a more generalized definition is presented that allows us to incorporate relations
between resources at longer distances. However, in this chapter, we primarily focus on distances
of length 1, i.e. a direct succession of work, as it is most suitable in terms of performance in the
context of online streams of events.

8.3 Architecture
In this section, we present a generic architecture, which allows us to discover and visualize a live
view of different social networks, based on event streams. We discuss the main components it
comprises of, and in particular, we focus on the incremental update complexity of social network
metrics in a streaming context.

Given a stream of events, we are interested in constructing different types of resource
networks. Since multiple social network metrics are defined, we aim at designing an architecture
that allows us to discover several different networks on an event stream. Moreover, the user
needs to be able to seamlessly switch between different networks. Hence, we present a general
architecture, cf. Figure 8.3, which describes this in a generic way. The architecture comprises of
the following main components:

1. An underlying event store Φi , cf. chapter 3, which temporarily stores the events emitted
on the event stream.

2. Resource network builders υ1, υ2, ..., υn , which comprise of two sub-functions:

(a) Initialize a resource network, based on the event data stored in the event store Φi .

(b) Perform real-time incremental updates on the resource network.

3. Corresponding resource networks SN 1, SN 2, ..., SN n , as defined by social network
builders υ1, υ2, ..., υn .

In general, we assume only one network builder is active at a specific point in time (represented
by υ j in Figure 8.3). In the remainder of this section, we therefore discuss the social network
builders in more detail. In particular, we focus on the computational feasibility of different
metrics in terms of incremental updates.

8.3.1 Networks & Builders
We maintain knowledge about the process instances observed so far in memory, i.e. within the
underlying event store Φ, to be able to switch from one social networkto the other. Hence, as
indicated, the network discovery components υ1,υ2, ...,υn , mainly consist of the following two
separate tasks:

1. Initialization of the network based on the current state of Φi .

2. Update of the network based on a new event flowing in, as well as events that are removed
due to receiving the new event.
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The first step, i.e. initialization, equals the conventional computation of the resource network,
since for any i∈N, Φi describes a finite sequence of events and thus an event log. The second
step, i.e. (incremental) updating of the network, is of particular interest. Consider that we obtain
some network SNi−1, based on Φi−1, and, we receive i th event e∈E . The new event either
introduces or updates a network metric value for a pair of resources. Also, the metric value for
a pair of resources usually depends on a global property, i.e. the divisor of Bi , hence the new
event potentially also affects the metric value of other pairs of resources within the network.
Thus, network SNi , based on Φi , is very likely to differ from the previous network SNi−1, i.e. a
new handover is added/removed due to the new event/removed data. From an implementation
perspective, we need to refresh the internal data structures that maintain the network after each
new event. The complexity of this operation is expected to grow in terms of the network size.
For most metrics, we additionally need to design supporting data structures that allow us to
recompute the actual metric value. For example, to be able to compute the Bi metric, for each
resource pair, we need to maintain a denominator and a divisor. The denominator is resource
pair specific, whereas the divisor is maintained globally.

Some supporting data structures turn out to be computable in an incremental fashion. If the
incremental computation of the data structures is inexpensive, we are able to update them in a
real-time fashion. However, some metrics do not support inexpensive incremental updates of
their supporting data structures, i.e. we potentially need to recompute them from scratch after a
new event. In such cases, we need a more periodic update scheme of the network in order to
maintain the network in a real-time fashion. Hence, we propose two network update strategies:
right-time, i.e. at the user’s request, and real-time, i.e. updating after each event, which defines
how we need to update our network over time.

8.3.2 Real-Time versus Right-Time Update Strategies

When we reconsider the handover of work metric as presented in section 8.2, we design the
supporting data structures that allow us to maintain the metric as follows. We maintain a
counter counti ,Â : R×R →N0, that maintains the denominator of r1 Bi r2, i.e.

counti ,Â(r1,r2) = ∑
σ∈Φi

C

|r1 Âσ r2| (8.4)

Moreover, since the divisor of r1 Bi r2 has the same value for all possible combinations of r1 and
r2 we maintain it as a single integer divisori∈N0, i.e.

divisori =
∑

σ∈Φi
C

(|σ|−1) (8.5)

Initially we have counti ,Â(r1,r2) = 0, ∀r1,r2∈R and divisor= 0. After receiving several events
on the event stream, i.e. we have divisor 6= 0, we are able to compute the handover of work
metric for resource pair (r1,r2) as follows:

r1 B
i r2 = counti ,Â(r1,r2)

divisori
(8.6)

Assume that after observing the event stream for a while, we receive the i th event e, such
that we have Φi−1

C
(S,πc(e)) =σ′, where σ′ 6= ε. Moreover, we assume that no event is removed

from the event store yet. Thus, at time i , we have Φi (S,πc(e)) =σ′ · 〈e〉. Observe that for any



210 Discovering Social Networks

r1,r2∈R, for the denominator of r1 Bi r2, we have:

∑
σ∈Φi

C

|r1 Âσ r2| =
 ∑
σ∈Φi

C
\{σ′·〈e〉}

|r1 Âσ r2|
+|r1 Âσ′·〈e〉 r2| (8.7)

Since we assume that no events are removed from the event store, we deduce:∑
σ∈Φi

C
\{σ′·〈e〉}

|r1 Âσ r2| =
∑

σ∈Φi−1
C

\{σ′·〈e〉}
|r1 Âσ r2| (8.8)

We furthermore have, ∀r1,r2∈R:

|r1 Âσ′·〈e〉 r2| = |r1 Âσ′ r2|+
{

1 if πr(e) = r2 ∧πr(σ′(|σ′|)) = r1

0 otherwise
(8.9)

Thus, the only action we need to perform is increasing the value of counti ,Â(r,r ′) by one,
where r denotes the resource that executed the last event of σ′, and r ′ is the resource executing
the newly received event. Furthermore, note that, for the divisor, we are able to deduce
divisori = divisori−1 +1.

If we drop the assumption that no events are removed from the event store, we need to
reduce the values of counti ,Â and divisor accordingly. In general, we need to reduce the
counters of those cases that are part of Φi−. Furthermore, we need to reduce the divisor by
|Φi−|, unless a removed event relates to a trace of length 1, as in such case, it does not contribute
to the divisor (nor the counter of the corresponding case). Hence, the B metric is computable
incrementally, as we are able to update the underlying counters in near constant time. As
such, the B metric is an example of a metric that we classify as a real-time metric. We define
social network metrics to be real-time if it is possible to update the metric’s supporting data
structures by means of an incremental update. However, in case the divisor value changes, we
need to recompute all metric values for those r1,r2∈R with a non-zero counti ,Â value. Thus, in
worst-case this operation has complexity O(|R|2).

There are examples of social network metrics that do not meet the real-time requirement.
An example of such metric is the boolean-causal variation of the handover of work metric [9].
Given a sequence σ of events, we define relation r1 ºσ r2 which specifies that resource r1 hands
over work of a case to resource r2, given that the underlying corresponding executed activities
are in a causal relation. In this context, we assume such causal relation to be similar to the
causal relation used within the alpha miner, i.e. based on the directly follows relation. Moreover,
relation r1 ºσ r2 does not count the number of occurrences of such handover, i.e. it only captures
the fact that such handover occurred at least once in the trace.

r1 ºσ r2 =
{

1 iff ∃1 ≤ i < |σ| (πr(σ(i )) = r1 ∧πr(σ(i +1)) = r2 ∧πa(σ(i )) →πa(σ(i +1)))

0 otherwise
(8.10)

We now define a corresponding global social network metric r1 Di r2 that captures this for
event streams. Let i denote the index of the latest received event on the event stream, then:

r1 D
i r2 =

 ∑
σ∈Φi

C

r1 ºσ r2

/
|{c∈C |Φi

C (S,c) 6= ε}| (8.11)

Maintaining the divisor is in this case trivial as it just reflects the number of process
instances that have a non-empty entry within the underlying event store. For the denominator,
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we again maintain counteri ,º : (R ×R) → N0, which represents the denominator of the D
metric. However, to maintain the metric we need to additionally keep track of the causal
relations present within the traces. To maintain the causal relations, we maintain a counter
counteri ,> : (A ×A ) →N0 that maintains the > relation. Based on counter> we maintain a set
X→∈P (A ×A ) that describes causal pairs. In case we have counter(a, a′) = counter(a′, a) = 0, or
counter(a, a′) > 0∧counter(a′, a) > 0 then (a, a′), (a′, a) ∉ X→. However in case counter(a, a′) >
0∧counter(a′, a) = 0 then (a, a′) ∈ X→, (a′, a) ∉ X→.

The main problem that arises when maintaining a causal-flavoured social network metric is
related to changes of the X→ set and its impact on the metric(s). Consider, the following four
scenario’s, which highlight the aforementioned problem.

1. We receive a new event e.

(a) The event generates a new causal relation (a, a′), such that a is executed by some
resource r and a′ is executed by resource r ′.
In this scenario, we are guaranteed that there is no other trace that contains an
activity a directly followed by activity a′. Moreover, this is also the case for the
reverse relation, i.e. (a′, a). Hence, the only action we need to take here is to
check whether the trace σ related to the new event already contributed to the
ºσ-relation on r and r ′. If so, we do not update counteri ,º(r,r ′), otherwise, we
increase counteri ,º(r,r ′) with one.

(b) The event invalidates an existing causal relation (a, a′).
In this scenario, we observe that the event generates a directly follows pair (a′, a)
which is not yet observed, yet its reverse, i.e. (a, a′), is already observed. Thus, we
are guaranteed that the corresponding events contributed to the ºσ-relation for
different resources. Hence, we need to traverse all traces in Φi

C
and potentially

reduce some counteri ,º-values.

2. An event is removed from Φi
C

, i.e. e∈Φi−.

(a) The removal of the event generates a new causal relation (a, a′).
This implies that there is no other occurrence of the (a, a′) directly follows relation
any more, yet there are occurrences of the reverse i.e. (a′, a). Hence, like in case
1.(b), we need to traverse all traces in Φi

C
and potentially reduce some counteri ,º-

values.

(b) The removal of the event invalidates an existing causal relation (a, a′).
This implies that there is no more occurrence of the (a, a′)-, nor the (a′, a) directly
follows relation. Hence, like in case 1.(a), we only need to check whether the
removal of the event triggers a reduction in the corresponding counteri ,º-relation.

As indicated, there are two cases that have a negative computational impact with respect
to the social network. In case we receive a new event which leads to invalidating an existing
causal relation, we need to traverse the whole event store, or any form of underlying data
structure, to update the maintained counteri ,º-values. Symmetrically, if due to event removal,
a new causal relation is created, we again need to traverse the event store as a whole. The
effect of such traversal is the potential removal/addition of edges within the resource network.
Moreover, several metric values are likely to be changed. Hence, a change in the underlying
causal structure has a global impact, both from a computational perspective as from a social
network perspective.
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The D metric is an example of a right-time metric, i.e. instead of continuously maintaining
the supporting data structures, it should be recomputed at regular intervals, or, at the user’s
request. In section 8.4, we empirically assess the computational complexity of both metrics B
and D. We also assess how often we need to recompute the internal data structures of D based
on real data, i.e. how often does a causal change happen?

8.4 Evaluation
In this section, we assess the scalability of the two types of metrics discussed in this chapter,
i.e. B and D. For the experiments we created an event stream based on the BPI Challenge
2012 event log [47]. In total, the event log contains 262.200 events. Out of these events,
244.190 events actually contain resource information, i.e. describing what resource executed the
corresponding activity. Within the event stream, events are ordered based on timestamps. Using
the event stream, for each metric we measured:

1. Time needed to refresh the supporting data structure(s) (in nano-seconds)

2. Time needed to refresh the whole network (in nano-seconds)

3. Total memory consumption of the data structure(s) (in bytes)

4. The global network size (in the number of edges).

Apart from the four metrics, we investigate and compare two different scenario’s.

1. No restriction on the event store’s available memory.

2. As an underlying event store, we us a forward decay model [42], with an exponential
decay function with a decay rate of 0.01 and threshold for removal of 0.01. The events in
the event store are represented by a prefix-tree, in which the nodes represent pairs of the
form (a,r )∈A ×R. We do not extend the memory life of the process instances within the
prefix-tree, i.e. as described in chapter 3.

To reduce the effects of outliers in terms of run-time measurements, e.g. caused by the java
garbage collector, we ran each experiment ten times, removed the minimal and maximal
measurement values, and, averaged the remaining eight measurement values. Additionally, in
some charts the y-axes are restricted in order to highlight the overall trends, instead of showing
outliers. Finally note that, as the implementation is of a prototypical fashion, the evaluation
results are primarily indicative in terms of trends.

In Figure 8.4, on page 213, the results of discovering the B metric, without any restriction
on the available memory, are depicted. In Figure 8.4a, we present the time-performance of
the approach, whereas in Figure 8.4b, we present memory-related performance. Note that,
since we do not restrict memory usage, events are never removed from the event store. As a
result, the memory usage is steadily increasing. The data structure update time only consists of
incrementally updating the divisor and the denominator values of the resource pairs affected
by the update. We observe that initially there are some high values in terms of update time
with respect to the overall, relatively constant trend. This relative constant trend, is likely to
be related to the initialization of the underlying data structure. Then, after a short period of
increasing update time values, the update time seems to stabilize. When comparing the network
size with the memory usage, we observe that they follow the exact same pattern. This makes
sense since the larger the network, the more absolute and relative values we need to store. The
time to refresh the network follows the same shape. This is as expected as we need to calculate
more relative values as the network size increases.



8.4 Evaluation 213

0 50000 100000 150000 200000 250000
0.0

0.5

1.0

1.5

2.0
N

an
o 

Se
co

nd
s

1e5 Data Structure Update Time

0 50000 100000 150000 200000 250000
Events

0.0

0.5

1.0

1.5

N
an

o 
Se

co
nd

s

1e6 Network Refresh Time

(a) Time performance, measured in terms of internal data structure update time
and network refresh time.

0 50000 100000 150000 200000 250000

2

3

4

5

6

B
yt

es

1e5 Memory Usage

0 50000 100000 150000 200000 250000
Events

0

1000

2000

E
dg

es

Network Size

(b) Memory performance, measured in terms of the global memory usage and
social network size.

Figure 8.4: Results of discovering the B metric without memory restrictions.
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In Figure 8.5, on page 215, the results of discovering the B metric, with finite memory
restriction, are depicted. Similarly to Figure 8.4, in Figure 8.5a, we present the time-performance
of the approach, whereas in Figure 8.5a, we present memory-related performance. In this case,
we observe that memory usage is fluctuating. When we compare the time needed for data
structure updates, we observe that this is now slightly higher than the time performance reported
in Figure 8.4a. This is explained by the fact that when restricting memory to be finite, i.e. we
also need to account for the removal of events. Again, the network refresh rate follows the
behaviour of the memory/network size. Due to the restrictions on memory usage, the refresh
rate of the network is now comparable to the data structure update time.

As explained in subsection 8.3.2, we consider the D as a right-time metric, as we have no
control over the degree of the applicability of incremental updates. However, it is interesting
to assess to what degree such a metric is still feasible from an online/real-time perspective. In
Figure 8.6, on page 216, we depict the results of computing the D metric with restricted memory.

The measured data structure update time, again shows some outliers, yet overall shows a
relative constant trend. Upon inspection, when ignoring outliers, we observe that on average
the update time is 10-fold with respect to the measured times for the . metric, cf. Figure 8.4 and
Figure 8.5. This is explained by the fact that we need to perform significantly more bookkeeping,
i.e. we need to keep track of the underlying causalities as well. Interestingly, we observe quite
some deviations in the network refresh time, indicating that at some times, the network needs
to be recomputed due to a change in the underlying causalities. We observe that the network
size again shows a similar pattern as the measured memory, however, it seems to fluctuate more
with respect to the measurements of the . metric. This, again, is explained by the fact that we
need to additionally keep track of the underlying causalities. These results indicate that, even
though identified as a right-time metric, the D metric can also be adopted in real time scenarios,
i.e. depending on the velocity of the stream. The memory footprint, in particular, shows an
acceptable bounded trend.

8.5 Related Work

In this section, we cover related work in the area of online/offline organizational analysis
techniques in process mining.

In [9] a collection of social network metrics is defined in the context of conventional
process mining, i.e. metrics based on event log data. The work can be regarded as one of the
foundational works of the application of social network analysis in the context of process mining.
In [107] the authors extend the work of [9] with organizational model mining and information
flow mining. In [62] the authors identify that applying conventional techniques as defined
in [9, 107] result in complex networks that are not easy to understand. The authors propose to
solve this by applying hierarchical clustering on the social networks to form clusters of similar
resources. In [98] an extensible framework is proposed that allows for extracting resource
behaviour time series. It allows process owners to visualize their resource’s performance over
time, using event logs as an objective source of information. Recently, in [17], Appice et al.
propose a method to analyze evolving communities within event logs. The method transforms
the event log into a finite stream of events, and, subsequently divides the stream into windows.
The method computes a resource community for each window and assesses the changes within
the communities of successive windows.
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Figure 8.5: Results of discovering the B metric with memory restrictions.
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Figure 8.6: Results of discovering the D metric with memory restrictions.
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8.6 Conclusion

In this section, we conclude the work presented in this chapter. We discuss the contributions,
limitations and provide directions for future work.

