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1
Introduction

1.1. Complex networks
The theory of complex networks has gained a lot of interest in the last decades due

to the accessibility of data and the growth of computational power. This led to an
increase in the scientific research on random graphs and their properties.

1

2

3

4

5

6

7

Figure 1.1: Example of a small
undirected graph with 7 vertices
and 9 edges.

There are many systems in the real world
that can be seen as large networks, since we
can see them as a collection of objects linked
to each other with certain connections. For
instance, the World Wide Web, Internet, rail-
ways, electric systems, social networks, in-
teractions of genes and proteins, are all real-
world systems that can be interpreted as
large networks.

Mathematically, a network is modeled as
a graph G, that is a pair consisting of a set of
vertices V (G) and a set of edges E(G). Ver-
tices represent the objects that compose the
network (for instance web pages) and edges
represent the connections between vertices
(for example in the world-wide web case,
a hyperlink from a page to another). The
graphG is directed when the connection is oriented (a hyperlink leads from a webpage
to another), otherwise is undirected (a cable in the Internet networks that connects two
servers has no direction).

Seeing vertices as parts of a large network allows to consider individual charac-
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1.1. Complex networks

teristics, such as the number of connections of every vertex, as well as more global
properties, for example the maximum distance in the network. Global properties are
relevant since they can affect the performance of the networks itself, for instance, the
flow or spread of information in the WWW, the presence of traffic in a highway sys-
tem of a country or the robustness of an electric network in the case of the failure of
one of its parts.

Interestingly, networks that represent very different systems share some proper-
ties, independently of the nature of the networks (social, biological, electrical, etc.).
For more details of real-world networks and their common properties, we refer to
[17, Chapter 1], [130, Chapters 1-5], [85, Chapter 1] and the references therein.

1.1.1. Power-law degree distribution
The degree of a vertex v ∈ [n] is defined as the number of edges incident to v. In

the undirected case this is well defined. In the directed setting, we can distinguish
between the in-degree, given by the incident edges pointing towards v, and the out-
degree, given by the incident edges pointing away from v.

It has been observed ([1, 17, 41, 42, 65, 155, 161], [130] and the references therein)

100 101 102 103

10−5

10−4

10−3

10−2

10−1

100

log(k + 1)

lo
g(
P(
D
≥

k
))

Tail degree distribution (Astrophysics)

Figure 1.2: In-degree tail distribution of citations in Astrophysics citation net-
work. The network is made by 477113 Astrophysics papers published between
1980 and 2015, and 9154818 edges. A directed edge from paper v to paper w rep-
resents a reference to w contained in paper v. The plot represents the tail of the
distribution of the number of citations received by a uniformly chosen paper in
the dataset in log log form. Data from Web Of Science.

2



1

In
tr

od
uc

tio
n

1

In
tr

od
uc

tio
n

1.1. Complex networks

Network Type Vertices Edges Power-law τ
Film actors Undirected 449913 25516482 2.3
Email messages Directed 59812 86300 1.5/2
Telephone call graph Undirected 47000000 80000000 2.1
WWW Alta Vista Directed 203549046 1 466 000000 2.1/2.7
Word co-occurrence Undirected 460902 16100000 2.7
Protein interactions Undirected 2115 2240 2.4

Table 1.1: Examples of networks with type (directed/undirected), number of
vertices, number of edges and estimated power-law exponent of the degree dis-
tribution (in-degree in case of directed networks). Data from [130, Table 8.1].

that many real-world networks show a power-law degree distribution. Such networks
are called scale free. In a scale-free networks, the fraction of vertices with degree k
decreases as k−τ , where τ is called the power-law exponent. In a loglog plot as in Figure
1.2, the scale-freeness is revealed by straight lines. In fact, denoting by nk the number
of vertices with degree k and by n the total number of vertices, then

nk
n
≈ Ck−τ ⇐⇒ log(nk/n) ≈ −τ log k + logC,

which is a line in the argument log k. As a consequence, the straight line in Figure
1.2 suggests that the considered network shows a power-law degree distribution. In
the undirected setting we consider the total degree, while in the directed setting in
general we observe in-degree power laws.

In Table 1.1 we report information of examples of networks taken from [130]. Ta-
ble 1.1 contains the estimated power-law exponent for the degree distribution. It has
been observed that many real-world networks show a power-law exponent τ ∈ (2, 3).
A power-law distribution with τ ∈ (2, 3) has finite mean but infinite variance. This
implies that degrees in these networks show a large variability, thus allowing the exis-
tence of hubs, i.e., vertices with extremely high degree. These vertices play a relevant
role in the network as, for example, they short distances.

1.1.2. Distances
In a graphG = (V,E), the distance between two vertices v, u ∈ V is defined as the

length of the shortest path made of edges connecting u and v. It has been observed
[65, 85, 130, 161, 170] that in many real-world networks distances are quite short, even
for very large graphs. This has been called the small-world phenomenon.

A way to mathematically describe this is to investigate the typical distance and the
diameter of a graph. The typical distance is the distance between two vertices chosen
uniformly at random in the set V . The diameter is the maximum of the distances
between all pairs of vertices in the graph. If the network is not connected, then these

3
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Figure 1.3: Distances in arXiv Astrophysics collaboration network. In this net-
work, vertices represent authors. An edge is present between two authors if and
only if they are co-authors of an Astrophysics paper that has appeared on arXiv.
The network is composed of 18772 authors and 198110 co-authorships. The plot
represents the frequency of values of distances. For instance, around 40% of pairs
of vertices are at distance 4. The diameter of the graph is 14. Data from SNAP
(Stanford University) [111].

quantities are infinite, in the sense that there are pairs of vertices with no paths con-
necting them. In this setting, we can look at distances within connected components.

Small-world networks have the advantage that, for example, one can send a mes-
sage from one vertex to another using only a few steps. A famous example of this is
the six degrees of separation experiment by Milgram [122, 159]. The aim of this experi-
ment was to prove that two random people in the U.S.A. know each other through at
most 6 intermediate friends. In the network framework, the vertices represent people
in the U.S.A., and edges represent friendships. The six degrees of separations are in-
terpreted as the fact that the typical distance between two vertices is 7, over a network
of size the entire U.S. population.

1.1.3. Subgraphs and clustering
In many real-world networks, vertices tend to be connected to each other forming

triangles and other highly-connected subgraphs. Several subgraphs were found to
appear more frequently than other subgraphs [123]. Which type of subgraph appears
most frequently varies for different networks, and the most frequently occurring sub-
graphs are believed to be correlated with the function of the network [123, 124, 174].
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Figure 1.4: Two examples of graphs with 25 vertices. The graph on the left is
less ”clustered” than the graph on the right, since the graph on the right has
more small subgraphs, such as triangles or cliques. Here by a clique we mean a
subgraph of where each vertex is connected to all other vertices in the subgraph.
The graph on the left is a sample of the Barabási-Albert model, while on the right
is a sample of a random geometric graph in the unit square.

This property is called clustering. From a social networks perspective, we can say
that two people are more likely to be friends if they have a common friend. In other words,
two vertices are more likely to be connected if they are both connected to a third
common vertex.

This property is measured by the global clustering coefficient C, that can be defined
as

C =
3× (number of triangles)

number of connected triplets , (1.1.1)

where by a connected triplet we mean three vertices connected by two edges. First in-
troduced in networks science by [18], it has been observed in several works ([130],[131]

Network Vertices Edges C C′
Company directors 7673 55392 0.59 0.88
Internet 10697 31992 0.035 0.39
Power grid 4941 6594 0.1 0.08
Metabolic network 765 3686 0.09 0.67

Table 1.2: Examples of networks with number of vertices, number of edges,
global clustering coefficient C and average local clustering coefficient C′. Data
from [130, Table 8.1].
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and the references therein) that the clustering coefficient of real-world networks is
higher than what would happen by rewiring edges uniformly at random, keeping
the degrees of vertices fixed (we refer to [130, Section 7.9] for a more complete dis-
cussion).

Watts and Strogatz [171] propose a different measurement of clustering, based on
the so-called local clustering coefficient. For a vertex i in the network, the local clustering
coefficient Ci is defined as

Ci =
number pairs of neighbors of i that are connected

number of pairs of neighbors of i . (1.1.2)

Then, the clustering coefficient C′ of the network is given by the average over all ver-
tices of the terms in (1.1.2), that is

C′ =
1

n

n∑

i=1

Ci =
1

n

n∑

i=1

∆i

di(di − 1)
, (1.1.3)

where di is the degree of vertex i and ∆i is the number of triangles that include i.
Notice that (1.1.3) differs from (1.1.1). In [145, 146, 160] it is empirically observed that
Ci scales as an inverse power of the degree di of vertex i.

In contrast to clustered networks, there is a class of graphs that is called tree-like
networks, where triangles are rare. More precisely, the neighborhoods of vertices are
structured as trees, so short cycles are rare in the graph.

1

2

3 4

5

6

Figure 1.5: Explanation of PageRank scores. In this figure, the sizes of the vertices
represent the PageRank score, i.e., the bigger a vertex is, the higher its PageRank
score. The picture explains why PageRank gives more insight about the graph
than just the in-degree. The score of vertex 3 is high since it receives a lot of edges.
The score of vertex 4 is high even though it receives only one edge. This happens
because the edge received by vertex 4 comes from vertex 3, that has a high score
itself. Picture from Wikipedia.
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1.1. Complex networks

1.1.4. Power-law PageRank distribution
PageRank, first introduced in [134], is an algorithm that generates a ranking on

the vertices in finite directed graphs. The algorithm is also defined on undirected
graphs, but in this case is less considered in applications. Originally introduced to
rank World-Wide Web pages, PageRank has a wide range of applications including
spam detection [79], citation analysis [48, 117, 165], community detection [8] or so-
cial networks analysis [15, 169]. PageRank is one of simplest, yet highly informative,
networks algorithms.

PageRank is an algorithm that produces a ranking of the vertices of a graph, i.e.,
to every vertex PageRank associates a value that reflects the ”relevance” of the vertex
in the graph. PageRank is not the only ranking algorithm on graphs, in fact is part
of a broader class of ranking procedures called centrality measures. As the name sug-
gests, a centrality measure is a measure of the relevance or importance of vertices in
a graph. For instance, (in-)degree can be seen as centrality measure, so vertices with
high degree are more relevant in the network. What is interesting about PageRank is
that the score of a vertex i depends on the scores of vertices pointing towards i. In particular,
PageRank takes into account not only the number of edges that a vertex receives, but
also the quality. A simple example with a heuristic explanation of PageRank is given
in Figure 1.5.

More precisely, given a graph G of size n, PageRank is a deterministic vector πn

100 101 102 103

10−5

10−4

10−3

10−2

10−1

100
Organic Chemistry

Degree
PageRank

Figure 1.6: In-degree and graph-normalized PageRank in the Organic Chemistry
citation network. The network is made by 567146 Organic Chemistry papers pub-
lished between 1980 and 2015, and 5072139 references. We can observe that both
in-degree and the graph-normalized PageRank follow a power-law distribution,
with remarkably similar power-law exponent. Data from Web Of Science.
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1.2. Random graphs

of length n, where πv is the rank of vertex v. The PageRank vector πn is defined
as the invariant measure of a particular random walk on the graph, therefore πn
is a probability distribution on the vertices of the graph. Sometimes it is useful to
consider the graph-normalized version of PageRank, that is defined as R(n) = nπn.
Notice that we call PageRank both the vectorR(n) and the algorithm that produces it.

It has been observed [44, 112, 135, 163] that in real-world networks with power-law
(in- ) degree distributions, PageRank follows a power-law with the same exponent. In
other words, the fraction of vertices rk whose graph-normalized PageRank score ex-
ceeds k decreases as k−τ , where τ is the same power-law exponent of the (in-)degree
distribution. Figure 1.6 illustrates this phenomenon in a citation network. The two
lines, that are the PageRank tail distribution and the in-degree tail distribution in a
loglog format, are parallel, indicating that both distributions obey a power law with
the same exponent τ .

This led to the formulation of the PageRank power-law hypothesis that states that
in any graph with an (in-)degree distribution that obeys a power law with exponent τ , the
PageRank distribution also obeys a power law with the same exponent τ .

1.2. Random graphs
A mathematical way to describe real-world networks, taking into account the in-

homogeneity present in the data, is through random graphs. Random graphs are graph
models where the edges and/or the number of vertices are random. Over the years,
different models of random graphs have been proposed. We now give a brief intro-
duction to the most widely studied models.

1.2.1. Static models
Erdős-Rényi model. The first random graph model that has been investigated in
the litererature is the Erdős-Rényi random graph, that wan introduced by Erdős and
Rényi [63], and independently by Gilbert [76]. In the Erdős-Rényi model, we fix the
size of the graph n ∈ N , and a number p ∈ (0, 1). Then, each edge (u, v) is added
to the graph independently of every other edge with probability p. In general, the
graph is considered undirected, but it is possible to define a directed version of this
model, where (u, v) and (v, u) are two distinct directed edges.

The Erdős-Rényi model has been studied intensively. We refer to [6, 29, 100] and
the references therein for early works on this model. A classical problem in the Erdős-
Rényi model is the evaluation of the size of the largest connected component, i.e., the
number of vertices in the largest set of connected vertices. A lot work has been done
in this direction, identifying a phase transition in the behavior of the size of the largest
connected component [36, 115].

In the Erdős-Rényi model all vertices are ”identical”, in the sense that the prob-
ability of two vertices being connected is the same for all pairs of vertices, and as a
result of this there is no high inhomogeneity among vertices. This is in contrast to
real-word networks. In fact, in scale-free networks, we observe many vertices of low
degree connected to vertices of extremely high degree, sometimes called hubs.
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1.2. Random graphs

Inhomogeneous random graphs. To incorporate inhomogeneity, the probability of
an edge being present can differ from edge to edge. For example, in the Chung-Lu
model [49, 50, 51] (and its variations), a weight wi is assigned to every vertex i. Every
edge is added independently of any other and of the weights, where the probabilty of
an edge (i, j) being present is close to a linear function of the product of the weights
wi, wj . These models are called Chung-Lu models or inhomogeneous random graphs
(see also [26]). It is possible to obtain, for instance, power-law degree distributions
by sampling the weights from a power-law distribution.

Stochastic block model. Another variation of the the Erdős-Rényi model is the
stochastic block model, that can be defined as an inhomogeneous random graph [30].
A stochastic block model of size n ∈ N is a graph where we can fix a number k ≤ n

of groups. Every vertex is assigned to one in the k groups, and the probability that an
edge is present between two vertices depends on the groups of the two vertices. Typi-
cally, the probability that two vertices are connected is high between two vertices of
the same group and low between vertices of different groups. In this way communi-
ties can be modeled. Here by a community we can in a simple way think of a group
of vertices that is highly connected with few edges towards the outside of the group.

Configuration model. The configuration model (CM) was originally introduced by
Bollobás [27] to describe random regular graphs, and it was extended by Molloy and
Reed [125, 126] to general degrees. By CM now we refer to a random graph model
with a prescribed degree sequence. In other words, CM is a graph where we fix the
degree sequence. In particular, we can obtain a scale-free graph by imposing a power-
law degree distribution. The graph is constructed as follows: to every vertex i ∈ [n]

are attached a number of half-edges equal to its degree di, therefore we have in total
`n = d1 + · · · + dn half-edges. We can take a half-edge, and we pair it uniformly
at random with a different unpaired half-edge, thus creating an edge. Next, we take
another unpaired half-edge and we pair it uniformly at random with an unpaired
one. We continue until all half-edges are paired. The ordering we use to pick an
unpaired half-edge is irrelevant since the pairing is uniform. Notice that in this case,
self-loops (an edge whose endpoints are the same vertex) and multi-edges (more than
one edge between the same pair of vertices) can arise. This model can be extended
to the directed setting, by imposing both the in- and out-degree sequences, and then
pairing an in-half-edge to an out-half-edge, thus creating a directed edge.

1.2.2. Preferential attachment models
All the previous random graphs model are static, in the sense that the graph is

constructed given a size n ∈ N. Other properties, such as the power-law degree
distribution, can be obtained, for instance in inhomogeneous random graphs and
configuration models, by choosing the inputs or the parameters of the model appro-
priately.

An attempt to explain power laws through simple dynamics was given by the

9
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1.2. Random graphs

class of preferential attachment models (PAMs):

”Systems as diverse as genetic networks or the World Wide Web are best described as
networks with complex topology. A common property of many large networks is that the ver-
tex connectivities follow a scale-free power-law distribution. This feature was found to be a
consequence of two generic mechanisms: (i) networks expand continuously by the addition
of new vertices, and (ii) new vertices attach preferentially to sites that are already well con-
nected. A model based on these two ingredients reproduces the observed stationary scale-free
distributions, which indicates that the development of large networks is governed by robust
self-organizing phenomena that go beyond the particulars of the individual systems.”

Barabási and Albert, [2, Abstract].

In their original works [2, 3], Barabási and Albert propose a mechanisms to gen-
erate a growing random graph model, in the sense that the graph grows over time
as new vertices appear. This graph model shows properties of real-world networks
without imposing them, but instead these properties arise naturally from the simple
dynamics that defines the model.

More precisely, a PAM is a sequence of graphs (PAt)t≥1, defined recursively. In
this setting, the size of the graph is typically denoted by t and not n, to emphasize
that the graph grows in time. At time t = 1, PAt is a certain initial graph, often a
graph consisting of a single vertex with no edge or a self-loop. Then, recursively for
t ≥ 2, a new vertex t appears. This new vertex brings one (or more) edges, that has
to be connected to one of the existing vertices v in the graph. The vertex v is chosen
according to the probability

P (t→ v | PAt−1) =
f(v, t− 1)

Z(t− 1)
. (1.2.1)

In (1.2.1), f is called the PA function, which depends on v and t− 1, while Z(t− 1) is
the normalization constant at time t− 1. As one can see, the PA function plays a key
role in the definition of the model. This is the reason why we can talk about a class of
PAMs. The Barabási-Albert (BA) model is defined for f(v, t− 1) = Dv(t− 1), where
Dv(t − 1) is the degree of vertex v at time t − 1. In this setting, new vertices tend to
link to vertices with already a high number of connections.

We point out that a mechanism as in (1.2.1) is well defined when every vertex
comes into the graph with one edge. In case of multiple edges, several definitions are
possible, but each edge chooses a vertex to be attached according to a distribution
that is roughly (1.2.1).

In the present work, we will focus on PAMs, and in particular, we will consider
as PA function f(v, t − 1) = Dv(t − 1) + δ, for some constant δ. As we will explain
in the sequel, the parameter δ allows to tune the power-law exponent of the degree
distribution. Also, we will consider a model where new vertices appear with m ≥ 1

edges, so not necessarily m = 1. In this case we denote the PAM as PAt(m, δ). We
point out that, once the PA function f is fixed, differences can still be made in the

10
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1.3. Degrees in PAMs

precise definition of the attachment probabilities as in (1.2.1) (for instance, if self loops
are allowed or not). For this reason, whenever we state a result we specify the precise
PAM we consider.

The aim of the present thesis is to investigate properties of PAMs, and comparing
them to what we observe in real-world networks, as discussed in Section 1.1. In par-
ticular, we prove that the PA dynamics with affine PA function can generate graphs
with many of the features presented in Section 1.1, with the exception of clustering
since, as it turns out, PAMs are locally tree-like. In addition, we identify other PA
functions that can generate graphs with power-law degree distributions.

1.3. Degrees in PAMs
In this section, we discuss the degree distribution in PAMs. In particular, we dis-

cuss the scale-free properties in PAMs, showing that the degrees in such graphs obey
a power-law distribution.

1.3.1. The degree distribution and known results
For m ≥ 1 and in the case of PA function of the type f(k) = k + δ, for a constant

δ > −m, PAMs are known to show power-law degree distributions. This is true for
the BA model (so for δ = 0), but also for other variants which differ for some detail in
the attachment probabilities. In particular, these graphs show the so-called old-get-
richer effect, since high-degree vertices are typically vertices that have appeared early
in the graph.

The limiting degree distribution of PAMs has been found by several works. Bol-
lobás, Riordan, Spencer and Tsunády [33] were the first to prove it for δ = 0. Van der
Hofstad [85, Theorem 8.4] states that for every k ∈ N, the proportion of vertices of
degree k in PAt(m, δ) converges in probability to p(m)

k , and p(m)

k is given by

p(m)

k = (2 + δ/m)
Γ(2 + δ/m+m+ δ)

Γ(m+ δ)

Γ(k +m+ δ)

Γ(k +m+ δ + 3 + δ/m)
. (1.3.1)

where Γ(·) here denotes the Gamma function. In particular, the distribution (p(m)

k )k∈N
obeys a power law with exponent

τ = τ(m, δ) = 3 +
δ

m
. (1.3.2)

In fact, by Stirling’s formula, we have that

Γ(k + a)

Γ(k + b)
= ka−b(1 +O(1/k)).

This implies that in (1.3.1), as k →∞,

p(m)

k ≈ (k +m+ δ)−(3+δ/m) ≈ k−(3+δ/m).

11
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1.3. Degrees in PAMs

Notice that the parameter δ allows one to tune the power-law exponent, creating dif-
ferent phases that impact the graph globally. For δ > 0, the limiting distribution has
finite variance, while for δ < 0 the limiting distribution has finite mean but infinite
variance. The case δ = 0 is the boundary case of the Albert-Barabási model.

The formulation of (1.3.1) in terms of negative binomials is due to Ross [150].
Many properties of the degree distribution and in general of the evolution of degrees
are known. Szymański [158] investigates moments of degrees of fixed vertices in the
case of δ = 0. Bollobás and Riordan [32] investigates the degrees for δ = 0 using the
relation between the PAM and the n-pairings. Jordan [103] investigates the limiting
degree distribution in the case where them edges of every vertex are added indepen-
dently of each other, without updating the degrees of the chosen vertices. Hagberg
and Wiuf [80], similarly to van der Hofstad [85, Chapter 8], investigate degree distri-
bution starting from the recursive properties of (Nk(t))t∈N, i.e., the number of vertices
with degree k. Deijfen et al. [52] investigate the degrees of a PAM where every vertex
comes into the graph with a random number of edges. Dereich and Mörters [54], as
well as Oliveira and Spencer [109], consider a PAM with a sublinear PA function of
the type f(k) ∝ kα, for some α ∈ (0, 1), proving that the corresponding degree dis-
tribution has a stretched-exponential tail, in agreement with results [9, 10, 151, 152]
on PA trees.

1.3.2. Continuous-time embedding
Most proofs that the degrees in PAMs converge to the distribution (p(m)

k )k∈N de-
fined in (1.3.1) are based on a martingale argument [60, 85, 127, 128]. In particular the
evolution of the degree of a vertex v ∈ [t] can be seen as a supermartingale, that can
be rescaled to a martingale with mean 1. In the case of PA trees (m = 1), an alterna-
tive proof is possible, using a clever relation to continuous-time branching processes
(CTBPs).

CTBPs are formally introduced in Section 2.1. CTBPs are stochastic models for
the evolution of a population of individuals that produce children according to i.i.d.
copies of a counting process (ξt)t≥0 called the birth process. These models have been
studied for decades [9, 10, 11, 22, 152], since the first works by Jagers and Nerman [95,
96, 129]. In particular, CTBPs produce random trees, where vertices are individuals
and (directed) edges are links from children to parents. These trees are dynamic,
in the sense that their sizes grow as new individuals are born. This means that we
can identify the sequence of random birth times (τn)n∈N, i.e., the sequence at which
individuals are born in the branching population.

CTBPs are known to embed PA trees (so m = 1), that are defined as a discrete
sequence of random graphs, into continuous time [9, 10, 22, 152]. The heuristic idea
is to construct a CTBP whose tree in continuous time T (t) coincides with a PA tree
along the sequence of birth times (τn)n∈N. In other words, the law of the tree T (τn)

is the law of PAn. The advantage is that we can use the tools of CTBPs theory to
investigate properties of PA trees.

The relation between a CTBP and the embedded PA tree is given by the PA func-
tion. In particular, if an individual of age t and k past children produces a new child

12
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1.3. Degrees in PAMs

at rate λ(t, k) = f(k) (so independently of the age), then the embedded PA tree is
defined by the PA function f .

The limiting degree distribution in a CTBP defined by a birth process (ξt)t≥0 is
known [95, 96, 129], and it is given by

p(1)

k (ξ) = P (ξTα∗ = k) , (1.3.3)

where Tα∗ is an exponentially distributed random variable with mean 1/α∗, andα∗ >
0 is called the Malthusian parameter of the CTBP. Heuristically, α∗ is the rate at which
the CTBP size grows over time, in fact the population alive at time t is roughly eα

∗t.
We refer to Section 2.1 for the definition of the Malthusian parameter and the result
about the growth of a CTBP. In particular p(1)

k (ξ) can be interpreted as the probability
that an individual in the branching population produces k children in the random unit of time
Tα∗ .

In (1.3.3) we have used the notation (p(1)

k (ξ))k∈N because (1.3.1) (for m = 1) and
(1.3.3) coincide whenever the CTBP embeds the PA tree in continuous time.

1.3.3. Collapsed branching processes
As mentioned above, the embedding construction is limited to trees. In particular,

this means that the CTBP tools can not be applied in the case m ≥ 2. In Chapter
2, based on [70], we are able to extend the continuous-time embedding to the case
m ≥ 2, given an alternative proof of (1.3.1).

1

2

6 9

3

4

7 12

5

8 10 11

(a) Branching process tree

1

2

3

4

(b) Collapsed branching pro-
cess

Figure 1.7: An example of a collapsed branching process (CBP) where vertices
have fixed out-degreem = 3. On the left, we have a tree given by a CTBP at time
τ12, so the size is 12. On the right, we have the corresponding CBP where the
out-degree of all vertices (except vertex 1) is 3. Notice that individuals 1,2 and 3
in CTBP are collapsed into vertex 1 in the CBP, individuals 4,5 and 6 into vertex
2, and so on.
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1.3. Degrees in PAMs

Given a CTBP that embeds a PA tree, we define a random graph in continuous
time called a collapsed branching process (CBP) that embeds a PA graph for m ≥ 2.
CBPs are formally defined in Definition 2.2.1, here we give the intuition behind the
construction. Given a tree T (t) of a CTBP, we fix m ≥ 2. Then, we divide born indi-
viduals in groups of m individuals each, according to the birth order. For instance,
for m = 1, the first three groups are {1, 2, 3}, {4, 5, 6}, {7, 8, 9}. We can now imagine
gluing together individuals belonging to the same group, thus generating vertices.
We point out that nodes in CTBP are individuals, while nodes in CBP are vertices. We
keep track of edges between individuals to draw edges between vertices. In other
words, the number of edges between two vertices v1 and v2 is the number of edges
between the two groups of individuals that have been collapsed together to generate
v1 and v2. An example on a tree of size 12 with m = 3 leading to a graph of size 4 is
given in Figure 1.7.

In Theorem 2.2.2, under general assumptions on (ξt)t≥0, we show that a CBP has
a limiting degree distribution (p(m)

k (ξ))k∈N, that is given by

p(m)

k (ξ) = P
(
ξ1
Tα∗

+ · · ·+ ξmTα∗ = k
)
, (1.3.4)

where (ξ1
t )t≥0, . . . , (ξ

m
t )t≥0 are m independent birth processes distributed as (ξt)t≥0,

Tα∗ is an exponentially distributed random variable with mean 1/α∗, and α∗ > 0 is
the Malthusian parameter of the underlying CTBP.

The distribution in (1.3.4) is the distribution of the sum of m independent birth
processes that define the CTBP, evaluated at time Tα∗ , similarly as the distribution in
(1.3.3) which is the distribution of a single birth process at time Tα∗ . Similarly to the
tree case, we can see (p(m)

k (ξ) as the probability thatm individuals born at the same time
produce in total k children in the random unit of time Tα∗ . This explains the notation in
(1.3.3) and (1.3.4) of 1 andm, that underline the number of birth processes considered.

The proof of (1.3.4) makes extensive use of so-called random characteristics in CTBPs
theory. A random characteristic is a bounded function that can be interpreted as a
counting function of a certain characteristic of the individuals in the branching popu-
lation. A CTBP evaluated with a characteristic is nothing more than the number of
alive individuals that satisfies a certain property. For k ∈ N, the function 1{ξt=k} is
the characteristic that counts the number of individuals with k children in the CTBP.

In CBPs, the degree of a vertex n ∈ N is given by the sum ofm different birth pro-
cesses ξ(n,1)

t , . . . , ξ
(n,m)
t , where (n, j) = m(n−1)+j. One fundamental property is that

a random characteristics Φ, when evaluated on an individual, can depend only on the
properties of the individual itself and its progeny. The individuals (n, 1), . . . , (n,m)

might not be related at all in the genealogy of the CTBP. In our proof we add artificial
randomness into the CTBPs, to approximate the number of vertices in CBP with degree
k with a random characteristic of the CTBP. For an explanation in a picture, we refer
to Figure 1.8.

Formula (1.3.4) proved in Theorem 2.2.2 is stated for general CTBPs. We extend
this to PAMs with affine PA functions. In Corollary 2.2.3 we prove that if a CTBP
embeds a PAM with m = 1, then it satisfies the conditions of Theorem 2.2.2. In
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Ω(n,1)
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...

Ω(n,m)

ξ
(n,1)
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(n,2)
t−τ(n,2)

...

ξ
(n,m)
t−τ(n,m)

ξ
(n,1),2
t−τ(n,1)

ξ
(n,2),2
t−τ(n,2)

...

ξ
(n,m),2
t−τ(n,m)

· · ·

· · ·

. . .

· · ·

ξ
(n,1),m
t−τ(n,1)

ξ
(n,2),m
t−τ(n,2)

...

ξ
(n,m),m
t−τ(n,m)

Φk
(
t− τ(n,1)

)

Φk
(
t− τ(n,2)

)

...

Φk
(
t− τ(n,m)

)

D
(in)
n (t)

Figure 1.8: Heuristic of random characteristic Φ(m)

k . For a CTBP, tom individuals
(n, 1), . . . , (n,m) we assign different probability spaces Ω(n,1), . . . ,Ω(n,m) respec-
tively, with the birth processes ξ(n,1)

t−τ(n,1)
, . . . , ξ

(n,m)
t−τ(n,m)

. The degree of vertex n in
the CBP is given by the sum of the processes as indicated by the circles within the
red area. We artificially add the remaining processes in the green area to define
the random characteristic Φ(m)

k .

Theorem 2.2.4 we show that the corresponding CBP embeds a PAM withm ≥ 2, and
in this case (1.3.4) coincides with the known distribution in (1.3.1).

The advantage of our approach is that it works in more general settings, for instance,
for PA functions different from f(k) = k + δ. As an example, we apply the result to
the random recursive tree (RRT), that is embedded in continuous-time by a Yule pro-
cess. A random recursive tree is a sequence of trees (Tn)n∈N, where T1 consists of a
single vertex, and for every n ≥ 2, a new vertex appear with a single edge attached
uniformly at random with one of the vertices 1, . . . , n− 1. We show that there exists
a CTBP that embeds the RRT in continuous-time, and the corresponding CBP is a
sequence of graphs (Gn)n∈N, where at every step the new vertex n has m edges at-
tached ”almost” uniformly at random to an existing vertex. This is made rigorous in
Corollary 2.2.5.

A second example is given by PAMs with aging, where the PA function depends
on the degree and the age of a vertex. We will introduce these models later, so we
move this discussion to Section 1.9. This result is proven in Corollary 7.1.4.
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1.4. PAMs can be ultra-small worlds

1.4. PAMs can be ultra-small worlds
Chapter 3 is about the small-world phenomenon in PAMs. We investigate the

behavior of the diameter of PAM and the configuration model (CM). Even though the
CM and PAM are quite different in nature, they are locally similar, because for both
models the attachment probabilities are roughly proportional to the degrees. The
core of our proof is a combination of conditioning arguments (which are particularly
subtle for the preferential attachment model), with local estimates in order to derive
bounds on global quantities, such as the diameter.

1.4.1. Typical distance and diameter
We define the typical distance Hn in a graph Gn as distGn(V1, V2) (the distance

between V1 and V2), where V1 and V2 are two vertices chosen uniformly at random in
[n]. The diameter diam(Gn) of a graph Gn is defined as

diam(Gn) := max
u,v∈[n]

distGn(u, v).

In principle, Hn and diam(Gn) might be infinite when the graphGn is disconnected,
i.e., when there exists a pair of vertices u, v such that there exists no path connecting
u and v. In general, when investigating typical distance and diameter, we condition
on the event where typical distance and diameter are finite, i.e., the graph is con-
nected. Formally, a graph of size n ∈ N is called small-world whenever the typical
distance and/or the diameter are of order log n, and ultra-small world if they are of
order log log n. Of course, other situations are possible (for instance, log n/ log log n),
which we also call ultra-small worlds.

Typical distance and diameter have already been investigated in CM and PAM.
There are more results on CM, in fact when τ > 3 the typical distance is of order log n

[89], while when τ ∈ (2, 3) Hn is sensitive to the presence of vertices with degree 1
and 2. Indeed, van der Hofstad, Hooghiemstra and Znamenski [90, 91] prove thatHn

is of order log log n when there are no vertices of degree 1 and 2, while when these
are present Hn is of order log n, since vertices of degree 1 and 2 form chains that
increase distances. The diameter of CM shows similar behavior: it is of order log n

when τ ∈ (2, 3) but vertices of degree 1 and 2 are present [66].
Less is known about PAMs. When τ ∈ (2, 3), Dereich, Mönch and Mörters [57]

prove thatHn in PAMs is of order log log n, using path counting techniques we use in
our result on the diameter. Van der Hofstad [86] investigates the diameter of PA trees
(so m = 1), showing that the diameter is of order log n. Dommers, van der Hofstad
and Hooghiemstra [59] prove an upper bound on the diameter of PAM when m ≥ 2,
but the explicit constant in the bound (see c in (1.4.1) below) is not sharp. When
τ = 3 and m ≥ 2, Bollobás and Riordan [32] prove that the diameter of PAM is of
order log n/ log log n.

For a more detailed discussion of the literature about typical distances and diam-
eter in CM and PAM, as well as other random graphs, we refer to Section 3.1.3.
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1.4. PAMs can be ultra-small worlds

1.4.2. Diameter for τ ∈ (2, 3)
We focus our analysis on the diameter of CM and PAM when the degree power-

law exponent τ satisfies τ ∈ (2, 3), which means that the degrees have finite mean but
infinite variance. We consider the setting where the minimum degree of vertices in
the graph in CMn is dmin ≥ 3, and we considerm ≥ 2 in PAt. As mentioned, vertices
of degree 1 and 2 are known to make distances longer, therefore we want to consider
the case where these are not present.

We prove that
diam(Gn)

log log n

P−→ c,

where Gn can be CMn or PAt, identifying the precise constant c for both models. In
other words, we prove that, for every ε > 0, with high probability, as n→∞,

(1− ε)c log log n(1 + o(1)) ≤ diam(Gn) ≤ (1 + ε)c log log n(1 + o(1)). (1.4.1)

The results are given in Theorem 3.1.3 for CM and Theorem 3.1.5 for PAM. These
results, contained in Chapter 3, are based on [40].
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Figure 1.9: High-level explanation of the structure of the proofs of Theorem 3.1.3
and Theorem 3.1.5, that are the results about the diameter of CM and PAM re-
spectively.
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1.4. PAMs can be ultra-small worlds

While the structures of the proofs for both models are identical, the details of the
various steps are significantly different. Pairings in the configuration model are uni-
form, making explicit computations easy, even when already many edges have been
paired. In the preferential attachment model, on the other hand, the edge statuses
are highly dependent, so that we have to rely on delicate conditioning arguments.
This is formalized in the notion of factorizable events in Definition 3.4.4.

The explicit constant c in (1.4.1) is given by

c =
2

log dfwd
+

2cdist

| log(τ − 2)| , (1.4.2)

where τ is the power-law exponent, dfwd is called the minimal forward degree, which
is dmin − 1 for CMn and m for PAt, and cdist is a constant depending on the typical
distance in the graph, that is cdist = 1 for the CM and cdist = 2 for the PAM.

The minimal forward degree dfwd in (1.4.2) can be informally interpreted as the min-
imum number of vertices we can explore at each step from a vertex with minimum
degree. For instance, assume that dmin is the minimum degree in CM. Then, starting
the exploration process from a vertex v ∈ [n], we can identify at least dmin vertices
(assuming that we do not find multiple edges). From each one of these vertices we
can find in the next step of the exploration at least dmin − 1 new vertices, since we
used a half-edge in the previous exploration step. If the neighborhood of the vertex
v is a tree, the number of children we can find at each step is at least dmin− 1. We call
this the minimal forward degree since we use this in exploration processes, where we
go forward in the exploration process by finding new vertices. The first term in (1.4.2)
comes from the exploration of the periphery of the graph.

The second term in (1.4.2) depends on the power-law exponent, and the difference
between PAM and CM lies in the value of cdist. This term is related to the distances
between vertices with high degrees. In fact, in PAM vertices with high-degree are
typically at distance 2, while in CM they are at distance 1. This is due to the fact that
the probability of connecting two high degree vertices in CM is high since we have
many half-edges that we can pair to make an edge. In PAM high-degree vertices
are typically old, so they might not be directly connected, but they are likely to be
connected by an intermediate young vertex, thus making distances twice as big.

The proof of Theorem 3.1.3 and Theorem 3.1.5 is divided in a lower bound and an
upper bound on the diameter of the graph. We now give a heuristic explanation of the
proof (see Figure 1.9 for a graphical representation).

Lower bound. We prove that there are so-called minimally-connected vertices. These
vertices are quite special, in that their neighborhoods up to distance

k−n ≈ log log n/ log dfwd

are trees with the minimal possible degree, given by dfwd + 1. This explains the first term
in the right hand sides of (1.4.2). Notice that k−n is exactly the distance up to which
the explored neighborhood of a vertex v with minimum degree is a tree with high
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1.4. PAMs can be ultra-small worlds

Figure 1.10: Examples of minimally-connected neighborhood (on the left) and
exploration tree (on the right), in PAM withm = 2. Notice that in the minimally-
connected tree at every exploration step we find exactly 2 new vertices, while
the degree of all vertices is 3 (except the green vertex that has degree 2). The
exploration graph is a subgraph of the neighborhood of the green vertex, where
we consider only dfwd edges at every exploration step. In the case of PAM, we
explore the m original edges of every vertex. Notice that we can ignore both
vertices and edges, that can only make distances shorter.

probability.
Equivalently, k−n is the exact distance such that the total number of vertices found

in the exploration starting at a vertex v with minimum degree is log n. In fact, since
from every vertex we find dfwd new vertices, the number of such vertices up to dis-
tance k−n from v is

d
k−n
fwd ≈ d

log logn/ log dfwd

fwd ≈ log n.

The tree structure of the neighborhood of a minimally-connected vertex v is a
compromise between a fast and a slow structure around v. It is fast in the sense that
it is a tree, i.e., a tree is the best possible structure in order to move away from vertex
v. In other words, we do not waste steps in the exploration due to triangles or cycles,
but we get as far away as possible from v. It is though a slow structure, since the
degrees in the tree are the lowest-possible degrees in the graph.

