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Task Elimination may Actually Increase
Throughput Time
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Eindhoven University of Technology,
P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
d.m.m.schunselaar@tue.nl, h.m.w.verbeek@tue.nl

Abstract. The well-known Task Elimination redesign principle suggests
to remove unnecessary tasks from a process to improve on time and cost.
Although there seems to be a general consensus that removing work can
only improve the throughput time of the process, this paper shows that
this is not necessarily the case by providing an example that uses plain
M/M/c activities. This paper also shows that the Task Automation and
Parallelism redesign principles may also lead to longer throughput times.
Finally, apart from these negative results, the paper also show under
which assumption these redesign principles indeed can only improve the
throughput time.

1 Introduction

Within the Business Process Redesign community, a well-know redesign principle
is the Task Elimination redesign principle, e.g., see [1]. The idea behind this
redesign principle is that, by removing work, the overall throughput time will
decrease and that costs are reduced [2]. After all, cases which would have been
processed by a particular task can now skip this task and immediately arrive at
a subsequent task.

Unfortunately, the redesign principle does not need to reduce the throughput
time; it might actually increase. Due to overtaking cases, some cases may become
slower while the overtaking cases may not become faster. As a result, the average
throughput time increases.

Within [3], similar ideas are presented as the Task Elimination redesign prin-
ciple, i.e., removal of bottlenecks to reduce the throughput time. Furthermore,
within our earlier work [4], we have used, i.a., the Task Elimination redesign
principle as a base line upon which we have created patterns to deduce if the
throughput time of one process model is at-least-as-good as another process
model. For all the aforementioned the same holds: an expected reduction of the
throughput time might actually be an increase of throughput time. Within this
paper, we sketch the boundaries as well as additional assumption under which
the Task Elimination redesign principle will not increase the expected through-
put time.

The structure of this report is as follows: first, we touch upon some prelimi-
naries. Second, we present an example process model on which Task Elimination
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does not reduce but increases the throughput time. Third, we present sets of
additional assumptions under which Task Elimination does reduce the through-
put time. Fourth, we show in the discussion section that the reasoning for Task
Elimination can also be applied to Task Automation and Parallelism. Finally,
fifth, we present our conclusions. An extended version of this paper can be found
in [5, Ch. 7].

2 Preliminaries

Within this Section, we briefly introduce two modelling formalisms. The first,
Petri nets [6], is used to show our motivating example why Task Elimination
can result in an increased throughput time. The second, BCMP networks, is
used to guarantee under which assumptions Task Elimination cannot result in
an increased throughput time.

Petri nets Petri nets were first introduced in [6]. A Petri net consists of places
(circles), transitions (rectangles), and edges between both (Fig. 1). Transitions
denote the tasks of a Petri net and come in two flavours; labelled, and silent.
Labelled transitions have a name, e.g., A. Silent transitions do not have a label
and are usually indicated with a black rectangle.

R

B

A

P P ′

Fig. 1: Example Petri net.

The behaviour of a Petri net is encoded using tokens. Tokens are indicated
by black dots. The state, or marking , of a Petri net is the distribution of tokens
over the places. A transition t is allowed to fire if all places in its preset are
marked, i.e., contain a token. The preset of a transition are those places that
are the source of an edge to said transition. By firing a transition, a token from
each of the preset places is consumed and on each of the postset places a token
is produced . The postset of a transition are those places that are the target of
an edge from said transition.

We have two special states; the initial state and the final state. The initial
state of a Petri net is the state from which we started firing transitions, e.g., in
Fig. 1, the left-most place is an initial state. The final state is the state in which
the Petri net is considered to be terminated, e.g., the right-most place in Fig. 1.
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qa,r = p

qb,s = (1− p)

pa,r,c,r = 1

pb,s,c,s = 1

pc,r,d,r = 1

pc,s,e,s = 1

pe,s,0 = 1

pd,r,a,r = q

pd,r,0 = (1− q)

Fig. 2: Example queueing model.

BCMP Networks In order to explain queueing networks and BCMP net-
works [7] in particular, we start with the queueing model in Fig. 2. Where a
Petri net has transitions, a queueing model has service centres. In queueing net-
works, the term customer is used to denote a token (although customers are
not produced and consumed as in a Petri net). In its most simple form, cus-
tomers arrive according to an exponential distribution with rate parameter λ.
Customers receive service at a service centre by a server with a service rate of µ
(again exponentially distributed). The average time in between two arrivals is 1

λ
and the average time needed to handle a customer is 1

µ . The resource utilisation

is denoted by ρ which in this case is equal to λ
µ . If ρ ≥ 1, then there is more work

arriving per time unit than the service centre can handle. As such, in general,
the requirement ρ < 1 is imposed.