8.6.1 Contributions

In this chapter, we presented a generic framework, which allows us to discover several social
networks on the basis of event streams. The architecture in generic and in principle allows
for many different types of analysis based on online/real-time event stream data. A prototyp-
ical implementation of the architecture, including several different social network metrics, is
available in the ProM framework. Moreover, it enables us to gain insights in social networks
over time, rather than providing one monolithic view. Due to the assumptions on the data, i.e.
event streams might be infinite, the architecture additionally allows us to analyse event logs
that exceed a computer’s physical memory. Therefore, it can be used to speed up the analysis of
large event logs and is not limited to streams.

Within the experiments performed, we in particular focus on different types of handover
of work networks. The experiments show that we are able to compute social networks in an
event stream setting. We have shown that there are social network metrics suitable for real-time
incremental update strategies. For these metrics, updating of the supporting data structures
converges to a constant amount of time. The time needed to update the social network, however,
grows in terms of the size of the network. Additionally, we have shown that limiting the available
memory has a positive impact both on the use of memory as on the network refresh times.
However, as a consequence of the limited available memory, we need to remove cases, which
slightly increases the data structure update times.

8.6.2 Limitations

The framework described in this chapter covers the use of general event stores, i.e. it is not tied
to a specific instantiation of an event store. In some cases, however, using a specific type of
event store is likely to reduce the computational complexity of some types of networks. Observe
that when we use a sliding window, once it is full, we know that |Φi+| = |Φi−| = 1, i.e. one event
flows in, one flows out. Observe that, in such case, the counti ,Â-value of at most two resource
pairs changes. However, what is more interesting, is the fact that the divisor potentially remains
the same. In the case an event arrives and another event is dropped that are both part of a
trace that has length > 1, the divisor does not change. Observe that this is very beneficial for
the computational complexity of computing the network, as in such case, only two arcs of the
network attain a slightly different value.

8.6.3 Open Challenges & Future Work

The time needed to refresh the network is strongly related to the network size. However, in
some cases, the effect of an increase in a metric’s denominator/divisor might have little effect
on the value of the metric, e.g. 1.001.337

2.133.700 = 0,47 ≈ 1.001.338
2.133.700 . An interesting direction for future

work is to quickly detect whether the network should be recalculated.
In this chapter, we have primarily focussed on the feasibility of adopting social network

metrics in an event stream setting. To gain more value out of stream-based social network
analysis, an interesting direction for future work is the assessment of different visualization
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methods of the evolution of the networks. Also, extensions such as (online) community detection
etc. are of interest.



Chapter 9
Implementation

The techniques presented in this thesis have a corresponding implementation in the widely used
process mining framework ProM [113]. Moreover, the majority of these implementations have
been ported to RapidProM [7], i.e. an extension of the RapidMiner (http://rapidminer.org)
platform for designing and executing data science analysis workflows. In this chapter, we
describe the implementations related to the techniques presented in this thesis in more detail.
We discuss how the implantations allow users to use process mining in an event stream context,
as well as how to conduct (large scale) experiments.

The contents presented in this chapter are based on the following publications:

S.J. van Zelst, Andrea Burattin, B.F. van Dongen, and H.M.W. Verbeek. Data Streams in
ProM 6: A Single-node Architecture. BPM (Demos) 2014, volume 1295 of CEUR Workshop
Proceedings, pages 81 . 2014, http://ceur-ws.org/Vol-1295/paper6.pdf

S.J. van Zelst, B.F. van Dongen, and W.M.P. van der Aalst. Know What You Stream: Gen-
erating Event Streams from CPN Models in ProM 6. BPM (Demos) 2015, volume 1418 of CEUR
Workshop Proceedings, pages 85–89 . 2015, http://ceur-ws.org/Vol-1418/paper18.pdf

W.M.P. van der Aalst, A. Bolt, S.J. van Zelst. RapidProM: Mine Your Processes and Not Just Your
Data. (Informal), abs/1703.03740 CoRR. 2017, http://arxiv.org/abs/1703.03740

http://rapidminer.org
http://ceur-ws.org/Vol-1295/paper6.pdf
http://ceur-ws.org/Vol-1418/paper18.pdf
http://arxiv.org/abs/1703.03740
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Figure 9.1: The contents of this chapter, i.e. the implementation of the various algorithms,
techniques and frameworks proposed in this thesis, highlighted in the context of the
general structure of this thesis.
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Figure 9.2: Screen shot of the ProM Framework [113].

9.1 Introduction
Within the process mining community, major efforts and time are spent in the actual development
of implementations corresponding to the algorithms developed in numerous academic works.
The development of the ProM framework [113], the de-facto standard academic process mining
tool, to which several researchers contribute worldwide, can be regarded as a stimulating
source of these efforts. ProM is a general purpose tool, which allows us to import event logs,
discover process models, compute conformance checking statistics etc. Consider Figure 9.2
in which we provide a screen shot of the ProM framework. For most techniques discussed in
this thesis, a corresponding implementation is developed in ProM, which is used to obtain the
various results as presented in the Evaluation sections of the different chapters. Furthermore,
some of the techniques are additionally ported to the process mining extension of RapidMiner1,
i.e. RapidProM [7]. RapidMiner is a data science platform that allows us to create scientific
workflows, e.g. consider Figure 9.3 in which we show such scientific workflow for the purpose
of creating an event stream from an event log. In particular, the RapidProM extension allows us
to construct process mining analyses using scientific workflows, which is particularly suitable
for large-scale experiments [28].

In this chapter, we provide a brief summary of these implementations, and present details on
how to use them. As such, the content of this chapter is to be regarded as a high-level document-
ation of the different implementations developed in the context of this thesis. We additionally
describe how to generate event streams from a variety of different sources. The remainder of
this chapter is structured as follows. In section 9.2, we explain how to generate event streams
from several static and non-static sources. In section 9.3, we discuss the implementation of
the techniques related to general purpose storage as presented in chapter 3. In section 9.4,
we discuss the implementation of the automaton based filter as presented in chapter 4. In
section 9.5, we discuss the implementation of the algorithms presented in chapter 5, i.e. related
to intermediate representation based discovery, as well as the ILP-Based discovery approach in
chapter 6. In section 9.6, we discuss the implementation of the incremental prefix-alignment

1http://rapidminer.org

http://rapidminer.org
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Figure 9.3: Example scientific workflow, depicting the generation of an event stream from an
event log.

algorithm as described in chapter 7. In section 9.7, we discuss the implementation related to
the discovery of collaborative resource networks as presented in chapter 8. Finally, section 9.9,
concludes this chapter and, in particular, discusses limitations of the implementations presented
here, as well as future work.

9.2 Event Stream Generation

In this section, we describe how to generate streams of events from various sources of (event)
data. We first detail on stream generation in ProM, after which we describe how to generate
event streams in RapidProM.

ProM The majority of the code related to the generation of event streams is located in
the EventStream package, available through http://svn.win.tue.nl/repos/prom/Packages/

EventStream. We identify three ways to generate an event stream within ProM.

1. Generating event streams from static finite data sources, e.g. from event logs

2. Generating event streams from live, possible infinite data sources.

3. Generating event stream from Coloured Petri Nets (CPN) models.

Finite Data Sources

To generate a stream out of an event log, we import an event log and select it. Consider
Figure 9.4, in which we depict the BPI Challenge 2012 [47] event log, imported in the ProM
framework. In order to generate an event stream, we click the play button (highlighted by
means of a red circle in Figure 9.4). When we click the play button, there are two subsequent
possible actions:

1. Directly generate a live event stream (visualized in Figure 9.5a).

2. Generate a static event stream, i.e. a sequence of events, effectively equal to event logs as
defined in this thesis (visualized in Figure 9.5b).

In case we decide to generate an event stream, either live or static, we are able to set several
properties of the stream, which we visualize in Figure 9.6. These properties entail:

http://svn.win.tue.nl/repos/prom/Packages/EventStream
http://svn.win.tue.nl/repos/prom/Packages/EventStream
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Figure 9.4: Event log of the BPI Challenge 2012 [47], imported in ProM. The first action to
perform in order to generate an event stream is clicking the play button, highlighted
by means of the red circle.

• Case Identifier
We indicate which trace-level attribute, i.e. a data attribute stored at a trace level in the
event log, is eligible to act as a case identifier. Usually, this is the concept:name attribute.

• Activity Name
We indicate how to deduce the activity name of an event. An event log typically includes
a collection of classifiers which allows us to map an event onto an activity. The widget
allows us to select which classifiers, as defined in the event log, to use for this purpose.

• Event Index
We are able to add the index of the event within the given trace as data payload within
the event.

• Termination Indication
We are able to add a boolean flag to the payload of the event, specifying whether or not
the event is the last event of the trace.

• Event Ordering
By default, the generated stream contains the events in order of occurrence in the event
log, on a trace-by-trace basis. As such, process instances are not simulated to run in
parallel. In case that time stamps are omni-present within the event log, we are able to
sort the events based on time-stamp, rather than trace-by-trace.

• Emission Rate (Only for live stream generation)
In case of live event stream generation, we are able to specify an emission rate in terms
of the number of events on the event stream per second.
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(a) ProM action for generating a live event stream, i.e. plug-in entitled Generate Event Stream.

(b) ProM action for generating a static event stream, i.e. plug-in entitled Convert to Static Event Stream.

Figure 9.5: ProM actions for generating live- and static event streams.

• Event Decoration
We are able to add all payload present in the event, i.e. as part of the event log, to the
event emitted on the stream.

Within an event stream, an event is represented by means of a tuple of key-value pairs. For
the different decoration options as presented earlier, we identify the following keys and/or
key-prefixes that enable us to access them.

• Case Identifier
The case identifier is accessible by means of a key entitled trace.

• Activity Name
The activity name of an event is accessible by means of a key entitled concept:name.

• Event Index
The index of the event within its original trace is accessible by means of a key entitled
xsevent:index.

• Termination Indication
The trace termination indication attribute is accessible by means of a key entitled
xsevent:final.

• Event Decoration
Given any additional payload that we want to add, originally accessible in the event log
by some key k. Within the generated event, the same payload is accessible by means of a
key entitled xsevent:data:k.

The main difference between creating a live- and a static event stream is related to the
emission rate as well as the output of the plugin. When we create a static event stream, i.e. a
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Figure 9.6: Wizard intended to set parameters related to a generated event stream.

sequence of events, we just receive a single ProM object representing the static stream entity.
We are able to store such event stream on disk, resulting in a .evst file. Such file is a text file in
which each line represents an event. Within the EventStream package we also provide code that
allows us to import arbitrary .evst files. From a static event stream ProM object, we are able to
generate a live event stream. We do so by means of selecting the static event stream object and
subsequently calling the Generate Event Stream plug-in, cf. Figure 9.7.

Invoking the aforementioned action yields two artefacts, i.e. a Stream Generator object and
an Event Stream object. These artefacts are also created when directly creating a live event
stream from a finite data source, e.g. an event log. The Event Stream object represents a live
version of the (static) event stream. The Stream Generator allows us to manipulate the event
stream and is the primary output of the Generate Event Stream plug-in. Initially, the stream is
inactive, i.e. there are no events emitted on the stream, cf. Figure 9.8a on page 227.

The stream generator’s visualization has a custom play button, depicted on the top-right
of its visualization, i.e. highlighted by means of a red circle in Figure 9.8a. When we click the
play button, the stream generator starts emitting events on the stream. As such, any algorithm
connected to the event stream object gets triggered to handle the newly arriving packets. An
example visualization of a stream generator, when active, is depicted in Figure 9.8b.

Live Data Sources

Within the EventStream ProM package, we additionally provide the possibility to connect to a
live stream of events. In this context, code is provided to connect to a live stream of JSON objects
(http://json.org). JSON, which stands for JavaScript Object Notation, is a data-interchange
format using key-value pairs and array-typed objects.

As an explanatory proof-of-concept, we have used the basic classes provided in the Event-
Stream package infrastructure in combination with real/live event data. The data used as an
input consists of a publicly available stream of http://www.meetup.com (http://www.meetup.

http://json.org
http://www.meetup.com
http://www.meetup.com/meetup_api/docs/2/open_events/
http://www.meetup.com/meetup_api/docs/2/open_events/
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Figure 9.7: Converting a static event stream to a live event stream. Applying this action yields a
Stream Generator object and an Event Stream object which actually represents the
live stream.

com/meetup_api/docs/2/open_events/). meetup.com is a website where people plan happen-
ings, e.g. a jam-session for musicians or an afternoon walk through Central Park in New York.
Within meetup.com these are called events. However, to avoid ambiguity with respect to the
well-defined notion of events in this thesis, we use the term happenings when we refer to meetup

events. A happening has several parameters (name, status, venue etc.). When a user has
created a happening, he/she is allowed to change some parameters of the happening at a later
stage, e.g. after creating a happening we decide to increase the total number of accepted guests.
Every data-manipulation of a happening which has a public access level will be published on the
meetup.com event stream.

Consider Figure 9.9 on page 228, in which we show two results after applying the inductive
miner, on the basis of the generic architecture as presented in chapter 5, using the meetup.com

event stream as an input. In Figure 9.9a, we show the resulting Petri net after receiving just 224
events, i.e. after just tapping in on the stream. At this point in time, the model describes that
first a happening needs to be created, i.e. represented by the activity create new meetup event.
After this, either the name is changed, by means of a change name activity. Otherwise, a large
flower pattern of behaviour is discovered, i.e. everything is possible, including activities such
as change time, change venue, change status etc. The final activity for the branch including the
flower pattern is change event_url.

In Figure 9.9b, we depict the resulting Petri net after receiving a total of 27.988 events.
In this case, the model still starts with the creation of a new happening. However, after this,
either the process terminates immediately, i.e. related to the creation of happenings that are not
changed afterwards, or we enter a large flower construct in which all kinds of manipulations of
the happening are possible. Observe that this is as expected, i.e. from a global perspective, we
do not assume that creating and/or changing happenings is a very structured process.

http://www.meetup.com/meetup_api/docs/2/open_events/
http://www.meetup.com/meetup_api/docs/2/open_events/
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(a) Visualization of the Stream Generator object in which the stream is inactive.
We are able to start the stream by clicking the play button in the top-right of
the visualizer, highlighted by means of a red circle.

(b) Visualization of the Stream Generator object in which the stream is active. In
this visualization, a bar chart is shown where each bar indicates the number
of emitted events of a certain activity type per minute.

Figure 9.8: Visualizations of the Stream Generator, both showing an inactive- and active stream.
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(a) Petri net discovered after receiving 224 events.

(b) Petri net discovered after receiving 27.988 events.

Figure 9.9: Petri nets discovered using the Inductive Miner instantiation of the discovery archi-
tecture presented in chapter 5, in combination with a live event stream originating
from http://meetup.com.

http://meetup.com
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Figure 9.10: Configuration options of a CPN-based event stream generator.

Coloured Petri Nets

As a third method to generate event streams, the EventStream package supports event stream
generation from Coloured Petri nets, e.g. as used in the evaluation of chapter 5. The underlying
connection to CPN Tools, i.e. for the purpose of simulation of the CPN Model, is handled by the
Access/CPN framework [124, 125].

Generating Event Streams In order to generate events, the underlying event stream
generator needs a CPN model and an initial marking of the CPN model. Additionally we need to
specify certain parameters of the generator (cf. Figure 9.10):

1. Maximal number of steps
Represents the maximum number of steps within a single instance of the process, denoted
here by smax .

2. Maximal number of repetitions
Represents the total number of instances of the process that need to be simulated, denoted
here by rmax .

3. Step delay
Represents the minimal time desired in-between executions of consecutive events. If set
to 0, no delay is applied.

4. Page ignore
Boolean option that allows us to ignore the hierarchy of the CPN model used. CPN models
allow for hierarchies, i.e. we are able to construct a CPN model within a transition. In
such case, the name of such higher level transition is a prefix of the actual transition,
e.g. a transition t within a transition t ′ is identified as t ′.t . When using the page ignore
option, the name of the transition is just t rather than t ′.t .
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(a) CPN Model suitable for repetition-based case
identification technique.

(b) CPN Model suitable for CPN variable based case
identification technique.

Figure 9.11: Two CPN Model fragments representing different examples of case identification
technique.