Pairs of minimally-connected vertices are good candidates for achieving the max-
imal possible distance, i.e., the diameter. The tree structure with minimum degree
around these vertices makes hard to reach them, or in other words, to reach a minimally-
connected vertex it is necessary to go through the tree neighborhood, thus using k−n
steps.

Since the boundaries of their tree-like neighborhoods turn out to be at distance
equal to the typical distance 2k̄n in the graph, that is

2k̄n ≈ 2cdist log log n/| log(τ − 2)|.
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1.5. Subgraphs in PAMs

This leads to the second term in the right-hand side of (1.4.2). In the proof, we split
the possible paths between the boundaries of two minimally-connected vertices into
bad paths, which are too short, and typical paths, which have the right number of
edges in them, and then show that the contribution due to bad paths vanishes. The
degrees along the path determine whether a path is bad or typical. The strategy for
the lower bound is depicted in the bottom part of Figure 1.9.

Upper bound. We perform a lazy-exploration from every vertex in the graph. and
realize that the neighborhood up to a distance k+

n , which is roughly the same as k−n ,
contains at least as many vertices as the tree-like neighborhood of a minimally-connected
vertex.

In this lazy-exploration, we identify a subgraph of the k+
n -neighborhood of ver-

tices, that we call the k+
n -exploration graph, while all possible other vertices in this

neighborhood are ignored. In particular, this gives an upper bound on the distance
between the starting vertex v and the boundary of such subgraph, since the ignored
edges might connect v to the boundary in a shorter way.

We then show that the vertices at the boundary of these lazy neighborhoods are
with high probability quickly connected to the core, that is by a path ofhn = o(log log n)

steps. By core we mean the set of all vertices with large degrees, which is known to be
highly connected, with a diameter close to 2k̄n, similar to the typical distances (see
[91] for the configuration model and [59] for the preferential attachment model).

The core has diameter 2k̄n for the following reason. In CM, a given vertex v with
large degree d is connected with high probability to at least one vertex with degree
d1/(τ−2) > d. k̄n is the exact number of steps such that

(d1/(τ−2))k̄n ≈ dlogn ≈ nβ ,

for some positive β. Vertices with such high degrees are at distance one, since the
number of half-edges to connect two of them is so large that this happens with high
probability. The factor 2 in the diameter of the core is given by the fact that we need
to reach hub vertices from 2 vertices v and w, that both take k̄n steps.

In PAM, this structure is similar, but the distances are doubled. In fact, to move
from a vertex with degree d to a vertex with degree d1/(τ−2) it is necessary to find a
young vertex that connects the two vertices, a so-called t-connector.

The proof strategy for the upper bound is depicted in the top part of Figure 1.9.

1.5. Subgraphs in PAMs
In this section, we introduce our results on subgraph counts in PAMs, in particular

focusing on triangles, as they are related to the clustering coefficient. The results are
presented in Chapter 5, and are based on [74].
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1.5. Subgraphs in PAMs

1.5.1. Subgraph counts in random graphs
To investigate which subgraphs occur more frequently than expected for a given

network, the subgraph count in a given network is usually compared to the subgraph
count in a random graph null model [69, 120, 124, 133]. Several random graph mod-
els could potentially serve as null models. In practice, the null model is frequently
obtained by randomly switching edges while preserving the degrees. For τ > 3 often
very few specific subgraphs (e.g. triangles) occur, while for τ < 3 this is not mathe-
matically tractable, so that it requires simulations to estimate the subgraph count in
such networks [118, 172].

Three important scale-free networks null models that are mathematically tractable
are the CM, the rank-1 inhomogeneous random graph [26, 50] and the PAMs. When
the power-law degree exponent satisfies τ < 3, the CM results in a network with
many multiple edges and self-loops [85, Chapter 7]. A possible solution is to merge
all multiple edges of the CM, and thus consider the erased CM instead. This model is
mathematically tractable, and subgraph counts for this model were derived in [93].
The rank-1 inhomogeneous random graph is closely related to the erased CM, and
subgraph counts for this random graph null model show similar behavior as in the
erased CM [157]. In both models, every subgraph typically occurs on vertices with
degrees with specific orders of magnitude.

The advantage of considering PAMs as null model, instead of CM or rank-1 in-
homogeneous random graphs is that PAMs allow us to study directed subgraphs in
dynamic graphs, since most real-world network subgraphs are directed as well [124,
154].

Several studies on the behavior of specific subgraphs in the PAMs with affine PA
function exist. We now briefly summarize these results. The triangle subgraph has

u w

v

ju,1

j u
,2

j
u
,3

j v
,1

j
v
,2

jv,3

j
w
,1

j
w
,2

jw,3

Figure 1.11: Example of directed ordered labeled triangles on three vertices
u, v, w, with u < v < w. Notice that this is the unique possible ordering for
a triangle. In the picture, we have two labeled triangles, one consisting of the
edges {jv,1, jw,1, jw,3} and the other one of {jv,1, jw,2, jw,3}.
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1.5. Subgraphs in PAMs

(a) t
3−τ
τ−1 log(t) (b) t2/(τ−1) (c) t (d) t

Figure 1.12: Order of magnitude of N(H) for all attainable directed connected
graphs on 3 vertices. Vertices with degree one are green, vertices with free degree
are light blue, and vertices with degree t1/(τ−1) are red.

been studied in several papers, allowing to investigate clustering in the PAMs. Bol-
lobás and Riordan [31] prove, when δ = 0, that for any integer-valued function T (t)

there exists a PAM with T (t) triangles, where t denotes the number of vertices in
the PAM. They further show that the expected global clustering coefficient is of or-
der (log t)2/t, while the expected number of triangles is of order (log t)3 and more
generally, the expected number of cycles of length l scales as (log t)l.

Eggmann and Noble [61] consider δ > 0, so that τ > 3, and investigate the number
of subgraphs for m = 1 (so subtrees), and for m ≥ 2 triangles and clustering. They
observe that the expected number of triangles is of order log t while the clustering
coefficient is of order log t/t, which is different than the results in [31].

In a series of papers [139, 140, 141] Prokhorenkova et al. proved results on the
clustering coefficient and the number of triangles for a broad class of PAMs, assuming
general properties on the attachment probabilities. These attachment probabilities
are in a form that increases the probability of creating a triangle. They prove that
the number of triangles in this setting is of order t, while the clustering coefficient
behaves differently depending on the exact attachment probabilities.

1.5.2. Typical subgraph realizations in PAM
In the preferential attachment model, it is only possible for an older vertex to

connect to a newer vertex but not the other way around. This puts constraints on the
types of subgraphs that can be formed. For this reason, we talk about ordered directed
subgraphs. Given a subgraph structure H on k vertices, we denote by π an ordering
map, in the sense that the k vertices of a subgraph H are ordered as π(u1) < · · · <
π(uk).

Not all subgraphs can appear in PAMs, since vertices appear in the graph one by
one with m ≥ 1 edges each. Thus, we say that a subgraph is attainable if it can be
constructed in PAM. We formalize this idea in Definition 5.1.1 below.

An optimization problem. Given an ordered subgraph (H,π) on k vertices, our
main object of interest is the probability that k uniformly chosen vertices in PAM
generate (H,π) as a subgraph. To evaluate this probability, associate to (H,π) an
optimization problem B(H,π) (the precise definition is moved to Chapter 5).
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1.5. Subgraphs in PAMs

(a) depends on τ (b) depends on τ (c) depends on τ (d) depends on
τ
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τ−1 (g) t

6−2τ
τ−1 (h) t

3−τ
τ−1 log2(t) (i) t
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Figure 1.13: Order of magnitude of N(H) for all attainable connected directed
graphs on 4 vertices and for 2 < τ < 3. Vertices with degree one are green,
vertices with free degrees are light blue, and vertices of degree t1/(τ−1) are red.
Vertices where the optimizer is not unique are gray.

The optimization problem B(H,π) can be explained as follows. Assume that π is
the identity mapping id, so that vertex 1 is the oldest vertex ofH , vertex 2 the second
oldest and so on. We show in Lemma 5.2.1 that the probability that an attainable
subgraph is present on vertices u1 < u2 < . . . < uk scales as

∏

i∈[k]

u
β(i)
i , (1.5.1)

where
β(i) =

τ − 2

τ − 1
(d(in)

H (i)− d(out)

H (i))− d(in)

H (i),
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1.5. Subgraphs in PAMs

and d(in)

H (i), d(out)

H (i) denote the in- and out-degree of vertex i in the subgraph H re-
spectively.

In other words, the probability that a set of vertices form H is proportional to
the product of their indices (so their age) to some powers β(1), . . . , β(k), that depend
on the power-law exponent τ and the internal structure of the subgraph H . Thus, if
ui ∝ tαi for all i, the probability that the subgraph is present scales as t

∑
i∈[k] αiβ(i).

The probability that a uniformly chosen vertex has index proportional to tαi scales
as tαi−1. Therefore, heuristically, the number of times subgraphH occurs on vertices
with indices proportional to (tαi)i∈[k] such that α1 ≤ α2 ≤ · · · ≤ αk scales as

tk+
∑
i∈[k](β(i)+1)αi . (1.5.2)

Because the exponent is linear in αi, the exponent is maximized for αi ∈ {0, 1}
for all i. Because of the extra constraint α1 ≤ α2 ≤ . . . ≤ αk the maximal value of
the exponent is k + B(H, id). This suggests that the number of subgraphs scales as
tk+B(H,id).

Scaling of expectation of number of subgraphs Denoting the number of occur-
rences of the ordered subgraph (H,π) in PAt by Nt(H,π), we can prove that

C1 ≤ lim
t→∞

E[Nt(H,π)]

tk+B(H,π)(log t)r−1
≤ C2, (1.5.3)

where r is the number of different optimizers of B(H,π), or, in other words, the

u v

wz

Figure 1.14: Complete 4-graph (4-
clique) in PAM with directed edges.
The unique possible ordering for this
subgraph is u < v < w < z.

number of vertices in H whose value
αi is not uniquely identified in the
optimization problem. This result is
proved in Theorem 5.1.2, that gives the
asymptotic scaling of the number of
subgraphs where the order in which
the vertices appeared in the preferen-
tial attachment model is known. The
total number of copies ofH for any or-
dering, Nt(H), can then easily be ob-
tained by summing over all the possi-
ble orderings π.

Thus, the optimization problem
B(H) finds the most likely configura-
tion of a subgraph in terms of the in-
dices of the vertices involved. If the optimum is unique, the number of subgraphs is
maximized by subgraphs occurring on one set of very specific vertex indices. When
the optimum is not unique, several maximizers contribute equally to the number of
subgraphs, which introduces the extra logarithmic terms in (1.5.3).
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1.6. Treelike property and universality class of PAMs

Most likely degrees. As mentioned above, the optimization problemB(H,π) finds
the most likely orders of magnitude of the indices of the vertices. When the optimum
is unique, it is attained by some vertices of constant index, and some vertices with
index proportional to t. The vertices of constant index have degrees proportional
to a constant with high probability (see [85, Theorem 8.2], and the original result
in [158]), whereas the vertices with index proportional to t have degrees proportional
to t1/(τ−1). When the optimum is not unique, the indices of the vertices may have any
range, so that the degrees of these vertices in the optimal subgraph structures have
degrees ranging between 1 and t1/(τ−1). Thus, the optimization problem (1.5.1) also
finds the optimal subgraph structure in terms of its degrees.

The most likely degrees of all directed connected subgraphs on 3 and 4 vertices
resulting from Corollary 5.1.3 and the asymptotic number of such subgraphs for
τ ∈ (2, 3) are visualized in Figures 1.12 and 1.13. For some subgraphs, the optimum
of B(H,π) is attained by the same s and therefore the same most likely degrees for
all τ ∈ (2, 3), while for other subgraphs the optimum may change with τ .

One such example is the complete graph of size 4 (see Figure 1.14). For the di-
rected complete graph, there is only one attainable ordering π. For such subgraph,
there is a phase transition at τ = 5/2. In fact, for τ < 5/2 a complete graph of size
four typically contains three hub vertices of degree proportional to t1/(τ−1) and one
vertex of constant degree, and the number of such subgraphs scales as t1−(τ−2)/(τ−1)

whereas for τ > 5/2 the optimal structure contains four hub vertices instead and the
number of such subgraphs scales as t.

Phase transition in the number of triangles. The result of Theorem 5.1.2 obtained
through the optimization in (1.5.1) gives the order of magnitue of occurrence of sub-
graphs in PAM. More specific results are known for triangles [31, 61]. In Theorem
5.1.5 we are able to identify the precise constant C > 0 such that

E[∆t] = Ct3+B(∆)(log t)r−1(1 + o(1)),

where ∆ is the triangle subgraph, ∆t is the number of triangles in PAM of size t,
and r is the number of optimizers of B(∆). In particular, E[∆t] is of order log t for
τ > 3 [61], of order (log t)3 for τ = 3 [31]. For τ ∈ (2, 3), we prove that E[∆t] scales
as t(3−τ)/(τ−1) log t. Since the expected number of connected triplets (subgraph (b)-
(d) in Figure 1.12a) scales as t, this suggests that the clustering coefficient of PAMs
vanishes as the size of the graph diverges. This is linked to the fact that PAMs are
locally a tree, as we discuss next.

1.6. Treelike property and universality class of PAMs
We observe that the expected number of triangles in PAMs is sublinear with re-

spect to the size of the graph. We now prove that this is related to the fact that the
neighborhood of most vertices is structured as a tree (so no triangles for example) up
to a finite distance. In other words, looking at a uniformly chosen vertex Vt in a PAM
of size t, the subgraph composed by vertices up to a finite distance from Vt is with
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1.6. Treelike property and universality class of PAMs

high probability a tree. For this reason, PAMs are called locally treelike graphs. This
idea can be formalized using the notion of local weak convergence.

1.6.1. Local weak convergence
Local weak convergence (LWC) is a concept introduced by Benjamini and Schramm

[20] and formalized in [4, 5, 19]. Thus often in the literature LWC is called convergence
in Benjamini-Schramm sense for undirected graphs. In this framework, a sequence of
undirected random graphs, under relatively weak conditions, converges to a (possi-
bly random) rooted graph, i.e., a graph where one of the vertices is labeled as the root.
In simple words, the limiting graph resembles the neighborhood of a typical vertex in the
graph sequence. This methodology has been shown to be useful to investigate local
properties of a graph sequence – the properties that depend on the local neighborhood
of vertices.

In the literature, limits of different types of random graphs have been investigated
(Aldous and Steele give a survey in [4]). Grimmett [77] obtained the LW limit for the
uniform random tree. Generalized random graphs [37, 51, 49, 64] also converge in the
LW sense under some regularity conditions on the weight distribution. Convergence
of undirected configuration model is proved in [86, Chapter 2]. In many random
graph contexts, the LW limit is a branching process, and LW convergence provides a
method to compare neighborhoods in random graphs to branching processes.

In the local weak convergence setting, a sequence of graphs (Gn)n∈N converges
to a (possibly random) rooted graph (G,∅) that is a rooted graph. Here ∅ ∈ V (G)

denotes the root.
Heuristically, Gn → (G,∅) in the LW sense when the law of the neighborhood of

a typical vertex in Gn converges to the law of the neighborhood of the root in G. We
now give an intuitive formulation of this concept (for a precise definition, see Section
4.1). For a vertex i in a graph Gn, denote the neighborhood of i up to distance k by
U≤k(i). Then, for a random rooted graph (G,∅) with lawP , we say thatGn → (G,∅)

if, for any finite rooted graph (H, y), and any k ∈ N,

1

n

∑

i∈[n]

1{U≤k(i) ∼= (H, y)} −→ P (U≤k(∅) ∼= (H, y)) , (1.6.1)

where 1{·} is an indicator of the event {·}, and U≤k(∅) is the k-neighborhood of ∅
in G. The event {U≤k(i) ∼= (H, y)} means that the k neighborhood of i is structured
as (H, y), ignoring the precise labeling of the vertices. Notice that the left-hand term
in (1.6.1) is just the probability that the k-neighborhood of a uniformly chosen vertex
in Gn is structured as (H, y).

Equation (1.6.1) is formulated for a deterministic graph sequence (Gn)n∈N. When
(Gn)n∈N is a sequence of random graphs, the left-hand term in (1.6.1) is a random vari-
able. In this case there are different modes of convergence, as stated in Definition 4.1.6
below. For example, we say that Gn → (G,∅) in probability if, for any finite rooted
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1.6. Treelike property and universality class of PAMs

∅

Figure 1.15: Example of treelike neighborhood. In this figure, the green vertices
form the 2-neighborhood of the selected root ∅. Notice that this neighborhood
is a tree. In treelike networks this implies that, typically, cycles are present in
the graph but they are relatively long. For example, the vertices in the light blue
area form a cycle, that is long enough so that we do not see it when looking at the
2-neighborhood of ∅.

graph (H, y), and any k ∈ N,

1

n

∑

i∈[n]

1{U≤k(i) = (H, y)} P−→ P (U≤k(∅) = (H, y)) .

The limiting rooted graph (G,∅) describes the typical neighborhood of Gn, i.e., the
neighborhood of a typical vertex Vn. The notion of LWC then formalizes the idea of
locally treelike graphs as follows: a sequence of graphs (Gn)n∈N is locally treelike
if (Gn)n∈N converges in the LW sense (in distribution/in probability) to a random
rooted tree. In other words, the law of the finite neighborhood of a uniformly vertex Vn is
a random rooted tree.

1.6.2. Local weak limit of PAMs
Berger, Borgs, Chayes and Saberi [21] identify the LW limit of three versions of

PAM, only in the case where the power-law exponent τ satisfies τ ≥ 3. The limit is
called the Pólya point graph, which is a multi-type rooted infinite random tree. Since
the Pólya point graph is actually a tree, we can thus talk about Pólya point tree. The
Pólya point tree is a multi-type random tree where vertices have many attributes. In
simple words, a Pólya point tree is a multi-type branching process with continuum
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1.7. Asymptotic PageRank distribution

multi-dimensional type space. The definition requires heavy notation, so we refer to
Section 4.3.1 for the details.

In [21], the Pólya point tree is identified as the LW limit of three versions of PAMs.
These three modifications (models (d)-(f)-(g) in Section 4.3), are a mixture of PA mech-
anism as in (1.2.1) with f(k) = k, and uniform choice for the old vertex to which a
new vertex is attached. In other words, fix α ∈ (0, 1). Then, every edge is attached
as follows: with probability α the edge follows a PA mechanism with PA function
f(k) = k, while with probability 1−α it is attached uniformly at random. These for-
mulations are equivalent to a PA function f̂(k) = k+ δ̂, where the constant δ̂ satisfies
δ̂ = 2(1− α)/α ≥ 0.

Van der Hofstad [86, Chapter 4] claims that the LWC results holds for the sequen-
tial model presented in [21] for any value of δ > −m, giving a sketch of the proof.
In Chapter 4 we show how the argument of Berger et al. can be extended to different
preferential attachment models. These models can differ for various reasons: differ-
ent starting graph, presence or not of self-loops, edges added sequentially or inde-
pendently. All the different versions of PAMs for which the convergence holds are
listed in Section 4.3. Our approach using Pólya urn schemes with affine weight func-
tions allows us to easily extend the result of Berger et al., stated for δ ≥ 0 (τ ≥ 3), to
all values of δ > −m (τ > 2).

In addition, we prove that for a class of PAMs the LWC to the Pólya point tree can
be established only investigating the casem = 1, i.e., the tree setting. In other words, a
preferential attachment model (PAt(m, δ))t∈N that, form ≥ 2, is defined from the tree
case through a collapsing procedure as introduced in Section 1.3.3 (and Chapter 2),
converges to the Pólya point tree if the same model in the tree case (PAmt(1, δ/m))t∈N
converges to a Pólya point tree with different parameters. This fact highlights the
relevance of the tree setting in PAMs, similarly to what we do in Chapter 2, where
we investigate the degree distribution of CBPs using the properties of the underlying
CTBP.

We point out that the Pólya point tree is not the unique LW limit of all possible
preferential attachment models. In fact, Dereich and Morters [55, 54, 56] establish the
LW limit in the case of preferential attachment models with conditionally independent
edges. In this models, new vertices do not appear with a fixed m ≥ 1 number of
edges, but the new vertex t + 1 connects, conditionally on the current state of the
graph, independently to any of the existing vertices, with probability given by f(k)/t.
Interestingly, they identify the LW limit for any (sub-)linear PA function f , not only for
the affine case.

1.7. Asymptotic PageRank distribution
In this section, we discuss the asymptotic distribution of PageRank scores in PAMs,

and more generally in random graphs. As mentioned, PageRank is a centrality mea-
sure defined originally on directed graphs (but it has been extended to undirected

28



1

In
tr

od
uc

tio
n

1

In
tr

od
uc

tio
n

1.7. Asymptotic PageRank distribution

graphs). The algorithm on a graph Gn of size n ∈ N generates a vector ν(n), where

νi(n) = c
∑

j∈[n]

ej,i

d(out)

j

νj(n) +
1− c
n

. (1.7.1)

Here c ∈ (0, 1) is called the damping factor, ej,i is the number of directed edges from j

to i and d(out)

j denotes the out-degree of vertex j ∈ [n]. The vector ν(n) is a probability
distribution on [n]. We will consider the rescaled version of PageRank that we call
graph-normalized PageRank R(n) = nν(n). Notice that in this setting it follows that
E[RVn ] = 1, where RVn is the PageRank score of a uniformly chosen vertex Vn ∈ [n] .

Our main object of interest is the asymptotic distribution of PageRank. We want to
investigate whether RVn converges in some sense to a distribution R, and whether R
obeys a power law. In particular, whether R is a power-law distribution, we want to
investigate whether the power-law exponent of the PageRank distribution coincides
with the power-law exponent of the PAM.

1.7.1. Power-law PageRank and distributional equation
The PageRank power-law hypothesis presented in Section 1.1.4 has been formu-

lated by empirical observations [38, 44, 67, 112, 135, 163]. Some works propose an
explanation why PageRank shows the same power-law exponent of the in-degree
distribution in a scale-free network. The equation (1.7.1) defining PageRank for the
graph-normalized version has been generalized to a distributional equation of the
type

R
d
=

D(in)∑

j=1

Cj

D(out)

j

Rj +B, (1.7.2)

whereD(in) is the distribution of the in-degree in the network,D(out) is the out-degree
and (Cj)j∈N and B are some random variables. Notice that (1.7.2) is more general
than (1.7.1). This led to the definition of generalized and personalized PageRank algo-
rithms. We refer to Chapter 6 for a more detailed discussion. The type of distribu-
tional equation in (1.7.2) is rather general. It appears for instance in branching process
theory [101, 113, 114] and queueing theory [121].

Under some conditions on the distributions (D(in), D(out), C,B), it is possible to
show that the distribution R that solves (1.7.2) obeys a power law with exponent
τ whenever D(in) does. Using solutions of (1.7.2), Litvak and Volkovich [162] give
precise result on the power-law solution of (1.7.2).

The solution of (1.7.2) is then used to prove the power-law PageRank hypothesis
for some random graph models. Chen, Litvak, and Olvera-Cravioto [46] prove the
result on the directed configuration model, assuming asymptotic independence of in-
and out-degree. In a recent paper [110] Lee and Olvera-Cravioto prove the power-law
hypothesis on directed inhomogeneous random graphs (we refer to Section 6.6.2 for
a brief introduction of this model).

Avrachenkov and Lebedev [13] give expression for the expected PageRank scores
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1.7. Asymptotic PageRank distribution

root

Figure 1.16: Example of marked rooted graph. We can visualize the difference
between marks and out-degree as edges pointing to nowhere. In the LW limit,
marks are not necessarily equal to the out-degrees. For instance, the LW limit
of directed configuration model is a Galton-Watson tree (so out-degrees are all 1
except the root that has out-degree 0) with additional marks.

in the BA model, and they compare their result with the mean-field approach used
in [16, 135]. Using heuristic arguments, they suggest that PageRank in the BA model
should follow a power-law distribution with exponent (3+c)/(1+c), i.e., the exponent
should depend on the damping factor (see [13, Section 8]).

1.7.2. Local weak limit for PageRank
Our main contribution consists in giving a general criterion for the convergence

of the PageRank distribution in a sequence of directed random graphs (Gn)n∈N. We
prove that, for a sequence of directed random graphs (Gn)n∈N that converges locally
weakly, the PageRank score of a uniformly chosen vertex RVn converges to a distri-
bution R∅. The result is stated in Theorem 6.2.1. This result, as well as all the results
of Chapter 6, are based on [72].

Finite approximations of PageRank. The first result that we prove consists in show-
ing that the PageRank score of a uniformly chosen vertex can be approximated with a
finite number of ”operations” with arbitrarily small error, and this error does not depend
on the graph size.

Let us be more precise. In several works [8, 13, 23, 45] it is proven that PageRank
can be written as a weighted sum of paths. In other words, the PageRank score of
vertex i ∈ N is a weighted sum of all paths ending at i of any length in Gn. For N ∈ N, a
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1.7. Asymptotic PageRank distribution

finite approximation of PageRank is then defined as

R(N)

i (n) = (1− c)


1 +

N∑

k=1

ck
∑

`∈pathi(k)

k∏

h=1

e`h,`h+1

d(out)

`h


 ,

where pathi(k) is the set of paths of length k ending at i, and e`h,`h+1
is the number

of directed edges from e`h to e`h+1
. We prove that the PageRank score RVn(n) of a

uniformly chosen vertex can be approximated by R(N)

Vn
(n), with an error of order cN ,

for all graphs of all sizes.

Directed local weak convergence. We mentioned that LWC is defined for undi-
rected graphs. We are able to extend the definition of LWC to directed graphs, by
defining what we call marked rooted graphs. In our setting, to every vertex is assigned
a mark m(out) larger than or equal to the out-degree. In particular, every directed
graph can be seen as a marked graph just by assigning marks equal to the out-degrees.
Marks are useful to keep track of outgoing edges, since in the exploration process in
the graph we explore edges only in their opposite direction. In other words, a directed
edge (u, v) is only explored from v to u.

The limiting object in this case is a marked rooted graph (G,∅,M(G)), whereG is
a graph, ∅ is the root and M(G) denotes the set of marks. An example is given in
Figure 1.16. In particular, the limiting distribution R∅ of PageRank is defined as the
sum of all weighted paths ending at the root ∅. Interestingly, in the limit marks are
not necessarily equal to the out-degree, and the limiting graph G can be of finite size.

We prove that the finite approximations of PageRank are continuous in the di-
rected LW topology, therefore we can pass to the limit, thus moving the analysis to

Field Acronym Papers References
Astrophysics AP 477113 9154818
Biotechnology and Applied microbiology BT 537867 2705525
Geology GE 56692 250668
Nuclear physics NP 223321 1588534
Organic chemistry OC 567146 5072139
Optics OP 501817 2954769
Probability and Statistics PS 185167 1053243
Sociology SO 222416 451435

Table 1.3: List of citation network datasets considered. Datasets have been taken
from Web of Science, where we considered paper classified in the above scientific
fields. References are considered if an only if both the citing and cited papers are
within the considered fields. References going and coming from other fields are
ignored. We considered papers published between 1980 and 2015.
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1.8. The citation networks example

the directed local weak limit, where the limiting distribution R∅ is defined.

Application to directed PAMs. We apply Theorem 6.2.1 to directed PAMs in Sec-
tion 6.4.2. We show that the directed version of PAM, where edges are directed from
young to old vertices, converges in the directed LW sense to a directed version of the
Pólya point graph (the undirected limit of PAM). In particular, since the out-degree in
PAM is a constant m ≥ 1, Theorem 6.2.1 implies that the PageRank score RVn(n) of a
uniform vertex in PAM converges to a distributionR∅, that is stochastically bounded
by a multiple of the limiting in-degree distribution (p(m)

k )k∈N given in (1.3.1). As a
consequence, P(R∅ > r) is bounded from below by a multiple of the tail of (p(m)

k )k∈N.
In other words, P(R∅ > r) is at least of order r−(τD−1), where τD is the in-degree power-
law exponent. As a consequence, if R∅ obeys a power-law distribution with exponent
τPR, then τPR ≤ τD.

This partially proves the power-law PageRank hypothesis on PAMs, since we have
a lower bound on P(R∅ > r). The classical approach given by finding a solution of
(1.7.2) does not apply to PAM since the directed LW limit is finite, therefore PageRank
in PAM is not described by the solution (1.7.2) contructed in terms of weighted branch-
ing processes, as for instance in configuration model [46].

1.8. The citation networks example
So far, we have considered PAMs where the PA function f depends only on the

degree of vertices. In particular we have focused on the case f(k) = k + δ, since δ
allows to tune the power-law exponent. This simple dynamics might not be feasible
to represent many different types of complex networks.

We have shown that such a PA mechanism allows to generate graphs with many
features that we observe in real-world networks, but the dependence of f only on the
degrees shows limitations. In fact, all the different versions of PAMs with such PA
function f show the old-get-richer effect, i.e., vertices with high degree are old vertices.
This is due to the fact that all vertices are the same, and the only difference is given
by the time they appear in the graph. This might not be true in real-world networks.
For instance in the World-Wide Web the oldest webpage is not necessarily the page
with the highest number of hyperlinks pointing towards it.

We consider now the example of citation networks, i.e., networks of scientific pub-
lications, where directed edges are references from a paper to another. Citation net-
works are a clear example of network evolving over time: at every time t ≥ 0, a new
publication can appear in the network. This new paper can contain references to the
existing literature, that we see as directed edges.

We point out that in this setting, time is measured as calendar time, while in discrete-
time PAMs time is measured by discrete-time steps. In other words, in discrete-time
PAMs time moves from n to n+ 1 when we add a new vertex to the graph. In citation
networks, time is a continuous quantity t ∈ R+.

We considered different citation network datasets taken from Web of Science (WoS).
Details of the datasets considered are given in Table 1.3. We considered the classifi-
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1.8. The citation networks example

cation in different fields given by WoS, ignoring references coming from and going to
papers that are in different fields. This division of the data might seem arbitrary, but
it has two advantages. First, the data contained in WoS is too big to be analyzed si-
multaneously. Second, we want to consider citation networks as finite directed graphs,
therefore we ignore references across fields.

We now present some qualitative analysis on the data, in order to identify char-
acteristics of citation networks that can help us to define a more general PA function f ,
that can overcome the limitation of the old-get-richer effect. We point out that this analysis
is made to identify qualitative properties of citation networks, and not quantitative
features.

Exponential growth of scientific literature. Figure 1.17 shows the number of new
papers published every year in the different datasets. The plot is made using a log-
arithmic y-axis. In this setting, a straight line in the plot implies that the number of
publication grows exponentially. In fact, denote by Pt the number of papers pub-
lished in year t. Then

log(Pt) ≈ αt+ b ⇐⇒ Pt ≈ eαt+b,

which implies that the size of datasets grows exponentially over time. This has al-
ready been observed by Price [136, 137] and Lariviére et al. [106, 107]. In this frame-
work time plays a key role in the network evolution, since to model citation networks we

1980 1985 1990 1995 2000 2005 2010 2015
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Figure 1.17: Number of publication per year, with logarithmic y-axis. The dashed
straight lines in this plot are purely exponential functions of the type eαt+b ob-
tained through regression, while the dots represent the actual data.
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1.8. The citation networks example

100 101 102 103

10−5

10−4

10−3

10−2

10−1

100

Log(k)+1

L
og
(P

(D
≥

k
))

PS BT
AP GE
NP OC
OP SO

Figure 1.18: Loglog plot for the in-degree distribution tail in citation networks.
Similarly to Figure 1.2, power-law distributions are identified by straight lines.

have to define a model where the size of the graph grows exponentially over time. As
a consequence, we cannot look at discrete-time PAMs, but we have to use continuous-
time models.

Power-law citation distribution. As in many other real-world networks, we ob-
serve power-law distributions for the number of citations (the in-degree of the net-
works) in the datasets. Power laws are considered to be present not only in citation
networks [137], but also in other science-related networks, such as collaboration net-
works, productivity of authors and word occurrence [62, 116].

A discussion is still open whether a power-law distribution is the best model for
citation distributions. Other than power law [137, 153], other distributions have been
proposed to describe citation distributions, such as lognormal distributio [34, 144],
Tsallis distribution [7, 164], Bessel distributions [142, 143].

We point out that, in Figure 1.18, the ”most straight” line is the line corresponding
to the Astrophysics (AP) datasets, while the one corresponding to the Geology (GE)
dataset does not appear to be a power law. This might be a consequence of the ”qual-
ity” of the data. In fact, the AP dataset is the most dense dataset, in the sense that the
average degree in the AP graph in 19.18, while in the GE graph it is 4.42. In addition,
the size of the AP graph is around ten times bigger than the GE graph (see Table 1.3).

Dynamical power laws. In Figure 1.19 we plot the tail degree distribution of papers
published in 1985 in Organic Chemistry (OC) and Optics (OP), evaluated at different
years (from 1986 to 2013).
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Figure 1.19: Evolution of the tail degree distribution of papers published in 1985
over different years. We observe that the degree distribution at time t appears
to obey a power-law, with time-dependent exponent τ(t). Notice that τ(t) is de-
creasing, which implies that the papers have higher and higher degree.

We observe that the degree distribution seems to obey a power law, where the ex-
ponent τ(t) is time dependent. In particular, when we observe the degree distribution
at two different times t1 < t2, we have that τ(t1) > τ(t2), i.e, the power-law exponent
τ(t) is decreasing. In other words, as time grows the distribution tail becomes thicker,
i.e., papers with a larger number of citations are present. We call this phenomenon
dynamical power-law behavior.

From a modeling point of view, we have to define a graph model where not only
the graph degree distribution obeys a power law, but also the degree of fixed vertices
is distributed according a power law, where the exponent is time-dependent.

Decreasing of average citations. On average, we observe that the number of cita-
tions received by papers over time decreases eventually. In Figure 1.20 we plot the
average increment in citations for papers published in different years, in four different
fields.

In general, we observe that in the first years after publications papers on average
increase the number of citations they receive, while afterward this increment starts
decreasing. This turning point is different among fields, as well as the decreasing
behavior. For instance, in Nuclear Physics (NP) the maximum increment in the num-
ber of citations is around 2-4 years after publications. After that, the increment has a
drastic decrease. In Probability and Statistics (PS) this maximum is reached around
4-6 years after publication, but the decreasing behavior is slower compared to the one
in NP. Here, by slower we mean that in comparison to the maximum increment, the
increment after 20 years in PS is higher than in the other fields.
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Figure 1.20: Average degree increment of papers published in the same year.
Every line in every plot represents the average number of citations received by
papers published in a particular year as a function of the years after publication.
The peak of the increment in number of citations is different from field to field,
as well as the strength of the effect of age on this increment. For example, the
ratio between the maximum increment and the increment after 20 years is much
larger in AP than in PS, showing that the effect of aging is stronger in AP than in
PS.

Inhomogeneity of single papers. Figure 1.20 reports the average behavior of cita-
tions increment. The situation is rather different if we look at the number of citations
of single papers. Figure 1.21 shows the behavior of the number of citations received
by randomly selected papers published in 1985 in four different fields.

We notice that while the majority of papers stop receiving citations after some
years, few papers keep being cited over a long period of time. This shows a different
behavior among papers, i.e., not all papers are the same. This is contrast with random
graph models, such as the Erdős-Rényi model, where all vertices in the networks are
equivalent.
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PAMs mentioned so far show different behavior from the behavior of citation net-
works shown in Figure 1.21. In fact, in PAMs the degree of vertices diverges as the
size of the graph grows, and in general vertices with high degrees are the ones that
appear first in the graph. This is clearly not true in citation networks, since the most
cited papers are not necessarily the oldest published papers.

Affine dependence on past citations. Figure 1.22 shows the affine dependence be-
tween the past number of citations of a paper and the future ones. Each plot rep-
resents the average number of citations received by papers published in 1984 in the
years 1993, 2006 and 2013 according to the initial number of citations in the same
year. At least for low values of the starting number of citations k (for which there
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Figure 1.21: Evolution of the number of citations of randomly chosen papers
selected in the same publication year. In particular, we observe that at individual
levels papers show different behaviors. There is a substantial difference between
papers that stop receiving citations and paper that still after a long period of time
are cited.
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Figure 1.22: Linear dependence between past and future number of citations for
papers from 1988. It is possible to notice that a higher number of past citations
on average leads to a higher increment in the following year. This supports the
assumptions that highly cited papers are more likely to be cited again.

are more papers), we see that the average number of citations received during a year
grows roughly as an affine function of the type ak + b.

Notice that the slope a of the regression line decreases as time increases. This agrees
with the observation in Figure 1.20, where the average increment decreases over time.
In particular, papers with the same number of past citations have different average
increment, according to the their age. In other words, Figure 1.22 seems to suggest
that, on average, a paper with k citations published t years ago receives a(t)k + b(t)

new citations in the next year, for some functions a(t), b(t).

Age of cited papers. Figures 1.17-1.22 show properties of papers in citation net-
works from the point of view of cited papers, i.e., from papers who receive citations.
We now change this perspective, and we look at references from the point of view of
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Figure 1.23: Distribution of the age of cited papers for different citing years. We
look at a 20 years time-window to compare references contained in papers from
different years.

citing papers.
In Figure 1.23 we plot the distribution of the age of cited papers for references

in the datsets. We restrict our analysis on a 20-years window, in order to compare
references contained in papers published in different years. In other words, the plots
in Figure 1.23 represent the distribution of the age of the paper cited by a uniformly chosen
reference in the data (conditioning on this age being smaller than 20). It appear that
the distribution of the age of cited papers obeys a lognormal distribution [78, 119].

1.9. Beyond affine PA functions
As mentioned in Section 1.2.2, we can consider more general functions in (1.2.1)

than the affine case. Here, motivated by the analysis of citation networks presented
in Section 1.8, we describe a way to generate PA trees with more general PA functions,
trying to model features that we observed in the data.
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1.9. Beyond affine PA functions

1.9.1. PA functions in the literature
Often, PAMs are defined through PA functions that depend only on the degree

of vertices. Such models are called PAMs with general PA function. According to the
asymptotics of the PA function f(·), the limiting degree distribution of the graph can
behave rather differently.

There is an enormous body of literature showing that PAMs present power-law
decay in the limiting degree distribution precisely when the PA function is affine,
i.e., it is a constant plus a linear function [151]. In the sub-linear case, instead, the
degree distribution is stretched-exponential, while in the super-linear case it collapses,
in the sense that one of the first vertices will receive all the incoming new edges after
a certain step [132].

As mentioned, these models show the old-get-richer effect, meaning that the ver-
tices of highest degrees are the vertices present early in the network formation. An
extension of this model is called preferential attachment models with a random num-
ber of edges [52], where new vertices are added to the graph with a different number of
edges according to a fixed distribution, and again power-law degree sequences arise.
A generalization that also gives younger vertices the chance to have high degrees is
given by PAMs with fitness as studied in [53, 58]. Borgs et al. [35] present a complete
description of the limiting degree distribution of such models, with different regimes
according to the distribution of the fitness, using generalized Pólya urns. An interest-
ing variant of a multitype PAM is investigated in [149], where the author considers
PAMs where fitnesses are not i.i.d. across the vertices, but they are sampled according
to distributions depending on the fitnesses of the ancestors.