Within queueing networks, customers can be of different classes. This would
correspond to different types of tokens, e.g., a complaint by a gold customer or
a complaint by a silver customer. Customers go from one service centre to the
next service centre with a certain probability. These probabilities can depend
on the customer class, e.g., in Fig. 2, after being processed at service centre A,
a customer of class r moves to the queue of service centre C (again as a class
r customer). This probability is encoded as pa,r,c,r. Note that customers can
change class while moving between service centres.

Next to customer classes, queueing networks can contain feedback , i.e., loops,
and fork-join, i.e., parallelism. Furthermore, the queueing network can be open
(customers arrive and leave the network), closed (a fixed number of customers
are in the network), or mixed (open for some classes of customer, and closed
for other classes of customers). Within this paper, we only consider open queue-
ing networks without fork-joins. To denote externally arriving customers and
customers leaving the queueing network, the queueing model in Fig. 2 has ar-
rows without a source, or without a target. The incoming arrows, i.e., without
a source, have a probability associated to them that a customer of a particu-
lar class will arrive at the service centre, e.g., the arrow with qa,r = p denotes
that with probability p a customer of class r arrives at service centre A. Con-
versely, outgoing arrows have a probability that a customer of a particular class
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will leave the network after being processed at a particular service centre, e.g.,
pd,r,0 = (1− q).

Within a BCMP network, the service centres can be any of the following
types [7]:

1. The service principle is First in First out. All customers receive the same
service time distribution which is an exponential distribution.

2. There is a single server at a service centre. The service principle is server
sharing. This means that every time unit every customer at this service
centre receives a service rate proportional to the number of customers at
this service centre. The service time distribution is arbitrary.

3. The number of servers in the service centre is greater than or equal to the
maximum number of customers that can be queued.

4. There is a single server at a service centre, the queueing principle is preemptive-
resume last-come-first-serve. Each class of customers may have a distinct
distribution for the service times.

Type 2, 3 and 4 service centres all assume service distributions with rational
Laplace transforms. In [8], for various distributions, it is shown they have rational
Laplace transforms, e.g., exponential, hyperexponential, and hypoexponential.
In the work of [9], it is stated that an arbitrary distribution may be as closely
approximated as one may wish using a convex mixture of Erlang distributions.
This mixture has a rational Laplace transform.

One of the results from BCMP networks is that, for open networks where the
Poisson arrival of new customers is independent of the state of the network, the
number of customers in each service centre are independent random variables [7].
This means that the throughput time at a service centre is independent of the
other service centres.

3 Motivating example

Figure 3 [5] shows our example process model at the left-hand side, and the
process model after applying the Task Elimination design principle on the right-
hand side. As one can see, in the right-hand model, task R has been eliminated.
As a result, one would expect that the right-hand model would have a throughput
time which is at-most that of the left-hand model. However, as we will show,
this is not the case.

In the example process models, we have two types of cases: red cases (ex-
ecuting task R, and skipping task B) and blue cases (executing task B). Task
A is executed for all cases. Finally, tasks P and P ′ are parallel to the afore-
mentioned tasks. For now, assume the processing time distribution of each task
is deterministic with the value as indicated in Fig. 3, e.g., task A takes 5 time
units. Furthermore, assume the cases arrive in a burst , i.e., within a very short
period of time a large amount of cases arrive. Thereafter, for a long period of
time, no cases arrive. Let the time between the bursts be such that the model
is empty when a new burst arrives. During a burst, a total of N cases arrive.
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Fig. 3: Example where Task Elimination increases the throughput time.

Assume that 1
2N red cases and 1

2N blue cases arrive. Furthermore, assume that
all tasks process the cases in a First in First out (FiFo) order.

In the original process model, in the parallel branch, tasks P and P ′ process
the cases in the order they arrive at the process model. At the tasks R and B,
the cases are also processed in the order they arrive. At task A, the ordering
can be slightly different, i.e., two consecutively arriving cases can both be blue
cases and then a red cases can be in between at A. In general, the order of the
cases at A is similar to the arrival of cases to the process model. Which in turn
is similar to the order of the cases at P and P ′. As a result, the time cases spend
on synchronising is relatively small at the transition joining the parallel branches
(in the remainder, this transition is called: AND-join).