5. Ignore Patterns
CPN does not allow to construct transitions without an explicit unique name. In some
cases, we need invisible transitions, e.g. for routing constructs. When we provide a
(comma-separated) list of ignore patterns, all transitions having such pattern in their
name are not emitted onto the event stream.

6. Case Identification
This parameter specifies how we identify instances of the process. Currently, we have
implemented two approaches being repetition-based, i.e. we first finish a full process
instance after starting the next one, and CPN variable based, which supports parallel
instances.

7. Event decoration
We are able to choose whether we want to emit all variables associated to the firing of a
transition within a data packet or only the core elements, being the trace identifier and
the event name.

As indicated, we provide two ways to identify process instances within the CPN model. In
the repetition-based case, each repetition of an execution of the CPN Model is used as a basis
for identifying a case. Thus, all transitions fired in the first repetition will have 1 as a case
identifier, all transitions fired in the second repartition will have 2 as a case identifier etc. In this
identification technique, every transition that is fired is emitted as an event where the transition
name acts as an event name. As an example of a CPN Model suitable for a repetition-based case
identification technique, consider Figure 9.11a. Within the CPN model we have defined two
variables of type INT, i.e. var i,j: INT;. An example stream originating from the CPN Model,
where rmax , smax ≥ 2, including event decoration could be: 〈 {trace=1, concept:name=t1, i=1},
{trace=1, concept:name=t2, j=1}, {trace=2, concept:name=t1, i=1},
{trace=2, concept:name=t2, j=1}, ...〉. Note that within the repetition-based case, first all events
related to trace 1 are emitted before events related to trace 2 are emitted, i.e. cases do not run
concurrently. An instance of the process stops if either the maximal number of steps within the
trace is reached or when no more transitions are enabled.

In the CPN variable based approach, the user specifies a specific variable present within the
CPN model to act as a case identifier. In this case, only those transitions that fire and that have
the specified variable associated are emitted to the event stream. Consider Figure 9.11b which
depicts a CPN model suitable for CPN variable based case identification. Again we have defined
two variables, i.e. var i,j: INT;. When we define variable i as the trace identification variable,
given rmax ≥ 1, smax ≥ 3, a possible stream originating from the CPN Model could be 〈 {trace=1,
concept:name=t1, i=1}, {trace=2, concept:name=t1, i=2},
{trace=3, concept:name=t1, i=3}, ...〉. Observe that we never observe transition t2 in this case,
as it uses variable j , i.e. using variable based case identification allows us to hide certain
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Figure 9.12: Root CPN Model of the hierarchical model used in the case study.

(a) CPN sub-model executed in case of a
token with an even INT value.

(b) CPN sub-model executed in case of a token with
an odd INT value.

Figure 9.13: Two CPN sub-models used within the case study.

transitions present within the model from the stream. Furthermore, it allows us to simulate
multiple process instances in parallel. In particular, when using time within the CPN model, we
are able to simulate arrival patterns, bottlenecks etc.

Proof of Concept As an explanatory proof of concept we have designed a hierarchical CPN
model that is used as a basis for stream generation. The model consists of one root model and
two sub models. The root model is depicted in Figure 9.12.

The CPN model consists of two variables, i.e. var trace, ignore: INT. The initial marking
of the root model is one token of colset INT, i.e. 1`1, in place source. The transition labeled
start is connected to place source and acts as a token generator. In its binding it uses the trace

variable. If transition start fires, it produces a token with the value of trace in place p1 and it
produces a token with value trace + 1 in place source. All tokens with an even INT value will
be routed to the sub-model named sub_even whereas all tokens with an odd INT value will be
routed to the sub-model named sub_odd. In this case, in routing to the sub-models the variable
ignore is used. The two sub-models are depicted in Figure 9.13.

After importing the hierarchical model in the ProM framework, we configure an event stream
with the following parameters: rmax = 1, smax =∞, case identification = CPN Variable with
value trace and event decoration is true. After the event stream object is created we connect
the stream-based implementation of the Inductive Miner. After receiving a number of events,
the stream-based Inductive Miner returns the Petri net depicted in Figure 9.14.

Although the stream-based discovery algorithm is not able to discover hierarchy in the
resulting model, its result matches with the input model, i.e. from a control-flow perspective it
exactly describes all possible traces that are emitted onto the event stream.

RapidProM The code related to generation of streams of events is ported to the RapidProM
plug-in, i.e. the ProM based extension for the RapidMiner data science platform. We briefly
discuss these elements, and provide an indicative screen shot on how to use them. RapidProM
supports the following actions, (based on the ProM code presented in the previous section).
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Figure 9.14: Result of applying a stream-based implementation of the Inductive Miner to the
event stream generated by the hierarchical CPN model.

1. Generation of a live event stream from an event log, cf. Figure 9.15a. Supported
parameters are: event classifier, ordering of events and additional payload inclusion.

2. Generation of a static event stream from an event log, cf. Figure 9.15b. Supported
parameters are: event classifier, ordering of events and additional payload inclusion.

3. Generation of a live event stream from a CPN model, cf. Figure 9.15c. Supported
parameters are: maximal number of steps per process instance, number of repetitions, delay
in-between events, case identification, CPN variable (when using CPN variable based case
identification), additional payload inclusion, communication type, page ignoring and ignore
patterns.

4. Generation of a live event stream from a static stream, cf. Figure 9.16. This operator has
no specific parameters. Note that we are able to convert an imported event log into a
static stream and subsequently create a live event stream, cf. Figure 9.16a, or, from an
imported static event stream, cf. Figure 9.16b.

Observe that, when we generate a live event stream from an event log, cf. Figure 9.15a,
additionally, a static event stream object is generated. Moreover, whenever we generate a live
stream object, like in ProM, we obtain both a Generator object and a stream object. To start
the streaming process, we visualize the generator, which is equal to the visualization in ProM,
cf. Figure 9.8, and click the start button. Thus, when using the streaming framework within
RapidProM, we typically first design the experiment as a whole, i.e. generation of the stream, the
subsequent filtering and/or mining algorithms etc. After this, we start the RapidMiner workflow.
Note, however, that after the workflow is completed, all the objects, i.e. streams, generators,
filters, algorithms etc. are created. However, these are inactive. To actually start the analysis,
we manually start the stream by means of the aforementioned play button in the visualization
of the respective object(s).
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(a) Generation of a live event stream from an event log.

(b) Generation of a static event stream from an event log.

(c) Generation of a live event stream from a CPN model.

Figure 9.15: Scientific workflows and associated parameters for the purpose of event stream
generation in RapidProM.
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(a) Generation of a live event stream from a static event stream, directly converted from an event log.

(b) Generation of a live event stream from an imported static event stream.

Figure 9.16: Scientific workflows for the purpose of event stream generation from static event
streams in RapidProM.
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Figure 9.17: Scientific workflow to apply conventional process discovery on the basis of event
stores.

9.3 Storage
The techniques presented in chapter 3, allow us to temporarily store the events emitted onto
the event stream, in terms of a conventional event log. An implementation of the techniques
discussed in chapter 3 is available in the StreamBasedEventLog ProM package2. The main
component of the implementation, accessible for users, however resides in the RapidProM
framework. It comprises of an operator that is intended for constructing experiments with the
different storage techniques.

Consider Figure 9.17, in which we depict a simple workflow for the purpose of stream based
discovery on the basis of conventional process discovery techniques applied on top of event
stores. The RapidProM operator entitled Store as Event Log (Finite) allows us to iteratively store
the input event stream as an event store, i.e. by converting it to a conventional event log. It
needs a static event stream as an input. The operator iterates over the events in the static stream
and passes each event to the underlying storage component. It supports the following storage
techniques:

• Sliding Window, cf. subsection 3.3.1 (page 63)

• Reservoir Sampling (Event Level), cf. subsection 3.3.2 (page 65)

• Reservoir Sampling (Case Level), cf. subsection 3.3.2 (page 65)

• Prefix-Tree based storage (Using a Sliding Window as underlying storage technique), cf.
section 3.4 (page 75)

For all techniques, we are able to specify a size parameter, i.e. the length of the sliding win-
dow/size of the reservoir. For the case-level reservoir we need to specify an additional size
parameter for the subsequences stored for each case identifier. We are additionally able to set
a stop criterion, which specifies after what number of received events the operator needs to
terminate.

The Store as Event Log (Finite) operator is of a hierarchical type, i.e. it is allowed to contain
a scientific workflow internally. Consider Figure 9.18, in which we depict an example internal
workflow of the Store as Event Log (Finite) operator. After each event, a new event log is
generated, based on the events stored in the sliding window, reservoir sample or the prefix-tree.
The event log is delivered as the left-most upper input object (circular shape labelled xlo). In
the workflow depicted in Figure 9.18, we forward the input event log to the implementation of
the Alpha Miner [11] in RapidProM. Subsequently, we compute replay-fitness of the discovered
model with respect to the event log used to generate the static event stream as a whole. Note
that, in Figure 9.17, we provide the event log used to generate the static event stream, as a

2http://svn.win.tue.nl/repos/prom/Packages/StreamBasedEventLog

http://svn.win.tue.nl/repos/prom/Packages/StreamBasedEventLog
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Figure 9.18: Example internal workflow in the Store Event Log (Finite) Operator.

second input of the Store as Event Log (Finite) operator. In this way, we are able to assess the
result of the Alpha Miner, with respect to the original event log as a whole.

9.4 Filtering
In this section, we present details regarding the implementation of the filtering algorithm, as
presented in chapter 4.

ProM The automaton-based filtering technique as presented in chapter 4 is implemented
in ProM, i.e. in the StreamBasedEventFilter (http://svn.win.tue.nl/repos/prom/Packages/
StreamBasedEventFilter/) package. Moreover, a part of the code is ported to RapidProM,
in a similar fashion as the storage implementation, cf. section 9.4. The filter acts as an event
processor, i.e. it takes a live event stream object as an input and returns a live event stream
object. The resulting event stream represents the filtered event stream. The corresponding ProM
plug-in is entitled Spurious Event Filter, cf. Figure 9.19. When invoking the ProM plug-in, the
filter is automatically started, i.e. it is actively listening to incoming events and actively filtering.
Within the ProM implementation, the parameters are not exposed to the user, i.e. they are only
manipulated from the source code.

RapidProM The automaton filter is also ported to the RapidProM framework, primarily for
the purpose of performing repeated experiments with the filter. The filter is implemented as
a RapidProM operator that takes a static event stream as an input. It supports the following
parameters:

• Sliding window size
Represents the size of the underlying sliding window on which the behaviour in the
automaton is based.

• Abstraction
Represents the abstraction to use within the filter, as presented in section 4.4, i.e. the
identity-, Parikh- or set abstraction.

• Filter Direction
Allows us to specify whether we need to look back and/or forward, given the current event
when filtering. In chapter 4 we only describe the backward scenario. The implementation

http://svn.win.tue.nl/repos/prom/Packages/StreamBasedEventFilter/
http://svn.win.tue.nl/repos/prom/Packages/StreamBasedEventFilter/
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Figure 9.19: ProM plug-in of the automaton based filter as presented in chapter 4.

also allows us to “look forward”, i.e. given that we receive a new event d for a simple
trace 〈a,b,c〉, we are also able to assess the probability of 〈c,d〉 following activity b. We
are also able to use both forward and backward within filtering. Note that we have not
studied the effect of forward-based filtering in depth in chapter 4.

• Filter
Allows us to specify what filter to use as defined in subsection 4.4.3, i.e. Fractional, Heavy
Hitter and Smoothened Heavy Hitter.

• Filter Threshold
Represents the threshold to use in combination with the filter of choice.

• Maximum Abstraction Window Size
Specifies the maximum abstraction size to use within the filter. Recall that this parameter
determines the number of automata that are used within the filter.

• Emission Delay
Specifies the use of an emission delay. If set to value k, every event is emitted with an
emission delay of k events. The filter is however updated immediately, i.e. the delay only
relates to the effective filtering of the event.

• Experiment
Boolean parameter indicating whether the operator is used in an experimental setting. If
selected, the user needs to specify the two following additional parameters (only possible
in synthetic experimental settings):

– Noise Label Key
Name of the event attribute that specifies whether the event is noise or not.

– Noise Label Value
The value of the attribute as specified by the Noise Label Key in case the event
actually relates to noise.

As indicated, the operator in RapidProM is mainly designed for experiments to assess the
accuracy of the filter. As such, the operator results in a table with quality results, rather than an
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Figure 9.20: Example RapidProM workflow including automaton based filtering.

output stream. This table is delivered at the operator’s output port entitled exp, cf. Figure 9.20.
The resulting table contains the following quality metrics:

• True Positives
Number of events that are predicted to be noise and where indeed noise, i.e. as specified
by the noise label key/value.

• False Positives
Number of events that are predicted to be noise whereas they are in fact not specified by
the noise label key/value as being noise.

• True Negatives
Number of events that are not predicted as being noise, which are indeed not noise.

• False Negatives
Number of events that are not predicted as being noise which are however noise according
to the noise label key/value.

• A collection of derived quality metrics, i.e. Recall, Precision, Specificity, Negative Predictive
Value, Accuracy and F1 Score.

9.5 Discovery
In line with the chapters presented in this thesis related to process discovery, i.e. chapter 5
and chapter 6, we present the corresponding implementations in a twofold fashion. We first
present the implementation of the intermediate representation based architecture as presented
in chapter 5, after which we present the implementation related to ILP-based process discovery,
cf. chapter 6.

9.5.1 Intermediate Representations
In this section, we present details regarding the implementation of the event-stream-based
process discovery architecture, as presented in chapter 5.

ProM Several instantiations of the intermediate representation based architecture are imple-
mented in ProM. These implementations entail:

• Alpha Miner
An implementation of the Alpha Miner based instantiation of the architecture is avail-
able through the StreamAlphaMiner package (http://svn.win.tue.nl/repos/prom/
Packages/StreamAlphaMiner/). Within ProM, given a live event stream, we are able to
invoke the implementation using the ProM plug-in entitled:

http://svn.win.tue.nl/repos/prom/Packages/StreamAlphaMiner/
http://svn.win.tue.nl/repos/prom/Packages/StreamAlphaMiner/
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– Discover Accepting Petri Net(s) (Alpha Miner)

• Inductive Miner
An implementation of the inductive miner based instantiation of the architecture is
available through the StreamInductiveMiner package (http://svn.win.tue.nl/repos/
prom/Packages/StreamInductiveMiner/). Within ProM, given a live event stream, we
are able to invoke the implementation using the ProM plug-in entitled:

– Discover Accepting Petri Net(s) (Inductive Miner)

– Discover Process Tree(s) (Inductive Miner)

• ILP Miner3

An implementation of the ILP miner based instantiation of the architecture is available
through the StreamILPMiner package (http://svn.win.tue.nl/repos/prom/Packages/
StreamILPMiner/). Within ProM, given a live event stream, we are able to invoke the
implementation using the ProM plug-in entitled:

– Discover Accepting Petri Net(s) (ILP Miner)

• Transition Systems Miner
An implementation of the transition system’s miner based instantiation of the architecture
is available through the StreamTransitionSystemsMiner package (http://svn.win.tue.
nl/repos/prom/Packages/StreamTransitionSystemsMiner/). Within ProM, given a
live event stream, we are able to invoke the implementation using the ProM plug-in
entitled:

– Discover Accepting Petri Net(s) (Transition Systems Miner)

From a user perspective, the different instantiations behave the same. Using the Alpha
Miner as a basis, we show how to invoke the plug-ins. To obtain a live event stream, we refer
back to section 9.2. After obtaining a live event stream, we select it in the ProM Workspace and
invoke the plug-in of choice. All implementations use frequent item approximation techniques
as an underlying storage technique, i.e. the Frequent, Space Saving and Lossy Counting

algorithms. Thus, before visualizing the algorithm, the user is asked to select the preferred
underlying storage technique and associated number of elements that the algorithms is allowed
to store, cf. Figure 9.21.

After the user has specified the desired underlying event store, the visualization of the online
discovery technique is shown. An example of this visualization is presented in Figure 9.22. We
are able to pause the discovery algorithm by means of the pause button in the top-right of the
visualization. When paused, the discovery algorithm temporarily stops receiving events on the
stream. When clicking the stop button, located right to the pause button, the discovery algorithm
is terminated. The main component of the visualization is a canvas depicting a discovered
process model. In this case, we show a Petri net, as this is the result of the Alpha Miner.
However, when we use the inductive miner variant that results in process trees, the canvas
visualizes process trees, rather than Petri nets.4 Underneath the canvas, we observe a slider
and a click-able button, labelled “Update Result”. When we click the button, the underlying

3Observe that the implementation of the stream based ILP Miner does not include finding Workflow nets
with artificial start/end activities as described in chapter 6. It uses classical region theory to find places
related to suspected causal relations.