As mentioned, we try to model citation networks, where vertices denote papers
and the directed edges correspond to citations. For such networks, other models us-
ing preferential attachment schemes and adaptations of them have been proposed
mainly in the physics literature. Aging effects, i.e., considering the age of a vertex in its
likelihood to obtain children, have been extensively considered as the starting point
to investigate their dynamics [43, 81, 82, 167, 168]. Here the idea is that old papers
are less likely to be cited than new papers. Such aging has been observed in many
citation network datasets and makes PAMs with weight functions depending only on
the degree ill-suited for them. As mentioned above, such models could more aptly
be called old-get-richer models, i.e., in general old vertices have the highest degrees. In
citation networks, instead, papers with many citations appear all the time. Barabási,
Wang and Song [166] investigate a model that incorporates these effects. On the basis
of empirical data, they suggest a model where the aging function follows a lognor-
mal distribution with paper-dependent parameters, and the preferential attachment
function is the identity. In [166], the fitness function is estimated rather than the more
classical approach, where fitnesses are assumed be i.i.d. across papers. Hazoglou,
Kulkarni, Skiena and Dill in [84] propose a similar dynamics for citation evolution,
but only considering the presence of aging and cumulative advantage without fitness.
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1.9. Beyond affine PA functions

1.9.2. Age and fitness in PA functions
We use trees defined by CTBPs to describe the tree case of a random graph that

replicates features of citation networks. We need to define a birth process (ξt)t≥0 that
shows qualitatively the same characteristics of the number of citations of papers in
the data. These results are presented in Chapter 7, based on [73].

Denote by λ(t, k) the rate at which an individual of age t and k children generates
a new child. In the stationary case the rate λ(t, k) is independent of the age of the
individual, so λ(t, k) = f(k). PAMs with affine PA functions are part of this class.

When λ(t, k) is dependent of the age of the individual, we talk about the non-
stationary or aging case. In the presence of aging, we assume that age decreases the
rate λ(t, k). We model this by assuming that λ(t, k) = f(k)g(t), for some eventually
decreasing function g of time. This is the simplest way to introduce the effect of age,
in the sense that f and g are two separate functions, where f depends only on the
number of children already generated (so the in-degree) and g depends only on the
age of the individual.

Due to the inhomogeneity we observe in the citation evolution of single papers,
we assume that not all individuals are similar, but they have an intrinsic potential to
generate more children than other individuals. We model this by assigning a fitness
value η to every individual, independently across individuals. The fitness is consid-
ered as a multiplicative factor in the rate λ(t, k). In this setting, an individual produce
children according the rate λ(t, k) = ηf(k)g(t). Thus we talk about the aging and fit-
ness case.

Recalling our observations of Section 1.8, we make the following assumptions
of our CTBP model. First, since citation networks grows exponentially (recall Fig-
ure 1.17), we focus on CTBPs that are supercritical and Malthusian, i.e., the size of
the networks grows as eαt, where α denotes the Malthusian parameter of the CTBP.
We refer to Section 2.1 for more details.

Second, recalling Figure 1.22, we assume that the PA function f is affine, so f(k) =

ak + b. In terms of a PA scheme, this implies

P (a paper cites another with past k citations | past) ≈ n(k)(ak + b)

Z
,

where n(k) denotes the number of papers with k past citations, and Z is the normal-
ization factor. Such behavior has already been observed by Price [138], Redner [147]
and Barabási et al. [102].

Third, we assume that the aging function g is integrable. In fact, we start by the
fact that the age of cited papers is lognormally distributed (recall Figure 1.23). By nor-
malizing such a distribution by the average increment in the number of citations of
papers in the selected time window, we identify a universal function g(t). This func-
tion can be approximated by a lognormal shape with field-dependent parameters. In
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1.9. Beyond affine PA functions

particular, from the procedure used to define g(t), we observe that

g(t) ≈ number of references to year t
number of papers of age t

total number of papers considered
total number of references considered ,

which means in terms of PA mechanisms that

P (a paper cites another of age t | past) ≈ n(t)g(t)

Z
,

where Z is again the normalization factor (different from before), while this time
n(t) is the number of papers of age t. We will consider g to be integrable, but not
necessarily a lognormal function.

Fitness and aging as time rescaling. There is a nice interpretation of the presence
of aging and fitness as time-rescaled version of the stationary process.

Let (ξt)t≥0 be a birth process defined by the rates λ(t, k) = f(k), for some PA
function f . In this case the rate λ(t, k) depends only on k, so the corresponding CTBP
represents a PAM tree with PA function f .

It turns out that when we consider λ(t, k) = ηf(k)g(t), the corresponding process
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Figure 1.24: Examples of limiting degree distribution defined by a stationary pro-
cess with affine PA sequence (red lines), two aging processes defined by the same
PA function f and two different aging functions g1 and g2 (blue lines), and two
non-stationary processes with fitness with same PA sequence, aging functions
g1 and g2, and exponentially distributed fitness. On the left g1 is an exponential
function, while on the right g2 is a power-law function of the type (1+t)−c, c > 1.
We see how the presence of an integrable aging function destroys the power-law
behavior and generates distributions with a thinner tail. Here we observe that
the exponential distribution for fitness restores the power-law behavior, but not
with the original exponent.
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1.9. Beyond affine PA functions

(Ct)t≥0 is distributed as (ξηG(t))t≥0, whereG(t) =
∫ t

0
g(s)ds. Here we use the notation

Ct since this process with aging and fitness represents the number of citations of
papers in our CTBP model to describe citation networks.

When the aging function is integrable, thenG(∞) =
∫∞

0
g(s)ds <∞. This allows

us to predict that, on average, the total number C∞ of citation that a paper will ever
receive is finite. In fact, assuming that we know the fitness η of a paper, we have that

E[C∞ | η] ≈ eαηG(∞) <∞.

In particular,C∞ is always finite, but its value depends on the fitness. In other words,
the higher the fitness η is, the larger C∞ is. This agrees with Figure 1.20, where the
average citation increment decreases over time, since E[Ct] approaches E[C∞] < ∞.
Also, the fact that E[C∞] depends on the fitness value agrees with Figure 1.21, where
the number of citations of different papers has different behaviors. In this setting, the
papers in Figure 1.21 that keep being cited are the ones with high fitness values.

The crucial point is to show that it is possible to obtain power-law degree distri-
butions in preferential attachment trees where the birth process is not just depending
on an asymptotically linear weight sequence, in the presence of integrable aging and fitness.
Let us now briefly explain how these two effects change the behavior of the degree
distribution.

Integrable aging and affine preferential attachment without fitness. In the pres-
ence of aging but without fitness, we show that the aging effect substantially slows
down the birth process. In the case of affine f , aging destroys the power-law of the
stationary regime, generating a limiting distribution that consists of a power law with
exponential truncation. We prove this under reasonable conditions on the underlying
aging function (see Lemma 7.4.1).

Integrable aging and super-linear preferential attachment without fitness. Since
the aging destroys the power-law of the affine PA case, it is natural to ask whether
the combination of integrable aging and super-linear f restores the power-law lim-
iting degree distribution. Theorem 7.1.3 states that this is not the case, as super-
linear f implies explosiveness of the branching process, which is clearly unrealistic
in the setting of citation networks (here, we call a PA function f super-linear when∑
k≥1 1/f(k) < ∞). This result is quite general, because it holds for any integrable

aging function. Due to this, it is impossible to obtain power laws from super-linear f .
This suggests that (apart from slowly-varying functions), affine PA function has the
strongest possible growth, while maintaining exponential (and thus, in particular,
non-explosive) growth.

Integrable aging and affine preferential attachment with unbounded fitness. In
the case of aging and fitness, the asymptotic behavior of the limiting degree distri-
bution is rather involved. We estimate the asymptotic decay of the limiting degree
distribution with affine weights in Proposition 7.4.5. With the example fitness classes
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Figure 1.25: Dynamical power laws. Here we compare the evolution of tail distri-
bution of the number of citations of papers in BT with simulations. The picture
on the left shows the empirical tail distribution of papers published in 1985 in
BT, evaluated at different years. On the right, we have simulated a number of ag-
ing and fitness birth processes, with integrable aging and exponential fitness at
different time values. We observe that the two pictures show similar behaviors.
On the right, our model predicts that the tail degree distribution obeys a power
law with time-dependent exponent.

analyzed in Section 7.4.4, we prove that power-law tails are possible in the setting of
aging and fitness, at least when the fitness has roughly exponential tail. So far, PAMs
with fitness required the support of the fitness distribution to be bounded. The addi-
tion of aging allows the support of the fitness distribution to be unbounded, a feature
that seems reasonable to us in the context of citation networks. Indeed, the relative
attractiveness of one paper compared to another can be enormous, which is incon-
sistent with a bounded fitness distribution. We prove that we can restore the power
law destroyed by the presence of aging by using fitness distributions with roughly
exponential tails. When the fitness distribution has thinner tail, we do not restore the
power law, and when it has a thicker tail than exponential the process is explosive.

Dynamical power laws. In the case of fitness with exponential tails, we further ob-
serve that the number of citations of a paper of age t has a power-law distribution
with an exponent that depends on t. We call this a dynamical power law, and it is a
possible explanation of the dynamical power laws observed in citation data (see Fig-
ure 1.19). In Figure 1.25 we compare simulations and data to visually inspect the
similar behaviors.

Universality. An interesting and highly relevant observation in Chapter 7 is that
the limiting degree distribution of preferential attachment trees with aging and fit-
ness shows a high amount of universality. Indeed, for integrable aging functions, the
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dependence on the precise choice of the aging function seems to be minor, except for
the total integral of the aging function. Further, the dependence on fitness is quite
robust as well.

1.10. Main contributions and outline of the thesis
We observed many features in complex networks. Due to their dynamic nature,

we consider PAMs as a model to describe real-world networks. We recap the main
content of the present thesis as follows:

Power-law degrees. Many real-world networks show power-law degree distribu-
tions. PAMs with m ≥ 1 and PA function f(k) = k+ δ are known to generate graphs
with power-law degree and tunable exponent τ = 3 + δ/m. We consider the embed-
ding in continuous-time, known for PA trees, and we extend it to m ≥ 2. The power
of our technique is that it can be applied to more general PA functions, such as in the
presence of aging. This result is given in Chpater 2, based on the joint work with van
der Hofstad [70].

Distances. Real-world networks are small-worlds. We investigate the diameter of
PAMs with m ≥ 2 and PA function f(k) = k + δ, for τ ∈ (2, 3), as well as CM with
scale-free degrees with τ ∈ (2, 3) and minimum degree larger than 3. We prove that
for both models

diam(Gn)

log log n

P−→ c,

where c is a constant, different for the two models, that we are identify. This shows
a universality property for the proof strategy we use. These results are proven in
Chapter 3, based on the joint work with Caravenna and van der Hofstad [40].

Subgraphs and clustering. Real-world networks are in general ”clustered”, in the
sense that they show more triangles and small subgraphs than a randomized graph
with the same degree distribution. Some results are already known about the number
of triangles ∆t in PAM with m ≥ 1 and PA function f(k) = k + δ. In fact, when
τ > 3, E[∆t] is of order log t, while when τ = 3, E[∆t] is of order (log t)3. We extend
this result to τ ∈ (2, 3), proving that E[∆t] is order t(3−τ)/(τ−1) log t. Our approach
though is rather general, and we are able to identify the order of magnitue of every
finite subgraph in PAM. These results are presented in Chpater 5, based on the joint
work with Stegehuis [74].

Treelike property. PAMs are locally treelike, i.e., the finite neighborhood of most
vertices is a tree. This is formalized using the local weak convergence notion, so a
graph sequence (G − n)n∈N is locally treelike if it converges to a rooted tree. In [21]
the LW limit of three PAMs is identified as the Pólya point tree, when the power-law
exponent τ that satisfies τ ≥ 3. We extend their argument, showing that the Pólya
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point tree is the local weak limit of many different versions of PAMs, with power-
law exponent τ > 2. In particular, for PAM versions where the graph with m ≥ 2

is defined by collapsing from the case m = 1, we show that the convergence holds
if the tree case converges locally weakly to the Pólya point tree, with appropriately
rescaled parameters. These results are presented in Chapter 4, based on a joint work
with van der Hofstad [71], that is still in preparation.

Power-law PageRank. In scale-free networks with power-law exponent τ , it is em-
pirically observed that PageRank obeys a power-law with the same exponent. We
extend the notion of local weak convergence to directed graphs, showing that, for a
sequence of graphs (Gn)n∈N that converges locally weakly, the limiting PageRank dis-
tribution R∅ is identified by the local weak limit. In particular, in the case of PAMs
with m ≥ 1 and PA function f(k) = k + δ, with our technique we prove that R∅
is stochastically bounded from below by a power-law distribution with exponent
τ = 3 + δ/m. As a consequence, the tail of R∅ is at least the tail of a power-law
distribution with exponent τ , solving partially the power-law PageRank hypothesis
for PAMs. This results are given in Chapter 6, based on the join work with van der
Hofstad and Litvak [72].

Citation networks and generalized PAMs. Motivated by an empirical analysis of
citation networks, we observe that in general a PA function depending only on the
degree of vertices might not be suitable for describing dynamics in complex networks.
For this reason, we define a new class of CTBPs, representing directed random trees,
interpreted as continuous-time PA trees, and we focus our attention on the conditions
under which it is possible to generate trees with power-law degree distributions.

For PA functions f depending only on degrees, it is known that the correspond-
ing trees show power-law behavior whenever the PA is asymptotically linear in the
argument. We add the dependence on the age of the individual and on some poten-
tial attractiveness of every single individual that we call fitnesses. We prove that in
the presence of aging but no fitness, we can only produce degree distributions with
exponential tails. If we add fitnesses, then we can obtain a power law if and only if
the fitnesses are sampled from a distribution with at most exponential tails. These
results are proven in Chapter 7, based on the joint work with van der Hofstad and
Woeginger [73].

In Chapter 8 we give conclusions to this thesis, and we discuss possible future
research directions and open problems.
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2
Degrees and scale-free property

Content and structure of the chapter

In this chapter, we address the problem of the presence of power-law
degree distribution in PAM. We extend the continuous-time embedding
known for PA trees to PA graphs, defining what we call collapsed branch-
ing processes, that are (multi)graphs defined in continuous time. Our
technique has two advantages: First, it shows that the relation between
continuous-time branching processes and PA graphs is not limited to
trees, and second, our techniques can be applied to more general PA
functions, and not only to the affine case.

The chapter is structured as follows: in Section 2.1 we introduce the the-
ory of continuous-time branching processes, and we present known re-
sults that we need for our arguments. In Section 2.2 we formalize the
definition of collapsed branching processes and we state the main re-
sults of the chapter. These results are based on Theorem 2.3.2, that is
more general and it is introduced in Section 2.3, and proved in Sec-
tion 2.5. Section 2.4 contains preliminary results that are necessary for
the proof of Theorem 2.3.2. The novel results of this chapter are based
on [70].

2.1. Preliminaries: continuous-time branching processes
Before introducing our result about the degree sequence in PAMs, it is necessary

to introduce continuous-time branching processes (CTBPs) in detail, that are a fun-
damental ingredient of our result.
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2.1. Preliminaries: continuous-time branching processes

2.1.1. Definition
In CTBPs, individuals produce children according to i.i.d. copies of the same birth

process. We now define birth processes in terms of point processes:

Definition 2.1.1 (Point process). A point process ξ is a random variable from a probability
space (Ω,A,P) to the space of integer-valued measures on R+.

A point process ξ is defined by a sequence of positive real-valued random vari-
ables (Tk)k∈N. With abuse of notation, we can denote the density of the point process
ξ by

ξ(dt) =
∑

k∈N
δTk(dt),

where δx(dt) is the delta measure in x, and the random measure ξ evaluated on [0, t]

as
ξ(t) = ξ([0, t]) =

∑

k∈N
1[0,t](Tk).

We suppose throughout the chapter that Tk < Tk+1 with probability 1 for every k ∈
N.

Remark 2.1.2. Equivalently, considering a sequence (Tk)k∈N (where T0 = 0) of positive
real-valued random variables, such that Tk < Tk+1 with probability 1, we can define

ξ(t) = ξ([0, t]) = k when t ∈ [Tk, Tk+1).

We will often define a point process from the jump-times sequence of an integer-valued process
(Vt)t≥0. For instance, consider (Vt)t≥0 as a Poisson process, and denote Tk = inf{t >
0 : Vt ≥ k}. Then we can use the sequence (Tk)k∈N to define a point process ξ.

We now introduce some notation before giving the definition of CTBP.

Definition 2.1.3 (Ulam-Harris set). The Ulam-Harris set is

U =
⋃

n∈N
Nn.

For x = x1 · · ·xn ∈ Nn and k ∈ Nwe denote by xk ∈ Nn+1 the element x1 · · ·xnk. The root
of the Ulam-Harris set is denoted by ∅ ∈ N0.

We use the elements of the Ulam-Harris set to identify individuals in the branch-
ing population. This is quite useful since the notaion in Definition 2.1.3 allows to de-
note the relationships between children and parents. In fact, for an individual x ∈ U ,
we denote the k-th child of x by the element xk. This construction is well known, and
has been used in other works on branching processes (see [95, 96, 129, 152] for more
details).

We now are ready to define our branching process:
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2.1. Preliminaries: continuous-time branching processes

Definition 2.1.4 (Continuous-time branching process). Given a point process ξ, we de-
fine the CTBP associated to ξ as the pair of a probability space

(Ω,A,P) =
∏

x∈U
(Ωx,Ax,Px) ,

where U is the Ulam-Harris set as in Definition 2.1.3, and an infinite set (ξx)x∈U of i.i.d.
copies of the process ξ. We will denote the branching process by ξ.

Remark 2.1.5 (Point processes and their jump times). We often define point processes in
terms of jump times of processes (Vt)t≥0. In order to keep the notation light, we will denote a
jump process (Vt)t≥0 by the corresponding point process ξ, and we write (ξt)t≥0.

According to Definition 2.1.4, a branching process is a pair of a probability space
and a sequence of random measures. It is possible though to define an evolution of
the branching population. At time t = 0, our population consists only of the root,
denoted by ∅. Every time t an individual x gives birth to its k-th child, i.e., ξx(t) =

k + 1, assuming that ξx(t−) = k, we start the process ξxk. Formally:

Definition 2.1.6 (Population birth times). We define the sequence of birth times for the
process ξ as τ ξ∅ = 0, and for x ∈ U ,

τ ξxk = τ ξx + inf {s ≥ 0 : ξx(s) ≥ k} .

In this way we have defined the set of individuals, their birth times and the pro-
cesses according to which they reproduce. We still need a way to count how many
individuals are alive at a certain time t.

Definition 2.1.7 (Random characteristic). A random characteristic is a real-valued pro-
cess Φ: Ω × R → R such that Φ(ω, s) = 0 for any s < 0, and Φ(ω, s) = Φ(s) is a deter-
ministic bounded function for every s ≥ 0 that only depends on ω through the birth time of
the individual, as well as the birth process of its children.

A relevant example of a random characteristic is obtained by the function 1R+(s),
which measures whether the individual has been born at time s. Another example is
1R+(s)1{k}(ξ), which measures whether the individual has been born or not at time
s and whether it has k children presently.

For each individual x ∈ U , Φx(ω, s) denotes the value of Φ evaluated on the
progeny of x, regarding x as ancestor, when the age of x is s. In other words, Φx(ω, s)

is the evaluation of Φ on the tree rooted at x, ignoring the rest of the population. If
we do not specify the individual x, then we assume that Φ = Φ∅. We use random
characteristics to describe the properties of the branching population.

Definition 2.1.8 (Evaluated branching processes). Consider a random characteristic Φ

as in Definition 2.1.7. We define the evaluated branching processes with respect to Φ at time
t ∈ R+ as

ξΦ
t =

∑

x∈U
Φx(t− τ ξx).
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2.1. Preliminaries: continuous-time branching processes

The meaning of the evaluated branching process is clear when we consider the
random characteristic Φ(t) = 1R+(t), for which

ξ
1R+

t =
∑

x∈U
(1R+)x(t− τ ξx),

which is the number of x ∈ U such that t−τ ξx ≥ 0, i.e., the total number of individuals
already born up to time t. Another characteristic that we consider is, for k ∈ N,
Φk(t) = 1{k}(ξt), for which

ξΦk
t =

∑

x∈U
1{k}

(
ξx
t−τξx

)

is the number of individuals with k children at time t.
As known from the literature, the properties of the branching process are deter-

mined by the behavior of the point process ξ. First of all, we need to introduce some
notation. Consider a function f : R+ → R. We denote the Laplace transform of f by

L(f(·))(α) =

∫ ∞

0

e−αtf(t)dt.

With a slight abuse of notation, if µ is a positive measure on R+, then we denote

L(µ(d·))(α) =

∫ ∞

0

e−αtµ(dt).

We use the Laplace transform to analyze the point process ξ:

Definition 2.1.9 (Supercritical property). Consider a point process ξ on R+. We say ξ is
supercritical when there exists α∗ > 0 such that

L(Eξ(d·))(α∗) =

∫ ∞

0

e−α
∗tEξ(dt) =

∑

k∈N
E
[∫ ∞

0

e−α
∗tδTk(dt)

]
=
∑

k∈N
E
[
e−α

∗Tk
]

= 1.

We call α∗ the Malthusian parameter of the process ξ.

We point out that Eξ(d·) is an abuse of notation to denote the density of the aver-
aged measure E[ξ([0, t])] = E[ξt]. A second fundamental property for the analysis of
branching processes is the following:

Definition 2.1.10 (Malthusian property). Consider a supercritical point process ξ, with
Malthusian parameter α∗. The process ξ is Malthusian when

− d

dα
(L(Eξ(dt))) (α)

∣∣∣∣
α∗

=

∫ ∞

0

te−α
∗tEξ(d·) =

∑

k∈N
E
[
Tke−α

∗Tk
]
<∞.

We denote
α̃ = inf {α > 0 : L (Eξ(d·)) (α) <∞} , (2.1.1)
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2.1. Preliminaries: continuous-time branching processes

and we will also assume that the process satisfies the condition

lim
α↘α̃

L (Eξ(d·)) (α) > 1. (2.1.2)

Integrating by parts, it is possible to show that, for a point process ξ,

L (Eξ(d·)) (α) = E [ξTα ] ,

where Tα is an exponentially distributed random variable independent of the pro-
cess (ξt)t≥0. Heuristically, the Laplace transform of a point process ξ is the expected
number of children born at exponentially distributed timeTα. In this case the Malthu-
sian parameter is the exponential rate α∗ such that at time Tα∗ exactly one children
has been born.

These two conditions are required to prove the main result on branching processes
that we rely upon:

Theorem 2.1.11 (Population exponential growth). Consider the point process ξ, and the
corresponding branching process ξ. Assume that ξ is supercritical and Malthusian with pa-
rameter α∗, and suppose that there exists ᾱ < α∗ such that

∫ ∞

0

e−ᾱtEξ(dt) <∞.

Then

(1) there exists a random variable Θ such that as t→∞,

e−α
∗tξ

1R+

t
P−as−→ Θ; (2.1.3)

(2) for any two random characteristics Φ and Ψ,

ξΦ
t

ξΨ
t

P−as−→ L(E[Φ(·)])(α∗)
L(E[Ψ(·)])(α∗) . (2.1.4)

This result is given by Nerman [129, Theorem 6.3], but the actual formulation in
Theorem 2.1.11 is given in [152, Theorem A].

Formula (2.1.3) implies that, P-a.s., the population size grows exponentially with
time. It is relevant though to give a description of the distribution of the random
variable Θ:

Theorem 2.1.12 (Positivity of Θ). Under the hypothesis of Theorem 2.1.11, if

E
[
L(ξ(d·))(α∗) log+ (L(ξ(d·))(α∗))

]
<∞, (2.1.5)

then, on the event {ξ1R+

t →∞}, i.e., on the event that the branching population keeps grow-
ing in time, the random variable Θ in (2.1.3) is positive with probability 1, and E[Θ] = 1.
Otherwise, Θ = 0 with probability 1. Condition (2.1.5) is called the (xlogx) condition.
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2.1. Preliminaries: continuous-time branching processes

This result is proven in [96, Theorem 5.3], and it is the CTBPs equivalent of the
Kesten-Stigum theorem for Galton-Watson processes [104, Theorem 1.1].

Formula (2.1.4) says that the ratio between the evaluation of the branching process
with two different characteristics converges P-a.s. to a constant that depends only on
the two characteristics involved. In particular, if we consider, for k ∈ N,

Φ(t) = 1{k}(ξt), and Ψ(t) = 1R+(t),

then Theorem 2.1.11 gives

ξΦ
t

ξ
1R+

t

P−as−→ α∗L(P (ξ(·) = k))(α∗) = P (ξTα∗ = k) , (2.1.6)

since L(E[1R+(·)])(α∗) = 1/α∗. The ratio in the previous formula is the fraction of
individuals with k children in the whole population:

Definition 2.1.13 (limiting degree distribution for CTBP). The sequence (pk)k∈N, where

pk = α∗L(P (ξ(·) = k))(α∗) = α∗
∫ ∞

0

e−α
∗tP (ξ(t) = k) dt

is the limiting degree distribution for the branching process ξ.

2.1.2. Stationary birth processes with no fitness
In this section we present the theory of birth processes that are called stationary

and have deterministic rates. In particular, we give description of the affine case,
which plays a central role in the present work, due to its relation to PAMs:

Definition 2.1.14 (Stationary non-fitness birth processes). Consider a non-decreasing
sequence (fk)k∈N of positive real numbers. A stationary non-fitness birth process is a
stochastic process (ζt)t≥0 such that

(1) ζ0 = 0, and ζt ∈ N for all t ∈ R+;
(2) ζt ≤ ζs for every t ≤ s;
(3) for h small enough,

P (ζt+h = k + j | ζt = k) =





1− fkh+ o(h) for j = 0,

fkh+ o(h) for j = 1,

o(h2) for j ≥ 2.

(2.1.7)

We denote the jump times by (Tk)k∈N, i.e.,

Tk = inf {t ≥ 0 : ζt ≥ k} .

52



2

D
eg

re
es

an
d

sc
al

e-
fre

e
pr

op
er

ty

2

D
eg

re
es

an
d

sc
al

e-
fre

e
pr

op
er

ty

2

D
eg

re
es

an
d

sc
al

e-
fre

e
pr

op
er

ty

2.1. Preliminaries: continuous-time branching processes

Remark 2.1.15 (Embedding birth process). Often, we refer to birth processes of the
type as in Definition 2.1.14 as embedding birth processes. The reason is that stationary
non-fitness birth processes can embed in continuous-time PA trees with PA function
f (see [9, 10, 22, 152]). Also, we sometimes refer to f as PA function, and to (fk)k∈N
as PA sequence, or simply the sequence, that defines (ζt)t≥0. Here fk = f(k).

With abuse of notation, we denote the point process corresponding to (ζt)t≥0 by
ζ. In this case, (ζt)t≥0 is an inhomogeneous Poisson process, and for every k ∈ N,
Tk+1 − Tk has exponential law with parameter fk independent of (Th+1 − Th)k−1

h=0. It
is possible to show the following proposition:

Proposition 2.1.16 (Probabilities for (ζt)t≥0). Consider a stationary non-fitness birth pro-
cess (ζt)t≥0. Denote, for every k ∈ N, P(ζt = k) = Pk[ζ](t). Then

P0[ζ](t) = exp (−f0t) , (2.1.8)

and, for k ≥ 1,

Pk[ζ](t) = fk−1exp (−fkt)
∫ t

0

exp (fkx)Pk−1[ζ](x)dx. (2.1.9)

For a proof, see [11, Chapter 3, Section 2]. From the jump times, it is easy to
compute the explicit expression for the Laplace transform of ζ as

L(Eζ(d·))(α) =
∑

k∈N
E
[∫ ∞

0

e−αtδTk(dt)

]
=
∑

k∈N
E
[
e−αTk

]
=
∑

k∈N

k−1∏

i=0

fi
α+ fi

,

since every Tk can be seen as a sum of independent exponential random variables
with parameters given by the sequence (fk)k∈N. Assuming now that ζ is supercriti-
cal and Malthusian with parameter α∗, we have the explicit expression for the limit
distribution (pk)k∈N, that is

p(1)

k =
α∗

α∗ + fk

k−1∏

i=0

fi
α∗ + fi

. (2.1.10)

An analysis of the behavior of the limit distribution of branching processes is pre-
sented in [9, 151], where the authors prove that (pk)k∈N has a power-law tail only if
the sequence of rates (fk)k∈N is asymptotically linear with respect to k.

Proposition 2.1.17 (Characterization of stationary and linear process ζ). Consider the
sequence fk = ak + b. Then:

(1) for every α ∈ R+,

L(Eζ(d·))(α) =
Γ(α∗/a+ b/a)

Γ(b/a)

∑

k∈N

Γ(k + b/a)

Γ(k + b/a+ α/a)
=

b

α− a.
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2.2. Collapsed branching processes (CBPs)

(2) The Malthusian parameter is α∗ = a+ b, and α̃ = a, where α̃ is defined as in (2.1.1).
(3) The derivative of the Laplace transform is

− b

(α− a)2
,

which is finite whenever α > a;
(4) The process (ζt)t≥0 satisfies the (xlogx) condition (2.1.5).

Proof. The proof can be found in [152, Theorem 2], or [9, Theorem 2.6].

For affine PA weights (fk)k∈N = (ak+ b)k∈N, the Malthusian parameter α∗ exists.
Since α∗ = a+ b, the limiting degree distribution of the branching process ζ is given
by

pk = (1 + b/a)
Γ(1 + 2b/a)

Γ(b/a)

Γ (k + b/a)

Γ (k + b/a+ 2 + b/a)
. (2.1.11)

Notice that pk has a power-law decay with exponent τ = 2 + b
a .

2.2. Collapsed branching processes (CBPs)
The main result of this chapter is the definition of multigraphs from continuous-

time branching processes (CTBP), through a procedure that we call collapsing. We
analyze the case where we collapse a fixed numberm ∈ N of individuals. The heuris-
tic idea is to consider the tree defined by the branching process, and collapse or merge
together m different nodes in the tree to create a vertex in the multigraph. Through-
out this chapter, we will consider an individual to be a node in the tree of the branching
process, while a vertex is a node in the multigraph obtained by collapsing.

Fix m ∈ N. We denote (n, j) = m(n − 1) + j, for j = 1, . . . ,m. We now give the
precise definition of the collapsed branching process:

Definition 2.2.1 (Collapsed branching process). Consider a branching process ξ. Then, a
collapsed branching process is a random process (CBP(m)

t )t≥0, for which, for every t ≥ 0,
CBP(m)

t is a directed multigraph with adjacency matrix (gx,y(t))x,y∈N, where

gx,y(t) =

m∑

j=1

1{(x,j)→(y,1),...,(y,m)}1R+(t− τ(x,j)), (2.2.1)

and {(x, j)→ (y, 1), · · · , (y,m)} is the event that there is a directed edge between individual
(x, j) and one of the individuals (y, 1), . . . , (y,m) in the tree defined by the branching process
at time t. We denote the size of CBP(m)

t by N (m)(t).

As the reader can see from the definition, the collapsing procedure combines m
individuals together with their edges to create a vertex, and there is an edge between
two vertices if and only if there is an edge between a pair of individuals collapsed
to create the two vertices. CBP(m)

t is a graph where every vertex (except vertex 1)
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2.2. Collapsed branching processes (CBPs)

has out-degree m. Self-loops and multiple edges are allowed (see Figure 1.7 for an
example of CBP).

We consider the birth time of the vertexn in the multigraph to be τ(n,1) = τm(n−1)+1.
Thus, vertexn in CBP(m) is considered alive when (n, 1) is alive in ξ. Notice that when
n is born, it has only one out-edge, because the other individuals (n, 2), . . . , (n,m) are
not yet alive. Clearly, the in-degree at time t of a vertex n in CBP(m) is given by

D(in)

n (t) =

m∑

j=1

ξ
(n,j)
t−τ(n,j) .

The main difference between CBPs and PAMs is that CBPs are defined in continuous-
time, while time in PAMs is discrete. Heuristically, discrete time in PAMs is described
as the time unit at which a new vertex is added to the graph (see for instance [3,
33], [85, Chapter 8]), while in CBPs time is continuous and new vertices are born at
exponential rate (recall Theorem 2.1.11).

Our results are a first attempt to create a link between trees and multigraphs in
continuous time. The collapsing procedure creates difficulties though. For instance,
we consider different individuals to create a vertex, each one of them having its own
birth time. This has to be taken into account to investigate the degree evolution of a
vertex in CBP.

Here we state the result on the limiting degree distribution of CBPs, relying on
properties of CTBPs as formulated in Theorem 2.3.2 below:

Theorem 2.2.2 (Limiting degree distribution of CBPs). Consider a branching process ξ,
and fixm ∈ N. Denote the size of CBP(m)

t byN (m)(t) and the number of vertices with degree
k by N (m)

k (t). Under the hypotheses of Theorem 2.3.2, as t→∞,

N (m)

k (t)

N (m)(t)

P−→ p(m)

k = P
(
ξ1
Tα∗

+ · · ·+ ξmTα∗ = k
)
, (2.2.2)

where (ξ1
t )t≥0, . . . , (ξ

m
t )t≥0 are m independent copies of the birth process (ξt)t≥0, α∗ is the

Malthusian parameter of ξ, and Tα∗ is an exponentially distributed random variable with
parameter α∗.

The hypotheses of Theorem 2.3.2 are technical, and they are deferred to later. The-
orem 2.2.2 is part of Theorem 2.3.2.

2.2.1. Embedding PAMs
In discrete time, PAMs are defined by the PA function f :

P
(
n
j+1→ i | G(n,j)

)
=

f(Di(n, j))∑n
h=1 f(Dh(n, j))

, (2.2.3)

where Di(n, j) denotes the degree of the vertex i in G(n,j). When f is affine, it is
possible to define the model with out-degree m ≥ 2 from the tree case where the
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2.2. Collapsed branching processes (CBPs)

out-degree is 1 (we refer to [85, Chapter 8, Section 8.2] for the precise definition). In
particular, the collapsing procedure we have introduced in Definition 2.2.1 mimics
the construction of PAMs with affine attachment function.

Several works in the literature [9, 10, 22, 152] use CTBPs to investigate the degree
distribution of PA trees. In particular, embedding theorems are proved between dis-
crete and continuous time (see [9, Theorem 3.3], [10, Theorem 2.1]). These results
are based on the fact that all intervals between two jumps in every copy of the birth
process (ξt)t≥0 are exponentially distributed. This means that, conditionally on the
present state of the tree, the probability that a new vertex is attached to the i-th vertex
already present is just the ratio between the PA function of the degree of vertex i and
the total weight of the tree. Also PAMs with out-degreem ≥ 2 have been investigated,
but not through embedding of CTBPs.

PAMs are embedded in continuous time by the processes in Definition 2.1.14, and
this construction in used in [9, 10, 152]. It allows to embed PA trees in continuous time
where the PA function is given by f . Embedding birth processes allow us to describe
PAMs with out-degreem ≥ 2 and affine f using CBPs. In fact, an immediate applica-
tion of [9, Theorem 3.3] and [10, Theorem 2.1] is enough to prove that the transition
probability in CBP from CBP(m)

τ(n,j)
to CBP(m)

τ(n,j+1)
are exactly given by (2.2.3), with the

restriction that the first edge of every vertex cannot be a self-loop. In particular, this
yields the following result:

Corollary 2.2.3 (Continuous-time PAM). Fix m ≥ 2 and δ > −m. Let (ξt)k∈N be an
embedding birth process defined by the sequence (k+ 1 + δ/m)k∈N. Then, the corresponding
CBP embeds the PAM in continuous time with PA function f(k) = k + δ, and satisfies
Theorem 2.2.2 (and Theorem 2.3.2). As a consequence, the limiting degree distribution is
given by (1.3.1).

Corollary 2.2.3 is the application of Theorem 2.2.2 to the case of the CTBPs that
embed PAMs in continuous time. Indeed, the CBP observed at times (τn)n∈N ( the
sequence of birth times of the CTBP) corresponds to the discrete-time PAM. However,
since the ratioN (m)

k (t)/N (m)(t) converges in probability, Theorem 2.2.2 does not imply
the convergence along the sequence (τn)n∈N. To prove that the convergence holds
also in discrete time, a more detailed analysis is necessary, therefore we state it as a
separate result:

Theorem 2.2.4 (Discrete-time PAMs). Fixm ≥ 2 and δ > −m. Let (ξt)k∈N be an embed-
ding birth process defined by the sequence (k + 1 + δ/m)k∈N. Consider the corresponding
discrete-time PAM defined as PAn,j(m, δ) = CBP(m)

τ(n,j)
, for n ∈ N and j ∈ [m]. Then, for

every k ∈ N, the fraction of vertices with degree k in PAn,j(m, δ) converges in probability to
p(m)

k as in (1.3.1).

While CTBP arguments have been used a lot in the context of PA trees (for which
m = 1), Theorem 2.2.4 provides the first example where they are applied beyond the
tree setting. Thus, our results offer the opportunity to use the powerful CTBP tools
in order to study PAMs.
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2.3. Growth and scaling property of CBPs

The PAM version that is embedded as in Theorem 2.2.4 is a modification of [85,
Model (b)], where the starting graph PA2 is a graph with a single edge between them
(instead of 2 as in [85, Model (b)]). In this case, a new vertex appears with m edges
that are attached sequentially with degrees update, but the first edge is not allowed
to be a self loop, thus creating a connected graph.

To show the universality of our collapsing construction, we apply Theorem 2.2.2 to
another classical random graph model. A random recursive tree (RRT) is a sequence
of PA trees where the attachment function f is equal to one. At every step, a vertex
is added to the tree and attached uniformly to one existing vertex (see [88, 97] for an
introduction). We also consider a graph version of the RRT. In this case we obtain the
following result, which could be interpreted as the δ = ∞ version of Theorem 2.2.4,
and grows a graph by uniform attachments:

Corollary 2.2.5 (Random recursive graph). Fix m ≥ 2. Let (ξt)k∈N be an embedding
birth process defined by the sequence λk = 1 for every k ∈ N. Then, the corresponding CBP
defines a sequence of random graphs which transition probabilities are given by

P
(
n
j+1→ i | CBP(m)

τ(n,j)

)
=





1
(n−1)+j/m if i 6= n,

j/m
(n−1)+j/m if i = n.

(2.2.4)

We call the sequence of random graphs defined by (2.2.4) random recursive graph. As a
consequence, the limiting degree distribution is given by

p(m)

k =
1

m+ 1

(
1 +

1

m

)−k
. (2.2.5)

Consequently, the same result also holds in discrete time.