In the redesigned process model, we have eliminated task R. This means that
just after a burst has occurred, the queue at A is filled with 1

2N red cases. Behind
these red cases, the blue cases are enqueued as these first have to be processed
by task B. In the parallel branch nothing has changed, i.e., tasks P and P ′ still
process the cases in the order they arrive at the process model. This means that
at the AND-join, the top branch has been resorted on red first and blue last,
while in the bottom branch, no resorting was done and the cases arrive in the
same order as they arrived at task P . Only after the 1

2N red cases have been
processed by task A, blue cases can be synchronised.

By eliminating task R, the sorting of cases before the AND-join has changed
dramatically in the upper branch, while it did not change in the lower branch. As
a result, task A started processing cases which had no priority, as in the bottom
branch, no work has been done on them. As such, there was no need to work
on these cases by task A. This while cases which were being processed at tasks
P and P ′ (blue cases) were at the end of the queue of task A. The overtaking
of cases makes that at the synchronisation the wrong cases are waiting to be
synchronised, i.e., cases which cannot be synchronised with any of the cases at
the other branch.

In our example, we have used burst arrivals and deterministic processing
times. If we look into a Poisson arrival stream and exponential distributions on
the tasks, i.e., not deterministic, then one can still observe the same phenomenon.
Within a Poisson arrival stream, it is still possible that multiple cases arrive
within a short period of time. The earlier sketched overtaking of cases might be
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less prominent (there are fewer cases at the same time within the process model)
but the end effect will be the same, i.e., Task Elimination can have a negative
effect on the throughput time.

Fig. 4: Quantitative results for our example. The arrival process is Poisson and
the processing times are deterministic 5 minutes with FiFo queues at every task.
The blue line is with Task Elimination and the red line is no Task Elimination.

We have simulated both models from Fig. 3 with different Poisson arrival
distributions (interarrival times as shown in Fig. 4) with 30 replications and a
replication length of 1000 hours using L-SIM [10]. All tasks have a deterministic
processing times of 5 minutes. Furthermore, every task has a FiFo queue. Finally,
every task has exactly 1 dedicated resource allocated. The results are depicted
in Fig. 4 (blue is Task Elimination and red is no Task Elimination). One can
indeed observe that Task Elimination has a negative effect on the throughput
time.

4 Additional assumptions

The above example shows the need for additional assumptions under which Task
Elimination gives an intuitive result. Within this Section, we assume there are
two models M1 and M2 where M2 is obtained from M1 by applying the Task
Elimination design principle on some tasks (possibly none), i.e., these tasks have
become silent transitions.
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4.1 Scheduling

In this set of assumptions [5], we assume that both process models follow the
same schedule in executing the cases (see Fig. 5 for an illustration of an example
schedule). This means that, even though a case c′ arrives earlier at a particular
task than case c, the execution of c′ is possibly delayed to work on c first (even
though c might arrive later at the respective task than c′). This setting is par-
ticularly applicable in situations where a fixed set of cases needs to be processed
during a certain time period, e.g., order picking, and if a-priori a schedule is
made to optimally execute the cases. It is easy to show that the redesign prin-
ciples and conversely the patterns in [4] can safely be applied. This follows from
the fact that by eliminating tasks in the execution of cases, it is always possible
to project the schedule for executing the cases of a model with more tasks to a
model with fewer tasks.

0

r1

r2

r3

r4

5 10

c1c2c3 c4

15 20 25 30 35

c1

R

B

A

P

c2

c3

c1 c3 c2

c4

c4

0 5 10 15 20 25 30 35

c1 c2 c3 c4

c1 c2 c3 c4r5P ′

r2

r3

r4

c1c2c3 c4

c1B

A

P

c2

c1 c3 c2 c4

c1 c2 c3 c4

c1 c2 c3 c4r5P ′

Fig. 5: Example execution schedule for the Petri nets in Fig. 3. On the y-axis,
we have the tasks with the resources (ri). On the y-axis, we have the time. The
cis are the cases and the small downward arrows are the arrival of cases.

4.2 BCMP networks

For BCMP networks [7], exact solutions exist to compute the mean throughput
time. If a Petri net can be transformed to a BCMP network, then we can show
that Task Elimination indeed returns the correct result. This follows from the
fact that the throughput time at a task is independent of the other tasks. By
having fewer tasks, the throughput time of the cases does not increase. As a
result, the throughput time of the process model will not increase and probably
will decrease. A Petri net can be transformed to a BCMP network if it is a state
machine, i.e., every transition has exactly one place in its preset and exactly one
place in its postset. Furthermore, the tasks within a Petri net need to adhere
to the types supported by the BCMP network [5]. Finally, the arrival process of
new cases needs to be Poisson.