4A process tree is a process modelling formalism in which the components of the process model are
structured hierarchically, by means of a tree structure.

http://svn.win.tue.nl/repos/prom/Packages/StreamInductiveMiner/
http://svn.win.tue.nl/repos/prom/Packages/StreamInductiveMiner/
http://svn.win.tue.nl/repos/prom/Packages/StreamILPMiner/
http://svn.win.tue.nl/repos/prom/Packages/StreamILPMiner/
http://svn.win.tue.nl/repos/prom/Packages/StreamTransitionSystemsMiner/
http://svn.win.tue.nl/repos/prom/Packages/StreamTransitionSystemsMiner/
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Figure 9.21: User interaction dialog, allowing the user to specify what underlying storage
method needs to be used.

Figure 9.22: User interface of a stream based discovery algorithm.

discovery algorithm is invoked, i.e. translating the intermediate representation maintained in
memory into a process model. The slider allows the user to browse between different discovered
process models at different points in time. This allows the user to visually inspect potential
changes in the underlying stream, i.e. visual inspection of concept drift.
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Figure 9.23: Example workflow of applying process discovery in RapidProM.

Figure 9.24: Invoking the ILP-Based Process Discovery plug-in in ProM.

RapidProM Within RapidProM, the Alpha Miner and the Inductive Miner are made available.
For the Inductive Miner, both the version resulting in (accepting) Petri nets as well as process
trees is available. The general workflow, using an event log as a data source, to use any of the
discovery algorithms is depicted in Figure 9.23.

As indicated in section 9.2, we first need to run the workflow, after which we obtain an
inactive generator object, and an active discovery algorithm, ports gen and rea in Figure 9.23
respectively. To perform the analysis, we need to start the event stream as described in
section 9.2, i.e. RapidProM uses the same visualizations as the ProM framework. Likewise,
the discovery algorithm visualization is similar to the visualizations shown in Figure 9.9 and
Figure 9.22.

9.5.2 ILP-Based Process Discovery

In this section, we discuss the implementation of the ILP-based process discovery approach
as described in chapter 6. As the algorithm is designed to work with conventional simple
event stores, i.e. in a streaming setting obtainable by the techniques presented in chapter 3,
the implementation only supports using conventional event logs rather than event streams.
The code related to the implementation of the ILP-based process discovery is available in the
HybridILPMiner package (http://svn.win.tue.nl/repos/prom/Packages/HybridILPMiner).
Again, the implementation is available both in the ProM framework and in RapidProM.

ProM To invoke the implementation of the ILP-based process discovery algorithm, after
loading an event log into ProM, we use the ILP-Based Process Discovery plugin, cf. Figure 9.24.
Observe that there is a second version of the plug-in, entitled ILP-Based Process Discovery
(Express), i.e. the second plug-in visualized in Figure 9.24. This plug-in simply applies default

http://svn.win.tue.nl/repos/prom/Packages/HybridILPMiner
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(a) Parameter screen for selecting the event classi-
fier to use and the configuration, i.e. express,
basic or advanced.

(b) Parameter screen (advanced configuration only)
including selection of the objective function and
addition of empty after completion constraints.

(c) Parameter screen (advanced configuration only)
including selection of internal filtering tech-
nique, variable distribution and discovery.

(d) Parameter screen (advanced & basic configura-
tion) allowing us to select the causal graph to
use.

Figure 9.25: Different user interaction screens allowing the user to set different parameters of
the ILP-based process discovery algorithm.

settings of the algorithm, i.e. after invoking the plug-in, a process model is obtained immediately.
When selecting the basic plug-in, i.e. ILP-Based Process Discovery, the user needs to specify

several parameters, distributed over four different screens, cf. Figure 9.25
The parameters of the ILP-based process discovery algorithm entail:

• Classifier (Figure 9.25a)
Allows us to specify how to identify the activity that is described by the event. The list of
classifiers is based on information provided by the underlying event log object.

• Configuration Level
Allows us to specify to what degree we are interested in configuring the discovery
algorithm. There are three configuration levels:

– Express (Figure 9.25a)
Requires no additional configuration. The express setting incorporates emptiness
after trace completion constraints, uses the sequence encoding filter as described
in section 6.4 with a threshold value of 0.25 and uses a causal graph as discovered
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by the Flexible Heuristics Miner [122]. It is equal to the plug-in ILP-Based Process
Discovery (Express).

– Basic
Adopts the same settings as the express configuration, however, allows the user to
select a different causal graph, cf. Figure 9.25d.

– Advanced
Allows the user to specify all the different parameters as presented as follows.

• LP objective function (Figure 9.25b)
Allows us to specify what objective function is used when searching for places in the Petri
net. The parameter allows the user to select both z1 and z

L̃
. Moreover, an alternative

variant of z
L̃

is implemented that scales the coefficients back to the range [0,1].

• Emptiness after trace completion (Figure 9.25b)
When selected, the LP constraint body includes the constraints related to emptiness after
trace completion, i.e. m~1+ML(~x −~y) =~0 in 6.3. Observe that when we select this option,
we are able to additionally search for a sink place. This option is vital when we aim at
finding a workflow net.

• Internal LP Filter (Figure 9.25c)
Allows us to specify what filter to use (if the user aims at using internal filtering). Options
include applying no filtering, sequence encoding filtering as presented in section 6.4 and
slack variable filtering. The notion of slack variable filtering is presented in [132]. It adds
a boolean variable for each trace present in the constraint body, which allows the ILP
to ignore the constraint when finding a solution. The total number of traces to ignore
is bounded by an additional user-specified threshold. Although the technique works on
small example data, the resulting constraint body is too large to be solved efficiently when
using real event data in combination with slack variable filtering.

• Variable distribution (Figure 9.25c)
Allows us to specify whether we aim to use one or two variables per activity in the event
log. As presented in [133], we are able to use only one variable per activity, taking any
of the three values in {−1,0,1}. A variable assignment of −1 implies an outgoing arc to
the corresponding transition, whereas a value of 1 indicates an incoming arc from the
transition. It is however not clear whether a variable assignment of 0 indicates a self-loop
on the corresponding transition or not. There additionally exists a hybrid variant which
uses only two variables for an activity a if there exists a simple trace of the form 〈...a, a, ...〉
in the input event log.

• Discovery strategy (Figure 9.25c) Allows us to specify in what way places need to be
searched for. We are able to use an underlying causal structure, i.e. the result of a causal
oracle %. Alternatively, we are able to search for a place between transitions related to
each possible pair of activities that are present in the input traces.

• Causal graph selection (Figure 9.25d, conditional to causal graph discovery strategy)
Allows us to specify what causal graph to use. In the left-hand panel of the user interface
a list of available causal oracles is listed. On the right-hand panel, a canvas is shown
in which the corresponding causal graph is visualized. Additionally, sliders are present
that allow the user to interactively change the thresholds of the causal oracle of choice,
allowing the user to alter the resulting causal graph. It is important to note that it is
the user’s responsibility to verify whether the causal graph of choice is compliant with the
requirements specified in section 6.3 in order to obtain a workflow net.
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(a) Overview screen presenting a summary of the
parameter configuration.

(b) Initial screen allowing the user to load a previ-
ously used parameter setting.

Figure 9.26: Summary screen and screen to load previously used parameter settings.

After clicking the next button in the final parameter screen (subject to the configuration level
of choice), the user is presented with an overview of the chosen parameters, cf. Figure 9.26a.
When the user subsequently clicks the finish button, the discovery phase is started, and finally a
Petri net (with associated initial and final marking) is constructed.

Due to the relatively large amount of parameters, the plug-in additionally allows the user to
load a previously used parameter combination. If the user runs the plug-in for the second, third,
..., nth time, the first parameter screen additionally shows a list of previously used parameter
combinations, cf. Figure 9.26b. When the user selects one of these, all values of that specific
collection of parameter instances is loaded. Doing so, always requires the user to go through the
advanced parameter setting option. This is intended as such, as we expect the user to iteratively
tweak certain parameters to gain a better/desired result. Finally, observe that the ILP based
process discovery implementation always appends an artificial start- and end activity to all traces
in the input event log.

RapidProM The ILP-based process discovery algorithm is ported to RapidProM. Within
RapidProM, the algorithm is however less configurable, i.e. many of the discussed before is fixed.
For example, the discovery strategy is causal, i.e. it is not possible to use all pairs of activities.
Moreover, instead of being a parameter, the causal graph needs to be provided as an additional
input. The only two parameters provided in the RapidProM instance of the ILP based process
discovery algorithm are:

• Classifier
Allows us to specify how to identify the activity that is described by the event. The list of
classifiers is based on information provided by the underlying event log object.

• Internal LP Filter
Only includes applying no filter or the sequence encoding filter, i.e. as described for the
ProM-based variant.

Consider Figure 9.27 in which we present an example workflow using the ILP based process
discovery algorithm. The left-most RapidProM operator imports the event log. Both the causal
graph operator and the ILP based process discovery algorithm use an event log as an input,
hence we need a multiplier operator to (graphically) duplicate the event log. We use the causal
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Figure 9.27: Example workflow of the ILP based process discovery approach in RapidProM.

Figure 9.28: ProM plug-in for the purpose of computing incremental prefix alignments.

graph object as an input for the ILP based process discovery algorithm, i.e. represented by the
connection between the mod and cau ports.

9.6 Conformance Checking
For the purpose of event stream based conformance checking, the incremental prefix-alignment
algorithm, cf. chapter 7, has been implemented in ProM and was ported to RapidProM.
The code is available in the OnlineConformance package (http://svn.win.tue.nl/repos/
prom/Packages/OnlineConformance). The implementation is mainly intended for performing
experiments related to the quality of the computed prefix-alignments, i.e. it does not provide a
graphical interface. As such, it uses a conventional event log as an input rather than a (static)
stream. To invoke the plug-in, we need an Accepting Petri net object and an event log object, cf.
Figure 9.28. The plug-in is entitled Compute Prefix Alignments Incrementally. The code iteratively
traverses each prefix of each trace variant in the event log. It stores the result related to each
prefix and performs a search based on the algorithm as presented in chapter 7.

In RapidProM, cf. Figure 9.29, apart from an event log and a regular Petri net object, the
operator needs an additional conventional conformance checking result object. This object is
used to compare the prefix-alignment value of each prefix to the actual eventual alignment
value, i.e. after trace completion. The RapidProM operator returns a detailed table containing
alignment costs (and differences to eventual alignment costs) for all prefixes of all trace variants
in the input event log.

http://svn.win.tue.nl/repos/prom/Packages/OnlineConformance
http://svn.win.tue.nl/repos/prom/Packages/OnlineConformance
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Figure 9.29: Example workflow of using computing incremental prefix alignments in RapidProM.

9.7 Enhancement

For the purpose of process enhancement, different event-stream-based social networks are
implemented in ProM, within an interactive tool. Due to the interactive nature of the tool,
it has not been ported to RapidProM. The implementation of the Online Cooperative Net-
work (OCN), cf. chapter 8, is available within the StreamSocialNetworks package (https:
//svn.win.tue.nl/repos/prom/Packages/StreamSocialNetworks/). Consider Figure 9.30,
in which we depict an example screen shot. The implementation provides support for several
different notions of social networks, i.e. Generalized Handover of Work Metrics [9, Definition 4.4],
Generalized In-Between Metrics [9, Definition 4.7], Working Together Metrics [9, Definition 4.8],
and, Joint Activity Metrics based on Minkowski distance, Hamming distance and Pearson’s correla-
tion coefficient [9, Definition 4.10]. Moreover, the implementation is easily extensible to support
more cooperative network metrics.

Within the implementation, a prefix-tree of (activity,resource)-pairs is built in memory.
Observe however, that this implementation does not use the additional functionality of the
prefix-tree based storage as described in section 3.4 of this thesis. The visualization within
the implementation makes use of windows in order to visualize changes within the network(s).
Instead of visualizing each network individually, the visualizer stores two windows each contain-
ing w networks. For each link within the network it computes the average corresponding metric
value for both windows. The widths of the links within the network, are based on the relative
change of the average link values. The size and colour of the resources within the network are
based on their relative involvement within the network as a whole.

To illustrate the usefulness and applicability of the framework, consider Figure 9.31 where
we depict a sequence of subsequent window based cooperative networks. We generated the
networks using the handover of work metric (maximum distance of 5 events), using a fading
factor of 0.75. We used a window-size w of 50, and, a threshold value of 0.01, i.e. only those
links are displayed that within the second window have an average value of at least 0.01. In
the second network, we observe a new handover of work relation of resource 11203 to itself.

https://svn.win.tue.nl/repos/prom/Packages/StreamSocialNetworks/
https://svn.win.tue.nl/repos/prom/Packages/StreamSocialNetworks/
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Figure 9.30: Example screen shot of the OCN framework within ProM.

Thus, resource 11203 executes multiple activities in sequence. In general, we observe that most
resources either execute activities in sequence, or execute multiple activities within a span of at
most five activities.

9.8 Overview
In this section, we present a schematic overview of the availability of all the different imple-
mentations discussed in this chapter. Consider Table 9.1, on page 248, in which we present the
availability of different functionality as presented in this chapter. Note that the overview table
only considers event stream based techniques, i.e. we omit the stream generation techniques as
presented in section 9.2 and the ILP based discovery approach presented in subsection 9.5.2.
Furthermore, as the code related to computing prefix-alignments works on the basis of conven-
tional event logs, we indicate ∼ for static streams, rather than �, i.e. it works with static data.
Furthermore, note that we explicitly list the contributions in terms of implementations in the
context of this thesis, e.g. there exists an offline implementation of the Alpha Miner in the ProM
framework5.

5Since this implementation is not developed in the context of this thesis, we use a ×-symbol for the static
variant of the Alpha Miner
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Figure 9.31: Three consecutive window-based cooperative networks based on an event stream
of the BPI Challenge 2012 event log [47].

Table 9.1: Schematic overview of the availability of the implementations in ProM and Rapid-
ProM, developed in the context of this thesis. Each cell indicates on what type of
input data the different techniques work.

Category Technique ProM RapidProM
Live Static Live Static

Storage
Sliding Window � × × �
Reservoir Sampling (Event Level) � × × �
Reservoir Sampling (Case Level) � × × �
Reservoir Sampling (Prefix-tree) � × × �

Filtering
Automaton Based Filter � × × �

Discovery
Alpha � × � ×
Inductive � × � ×
ILP � × × ×
Transition Systems � × × ×

Conformance Checking
Prefix-Alignments × ∼ × ∼

Enhancement
Social Networks � × × ×
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9.9 Conclusion
In this section, we conclude and reflect on the various implementations presented in this
chapter. We summarize the main contributions, after which we discuss the limitations of the
implementations described. Finally, we discuss open challenges and identify possible avenues
for future research.

9.9.1 Contributions
We presented several implementations of the different concepts, algorithms and techniques
discussed in this chapter. Most techniques are available both in ProM and RapidProM, however,
in some cases, the type of input data used differs. In particular, most of the techniques ported
to RapidProM are intended to be used for (repeated) scientific experiments and are therefore
typically based on a strictly finite sequence of events, i.e. a static event stream. As indicated
in each section, the code related to the implementations is distributed across several different
ProM packages.

9.9.2 Limitations
It is important to note that the implementations presented here are of prototypical fashion
and serve as a basis for research. In particular, most studies performed in this thesis are of a
conceptual nature, i.e. we study the behaviour of several algorithms under the assumption that
streams of events are used, rather than event logs. As such, a direct adoption of the code in
enterprise-level software most likely leads to performance and/or scalability issues.

In the light of the aforementioned, the implementations of the different algorithms presented
in this chapter primarily serve a two-fold goal:

• Proof of concept
The implementation serves as a tangible proof of the applicability of the algorithms as
presented in this thesis in the context of event streams.

• Experimentation
The main purpose of the implementations is to aid in setting up experiments to test the
quality and/or performance of the algorithms presented in this thesis. For example, the
implementation related to conformance checking is purely intended to allow us to verify
how the computation of prefix alignments behaves with respect to conventional alignment
computation. For this particular task, an actual adoption of actual streams of events is
not needed.

9.9.3 Open Challenges & Future Work
In this thesis, we have not considered the integration of the algorithms implemented in ProM,
with streaming data architectures such as apache kafka (http://kafka.apache.org/), apache
spark (https://spark.apache.org/) and/or apache flink (https://flink.apache.org/).
Providing such integration is interesting in order to adopt the techniques presented here
into enterprise-level solutions. It is furthermore interesting to build dedicated implementations
of the algorithms in these (sometimes distributed) environments. In some cases this allows us
to exploit the typically distributed nature of these architectures.

http://kafka.apache.org/
https://spark.apache.org/
https://flink.apache.org/




Chapter 10
Conclusions

This chapter concludes the thesis. We discuss the main contributions and their relation to the
research questions as introduced in chapter 1. Whereas the individual chapters highlighted the
limitations of the individual contributions, section 10.2 presents the limitations and boundaries
of the work presented, from a broader perspective. Similarly, in section 10.3, we discuss the
open issues that are not covered in this thesis. Finally, in section 10.4, we highlight several
interesting avenues for future work.
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Closure

Chapter 10
Conclusions

Figure 10.1: The contents of this chapter, i.e. a conclusion regarding the research covered in
this thesis, highlighted in the context of the general structure of this thesis.
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10.1 Contributions
In this thesis, we proposed several techniques that enable us to apply process mining on the
basis of event streams. The techniques cover event stream based process discovery, conformance
checking and process enhancement. Moreover, most of the techniques presented have an accom-
panying implementation in the process mining software platforms ProM and/or RapidProM.