In this case the CBP can be seen as the generalization of the RRT to the case where
the out-degree ism ≥ 2. In particular, whenm = 1 the distribution in (2.2.5) reduces
to p(1)

k = 2−(k+1), which is the known limiting degree distribution for the RRT [97].

2.3. Growth and scaling property of CBPs
Our main result requires the following condition:

Condition 2.3.1 (Lipschitz). Assume that a birth process (ξt)≥0 is supercritical and Malthu-
sian. The Lipschitz condition is that, for every k ∈ N, there exists a constant 0 < `(k) <∞
such that the function Pk[ξ](t) = P (ξt = k) is Lipschitz with constant `(k).

Condition 2.3.1 requires that the functions (Pk[ξ](t))k∈N associated to the birth
process (ξt)t≥0 are smooth, in the sense that they do not have dramatic changes over
time. We can now state the main result of the chapter:

Theorem 2.3.2 (Growth and convergence of CBPs). Let (ξt)t≥0 be a supercritical and
Malthusian birth process that satisfies Condition 2.3.1. Let (CBP(m)

t )t≥0 be the correspond-
ing collapsed branching process. Let Θ and µ be as in Theorem 2.1.11. Denote the size of
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2.3. Growth and scaling property of CBPs

CBP(m)

t by N (m)(t), and the number of vertices with degree k by N (m)

k (t). Then, as t→∞,

me−α
∗tN (m)(t)

P−a.s.−→ 1

µα∗
Θ. (2.3.1)

Further, for every k ∈ N, there exists p(m)

k such that,

me−α
∗tN (m)

k (t)
P−→ 1

µα∗
p(m)

k Θ. (2.3.2)

As a consequence,
N (m)

k (t)

N (m)(t)

P−→ p(m)

k . (2.3.3)

The sequence (p(m)

k )k∈N is called the limiting degree distribution of (CBP(m)

t )t≥0, and is
given by

p(m)

k = α∗L (P [ξ](·)∗mk ) (α∗) = E [P [ξ](Tα∗)
∗m
k ] , (2.3.4)

where Pk[ξ](t) = P(ξt = k), Tα∗ is an exponentially distributed random variable with
parameter α∗, and

P [ξ](t)∗mk =
∑

k1+···+km=k

Pk1 [ξ](t) · · ·Pkm [ξ](t) (2.3.5)

is the k-th element of the m-fold convolution of the sequence (Pk[ξ](t))k∈N.
We now comment on Theorem 2.3.2 (for comparison with CTBPs, we refer to The-

orem 2.1.11). Equation (2.3.1) assures us that the size of a CBP grows at exponential
rate α∗ as for the underlying CTBP. Even the size of CBP(m)

t , up to the constant
m, scales exactly as the size of the CTBP, and the limiting random variable Θ is the
same. This means that the collapsing procedure does not destroy the exponential
growth of the graph.

(2.3.2) assures that, for every k ∈ N, the number of vertices with in-degree k scales
exponentially and also in this case we have a limiting random variable. (2.3.3) tells
us that there exists a deterministic limiting degree distribution for a CBP.

The expression for (p(m)

k )k∈N can be explained in terms of CTBPs. In fact, for a
CTBP ξ, the limiting degree distribution is given by p(1)

k = E [Pk[ξ](Tα∗)], with α∗ the
Malthusian parameter of ξ. We can see Tα∗ as a time unit that a process (ξt)t≥0 takes
to generate, on average, 1 individual. Then, p(1)

k can be seen as the probability that
(ξt)t≥0 generates k individuals instead of the average 1. Using the same heuristic,
the limiting degree distribution of CBP can be seen as the probability that m differ-
ent individuals produce k children in total in the time unit Tα∗ . Notice that in the
expression of (p(m)

k )k∈N the Malthusian parameter α∗ is that of the branching process
ξ.

Unfortunately, the size of CBP and the number of vertices with degree k ∈ N
are not the evaluation of a CTBP with a random characteristic as in Definition 2.1.7.
For example the degree of a vertex in CBP is the sum of the degrees of m different
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2.3. Growth and scaling property of CBPs

individuals. The solution for the size of CBP and the number of vertices with degree
k is different. From Definition 2.2.1, it is obvious that

N (m)(t) =

⌈
ξ
1R+

t

m

⌉
. (2.3.6)

Using then (2.1.3), the proof of (2.3.1) is immediate.

The proof of (2.3.2) is harder, and it requires a conditional second moment method
onN (m)

k (t). Before stating the result, we need a preliminary discussion. We use artifi-
cial randomness that we add to the branching process to rewrite the degree of a vertex
in CBP in terms of a random characteristic. In the population space in the definition
of CTBPs, we consider a single birth process (ξxt )t≥0 for every individual x in the pop-
ulation. We instead consider on every Ωx a vector of birth processes (ξx,1t , . . . , ξx,mt ),
where ξx,1t , · · · , ξx,mt are i.i.d. copies of the birth process, defined on the space corre-
sponding to the individual x. With this notation, the standard branching processes
defined by (ξt)t≥0 is the branching process where we consider as birth process the
first component of every vector associated to every individual.

Now, for k ∈ N, we consider the random characteristic

Φ(m)

k (t) = 1{k}
(
ξx,1t−τx + · · ·+ ξx,mt−τx

)
, (2.3.7)

which corresponds to the event that the sum of the components of the vector as-
sociated to the individual x when its age is t − τx is equal to k. This is a random
characteristic that depends only on the randomness defined on the space Ωx.

The crucial observation is that

P (D(in)

n (t) = k) = P
(
ξ

(n,1)
t−τ(n,1)

+ · · ·+ ξ
(n,m)
t−τ(n,m)

= k
)

≈ 1

m

m∑

j=1

P
(
ξ

(n,j),1
t−τ(n,j) + · · ·+ ξ

(n,j),m
t−τ(n,j) = k

)

=
1

m

m∑

j=1

E
[
Φ(m)

k (t− τ(n,j))
]

+ (error),

(2.3.8)

when we assume that the difference between the birth times τ(n,1), τ(n,2), . . . , τ(n,m)

is very small. The approximation in (2.3.8) can be explained by the fact that all the
components of the vectors (ξn,1t , . . . , ξn,mt ) are i.i.d. and τ(n,1) ≈ τ(n,m). In fact, on
the left side of (2.3.8) we have the probability that the sum of m independent copies
of (ξt)t≥0, evaluated at different times, is equal to k. Assuming that the differences
between the birth times τ(n,1), τ(n,2), . . . , τ(n,m) are small, we can just evaluate the m
different processes at time τ(n,1), with a negligible error.

The proof of this, based on Condition 2.3.1, is given in Proposition 2.4.3. It gives
the bound on the error term with the difference between the birth times of the indi-
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2.3. Growth and scaling property of CBPs

viduals collapsed to generate the vertex, i.e., the error term is bounded by

m`|τ(n,m) − τ(n,1)|, where ` = max
i∈[k]
{`(i)}.

The use of artificial additional randomness might not seem intuitive. The point is
that the equality in expectation between the random characteristic Φ(m)

k (t − τ(n,1))

and D(in)
n (t) is enough. This relies on the fact that, conditionally on the first stages of

the branching process, the contribution to the number of vertices with degree k given
by the latter individuals is almost deterministic. Let us formalize this idea:

Definition 2.3.3 (x-bulk filtration). Consider a branching process ξ, and its natural filtra-
tion (Ft)t≥0. Consider an increasing function x(t) : R+ → R+. We call (Fx(t))t≥0 the
x-bulk filtration of ξ. At every time t ≥ 0, a random variable measurable with respect to
Fx(t) is called x-bulk measurable.

If we consider x(t) to be o(t), then the x-bulk filtration heuristically contains infor-
mation only on the early stage of the CTBP. Nevertheless, the information contained
in Fx(t) is enough to estimate the behavior of the CTBP:

Proposition 2.3.4 (Conditional moments ofN (m)

k (t)). Assume that x is a monotonic func-
tion such that, as t → ∞, x(t) → ∞ and x(t) = o(t). Then, under the conditions of
Theorem 2.3.2, as t→∞,

(1)
me−α

∗tE
[
N (m)

k (t)
∣∣Fx(t)

] P−a.s.−→ 1

µ
L
(
Φ(m)

k (·)
)

(α∗)Θ; (2.3.9)

(2)

e−2α∗tE
[
N (m)

k (t)2
∣∣Fx(t)

] P−a.s.
≤

(
e−α

∗tE
[
N (m)

k (t)
∣∣Fx(t)

])2

+ o(1). (2.3.10)

We point out that ifX ≤ Y +o(1), then o(1) is a term that converges almost surely
to 0. The proof of Proposition 2.3.4 is moved to Section 2.5. With Proposition 2.3.4 in
hand, we can prove (2.3.2). We bound

∣∣∣me−α
∗tN (m)

k (t)− 1
µL(Φ(m)

k (·))(α∗)Θ
∣∣∣ by

∣∣∣me−α
∗tN (m)

k (t)−me−α
∗tE[N (m)

k (t)|Fx(t)]
∣∣∣

+
∣∣∣me−α

∗tE[N (m)

k (t)|Fx(t)]−
1

µ
L(Φ(m)

k (·))(α∗)Θ
∣∣∣.

(2.3.11)

As a consequence, (2.3.2) holds if both terms in (2.3.11) converges P-a.s. to zero. For
the second term this is true by (2.3.9). For the first term, we use (2.3.9) and (2.3.10) to
conclude that Var

(
me−α

∗tN (m)

k (t)|Fx(t)

)
= oa.s.(1), so that

∣∣∣me−α
∗tN (m)

k (t)−me−α
∗tE[N (m)

k (t)|Fx(t)]
∣∣∣ P−→ 0. (2.3.12)

This concludes the proof of (2.3.2). (2.3.3) follows immediately.
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2.4. Preliminaries on birth times

Remark 2.3.5 (Times and bulk sigma-field). We have proved Proposition 2.3.4 (and
thus Theorem 2.3.2) by looking at the CTBP at time t, considering the x(t)-bulk sigma-
field. We can extend the argument as follows. Consider s ≥ 0, and let y : R+ → R+

be a monotonic function of s such that y(s)/s → ∞ as s → ∞. In this case, look-
ing at the graph at time y(s), and considering the s-bulk sigma-field, Proposition
2.3.4 still holds. More generally, as suggested by (2.5.1) below, conditionally on the
s-bulk sigma-field, the evolution of a CTBP is almost deterministic. This implies
that Proposition 2.3.4 even holds when we consider a random process Y (s) such that
Y (s)/s

a.s.→ ∞, under the assumption that Y (s) is s-bulk measurable for every s ≥ 0.
These observations will be useful when extending our results to discrete time in Sec-
tion 2.6.

2.4. Preliminaries on birth times

2.4.1. Bound on the difference in time
In this section, we prove the fact that the error term in (2.3.8) can be bounded by

the difference of birth times of the considered individuals. We introduce the defini-
tion of convolution, as well as the bound we are interested in:

Definition 2.4.1 (Convolution). We define convolution between two sequences (ak)k∈N
and (bk)k∈N as

(a ∗ b)k :=

k∑

l=0

albk−l. (2.4.1)

Lemma 2.4.2 (Difference in times). Consider the sequence of functions (P [ξ]k(t))k∈N. If
(ξt)t≥0 satisfies Condition 2.3.1, then, for every x ∈ R+, and for every hi ≤ x for i ∈ [m],

|(P [ξ](x− h1) ∗ · · · ∗ P [ξ](x− hm))k − (P [ξ](x− h1)∗m)k| ≤ `
m∑

j=2

|h1 − hj |, (2.4.2)

where ` = maxi∈[k] `(i).

Proof. Without loss of generality, assume 0 ≤ h1 ≤ . . . ≤ hm. We prove Lemma 2.4.2
by induction on m. We start the induction with m = 2, so

(P [ξ](x− h1) ∗ P [ξ](t− h2))k =

k∑

l=0

P [ξ]l(x− h1)P [ξ]k−l(x− h2). (2.4.3)

We now use Condition 2.3.1 to bound |P [ξ]k−l(x− h2)− P [ξ]k−l(x− h1)| ≤ `(k −
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2.4. Preliminaries on birth times

l)(h2 − h1). Using this in (2.4.3), then we obtain, for ` = maxi∈[k] `(i),
∣∣∣
(
P [ξ](x− h1) ∗ P [ξ](t− h2)

)
k
−
(
P [ξ](x− h1)∗2

)
k

∣∣∣

≤ `
k∑

l=0

P [ξ]k−l(x− h1) |(h2 − h1)| .
(2.4.4)

Since
∑k
l=0 Pl[ξ](x− h1) = P [ξ]≤k(x− h1) ≤ 1,
∣∣(P [ξ](x− h1) ∗ P [ξ](t− h2))k −

(
P [ξ](x− h1)∗2

)
k

∣∣ ≤ `|h2 − h1|,

so (2.4.2) holds for m = 2. We now advance the induction hypothesis, so suppose
that (2.4.2) holds for m− 1. We can write

(
P [ξ](x− h1)∗ · · · ∗ P [ξ](x− hm)

)
k

(2.4.5)

=

k∑

l=0

(P [ξ](x− h1) ∗ · · · ∗ P [ξ](x− hm−1))l P [ξ]k−l(x− hm).

Notice that we can apply (2.4.2) to the first terms in the sum in (2.4.5) thanks to the
induction hypothesis, since it is now the convolution of m − 1 functions. We just
need to replace P [ξ]k−l(x − hm) by P [ξ]k−l(x − h1). It is easy to do this using a
similar argument used to prove the bound in (2.4.4), which implies again the use of
Condition 2.3.1. In the end, we have

∣∣∣
(
P [ξ](x− h1) ∗ · · · ∗ P [ξ](x− hm)

)
k
− (P [ξ](x− h1)∗m)k

∣∣∣

≤ `
m−1∑

j=2

|h1 − hj |+ `|hm − h1|,

where the m − 1 terms comes from the induction hypothesis, and the last one from
the approximation of P [ξ]k−l(x− hm). This completes the proof.

Lemma 2.4.2 holds for every time x and h1, . . . , hm that we consider. We can now
prove the bound on the error term in (2.3.8):

Proposition 2.4.3 (Approximation at fixed time). Consider (CBP(m)

t )t≥0 obtained from
a branching process ξ. Assume that (ξt)t≥0 satisfies Condition 2.3.1. Then, for every k ∈ N,
with ` as in Lemma 2.4.2, P-a.s. for every n ∈ N,
∣∣P
(
D(in)

n (t) = k | τ(n,1), . . . , τ(n,m)

)
−
(
P [ξ](t− τ(n,1))

∗m)
k

∣∣ ≤ `m|τ(n,m) − τ(n,1)|.

Proof. Conditionally on the birth times, the processes (ξ
(n,1)
t )t≥0, . . . , (ξ

(n,m)
t )t≥0 are
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2.4. Preliminaries on birth times

independent. As a consequence,

P
(
D(in)

n (t) = k | τ(n,1), . . . , τ(n,m)

)

=
(
P [ξ](t− τ(n,1)) ∗ · · · ∗ P [ξ](t− τ(n,m))

)
k
.

(2.4.6)

Then the statement follows immediately from Lemma 2.4.2, where we consider h1 =

τ(n,1), . . . , hm = τ(n,m), and the fact that τ(n,j) − τ(n,1) ≤ τ(n,m) − τ(n,1) for every
j = 1, . . . ,m.

2.4.2. Replacing birth times with Ft-measurable approximations
Recall that Ft denotes the natural filtration of the CTBP up to time t. It is possible

to rewrite (2.1.3) as
ne−α

∗τn P−a.s.−→ 1

µα∗
Θ.

As a consequence, as n→∞,

−τn +
1

α∗
log n

P−a.s.−→ 1

α∗
log

(
1

µα∗
Θ

)
. (2.4.7)

Notice that on the event {ξ1R+

t →∞}, Θ is positive with probability 1, so log
(

1
µα∗Θ

)

is well defined. Define, for n ≥ ξ1R+

t ,

σn(t) :=
1

α∗
log n− 1

α∗
log

(
1

µα∗
Θt

)
, where Θt = µα∗e−α

∗tξ
1R+

t . (2.4.8)

Then σn(t) is an approximation of τn given the information up to time t, where the
factor Θt includes the stochastic fluctuation of the size of the branching process. What
is interesting is that the random variable σn(t) is an approximation of τn measurable
with respect to Ft. We now prove that (σn(t))t≥0 is an acceptable approximation of τn:

Lemma 2.4.4 (Error of (σn(t))t≥0). P-a.s., as t→∞,

sup
n≥ξ

1R+
t

|σn(t)− τn| → 0. (2.4.9)

Proof. For every t ≥ 0 and n ≥ ξ1R+

t we write

|σn(t)− τn| ≤
∣∣∣∣

1

α∗
log n− τn −

1

α∗
log

(
1

µα∗
Θ

)∣∣∣∣

+
1

α∗

∣∣∣∣log

(
1

µα∗
Θ

)
− log

(
1

µα∗
Θt

)∣∣∣∣ .
(2.4.10)
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2.5. Second moment method: proof of Proposition 2.3.4

Using (2.4.10) in (2.4.9), we can bound

sup
n≥ξ

1R+
t

|σn(t)− τn| ≤
1

α∗

∣∣∣∣log

(
1

µα∗
Θ

)
− log

(
1

µα∗
Θt

)∣∣∣∣

+ sup
n≥ξ

1R+
t

∣∣∣∣
1

α∗
log n− τn −

1

α∗
log

(
1

µα∗
Θ

)∣∣∣∣ .
(2.4.11)

First of all, from (2.1.3) we know Θt/(µα
∗) = e−α

∗tξ
1R+

t → Θ/(µα∗). As a conse-
quence, the first term in the right hand side of (2.4.11) convergesP-a.s. to zero. For the
second term, we use (2.4.7) and the fact that the supremum decreases as ξ1R+

t →∞.
This completes the proof.

Lemma 2.4.4 suggests that, conditionally onFt, we can replace the birth sequence
(τn)n≥ξ1t with the sequence (σn(t))n≥ξ1t when evaluating random characteristics.

2.5. Second moment method: proof of Proposition 2.3.4

2.5.1. First conditional moment asymptotics
In this section, we investigate the first conditional moment ofN (m)

k (t) with respect
to the bulk filtration. In particular, consider a function x such that, as t→∞, x(t)→
∞ and x(t) = o(t). Heuristically, we want to show that

mE
[
N (m)

k (t) | Fx(t)

]
≈ N (m)(x(t))E

[
ξ

Φ
(m)
k

t−x(t)

]
. (2.5.1)

Equation (2.5.1) shows that, conditionally on the information up to time x(t), at time
t we have N (m)(x(t)) processes, each one producing the expected number of vertices
with degree k at time t− x(t). This follows from the fact that all the individual pro-
cesses in ξ are independent from each other once we condition on the birth times.

We start writing N (m)

k (t) as sum of indicator functions, i.e.,

E
[
N (m)

k (t) | Fx(t)

]
= E



N(m)(x(t))∑

n=1

1{D(in)
n (t)=k} +

∞∑

n=N(m)(x(t))+1

1{D(in)
n (t)=k}

∣∣∣∣∣∣
Fx(t)


 .

We can ignore the first sum in the conditional expectation, since

0 ≤ e−α
∗tE



N(m)(x(t))∑

n=1

1{D(in)
n (t)=k}

∣∣∣∣∣∣
Fx(t)


 ≤ e−α

∗tN (m)(x(t)), (2.5.2)

and, using Theorem 2.1.11 and the fact that x(t) = o(t),

e−α
∗(t−x(t))e−α

∗x(t)N (m)(x(t))
P−a.s.−→ 0. (2.5.3)
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2.5. Second moment method: proof of Proposition 2.3.4

Consider the sequence (σn(x(t)))t≥0
n∈N as defined in Section 2.4.2. This is a sequence

of random variables that approximates (τn)n∈N and it is measurable with respect to
the bulk filtration. This means that we can write, for any n ≥ N (m)(x(t)),

D(in)

n (t) = ξ(n,1)(t− σ(n,1)(x(t))) + · · ·+ ξ(n,m)(t− σ(n,m)(x(t))) + oa.s.(1).

Now, conditionally on the birth times σ(n,1)(x(t)), . . . , σ(n,m)(x(t)), the m processes
related to the n-th vertex (ξ

(n,1)
t )t≥0, . . . , (ξ

(n,m)
t )t≥0 are independent, so the proba-

bility that the sum is equal to k is
(
P [ξ](t− σ(n,1)(x(t))) ∗ · · · ∗ P [ξ](t− σ(n,m)(x(t)))

)

k

, (2.5.4)

which is a x-bulk measurable random variable. As a consequence,

E




∞∑

n=N(m)(x(t))+1

1{D(in)
n (t)=k}

∣∣∣∣∣∣
Fx(t)




=

∞∑

n=N(m)(x(t))+1

(
P [ξ](t− σ(n,1)(x(t))) ∗ · · · ∗ P [ξ](t− σ(n,m)(x(t)))

)

k

.

(2.5.5)

For any k ∈ N, the function u 7→ Pk[ξ](u) is zero for negative argument. As a con-
sequence, the sum in (2.5.5) is taken only over indices n such that σ(n,j)(x(t)) < t.
From the definition of σ(n,j)(x(t)) as in (2.4.8) and the fact that (n, j) = m(n− 1) + j,
it follows that σ(n,j)(x(t)) < t if and only if

n < 1− j/m+ eα
∗(t−x(t))ξ

1R+

x(t)/m = eα
∗(t−x(t))N (m)(x(t))(1 + oa.s.(1)), (2.5.6)

where oa.s.(1) denotes a term that converges P-a.s. to zero. Using (2.5.6) and then
applying Proposition 2.4.3, for ` as in Lemma 2.4.2, we obtain

N(m)(x(t))eα
∗(t−x(t))∑

n=N(m)(x(t))+1

P [ξ](t− σ(n,1)(x(t)))∗mk

+ `m

N(m)(x(t))eα
∗(t−x(t))∑

n=N(m)(x(t))+1

σ(n,m)(x(t))− σ(n,1)(x(t)),

(2.5.7)

where the difference between (2.5.5) and the first sum in (2.5.7) is bounded in absolute
value by the second sum in (2.5.7).

Consider the difference t − σ(n,1)(x(t)). Using the definition of the sequence
(σn(x(t)))n∈N, and recalling that mN (m)(x(t)) = ξ

1R+

x(t)(1 + oa.s.(1)) (see (2.3.6)), it fol-
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2.5. Second moment method: proof of Proposition 2.3.4

lows that t− σ(N(m)(x(t)),1)(x(t)) = (t− x(t))(1 + oa.s.(1)). As a consequence,

t− σ(n,1)(x(t)) = t− σ(N(m)(x(t)),1)(x(t))−
(
σ(n,1)(x(t))− σ(N(m)(x(t)),1)(x(t))

)

= t− x(t) +
1

α∗
log

(
m(n− 1) + 1

mN (m)(x(t))

)
+ oa.s.(1)

= t− x(t) +
1

α∗
log

(
n

N (m)(x(t))

)
+ oa.s.(1). (2.5.8)

The second sum in the right hand side of (2.5.7) is bounded by a telescopic sum, since
σ(n,1)(x(t)) ≥ σ(n−1,m)(x(t)), which implies that we can bound it with the difference
between the last and the first term. Using (2.5.8) in (2.5.7), for s = t− x(t), it leads to

N(m)(x(t))eα
∗s∑

n=N(m)(x(t))+1

P [ξ](s− 1

α∗
log

(
m(n− 1) + 1

mN (m)(x(t))

)
)∗mk +

m`

α∗
log

(
mN (m)(x(t))eα

∗s

mN (m)(x(t))

)

=

eα
∗s∑

p=1

N(m)(x(t))∑

q=1

P [ξ](s− 1

α∗
log (p+ q/N (m)(x(t))))∗mk +m`(t− x(t))

= N (m)(x(t))

eα
∗s∑

p=1

P [ξ]

(
s− 1

α∗
log(p)

)∗m

k

+m`(t− x(t))

= N (m)(x(t))

eα
∗s∑

p=1

E
[
Φ(m)

k

(
s− 1

α∗
log(p)

)]
+m`(t− x(t)). (2.5.9)

The contribute of the termm`(t−x(t)) is negligible, since e−α
∗tm`(t−x(t)) = o(1). To

analyze the remaining sum, we introduce two measures γ1 and γ2 on R+. For v ≥ 0,

γ1([0, v]) =

∫ v

0

∑

p∈N
δ{1/α∗ log p}(du) = eα

∗v,

γ2([0, v]) = E

[∫ v

0

∑

n∈N
δ{τn}(du)

]
= E

[
ξ
1R+
v

]
.

Notice that γ2 is the average measure of the random measure given by the branching
process size. From Theorem 2.1.11 we know that

γ2([0, v]) = E[ξ
1R+
v ] = (1/µα∗)eα

∗v(1 + o(1)).

This means that, asymptotically in v, γ1([0, v]) = µα∗γ2([0, v])(1 + o(1)). Using these
two measures it is possible to write

eα
∗s∑

p=1

E
[
Φ(m)

k

(
s− 1

α∗
log(p)

)]
=

∫ s

0

E[Φ(m)

k (s− u)]γ1(du)
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2.5. Second moment method: proof of Proposition 2.3.4

= µα∗
∫ s

0

E[Φ(m)

k (s− u)]γ2(du) + o(1) (2.5.10)

= µα∗E
[
ξ

Φ
(m)
k

s

]
+ o(1).

Using (2.5.10) in (2.5.9), we conclude that

e−α
∗tE

[
N (m)

k (t) | Fx(t)

]

= e−α
∗tµα∗N (m)(x(t))E

[
ξ

Φ
(m)
k

t−x(t)

]
+ oa.s.(1)

=
(
µα∗e−α

∗x(t)N (m)(x(t))
)(

e−α
∗(t−x(t))E

[
ξ

Φ
(m)
k

t−x(t)

])
+ oa.s.(1).

Applying (2.1.3) it follows that, as t→∞, µα∗e−α∗x(t)N(x(t)) converges P-a.s. to Θ,

while µα∗e−α∗(t−x(t))E
[
ξ

Φ
(m)
k

t−x(t)

]
converges to L(Φ(m)

k (·))(α∗)/µ. This completes the

proof of (2.3.9).

2.5.2. Conditional second moment asymptotics
In this section, we prove (2.3.10), i.e., the result on the conditional second moment

of N (m)

k (t). We again write N (m)

k (t) as sum of indicator functions, which means

e−2α∗tE
[
N (m)

k (t)2
∣∣Fx(t)

]

= e−2α∗tE


 ∑

n,n′∈N
1{D(in)

n (t)=k}1{D(in)

n′ (t)=k}

∣∣∣∣∣∣
Fx(t)


 .

We now divide the sum in different sums, according to the indices n and n′, as
∑

n,n′≤N(m)(x(t))

1{D(in)
n (t)=k}1{D(in)

n′ (t)=k}

+
∑

n,n′>N(m)(x(t))

1{D(in)
n (t)=k}1{D(in)

n′ (t)=k} (2.5.11)

+ 2
∑

n≤N(m)(x(t)),n′>N(m)(x(t))

1{D(in)
n (t)=k}1{D(in)

n′ (t)=k}.

For the first sum in (2.5.11), we use (2.5.2) as bound, and by (2.5.3) it is oa.s.(1). For the
second sum in (2.5.11), we again use the sequence (σn(x(t)))n∈N to approximate the
birth times. Using similar arguments as in Section 2.5.1, and the fact that condition-
ally on the birth times all the birth processes are independent, we write, for n 6= n′

and n, n′ > N (m)(x(t)),

P
(
D(in)

n (t) = k,D(in)

n′ (t) = k | Fx(t)

)
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2.5. Second moment method: proof of Proposition 2.3.4

=

[
P [ξ](t− σ(n,1)(x(t))) ∗ · · · ∗ P [ξ](t− σ(n,m)(x(t)))

]

k

(2.5.12)

×
[
P [ξ](t− σ(n′,1)(x(t))) ∗ · · · ∗ P [ξ](t− σ(n′,m)(x(t)))

]

k

.

We can use (2.5.12) to bound the conditional expectation of the second sum in (2.5.11).
In fact, adding the missing terms we can write

E
[ ∑

n,n′>N(m)(x(t))

1{D(in)
n (t)=k}1{D(in)

n′ (t)=k}

∣∣∣∣Fx(t)

]

≤
( ∑

n>N(m)(x(t))

(
P [ξ](t− σ(n,1)(x(t))) ∗ · · · ∗ P [ξ](t− σ(n,m)(x(t)))

)
k

)2

+ E
[
N (m)

k (t)

∣∣∣∣Fx(t)

]
(2.5.13)

= E
[ ∑

n>N(m)(x(t))

1{D(in)
n (t)=k}

∣∣∣∣Fx(t)

]2

+ E
[
N (m)

k (t)
∣∣Fx(t)

]

≤ E
[
N (m)

k (t)
∣∣Fx(t)

]2
+ E

[
N (m)

k (t)
∣∣Fx(t)

]
.

The third sum in (2.5.11) can be easily bounded by 2N (m)(x(t))E[N (m)

k (t)|Fx(t)]. Using
together the three bounds we obtained, we have that e−2α∗tE

[
N (m)

k (t)2|Fx(t)

]
can be

bounded by

e−2α∗tE[Nk(t)|Fx(t)]
2 + e−2α∗t (2N(x(t)) + 1)E[Nk(t)|Fx(t)] + oa.s.(1). (2.5.14)

The result follows since the second term in (2.5.14) is again oa.s.(1), similarly to the
first term in (2.5.11).

2.5.3. Affine and constant PA functions: Proofs of corollaries
2.2.3 and 2.2.5
In Section 2.2.1 we already showed that CBPs defined by birth processes as in

Definition 2.1.14 embeds the PAM in continuous-time and what we called random
recursive graph. We just need to show that Condition 2.3.1 is satisfied. In general,
processes defined as in Definition 2.1.14 are differentiable and satisfy a recursive
property (see [11, Section 3.2]). In particular, the derivatives of the family of func-
tions (Pk[ξ](t))k∈N are given by (2.1.8) and (2.1.9).

Since in general we consider a non-decreasing sequence (fk)k∈N, it is possible to
see that if we set `(k) = fk then Condition 2.3.1 is satisfied. Hence, the limiting
degree distribution (p(m)

k )k∈N is the distribution of the sum of m independent copies
of (ξt)t≥0 at exponential time Tα∗ , for α∗ Malthusian parameter of the CTBP.

In the case of the PAM embedding, the sum of m birth processes is distributed as
an embedded birth process defined by the PA rule f̄k = k+m+ δ (it is easy to prove
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2.6. Discrete-time processes: proof of Theorem 2.2.4

this by induction over the distribution of birth times). This implies that we can use
known results on this type of birth processes [9, 152] to write

p(m)

k = P
(
ξ1
Tα∗

+ · · ·+ ξmTα∗ = k
)

=
α∗

α∗ + k +m+ δ

k−1∏

i=0

i+m+ δ

α∗ + i+m+ δ
,

that can be rewritten as in (1.3.1) using Γ functions, since in this case α∗ = 1 + δ/m

(see [152, Section 4.2], [73, Proposition 3.15]).
For the random recursive graph, calculations are easier. It is easy to show that in

this case α∗ = 1. Since the sum of m Poisson processes (PP) with parameter 1 is a PP
with parameter m, the limiting degree distribution is the distribution of a PP at an
exponentially distributed time with parameter 1. Then

p(m)

k = E
[
e−mT1

(mT1)k

k!

]
=

1

m+ 1

(
1 +

1

m

)−k
. (2.5.15)

As mentioned, form = 1 (so without collapsing) the random recursive graph reduces
to the random recursive tree, and the limiting distribution is just p(1)

k = 2−(k+1) (see
[97]).

2.6. Discrete-time processes: proof of Theorem 2.2.4
The convergence result given in Theorem 2.2.2 assures that in continuous time, the

proportion of vertices in CBP with degree k converges in probability to p(m)

k . When
considering a CTBP in the presence of aging, this result is enough since these types
of CBPs are defined only in continuous time.

When we instead consider embedding processes as in Definition 2.1.14, we can
consider a discrete-time sequence of random graphs (CBP(m)

τn )n∈N, where (τn)n∈N is
the sequence of birth times of the corresponding CTBP. This is the way the PAM is
usually defined. In particular, the sequence (τn)n∈N corresponds to the sequence of
times at which a new edge appears in the CBP. In this setting, the convergence in
probability given in Theorem 2.2.2 does not imply the convergence in probability of
(me−α

∗τnN (m)

k (τn))n∈N. Here, we will prove that e−α
∗τnN (m)

k (τn) converges in prob-
ability to p(m)

k Θ/(µα∗), and that this further implies that N (m)

k (τmn)/n converges in
probability to p(m)

k , as required.
Recall the t-bulk sigma-field. We denote, as in (2.4.8), for n ≥ ξ1t ,

σn = σn(t) =
1

α∗
log n− 1

µα∗
Θt.

Take t = tn = (log n)1/2. Then, define the sequence (τ ′n)n∈N, where τ ′n := σn(tn).
Notice that τ ′n is tn-bulk-measurable. Further, τ ′n

a.s.→ ∞ and

tn
τ ′n

=
(log n)1/2

1
α∗ log n− 1

µα∗ log Θtn

=
(log n)1/2

log n(1/α∗ − log Θtn/(µα
∗ log n))

a.s.−→ 0.
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2.6. Discrete-time processes: proof of Theorem 2.2.4

By Remark 2.3.5, Proposition 2.3.4 holds for me−α
∗τ ′nN (m)

k (τ ′n), so that

me−α
∗τ ′nN (m)

k (τ ′n)
P→ p(m)

k Θ/(µα∗).

The advantage of the sequence (τ ′n)n∈N, other than being tn-bulk measurable, is that
it is a good approximation of the sequence (τn)n∈N. Indeed,

|τn − τ ′n| ≤
∣∣∣∣τn −

1

α∗
log n− 1

µα∗
log Θ

∣∣∣∣+

∣∣∣∣
1

µα∗
log Θ− 1

µα∗
log Θtn

∣∣∣∣ , (2.6.1)

so that |τn − τ ′n|
a.s.→ 0. As a consequence, also me−α

∗τnN (m)

k (τn)
P→ p(m)

k Θ/(µα∗).
By Theorem 2.3.2, we further know thatme−α

∗tN (m)(t)
a.s.→ Θ/(µα∗), so this holds

also for me−α
∗τnN (m)(τn). As a consequence,

me−α
∗τnN (m)

k (τn)

me−α∗τnN (m)(τn)
=
N (m)

k (τn)

N (m)(τn)
=
m

n
N (m)

k (τn)
P−→ p(m)

k . (2.6.2)

Consequently,N (m)

k (τmn)/n
P−→ p(m)

k . This completes the proof of Theorem 2.2.4.
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3
Diameter with infinite variance

degrees

Content and structure of the chapter

In this chapter, we investigate the diameter of the configuration model
(CM) and PAM in the case of power-law degree distribution with finite
mean and infinite variance, with minimal degree larger than 3 in CM
and larger than 2 in PAM. We prove that in both models, the diameter
divided by loglog the size of the graph converges in probability to an
explicit constant that we are able to compute, and that depends on the
parameters of the models. In particular, the same proof structure works
for both models, showing similarities of the two models and universality
of our argument.

The chapter is structured as follows: in Section 3.1 we define the two
models that we consider in the chapter and we state the convergence re-
sult on the diameters, namely Theorem 3.1.9 for CM and Theorem 3.1.12
for PAM. In Section 3.2 we present the high-level structure of the proofs
of Theorem 3.1.9 and 3.1.12. The proofs are divided in lower and upper
bounds. For CM we prove the lower bound in Section 3.3 and the upper
bound in Section 3.5. For PAM, we prove the lower bound in Section 3.4
and the upper bound in Section 3.6. The novel results of this chapter are
based on [40].
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3.1. Introduction and statements of results

3.1. Introduction and statements of results

3.1.1. Configuration model and main result
The configuration model CMn is a random graph with vertex set [n] := {1, 2, . . . , n}

and with prescribed degrees. Let d = (d1, d2, . . . , dn) be a given degree sequence, i.e.,
a sequence of n positive integers with total degree

`n =
∑

i∈[n]

di, (3.1.1)

assumed to be even. The configuration model (CM) on n vertices with degree se-
quence d is constructed as follows: Start with n vertices and di half-edges adjacent
to vertex i ∈ [n]. Randomly choose pairs of half-edges and match the chosen pairs
together to form edges. Although self-loops may occur, these become rare as n→∞
(see e.g. [29, Theorem 2.16], [98, 99]). We denote the resulting multi-graph on [n] by
CMn, with corresponding edge set En. We often omit the dependence on the degree
sequence d, and write CMn for CMn(d).

Regularity of vertex degrees. Let us now describe our regularity assumptions. For
each n ∈ N we have a degree sequence d(n) = (d(n)

1 , . . . , d(n)
n ). To lighten notation, we

omit the superscript (n) and write d instead of d(n) or (d(n))n∈N and di instead of d(n)

i .
Let (pk)k∈N be a probability mass function on N. We introduce the empirical degree
distribution of the graph as

p(n)

k =
1

n

∑

i∈[n]

1{di=k}. (3.1.2)

We can define now the degree regularity conditions:

Condition 3.1.1 (Degree regularity conditions). Let CMn be a configuration model, then
we say that d satisfies the degrees regularity conditions (a), (b), with respect to (pk)k∈N if:

(a) for every k ∈ N, as n→∞
p(n)

k −→ pk. (3.1.3)

(b)
∑
k kpk <∞, and as n→∞

∑

k∈N
kp(n)

k −→
∑

k∈N
kpk. (3.1.4)

As notation, we write that d satisfies the d.r.c. (a), (b).
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3.1. Introduction and statements of results

Let Fd,n be the distribution function of (p(n)

k )k∈N, that is, for k ∈ N,

Fd,n(k) =
1

n

∑

i∈[n]

1{di≤k}. (3.1.5)

We suppose that d satisfies the d.r.c. (a) and (b) with respect to some probability mass
function (pk)k∈N, corresponding to a distribution function F .

Condition 3.1.2 (Polynomial distribution condition). We say that d satisfies the polyno-
mial distribution condition with exponent τ ∈ (2, 3) if for all δ > 0 there existα = α(δ) > 1

2 ,
c1(δ) > 0 and c2(δ) > 0 such that, for every n ∈ N, the lower bound

1− Fd,n(x) ≥ c1x−(τ−1+δ) (3.1.6)

holds for all x ≤ nα, and the upper bound

1− Fd,n(x) ≤ c2x−(τ−1−δ) (3.1.7)

holds for all x ≥ 1.

There are two examples that explain Condition 3.1.2. Consider the case of i.i.d.
degrees with P (Di > x) = cx−(τ−1), then the degree sequence satisfies Condition
3.1.2 a.s. A second case is when the number of vertices of degree k is nk = dnF (k)e−
dnF (k−1)e, and 1−F (x) = cx−(τ−1). Condition 3.1.2 allows for more flexible degree
sequences than just these examples.