The transformation of a state machine to a BCMP network is relatively
straightforward (see Fig. 6 for an example). As stated, a BCMP network con-
sists of service centres, an arrival rate, and probabilities for customers moving
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through the BCMP network, i.e., arriving customers, customer moving between
service centres, and leaving customers. Within Fig. 2, we denote with pa,s,b,s the
probability of a customer moving from service centre a to service centre b with
customer class s. For the transformation, we do not need to use the customer
class for routing customers, hence we omit the customer class in our probabil-
ities, i.e., we write pa,b to denote the probability of a customer moving from
service centre a to service centre b.

qsA = pi1pt1pA

A

B

C

D E

I

O

pi1

pi2
po2

po1
t1

t2 t4

t5t6

sA

sBqsB = pi1pt1pB

pA

pBpt1

sC

psA,sC = pc = 1

t3

psB ,sC = pc = 1

sD
qsD = pi1pt1pt2pD+

pi1pt3pD + pi2pD
sE

psD,sC = pt4pC

psD,sE = pE
psE ,0 = po2 = 1

psC ,0 = po1

psC ,sC = (1− po1)pt5pt6pC+

pt3
t7

(1− po1)pt7pC

Fig. 6: Example transformation of a state machine (with some probabilities made
explicit) to a BCMP network.

Within our transformation, since we only consider open queueing networks,
we assume there is a set of places I where customers/tokens are entering the
Petri net, and a set of places O where customers/tokens are leaving the Petri
net. Furthermore, since the queueing network is open, every customer/token
produced in a place in I can always reach a place in O. Furthermore, we assume

8



that every edge in the Petri net has a probability associated to it (in Fig. 6,
we have illustrated some of the probabilities). The probability on the outgoing
edge of a transition is by definition 1, the probability of the incoming edge of a
transition t is the probability that the transition will fire if there is a token in
its preset (this probability is indicated by pt). Next to this, a place o ∈ O has
a probability that a token will leave the Petri net from o (indicated by po), and
a place i ∈ I have a probability that a token is produced in i (indicated by pi).
We assume that the sum of all pi is equal to 1, e.g., pi1 + pi2 = 1 in Fig. 6. For
every set T of transitions that have the same preset, we have

∑
t∈T pt = 1, e.g.,

pt1 + pt3 = 1 in Fig. 6.

Every labelled transition in the Petri net is transformed into a service centre
with its respective distribution, we indicate with st the service centre of transi-
tion t. The arrival probability of a new customer at service station st (indicated
by qst in Fig. 6) is 0 if the preset of t is not in I and pipt if it is. Mutatis mutandis,
we can deduce the probability that a customer leaves the network after having
received service at a service station. The probability of a customer arriving at
service station st′ after having received service at service centre st (indicated by
pst,s′t in Fig. 6) is pt′ if the preset of t′ equals the postset of t (note that we have
a state machine so every transition only has a single place in its preset/postset).
In case of silent transitions, there might be a path of silent transitions between
the postset of t and the preset of t′. In this case, the probability pst,s′t is equal
to the sum of the probabilities of all possible paths between t and t′, e.g., from
transition C to transition C in Fig. 6. The probability of a path is equal to the
product of the probabilities of the edges in a path. If no such path exists, then
pst,s′t = 0 (implicit in Fig. 6).

Using the above sketched transformation, we can transform a state machine
into a BCMP network. Hence, Task Elimination will not result in an increase of
throughput time within state machines that can be transformed.

5 Discussion

We have focussed primarily on Task Elimination. These results are also appli-
cable to the Task Automation [1] and Parallelism redesign principles [2]. The
Task Automation redesign principle essentially reduces the the time spent in a
task to almost 0. As a result, the same reasoning as for Task Elimination can
be followed. Within the Parallelism redesign principle, multiple tasks are put in
parallel to decrease the throughput time. If we take our example process model
in Fig. 3 and we would replace R by the sequential execution of R1, . . . , Rn such
that duration of R is the same as the sum of the durations of R1, . . . , Rn and
the duration of R1, . . . , Rn is close to 0, then by placing R1, . . . , Rn in parallel,
we possibly would make that branch significantly faster. As a result, in front of
A, we would have only red cases enqueued.
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6 Conclusion

Within this paper, we have shown that various redesign principles and in par-
ticular Task Elimination does not need to reduce the throughput time under
all circumstances; under some circumstances, the throughput time actually in-
creases. As a result, our patterns presented in [4] do not always yield the correct
result. At the same time, we have presented additional assumptions/settings
under which Task Elimination always does give the correct result.
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