The main research goals of this thesis can be grouped using the main pillars of process
mining, i.e. process discovery, conformance checking and enhancement. Here, we revisit these
research goals and indicate in what way the contents presented in this thesis contribute to the
fulfilment of these respective research goals.

• Research Goal I; Development/design of general purpose techniques for high-quality, efficient
event data storage.
In chapter 3, we presented and formalized the notion of an event store, which represents a
finite view of the event data observed on the event stream. We provided several possible
instantiations of event stores using existing data storage techniques originating from
different areas of data stream processing. Moreover, we compared and implemented
different proposed instantiations. Additionally, we presented a novel storage technique,
i.e. storing control-flow oriented prefix trees, that exploits control-flow similarity amongst
different process instances. The experiments conducted in the context of chapter 3
indicate that prefix-tree based storage allows us to decrease the overall memory footprint,
when compared to alternative approaches. Moreover, we are able to slightly improve the
quality of the process mining analyses applied on top of prefix-tree based storage, yet the
increase is not significant.
In chapter 4, we presented a filtering technique that allows us to identify and remove
infrequent behaviour from event streams. The filter acts as a stream processor, i.e. both its
input and output are a stream of events. The experiments conducted in the context of
chapter 4 show that we are able to achieve high filtering accuracy for different instanti-
ations of the filter. Moreover, they indicate that the proposed filter significantly increases
the accuracy of state-of-the-art online drift detection techniques.

• Research Goal II; Development/design of specialized techniques for efficient, event stream
based, process discovery.
In chapter 5, we presented a general framework for the purpose of online process discovery.
The framework conceptually describes a high-level architecture on the basis of the data
abstractions (intermediate representations) used by existing process discovery algorithms.
Different instantiations of the architecture are provided, which use a minimal memory
footprint, i.e. by storing the least amount of data needed to reconstruct the algorithm’s
intermediate representation. The experiments conducted in the context of chapter 5, show
that instantiations of the architecture are able to accurately capture process behaviour
originating from a steady state-based process. Furthermore, in the case of concept drift,
we observe that the size of the internal data structure used impacts both the resulting
process model quality and the drift detection point.
In chapter 6, we have shown that we are able to, for ILP-based process discovery, exploit
its internal representation to such extent that we are able to guarantee both structural
and behavioural properties of the discovered process models. Moreover, we presented an
internal filtering method, built on top of the underlying intermediate representation, that
allows us to increase the overall quality of the discovered process models. The experiments
conducted in the context of chapter 6, confirm that the techniques presented enable us
to find meaningful Petri net structures in data consisting of exceptional behaviour, using
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ILP-based process discovery as an underlying technique. The proposed internal filter
proves to be comparable to an alternative state-of-the-art integrated discovery approach.

• Research Goal III; Development/design of specialized techniques for efficient, event stream
based, conformance checking.
In chapter 7, we presented a novel algorithm for the purpose of online, event stream
based, conformance checking. The technique uses a greedy incremental algorithm, which
computes prefix-alignments, i.e. the most likely explanation of observed behaviour in
terms of a given reference model, whilst accounting for future behaviour. We have
proven that, under certain conditions, the cost of the computed prefix-alignments are
underestimating the final deviation costs, i.e. upon completion of the process instance.
The experiments conducted in the context of chapter 7, show that the greedy algorithm is
able to effectively prune the state-space of the underlying prefix-alignment search.

• Research Goal IV; Development/design of specialized techniques for efficient, event stream
based, process enhancement.
In chapter 8, we presented an assessment of the computation of social networks in
event-stream-based settings. In particular, we focussed on the computational feasibility in
terms of incremental network updates of handover-of-work networks. The experiments
conducted in the context of chapter 8, show that we are able to compute social networks
in an event stream setting. As such, these results indicate that there are social network
metrics suitable for real-time incremental update strategies.

10.2 Limitations

Throughout the different chapters of this thesis, we identified different limitations related
to different aspects of the different techniques presented. In this section, we present these
limitations in a global, event-stream-oriented context.

• The algorithms and techniques presented in this thesis aim to both study and enable the
application of process mining in the context of event streams. Currently, however, the
demand for such techniques in real-life applications is rather limited. As such, apart from
using existing event logs as a basis for streaming data, no actual “live” streams of event
data have been used in the experiments performed in the context of this research.1 It is
therefore hard to assess the potential business impact and/or feasibility of the techniques
presented in this thesis. With the potential advent and/or availability of event streams
from actual business processes, we are able to more accurately assess the actual business
impact and/or feasibility of the techniques presented in this thesis.

• Observe that the implementations as presented in chapter 9, are, as indicated, intended
to serve as a proof of concept. As such, in some cases the code is only used in the context
of static streams, and/or event logs. Observe that such implementation allows us to study
several interesting phenomena of the algorithms presented, i.e. both in terms of (memory)
efficiency as in terms of the quality of the results produced. However, it is likely that the
implementations, as presented in this thesis, do not scale accordingly when applied in
actual online (business) process contexts. As such, the implementations need to be used
as a guiding basis for further development of industry level, highly scalable applications.

1In this regard, the meetup.com stream can be regarded as a real live stream. However, there is no clear
underlying notion of process within that stream.
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10.3 Open Challenges

The work presented in this thesis considers the application of process mining techniques in the
context of streaming event data. Within the field of process mining, this is a relatively new
avenue of research. As such, during the course of conducting the research as reported on in
this thesis, several interesting open challenges came to light. In this section, we discuss these
challenges in more detail.

• Purely incremental process discovery;
In chapter 5, we presented a generic architecture that aims at minimizing the memory foot-
print of online process discovery algorithms, by storing/approximating the intermediate
representation used by the respective algorithm. Within the architecture, we advocate the
reuse of the existing intermediate representation as used by the underlying conventional
discovery algorithm. However, in several cases, such an approach can lead to unnecessary
rework. For example, it is possible that a sequence of subsequently discovered process
models is in fact exactly equal. It, therefore, remains an open challenge to assess what
class of existing algorithms allow for a truly incremental discovery scheme.
When we consider the Inductive Miner [78], it seems a natural approach to assess what
impact a new directly follows relation has on the underlying hierarchy of the currently
discovered process model. Likewise, in case of ILP-based mining, we are able to relatively
efficiently decide whether new behaviour generates new constraints and/or violates
already existing places in the discovered process model. Using such type of analyses
allows us to determine whether the previous model is still valid or not. Furthermore, it is
interesting to study, in case we observe that the previously discovered model is no longer
valid, to what degree we are able to reuse certain parts of the previous model and only
perform local repair actions in the previous model.

• Providing guarantees on trace initialization and termination;
The vast majority of existing process mining algorithms heavily relies on the notion of
explicit knowledge of trace initialization and trace termination. For example, the Alpha
algorithm uses this explicit knowledge to deduce what transitions in the discovered Petri
net need to be connected to the source/sink place. Similarly, the Inductive Miner uses
this knowledge to identify a partitioning of the directly follows abstraction. Furthermore,
note that the formal properties that we are able to guarantee with ILP-based process
discovery, cf. chapter 6, heavily rely on trace termination, i.e. by means of the emptiness
after completion constraints.
Also in the context of conformance checking, explicit knowledge of trace initialization
and termination is essential. Clearly, when we perform conformance checking on trace
behaviour that is in fact not describing the process instance from the start, we typically
indicate that some part of the behaviour is missing. Furthermore, when we are guaranteed
that the trace behaviour observed is final, we are able to assess whether termination of
the process instance, as captured by the event stream, is in fact in line with the reference
model.
As the aforementioned examples indicate, explicit knowledge of trace initialization and
termination, is essential. It remains an open challenge to develop dedicated techniques,
possibly on top of the notion of event stores as presented in chapter 3, that allow us to
improve guarantees with respect to the traces captured. Moreover, it is interesting to
subdivide the traces stored into two subsets, i.e. traces that have a high certainty of being
complete versus ongoing cases.
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• Advanced process monitoring;
The streaming model, and, correspondingly, event streams, are a natural fit with the notion
of process monitoring, i.e. observing and potentially steering the process under study. In
the context of this thesis, process monitoring is only partially covered in chapter 7, i.e. it
allows us to determine potential non-conformance of running process instances. However,
there are a multitude of additional interesting monitoring-related questions, e.g. in the
context of compliance, it is interesting to study whether non-compliance is increasing or
decreasing over time. Other interesting aspects are, for example, related to performance,
i.e. is a certain case likely to meet a given deadline, and concept drift, i.e. investigating
whether there is a clear indication that the execution of the process changed. To answer
such questions, we need intelligent data storage solutions, that integrate the additional
(derived) data within the current view of the process. It is particularly interesting, to
study the impact of approximation errors, i.e. inherently present in most data storage
techniques developed for the purpose of streaming data, on the computed statistics.

10.4 Future Work
From the limitations and challenges presented in section 10.2 and section 10.3, we identify the
following avenues for future work.

First, we identify the need for performing a set of case studies regarding the adoption of
event stream based process discovery in industry settings. Using such case studies, we are
able to asses, to what degree the different main branches of process mining actually lead to
novel results and insights, from a business perspective. In particular, online conformance seems
to be a promising enabler for control-flow oriented process monitoring. More specifically, it
enables the process owner to pro-actively alter the execution of the ongoing process. In line
with these case studies, it is interesting to adopt the techniques mentioned in this thesis in big
data ecosystems, e.g. Apache Spark (https://spark.apache.org/), tailored towards large-scale
distributed stream processing.

Within the techniques presented in this thesis, the basic requirements of data-stream-based
mining, cf. section 1.2, are often taken into account explicitly. Recall that we aim to limit
memory usage/process mining to be polylogarithmic in the size of the stream. As most of the
algorithms presented here are built on top of existing algorithms, these requirements are often
met by design. However, in this thesis, the justification of the aforementioned claim is most
often based on experimental results and evidence, rather than theoretical results. It is hence
interesting to provide and/or more thoroughly investigate the common complexity classes of
event stream based process mining techniques.

https://spark.apache.org/
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Summary

Process Mining with Streaming Data

Modern information systems allow us to track, often in great detail, the execution of
processes within companies. Such event data is typically stored in a company’s information
system and describes the execution of the process at hand. The field of process mining aims
to translate the event data into actionable insights. As such, we identify three main branches
within the field, i.e. process discovery, conformance checking and process enhancement. In process
discovery, we aim at discovering a process model, i.e. a formal behavioural description, which
describes the process as captured by the event data. In conformance checking, we aim to assess
to what degree the event data is in correspondence with a given reference model, i.e. a model
describing how the process ought to be executed. Finally, in process enhancement, the main
goal is to improve the view of the process, i.e. by enhancing process models on the basis of facts
derived from event data.

The ever-increasing automation of processes, combined with the increased interconnectivity
of devices, generates enormous amounts of data, both in terms of size and velocity. The sheer
complexity of such data requires us to rethink and re-engineer the way we manipulate and
study it, in order to obtain meaningful insights out of it. To cope with this problem, this thesis
proposes a first investigation of the application of the field of process mining on the basis of
streaming event data. When applying process mining on the basis of streaming event data we
assume that we are able to tap-in to a digital stream of events, on which we keep receiving
newly executed events. As opposed to the conventionally used static event logs, the available
data of the underlying process is constantly changing. Moreover, we assume the event streams
to be potentially infinite, which implies that at some point we need to erase some parts of the
stream based data previously stored.

The techniques presented in this thesis cover all aspects of process mining, i.e. process
discovery, conformance checking and process enhancement, using event streams as a basis. We
present techniques and tools to efficiently store events emitted on the input event stream, as well
as ways to effectively remove noise. For the purpose of process discovery, we propose a generic
architecture, covering a wide variety of process discovery algorithms, that emphasizes storage
of common algorithmic data structures, to minimize the corresponding memory footprint.
For a specific class of algorithms, we furthermore show that its corresponding algorithmic
data structure can be exploited to guarantee both behavioural and structural properties of the
discovered process models. We present a greedy conformance checking algorithm that allows us
to compute conformance checking statistics for running instances of the process, i.e. accounting
for the fact that some instances are not completed yet. In the context of process enhancement,
we assess the applicability of cooperative networks in the context of streaming event data.
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In summary, this thesis covers a multitude of process dimensions in the context of streaming
data, whilst at the same time identifying several interesting open challenges and directions for
future work. There is a need for a large set of case studies, particularly studying event stream
based process mining and verify the business impact of the techniques proposed. Furthermore,
a new family of fully incremental process discovery algorithms, building on top of the discovery
architecture as presented in this thesis, is a promising direction. Finally, an extension of the
techniques presented in this thesis related to event storage, i.e. focussing on storage of complete
(high frequent) behaviour, is of high interest.



Acknowledgements

Writing a thesis, as well as conducting the research that allows one to do so, are arguably
relatively lonely endeavours. Nonetheless, it is beyond dispute, that numerous individuals have
had a remarkable and positive impact on these aforementioned endeavours.

First of all, I am grateful for the guidance of my supervisors, prof.dr.ir. Wil M.P. van der
Aalst and prof.dr.ir Boudewijn F. van Dongen, who have helped me in becoming the researcher
I am today. Wil’s feedback both on my scientific ideas and writing, are of unprecedented
quality as well as level of detail. Seemingly effortless, Wil discovers the weaknesses of an idea,
experiments or text and provides you with the tools and guidance to improve upon them, in the
right direction. I am grateful for Boudewijn’s openness and constructive attitude towards the,
from time-to-time not so eminent, problems (and proposed solutions) I was facing throughout
my research. Often, his ideas as well as theoretical and technical skill and knowledge, helped
me to go forward. There have been times where me, “supporting Boudewijn’s door post”, was
a daily routine, and, I am grateful that in the majority of cases, my support to his door post
was welcome. Thank you both, for your guidance, when it comes to performing sound research
as well as teaching. Even more so, for your patience with my passion for solving the complex
problems first, rather than starting with the (seemingly) simple, sometimes logical, first step
towards solving these more complex problems.

Next to the scientific-oriented problems one needs to master during the PhD journey, there
are, off course, several administrative and other non-science-related hurdles that need to be
tackled. In any of these cases, the secretaries were always kind to provide support and even
valuable guidance. I would therefore like to express my gratitude to Ine, Jose and Riet, for
always being ready to help, wherever needed. Furthermore, I would explicitly like to thank Ine
for proof reading this thesis.

There are several individuals that I have met during the course of my PhD that made the
journey an unforgettable, and, enjoyable one. I have greatly enjoyed the time spent during
the weekly “VriMiBo” (and subsequent visits to (karaoke)bars), as well as the numerous BBQ
sessions in sunny Eindhoven. I would like to thank all (former) members of the TU/e AIS
research group, with which I have had the pleasure to work, and socialize, with throughout the
past years. Many thanks for this go out to, Alfredo, Alok, Alifah, Arya, Bart, Cong, Dennis, Dirk,
Eduardo, Elham, Eric, Farideh, Felix, Guangming, Hajo, Han, Hilda, Joos, Long, Marcus, Maikel
v. E., Maikel L., Marie, Marwan, Massimiliano, Mohammadreza, Murat, Natalia, Niek, Nour,
Patrick, Petar, Rafal, Renata, Remi, Richard, Ronny, Sander, Shengnan, Shiva, Vadim, Wim and
Xixi.

Finally, I would like to highlight that, the contents of chapter 4, are based on [138], which
was a result of a research visit at Queensland University of Technology, Brisbane, Australia,



276 Acknowledgements

in the context of the Rise BPM project2. I would explicitly like to thank Mohammadreza Fani
Sani, Alireza Ostovar and Raffaele Conforti for their contribution to the paper corresponding
to the aforementioned chapter. Furthermore, I would like to thank Marcello La Rosa for both
his contributions to the paper as well as for facilitating the amazing research visit in amazing
Brisbane. Similarly, the contents of chapter 8 are based on [135], which was a partial result of a
research visit at Pohang University of Science and Technology (POSTECH), Pohang, South-Korea
in the context of the Rise BPM project. I gratefully thank Minseok Song and Minsu Cho (and my
travel buddy Maikel), for facilitating the aforementioned research visit and the very pleasant
stay in Pohang and Jeju Island.