If we fix β < min{α, 1
τ−1+δ}, the lower bound (3.1.6) ensures that the number

of vertices of degree higher than x = nβ is at least n1−β(τ−1+δ), which diverges as
a positive power of n. If we take β > 1

2 , these vertices with high probability form
a complete graph. This will be essential for proving our main results. The precise
value of β is irrelevant in the sequel of this chapter.

For an asymptotic degree distribution with asymptotic probability mass function
(pk)k∈N, we say that

dmin = min {k ∈ N : pk > 0} (3.1.8)

is the minimal degree of the probability given by (pk)k∈N. With these technical re-
quests, we can state the main result for the configuration model:

Theorem 3.1.3 (Diameter of CMn for τ ∈ (2, 3)). Let d be a sequence satisfying Condition
3.1.1 with asymptotic degree distribution (pk)k with dmin ≥ 3. Suppose that d satisfies
Condition 3.1.2 with τ ∈ (2, 3) and di ≥ dmin for all i ∈ [n]. Then

diam(CMn)

log log n

P−−−−→
n→∞

2

log(dmin − 1)
+

2

| log(τ − 2)| , (3.1.9)

where P−−−−→
n→∞

denotes convergence in probability as n→∞.
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3.1. Introduction and statements of results

In fact, the result turns out to be false when p1 + p2 > 0, as shown by Fernholz
and Ramachandran [66] (see also [91]), since then there are long strings of vertices
with low degrees that are of logarithmic length.

3.1.2. Preferential attachment model and main result
In the present chapter, we consider the following version of PAM:

Definition 3.1.4 (Preferential attachment model). Fix m ∈ N, δ ∈ (−m,∞). Denote
by {t j→ v} the event that the j-th edge of vertex t ∈ N is attached to vertex v ∈ [t] (for
1 ≤ j ≤ m). The preferential attachment model with parameters (m, δ) is defined by the
attachment probabilities

P
(
t
j→ v

∣∣∣PAt,j−1

)
=





Dv(t, j − 1) + 1 + jδ/m

ct,j
for v = t,

Dv(t, j − 1) + δ

ct,j
for v < t,

(3.1.10)

where PAt,j−1 is the graph after the first j − 1 edges of vertex t have been attached, and
correspondingly Dv(t, j − 1) is the degree of vertex v. The normalizing constant ct,j in
(3.1.10) is

ct,j := [m(t− 1) + (j − 1)] (2 + δ/m) + 1 + δ/m . (3.1.11)

We refer to Section 3.4.1 for more details and explanations on the construction
of the model (in particular, for the reason behind the factor jδ/m in the first line of
(3.1.10)).

For the preferential attachment model, our main result is the following:

Theorem 3.1.5 (Diameter of the preferential attachment model). Let (PAt)t≥1 be a
preferential attachment model with m ≥ 2 and δ ∈ (−m, 0). Then

diam(PAt)

log log t

P−−−−→
t→∞

2

logm
+

4

| log(τ − 2)| , (3.1.12)

where τ = 3 + δ/m ∈ (2, 3).

In the proof of Theorem 3.1.5 we are also able to identify the typical distances in
PAt:

Theorem 3.1.6 (Typical distance in the preferential attachment model). Let V t1 and V t2
be two independent uniform random vertices in [t]. Denote the distance between V t1 and V t2
in PAt by Ht. Then

Ht

log log t

P−−−→
t→∞

4

| log(τ − 2)| . (3.1.13)

Theorems 3.1.5–3.1.6 prove [91, Conjecture 1.8].
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3.1. Introduction and statements of results

3.1.3. Related works
There are several other works that have already studied typical distances and di-

ameters of CM and PAM. Van der Hofstad, Hooghiemstra and Znamenski [90] ana-
lyze typical distances in CMn for τ ∈ (2, 3), while Van der Hofstad, Hooghiemstra
and Van Mieghem [89] study τ > 3. They prove that for τ ∈ (2, 3) typical distances
are of order log log n, while for τ > 3 is of order log n, and it presents the explicit con-
stants of asymptotic growth. Van der Hofstad, Hooghiemstra and Znamensky [91]
shows for τ > 2 and when vertices of degree 1 or 2 are present, that with high prob-
ability the diameter of CMn is bounded from below by a constant times log n, while
when τ ∈ (2, 3) and the minimal degree is 3, the diameter is bounded from above by
a constant times log log n. In [92], Van der Hofstad and Komjáthy investigate typical
distances for configuration models and τ ∈ (2, 3) in great generality, extending the
results in [91] beyond the setting of i.i.d. degrees.

Fernholz and Ramachandran [66] prove that the diameter of CMn is equal to an
explicit constant times log n plus o(log n) when τ ∈ (2, 3) but there are vertices of
degree 1 or 2 present in the graph, by studying the longest paths in the configuration
model that are not part of the 2-core (which is the part of the graph for which all
vertices have degree at least 2). Since our minimal degree is at least 3, the 2-core is
whp the entire graph, and thus this logarithmic phase vanishes. Dereich, Mönch and
Mörters [57] prove that typical distances in PAt are asymptotically equal to an explicit
constant times log log t, using path counting techniques. We use such path counting
techniques as well, now for the lower bound on the diameters. Van der Hofstad [86]
studies the diameter of PAt when m = 1, and proves that the diameter still has loga-
rithmic growth. Dommers, van der Hofstad and Hooghiemstra [59] prove an upper
bound on the diameter of PAt, but the explicit constant is not sharp.

CMn and PAt are two different models, in the sense that CMn is a static model
while PAt is a dynamic model. It is interesting to notice that the main strategy to
prove Theorems 3.1.3 and 3.1.5 is the same. In fact, all the statements formulated
in Section 3.2 are general and hold for both models. Also the explicit constants ap-
pearing in (3.1.9) and (3.1.12) are highly similar, which reflects the same structure of
the proofs. The differences consist in a factor 2 in the terms containing τ and in the
presence of dmin− 1 andm in the remaining term. The factor 2 can be understood by
noting that in CMn pairs of vertices with high degree are likely to be at distance 1,
while in PAt they are at distance 2. The difference in dmin− 1 andm is due to the fact
that dmin − 1 and m play the same role in the two models, i.e., they are the minimal
forward degree (or “number of children”) of a vertex that is part of a tree contained
in the graph. We refer to Section 3.2 for more details.

Typical distances and diameters have been studied for other random graphs mod-
els as well, showing log log behavior. Bloznelis [25] investigates the typical distance
in power-law intersection random graphs, where such distance, conditioning on be-
ing finite, is of order log log n, while results on diameter are missing. Chung and Lu
[49, 50] present results respectively for random graphs with given expected degrees
and Erdős and Rényi random graphs G(n, p), see also van den Esker, van der Hof-
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3.2. General structure of the proofs

stad and Hooghiemstra [64] for the rank-1 setting. The setting of the configuration
model with finite-variance degrees is studied in [66]. In [50] it is proved that for the
power-law regime with exponent τ ∈ (2, 3), the diameter is Θ(log n), while typical
distances are of order log log n. This can be understood from the existence of a pos-
itive proportion of vertices with degree 2, creating long, but thin, paths. In [49], the
authors investigate the different behavior of the diameter according to the parameter
p.

3.2. General structure of the proofs
We split the proof of Theorems 3.1.3 and 3.1.5 into a lower and an upper bound.

Remarkably, the strategy is the same for both models despite the inherent difference
in the models. In this section we explain the strategy in detail, formulating general
statements that will be proved for each model separately in the next sections.

Throughout this section, we assume that the assumptions of Theorems 3.1.3 and
3.1.5 are satisfied and, to keep unified notation, we denote the size of the preferential
attachment model by n ∈ N, instead of the more usual t ∈ N.

Throughout the chapter, we treat real numbers as integers when we consider
graph distances. By this, we mean that we round real numbers to the closest integer.
To keep the notation light and make the chapter easier to read, we omit the rounding
operation.

3.2.1. Lower bound
We start with the structure of the proof of the lower bound in (3.1.9) and (3.1.12).

The key notion is that of a minimally-k-connected vertex, defined as a vertex whose k-
neighborhood (i.e., the neighborhood up to distance k) is essentially a regular tree with
the smallest possible degree, equal to dmin for the configuration model and to m+ 1 for
the preferential attachment model. Due to technical reasons, the precise definition
of minimally-k-connected vertex is slightly different for the two models (see Defini-
tions 3.3.2 and 3.4.2).

Henceforth we fix ε > 0 and define, for n ∈ N,

k−n = (1− ε) log log n

log(dfwd)
, (3.2.1)

where dfwd denotes the forward degree, or “number of children”:

dfwd =

{
dmin − 1 for CMn;

m for PAn.
(3.2.2)

Our first goal is to prove that the number of minimally-k−n -connected vertices is large
enough, as formulated in the following statement:

Statement 3.2.1 (Moments ofMk−n
). Denote byMk−n

the number of minimally-k−n -connected
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3.2. General structure of the proofs

vertices in the graph (either CMn or PAn). Then, as n→∞,

E
[
Mk−n

]
→∞, Var

(
Mk−n

)
= o

(
E
[
Mk−n

]2)
, (3.2.3)

where Var(X) := E[X2]− E[X]2 denotes the variance of the random variable X .

The proof for the preferential attachment model makes use of conditioning argu-
ments. Indeed, we describe as much information as necessary to be able to bound
probabilities that vertices are minimally-k connected. Particularly in the variance es-
timate, these arguments are quite delicate, and crucial for our purposes.

The bounds in (3.2.3) show that Mk−n

P−−→∞ as n → ∞. This will imply that there
is a pair of minimally-k−n -connected vertices with disjoint k−n -neighborhoods,1 hence the di-
ameter of the graph is at least 2k−n , which explains the first term in (3.1.9) and (3.1.12).
Our next aim is to prove that these minimally connected trees are typically at distance
2cdist log log n/| log(τ − 2)|, where cdist = 1 for the configuration model and cdist = 2

for the preferential attachment model.

For this, let us now define

k̄n = (1− ε)cdist log log n

| log(τ − 2)| , (3.2.4)

where

cdist =

{
1 for CMn;

2 for PAn.
(3.2.5)

The difference in the definition of cdist is due to fact that in CMn vertices with high
degree are likely at distance 1, while in PAn are at distance 2. We explain the origin
of this effect in more detail in the proofs.

It turns out that the distance between the k−n -neighborhoods of two minimally-k−n -
connected vertices is at least 2k̄n. More precisely, we have the following statement:

Statement 3.2.2 (Distance between neighborhoods). Let Wn
1 and Wn

2 be two random
vertices chosen independently and uniformly among the minimally-k−n -connected ones. De-
noting by H̃n the distance between the k−n -neighborhoods ofWn

1 andWn
2 , we have H̃n ≥ 2k̄n

with high probability.

It follows immediately from Statement 3.2.2 that the distance between the vertices
Wn

1 andWn
2 is at least 2k−n +2k̄n, with high probability. This proves the lower bound

in (3.1.9) and (3.1.12).
It is known from the literature that 2k̄n, see (3.2.4), represents the typical distance

between two vertices chosen independently and uniformly in the graph. In order to
1A justification for this fact is provided by the following Statement 3.2.2 (the randomly chosen vertices

Wn
1 and Wn

2 have disjoint k−n -neighborhoods, because H̃n > 0 with high probability). For a more direct
justification, see Remark 3.3.6 for the configuration model and Remark 3.4.7 for the preferential attachment
model.
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3.2. General structure of the proofs

prove Statement 3.2.2, we collapse the k−n -neighborhoods of Wn
1 and Wn

2 into single
vertices and show that their distance is roughly equal to the typical distance 2k̄n.
This is a delicate point, because the collapsed vertices have a relatively large degree
and thus could be closer than the typical distance. The crucial point why they are
not closer is that the degree of the boundary grows only polylogarithmically. The
required justification is provided by the next statement:

Statement 3.2.3 (Bound on distances). Let us introduce the set

Vn :=





{
v ∈ [n] : dv ≤ log n

}
for CMn;

{
v ∈ [n] : v ≥ n

(logn)2 } for PAn.
(3.2.6)

Then, denoting the distance in the graph of size n by distn,

max
a,b∈Vn

P
(
distn(a, b) ≤ 2k̄n

)
= O

(
1

(log n)2

)
. (3.2.7)

The proof of Statement 3.2.3 is based on path counting techniques. These are differ-
ent for the two models, but the idea is the same: We split the possible paths between
the vertices a and b into two sets, called good paths and bad paths. Here good means that
the degrees of vertices along the path increase, but not too much. We then separately
and directly estimate the contribution of each set. The details are described in the
proof.

3.2.2. Upper bound
We now describe the structure of the proof for the upper bound, which is based

on two key concepts: the core of the graph and the k-exploration graph of a vertex.
We start by introducing some notation. First of all, fix a constant σ ∈ (1/(3 −

τ),∞). We define Coren as the set of vertices in the graph of size nwith degree larger
than (log n)σ . More precisely, denoting by Dv(t) = Dv(t,m) the degree of vertex v in
the preferential attachment model after time t, i.e. in the graph PAt (see the discussion
after (3.1.10)), we let

Coren :=

{
{v ∈ [n] : dv ≥ (log n)σ} for CMn;

{v ∈ [n] : Dv(n/2) ≥ (log n)σ} for PAn.
(3.2.8)

The fact that we evaluate the degrees at time n/2 for the PAM is quite crucial in the
proof of Statement 3.2.4 below. In Section 3.6, we also give bounds on Dv(n) for
v ∈ Coren, as well as for v 6∈ Coren, that show that the degrees cannot grow too much
between time n/2 and n. The first statement, that we formulate for completeness,
upper bounds the diameter of Coren and is already known from the literature for
both models:
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3.2. General structure of the proofs

Statement 3.2.4. Define cdist as in (3.2.5). Then, for every ε > 0, with high probability

diam(Coren)

log log n
≤ (1 + ε)

2cdist

| log(τ − 2)| . (3.2.9)

Statement 3.2.4 for CMn is [91, Proposition 3.1], for PAn it is [59, Theorem 3.1].

Next we bound the distance between a vertex and Coren. For k ∈ N, we define the
k-exploration graph of a vertex v as a suitable subgraph of its k-neighborhood, built
as follows: we consider the usual exploration process starting at v, but instead of
exploring all the edges incident to a vertex, we only explore a fixed number of them,
namely dfwd defined in (3.2.2). (The choice of which edges to explore is a natural one,
and it will be explained in more detail in the proofs.)

We stress that it is possible to explore vertices that have already been explored,
leading to what we call a collision. If there are no collisions, then the k-exploration
graph is a tree. In presence of collisions, the k-exploration graph is not a tree, and it is
clear that every collision reduces the number of vertices in the k-exploration graph.

Henceforth we fix ε > 0 and, in analogy with (3.2.1), we define, for n ∈ N,

k+
n = (1 + ε)

log log n

log(dfwd)
. (3.2.10)

Our second statement for the upper bound shows that the k+
n -exploration graph of

every vertex in the graph either intersects Coren, or it has a bounded number of col-
lisions:

Statement 3.2.5 (Bound on collisions). There is a constant c < ∞ such that, with high
probability, the k+

n -exploration graph of every vertex in the graph has at most c collisions
before hitting Coren. As a consequence, for some constant s > 0, the k+

n -exploration graph
of every vertex in the graph either intersects Coren, or its boundary has cardinality at least

s(dfwd)k
+
n = (log n)1+ε+o(1). (3.2.11)

With a bounded number of collisions, the k+
n -exploration graph is not far from be-

ing a tree, which explains the lower bound (3.2.11) on the cardinality of its boundary.
Having enough vertices on its boundary, the k+

n -exploration is likely to be connected
to Coren fast, which for our purpose means in o(log log n) steps. This is the content of
our last statement:

Statement 3.2.6. There are constants B,C < ∞ such that, with high probability, the k+
n -

exploration graph of every vertex in the graph is at distance at mosthn = dB log log log n+Ce
from Coren.

The proof for this is novel. For example, for the configuration model, we grow the
k+
n + hn neighborhood of a vertex, and then show that there are so many half-edges

at its boundary that it is very likely to connect immediately to the core. The proof
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3.3. Lower bound for CM

for the preferential attachment model is slightly different, but the conclusion is the
same. This shows that the vertex is indeed at most at distance k+

n +hn away from the
core.

In conclusion, with high probability, the diameter of the graph is at most

(k+
n + hn) + diam(Coren) + (k+

n + hn),

which gives us the expressions in (3.1.9) and (3.1.12) and completes the proof of the
upper bound.

3.3. Lower bound for CM
In this section we prove Statements 3.2.1, 3.2.2 and 3.2.3 for the configuration

model. By the discussion in Section 3.2.1, this completes the proof of the lower bound
in Theorem 3.1.3.

In our proof, it will be convenient to choose a particular order to pair the half-
edges. This is made precise in the following remark:

Remark 3.3.1 (Exchangeability in half-edge pairing). Given a degree sequence d =

(d1, . . . , dn) such that `n = d1 + . . .+ dn is even, the configuration model CMn can be
built iteratively as follows:

B start with di half-edges attached to each vertex i ∈ [n] = {1, 2, . . . , n};

B choose an arbitrary half-edge and pair it to a uniformly chosen half-edge;

B choose an arbitrary half-edge, among the `n− 2 that are still unpaired, and pair
it to a uniformly chosen half-edge; and so on.

The order in which the arbitrary half-edges are chosen does not matter in the above,
by exchangeability (see also [85, Chapter 7]).

3.3.1. Proof of Statement 3.2.1
With a slight abuse of notation (see (3.1.8)), in this section we set

dmin = min{d1, . . . , dn} .

Given a vertex v ∈ [n] and k ∈ N, we denote the set of vertices at distance at most k
from v (in the graph CMn) by U≤k(v) and we call it the k-neighborhood of v.

Definition 3.3.2 (Minimally-k-connected vertex). For k ∈ N0, a vertex v ∈ [n] is called
minimally-k-connected when all the vertices in U≤k(v) have minimal degree, i.e.,

di = dmin for all i ∈ U≤k(v) ,

and furthermore there are no self-loops, multiple edges or cycles in U≤k(v). Equivalently, v
is minimally-k-connected when the graph U≤k(v) is a regular tree with degree dmin.
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3.3. Lower bound for CM

We denote the (random) set of minimally-k-connected vertices by Mk ⊆ [n], and its
cardinality by Mk = |Mk|, i.e. Mk denotes the number of minimally-k-connected vertices.

Remark 3.3.3 (The volume of the k-neighborhood of k-minimally connected vertices).
For a minimally-k-connected vertex v, since U≤k(v) is a tree with degree dmin, the
number of edges inside U≤k(v) equals (assuming dmin ≥ 2)

ik =

k∑

l=1

dmin(dmin − 1)l−1 =





dmin k if dmin = 2;

dmin
(dmin − 1)k − 1

dmin − 2
if dmin ≥ 3.

(3.3.1)

Moreover, the number of vertices inside U≤k(v) equals ik+1. By (3.3.1), it is clear why
dmin > 2, or dmin ≥ 3, is crucial. Indeed, this implies that the volume of neighbor-
hoods of minimally-k-connected vertices grows exponentially in k.

Remark 3.3.4 (Collapsing minimally-k connected trees). By Remarks 3.3.1 and 3.3.3,
conditionally on the event {v ∈Mk} that a given vertex v is minimally-k-connected,
the random graph obtained from CMn by collapsing U≤k(v) to a single vertex, called
a, is still a configuration model with n − ik vertices and with `n replaced by `n − 2ik,
where the new vertex a has degree dmin(dmin − 1)k.

Analogously, conditionally on the event

{v ∈Mk, w ∈Mm, U≤k(v) ∩ U≤m(w) = ∅}

that two given vertices v andw are minimally-k and minimally-m-connected with dis-
joint neighborhoods, collapsing U≤k(v) and U≤m(w) to single vertices a and b yields
again a configuration model with n − ik − im vertices, where `n is replaced by `n −
2ik − 2im and where the new vertices a and b have degrees equal to dmin(dmin − 1)k

and dmin(dmin − 1)m, respectively.

We denote the number of vertices of degree k in the graph by nk, i.e.,

nk =
∑

i∈[n]

1{di=k}.

We now study the first two moments of Mk, where we recall that the total degree `n
is defined by (3.1.1):

Proposition 3.3.5 (Moments ofMk). Let CMn be a configuration model such that dmin ≥
2. Then, for all k ∈ N,

E[Mk] = ndmin

ik∏

i=1

dmin(ndmin − i)
`n − 2i+ 1

, (3.3.2)
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3.3. Lower bound for CM

where ik is defined in (3.3.1). When, furthermore, `n > 4ik,

E[M2
k ] ≤ E[Mk]2 + E[Mk]

(
(ik + 1) + i2k dmin

ndmin

`n − 4ik

)
. (3.3.3)

Before proving Proposition 3.3.5, let us complete the proof of Statement 3.2.1 sub-
ject to it. We are working under the assumptions of Theorem 3.1.3, hence dmin ≥ 3

and the degree sequence d satisfies the degree regularity condition Condition 3.1.1,
as well as the polynomial distribution condition Condition 3.1.2 with exponent τ ∈
(2, 3). Recalling (3.1.1)-(3.1.2), we can write ndmin = n p(n)

dmin
and `n = n

∑
k∈N kp

(n)

k ,
so that, as n→∞,

ndmin
=n pdmin

(1 + o(1)) , `n = nµ(1 + o(1)) ,

pdmin
> 0 , µ :=

∑

k∈N
kpk <∞. (3.3.4)

Recalling the definition (3.2.1) of k−n and (3.3.1), for k = k−n ,

ik−n = dmin
(dmin − 1)k

−
n − 1

dmin − 2
=

dmin

dmin − 2
(log n)1−ε(1 + o(1)),

hence
i2k−n = O((log n)2(1−ε)). (3.3.5)

Bounding E[Mk] ≤ n, it follows by (3.3.3) that

Var[Mk−n
] ≤ E[Mk−n

]
(
O(ik−n ) +O(i2k−n )

)
≤ nO((log n)2(1−ε)) = n1+o(1) . (3.3.6)

On the other hand, applying (3.3.2), for some c ∈ (0, 1) one has

E[Mk−n
] ≥ n pdmin

(
dmin pdmin

µ
+ o(1)

)i
k
−
n ≥ n pdmin c

(logn)1−ε
= n1−o(1) . (3.3.7)

Relations (3.3.6) and (3.3.7) show that (3.2.3) holds, completing the proof of State-
ment 3.2.1.

Remark 3.3.6 (Disjoint neighborhoods). Let us show that, with high probability, there
are vertices v, w ∈ Mk−n

with U≤k−n (v) ∩ U≤k−n (w) = ∅. We proceed by contradic-
tion: fix v ∈ Mk−n

and assume that, for every vertex w ∈ Mk−n
, one has U≤k−n (v) ∩

U≤k−n (w) 6= ∅. Then, for any w ∈ Mk−n
there must exist a self-avoiding path from

v to w of length ≤ 2k−n which only visits vertices with degree dmin (recall that U≤k−n (v)

and U≤k−n (w) are regular trees). However, for fixed v, the number of such paths is
O((dmin − 1)2k−n ) = O((log n)2(1−ε)), see (3.2.1), while by Statement 3.2.1 the number
of vertices w ∈Mk−n

is much larger, since Mk−n
∼ E[Mk−n

] = n1−o(1), see (3.3.7).
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3.3. Lower bound for CM

Proof of Proposition 3.3.5. To prove (3.3.2) we write

Mk =
∑

v∈[n] : dv=dmin

1{v∈Mk}, (3.3.8)

and since every vertex in the sum has the same probability of being minimally-k-
connected,

E [Mk] = ndmin
P(v ∈Mk). (3.3.9)

A vertex v with dv = dmin is inMk when all the half-edges in U≤k(v) are paired to
half-edges incident to distinct vertices having minimal degree, without generating
cycles. By Remark 3.3.1, we can start pairing a half-edge incident to v to a half-edge
incident to another vertex of degree dmin. Since there are ndmin

− 1 such vertices, this
event has probability

dmin(ndmin
− 1)

`n − 1

We iterate this procedure, and suppose that we have already successfully paired (i−
1) couples of half-edges; then the next half-edge can be paired to a distinct vertex of
degree dmin with probability

dmin(ndmin
− i)

`n − 2(i− 1)− 1
=
dmin(ndmin

− i)
`n − 2i+ 1

. (3.3.10)

Indeed, every time that we use a half-edge of a vertex of degree dmin, we cannot use its
remaining half-edges, and every step we make reduces the total number of possible
half-edges by two. By (3.3.1), exactly ik couples of half-edges need to be paired for v
to be minimally-k-connected, so that

E[Mk] = ndminP(v ∈Mk) = ndmin

ik∏

i=1

dmin(ndmin − i)
`n − 2i+ 1

. (3.3.11)

which proves (3.3.2). If ndmin
≤ ik the right hand side vanishes, in agreement with the

fact that there cannot be any minimally-k-connected vertex in this case (recall (3.3.1)).

To prove (3.3.3), we notice that

E[M2
k ] =

∑

v,w∈[n] : dv=dw=dmin

P(v, w ∈Mk). (3.3.12)

We distinguish different cases: the k-neighborhoods of v and w might be disjoint or
they may overlap, in which case w can be included in U≤k(v) or not. Introducing the
events

Av,w = {U≤k(v) ∩ U≤k(w) 6= ∅} , Bv,w = {w ∈ U≤k(v)} , (3.3.13)
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3.3. Lower bound for CM

we can write the right hand side of (3.3.12) as
∑

v,w∈[n]
dv=dw=dmin

[
P
(
v, w ∈Mk, A

c
v,w

)

+ P (v, w ∈Mk, Av,w, Bv,w) + P
(
v, w ∈Mk, Av,w, B

c
v,w

) ]
.

(3.3.14)

Let us look at the first term in (3.3.14). By Remarks 3.3.3 and 3.3.4, conditionally
on {v ∈ Mk}, the probability of {w ∈ Mk, A

c
v,w} equals the probability that w is

minimally-k-connected in a new configuration model, with `n replaced by `n − 2ik
and with the number of vertices with minimal degree reduced from ndmin

to ndmin
−

(ik + 1). Then, by the previous analysis (see (3.3.11)),

P
(
v, w ∈Mk, A

c
v,w

)
=

ik∏

i=1

dmin(ndmin − i− ik − 1)

`n − 2i− 2ik + 1
P (v ∈Mk) . (3.3.15)

By direct computation, the ratio in the right hand side of (3.3.15) is always maximized
for ik = 0 (provided `n ≥ 2ndmin

− 3, which is satisfied since `n ≥ dminndmin
≥ 3ndmin

by assumption). Therefore, setting ik = 0 in the ratio and recalling (3.3.11), we get
the upper bound

P
(
v, w ∈Mk, A

c
v,w

)
≤
[
ik∏

i=1

dmin(ndmin − i)
`n − 2i+ 1

]
P(v ∈Mk) = P (v ∈Mk)

2
. (3.3.16)

Since there are at most n2
dmin

pairs of vertices of degree dmin, it follows from (3.3.16)
that

∑

v,w∈[n]
dv=dw=dmin

P
(
v, w ∈Mk, A

c
v,w

)
≤ n2

dmin
P (v ∈Mk)

2
= E[Mk]2, (3.3.17)

which explains the first term in (3.3.3).

For the second term in (3.3.14), v and w are minimally-k-connected with overlap-
ping neighborhoods, and w ∈ U≤k(v). Since

{v, w ∈Mk} ∩Av,w ∩Bv,w ⊆ {v ∈Mk} ∩Bv,w,

we can bound
∑

v,w∈[n]
dv=dw=dmin

P
(
v, w ∈Mk, Av,w, Bv,w

)
≤ E

[ ∑

v∈[n]: dv=dmin

1{v∈Mk}
∑

w∈[n]: dw=dmin

1Bv,w

]
,
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3.3. Lower bound for CM

and note that
∑
w∈[n] 1Bv,w = |U≤k(v)| = ik + 1, by Remark 3.3.3. Therefore
∑

v,w∈[n]
dv=dw=dmin

P (v, w ∈Mk, Av,w, Bv,w) ≤ E[Mk] (ik + 1), (3.3.18)

which explains the second term in (3.3.3).

For the third term in (3.3.14), v and w are minimally-k-connected vertices with
overlapping neighborhoods, but w 6∈ U≤k(v). This means that dist(v, w) = l + 1 for
some l ∈ {k, . . . , 2k − 1}, so that U≤k(v) ∩ U≤l−k(w) = ∅ and, moreover, a half-edge
on the boundary of U≤(l−k)(w) is paired to a half-edge on the boundary of U≤k(v),
an event that we call Fv,w;l,k. Therefore

{w ∈Mk} ∩Av,w ∩Bcv,w

⊆
2k−1⋃

l=k

{w ∈Ml−k} ∩ {U≤k(v) ∩ U≤l−k(w) = ∅} ∩ Fv,w;l,k.
(3.3.19)

and we stress that in the right hand side w is only minimally-(l − k)-connected (in
case l = k this just means that dw = dmin). Then

P
(
v, w ∈Mk, Av,w, B

c
v,w

)

≤
2k−1∑

l=k

E
[
1{v∈Mk, w∈Ml−k, U≤k(v)∩U≤l−k(w)=∅}1Fv,w;l,k

]
.

(3.3.20)

By Remark 3.3.4, conditionally on {v ∈Mk, w ∈Ml−k, U≤k(v)∩U≤l−k(w) = ∅}, we
can collapseU≤k(v) andU≤l−k(w) to single vertices a and bwith degrees respectively
dmin(dmin − 1)k and dmin(dmin − 1)l−k, getting a new configuration model with `n
replaced by `n − 2ik − 2il−k. Bounding the probability that a half-edge of a is paired
to a half-edge of b, we get

P(Fv,w;l,k | v ∈Mk, w ∈Ml−k, U≤k(v) ∩ U≤l−k(w) = ∅)

≤ dmin(dmin − 1)kdmin(dmin − 1)l−k

`n − 2ik − 2il−k − 1
≤ d2

min(dmin − 1)l

`n − 4ik
,

(3.3.21)

because l ≤ 2k − 1 and, consequently, il−k ≤ ik−1 ≤ ik − 1. Plugging (3.3.21) into
(3.3.20), and then forgetting the event {w ∈Ml−k, U≤k(v)∩U≤l−k(w) = ∅}, leads to

∑

v,w∈[n]
dv=dw=dmin

P
(
v, w ∈Mk, Av,w, B

c
v,w

)

≤
(

2k−1∑

l=k

d2
min(dmin − 1)l

`n − 4ik

) ∑

v,w∈[n]
dv=dw=dmin

P(v ∈Mk) (3.3.22)
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3.3. Lower bound for CM

≤ dmin(dmin − 1)

`n − 4ik
i2k−1 ndmin

E[Mk] ,

where we have used the definition (3.3.1) of i2k−1. Since (dmin − 1)i2k−1 ≤ i2k, again
by (3.3.1), we have obtained the third term in (3.3.3).

3.3.2. Proof of Statement 3.2.2
We recall that Wn

1 and Wn
2 are two independent random vertices chosen uni-

formly inMk−n
(the set of minimally-k−n -connected vertices), assuming thatMk−n

6= ∅
(which, as we have shown, occurs with high probability). Our goal is to show that

lim
n→∞

P(En) = 0,

where we set

En : =
{

dist
(
U≤k−n (Wn

1 ), U≤k−n (Wn
2 )
)
≤ 2k̄n

}

=
{

dist(Wn
1 ,W

n
2 ) ≤ 2k−n + 2k̄n

}
.

We know from Statement 3.2.1 that as n→∞

P
(
Mk−n

≤ 1

2
E[Mk−n

]

)
≤ P

(
|Mk−n

− E[Mk−n
]| > 1

2
E[Mk−n

]

)
≤

Var[Mk−n
]

1
4E[Mk−n

]2
= o(1).

Therefore,

P(En)

= P
(
En ∩ {Mk−n

> 1
2E[Mk−n

]}
)

+ o(1)

= E
[ ∑

v1,v2∈[n]

1{Wn
1 =v1,Wn

2 =v2}1{dist(v1,v2)≤2k−n+2k̄n}1{Mk
−
n
> 1

2E[M
k
−
n

]}
]

+ o(1)

≤ E
[ ∑

v1,v2∈[n]

1{v1∈Mk
−
n
,v2∈Mk

−
n
}

M2
k−n

1{dist(v1,v2)≤2k−n+2k̄n}1{Mk
−
n
> 1

2E[M
k
−
n

]}
]

+ o(1)

≤
∑

v1,v2∈[n]

P
(
v1, v2 ∈Mk−n

, dist(v1, v2) ≤ 2k−n + 2k̄n

)

1
4E[Mk−n

]2
+ o(1). (3.3.23)

In analogy with (3.3.13), we introduce the event

Av1,v2
:=
{
U≤k−n (v1) ∩ U≤k−n (v2) 6= ∅

}
,

and show that it gives a negligible contribution. Recalling the proof of Proposi-
tion 3.3.5, in particular (3.3.18) and (3.3.22), the sum restricted toAv1,v2

leads precisely
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3.3. Lower bound for CM

to the second term in the right hand side of (3.3.3):

∑

v1,v2∈[n]

P
(
v1, v2 ∈Mk−n

, Av1,v2

)

1
4E[Mk−n

]2
≤

E[Mk−n
]

(
(ik−n + 1) + i2k−n

dmin ndmin

`n−4i
k
−
n

)

1
4E[Mk−n

]2

=
O(ik−n ) +O(i2k−n )

E[Mk−n
]

=
O((log n)2)

n1−o(1)
= o(1) ,

(3.3.24)

where we have used (3.3.5) and (3.3.7) (see also (3.3.4)).

We can thus focus on the event Acv1,v2
= {U≤k−n (v1) ∩ U≤k−n (v2) = ∅}. By Re-

mark 3.3.4,

P
(

dist(v1, v2) ≤ 2k−n + 2k̄n | v1, v2 ∈Mk−n
, Acv1,v2

)
= P̂

(
dist(a, b) ≤ 2k̄n

)
, (3.3.25)

where P̂ is the law of the new configuration model which results from collapsing
the neighborhoods U≤k−n (v1) and U≤k−n (v2) to single vertices a and b, with degrees
dmin(dmin−1)k

−
n = O(log n) (recall (3.2.1)-(3.2.2)). The degree sequence d̂ of this new

configuration model is a slight modification of the original degree sequence d: two
new vertices of degreeO(log n) have been added, while 2(ik−n +1) = O(log n) vertices
with degree dmin have been removed (recall (3.3.5)). Consequently d̂ still satisfies the
assumptions of Theorem 3.1.3, hence Statement 3.2.3 (to be proved in Section 3.3.3)
holds for P̂ and we obtain

P̂
(
dist(a, b) ≤ 2k̄n

)
= o(1). (3.3.26)

We are ready to conclude the proof of Statement 3.2.2. By (3.3.23)-(3.3.24)-(3.3.25),

P(En) =
∑

v1,v2∈[n]

P
(
v1, v2 ∈Mk−n

, dist(v1, v2) ≤ 2k−n + 2k̄n, A
c
v1,v2

)

1
4E[Mk−n

]2
+ o(1)

≤ P̂
(
dist(a, b) ≤ 2k̄n

) ∑

v1,v2∈[n]

P
(
v1, v2 ∈Mk−n

)

1
4E[Mk−n

]2
+ o(1)

= P̂
(
dist(a, b) ≤ 2k̄n

) E[(Mk−n
)2]

1
4E[Mk−n

]2
+ o(1).

Observe that E[(Mk−n
)2] = E[Mk−n

]2 + Var(Mk−n
) = O(E[Mk−n

]2), by the second rela-
tion in (3.2.3). Applying (3.3.26), it follows that P(En) = o(1), completing the proof
of Statement 3.2.2.

87



3

D
ia

m
et

er
w

ith
in

fin
ite

va
ria

nc
e

de
gr

ee
s

3

D
ia

m
et

er
w

ith
in

fin
ite

va
ria

nc
e

de
gr

ee
s

3

D
ia

m
et

er
w

ith
in

fin
ite

va
ria

nc
e

de
gr

ee
s

3

D
ia

m
et

er
w

ith
in

fin
ite

va
ria

nc
e

de
gr

ee
s

3.3. Lower bound for CM

3.3.3. Proof of Statement 3.2.3
In this section, we give a self-contained proof of Statement 3.2.3 for CMn, as used

in the proof of Statement 3.2.2.
Given two vertices a, b ∈ [n], let Pk(a, b) be the set of all self-avoiding paths of

length k from a to b, i.e. of all sequences (π0, π1, . . . , πk) ∈ [n]k+1 with π0 = a, πk = b

and such that (πi−1, πi) is an edge in the graph, for all i = 1, . . . , k. Analogously, let
Pk(a) = ∪b∈[n]Pk(a, b) denote the set of all paths of length k starting at a.

Let us fix an arbitrary increasing sequence (gl)l∈N0
(that will be specified later).

Define, for a, b ∈ R, a ∧ b := min{a, b}. We say that a path π ∈ Pk(a, b) is good when
dπl ≤ gl ∧ gk−l for every l = 0, . . . , k, and bad otherwise. In other words, a path is
good when the degrees along the path do not increase too much from π0 to πk/2, and
similarly they do not increase too much in the backward direction, from πk to πk/2.

For k ∈ N0, we introduce the event

Ek(a, b) = {∃π ∈ Pk(a, b) : π is a good path} . (3.3.27)

To deal with bad paths, we define

Fk(a) = {∃π ∈ Pk(a) : dπk > gk but dπi ≤ gi ∀i ≤ k − 1} . (3.3.28)

If distCMn(a, b) ≤ 2k̄, then there must be a path in Pk(a, b) for some k ≤ k̄, and this
path might be good or bad. This leads to the simple bound

P(distCMn(a, b) ≤ 2k̄) ≤
2k̄∑

k=0

P(Ek(a, b)) +

k̄∑

k=0

[P(Fk(a)) + P(Fk(b))] . (3.3.29)

We give explicit estimates for the two sums in the right hand side. We intro-
duce the size-biased distribution function F ∗n associated to the degree sequence d =

(d1, . . . , dn) by
F ∗n(t) =

1

`n

∑

v∈[n]

dv 1{dv≤t}. (3.3.30)

If we choose uniformly one of the `n half-edges in the graph, and call D∗n the degree
of the vertex incident to this half-edge, then F ∗n(t) = P(D∗n ≤ t). We also define the
truncated mean

νn(t) = E
[
(D∗n − 1)1{D∗n≤t}

]
=

1

`n

∑

v∈[n]

dv(dv − 1)1{dv≤t}. (3.3.31)

Now we are ready to bound (3.3.29).

Proposition 3.3.7 (Path counting for configuration model). Fix d = (d1, . . . , dn) (such
that `n = d1 + . . .+dn is even) and an increasing sequence (gl)l∈N0

. For all distinct vertices
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3.3. Lower bound for CM

a, b ∈ [n] with da ≤ g0, db ≤ g0, and for all k̄ ∈ N,

P
(

distCMn
(a, b) ≤ 2k̄

)
≤dadb

`n

2k̄∑

k=1

(
1− 2k

`n

)−k k−1∏

l=1

νn(gl ∧ gh−l)

+ (da + db)

k̄∑

k=1

(
1− 2k

`n

)−k
(1− F ∗n(gk))

k−1∏

l=1

νn(gl).