Sebastiaan J. van Zelst
Aachen, January 2019

2This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No 645751



Curriculum Vitae

Sebastiaan J. (Bas) van Zelst was born in the Wilrijk district of the municipality of Antwerp,
Belgium, on September 30th , 1989. After obtaining his high-school degree in 2007, he obtained a
BSc. degree in Computer Science in 2011 at the Eindhoven University of Technology. Subsequently,
at the same university, he finished his computer science MSc. degree (ir. in Dutch) with a
specialization in Business Information Systems (a hybrid study program combining computer
science and industrial engineering).

After a short period in industry, at Sioux Embedded Systems B.V., he started as a PhD candidate
in the Architecture of Information Systems research group, headed by prof.dr.ir. Wil M.P. van der
Aalst at the Eindhoven University of Technology, in early 2014. Three years within his PhD project,
he was appointed lecturer at the Eindhoven University of Technology, for 0.5 FTE. Within this
role, he was involved in several courses, primarily covering the topic of process mining, both as
an instructor and as a responsible lecturer.

From July 1st 2018, he continued his academic career as a post-doctoral researcher/project
leader at the Fraunhofer Gesellschaft, in cooperation with the Process and Data Science research
group, headed by prof.dr.ir. Wil M.P. van der Aalst at the RWTH Aachen University. In this new
position, he mainly focusses on the study, development and industrial application of techniques
related to purely data-driven process improvement.





List of Publications

Sebastiaan J. van Zelst has published the following articles:

Journals
• S. J. van Zelst, A. Bolt, and B. F. van Dongen. Computing Alignments of Event Data and

Process Models. T. Petri Nets and Other Models of Concurrency, 13:1–26, 2018

• S. J. van Zelst, B. F. van Dongen, W. M. P. van der Aalst, and H. M. W. Verbeek. Discovering
Workflow Nets Using Integer Linear Programming. Computing, 100(5):529–556, 2018

• S. J. van Zelst, B. F. van Dongen, and W. M. P. van der Aalst. Event Stream-Based Process
Discovery Using Abstract Representations. Knowl. Inf. Syst., 54(2):407–435, 2018

• S. J. van Zelst, A. Bolt, M. Hassani, B. F. van Dongen, and W. M. P. van der Aalst.
Online Conformance Checking: Relating Event Streams to Process Models Using Prefix-
Alignments. International Journal of Data Science and Analytics, Oct 2017

Proceedings and Conference Contributions
• M. Fani Sani, S. J. van Zelst, and W. M. P. van der Aalst. Applying Sequence Mining for

Outlier Detection in Process Mining. In On the Move to Meaningful Internet Systems. OTM
2018 Conferences - Confederated International Conferences: CoopIS, C&TC, and ODBASE
2018, Valletta, Malta, October 22-26, 2018, Proceedings, Part II, pages 98–116, 2018

• M. Fani Sani, S. J. van Zelst, and W. M. P. van der Aalst. Repairing Outlier Behaviour in
Event Logs. In W. Abramowicz and A. Paschke, editors, Business Information Systems -
21st International Conference, BIS 2018, Berlin, Germany, July 18-20, 2018, Proceedings,
volume 320 of Lecture Notes in Business Information Processing, pages 115–131. Springer,
2018

• A. Burattin, S. J. van Zelst, A. Armas-Cervantes, B. F. , van Dongen, and J. Carmona. Online
Conformance Checking Using Behavioural Patterns. In Business Process Management -
16th International Conference, BPM 2018, Sydney, NSW, Australia, September 9-14, 2018,
Proceedings, pages 250–267, 2018

• V. Bloemen, S. J. van Zelst, W. M. P. van der Aalst, B. F. van Dongen, and J. van de Pol.
Maximizing Synchronization for Aligning Observed and Modelled Behaviour. In Business
Process Management - 16th International Conference, BPM 2018, Sydney, NSW, Australia,
September 9-14, 2018, Proceedings, pages 233–249, 2018



• N. Tax, S. J. van Zelst, and I. Teinemaa. An Experimental Evaluation of the Generalizing
Capabilities of Process Discovery Techniques and Black-Box Sequence Models. In Enter-
prise, Business-Process and Information Systems Modeling - 19th International Conference,
BPMDS 2018, 23rd International Conference, EMMSAD 2018, Held at CAiSE 2018, Tallinn,
Estonia, June 11-12, 2018, Proceedings, pages 165–180, 2018

• S. J. van Zelst, M. Fani Sani, A. Ostovar, R. Conforti, and M. La Rosa. Filtering Spurious
Events from Event Streams of Business Processes. In J. Krogstie and H. A. Reijers, editors,
Advanced Information Systems Engineering - 30th International Conference, CAiSE 2018,
Tallinn, Estonia, June 11-15, 2018, Proceedings, volume 10816 of Lecture Notes in Computer
Science, pages 35–52. Springer, 2018

• M. Fani Sani, S. J. van Zelst, and W. M. P. van der Aalst. Improving Process Discovery
Results by Filtering Outliers Using Conditional Behavioural Probabilities. In Business
Process Management Workshops - BPM 2017 International Workshops, Barcelona, Spain,
September 10-11, 2017, Revised Papers, pages 216–229, 2017

• S. J. van Zelst, A. Bolt, and B. F. van Dongen. Tuning Alignment Computation: An
Experimental Evaluation. In W. M. P. van der Aalst, R. Bergenthum, and J. Carmona,
editors, Proceedings of the International Workshop on Algorithms & Theories for the Analysis
of Event Data 2017 Satellite event of the conferences: 38th International Conference on
Application and Theory of Petri Nets and Concurrency Petri Nets 2017 and 17th International
Conference on Application of Concurrency to System Design ACSD 2017, Zaragoza, Spain,
June 26-27, 2017., volume 1847 of CEUR Workshop Proceedings, pages 6–20. CEUR-
WS.org, 2017

• B. Vázquez-Barreiros, S. J. van Zelst, J. C. A. M. Buijs, M. Lama, and M. Mucientes.
Repairing Alignments: Striking the Right Nerve. In Enterprise, Business-Process and Inform-
ation Systems Modeling - 17th International Conference, BPMDS 2016, 21st International
Conference, EMMSAD 2016, Held at CAiSE 2016, Ljubljana, Slovenia, June 13-14, 2016,
Proceedings, pages 266–281, 2016

• S. J. van Zelst, B. F. van Dongen, and W. M. P. van der Aalst. Online Discovery of Co-
operative Structures in Business Processes. In C. Debruyne, H. Panetto, R. Meersman,
T. S. Dillon, e. Kühn, D. O’Sullivan, and C. Agostino Ardagna, editors, On the Move to
Meaningful Internet Systems: OTM 2016 Conferences - Confederated International Confer-
ences: CoopIS, C&TC, and ODBASE 2016, Rhodes, Greece, October 24-28, 2016, Proceedings,
volume 10033 of Lecture Notes in Computer Science, pages 210–228, 2016

• S. J. van Zelst, B. F. van Dongen, and W. M. P. van der Aalst. ILP-Based Process Discovery
Using Hybrid Regions. In W. M. P. van der Aalst, R. Bergenthum, and J. Carmona, editors,
Proceedings of the ATAED 2015 Workshop, Satellite event of Petri Nets/ACSD 2015, Brussels,
Belgium, June 22-23, 2015., volume 1371 of CEUR Workshop Proceedings, pages 47–61.
CEUR-WS.org, 2015

• S. Hernández, S. J. van Zelst, J. Ezpeleta, and W. M. P. van der Aalst. Handling Big(ger)
Logs: Connecting ProM 6 to Apache Hadoop. In F. Daniel and S. Zugal, editors, Proceedings
of the BPM Demo Session 2015 Co-located with the 13th International Conference on Business
Process Management (BPM 2015), Innsbruck, Austria, September 2, 2015., volume 1418 of
CEUR Workshop Proceedings, pages 80–84. CEUR-WS.org, 2015

• S. J. van Zelst, B. F. van Dongen, and W. M. P. van der Aalst. Know What You Stream:
Generating Event Streams from CPN Models in ProM 6. In Proceedings of the BPM
Demo Session 2015 Co-located with the 13th International Conference on Business Process
Management (BPM 2015), Innsbruck, Austria, September 2, 2015, pages 85–89, 2015



• S. J. van Zelst, B. F. van Dongen, and W. M. P. van der Aalst. Avoiding Over-Fitting
in ILP-Based Process Discovery. In H. R. Motahari-Nezhad, J. Recker, and M. Weidlich,
editors, Business Process Management - 13th International Conference, BPM 2015, Innsbruck,
Austria, August 31 - September 3, 2015, Proceedings, volume 9253 of Lecture Notes in
Computer Science, pages 163–171. Springer, 2015

• S. J. van Zelst, A. Burattin, B. F. van Dongen, and H. M. W. Verbeek. Data Streams
in ProM 6: A Single-node Architecture. In Proceedings of the BPM Demo Sessions 2014
Co-located with the 12th International Conference on Business Process Management (BPM
2014), Eindhoven, The Netherlands, September 10, 2014., page 81, 2014

Technical Reports (Non-Refereed)
• W. M. P. van der Aalst, A. Bolt, and S. J. van Zelst. RapidProM: Mine Your Processes and

Not Just Your Data. CoRR, abs/1703.03740, 2017





SIKS Dissertations

2011
01 Botond Cseke (RUN), Variational Algorithms for Bayesian Inference in Latent Gaussian Models.
02 Nick Tinnemeier(UU), Organizing Agent Organizations. Syntax and Operational Semantics of an Organization-Oriented
Programming Language.
03 Jan Martijn van der Werf (TUE), Compositional Design and Verification of Component-Based Information Systems.
04 Hado van Hasselt (UU), Insights in Reinforcement Learning; Formal analysis and empirical evaluation of temporal-
difference.
05 Base van der Raadt (VU), Enterprise Architecture Coming of Age - Increasing the Performance of an Emerging Discipline..
06 Yiwen Wang (TUE), Semantically-Enhanced Recommendations in Cultural Heritage.
07 Yujia Cao (UT), Multimodal Information Presentation for High Load Human Computer Interaction.
08 Nieske Vergunst (UU), BDI-based Generation of Robust Task-Oriented Dialogues.
09 Tim de Jong (OU), Contextualised Mobile Media for Learning.
10 Bart Bogaert (UvT), Cloud Content Contention.
11 Dhaval Vyas (UT), Designing for Awareness: An Experience-focused HCI Perspective.
12 Carmen Bratosin (TUE), Grid Architecture for Distributed Process Mining.
13 Xiaoyu Mao (UvT), Airport under Control. Multiagent Scheduling for Airport Ground Handling.
14 Milan Lovric (EUR), Behavioral Finance and Agent-Based Artificial Markets.
15 Marijn Koolen (UvA), The Meaning of Structure: the Value of Link Evidence for Information Retrieval.
16 Maarten Schadd (UM), Selective Search in Games of Different Complexity.
17 Jiyin He (UVA), Exploring Topic Structure: Coherence, Diversity and Relatedness.
18 Mark Ponsen (UM), Strategic Decision-Making in complex games.
19 Ellen Rusman (OU), The Mind ’ s Eye on Personal Profiles.
20 Qing Gu (VU), Guiding service-oriented software engineering - A view-based approach.
21 Linda Terlouw (TUD), Modularization and Specification of Service-Oriented Systems.
22 Junte Zhang (UVA), System Evaluation of Archival Description and Access.
23 Wouter Weerkamp (UVA), Finding People and their Utterances in Social Media.
24 Herwin van Welbergen (UT), Behavior Generation for Interpersonal Coordination with Virtual Humans On Specifying,
Scheduling and Realizing Multimodal Virtual Human Behavior.
25 Syed Waqar ul Qounain Jaffry (VU)), Analysis and Validation of Models for Trust Dynamics.
26 Matthijs Aart Pontier (VU), Virtual Agents for Human Communication - Emotion Regulation and Involvement-Distance
Trade-Offs in Embodied Conversational Agents and Robots.
27 Aniel Bhulai (VU), Dynamic website optimization through autonomous management of design patterns.
28 Rianne Kaptein(UVA), Effective Focused Retrieval by Exploiting Query Context and Document Structure.
29 Faisal Kamiran (TUE), Discrimination-aware Classification.
30 Egon van den Broek (UT), Affective Signal Processing (ASP): Unraveling the mystery of emotions.
31 Ludo Waltman (EUR), Computational and Game-Theoretic Approaches for Modeling Bounded Rationality.
32 Nees-Jan van Eck (EUR), Methodological Advances in Bibliometric Mapping of Science.
33 Tom van der Weide (UU), Arguing to Motivate Decisions.
34 Paolo Turrini (UU), Strategic Reasoning in Interdependence: Logical and Game-theoretical Investigations.
35 Maaike Harbers (UU), Explaining Agent Behavior in Virtual Training.
36 Erik van der Spek (UU), Experiments in serious game design: a cognitive approach.
37 Adriana Burlutiu (RUN), Machine Learning for Pairwise Data, Applications for Preference Learning and Supervised Net-
work Inference.
38 Nyree Lemmens (UM), Bee-inspired Distributed Optimization.
39 Joost Westra (UU), Organizing Adaptation using Agents in Serious Games.
40 Viktor Clerc (VU), Architectural Knowledge Management in Global Software Development.
41 Luan Ibraimi (UT), Cryptographically Enforced Distributed Data Access Control.
42 Michal Sindlar (UU), Explaining Behavior through Mental State Attribution.
43 Henk van der Schuur (UU), Process Improvement through Software Operation Knowledge.
44 Boris Reuderink (UT), Robust Brain-Computer Interfaces.
45 Herman Stehouwer (UvT), Statistical Language Models for Alternative Sequence Selection.



46 Beibei Hu (TUD), Towards Contextualized Information Delivery: A Rule-based Architecture for the Domain of Mobile Police
Work.
47 Azizi Bin Ab Aziz(VU), Exploring Computational Models for Intelligent Support of Persons with Depression.
48 Mark Ter Maat (UT), Response Selection and Turn-taking for a Sensitive Artificial Listening Agent.
49 Andreea Niculescu (UT), Conversational interfaces for task-oriented spoken dialogues: design aspects influencing interac-
tion quality.

2012
01 Terry Kakeeto (UvT), Relationship Marketing for SMEs in Uganda.
02 Muhammad Umair(VU), Adaptivity, emotion, and Rationality in Human and Ambient Agent Models.
03 Adam Vanya (VU), Supporting Architecture Evolution by Mining Software Repositories.
04 Jurriaan Souer (UU), Development of Content Management System-based Web Applications.
05 Marijn Plomp (UU), Maturing Interorganisational Information Systems.
06 Wolfgang Reinhardt (OU), Awareness Support for Knowledge Workers in Research Networks.
07 Rianne van Lambalgen (VU), When the Going Gets Tough: Exploring Agent-based Models of Human Performance under
Demanding Conditions.
08 Gerben de Vries (UVA), Kernel Methods for Vessel Trajectories.
09 Ricardo Neisse (UT), Trust and Privacy Management Support for Context-Aware Service Platforms.
10 David Smits (TUE), Towards a Generic Distributed Adaptive Hypermedia Environment.
11 J.C.B. Rantham Prabhakara (TUE), Process Mining in the Large: Preprocessing, Discovery, and Diagnostics.
12 Kees van der Sluijs (TUE), Model Driven Design and Data Integration in Semantic Web Information Systems.
13 Suleman Shahid (UvT), Fun and Face: Exploring non-verbal expressions of emotion during playful interactions.
14 Evgeny Knutov(TUE), Generic Adaptation Framework for Unifying Adaptive Web-based Systems.
15 Natalie van der Wal (VU), Social Agents. Agent-Based Modelling of Integrated Internal and Social Dynamics of Cognitive
and Affective Processes..
16 Fiemke Both (VU), Helping people by understanding them - Ambient Agents supporting task execution and depression
treatment.
17 Amal Elgammal (UvT), Towards a Comprehensive Framework for Business Process Compliance.
18 Eltjo Poort (VU), Improving Solution Architecting Practices.
19 Helen Schonenberg (TUE), What’s Next? Operational Support for Business Process Execution.
20 Ali Bahramisharif (RUN), Covert Visual Spatial Attention, a Robust Paradigm for Brain-Computer Interfacing.
21 Roberto Cornacchia (TUD), Querying Sparse Matrices for Information Retrieval.
22 Thijs Vis (UvT), Intelligence, politie en veiligheidsdienst: verenigbare grootheden?.
23 Christian Muehl (UT), Toward Affective Brain-Computer Interfaces: Exploring the Neurophysiology of Affect during Hu-
man Media Interaction.
24 Laurens van der Werff (UT), Evaluation of Noisy Transcripts for Spoken Document Retrieval.
25 Silja Eckartz (UT), Managing the Business Case Development in Inter-Organizational IT Projects: A Methodology and its
Application.
26 Emile de Maat (UVA), Making Sense of Legal Text.
27 Hayrettin Gurkok (UT), Mind the Sheep! User Experience Evaluation & Brain-Computer Interface Games.
28 Nancy Pascall (UvT), Engendering Technology Empowering Women.
29 Almer Tigelaar (UT), Peer-to-Peer Information Retrieval.
30 Alina Pommeranz (TUD), Designing Human-Centered Systems for Reflective Decision Making.
31 Emily Bagarukayo (RUN), A Learning by Construction Approach for Higher Order Cognitive Skills Improvement, Building
Capacity and Infrastructure.
32 Wietske Visser (TUD), Qualitative multi-criteria preference representation and reasoning.
33 Rory Sie (OUN), Coalitions in Cooperation Networks (COCOON).
34 Pavol Jancura (RUN), Evolutionary analysis in PPI networks and applications.
35 Evert Haasdijk (VU), Never Too Old To Learn – On-line Evolution of Controllers in Swarm- and Modular Robotics.
36 Denis Ssebugwawo (RUN), Analysis and Evaluation of Collaborative Modeling Processes.
37 Agnes Nakakawa (RUN), A Collaboration Process for Enterprise Architecture Creation.
38 Selmar Smit (VU), Parameter Tuning and Scientific Testing in Evolutionary Algorithms.
39 Hassan Fatemi (UT), Risk-aware design of value and coordination networks.
40 Agus Gunawan (UvT), Information Access for SMEs in Indonesia.
41 Sebastian Kelle (OU), Game Design Patterns for Learning.
42 Dominique Verpoorten (OU), Reflection Amplifiers in self-regulated Learning.
43 Withdrawn, .
44 Anna Tordai (VU), On Combining Alignment Techniques.
45 Benedikt Kratz (UvT), A Model and Language for Business-aware Transactions.
46 Simon Carter (UVA), Exploration and Exploitation of Multilingual Data for Statistical Machine Translation.
47 Manos Tsagkias (UVA), Mining Social Media: Tracking Content and Predicting Behavior.
48 Jorn Bakker (TUE), Handling Abrupt Changes in Evolving Time-series Data.
49 Michael Kaisers (UM), Learning against Learning - Evolutionary dynamics of reinforcement learning algorithms in stra-
tegic interactions.
50 Steven van Kervel (TUD), Ontologogy driven Enterprise Information Systems Engineering.
51 Jeroen de Jong (TUD), Heuristics in Dynamic Sceduling; a practical framework with a case study in elevator dispatching.



2013
01 Viorel Milea (EUR), News Analytics for Financial Decision Support.
02 Erietta Liarou (CWI), MonetDB/DataCell: Leveraging the Column-store Database Technology for Efficient and Scalable
Stream Processing.
03 Szymon Klarman (VU), Reasoning with Contexts in Description Logics.
04 Chetan Yadati(TUD), Coordinating autonomous planning and scheduling.
05 Dulce Pumareja (UT), Groupware Requirements Evolutions Patterns.
06 Romulo Goncalves(CWI), The Data Cyclotron: Juggling Data and Queries for a Data Warehouse Audience.
07 Giel van Lankveld (UvT), Quantifying Individual Player Differences.
08 Robbert-Jan Merk(VU), Making enemies: cognitive modeling for opponent agents in fighter pilot simulators.
09 Fabio Gori (RUN), Metagenomic Data Analysis: Computational Methods and Applications.
10 Jeewanie Jayasinghe Arachchige(UvT), A Unified Modeling Framework for Service Design..
11 Evangelos Pournaras(TUD), Multi-level Reconfigurable Self-organization in Overlay Services.
12 Marian Razavian(VU), Knowledge-driven Migration to Services.
13 Mohammad Safiri(UT), Service Tailoring: User-centric creation of integrated IT-based homecare services to support inde-
pendent living of elderly.
14 Jafar Tanha (UVA), Ensemble Approaches to Semi-Supervised Learning Learning.
15 Daniel Hennes (UM), Multiagent Learning - Dynamic Games and Applications.
16 Eric Kok (UU), Exploring the practical benefits of argumentation in multi-agent deliberation.
17 Koen Kok (VU), The PowerMatcher: Smart Coordination for the Smart Electricity Grid.
18 Jeroen Janssens (UvT), Outlier Selection and One-Class Classification.
19 Renze Steenhuizen (TUD), Coordinated Multi-Agent Planning and Scheduling.
20 Katja Hofmann (UvA), Fast and Reliable Online Learning to Rank for Information Retrieval.
21 Sander Wubben (UvT), Text-to-text generation by monolingual machine translation.
22 Tom Claassen (RUN), Causal Discovery and Logic.
23 Patricio de Alencar Silva(UvT), Value Activity Monitoring.
24 Haitham Bou Ammar (UM), Automated Transfer in Reinforcement Learning.
25 Agnieszka Anna Latoszek-Berendsen (UM), Intention-based Decision Support. A new way of representing and implement-
ing clinical guidelines in a Decision Support System.
26 Alireza Zarghami (UT), Architectural Support for Dynamic Homecare Service Provisioning.
27 Mohammad Huq (UT), Inference-based Framework Managing Data Provenance.
28 Frans van der Sluis (UT), When Complexity becomes Interesting: An Inquiry into the Information eXperience.
29 Iwan de Kok (UT), Listening Heads.
30 Joyce Nakatumba (TUE), Resource-Aware Business Process Management: Analysis and Support.
31 Dinh Khoa Nguyen (UvT), Blueprint Model and Language for Engineering Cloud Applications.
32 Kamakshi Rajagopal (OUN), Networking For Learning; The role of Networking in a Lifelong Learner’s Professional Devel-
opment.
33 Qi Gao (TUD), User Modeling and Personalization in the Microblogging Sphere.
34 Kien Tjin-Kam-Jet (UT), Distributed Deep Web Search.
35 Abdallah El Ali (UvA), Minimal Mobile Human Computer Interaction.
36 Than Lam Hoang (TUe), Pattern Mining in Data Streams.
37 Dirk Börner (OUN), Ambient Learning Displays.
38 Eelco den Heijer (VU), Autonomous Evolutionary Art.
39 Joop de Jong (TUD), A Method for Enterprise Ontology based Design of Enterprise Information Systems.
40 Pim Nijssen (UM), Monte-Carlo Tree Search for Multi-Player Games.
41 Jochem Liem (UVA), Supporting the Conceptual Modelling of Dynamic Systems: A Knowledge Engineering Perspective on
Qualitative Reasoning.
42 Léon Planken (TUD), Algorithms for Simple Temporal Reasoning.
43 Marc Bron (UVA), Exploration and Contextualization through Interaction and Concepts.

2014
01 Nicola Barile (UU), Studies in Learning Monotone Models from Data.
02 Fiona Tuliyano (RUN), Combining System Dynamics with a Domain Modeling Method.
03 Sergio Raul Duarte Torres (UT), Information Retrieval for Children: Search Behavior and Solutions.
04 Hanna Jochmann-Mannak (UT), Websites for children: search strategies and interface design - Three studies on children’s
search performance and evaluation.
05 Jurriaan van Reijsen (UU), Knowledge Perspectives on Advancing Dynamic Capability.
06 Damian Tamburri (VU), Supporting Networked Software Development.
07 Arya Adriansyah (TUE), Aligning Observed and Modeled Behavior.
08 Samur Araujo (TUD), Data Integration over Distributed and Heterogeneous Data Endpoints.
09 Philip Jackson (UvT), Toward Human-Level Artificial Intelligence: Representation and Computation of Meaning in Nat-
ural Language.
10 Ivan Salvador Razo Zapata (VU), Service Value Networks.
11 Janneke van der Zwaan (TUD), An Empathic Virtual Buddy for Social Support.
12 Willem van Willigen (VU), Look Ma, No Hands: Aspects of Autonomous Vehicle Control.



13 Arlette van Wissen (VU), Agent-Based Support for Behavior Change: Models and Applications in Health and Safety Do-
mains.
14 Yangyang Shi (TUD), Language Models With Meta-information.
15 Natalya Mogles (VU), Agent-Based Analysis and Support of Human Functioning in Complex Socio-Technical Systems: Ap-
plications in Safety and Healthcare.
16 Krystyna Milian (VU), Supporting trial recruitment and design by automatically interpreting eligibility criteria.
17 Kathrin Dentler (VU), Computing healthcare quality indicators automatically: Secondary Use of Patient Data and Se-
mantic Interoperability.
18 Mattijs Ghijsen (UVA), Methods and Models for the Design and Study of Dynamic Agent Organizations.
19 Vinicius Ramos (TUE), Adaptive Hypermedia Courses: Qualitative and Quantitative Evaluation and Tool Support.
20 Mena Habib (UT), Named Entity Extraction and Disambiguation for Informal Text: The Missing Link.
21 Kassidy Clark (TUD), Negotiation and Monitoring in Open Environments.
22 Marieke Peeters (UU), Personalized Educational Games - Developing agent-supported scenario-based training.
23 Eleftherios Sidirourgos (UvA/CWI), Space Efficient Indexes for the Big Data Era.
24 Davide Ceolin (VU), Trusting Semi-structured Web Data.
25 Martijn Lappenschaar (RUN), New network models for the analysis of disease interaction.
26 Tim Baarslag (TUD), What to Bid and When to Stop.
27 Rui Jorge Almeida (EUR), Conditional Density Models Integrating Fuzzy and Probabilistic Representations of Uncertainty.
28 Anna Chmielowiec (VU), Decentralized k-Clique Matching.
29 Jaap Kabbedijk (UU), Variability in Multi-Tenant Enterprise Software.
30 Peter de Cock (UvT), Anticipating Criminal Behaviour.
31 Leo van Moergestel (UU), Agent Technology in Agile Multiparallel Manufacturing and Product Support.
32 Naser Ayat (UvA), On Entity Resolution in Probabilistic Data.
33 Tesfa Tegegne (RUN), Service Discovery in eHealth.
34 Christina Manteli(VU), The Effect of Governance in Global Software Development: Analyzing Transactive Memory Sys-
tems..
35 Joost van Ooijen (UU), Cognitive Agents in Virtual Worlds: A Middleware Design Approach.
36 Joos Buijs (TUE), Flexible Evolutionary Algorithms for Mining Structured Process Models.
37 Maral Dadvar (UT), Experts and Machines United Against Cyberbullying.
38 Danny Plass-Oude Bos (UT), Making brain-computer interfaces better: improving usability through post-processing..
39 Jasmina Maric (UvT), Web Communities, Immigration, and Social Capital.
40 Walter Omona (RUN), A Framework for Knowledge Management Using ICT in Higher Education.
41 Frederic Hogenboom (EUR), Automated Detection of Financial Events in News Text.
42 Carsten Eijckhof (CWI/TUD), Contextual Multidimensional Relevance Models.
43 Kevin Vlaanderen (UU), Supporting Process Improvement using Method Increments.
44 Paulien Meesters (UvT), Intelligent Blauw. Met als ondertitel: Intelligence-gestuurde politiezorg in gebiedsgebonden een-
heden..
45 Birgit Schmitz (OUN), Mobile Games for Learning: A Pattern-Based Approach.
46 Ke Tao (TUD), Social Web Data Analytics: Relevance, Redundancy, Diversity.
47 Shangsong Liang (UVA), Fusion and Diversification in Information Retrieval.

2015
01 Niels Netten (UvA), Machine Learning for Relevance of Information in Crisis Response.
02 Faiza Bukhsh (UvT), Smart auditing: Innovative Compliance Checking in Customs Controls.
03 Twan van Laarhoven (RUN), Machine learning for network data.
04 Howard Spoelstra (OUN), Collaborations in Open Learning Environments.
05 Christoph Bösch(UT), Cryptographically Enforced Search Pattern Hiding.
06 Farideh Heidari (TUD), Business Process Quality Computation - Computing Non-Functional Requirements to Improve
Business Processes.
07 Maria-Hendrike Peetz(UvA), Time-Aware Online Reputation Analysis.
08 Jie Jiang (TUD), Organizational Compliance: An agent-based model for designing and evaluating organizational interac-
tions.
09 Randy Klaassen(UT), HCI Perspectives on Behavior Change Support Systems.
10 Henry Hermans (OUN), OpenU: design of an integrated system to support lifelong learning.
11 Yongming Luo(TUE), Designing algorithms for big graph datasets: A study of computing bisimulation and joins.
12 Julie M. Birkholz (VU), Modi Operandi of Social Network Dynamics: The Effect of Context on Scientific Collaboration
Networks.
13 Giuseppe Procaccianti(VU), Energy-Efficient Software.
14 Bart van Straalen (UT), A cognitive approach to modeling bad news conversations.
15 Klaas Andries de Graaf (VU), Ontology-based Software Architecture Documentation.
16 Changyun Wei (UT), Cognitive Coordination for Cooperative Multi-Robot Teamwork.
17 André van Cleeff (UT), Physical and Digital Security Mechanisms: Properties, Combinations and Trade-offs.
18 Holger Pirk (CWI), Waste Not, Want Not! - Managing Relational Data in Asymmetric Memories.
19 Bernardo Tabuenca (OUN), Ubiquitous Technology for Lifelong Learners.
20 Loïs Vanhée(UU), Using Culture and Values to Support Flexible Coordination.
21 Sibren Fetter (OUN), Using Peer-Support to Expand and Stabilize Online Learning.



23 Luit Gazendam (VU), Cataloguer Support in Cultural Heritage.
24 Richard Berendsen (UVA), Finding People, Papers, and Posts: Vertical Search Algorithms and Evaluation.
25 Steven Woudenberg (UU), Bayesian Tools for Early Disease Detection.
26 Alexander Hogenboom (EUR), Sentiment Analysis of Text Guided by Semantics and Structure.
27 Sándor Héman (CWI), Updating compressed colomn stores.
28 Janet Bagorogoza(TiU), KNOWLEDGE MANAGEMENT AND HIGH PERFORMANCE; The Uganda Financial Institutions
Model for HPO.
29 Hendrik Baier (UM), Monte-Carlo Tree Search Enhancements for One-Player and Two-Player Domains.
30 Kiavash Bahreini(OU), Real-time Multimodal Emotion Recognition in E-Learning.
31 Yakup Koç (TUD), On the robustness of Power Grids.
32 Jerome Gard(UL), Corporate Venture Management in SMEs.
33 Frederik Schadd (TUD), Ontology Mapping with Auxiliary Resources.
34 Victor de Graaf(UT), Gesocial Recommender Systems.
35 Jungxao Xu (TUD), Affective Body Language of Humanoid Robots: Perception and Effects in Human Robot Interaction.