(3.3.32)

Proof. Fix an arbitrary sequence of vertices π = (πi)0≤i≤k ∈ [n]k+1. The probability
that vertex π0 is connected to π1 is at most

dπ0
dπ1

`n − 1
,

because there are dπ0
dπ1

ordered couples of half-edges, each of which can be paired
with probability 1/(`n − 1) (recall Remark 3.3.1), and we use the union bound. By
similar arguments, conditionally on a specific half-edge incident to π0 being paired to
a specific half-edge incident to π1, the probability that another half-edge incident to
π1 is paired to a half-edge incident to π2 is by the union bound bounded from above
by

(dπ1 − 1)dπ2

`n − 3
.

Iterating the argument, the probability that π is a path in CMn is at most

dπ0
dπ1

`n − 1

(dπ1
− 1)dπ2

`n − 3

(dπ2
− 1)dπ3

`n − 5
· · · (dπk−1

− 1)dπk
`n − (2k − 1)

. (3.3.33)

Let us now fix a, b ∈ [n] with a 6= b. Recalling (3.3.27)-(3.3.31), choosing π0 = a,
πk = b and summing (3.3.33) over all vertices π1, . . . , πk−1 satisfying dπi ≤ gi ∧ gk−i
yields

P(Ek(a, b)) ≤ dadb
(`n − 2k − 1)!!

(`n − 1)!!

(
k−1∏

i=1

`n νn(gi ∧ gk−i)
)
. (3.3.34)

Bounding (`n−2k−1)!!/(`n−1)!! ≤ (`n−2k)−k yields the first term in the right hand
side of (3.3.32). The bound forP(Fk(a)) is similar. Recalling (3.3.28)-(3.3.30), choosing
π0 = a and summing (3.3.33) over vertices π1, . . . , πk−1, πk such that dπi ≤ gi for
i ≤ k − 1 while dπk > gk gives

P(Fk(a)) ≤ da
(`n − 2k − 1)!!

(`n − 1)!!

(
k−1∏

i=1

`n νn(gi)

)
{
`n
(
1− F ∗n(gk)

)}
, (3.3.35)

and the same holds for P(Fk(b)). Plugging (3.3.34) and (3.3.35) into (3.3.29) proves
(3.3.32).
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3.3. Lower bound for CM

In order to exploit (3.3.32), we need estimates on F ∗n and νn, provided by the next
lemma:

Lemma 3.3.8 (Tail and truncated mean bounds for D∗n). Assume that Condition 3.1.2
holds. Fix η > 0, then there exist two constants C1 = C1(η) and C2 = C2(η) such that, for
every x ≥ 0,

1− F ∗n(x) ≤ C1x
−(τ−2−η), νn(x) ≤ C2x

(3−τ+η).

Proof. For every x ≥ 0 and t ≥ 0 we can see that

1− F ∗n(x) =
1

`n

∑

v∈[n]

dv1{dv>x} =
n

`n

[ 1

n

∑

v∈[n]

dv1{dv>x}
]

=
n

`n
E
[
Dn1{Dn>x}

]
,

where we recall that Dn is the degree of a uniformly chosen vertex. This means that

n

`n
E[Dn1{Dn>x}] =

n

`n

∞∑

j=0

P
(
Dn1{Dn>x} > j

)
=

n

`n

∞∑

j=0

P (Dn > j,Dn > x)

=
n

`n

∞∑

j=0

P (Dn > j ∨ x) =
n

`n

∞∑

j=0

(
1− Fd,n(j ∨ x)

)

=
n

`n

[
x(1− Fd,n(x)) +

∞∑

j=x

(
1− Fd,n(j)

)]

≤ n

`n
C
[
x−(τ−2−η) +

∞∑

j=x

j−(τ−1−η)
]
≤ C1x

−(τ−2−η),

where we have used Condition 3.1.2 in the second last step (recall that 2 < τ < 3).
For νn, we can instead write

νn(x) =
1

`n

∑

v∈[n]

dv(dv − 1)1{dv≤x} =
n

`n

[ 1

n

∑

v∈[n]

dv(dv − 1)1{dv≤x}
]

=
n

`n
E
[
Dn(Dn − 1)1{Dn≤x}

]
≤ n

`n
E
[
D2
n1{Dn≤x}

]
,

where Dn is again the degree of a uniformly chosen vertex. The claim now follows
from

n

`n
E
[
D2
n1{Dn≤x}

]
=

n

`n

∞∑

j=0

(2j + 1)P
(
Dn1{Dn≤x} > j

)

=
n

`n

∞∑

j=0

(2j + 1)P (Dn > j,Dn ≤ x) (3.3.36)

≤ n

`n

x−1∑

j=0

(2j + 1)P (Dn > j)
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3.3. Lower bound for CM

=
n

`n

x−1∑

j=0

(2j + 1)[1− Fd,n(j)]

≤ n

`n

x−1∑

j=0

Cj−(τ−2−η) ≤ n

`n
C2x

3−τ+η.

We are finally ready to complete the proof of Statement 3.2.3:

Proof of Statement 3.2.3. As in (3.2.4), we take

k̄n = (1− ε) log log n

| log(τ − 2)| , (3.3.37)

and our goal is to show that, as n→∞,

max
a,b∈[n]: da,db≤logn

P
(
distCMn

(a, b) ≤ 2k̄n
)
−→ 0.

We stress that τ ∈ (2, 3) and ε > 0 are fixed. Then we choose η > 0 so small that

2η < τ − 2 and | log(τ − 2− 2η)|
| log | log(τ − 2)| ≤

1− ε/2
1− ε . (3.3.38)

We use the inequality (3.3.32) given by Proposition 3.3.7, with the following choice
of (gk)k∈N0 :

gk := (g0)p
k

, where
{
g0 := (log n)log logn;

p := 1
τ−2−2η > 1.

(3.3.39)

Let us focus on the first term in the right hand side of (3.3.32), that is

dadb
`n

2k̄∑

k=1

(
1− 2k

`n

)−k k−1∏

l=1

νn(gl ∧ gh−l) . (3.3.40)

Since `n = µn(1 + o(1)) by (3.3.4), for k ≤ 2k̄n we have

(
1− 2k

`n

)−k
≤
(

1− 4k̄n
`n

)−2k̄n

= 1 +O

(
k̄2
n

`n

)

= 1 +O

(
(log log n)2

n

)
= 1 + o(1) .

(3.3.41)
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3.3. Lower bound for CM

Then observe that, by Lemma 3.3.8 and (3.3.39), for k ≤ 2k̄n

k−1∏

l=1

νn(gl ∧ gk−l) =

k/2∏

l=1

νn(gl)
2

≤ Ck/22

k/2∏

l=1

(gl)
2(3−τ+η) (3.3.42)

= C
k/2
2 (g0)2(3−τ+η)

∑k/2
l=1 p

l ≤ C k̄n2 (g0)2(3−τ+η)C pk̄n ,

with C = p
p−1 . Note that C k̄n2 = O((log n)c) for some c ∈ (0,∞), see (3.3.37), while

by (3.3.38)

pk̄n = exp
(
| log(τ − 2− 2η)|(1− ε) log log n

| log(τ − 2)|)
)

= (log n)(1−ε) | log(τ−2−2η)|
| log(τ−2)|

≤ (log n)(1−ε/2),

hence the right hand side of (3.3.42) is no(1) (since g0 = (log n)log logn). Then, for
da, db ≤ log n,

(3.3.40) ≤ (log n)2

`n
(2k̄n)

(
1 + o(1)

)
no(1) = O

(
(log n)2

n
(log log n)no(1)

)
= o(1) .

It remains to look at the second sum in (3.3.32):

(da + db)

k̄n∑

k=1

(
1− 2k

`n

)−k
(1− F ∗n(gk))

k−1∏

l=1

νn(gl). (3.3.43)

By Lemma 3.3.8 ,we can bound 1− F ∗n(gk) ≤ C1(gk)−(τ−2−η). By (3.3.41) and C k̄n1 =

O((log n)c) for some c ∈ (0,∞), see (3.3.37), bounding the product in (3.3.43) like we
did in (3.3.42) yields

O
(
(log n)c

)
(da + db)

k̄n∑

k=1

(gk)−(τ−2−η)(g0)(3−τ+η)Cpk−1

, (3.3.44)

where p = 1/(τ − 2− 2η) and C = p
p−1 . By (3.3.39)

(gk)−(τ−2−η)(g0)−
p
p−1 (3−τ+η)pk−1

= (gk−1)−p(τ−2−η)(gk−1)
p
p−1 (3−τ+η),

where
p(τ − 2− η) =

τ − 2− η
τ − 2− 2η

> 1,
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3.4. Lower bound for PAM

and
p

p− 1
(3− τ + η) =

3− τ + η

3− τ + 2η
< 1.

This means that, setting D := p(τ − 2− η)− p
p−1 (3− τ + η) > 0, by (3.3.39),

(3.3.44) = O
(
(log n)c

)
(da + db)

k̄n∑

k=1

(g0)−Dp
k−1 ≤ O

(
(log n)c

) da + db
(g0)D

. (3.3.45)

Since g0 = (log n)log logn while da, db ≤ log n, the right hand side of (3.3.45) is o(1).

3.4. Lower bound for PAM
In this section we prove Statements 3.2.1, 3.2.2 and 3.2.3 for the preferential at-

tachment model. By the discussion in Section 3.2.1, this completes the proof of the
lower bound in Theorem 3.1.5.

We recall that, given m ∈ N and δ ∈ (−m,∞), the preferential attachment model
PAt is a random graph with vertex set [t] = {1, 2, . . . , t}, where each vertex w has
m outgoing edges, which are attached to vertices v ∈ [w] with probabilities given in
(3.1.10). In the next subsection we give a more detailed construction using random
variables. This equivalent reformulation will be used in a few places, when we need
to describe carefully some complicated events. However, for most of the exposition
we will stick to the intuitive description given in Section 3.1.2.

3.4.1. Alternative construction of PAM
We introduce random variables ξw,j to represent the vertex to which the j-th edge

of vertex w is attached, i.e.

ξw,j = v ⇐⇒ w
j→ v . (3.4.1)

The graph PAt is a deterministic function of these random variables: two vertices
v, w ∈ [t] with v ≤ w are connected in PAt if and only if ξw,j = v for some j ∈ [m]. In
particular, the degree of a vertex v after the k-th edge of vertex t has been attached,
denoted by Dt,k(v), is

Dv(t, k) :=
∑

(s,i)≤(t,k)

(
1{ξs,i=v} + 1{s=v}

)
, (3.4.2)

where we use the natural order relation

(s, i) ≤ (t, j) ⇐⇒ s < t or s = t, i ≤ j .

We point out this is the same notation as we used in Chapter 2. In fact, the model in
Definition 3.1.4 is defined by collapsing together vertices of the discrete-time PA tree
(see [85, Chapter 8]).
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3.4. Lower bound for PAM

Defining the preferential attachment model amounts to giving a joint law for the
sequence ξ = (ξw,j)(w,j)∈N×[m]. In agreement with (3.1.10), we set ξ1,j = 1 for all
j ∈ [m], and for t ≥ 2

P
(
ξt,j = v | ξ≤(t,j−1)

)
=





Dv(t, j − 1) + 1 + jδ/m

ct,j
if v = t;

Dv(t, j − 1) + δ

ct,j
if v < t,

(3.4.3)

where ξ≤(t,i−1) is a shorthand for the vector (ξs,i)(s,i)≤(t,i−1) (and we agree that (t, 0) :=

(t−1,m)). The normalizing constant ct,j in (3.4.3) is indeed given by (3.1.11), because
by (3.4.2),

∑

v∈[t]

Dv(t, j − 1) =
∑

(s,i)≤(t,j−1)

(1 + 1) = 2((t− 1)m+ (j − 1)) .

The factor jδ/m in the first line of (3.4.3) is commonly used in the literature (in-
stead of the possibly more natural δ). The reason is that, with such a definition, the
graph PAt(m, δ) can be obtained from the special casem = 1, where every vertex has
only one outgoing edge: one first generates the random graph PAmt(1, δ/m), whose
vertex set is [mt], and then collapses the block of vertices [m(i − 1) + 1,mi) into a
single vertex i ∈ [t] (see also [85, Chapter 8]).

Remark 3.4.1. It is clear from the construction that PAt is a labeled directed graph,
because any edge connecting sites v, w, say with v ≤ w, carries a label j ∈ [m] and a
direction, from the newer vertex w to the older one v (see (3.4.1)). Even though our
final result, the asymptotic behavior of the diameter, only depends on the underlying
undirected graph, it will be convenient to exploit the labeled directed structure of the
graph in the proofs.

3.4.2. Proof of Statement 3.2.1
We denote by U≤k(v) the k-neighborhood in PAt of a vertex v ∈ [t], i.e. the set

of vertices at distance at most k from v, viewed as a labeled directed subgraph (see
Remark 3.4.1). We denote by Dv(t) = Dv(t,m) the degree of vertex v after time t, i.e.
in the graph PAt (recall (3.4.2)).

We define the notion of minimally-k-connected vertex in analogy with the configu-
ration model (see Definition 3.3.2), up to minor technical restrictions made for later
convenience.

Definition 3.4.2 (Minimally-k-connected vertex). For k ∈ N0, a vertex v ∈ [t] \ [t/2] is
called minimally-k-connected when Dv(t) = m, all the other vertices i ∈ U≤k(v) are in
[t/2] \ [t/4] and have degree Di(t) = m + 1, and there are no self-loops, multiple edges or
cycles in U≤k(v). The graph U≤k(v) is thus a tree with degree m + 1, except for the root v
which has degree m.
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3.4. Lower bound for PAM

We denote the (random) set of minimally-k-connected vertices byMk ⊆ [t] \ [t/2], and
its cardinality by Mk = |Mk|.

For the construction of a minimally-k-connected neighborhood in the preferential
attachment model we remind that the vertices are added to the graph at different
times, so that the vertex degrees change while the graph grows. The relevant degree
for Definition 3.4.2 is the one at the final time t. To build a minimally-k-connected
neighborhood, we need

ik = 1 +

k∑

i=1

mi =
mk+1 − 1

m− 1
(3.4.4)

many vertices. The center v of the neighborhood is the youngest vertex in U≤k(v),
and it has degree m, while all the other vertices have degree m+ 1.

Our first goal is to evaluate the probability P(v ∈ Mk) that a given vertex v ∈
[t] \ [t/2] is minimally-k-connected. The analogous question for the configuration
model could be answered quite easily in Proposition 3.3.5, because the configuration
model can be built exploring its vertices in an arbitrary order, in particular starting
from v, see Remark 3.3.1. This is no longer true for the preferential attachment model,
whose vertices have an order, the chronological one, along which the conditional
probabilities take the explicit form (3.1.10) or (3.4.3). This is why the proofs for the
preferential attachment model are harder than for the configuration model.

As it will be clear in a moment, to get explicit formulas it is convenient to evaluate
the probability P(v ∈Mk, U≤k(v) = H), whereH is a fixed labeled directed subgraph,
i.e. it comes with the specification of which edges are attached to which vertices. To
avoid trivialities, we restrict to thoseH for which the probability does not vanish, i.e.
which satisfy the constraints in Definition 3.4.2, and we call them admissible.

Let us denote byHo := H \ ∂H the set of vertices inH that are not on the bound-
ary (i.e. they are at distance at most k − 1 from v). With this notation, we have the
following result:

Lemma 3.4.3. Let {PAt}t∈N be a preferential attachment model. For any vertex v ∈ [t]\[t/2]

and any directed labeled graph H which is admissible,

P (v ∈Mk, U≤k(v) = H) = L1(H)L2(H) , (3.4.5)

where

L1(H) :=
∏

u∈Ho

m∏

j=1

m+ δ

cu,j
, (3.4.6)

L2(H) :=
∏

u6∈Ho

m∏

j=1

[
1− DH(u− 1) + |H ∩ [u− 1]|δ

cu,j

]
, (3.4.7)

and DH(u− 1) =
∑
w∈H Dw(u− 1) is the total degree of H before vertex u is added to the
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3.4. Lower bound for PAM

graph, and the normalization constant cu,j is defined in (3.1.11).

Proof. We recall that {a i→ b} denotes the event that the i-th edge of a is attached to b
(see (3.4.1)). Since H is an admissible labeled directed subgraph, for all u ∈ Ho and
j ∈ [m], the j-th edge of u is connected to a vertex inH , that we denote by θHj (u). We
can then write

{v ∈Mk, U≤k(v) = H} =
( ⋂

u∈Ho

m⋂

j=1

{u j→ θHj (u)}
)
∩
( ⋂

u 6∈Ho

m⋂

j=1

{u
j

6→ H}
)
, (3.4.8)

where of course {u
j

6→ H} :=
⋃
w 6∈H{u

j→ w}. The first term in (3.4.8) is exactly the
event that the edges present inH are connected in PAt as they should be. The second
term is the event that the vertices u 6∈ Ho are not attached to H , so that U≤k(v) = H .
Notice that in (3.4.8) every vertex and every edge of the graph appears. For a vertex
u ∈ Ho, by (3.1.10)

P
(
u

j→ θHj (u) | PAu,j−1

)
=
m+ δ

cu,j
, (3.4.9)

because the vertex θHj (u) has degree preciselym (when u is not already present in the
graph). For u 6∈ Ho, we have to evaluate the probability that its edges do no attach to
H , which is

P
(
u

j

6→ H | PAu−1,j−1

)
= 1− DH(u− 1) + |H ∩ [u− 1]|δ

cu,j
. (3.4.10)

Using conditional expectation iteratively, we obtain (3.4.9) or (3.4.10) for every edge
in the graph, depending on whether the edge is part of H or not. This proves (3.4.6)
and (3.4.7).

The event {v ∈ Mk, U≤k(v) = H} is an example of a class of events, called factor-
izable, that will be used throughout this section and Section 3.6. For this reason we
define it precisely.

It is convenient to use the random variable ξw,j , introduced in Section 3.4.1, to
denote the vertex to which the j-th edge of vertex w is attached (see (3.4.1)). Any
event A for PAt can be characterized iteratively, specifying a set As,i ⊆ [s] of values
for ξs,i, for all (s, i) ≤ (t,m):

A =
⋂

(s,i)≤(t,m)

{
ξs,i ∈ As,i

}
.

Of course, the set As,i is allowed to depend on the “past”, i.e. As,i = As,i
(
ξ≤(s,i−1)

)
,

or equivalently As,i = As,i
(
PAs,i−1

)
. Let us set A≤(s,i) :=

⋂
(u,j)≤(s,i)Au,j .

Definition 3.4.4 (Factorizable events). An eventA for PAt is called factorizable when the
conditional probabilities of the events {ξs,i ∈ As,i}, given the past, are deterministic. More
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3.4. Lower bound for PAM

precisely, for any (s, i) there is a (non-random) ps,i ∈ [0, 1] such that

P
(
ξs,i ∈ As,i | ξ≤(s,i−1)

)
= ps,i (3.4.11)

on the event ξ≤(s,i−1) ∈ A≤(s,i−1). As a consequence, the chain rule for probabilities yields

P(A) =
∏

(s,i)≤(t,m)

ps,i .

Remark 3.4.5. Relations (3.4.9) and (3.4.10) show that A = {v ∈ Mk, U≤k(v) = H}
is a factorizable event. In fact, As,i is either the single vertex θHi (s) (if s ∈ Ho) or
the set [s − 1] \ H (if s 6∈ Ho). In both cases, the set As,i ⊆ [s − 1] has a fixed total
degree and a fixed cardinality, hence the conditional probabilities (3.4.11) are specified
in a deterministic way (recall (3.4.3)).

Note that the event {v ∈Mk} is not factorizable. This is the reason for specifying
the realization of the k-neighborhood U≤k(v) = H .

Henceforth we fix ε > 0. We recall that k−n was defined in (3.2.1). Using the more
customary t instead of n, we have

k−t = (1− ε) log log t

logm
. (3.4.12)

We recall that Mk−t
= |Mk−t

| denotes the number of minimally-k−t -connected ver-
tices in PAt (see Definition 3.4.2). We can now prove half of Statement 3.2.1 for the
preferential attachment model, more precisely the first relation in equation (3.2.3).

Proposition 3.4.6 (First moment of Mk−t
). Let (PAt)t≥1 be a preferential attachment

model, with m ≥ 2 and δ ∈ (−m, 0). Then, for k−t as in (3.4.12), as t→∞,

E[Mk−t
] −→∞.

Proof. Similarly to the proof of (3.3.2), we write

E[Mk] =
∑

v∈[t]\[t(2]

P (v ∈Mk) =
∑

v∈[t]\[t/2]

∑

H⊆[t]\[t/4]

P
(
v ∈Mk, U≤k(v) = H

)
,

where the sum is implicitly restricted to admissible H (i.e., to H that are possible
realizations of U≤k(v)).

Since we will use (3.4.5), we need a lower bound on (3.4.6) and (3.4.7). Recalling
(3.1.11), it is easy to show, since the number of vertices in Ho equals ik −mk = ik−1,
and u ≤ v for u ∈ Ho,

L1(H) ≥
[

m+ δ

v(2m+ δ) + 1 + δ/m

]mik−1

.

Note that for u ≤ t/4 all the factors in the product in (3.4.7) equal 1, because H ⊆
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3.4. Lower bound for PAM

[t]\[t/4]. Restricting to u > t/4 and boundingDH(u−1)+|H∩[u−1]|δ ≤ (m+1+δ)ik,
we get

L2(H) ≥
[
1− (m+ 1 + δ)ik

t
4 (2m+ δ)

]3mt/4

.

Let us write H = {v} ∪H ′ where H ′ is a subset of [t/2] \ [t/4] with |H ′| = ik − 1.
Clearly, for any such subset there is at least one way to order the vertices to generate
an admissibleH . The number of possible subsets in [t/2]\[t/4] is at least

(
t/4
ik−1

)
. Then,

we obtain

E[Mk] ≥
∑

v∈[t]\[t/2]

(
t/4

ik − 1

)[
m+ δ

v(2m+ δ) + 1 + δ/m

]mik−1
[
1− (m+ 1 + δ)ik

t
4 (2m+ δ)

]3mt/4

.

Recalling that (
t/4

ik − 1

)
=

tik

4ik(ik − 1)!
(1 + o(1)),

since mik−1 ≤ ik, we obtain

E[Mk] ≥ t

2

tik

4ik(ik − 1)!

[
m+ δ

t(2m+ δ) + 1 + δ/m

]ik [
1− (m+ 1 + δ)ik

t
4 (2m+ δ)

]3mt/4

.

Choosing k = k−t as in (3.4.12) and bounding 1 − x ≥ e−2x for x small, as well as
m+ 1 ≤ 2m, we obtain

E[Mk−t
] ≥ t

2

t
i
k
−
t

4
i
k
−
t ik−t

!

( m
C t

)i
k
−
t exp

(
−3 cm ik−t

)
≥ 1

(C ′)
i
k
−
t

t

2 ik−t
!

exp
(
−3 cm ik−t

)
,

where C is a constant and C ′ = 4C/m. Recalling that ik is given by (3.4.4), and k−t by
(3.4.12), hence ik−t = m

m−1m
k−t (1 + o(1)) ≤ 2(log t)1−ε, hence

ik−t
! ≤ b2(log t)1−εc! ≤

[
2(log t)1−ε]2(log t)1−ε

= to(1) ,

and also (C ′e3 cm)
i
k
−
t = to(1). This implies that E[Mk]→∞, as required.

Remark 3.4.7 (Disjoint neighborhoods for minimally k-connected pairs). We observe
that, on the event {v, w ∈Mk}with v 6= w, necessarily

U≤k(v) ∩ U≤k(w) = ∅,

because if a vertex x is inU≤k(v)∩U≤k(w) and x 6= v, w, this means thatDx(t) = m+2,
because in addition to its original m outgoing edges, vertex x has one incident edge
from a younger vertex in U≤k(v) and one incident edge from a younger vertex in
U≤k(u), which gives a contradiction. Similar arguments apply when x = v or x = w.
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3.4. Lower bound for PAM

We use the previous remark to prove the second relation in Statement 3.2.1 for the
preferential attachment model.

Proposition 3.4.8 (Second moment of Mk−t
). Let (PAt)t≥1 be a preferential attachment

model, with m ≥ 2 and δ ∈ (−m, 0). Then, for k ∈ N,

E[M2
k ] ≤ exp

(
32mi2k/t

)
E[Mk]2 + E[Mk]. (3.4.13)

Consequently, for k = k−t as in (3.4.12), as t→∞,

E[M2
k−t

] ≤ (1 + o(1))E[Mk−t
]2 . (3.4.14)

Proof. We write

E
[
M2
k

]
=

∑

v,w∈[t]\[t/2]

P (v, w ∈Mk) =
∑

v 6=w
P (v, w ∈Mk) + E[Mk]. (3.4.15)

By Remark 3.4.7, for v 6= w we can write

P (v, w ∈Mk) =
∑

Hv∩Hw=∅
P (v, w ∈Mk, U≤k(v) = Hv, U≤k(w) = Hw) .

The crucial observation is that the event

{v, w ∈Mk, U≤k(v) = Hv, U≤k(w) = Hw}

is factorizable (recall Definition 3.4.4 and Remark 3.4.5). More precisely, in analogy
with (3.4.6) and (3.4.7):

P (v, w ∈Mk, U≤k(v) = Hv, U≤k(w) = Hw) = L1(Hv, Hw)L2(Hv, Hw), (3.4.16)

where now

L1(Hv, Hw) =
∏

x∈Hov∪How

m∏

j=1

m+ δ

cx,j
, (3.4.17)

L2(Hv, Hw) =
∏

x 6∈Hov∪How

m∏

j=1

[
1− DHv∪Hw(x− 1) + |(Hv ∪Hw) ∩ [x− 1]|δ

cx,j

]
.

To prove (3.4.16), notice that in (3.4.17) and every edge and every vertex of the graph
appear. Further, the first line in (3.4.17) is the probability of the event {U≤k(v) =

Hv, U≤k(w) = Hw}, while the second line is the probability that all vertices not in the
two neighborhoods do not attach to the two trees.

A look at (3.4.6) shows that L1(Hv, Hw) = L1(Hv)L1(Hw). We now show that
analogous factorization holds approximately also for L2. Since, for every a, b ∈ [0, 1],
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3.4. Lower bound for PAM

with a+ b < 1, it is true that 1− (a+ b) ≤ (1− a)(1− b), we can bound
[
1− DHv∪Hw(x− 1) + |(Hv ∪Hw) ∩ [x− 1]|δ

cx,j

]
(3.4.18)

≤
[
1− DHv (x− 1) + |Hv ∩ [x− 1]|δ

cx,j

] [
1− DHw(x− 1) + |Hw ∩ [x− 1]|δ

cx,j

]
.

When we plug (3.4.18) into the second line of (3.4.17), we obtainL2(Hv)L2(Hw) (recall
(3.4.7)) times the following terms:


 ∏

x∈How

[
1− DHv (x− 1) + |Hv ∩ [x− 1]|δ

cx,j

]

−1

×


 ∏

x∈Hov

[
1− DHw(x− 1) + |Hw ∩ [x− 1]|δ

cx,j

]

−1

.

(3.4.19)

We can boundDHv (x−1)+ |Hv∩ [x−1]|δ ≤ DHv (x−1) ≤ (m+1)ik (recall that δ < 0)
and analogously for Hw. The square brackets in (3.4.19) equal 1 for x ≤ t/4 (since
Hv, Hw ⊆ [t] \ [t/4] by construction), and for x > t/4 we have cx,j ≥ t

4 (2m+ δ) ≥ m
4 t

by (3.1.11) and δ > −m. We can thus write

L2(Hv, Hw) ≤ L2(Hv)L2(Hw)
∏

x∈Hov∪How

m∏

j=1

[
1− (m+ 1)ik

m
4 t

]−1

≤ L2(Hv)L2(Hw) exp

(
2(2ik)m

(m+ 1)ik
m
4 t

)
,

where we have used the bound 1 − z ≥ e−2z for small z > 0. Since m + 1 ≤ 2m, we
obtain

∑

v 6=w

[ ∑

Hv∩Hw=∅
P (v, w ∈Mk, U≤k(v) = Hv , U≤k(w) = Hw)

]

≤ exp
(
32mi2k/t

) ∑

v∈[t]\[t/2]

∑

Hv

L1(Hv)L2(Hv)
∑

w∈[t]\[t/2]

∑

Hw

L1(Hw)L2(Hw)

= exp
(
32mi2k/t

)
E[Mk]2.

(3.4.20)

Substituting (3.4.20) in (3.4.15) completes the proof of (3.4.13).
Finally, for k = k−t as in (3.4.12) we have ik−t ≤ 2(log t)1−ε (recall that ik is given by

(3.4.4)). We have already shown in Proposition 3.4.6 that E[Mk−t
]→∞, hence (3.4.14)

follows.

Together, Propositions 3.4.6 and 3.4.8 prove Statement 3.2.1. This means, as for
the configuration model, since Var(M2

k−t
) = o(E[Mk−t

]2), that Mk−t
/E[Mk−t

]
P−−−→

t→∞
1,
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3.4. Lower bound for PAM

so in particular Mk−t

P−−−→
t→∞

∞.

3.4.3. Proof of Statement 3.2.3
Fix ε > 0 and define, as in (3.2.4),

k̄t = (1− ε) 2 log log t

| log(τ − 2)| . (3.4.21)

Statement 3.2.3 follows from the following result on distances between not too early
vertices:

Proposition 3.4.9 (Lower bound on distances). Let (PAt)t≥1 be a preferential attachment
model, with m ≥ 2 and δ ∈ (−m, 0). Then, there exists a constant p > 0 such that

max
x,y≥ t

(log t)2

P
(
distPAt(x, y) ≤ 2k̄t

)
≤ p

(log t)2
. (3.4.22)

Inequality (3.4.22) is an adaptation of a result proved in [57, Section 4.1]. Conse-
quently we just give a sketch of the proof (the complete proof can be found in Sec-
tion 3.7).

Let us denote by u↔ v the event that vertices u, v are neighbors in PAt, that is

{u↔ v} =

m⋃

j=1

(
{u j→ v} ∪ {v j→ u}

)
.

(As a matter of fact, {v j→ u} is only possible if v > u, while {u j→ v} is only possibly if
v < u.) Given a sequence π = (π0, π1, . . . , πk) ∈ [t]k+1 of distinct vertices, we denote
by {π ⊆ PAt} the event that π is a path in PAt, that is

{
π ⊆ PAt

}
= {π0 ↔ π1 ↔ π2 · · · ↔ πk} =

k⋂

i=1

{πi−1 ↔ πi} .

The proof of Proposition 3.4.9 requires the following bound on the probability of
connection between two vertices from [59, Lemma 2.2]: for γ = m/(2m+ δ) ∈ ( 1

2 , 1),
there exists c ∈ (0,∞) such that, for all vertices u, v ∈ [t].

P (u↔ v) ≤ c(u ∨ v)γ−1(u ∧ v)−γ .

From [59, Corollary 2.3] we know, for any sequence π = (π0, π1, . . . , πk) ∈ [t]k+1 of
distinct vertices,

P
(
π ⊆ PAt

)
≤ p(π0, π1, . . . , πk) :=

k−1∏

i=0

Cm

(πi ∧ πi+1)γ(πi ∨ πi+1)1−γ , (3.4.23)

where C is an absolute constant. The history of (3.4.23) is that it was first proved by
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3.4. Lower bound for PAM

Bollobás and Riordan [32] for δ = 0 (so that γ = 1− γ = 1/2), and the argument was
extended to all δ in [59, Corollary 2.3].

Remark 3.4.10. Proposition 3.4.9 holds for every random graphs that satisfies (3.4.23).

We proceed in a similar way as in Section 3.3.3. Given two vertices x, y ∈ [t], we
consider paths π = (π0, π1, . . . , πk) between x = π0 and y = πk. We fix a decreasing
sequence of numbers (gl)l∈N0

that serve as truncation values for the age of vertices
along the path (rather than the degrees as for the configuration model). We say that
a path π is good when πl ≥ gl∧gk−l for every l = 0, . . . , k, and bad otherwise. In other
words, a path is good when the age of vertices does not decrease too much from π0 to
πk/2 and, backwards, from πk to πk/2. Intuitively, this also means that their degrees
do not grow too fast. This means that

P(distPAt(x, y) ≤ 2k̄t) ≤
2k̄t∑

k=1

P(Ek(x, y)) +

k̄t∑

k=1

[P(Fk(x)) + P(Fk(y))] , (3.4.24)

where Ek(x, y) is the event of there being a good path of length k, as in (3.3.27), while
Fk(x) is the event of there being a path π with πi ≥ gi for i ≤ k − 1 but πk < gk, in
analogy with (3.3.28).

Recalling the definition of p(π0, π1, . . . , πk) in (3.4.23), we define for l ∈ N,

fl,t(x,w) = 1{x≥g0}

t∑

π1=g1

t∑

π2=g2

· · ·
t∑

πl−1=gl−1

p(x, π1, . . . , πl−1, w), (3.4.25)

setting f0,t(x,w) = 1{x≥g0} and f1,t(x,w) = 1{x≥g0}p(x,w). From (3.4.24) we then
obtain

P(distPAt(x, y) ≤ 2k̄t) ≤
2k̄t∑

k=1

t∑

l=gbk/2c

fbk/2c,t(x, l)fdk/2e,t(y, l)

+

k̄t∑

k=1

gk−1∑

l=1

fk,t(x, l) +

k̄t∑

k=1

gk−1∑

l=1

fk,t(y, l).

(3.4.26)

This is the starting point of the proof of Proposition 3.4.9. We will show in Section 3.7
that the following recursive bound holds

fk,t(x, l) ≤ αkl−γ + 1{l>gk−1}βkl
γ−1, (3.4.27)

for suitable sequences (αk)k∈N, (βk)k∈N and (gk)k∈N (see Definition 3.7.2) We prove
recursive bounds on these sequences that guarantee that the sums in (3.4.26) satisfy
the required bounds. This proof, mostly based on detailed calculations, is moved to
Section 3.7.
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3.4. Lower bound for PAM

3.4.4. Proof of Statement 3.2.2
Consider now two independent random vertices W t

1 and W t
2 that are uniformly

distributed in the set of minimally-k−t -connected verticesMk−t
. We set

Et :=
{

dist
(
U≤k−t (W t

1), U≤k−t (W t
2)
)
≤ 2k̄t

}
=
{

dist(W t
1 ,W

t
2) ≤ 2k−t + 2k̄t

}

and, in analogy with Section 3.3.2, our goal is to show that

lim
t→∞

P(Et) = 0.

We know from Statement 3.2.1 that, as t→∞,

P
(
Mk−t

≤ 1

2
E[Mk−t

]

)
≤ P

(
|Mk−t

− E[Mk−t
]| > 1

2
E[Mk−t

]

)
≤

Var(Mk−t
)

1
4E[Mk−t

]2
= o(1).

We also define the event

Bt :=

{
max
v∈[t]

Dv(t) ≤
√
t

}
(3.4.28)

and note that it is known (see [85, Theorem 8.13]) that limt→∞ P(Bt) = 1. Therefore,

P(Et)

= P
(
Et ∩ {Mk−t

> 1
2E[Mk−t

]} ∩Bt
)

+ o(1)

= E
[ ∑

v1,v2∈[t]

1{W t
1=v1,W t

2=v2}1{dist(v1,v2)≤2k−t +2k̄t}1{Mk
−
t
> 1

2E[M
k
−
t

]}1Bt
]

+ o(1)

≤ E
[ ∑

v1,v2∈[t]\[t/2]

1

M2
k−t

1{v1∈Mk
−
t
,v2∈Mk

−
t
}

× 1{dist(v1,v2)≤2k−t +2k̄t}1{Mk
−
t
> 1

2E[M
k
−
t

]}1Bt
]

+ o(1)

≤
∑

v1,v2∈[t]\[t/2]

P
(
v1, v2 ∈Mk−t

, dist(v1, v2) ≤ 2k−t + 2k̄t, Bt

)

1
4E[Mk−t

]2
+ o(1). (3.4.29)

The contribution of the terms with v1 = v2 is negligible, since it gives

∑
v1∈[t]\[t/2] P

(
v1 ∈Mk−t

)

1
4E[Mk−t

]2
=

4

E[Mk−t
]

= o(1),

because E[Mk−t
]→∞ by Proposition 3.4.6. Henceforth we restrict the sum in (3.4.29)

to v1 6= v2. Summing over the realizations H1 and H2 of the random neighborhoods
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3.4. Lower bound for PAM

U≤k−t (v1) and U≤k−t (v2), and over paths π from an arbitrary vertex x ∈ ∂H1 to an
arbitrary vertex y ∈ ∂H2, we obtain

P(Et) ≤
4

E[Mk−t
]2

∑

v1,v2∈[t]\[t/2]
v1 6=v2

∑

H1, H2⊆[t]\[t/4]

∑

x∈∂H1, y∈∂H2

∑

π:x→y
|π|≤2k̄t

(3.4.30)

P
(
U≤k−t (v1) = H1, U≤k−t (v2) = H2, π ⊆ PAt, Bt

)
+ o(1).

The next proposition, proved below, decouples the probability appearing in the last
expression:

Proposition 3.4.11. There is a constant q ∈ (1,∞) such that, for all v1, v2, H1, H2 and π,

P
(
U≤k−t (v1) = H1, U≤k−t (v2) = H2, π ⊆ PAt, Bt

)

≤ q P
(
U≤k−t (v1) = H1, U≤k−t (v2) = H2

)
P (π ⊆ PAt) .

(3.4.31)

The proof of Proposition 3.4.11 reveals that we can take q = 2 for t sufficiently
large. Using (3.4.31) in (3.4.30), we obtain

P(Et) ≤
4q

E[Mk−t
]2

∑

v1,v2∈[t]\[t/2]

∑

H1, H2⊆[t]\[t/4]

P (U≤k(v1) = H1, U≤k(v2) = H2)

×
{ ∑

x∈∂H1, y∈∂H2

∑

π:x→y
|π|≤2k̄t

P (π ⊆ PAt)

}
. (3.4.32)

If we bound P (π ⊆ PAt) ≤ p(π) in (3.4.32), as in (3.4.23), the sum over π can be rewritten
as the right hand side of (3.4.26) (recall (3.4.24)-(3.4.25)). We can thus apply Proposi-
tion 3.4.9 —because the proof of Proposition 3.4.9 really gives a bound on (3.4.26)—
concluding that the sum over π is at most p/(log t)2, where the constant p is defined in
Proposition 3.4.9. Since |∂H1| = |∂H2| = mk−t = (log t)1−ε (recall (3.4.12)), we finally
obtain

P(Et) ≤
4q

E[Mk−t
]2
p(log t)2(1−ε)

(log t)2
E[M2

k−t
] =

(
1 + o(1)

) 4pq

(log t)2ε
,

where the last step uses Proposition 3.4.8. This completes the proof that P(Et) =

o(1).

Proof of Proposition 3.4.11. We recall thatH1 ⊆ [t]\[t/4] is a labeled directed subgraph
containing v1, such that it is an admissible realization of the neighborhood U≤k−t (v1)

of the minimally-k−t -connected vertex v1 (recall Definition 3.4.2); in particular, H1 \
{v1} ⊆ [t/2] \ [t/4]. We also recall that, for all u ∈ Ho

1 := H1 \ ∂H1 and j ∈ [m],
the j-th edge of u is connected to a well specified vertex in H1, denoted by θH1

j (u).
Analogous considerations apply to H2.
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3.4. Lower bound for PAM

We have to bound the probability

P
(
U≤k−t (v1) = H1, U≤k−t (v2) = H2, π ⊆ PAt, Bt

)
, (3.4.33)

where π = (π0, π1, . . . , πk) ∈ [t]k+1 is a given sequence of vertices with π0 ∈ ∂H1 and
πk ∈ ∂H2. The event in (3.4.33) is not factorizable, because the degrees of the vertices
in the path π are not specified, hence it is not easy to evaluate its probability. To get
a factorizable event, we need to give more information. For a vertex v ∈ [t], define its
incoming neighborhood N (v) by

N (v) := {(u, j) ∈ [t]× [m] : u
j→ v} . (3.4.34)

The key observation is that the knowledge ofN (v) determines the degreeDv(s) at any time
s ≤ t (for instance, at time t we simply have Dv(t) = |N (v)|+m).

We are going to fix the incoming neighborhoods N (π1) = K1, . . . , N (πk−1) =

Kk−1 of all vertices in the path π, except the extreme ones π0 and πk (note thatN (π0)

andN (πk) reduce to single points inHo
1 andHo

2 , respectively, because π0 ∈ ∂H1 and
πk ∈ ∂H2). We emphasize that such incoming neighborhoods allow us to determine
whether π = (π0, . . . , πk) is a path in PAt. Recalling the definition of the event Bt in
(3.4.28), we restrict to

|Ki| ≤
√
t, for i ∈ [k − 1], (3.4.35)

and simply drop Bt from (3.4.33). We will then prove the following relation: for all
v1, v2, H1, H2, π = (π0, . . . , πk), and for all K1, . . . ,Kk−1 satisfying (3.4.35), we have

P
(
U≤k−t (v1) = H1, U≤k−t (v2) = H2, {N (π1) = K1, . . . ,N (πk−1) = Kk−1}

)

≤ q P
(
U≤k−t (v1) = H1, U≤k−t (v2) = H2

)
(3.4.36)

× P
(
N (π1) = K1, . . . ,N (πk−1) = Kk−1

)
.

Our goal (3.4.31) follows by summing this relation over all K1, . . . ,Kk−1 for which
π ⊆ PAt.

The first line of (3.4.36) is the probability of a factorizable event. In fact, setting
for short

R :=
(
Ho

1 × [m]
)
∪
(
Ho

2 × [m]
)
∪ K1 ∪ . . . ∪ Kk−1 ,

the event in the first line of (3.4.36) is the intersection of the following four events (see
(3.4.8)):

⋂

u∈Ho1

m⋂

j=1

{u j→ θH1
j (u)} ,

⋂

u∈Ho2

m⋂

j=1

{u j→ θH2
j (u)} ,

k−1⋂

i=1

⋂

(u,j)∈Ki
{u j→ πi},

⋂

(u,j)∈[t]×[m] \R
{u

j

6→ (H1 ∪H2 ∪ πo)} ,
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3.4. Lower bound for PAM

where we set πo := π\{π0, πk} = (π1, . . . , πk−1). Generalizing (3.4.9)-(3.4.10), we can
rewrite the first line of (3.4.36) as follows, recalling (3.1.10):

P
(
U≤k−t (v1) = H1, U≤k−t (v2) = H2, {N (π1) = K1, . . . ,N (πk−1) = Kk−1}

)

=

{ ∏

u∈Ho1

m∏

j=1

m+ δ

cu,j

}{ ∏

u∈Ho2

m∏

j=1

m+ δ

cu,j

}{
k−1∏

i=1

∏

(u,j)∈Ki

Dπi(u, j − 1) + δ

cu,j

}
(3.4.37)

×
{ ∏

(u,j)∈[t]×[m] \ R

(
1− DH1∪H2∪πo(u, j − 1) + |(H1 ∪H2 ∪ πo) ∩ [u− 1]|δ

cu,j

)}
.

We stress thatDπi(u, j−1) is non-random, because it is determined byKi. Analogous
considerations apply to DH1∪H2∪πo(u, j − 1). We have thus obtained a factorizable
event.

Next we evaluate the second and third lines of (3.4.36). Looking back at (3.4.16)
and (3.4.17), we have

P
(
U≤k−t (v1) = H1, U≤k−t (v2) = H2

)

=

{ ∏

u∈Ho1

m∏

j=1

m+ δ

cu,j

}{ ∏

u∈Ho2

m∏

j=1

m+ δ

cu,j

}
(3.4.38)

×
{ ∏

(u,j)∈[t]×[m] \ (Ho1∪Ho2 )×[m]

(
1− DH1∪H2

(u, j − 1) + |(H1 ∪H2) ∩ [u− 1]|δ
cu,j

)}
.

On the other hand,

P
(
N (π1) =K1, . . . ,N (πk−1) = Kk−1

)

=

{
k−1∏

i=1

∏

(u,j)∈Ki

Dπi(u, j − 1) + δ

cu,j

}
(3.4.39)

×
{ ∏

(u,j)∈[t]×[m] \ K1∪...∪Kk−1

(
1− Dπo(u, j − 1) + |πo ∩ [u− 1]|δ

cu,j

)}
.

Using the bound (1 − (a + b)) ≤ (1 − a)(1 − b) in the second line of (3.4.37), and
comparing with (3.4.38)-(3.4.39), we only need to take into account the missing terms
in the product in the last lines. This shows that relation (3.4.36) holds if one sets
q = C1 C2 therein, where

C1 :=

{ ∏

(u,j)∈K1 ∪ ... ∪ Kk−1

(
1− DH1∪H2(u, j − 1) + |(H1 ∪H2) ∩ [u− 1]|δ

cu,j

)}−1

,

106



3

D
ia

m
et

er
w

ith
in

fin
ite

va
ria

nc
e

de
gr

ee
s

3

D
ia

m
et

er
w

ith
in

fin
ite

va
ria

nc
e

de
gr

ee
s

3

D
ia

m
et

er
w

ith
in

fin
ite

va
ria

nc
e

de
gr

ee
s

3

D
ia

m
et

er
w

ith
in

fin
ite

va
ria

nc
e

de
gr

ee
s

3.4. Lower bound for PAM

C2 :=

{ ∏

(u,j)∈(Ho1∪Ho2 )×[m]

(
1− Dπo(u, j − 1) + |πo ∩ [u− 1]|δ

cu,j

)}−1

.

To complete the proof, it is enough to give uniform upper bounds on C1 and C2,
that does not depend onH1, H2, π. We start with C1. In the product we may assume
u > t/4, because the terms with u ≤ t/4 are identically one, since H1, H2 ⊆ [t] \ [t/4].
Moreover, for u > t/4 we have cu,j ≥ t(2m + δ)/4 ≥ mt/4 by (3.1.11) and δ > −m.
Since DH1∪H2

(u, j − 1) ≤ 2(m + 1)ik, using 1 − x ≥ e−2x for x small and recalling
that δ < 0, it follows that

C−1
1 ≥

∏

(u,j)∈K1 ∪ ... ∪ Kk−1

(
1− 2(m+ 1)ik

m
4 t

)
≥ e−

8(m+1)
tm |K[k−1]|ik ,

whereK[k−1] = K1 ∪ . . . ∪ Kk−1. Since ik is given by (3.4.4), for k = k−t as in (3.4.12)
we have ik = m

m−1m
k−t (1 + o(1)) ≤ 2(log t)1−ε. Recalling also (3.4.35) and bounding

m+ 1 ≤ 2m, we obtain

C1 ≤ e
8(m+1)
tm |K[k−1]|ik ≤ e16k ik/

√
t = eO(log t/

√
t) = 1 + o(1) .

For C2, since Dπo(u, j − 1) ≤ Dπo(t) = |K[k−1]| ≤ k
√
t, again by (3.4.35), we get

C−1
2 ≥

∏

(u,j)∈(Ho1∪Ho2 )×[m]

(
1− k

√
t

m
4 t

)
≥ e
− 8
m

k√
t
|Ho1∪Ho2 |m ≥ e−16 k ik/

√
t = 1− o(1) .

It follows that C1C2 is bounded from above by some constant q. This completes the
proof.

3.4.5. Proof of Theorem 3.1.6
Dereich, Mönch and Mörters [57] have already proved the upper bound. For the

lower bound we use Proposition 3.4.9. In fact, for k̄t as in (3.4.21),

P
(
Ht ≤ 2k̄t

)
=

∑

v1,v2∈[t]

P
(
V1 = v1, V2 = v2,dist(v1, v2) ≤ 2k̄t

)
.

If v1 and v2 are both larger or equal than g0 = d t
(log t)2 e, then we can apply Proposition

3.4.9. The probability that V1 < g0 or V2 < g0 is

P ({V1 < g0} ∪ {V2 < g0}) ≤ 2g0/t = o(1),

hence we get

1

t2

∑

v1,v2∈[t]\[g0]

P
(
dist(v1, v2) ≤ 2k̄t

)
+ o(1) ≤ (t− g0)2

t2
p

(log t)2
+ o(1) = o(1),
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3.5. Upper bound for CM

and this completes the proof of Theorem 3.1.6.

3.5. Upper bound for CM
In this section we prove Statements 3.2.5 and 3.2.6 for the configuration model.

By the discussion in Section 3.2.2, this completes the proof of the upper bound in
Theorem 3.1.3, because the proof of Statement 3.2.4 is already known in the literature,
as explained below Statement 3.2.4.

Throughout this section, the assumptions of Theorem 3.1.3 apply. In particular,
we work on a configuration model CMn, with τ ∈ (2, 3) and dmin ≥ 3.

3.5.1. Proof of Statement 3.2.5
We first recall what Coren is, and define the k-exploration graph. Recall from

(3.2.8) that, for CMn, Coren is defined as

Coren = {i ∈ [n] such that di > (log n)σ} ,

where σ > 1/(3−τ). Since the degrees di are fixed in the configuration model, Coren
is a deterministic subset.

For any v ∈ [n], we recall that U≤k(v) ⊆ [n] denotes the subgraph of CMn con-
sisting of the vertices at distance at most k from v. We next consider the k-exploration
graph Û≤k(v) as a modification of U≤k(v), where we only explore dmin half-edges of
the starting vertex v, and only dmin − 1 for the following vertices:

Definition 3.5.1 (k-exploration graph in CMn). The k-exploration graph of a vertex v
is the subgraph Û≤k(v) built iteratively as follows:

B Starting from Û≤0(v) = {v}, we consider the first dmin half-edges of v and we pair
them, one by one, to a uniformly chosen unpaired half-edge (see Remark 3.3.1), to obtain
Û≤1(v).

B Assume that we have built Û≤`(v), for ` ≥ 1, and set Û=`(v) := Û≤`(v)\ Û≤(`−1)(v).
For each vertex in Û=`(v), we consider the first dmin − 1 unpaired half-edges and we
pair them, one by one, to a uniformly chosen unpaired half-edge, to obtain Û≤(`+1)(v).
(Note that, by construction, each vertex in Û=`(v) has at least one already paired half-
edge.)

Definition 3.5.2 (Collision). In the process of building the k-exploration graph Û≤k(v),
we say that there is a collision when a half-edge is paired to a vertex already included in the
k-exploration graph.

We now prove Statement 3.2.5. Let us fix ε > 0 and set

k+
n = (1 + ε)

log log n

log(dmin − 1)
. (3.5.1)
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3.5. Upper bound for CM

Proposition 3.5.3 (At most one collision). Under the assumption of Theorem 3.1.3, the fol-
lowing holds with high probability: the k+

n -exploration graph of every vertex either intersects
Coren, or it has at most one collision.

Proof. Let us fix a vertex v ∈ [n]. We are going to estimate the probability

qn(v) := P
(

there are at least 2 collisions in Û≤k+
n

(v) and Û≤k+
n

(v) ∩ Coren = ∅
)
.

If we show that supv∈[n] qn(v) = o(1/n), then it follows that
∑
v∈[n] qn(v) = o(1),

completing the proof.
Starting from the vertex v, we pair successively one half-edge after the other, as

described in Definition 3.5.1 (recall also Remark 3.3.1). In order to build Û≤k+
n

(v),
we need to make a number of pairings, denoted by N , which is random, because
collisions may occur. In fact, when there are no collisions, N is deterministic and
takes its maximal value given by ik+

n
in (3.3.1), therefore

N ≤ ik+
n
≤ dmin

dmin − 2
(dmin − 1)k

+
n ≤ 3 (log n)1+ε .

Introducing the event Ci := “there is a collision when pairing the i-th half-edge”, we
can write

qn(v) ≤ E

[ ∑

1≤i<j≤N
1{Ci, Cj , Û≤k+

n
(v)∩Coren=∅}

]

=
∑

1≤i<j≤3(logn)1+ε

P
(
Ci, Cj , j ≤ N , Û≤k+

n
(v) ∩ Coren = ∅

)
.

(3.5.2)

Let E` be the event that the first ` half-edges are paired to vertices with degree
≤ (log n)σ (i.e., the graph obtained after pairing the first ` half-edges is disjoint from
Coren). Then

P
(
Ci, Cj , j ≤ N , Û≤k+

n
(v) ∩ Coren = ∅

)
≤ P

(
Ci, Cj , Ej−1

)
(3.5.3)

= P(Ei−1)P(Ci |Ei−1)P(Cj |Ci, Ej−1) .

On the event Ei−1, before pairing the i-th half-edge, the graph is composed by at
most i− 1 vertices, each with degree at most (log n)σ , hence, for i ≤ 3(log n)1+ε,

P(Ci |Ei−1) ≤ (i− 1)(log n)σ

`n − 2i+ 1
≤ 3(log n)1+ε(log n)σ

`n − 6(log n)1+ε
≤ c (log n)σ+1+ε

n
,

for some c ∈ (0,∞), thanks to `n = nµ(1 + o(1)) (recall (3.3.4)). The same arguments
show that

P(Cj |Ci, Ej−1) ≤ c (log n)σ+1+ε

n
.
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3.5. Upper bound for CM

Looking back at (3.5.2)-(3.5.3), we obtain

sup
v∈[n]

qn(v) ≤
∑

1≤i<j≤3(logn)1+ε

c2
(log n)2(σ+1+ε)

n2
≤ 9 c2

(log n)2σ+4(1+ε)

n2
= o

(
1

n

)
,

which completes the proof.

Corollary 3.5.4 (Large boundaries). Under the assumptions of Theorem 3.1.3 and on the
event Û≤k+

n
(v) ∩ Coren = ∅, with high probability, the boundary Û=k+

n
(v) of the k+

n -
exploration graph of any vertex v ∈ [n] contains at least (dmin − 2)(dmin − 1)k

+
n−1 ≥

1
2 (log n)1+ε vertices, each one with at least two unpaired half-edges.

Proof. By Proposition 3.5.3, with high probability, every k+
n -exploration graph has at

most one collision before hitting Coren. The worst case is when the collision happens
immediately, i.e. a half-edge incident to v is paired to another half-edge incident to
v: in this case, removing both half-edges, the k+

n -exploration graph becomes a tree
with (dmin − 2)(dmin − 1)k

+
n−1 vertices on its boundary, each of which has at least

(dmin − 1) ≥ 2 yet unpaired half-edges. Since (dmin − 2)/(dmin − 1) ≥ 1
2 for dmin ≥ 3,

and moreover (dmin − 1)k
+
n = (log n)1+ε by (3.5.1), we obtain the claimed bound.

If the collision happens at a later stage, i.e. for a half-edge incident to a vertex
different from the starting vertex v, then we just remove the branch from v to that
vertex, getting a tree with (dmin − 1)(dmin − 1)k

+
n−1 vertices on its boundary. The

conclusion follows.

Together, Proposition 3.5.3 and Corollary 3.5.4 prove Statement 3.2.5.

3.5.2. Proof of Statement 3.2.6
Consider the k+

n -exploration graph Û = Û≤k+
n

(v) of a fixed vertex v ∈ [n], as
in Definition 3.5.1, and let x1, . . . , xN be the (random) vertices on its boundary. We
stress that, by Corollary 3.5.4, with high probability N ≥ 1

2 (log n)1+ε. Set

hn =
⌈
B log log log n+ C

⌉
, (3.5.4)

where B,C are fixed constants, to be determined later on.
Henceforth we fix a realization H of Û = Û≤k+

n
(v) and we work conditionally on

the event {Û = H}. By Remark 3.3.1, we can complete the construction of the config-
uration model CMn by pairing uniformly all the yet unpaired half-edges. We do this
as follows: for each vertex x1, . . . , xN on the boundary of Û , we explore its neighbor-
hood, looking for fresh vertices with higher and higher degree, up to distance hn (we
call a vertex fresh if it is connected to the graph for the first time, hence it only has one
paired half-edge). We now describe this procedure in detail:

Definition 3.5.5 (Exploration procedure). Letx1, . . . , xN denote the vertices on the bound-
ary of a k+

n -exploration graph Û = Û≤k+
n

(v). We start the exploration procedure from x1.
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3.5. Upper bound for CM

B Step 1. We set v(1)

0 := x1 and we pair all its unpaired half-edges. Among the fresh
vertices to which v(1)

0 has been connected, we call v1 the one with maximal degree.

B When there are no fresh vertices at some step, the procedure for x1 stops.

B Step 2. Assuming we have built v(1)

1 , we pair all its unpaired half-edges: among the
fresh connected vertices, we denote by v(1)

2 the vertex with maximal degree.

B We continue in this way for (at most) hn steps, defining v(1)

j for 0 ≤ j ≤ hn (recall
(3.5.4)).

After finishing the procedure for x1, we perform the same procedure for x2, x3, . . . , xN , defin-
ing the vertices v(i)

0 , v(i)

1 , . . . , v(i)

hn
starting from v(i)

0 = xi.

Definition 3.5.6 (Success). Letx1, . . . , xN be the vertices on the boundary of a k+
n -exploration

graph Û = Û≤k+
n

(v). We define the event Sxi := “xi is a success” by

Sxi :=
{
{v(i)

0 , v(i)

1 , . . . , v(i)

hn
} ∩ Coren 6= ∅

}
=
{
d
v

(i)
j
> (log n)σ for some 0 ≤ j ≤ hn

}
.

Here is the key result, proved below:

Proposition 3.5.7 (Hitting the core quickly). There exists a constant η > 0 such that, for
every n ∈ N and for every realization H of Û ,

P
(
Sx1

∣∣ Û = H
)
≥ η, (3.5.5)

and, for each i = 2, . . . , N ,

P
(
Sxi

∣∣ Û = H , Scx1
, . . . , Scxi−1

)
≥ η. (3.5.6)

This directly leads to the proof of Statement 3.2.6, as the following corollary shows:

Corollary 3.5.8 (Distance between periphery and Coren). Under the hypotheses of The-
orem 3.1.3, with high probability, the distance of every vertex in the graph from Coren is at
most

(1 + ε)
log log n

log(dmin − 1)
+ o (log log n) . (3.5.7)

Proof. By Corollary 3.5.4, with high probability, every vertex v ∈ [n] either is at dis-
tance at most k+

n from Coren, or has a k+
n -exploration graph Û = Û≤k+

n
(v) with at

least N ≥ 1
2 (log n)1+ε vertices on its boundary. It suffices to consider the latter case.

Conditionally on Û = H , the probability that none of these vertices is a success can
be bounded by Proposition 3.5.7:

P
(
Scx1
∩ · · · ∩ ScxN

∣∣ Û = H
)

= P
(
Scx1

∣∣ Û = H
) N∏

j=2

P
(
Scxj

∣∣ Û = H , Scx1
, . . . , Scxj−1

)

≤ (1− η)N ≤ (1− η)
1
2 (logn)1+ε

= o(1/n) . (3.5.8)
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3.5. Upper bound for CM

This is uniform overH , hence the probability that no vertex is a success, without con-
ditioning, is still o(1/n). It follows that, with high probability, every v ∈ [n] has at least
one successful vertex on the boundary of its k+

n -exploration graph. This means that
the distance of every vertex v ∈ [n] from Coren is at most k+

n +hn = k+
n + o(log log n),

by (3.5.4). Recalling (3.5.1), we have completed the proof of Corollary 3.5.8 and thus
of Statement 3.2.6.

To prove Proposition 3.5.7, we need the following technical (but simple) result:

Lemma 3.5.9 (High-degree fresh vertices). Consider the process of building a configura-
tion model CMn as described in Remark 3.3.1. Let Gl be the random graph obtained after l
pairings of half-edges and let Vl be the random vertex incident to the half-edge to which the
l-th half-edge is paired. For all l, n ∈ N and z ∈ [0,∞) such that

l ≤ n

4
(1− Fd,n(z)), (3.5.9)

the following holds:

P
(
dVl+1

> z , Vl+1 6∈ Gl
∣∣Gl
)
≥ z[1− Fd,n(z)]

n

2`n
. (3.5.10)

In particular, when Conditions 3.1.1 and 3.1.2 hold, for every ζ > 0 there are c > 0, n0 <∞
such that ∀ n ≥ n0 , 0 ≤ z ≤ n1/3 , l ≤ n1/3,

P
(
dVl+1

> z , Vl+1 6∈ Gl
∣∣Gl
)
≥ c

zτ−2+ζ
. (3.5.11)

Proof. By definition of CMn, the (l + 1)-st half-edge is paired to a uniformly chosen
half-edge among the `n − 2l − 1 that are not yet paired. Consequently

P
(
dVl+1

> z , Vl+1 6∈ Gl
∣∣Gl
)

=
1

`n − 2l − 1

∑

v 6∈Gl
dv1{dv>z}.

Since |Gl| ≤ 2l ≤ n
2 (1− Fd,n(z)) by (3.5.9), we obtain

1

`n − 2l − 1

∑

v 6∈Gl
dv1{dv>z} ≥

z

`n

(
n(1− Fd,n(z))− |Gl|

)
≥ z(1− Fd,n(z))

n

2`n
,

which proves (3.5.10).
Assuming Conditions 3.1.1 and 3.1.2, we have `n = µn(1 + o(1)),with µ ∈ (0,∞),

see (3.3.4), and there are c1 > 0 and α > 1/2 such that 1 − Fd,n(z) ≥ c1 z
−(τ−1) for

0 ≤ z ≤ nα. Consequently, for 0 ≤ z ≤ n1/3, the right hand side of (3.5.9) is at least
n
4

c1
n(τ−1)/3 . Note that (τ − 1)/3 < 2/3 (because τ < 3), hence we can choose n0 so that

n
4

c1
n(τ−1)/3 ≥ n1/3 for all n ≥ n0. This directly leads to (3.5.11).

With Lemma 3.5.9 in hand, we are able to prove Proposition 3.5.7:
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3.5. Upper bound for CM

Proof of Proposition 3.5.7. We fix v ∈ [n] and a realization H of Û = Û≤k+
n

(v). We
abbreviate

P∗( · ) := P( · | Û = H) . (3.5.12)

The vertices on the boundary of Û are denoted by x1, . . . , xN . We start proving (3.5.5),
hence we focus on x1 and we define v(1)

0 , v(1)

1 , . . . , v(1)

hn
as in Definition 3.5.5, with v(1)

0 =

x1.

We first fix some parameters. Since 2 < τ < 3, we can choose ζ, γ > 0 small
enough so that

ξ := 1− eγ(τ − 2 + ζ) > 0 . (3.5.13)

Next we define a sequence (g`)`∈N0
that grows doubly exponentially fast:

g` := 2eγ` = exp
(
(log 2) exp(γ `)

)
. (3.5.14)

Then we fix B = 1/γ and C = log(σ/ log 2) in (3.5.4), where σ is the same constant as
in Coren, see (3.2.8). With these choices, we have

ghn = eσedlog log logne
> eσ log logn = (log n)σ , while ghn−1 < (log n)σ . (3.5.15)

Roughly speaking, the idea is to show that, with positive probability, one has
d
v

(1)
j
> gj . As a consequence, d

v
(1)
hn

> ghn ≥ (log n)σ , that is v(1)

hn
belongs to Coren and

x1 is a success. The situation is actually more involved, since we can only show that
d
v

(1)
j
> gj before reaching Coren.

Let us make the above intuition precise. Recalling (3.5.12), let us set

H−1 := ∅ , H0 := H , Hk := H ∪ {v(1)

1 , . . . , v(1)

k } for 1 ≤ k ≤ hn .

Then we introduce the events

T` :=
⋃̀

k=0

{
d
v

(1)
k

> (log n)σ
}
, W` :=

⋂̀

k=0

{
d
v

(1)
k

> gk , v
(1)

k 6∈ Hk−1

}
. (3.5.16)

In words, the event T` means that one of the vertices v(1)

0 , . . . , v(1)

` has already reached
Coren, while the event W` means that the degrees of vertices v(1)

0 , . . . , v(1)

` grow at
least like g0, . . . , g` and, furthermore, each vk is a fresh vertex (this is actually already
implied by Definition 3.5.5, otherwise vk would not even be defined). We finally set

E0 := W0 , Ej := Tj−1 ∪Wj for 1 ≤ j ≤ hn .

Note that Thn coincides with Sx1
= “x1 is a success”. Also note that Whn ⊆

{d
v

(1)
hn

> (log n)σ}, because d
v

(1)
hn

> ghn > (log n)σ by (3.5.15), hence

Ehn = Thn−1 ∪Whn ⊆ Thn−1 ∪ {dv(1)
hn

> (log n)σ} = Thn = Sx1
.
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3.5. Upper bound for CM

Consequently, if we prove that P∗(Ehn) ≥ η, then our goal P∗(Sx1) ≥ η follows (recall
(3.5.5)).

The reason for working with the events Ej is that their probabilities can be con-
trolled by an induction argument. Recalling (3.5.12), we can write

P∗(Ej+1) = P∗(Tj) + P∗(T cj ∩Wj+1)

= P∗(Tj) + P
(
d
v

(1)
j+1

> gj+1 , v
(1)

j+1 6∈ Hj

∣∣ {Û = H} ∩ T cj ∩Wj

)
P∗(T cj ∩Wj) .

The key point is the following estimate on the conditional probability, proved below:

P
(
d
v

(1)
j+1

> gj+1 , v
(1)

j+1 6∈ Hj

∣∣ {Û = H}∩T cj ∩Wj

)
≥ 1−e−c(gj)

ξ/2 =: 1−εj , (3.5.17)

with ξ > 0 is defined in (3.5.13) and c > 0 is the constant appearing in relation (3.5.11).
This yields

P∗(Ej+1) ≥ P∗(Tj) + (1− εj)P∗(T cj ∩Wj) ≥ (1− εj)
(
P∗(Tj) + P∗(T cj ∩Wj)

)

= (1− εj)P∗(Tj ∪Wj) ≥ (1− εj)P∗(Tj−1 ∪Wj)

= (1− εj)P∗(Ej) ,

which leads us to

P∗(Ehn) ≥ P∗(E0)

hn−1∏

j=0

(1− εj) ≥ P∗(E0)

∞∏

j=0

(1− εj) =: η .

Since
∑
j≥0 εj < ∞ and εj < 1 for every j ≥ 0, by (3.5.17) and (3.5.14), the infinite

product is strictly positive. Also note that P∗(E0) = P∗(d
v

(1)
0
≥ 2) = 1, because g0 = 2

and d
v

(1)
0
≥ dmin ≥ 3. Then η > 0, as required.

It remains to prove (3.5.17). To lighten notation, we rewrite the left hand side of
(3.5.17) as

qj+1 := P
(
d
v

(1)
j+1

> gj+1 , v
(1)

j+1 6∈ Hj

∣∣Dj

)
,

where Dj := {Û = H} ∩ T cj ∩Wj .
(3.5.18)

Note that, on the event Dj ⊆ Wj , vertex v(1)

j is fresh (i.e., it is connected to the graph
for the first time), hence it has m = d

v
(1)
j
− 1 unpaired half-edges. These are paired

uniformly, connecting v(1)

j to (not necessarily distinct) vertices w(1), . . . , w(m). Let us
introduce for 1 ≤ ` ≤ m the event

C` :=
⋂̀

k=1

{
dw(k) > gj+1 , w

(k) 6∈ Hj

}c
. (3.5.19)
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3.5. Upper bound for CM

By Definition 3.5.5, v(1)

j+1 is the fresh vertex with maximal degree among them, hence
{
d
v

(1)
j+1

> gj+1 , v
(1)

j+1 6∈ Hj

}c
= Cm .

Sincem = d
v

(1)
j
−1 > gj−1 onWj ⊆ Dj , the left hand side of (3.5.17) can be estimated

by

qj+1 = 1− P
(
Cm

∣∣Dj

)
≥ 1−

gj−1∏

k=1

P
(
Ck
∣∣Dj ∩ Ck−1

)

= 1−
gj−1∏

k=1

(
1− P

(
dw(k) > gj+1 , w

(k) 6∈ Hj

∣∣Dj ∩ Ck−1

))
.

(3.5.20)

We claim that we can apply relation (3.5.11) from Lemma 3.5.9 to each of the prob-
abilities in the last line of (3.5.20). To justify this claim, we need to look at the condi-
tioning event Dj ∩ Ck−1, recalling (3.5.19), (3.5.18) and (3.5.16). In order to produce
it, we have to do the following:

B First we build the k+
n -exploration graph Û≤k+

n
(v) = H , which requires to pair

at most O((dmin − 1)k
+
n ) = O((log n)1+ε) half-edges (recall Definition 3.5.1);

B Next, starting from the boundary vertex x1, we generate the fresh vertices v(1)

0 ,

. . . , v(1)

j all outside Coren, because we are on the event T cj , and this requires to
pair a number of half-edges which is at most

(log n)σj ≤ (log n)σhn = O((log n)σ+1);

B Finally, in order to generatew(1), . . . , w(k−1), we pair exactly k−1 half-edges, and
note that k − 1 ≤ gj − 1 ≤ ghn − 1 = O((log n)σ) (always because vj 6∈ Coren).

It follows that the conditioning eventDj∩Ck−1 is in the σ-algebra generated by Gl
for l ≤ O((log n)1+σ+ε) (we use the notation of Lemma 3.5.9). In particular, l ≤ n1/3.
Also note that z = gj+1 ≤ ghn = O((log n)σ), see (3.5.15), hence also z ≤ n1/3.
Applying (3.5.11), we get

qj+1 ≥ 1−
(

1− c

(gj+1)τ−2+ζ

)gj−1

≥ 1− exp

(
− c gj − 1

(gj+1)τ−2+ζ

)
(3.5.21)

≥ 1− exp

(
− c

2

gj
(gj+1)τ−2+ζ

)

because 1 − x ≤ e−x and n − 1 ≥ n/2 for all n ≥ 2 (note that gj ≥ g0 = 2). Since
gj+1 = (gj)

eγ , by (3.5.14), we finally arrive at

qj+1 ≥ 1− exp

(
− c

2
(gj)

1−eγ(τ−2+ζ)

)
= 1− e−c (gj)

ξ/2 , (3.5.22)
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3.6. Upper bound for PAM

which is precisely (3.5.17). This completes the proof of (3.5.5).
In order to prove (3.5.6), we proceed in the same way: for any fixed 2 ≤ i ≤ N , we

start from the modification of (3.5.12) given byP∗( · ) := P( · | Û = H , Scx1
, . . . , Scxi−1

)

and we follow the same proof, working with the vertices v(i)

1 , . . . , v(i)

hn
instead of

v(1)

1 , . . . , v(1)

hn
(recall Definition 3.5.5). We leave the details to the reader.

3.6. Upper bound for PAM
In this section we prove Statements 3.2.5 and 3.2.6 for the preferential attachment

model. By the discussion in Section 3.2.2, this completes the proof of the upper bound
in Theorem 3.1.5, because the proof of Statement 3.2.4 is already known in the litera-
ture, as explained below Statement 3.2.4.

3.6.1. Proof of Statement 3.2.5
Recall the definition of Coret in (3.2.8). It is crucial that in Coret, we let Dv(t/2)

be large. We again continue to define what a k-exploration graph and its collisions
are, but this time for the preferential attachment model:

Definition 3.6.1 (k-exploration graph). Let (PAt)t≥1 be a preferential attachment model.
For v ∈ [t], we call the k-exploration graph of v to be the subgraph of PAt, where we consider
the m edges originally incident to v, and the m edges originally incident to any other vertex
that is connected to v in this procedure, up to distance k from v.

Definition 3.6.2 (Collision). Let (PAt)t≥1 be a preferential attachment model withm ≥ 2,
and let v be a vertex. We say that we have a collision in the k-exploration graph of v when
one of the m edges of a vertex in the k-exploration graph of v is connected to a vertex that is
already in the k-exploration graph of v.

Now we want to show that every k-exploration graph has at most a finite number
of collisions before hitting the Coret, as we did for the configuration model. The first
step is to use [59, Lemma 3.9]:

Lemma 3.6.3 (Early vertices have large degree). Fixm ≥ 1. There exists a > 0 such that

P
(

min
i≤ta

Di(t) ≥ (log t)σ
)
−→ 1

for some σ > 1/(3− τ). As consequence, [ta] ⊆ Coret with high probability.

In agreement with (3.2.10) (see also (3.4.12)), we set

k+
t = (1 + ε)

log log t

logm
. (3.6.1)

We want to prove that the exploration graph Û≤k+
t

(v) has at most a finite number
of collisions before hitting Coret, similarly to the case of CMn, now for PAt. As it is
possible to see from (3.2.8), Coret ⊆ [t/2], i.e., is a subset defined in PAt when the
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3.6. Upper bound for PAM

graph has size t/2. As a consequence, we do not know the degree of vertices in [t/2]

when the graph has size t. However, in [59, Appendix A.4] the authors prove that at
time t all the vertices t/2 + 1, . . . , t have degree smaller than (log t)σ .

We continue by giving a bound on the degree of vertices that are not in Coret. For
vertices i ∈ [t/2] \ Coret we know that Di(t/2) < (log t)σ , see (3.2.8), but in principle
their degree Di(t) at time t could be quite high. We need to prove that this happens
with very small probability. Precisely, we prove that, for some B > 0,

P
(

max
i∈[t/2]\Coret

Di(t) ≥ (1 +B)(log t)σ
)

= o(1). (3.6.2)

This inequality implies that when a degree is at most (log t)σ at time t/2, then it is
unlikely to grow by B(log t)σ between time t/2 and t. This provides a bound on
the cardinality of incoming neighborhoods that we can use in the definition of the
exploration processes that we will rely on, in order to avoid Coret. We prove (3.6.2)
in the following lemma that is an adaptation of the proof of [59, Lemma A.4]. Its
proof is deferred to Appendix 3.8:

Lemma 3.6.4 (Old vertex not in Coret). There exists B ∈ (0,∞) such that, for every
i ∈ [t/2],

P (Di(t) ≥ (1 +B)(log t)σ | Di(t/2) < (log t)σ) = o(1/t).

We can now get to the core of the proof of Statement 3.2.5, that is we show that
there are few collisions before reaching Coret:

Lemma 3.6.5 (Few collisions before hitting the core). Let (PAt)t≥1 be a preferential at-
tachment model, with m ≥ 2 and δ ∈ (−m, 0). Fix a ∈ (0, 1) and l ∈ N such that l > 1/a.
With k+

t as in (3.6.1), the probability that there exists a vertex v ∈ [t] such that its k+
t -

exploration graph has at least l collisions before hitting Coret ∪ [ta] is o(1).

Next we give a lower bound on the number of vertices on the boundary of a k+
n -

exploration graph. First of all, for any fixed a ∈ (0, 1), we notice that the probability of
existence of a vertex in [t]\ [ta], that has only self loops is o(1). Indeed, the probability
that a vertex s has only self-loops is O( 1

sm ). Thus, the probability that there exists a
vertex in [t] \ [ta] that has only self-loops is bounded above by

∑

s>ta

O(
1

sm
) = O(t−a(m−1)) = o(1),

since we assume that m ≥ 2. We can thus assume that no vertex in [t] \ [ta] has only
self-loops. This leads us formulate the following Lemma, whose proof is given in
Section 3.8:

Lemma 3.6.6 (Lower bound on boundary vertices). Let (PAt)t≥1 be a preferential at-
tachment model, with m ≥ 2 and δ ∈ (−m, 0). For a ∈ (0, 1), consider a vertex v ∈
[t] \ (Coret ∪ [ta]) and its k-exploration graph. If there are at most l collisions in the k-
exploration graph, and no vertex in [t] \ [ta] has only self loops, then there exists a constant
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3.6. Upper bound for PAM

s = s(m, l) > 0 such that the number of vertices in the boundary of the k-exploration graph
is at least s(m, l)mk.

Together, Lemmas 3.6.3, 3.6.5 and 3.6.6 complete the proof of Statement 3.2.5.

The rest of this section is devoted to the proof of Lemma 3.6.5. We first need to
introduce some notation, in order to be able to express the probability of collisions.
We do this in the next subsection.

Ulam-Harris notation for regular trees

Recall the definition of the Ulam-Harris set given in Definition 2.1.3. In this section,
we need a subset of Ulam-Harris set that can be used to describe regular trees, i.e.,
trees where all vertices have the same degree. Define

W` := [m]` , W≤k :=

k⋃

`=0

W` ,

where W0 := ∅. We use W≤k as a universal set to label any regular tree of depth k,
where each vertex has m children.

Given y ∈ W` and z ∈ Wm, we denote by (y, z) ∈ W`+m the concatenation of y
and z. Given x, y ∈ W≤k, we write y � x if y is a descendant of x, that is y = (x, z)

for some z ∈W≤k.
Given a finite number of points z1, . . . , zm ∈ W≤k, abbreviate ~zm = (z1, . . . , zm),

and define W (~zm)

≤k to be the tree obtained from W≤k by cutting the branches starting
from any of the zi’s (including the zi’s themselves):

W
(~zk)

≤k :=
{
x ∈W≤k : x 6� z1, . . . , x 6� zm

}
. (3.6.3)

Remark 3.6.7 (Total order). The set W≤k comes with a natural total order relation,
called shortlex order, in which shorter words precede longer ones, and words with
equal length are ordered lexicographically. More precisely, given x ∈ W` and y ∈
Wm, we say that x precedes y if either ` < m, or if ` = m and xi ≤ yi for all 1 ≤ i ≤ `.
We stress that this is a total order relation, unlike the descendant relation � which is
only a partial order. (Of course, if y � x, then x precedes y, but not vice versa).