2016
01 Syed Saiden Abbas (RUN), Recognition of Shapes by Humans and Machines.
02 Michiel Christiaan Meulendijk (UU), Optimizing medication reviews through decision support: prescribing a better pill to
swallow.
03 Maya Sappelli (RUN), Knowledge Work in Context: User Centered Knowledge Worker Support.
04 Laurens Rietveld (VU), Publishing and Consuming Linked Data.
05 Evgeny Sherkhonov (UVA), Expanded Acyclic Queries: Containment and an Application in Explaining Missing Answers.
06 Michel Wilson (TUD), Robust scheduling in an uncertain environment.
07 Jeroen de Man (VU), Measuring and modeling negative emotions for virtual training.
08 Matje van de Camp (TiU), A Link to the Past: Constructing Historical Social Networks from Unstructured Data.
09 Archana Nottamkandath (VU), Trusting Crowdsourced Information on Cultural Artefacts.
10 George Karafotias (VUA), Parameter Control for Evolutionary Algorithms.
11 Anne Schuth (UVA), Search Engines that Learn from Their Users.
12 Max Knobbout (UU), Logics for Modelling and Verifying Normative Multi-Agent Systems.
13 Nana Baah Gyan (VU), The Web, Speech Technologies and Rural Development in West Africa - An ICT4D Approach.
14 Ravi Khadka (UU), Revisiting Legacy Software System Modernization.
15 Steffen Michels (RUN), Hybrid Probabilistic Logics - Theoretical Aspects, Algorithms and Experiments.
16 Guangliang Li (UVA), Socially Intelligent Autonomous Agents that Learn from Human Reward.
17 Berend Weel (VU), Towards Embodied Evolution of Robot Organisms.
18 Albert Meroño Peñuela (VU), Refining Statistical Data on the Web.
19 Julia Efremova (Tu/e), Mining Social Structures from Genealogical Data.
20 Daan Odijk (UVA), Context & Semantics in News & Web Search.
21 Alejandro Moreno Célleri (UT), From Traditional to Interactive Playspaces: Automatic Analysis of Player Behavior in the
Interactive Tag Playground.
22 Grace Lewis (VU), Software Architecture Strategies for Cyber-Foraging Systems.
23 Fei Cai (UVA), Query Auto Completion in Information Retrieval.
24 Brend Wanders (UT), Repurposing and Probabilistic Integration of Data; An Iterative and data model independent ap-
proach.
25 Julia Kiseleva (TU/e), Using Contextual Information to Understand Searching and Browsing Behavior.
26 Dilhan Thilakarathne (VU), In or Out of Control: Exploring Computational Models to Study the Role of Human Awareness
and Control in Behavioural Choices, with Applications in Aviation and Energy Management Domains.
27 Wen Li (TUD), Understanding Geo-spatial Information on Social Media.
28 Mingxin Zhang (TUD), Large-scale Agent-based Social Simulation - A study on epidemic prediction and control.
29 Nicolas Höning (TUD), Peak reduction in decentralised electricity systems -Markets and prices for flexible planning.
30 Ruud Mattheij (UvT), The Eyes Have It.
31 Mohammad Khelghati (UT), Deep web content monitoring.
32 Eelco Vriezekolk (UT), Assessing Telecommunication Service Availability Risks for Crisis Organisations.
33 Peter Bloem (UVA), Single Sample Statistics, exercises in learning from just one example.
34 Dennis Schunselaar (TUE), Configurable Process Trees: Elicitation, Analysis, and Enactment.
35 Zhaochun Ren (UVA), Monitoring Social Media: Summarization, Classification and Recommendation.
36 Daphne Karreman (UT), Beyond R2D2: The design of nonverbal interaction behavior optimized for robot-specific morpho-
logies.
37 Giovanni Sileno (UvA), Aligning Law and Action - a conceptual and computational inquiry.
38 Andrea Minuto (UT), MATERIALS THAT MATTER - Smart Materials meet Art & Interaction Design.
39 Merijn Bruijnes (UT), Believable Suspect Agents; Response and Interpersonal Style Selection for an Artificial Suspect.
40 Christian Detweiler (TUD), Accounting for Values in Design.
41 Thomas King (TUD), Governing Governance: A Formal Framework for Analysing Institutional Design and Enactment
Governance.
42 Spyros Martzoukos (UVA), Combinatorial and Compositional Aspects of Bilingual Aligned Corpora.
43 Saskia Koldijk (RUN), Context-Aware Support for Stress Self-Management: From Theory to Practice.
44 Thibault Sellam (UVA), Automatic Assistants for Database Exploration.



45 Bram van de Laar (UT), Experiencing Brain-Computer Interface Control.
46 Jorge Gallego Perez (UT), Robots to Make you Happy.
47 Christina Weber (UL), Real-time foresight - Preparedness for dynamic innovation networks.
48 Tanja Buttler (TUD), Collecting Lessons Learned.
49 Gleb Polevoy (TUD), Participation and Interaction in Projects. A Game-Theoretic Analysis.
50 Yan Wang (UVT), The Bridge of Dreams: Towards a Method for Operational Performance Alignment in IT-enabled Service
Supply Chains.

2017
01 Jan-Jaap Oerlemans (UL), Investigating Cybercrime.
02 Sjoerd Timmer (UU), Designing and Understanding Forensic Bayesian Networks using Argumentation.
03 Daniël Harold Telgen (UU), Grid Manufacturing; A Cyber-Physical Approach with Autonomous Products and Reconfigur-
able Manufacturing Machines.
04 Mrunal Gawade (CWI), MULTI-CORE PARALLELISM IN A COLUMN-STORE.
05 Mahdieh Shadi (UVA), Collaboration Behavior.
06 Damir Vandic (EUR), Intelligent Information Systems for Web Product Search.
07 Roel Bertens (UU), Insight in Information: from Abstract to Anomaly.
08 Rob Konijn (VU), Detecting Interesting Differences:Data Mining in Health Insurance Data using Outlier Detection and
Subgroup Discovery.
09 Dong Nguyen (UT), Text as Social and Cultural Data: A Computational Perspective on Variation in Text.
10 Robby van Delden (UT), (Steering) Interactive Play Behavior.
11 Florian Kunneman (RUN), Modelling patterns of time and emotion in Twitter #anticipointment.
12 Sander Leemans (TUE), Robust Process Mining with Guarantees.
13 Gijs Huisman (UT), Social Touch Technology - Extending the reach of social touch through haptic technology.
14 Shoshannah Tekofsky (UvT), You Are Who You Play You Are: Modelling Player Traits from Video Game Behavior.
15 Peter Berck, Radboud University (RUN), Memory-Based Text Correction.
16 Aleksandr Chuklin (UVA), Understanding and Modeling Users of Modern Search Engines.
17 Daniel Dimov (UL), Crowdsourced Online Dispute Resolution.
18 Ridho Reinanda (UVA), Entity Associations for Search.
19 Jeroen Vuurens (TUD), Proximity of Terms, Texts and Semantic Vectors in Information Retrieval.
20 Mohammadbashir Sedighi (TUD), Fostering Engagement in Knowledge Sharing: The Role of Perceived Benefits, Costs and
Visibility.
21 Jeroen Linssen (UT), Meta Matters in Interactive Storytelling and Serious Gaming (A Play on Worlds).
22 Sara Magliacane (VU), Logics for causal inference under uncertainty.
23 David Graus (UVA), Entities of Interest— Discovery in Digital Traces.
24 Chang Wang (TUD), Use of Affordances for Efficient Robot Learning.
25 Veruska Zamborlini (VU), Knowledge Representation for Clinical Guidelines, with applications to Multimorbidity Analysis
and Literature Search.
26 Merel Jung (UT), Socially intelligent robots that understand and respond to human touch.
27 Michiel Joosse (UT), Investigating Positioning and Gaze Behaviors of Social Robots: People’s Preferences, Perceptions and
Behaviors.
28 John Klein (VU), Architecture Practices for Complex Contexts.
29 Adel Alhuraibi (UVT), From IT-Business Strategic Alignment to Performance: A Moderated Mediation Model of Social
Innovation, and Enterprise Governance of IT.
30 Wilma Latuny (UVT), The Power of Facial Expressions.
31 Ben Ruijl (UL), Advances in computational methods for QFT calculations.
32 Thaer Samar (RUN), Access to and Retrievability of Content in Web Archives.
33 Brigit van Loggem (OU), Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activ-
ity.
34 Maren Scheffel (OUN), The Evaluation Framework for Learning Analytics.
35 Martine de Vos (VU), Interpreting natural science spreadsheets.
36 Yuanhao Guo (UL), Shape Analysis for Phenotype Characterisation from High-throughput Imaging.
37 Alejandro Montes García (TUE), WiBAF: A Within Browser Adaptation Framework that Enables Control over Privacy.
38 Alex Kayal (TUD), Normative Social Applications.
39 Sara Ahmadi (RUN), Exploiting properties of the human auditory system and compressive sensing methods to increase
noise robustness in ASR.
40 Altaf Hussain Abro (VUA), Steer your Mind: Computational Exploration of Human Control in Relation to Emotions, De-
sires and Social Support For applications in human-aware support systems.
41 Adnan Manzoor (VUA), Minding a Healthy Lifestyle: An Exploration of Mental Processes and a Smart Environment to
Provide Support for a Healthy Lifestyle.
42 Elena Sokolova (RUN), Causal discovery from mixed and missing data with applications on ADHD datasets.
43 Maaike de Boer (RUN), Semantic Mapping in Video Retrieval.
44 Garm Lucassen (UU), Understanding User Stories - Computational Linguistics in Agile Requirements Engineering.
45 Bas Testerink (UU), Decentralized Runtime Norm Enforcement.
46 Jan Schneider (OU), Sensor-based Learning Support.
47 Yie Yang (TUD), Crowd Knowledge Creation Acceleration.



48 Angel Suarez (OU), Colloborative inquiry-based learning.

2018
01 Han van der Aa (VUA), Comparing and Aligning Process Representations.
02 Felix Mannhardt (TUE), Multi-perspective Process Mining.
03 Steven Bosems (UT), Causal Models For Well-Being: Knowledge Modeling, Model-Driven Development of Context-Aware
Applications, and Behavior Prediction.
04 Jordan Janeiro (TUD), Flexible Coordination Support for Diagnosis Teams in Data-Centric Engineering Tasks.
05 Hugo Huurdeman (UVA), Supporting the Complex Dynamics of the Information Seeking Process.
06 Dan Ionita (UT), Model-Driven Information Security Risk Assessment of Socio-Technical Systems.
07 Jieting Luo (UU), A formal account of opportunism in multi-agent systems.
08 Rick Smetsers (RUN), Advances in Model Learning for Software Systems.
09 Xu Xie (TUD), Data Assimilation in Discrete Event Simulations.
10 Julienka Mollee (VUA), Moving forward: supporting physical activity behavior change through intelligent technology.
11 Mahdi Sargolzaei (UVA), Enabling Framework for Service-oriented Collaborative Networks.
12 Xixi Lu (TUE), Using behavioral context in process mining.
13 Seyed Amin Tabatabaei (VUA), Computing a Sustainable Future: Exploring the added value of computational models for
increasing the use of renewable energy in the residential sector.
14 Bart Joosten (UVT), Detecting Social Signals with Spatiotemporal Gabor Filters.
15 Naser Davarzani (UM), Biomarker discovery in heart failure.
16 Jaebok Kim (UT), Automatic recognition of engagement and emotion in a group of children.
17 Jianpeng Zhang (TUE), On Graph Sample Clustering.
18 Henriette Nakad (UL), De Notaris en Private Rechtspraak.
19 Minh Duc Pham (VUA), Emergent relational schemas for RDF.
20 Manxia Liu (RUN), Time and Bayesian Networks.
21 Aad Slootmaker (OU), EMERGO: a generic platform for authoring and playing scenario-based serious games.
22 Eric Fernandes de Mello Araújo (VUA), Contagious: Modeling the Spread of Behaviours, Perceptions and Emotions in
Social Networks.
23 Kim Schouten (EUR), Semantics-driven Aspect-Based Sentiment Analysis.
24 Jered Vroon (UT), Responsive Social Positioning Behaviour for Semi-Autonomous Telepresence Robots.
25 Riste Gligorov (VUA), Serious Games in Audio-Visual Collections.
26 Roelof de Vries (UT), Theory-Based And Tailor-Made: Motivational Messages for Behavior Change Technology.
27 Maikel Leemans (TUE), Hierarchical Process Mining for Scalable Software Analysis.
28 Christian Willemse (UT), Social Touch Technologies: How they feel and how they make you feel.
29 Yu Gu (UVT), Emotion Recognition from Mandarin Speech.

2019
1 Rob van Eijk (UL), Web Privacy Measurement in Real-Time Bidding Systems, A Graph-Based Approach to RTB system clas-
sification.
2 Emmanuelle Beauxis- Aussalet (CWI, UU), Statistics and Visualizations for Assessing Class Size Uncertainty.
3 Eduardo Gonzalez Lopez de Murillas (TUE), Process Mining on Databases: Extracting Event Data from Real Life Data
Sources.
4 Ridho Rahmadi (RUN), Finding stable causal structures from clinical data.
5 Sebastiaan J. van Zelst (TUE), Process Mining with Streaming Data.


	Abstract
	1 Introduction
	1.1 Process Mining
	1.1.1 Process Discovery
	1.1.2 Conformance Checking
	1.1.3 Process Enhancement
	1.1.4 Quality Dimensions in Process Mining

	1.2 Learning from Data Streams
	1.3 Streaming Data in the Context of Process Mining
	1.4 Research Goals and Contributions
	1.4.1 Research Goals
	1.4.2 Contributions

	1.5 Thesis Structure

	2 Preliminaries
	2.1 Basic Mathematical Concepts
	2.1.1 Sets, Tuples and Functions
	2.1.2 Multisets
	2.1.3 Sequences
	2.1.4 Matrices and Vectors
	2.1.5 Graphs
	2.1.6 Integer Linear Programming

	2.2 Process Models
	2.2.1 Petri nets
	2.2.2 Automata

	2.3 Event Data
	2.3.1 Event Logs
	2.3.2 Control-Flow Perspective
	2.3.3 Event Streams

	2.4 Process Mining
	2.4.1 Process Discovery
	2.4.2 Alignments
	2.4.3 Computing (Prefix-)Alignments
	2.4.4 Measuring Quality in Process Mining

	2.5 Running Example

	3 Efficient Event Storage: A Primer for General Purpose Process Mining
	3.1 Introduction
	3.2 Event Stores
	3.3 Conventional Storage Techniques
	3.3.1 Sliding Windows
	3.3.2 Reservoir Sampling
	3.3.3 Maintaining Frequent Cases
	3.3.4 Time Decay
	3.3.5 Guarantees

	3.4 Exploiting Behavioural Similarity
	3.4.1 Maintaining Control-Flow Oriented Prefix-Trees
	3.4.2 Accounting for Event Removal
	3.4.3 Reducing the Overall Memory Footprint

	3.5 Evaluation
	3.5.1 Data Quality
	3.5.2 Memory Usage

	3.6 Related Work
	3.7 Conclusion
	3.7.1 Contributions
	3.7.2 Limitations
	3.7.3 Open Challenges & Future Work


	4 Filtering Infrequent Behaviour From Event Streams
	4.1 Introduction
	4.2 A Control-Flow-Oriented Taxonomy of Behaviour
	4.3 Architecture
	4.4 Automaton Based Filtering
	4.4.1 Prefix-Based Automata
	4.4.2 Incrementally Maintaining Collections of Automata
	4.4.3 Filtering Events

	4.5 Evaluation
	4.5.1 Filtering Accuracy and Time Performance
	4.5.2 Drift Detection Accuracy

	4.6 Related Work
	4.7 Conclusion
	4.7.1 Contributions
	4.7.2 Limitations
	4.7.3 Open Challenges & Future Work


	5 Avoiding Data Redundancy by Learning Intermediate Representations
	5.1 Introduction
	5.2 Architecture
	5.3 Instantiating Intermediate Representation Based Discovery
	5.3.1 The Directly Follows Abstraction
	5.3.2 Region Theory

	5.4 Evaluation
	5.4.1 Structural Analysis
	5.4.2 Behavioural Analysis
	5.4.3 Concept Drift
	5.4.4 Performance Analysis

	5.5 Related Work
	5.6 Conclusion
	5.6.1 Contributions
	5.6.2 Limitations
	5.6.3 Open Challenges & Future Work


	6 Improving Process Discovery Results by Exploiting Intermediate Representations
	6.1 Introduction
	6.2 ILP-Based Process Discovery
	6.2.1 Regions and Integer Linear Programming
	6.2.2 Guarantees on Discovering Minimal Regions

	6.3 Discovering Relaxed Sound Workflow Nets
	6.3.1 Discovering Multiple Places Based on Causal Relations
	6.3.2 Discovering Workflow Nets

	6.4 Dealing with Infrequent Behaviour
	6.4.1 The Impact of Infrequent Exceptional Behaviour
	6.4.2 Sequence Encoding Graphs
	6.4.3 Filtering

	6.5 Evaluation
	6.5.1 Model Quality
	6.5.2 Computation time
	6.5.3 Application to Real-Life Event Logs

	6.6 Related Work
	6.7 Conclusion
	6.7.1 Contributions
	6.7.2 Limitations
	6.7.3 Open Challenges & Future Work


	7 Online Conformance Checking using Prefix-Alignments
	7.1 Introduction
	7.2 Online Prefix-Alignments Computation
	7.2.1 An Incremental Framework
	7.2.2 Parametrization

	7.3 Evaluation
	7.3.1 Experimental Set-up
	7.3.2 Results
	7.3.3 Evaluation using Real Event Data

	7.4 Related Work
	7.5 Conclusion
	7.5.1 Contributions
	7.5.2 Limitations
	7.5.3 Open Challenges & Future Work


	8 Discovering Social Networks
	8.1 Introduction
	8.2 Social Networks
	8.3 Architecture
	8.3.1 Networks & Builders
	8.3.2 Real-Time versus Right-Time Update Strategies

	8.4 Evaluation
	8.5 Related Work
	8.6 Conclusion
	8.6.1 Contributions
	8.6.2 Limitations
	8.6.3 Open Challenges & Future Work


	9 Implementation
	9.1 Introduction
	9.2 Event Stream Generation
	9.3 Storage
	9.4 Filtering
	9.5 Discovery
	9.5.1 Intermediate Representations
	9.5.2 ILP-Based Process Discovery

	9.6 Conformance Checking
	9.7 Enhancement
	9.8 Overview
	9.9 Conclusion
	9.9.1 Contributions
	9.9.2 Limitations
	9.9.3 Open Challenges & Future Work


	10 Conclusions
	10.1 Contributions
	10.2 Limitations
	10.3 Open Challenges
	10.4 Future Work

	Bibliography
	Index
	Summary
	Acknowledgements
	Curriculum Vitae
	List of Publications
	SIKS Dissertations