Collisions

We recall that, given z ∈ [t] and j ∈ [m], the j-th half-edge starting from vertex z in
PAt is attached to a random vertex, denoted by ξz,j . We can use the set W≤k to label
the exploration graph Û≤k(v), as follows:

Û≤k(v) =
{
Vz
}
z∈W≤k , (3.6.4)

where V∅ = v and, iteratively, Vz = ξVx,j for z = (x, j) with x ∈W≤k−1 and j ∈ [m].
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3.6. Upper bound for PAM

The first vertex generating a collision is VZ1 , where the random index Z1 ∈W≤k is
given by

Z1 := min
{
z ∈W≤k : Vz = Vy for some y which precedes z

}
,

where “min” refers to the total order relation on W≤k as defined in Remark 3.6.7.
Now comes a tedious observation. Since VZ1 = Vy for some y which precedes Z1,

by definition of Z1, then all descendants of Z1 will coincide with the corresponding
descendants of y, that is V(Z1,r) = V(y,r) for all r. In order not to over count colli-
sions, in defining the second collision index Z2, we avoid exploring the descendants
of index Z1, that is we only look at indices in W (Z1)

≤k , see (3.6.3). The second vertex
representing a (true) collision is then VZ2 , where we define

Z2 := min
{
z ∈W (Z1)

≤k : z follows Z1, i.e., Vz = Vy for some y which precedes z
}
,

Iteratively, we define

Zi+1 := min
{
z ∈W (~Zi)

≤k : z follows Zi, i.e., Vz = Vy for some y which precedes z
}
,

so that VZi is the i-th vertex that represents a collision. The procedure stops when
there are no more collisions. Denoting by C the (random) number of collisions, we
have a family

Z1, Z2, . . . , ZC

of random elements of W≤k, such that (VZi)1≤i≤C are the vertices generating the col-
lisions.

Proof of Lemma 3.6.5

Recalling (3.6.4) and (3.6.3), given arbitrarily z1, . . . , zl ∈W≤k, we define

Û
(~zl)

≤k (v) =
{
Vz
}
z∈W (~zl)

≤k
, (3.6.5)

that is, we consider a subset of the full exploration graph Û≤k(v), consisting of vertices
Vz whose indexes z ∈W≤k are not descendants of z1, . . . , zl. The basic observation is
that

Û≤k(v) = Û
(~zl)

≤k (v) on the event {C = l , Z1 = z1, . . . , Zl = zl} . (3.6.6)

In words, this means that to recover the full exploration graph Û≤k(v), it is irrelevant
to look at vertices Vz for z that is a descendant of a collision index z1, . . . , zl.

We will bound the probability that there are l collisions before reaching Coret ∪
[ta], occurring at specified indices z1, . . . , zl ∈W≤k, for k = k+

t as in (3.6.1), as follows:
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3.6. Upper bound for PAM

P
(
C = l , Z1 = z1, . . . , Zl = zl, Û≤k(v) ∩ (Coret ∪ [ta]) = ∅

)
≤ α(t)l , (3.6.7)

where, for the constant B given by Lemma 3.6.4, we define

α(t) =
4(1 +B)

m

(log t)σ+1+ε

ta
. (3.6.8)

Summing (3.6.7) over z1, . . . , zl ∈W≤k we get

P(C = l, Û≤k(v) ∩ (Coret ∪ [ta]) = ∅) ≤ α(t)l |W≤k|l .

Since, for k = k+
t as in (3.6.1), we can bound

|W≤k| =
mk+1 − 1

m− 1
≤ 2mk ≤ 2 (log t)1+ε , (3.6.9)

the probability of having at least l collisions, before reaching Coret ∪ [ta], is

O(α(t)l(log t)2l) = o(1/t),

because l > 1/a by assumption. This completes the proof of Lemma 3.6.5. It only
remains to show that (3.6.7) holds true.

Proof of (3.6.7): case l = 1

We start proving (3.6.7) for one collision. By (3.6.6), we can replace Û≤k(v) by Û (z1)
≤k (v)

in the left hand side of (3.6.7), i.e., we have to prove that

P(C = 1 , Z1 = z1, Û
(z1)

≤k (v) ∩ (Coret ∪ [ta]) = ∅) ≤ α(t) . (3.6.10)

Since v, k and z1 are fixed, let us abbreviate, and recalling (3.6.5),

W := W (z1)

≤k (v) , Û := Û
(z1)
≤k (v) =

{
Vz
}
z∈W . (3.6.11)

Note that Vz1 is the only collision precisely when Û is a tree and Vz1 ∈ Û . Then (3.6.10)
becomes

P(Û is a tree , Vz1 ∈ Û , Û ∩ (Coret ∪ [ta]) = ∅) ≤ α(t) . (3.6.12)

We will actually prove a stronger statement: for any fixed deterministic labeled di-
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3.6. Upper bound for PAM

rected tree H ⊆ [t] and for any y ∈ H ,

P(Û = H , Vz1 = y , H∩(Coret ∪ [ta]) = ∅)

≤ α(t)

2(log t)1+ε
P
(
Û = H , Vz1 6∈ H

)
.

(3.6.13)

This yields (3.6.12) by summing over y ∈ H —note that |H| ≤ |W≤k| ≤ 2(log t)1+ε by
(3.6.9)— and then summing over all possible realizations of H .

It remains to prove (3.6.13). We again use the notion of a factorizable event, as in
the proof of the lower bound. Since the events in (3.6.13) are not factorizable, we will
specify the incoming neighborhoodN (y) (recall (3.4.34)) of all y ∈ H . More precisely,
by labeling the vertices of H , see (3.6.11), as

H = {vs}s∈W and y = vs̄ , for some s̄ ∈ W , (3.6.14)

we can consider the events {N (vs) = Nvs} where Nvs are (deterministic) disjoint
subsets of [t] × [m]. We say that the subsets (Nvs)s∈W are compatible with the tree H
when (vs′ , j) ∈ Nvs whenever s = (s′, j) with s, s′ ∈ W , j ∈ [m]. Then we can write

{Û = H} =
⋃

compatible (Nvs )s∈W

{N (vs) = Nvs for every s ∈ W} . (3.6.15)

Since the degree of vertex vs equalsDt(vs) = m+|Nvs |, we can ensure thatH∩(Coret∪
[ta]) = ∅ by restricting the union in (3.6.15) to those Nvs satisfying the constraints

vs > ta and |Nvs | ≤ (1 +B)(log t)σ −m, ∀s ∈ W . (3.6.16)

Finally, if we write

z1 = (x, j) for some x ∈ W , j ∈ [m] ,

then, since Vz1 = ξVx,j , the event {Vz1 = vs̄} amounts to require that2

(vx, j) ∈ Nvs̄ . (3.6.17)

Let us summarize where we now stand: When we fix a family of (Nvs)s∈W that is
compatible and satisfies the constraints (3.6.16) and (3.6.17), in order to prove (3.6.13)
it is enough to show that

P(N (vs) = Nvs for every s ∈ W) (3.6.18)

≤ α(t)

2(log t)1+ε
P(N (vs) = Nvs for every s ∈ W \ {s̄}, N (vs̄) = Nvs̄ \ {(vx, j)}) .

2Incidentally, we observe that the constraint (3.6.17) is not included in the requirement that (Nvs )s∈W
are compatible, because z1 = (x, j) 6∈ W by definition (3.6.11) of W .
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3.6. Upper bound for PAM

Let us set
N :=

⋃

s∈W
Nvs ⊆ [t]× [m] . (3.6.19)

The probability on the left-hand side of (3.6.18) can be factorized, using conditional
expectations and the tower property, as a product of two kinds of terms:

B For every edge (u, r) ∈ N —say (u, r) ∈ Nvs , with s ∈ W— we have the term

Dvs(u, r − 1) + δ

cu,r
(3.6.20)

corresponding to the fact that the edge needs to be connected to vs;

B On the other hand, for every edge (u, r) 6∈ N , we have the term

1− DH(u, r − 1) + |H ∩ [u− 1]|δ
cu,r

, (3.6.21)

corresponding to the fact that the edge may not connect to any vertex in H .

We emphasize that all the degrees D·(·, ·) appearing in (3.6.20) and (3.6.21) are deter-
ministic, since they are fully determined by the realizations of the incoming neigh-
borhoods (Nvs)s∈W .

We can obtain the right-hand side in (3.6.18) by replacing some terms in the prod-
uct.

B Among the edges (u, r) ∈ N , whose contribution is (3.6.20), we have the one
that creates the collision, namely (vx, j). If we want this edge to be connected
outside H , as in the right-hand side in (3.6.18), we need to divide the left hand
side of (3.6.18) by

(
Dvs̄(vx, j − 1) + δ

cvx,j

)(
1− DH(vx, j − 1) + |H ∩ [vx − 1]|δ

cvx,j

)−1

. (3.6.22)

We also have to replace some other terms corresponding to edges (u, r) ∈ Nvs̄ ,
because the degree of vertex vs̄ is decreased by one after connecting (vx, j) out-
side H . More precisely, for every edge (u, r) ∈ Nvs̄ that is younger than (vx, j),
that is (u, r) > (vx, j), we can reduce the degree of vs̄ by one by dividing the
left-hand side of (3.6.18) by

∏

(u,r)∈Nvs̄ , (u,r)>(vx,j)

Dvs̄(u, r − 1) + δ

Dvs̄(u, r − 1)− 1 + δ
=

Dvs̄(t) + δ

Dvs̄(vx, j − 1) + δ
. (3.6.23)

Finally, the contribution of the edges (u, r) ∈ Nvs for s 6= s̄ is unchanged.

B For every edge (u, r) 6∈ N , the probability that such edge is not attached to
H , after we reconnect the edge (vx, j), becomes larger, since the degree of H is
reduced by one.
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3.6. Upper bound for PAM

It follows that the inequality (3.6.18) holds with α(t)/(2(log t)1+ε) replaced by β,
defined by

β =

(
Dvs̄(vx, j − 1) + δ

cvx,j

)
(3.6.24)

×
(

1− DH(vx, j − 1) + |H ∩ [vx − 1]|δ
cvx,j

)−1
Dvs̄(t) + δ

Dvs̄(vx, j − 1) + δ

=

(
Dt(vs̄) + δ

cvx,j

)(
1− Dvx,j−1(H) + |H ∩ [vx − 1]|δ

cvx,j

)−1

≤
(
Dt(vs̄)

cvx,j

)(
1− Dvx,j−1(H)

cvx,j

)−1

=: β′ ,

because δ ≤ 0. We only need to show that β′ ≤ α(t)/(2(log t)1+ε). Since cv,j ≥
m(v − 1), the first relation in (3.6.16) yields

cvx,j ≥ ta.

Hence, sinceDvs̄(t) ≤ (1+B)(log t)σ by the second relation in (3.6.16), we can bound
(
Dvs̄(t)

cvx,j

)
≤ (1 +B)(log t)σ

mta
.

Likewise, since DH(t) ≤ |H|(1 +B)(log t)σ , for k = k+
t we get, by (3.6.9),

(
1− DH(vx, j − 1)

cvx,j

)−1

≤
(

1− 2(log t)1+ε(1 +B)(log t)σ

ta

)−1

≤ 2 ,

where the last inequality holds for t large enough. Recalling (3.6.8),

β′ ≤ 2
(1 +B)(log t)σ

mta
=

α(t)

2(log t)1+ε
.

This completes the proof of (3.6.18), and hence of (3.6.7), in the case where l = 1.

Proof of (3.6.7): general case l ≥ 2

The proof for the general case is very similar to that for l = 1, so we only highlight
the (minor) changes.

In analogy with (3.6.10), we can replace Û≤k(v) by Û (~zl)

≤k (v) in the left-hand side of
(3.6.7), thanks to (3.6.6). Then, as in (3.6.11), we write

W := W
(~zl)

≤k (v) , Û := Û
(~zl)

≤k (v) =
{
Vz
}
z∈W .

The extension of (3.6.13) becomes that for any fixed deterministic labeled directed tree
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3.6. Upper bound for PAM

H ⊆ [t] and for all y1, . . . , yl ∈ H ,

P(Û = H , Vz1 = y1 , . . . , Vzl = yl , H ∩ (Coret ∪ [ta]) = ∅)

≤
(

α(t)

2(log t)1+ε

)l
P
(
Û = H , Vz1 6∈ H , Vz2 6∈ H , . . . , Vzl 6∈ H

)
.

As in (3.6.14), we can write

H = {vs}s∈W and y1 = vs̄1 , . . . , yl = vs̄l for some s̄1 , . . . , s̄l ∈ W .

To obtain a factorizable event, we must specify the incoming neighborhoods Nvs =

Nvs for all s ∈ W , which must be compatible withH and satisfy the constraint (3.6.16).
If we write

z1 = (x1, j1) , . . . , zl = (xl, jl) , for some x1, . . . , xl ∈ W, j1, . . . , jl ∈ [m] ,

then we also impose the constraint that obviously generalizes (3.6.17), namely

(vx1
, j1) ∈ Nvs̄1 , . . . , (vxl , jl) ∈ Nvs̄l .

The analogue of (3.6.18) then becomes

P(N (vs) = Nvs for every s ∈ W) (3.6.25)

≤
(

α(t)

2(log t)1+ε

)l
P
(
N (vs) = Nvs for every s ∈ W \ {s̄1, . . . , s̄l},

N (vs̄i) = Nvs̄i \ {(vxi , ji)} for every i = 1, . . . , l
)
.

When we define N as in (3.6.19), the probability in the left-hand side of (3.6.25) can
be factorized in a product of terms of two different types, which are given precisely
by (3.6.20) and (3.6.21). In order to obtain the probability in the right-hand side of
(3.6.25), we have to divide the left-hand side by a product of factors analogous to
(3.6.22) and (3.6.23). More precisely, (3.6.22) becomes

l∏

i=1

(
Dvs̄i

(vxi , ji − 1) + δ

cvxi ,ji

)(
1− DH(vxi , ji − 1) + |H ∩ [vxi − 1]|δ

cvxi ,ji

)−1

,

while (3.6.23) becomes
l∏

i=1

Dvs̄i
(t) + δ

Dvs̄i
(vxi , ji − 1) + δ

.

We define β accordingly, namely we take the product for i = 1, . . . , l of (3.6.24) with
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3.6. Upper bound for PAM

x, j, s̄ replaced respectively by xi, ji, s̄i. Then it is easy to show that

β ≤
(

α(t)

2(log t)1+ε

)l
,

arguing as in the case l = 1. This completes the proof of (3.6.25).

3.6.2. Proof of Statement 3.2.6
The next step is to prove that the boundaries of the k+

t -exploration graphs are at
most at distance

ht = dB log log log t+ Ce (3.6.26)

from Coret, where B,C are constants to be chosen later on. Similarly to the proof in
Section 3.5.2, we consider a k+

t -exploration graph, and we enumerate the vertices on
the boundary as x1, . . . , xN , whereN ≥ s(m, l)mk+

t from Lemma 3.6.6 and l is chosen
as in Lemma 3.6.5. We next define what it means to have a success:

Definition 3.6.8 (Success). Consider the vertices x1, . . . , xN on the boundary of a k+
t -

exploration graph. We say that xi is a success when the distance between xi and Coret
is at most 2ht.

The next lemma is similar to Lemma 3.5.7 (but only deals with vertices in [t/2]):

Lemma 3.6.9 (Probability of success). Let (PAt)t≥1 be a preferential attachment model,
with m ≥ 2 and δ ∈ (−m, 0). Consider v ∈ [t/2] \ Coret and its k+

t -exploration graph.
Then there exists a constant η > 0 such that

P
(
Sx1 | PAt/2

)
≥ η, (3.6.27)

and for all j = 2, . . . , N ,

P
(
Sx1
| PAt/2, S

c
x1
, . . . , Scxj−1

)
≥ η. (3.6.28)

The aim is to define a sequence of vertices w0, . . . , wh that connects a vertex xi on
the boundary with Coret. In order to do this, we need some preliminary results. We
start with the crucial definition of a t-connector:

Definition 3.6.10 (t-connector). Let (PAt)t≥1 be a preferential attachment model, with
m ≥ 2. Consider two subsets A,B ⊆ [t/2], with A ∩ B = ∅. We say that a vertex
j ∈ [t]\ [t/2] is a t-connector forA andB if at least one of the edges incident to j is attached
to a vertex in A and at least one is attached to a vertex in B.

The notion of t-connector is useful, because, unlike in the configuration model, in
the preferential attachment model typically two high-degree vertices are not directly
connected. From the definition of the preferential attachment model, it is clear that
the older vertices have with high probability large degree, and the younger vertices

125



3

D
ia

m
et

er
w

ith
in

fin
ite

va
ria

nc
e

de
gr

ee
s

3

D
ia

m
et

er
w

ith
in

fin
ite

va
ria

nc
e

de
gr

ee
s

3

D
ia

m
et

er
w

ith
in

fin
ite

va
ria

nc
e

de
gr

ee
s

3

D
ia

m
et

er
w

ith
in

fin
ite

va
ria

nc
e

de
gr

ee
s

3.6. Upper bound for PAM

have lower degree. When we add a new vertex, this is typically attached to vertices
with large degrees. This means that, with high probability, two vertices with high
degree can be connected by a young vertex, which is the t-connector.

A further important reason for the usefulness of t-connectors is that we have ef-
fectively decoupled the preferential attachment model at time t/2 and what happens in
between times t/2 and t. When the sets A and B are appropriately chosen, then each
vertex will be a t-connector with reasonable probability, and the events that distinct
vertices are t-connectors are close to being independent. Thus, we can use compar-
isons to binomial random variables to investigate the existence of t-connectors. In
order to make this work, we need to identify the structure of PAt/2 and show that it
has sufficiently many vertices of large degree, and we need to show that t-connectors
are likely to exist. We start with the latter.

In more detail, we will use t-connectors to generate the sequence of verticesw1, . . . , wh
between the boundary of a k+

n -exploration graph and the Coret, in the sense that we
use a t-connector to link the vertex wi to the vertex wi+1. (This is why we define a
vertex xi to be a success if its distance from Coret is at most 2ht, instead of ht.) We rely
on a result implying the existence of t-connectors between sets of high total degree:

Lemma 3.6.11 (Existence of t-connectors). Let (PAt)t≥1 be a preferential attachment
model, with m ≥ 2 and δ ∈ (−m, 0). There exists a constant µ > 0 such that, for every
A ⊆ [t/2], and i ∈ [t/2] \A,

P
(
@j ∈ [t] \ [t/2] : j is a t-connector for i and A | PAt/2

)
≤ exp

(
−µDA(t/2)Di(t/2)

t

)
,

where DA(t/2) =
∑
v∈ADv(t/2) is the total degree of A at time t/2.

Proof. The proof of this lemma is present in the proof of [59, Proposition 3.2].

Remark 3.6.12. Notice that this bound depends on the fact that the number of pos-
sible t-connectors is of order t.

A last preliminary result that we need is a technical one, which plays the role of
Lemma 3.5.9 for the configuration model and shows that at time t/2 there are suf-
ficiently many vertices of high degree, uniformly over a wide range of what ‘large’
could mean:

Lemma 3.6.13 (Tail of degree distribution). Let (PAt)t≥1 be a preferential attachment
model, with m ≥ 2 and δ ∈ (−m, 0). Then, for all ζ > 0 there exists a constant c = c(ζ)

such that, for all 1 ≤ x ≤ (log t)q , for any q > 0, and uniformly in t,

P≥x(t) =
1

t

∑

v∈[t]

1{Dv(t)≥x} ≥ cx−(τ−1+ζ). (3.6.29)

Proof. The degree distribution sequence (p(m)

k )k∈N in (1.3.1) satisfies a power law with
exponent τ ∈ (2, 3). As a consequence, for all ζ > 0 there exists a constant c̄ = c̄(ζ)
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3.6. Upper bound for PAM

such that
p(m)

≥x :=
∑

k≥x
p(m)

k ≥ c̄x−(τ−1+ζ). (3.6.30)

We now use a concentration result on the empirical degree distribution (for details,
see [85, Theorem 8.2]), which assures us that there exists a second constant C > 0

such that, with high probability, for every x ∈ N,

|P≥x − p≥x| ≤ C
√

log t

t
.

Fix now ζ > 0, then from this last bound we can immediately write, for a suitable
constant c̄ as in (3.6.30),

P≥x ≥ p≥x − C
√

log t

t
≥ c̄x−(τ−1+ζ) − C

√
log t

t
≥ c̄

2
x−(τ−1+ζ),

if and only if

C

√
log t

t
= o

(
x−(τ−1+ζ)

)
.

This is clearly true for x ≤ (log t)q , for any positive q. Taking c = c̄/2 completes the
proof.

With the above tools, we are now ready to complete the proof of Lemma 3.6.9:

Proof of Lemma 3.6.9. As in the proof of Proposition 3.5.7, we define the super-exponentially
growing sequence g` as in (3.5.14), where γ > 0 is chosen small enough, as well as
ζ > 0, so that (3.5.13) holds. The constantsB and C in the definition (3.6.26) of ht are
fixed as prescribed below (3.5.14).

We will define a sequence of verticesw0, . . . , wh such that, for i = 1, . . . , h,Dwi(t) ≥
gi and wi−1 is connected to wi. For this, we define, for i = 1, . . . , h− 1,

Hi =
{
u ∈ [t] : Du(t/2) ≥ gi

}
⊆ [t/2],

so that we aim for wi ∈ Hi.
We define the vertices recursively, and start with w0 = x1. Then, we consider

t-connectors between w0 and H1, and denote by w1 the vertex in H1 with minimal
degree among the ones that are connected to w0 by a t-connector. Recursively, con-
sider t-connectors between wi and Hi+1, and denote by wi+1 the vertex in Hi+1 with
minimal degree among the ones that are connected to wi by a t-connector. Recall
(3.5.15) to see that ght ≥ (log t)σ , where ht is defined in (3.6.26). The distance be-
tween w0 and Coret is at most 2ht = 2dB log log log t+Ce. If we denote the event that
there exists a t connector between wi−1 and Hi by {wi−1 ∼ Hi}, then we will bound
from below

P(Sx1 | PAt/2) ≥ E
[ ht∏

i=1

1{wi−1∼Hi} | PAt/2

]
.
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3.6. Upper bound for PAM

In Lemma 3.6.11, the bound on the probability that a vertex j ∈ [t] \ [t/2] is a t-
connector between two subsets of [t] is independent of the fact that the other vertices
are t-connectors or not. This means that, with Fi the σ-field generated by the path
formed by w0, . . . , wi and their respective t-connectors,

E
[
1{wi−1∼Hi} | PAt/2,Fi−1

]
≥ 1− e−µDwi−1

(t/2)DHi (t/2)/t,

where DHi(t) =
∑
u∈Hi Du(t/2). This means that

E
[ ht∏

i=1

1{wi−1∼Hi} | PAt/2

]
≥

ht∏

i=1

(
1− e−µDwi−1

(t/2)DHi (t/2)/t
)
.

We have to bound every term in the product. Using Lemma 3.6.13, for i = 1,

1− e−µDw0 (t/2)DH1
(t/2)/t ≥ 1− e−µDw0 (t/2)g1P≥g1 (t/2),

while, for i = 2, . . . , h− 1

1− e−µDwi−1
(t/2)DHi (t/2)/t ≥ 1− e−µgi−1giP≥gi (t/2).

Applying (3.6.29) and recalling (3.5.21)–(3.5.22), the result is

P(Sx1
| PAt) ≥

(
1− e−µDw0 (t/2)g1P≥g1 (t/2)

) ht∏

i=2

(
1− e−µgi−1giP≥gi (t/2)

)

≥
(

1− e−µmg1P≥g1 (t/2)
) ∞∏

i=2

(
1− e−c̃ (gi)

ξ
)
,

for some constant c̃. Since ht = dB log log log t+ Ce, and

P≥g1
(t/2)→

∑

k≥g1

pk > 0

with high probability as t→∞, we can find a constant η such that

(
1− e−ηmg1P≥g1 (t/2)

) ht∏

i=2

(
1− e−c̃ (gi)

ξ
)
> η > 0,

which proves (3.6.27).

To prove (3.6.28), we observe that all the lower bounds that we have used on the
probability of existence of t-connectors only depend on the existence of sufficiently
many potential t-connectors. Thus, it suffices to prove that, on the event Scx1

∩ · · · ∩
Scxj−1

, we have not used too many vertices as t-connectors. On this event, we have
used at most ht · (j − 1) vertices as t-connectors, which is o(t). Thus, this means that,
when we bound the probability ofSxj , we still have t−ht·(j−1) possible t-connectors,
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3.6. Upper bound for PAM

where j is at most (log t)1+ε. Thus, with the same notation as before,

E
[
1{wi−1∼Hi} | PAt/2, S

c
x1
, . . . , Scxj−1

]
≥ 1− e−µDwi−1

(t/2)DHi (t/2)/t,

so that we can proceed as we did for Sx1
. We omit further details.

We are now ready to identify the distance between the vertices outside the core
and the core:

Proposition 3.6.14 (Distance between periphery and Coret). Let (PAt)t≥1 be a prefer-
ential attachment model with m ≥ 2 and δ ∈ (−m, 0). Then, with high probability and for
all v ∈ [t] \ Coret,

distPAt(v,Coret) ≤ k+
t + 2ht.

Proof. We start by analyzing v ∈ [t/2]. By Lemma 3.6.3, with high probability there
exists a ∈ (0, 1] such that [ta] ⊆ Coret. Consider l > 1/a, and fix a vertex v ∈ [t/2].
Then, by Lemma 3.6.5 and with high probability, the k+

t -exploration graph starting
from v has at most l collisions before hitting Coret. By Lemma 3.6.6 and with high
probability, the number of vertices on the boundary of the k+

t -exploration graph is
at least N = s(m, l)(log t)1+ε. It remains to bound the probability that none of the N
vertices on the boundary is a success, meaning that it does not reach Coret in at most
2ht = 2dB log log t+ Ce steps.

By Lemma 3.6.9,

P(Scx1
∩ · · · ∩ ScxN | PAt/2) ≤ (1− η)N = o(1/t),

thanks to the boundN ≥ s(m, l)(log t)1+ε. This means that the probability that there
exists a vertex v ∈ [t/2] such that its k+

n -exploration graph is at distance more than
A log log log t from Coret is o(1). This proves the statement for all v ∈ [t/2].

Next, consider a vertex v ∈ [t] \ [t/2]. Lemma 3.6.5 implies that the probability
that there exists a vertex v ∈ [t] \ [t/2] such that its k+

t -exploration graph contains
more than one collision before hitting Coret ∪ [t/2] is o(1). As before, the number of
vertices on the boundary of a k+

t -exploration graph starting at v ∈ [t] \ [t/2] is at least
N ≥ s(m, 1)mk+

n = s(m, 1)(log t)1+ε. We denote these vertices by x1, . . . , xN . We aim
to show that, with high probability,

∆N =

N∑

i=1

1(xi∈[t/2]) ≥ N/4.

For every i = 1, . . . , N , there exists a unique vertex yi such that yi is in the k+
t -

exploration graph and it is attached to xi. Obviously, if yi ∈ [t/2] then also xi ∈ [t/2],
since xi has to be older than yi. If yi 6∈ [t/2], then

P (xi ∈ [t/2] | PAyi−1) = P (yi → [t/2] | PAyi−1) ≥ 1

2
,
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3.7. Bound on distances between periphery vertices in PAM: proof of Proposition 3.4.9

and this bound does not depend on the attaching of the edges of the other vertices
{yj : j 6= i}. This means that we obtain the stochastic domination

∆N ≥
N∑

i=1

1(xi∈[t/2]) � Bin
(
N,

1

2

)
,

where we write thatX � Y when the random variableX is stochastically larger than
Y . By concentration properties of the binomial, Bin

(
N, 1

2

)
≥ N/4 with probability at

least
1− e−N/4 = 1− e−s(m,1)(log t)1+ε/4 = 1− o(1/t).

Thus, the probability that none of the vertices on the boundary intersected with [t/2]

is a success is bounded by

P
(
Scx1
∩ · · · ∩ Scx∆N

| PAt/2

)
≤ (1− η)N/4 + o(1/t) = o(1/t).

We conclude that the probability that there exists a vertex in [t] \ [t/2] such that it is
at distance more than k+

t + 2ht from Coret is o(1).

This completes the proof of Statement 3.2.6, and thus of Theorem 3.1.5.

3.7. Bound on distances between periphery vertices in PAM:
proof of Proposition 3.4.9
We prove Proposition 3.4.9. As mentioned in Section 3.4.3, the proof of (3.4.22)

is an adaptation of an argument in [57, Section 4.1]. The final aim is to prove that
(3.4.26) is o(1).

First, we start with a technical lemma. Let us fix R ∈ (0,∞) and define

p(n, l) = R(n ∧ l)−γ(n ∨ l)γ−1 . (3.7.1)

Our interest is for γ = m/(2m + δ) ∈ (1/2, 1), so that γ ∈ (1/2, 1) (because δ ∈
(−m, 0)).

Lemma 3.7.1. Let γ ∈ (1/2, 1) and suppose that 2 ≤ g ≤ t, α, β ≥ 0 and q : [t] → [0,∞)

satisfy
q(n) ≤ 1{n≥g}

(
αn−γ + βnγ−1

)

for all n ∈ [t]. Then there exists a constant c = c(R, γ) > 1 such that, for all l ∈ [t],

t∑

n=1

q(n)p(n, l) ≤ c
(
α log(t/g) + βt2γ−1

)
l−γ + c1{l>g}

(
αg1−2γ + β log(t/g)

)
lγ−1.
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3.7. Bound on distances between periphery vertices in PAM: proof of Proposition 3.4.9

Proof. We split

t∑

n=1

q(n)p(n, l) =

t∑

n=g∨l
q(n)p(n, l) + 1{l>g}

l−1∑

n=g

q(n)p(n, l),

because q(n) = 0 when n < g. Therefore,

t∑

n=g∨l
q(n)p(n, l) =

t∑

n=g∨l
q(n)R(n ∧ l)−γ(n ∨ l)γ−1

≤
t∑

n=g∨l

(
αn−γ + βnγ−1

)
Rnγ−1l−γ ,

because the sum is over n ≥ g ∨ l ≥ l. For the other term, since we may assume that
l > g,

1{l>g}

l−1∑

n=g

q(n)p(n, l) ≤ 1{l>g}

l−1∑

n=g

(
αn−γ + βnγ−1

)
Rn−γ lγ−1.

This means that
∑t
n=1 q(n)p(n, l) is bounded above by

R
[
α

t∑

n=g∨l
n−1 + β

t∑

n=g∨l
n2γ−2

]
l−γ + 1{l>g}R

[
α

l−1∑

n=g

n−2γ + β

l−1∑

n=g

n−1
]
lγ−1

≤ c1
[
α log (t/g) + βt2γ−1

]
l−γ + 1{l>g}c2

[
αg1−2γ + β log (t/g)

]
lγ−1,

where we have used that γ > 1/2. We take c = max(c1, c2) to obtain the statement.

We now define recursively the sequences (αk)k∈N, (βk)k∈N and (gk)k∈N, for which
we will prove the bound (3.4.27). This will allow us to control (3.4.26).

Definition 3.7.2. We define

g0 =

⌈
t

(log t)2

⌉
, α1 = R (g0)

γ−1
, β1 = R (g0)

−γ
,

and recursively, for k ≥ 1:

(1) gk is the smallest integer such that

1

1− γ αkg
1−γ
k ≥ 6

π2k2(log t)2
; (3.7.2)

(2)
αk+1 = c

(
αk log(t/gk) + βkt

2γ−1
)
; (3.7.3)
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3.7. Bound on distances between periphery vertices in PAM: proof of Proposition 3.4.9

(3)
βk+1 = c

(
αkg

1−2γ
k + βk log(t/gk)

)
, (3.7.4)

where c = c(R, γ) > 1 is the same constant appearing in Lemma 3.7.1.

One can check that k 7→ gk is non-increasing, while k 7→ αk, βk are non-decreasing.
We recall that fk,t(x, l) was introduced in (3.4.25), with p(z, w) defined in (3.4.23)

(where we set R = Cm, to match with (3.7.1)). As a consequence, the following
recursive relation is satisfied:

∀k ≥ 1 : fk+1,t(x,w) =

t∑

z=gk

fk,t(x, z)p(z, w), (3.7.5)

where p(z, w) is given in (3.7.1). The following lemma derives recursive bounds on
fk,t.

Lemma 3.7.3 (Recursive bound on fk,t). For the sequences in Definition 3.7.2, for every
l ∈ [t] and k ∈ N,

fk,t(x, l) ≤ αkl−γ + 1{l>gk−1}βkl
γ−1. (3.7.6)

Proof. We prove (3.7.6) by induction on k. For k = 1, using α1 = Rgγ−1
0 and β1 =

Rg−γ0 ,

f1,t(x, l) = p(x, l)1{x≥g0} ≤ R(g0)γ−1l−γ + 1{l>g0}R(g0)−γ lγ−1

= α1l
−γ + 1{l>g0}β1l

γ−1,

as required. This initiates the induction hypothesis. We now proceed with the induc-
tion: suppose that gk−1, αk and βk are such that

fk,t(x, l) ≤ αkl−γ + 1(l>gk−1)βkl
γ−1.

We use the recursive property of fk,t in (3.7.5). We apply Lemma 3.7.1, with g = gk
and q(n) = fk,t(x, n)1{n≥gk}, so, by Definition 3.7.2,

fk+1,t(x, l) ≤ c
[
αk log(t/gk) + βkt

2γ−1
]
l−γ + c1{l>gk}

[
αkg

1−2γ
k + βk log(t/gk)

]
lγ−1

= αk+1l
−γ + 1{l>gk}βk+1l

γ−1.

This advances the induction hypothesis, and thus completes the proof.

In order to proceed, we define ηk = t/gk. We aim to derive a bound on the growth
of ηk.

Lemma 3.7.4 (Recursive relation of ηk). Let ηk = t/gk be defined as above. Then there
exists a constant C > 0 such that

η1−γ
k+2 ≤ C

[
ηγk + η1−γ

k+1 log ηk+1

]
. (3.7.7)
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3.7. Bound on distances between periphery vertices in PAM: proof of Proposition 3.4.9

Proof. By definition of gk in (3.7.2),

η1−γ
k+2 = t1−γgγ−1

k+2 ≤ t1−γ
1

1− γ
π2(log t)2

6
(k + 2)2αk+2.

By definition of αk in (3.7.3),

t1−γ
1

1− γ
π2(log t)2

6
(k + 2)2αk+2 (3.7.8)

= t1−γ
c

1− γ
π2(log t)2

6
(k + 2)2

[
αk+1 log ηk+1 + βk+1t

2γ−1
]
.

By definition of gk, relation (3.7.2) holds with the opposite inequality if we replace gk
by gk − 1 in the left hand side. This, with k + 1 instead of k, yields

αk+1 ≤
6(1− γ)

π2(k + 1)2(log t)2
(gk+1 − 1)γ−1. (3.7.9)

Since αk+1 ≥ 2, we must have that gk+1 ≥ 2, so that

(gk+1 − 1)γ−1 ≤ 21−γgγ−1
k+1 . (3.7.10)

We conclude that

t1−γ
c

1− γ
π2(log t)2

6
(k + 2)2αk+1 log ηk+1

≤ t1−γ c2
1−γ

1− γ
π2(log t)2

6
(k + 2)2 6(1− γ)

π2(k + 1)2(log t)2
gγ−1
k+1 log ηk+1

= c21−γ (k + 2)2

(k + 1)2
η1−γ
k+1 log ηk+1.

We now have to bound the remaining term in (3.7.8), which equals

t1−γ
c

1− γ
π2(log t)2

6
(k + 2)2βk+1t

2γ−1 =
c

1− γ
π2(log t)2

6
(k + 2)2βk+1t

γ .

We use the definition of βk in (3.7.4) to write

c

1− γ
π2(log t)2

6
(k + 2)2βk+1t

γ =
c

1− γ
π2(log t)2

6
(k + 2)2tγc

[
αkg

1−2γ
k + βk log ηk

]
,

and again use the fact that αk ≤ 21−γ 6(1−γ)
π2k2(log t)2 g

γ−1
k , so that

c

1− γ
π2(log t)2

6
(k + 2)2tγcαkg

1−2γ
k
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3.7. Bound on distances between periphery vertices in PAM: proof of Proposition 3.4.9

≤ c21−γ

1− γ
π2(log t)2

6
(k + 2)2tγc

6(1− γ)

π2k2(log t)2
gγ−1
k g1−2γ

k = c221−γ (k + 2)2

k2
ηγk .

By Definition 3.7.2, we have cβkt2γ−1 ≤ αk+1, so that, using (3.7.9) and (3.7.10),

c

1− γ
π2(log t)2

6
(k + 2)2tγcβk log ηk

≤ c

1− γ
π2(log t)2

6
(k + 2)2αk+1t

1−γ log ηk ≤ c21−γ (k + 2)2

(k + 1)2
gγ−1
k+1 t

1−γ log ηk

= c21−γ (k + 2)2

(k + 1)2
η1−γ
k+1 log ηk.

Since k 7→ ηk is increasing,

c21−γ (k + 2)2

(k + 1)2
η1−γ
k+1 log ηk ≤ c21−γ (k + 2)2

(k + 1)2
η1−γ
k+1 log ηk+1.

Putting together all the bounds and taking a different constant C = C(γ), we obtain
(3.7.7).

We can now obtain a useful bound on the growth of ηk.

Lemma 3.7.5 (Inductive bound on ηk). Let (ηk)k∈N be given by ηk = t/gk and let κ =

γ/(1− γ) ∈ (1,∞). Then, there exists a constant B ≥ 2 such that

ηk ≤ exp
(
B(log log t)κk/2

)
.

for any k = O(log log t).

Proof. We prove the lemma by induction on k, and start by initializing the induction.
For k = 0,

η0 = t/g0 =
t⌈
t

(log t)2

⌉ ≤ (log t)2 = e2 log log t ≤ eB log log t,

for any B ≥ 2, which initializes the induction.
We next suppose that the statement is true for l = 1, . . . , k − 1, and will prove it

for k. Using that
(z + w)

1
1−γ ≤ 2

1
1−γ

(
z

1
1−γ + w

1
1−γ

)
,

we can write by Lemma 3.7.4, for a different constant C,

ηk ≤ C
[
η

γ
1−γ
k−2 + ηk−1(log ηk−1)

1
1−γ
]

= C
[
ηκk−2 + ηk−1(log ηk−1)

1
1−γ
]
.

Using this inequality, we can write

ηk−2 ≤ C
[
ηκk−4 + ηk−3(log ηk−3)

1
1−γ
]
,
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3.7. Bound on distances between periphery vertices in PAM: proof of Proposition 3.4.9

so that, by (z + w)κ ≤ 2κ(zκ + wκ),

ηk ≤ C(2C)κ
[
ηκ

2

k−4 + ηκk−3(log ηk−3)
κ

1−γ
]

+ Cηk−1(log ηk−1)
1

1−γ .

Renaming 2C as C for simplicity, and iterating these bounds, we obtain

ηk ≤ C
∑k/2
l=0 κ

l

ηκ
k/2

0 +

k/2∑

i=1

C
∑i−1
l=0 κ

l

ηκ
i−1

k−2i+1(log ηk−2i+1)
κi−1

1−γ . (3.7.11)

For the first term in (3.7.11), we use the precise expression for η0 to obtain

C
∑k/2
l=0 κ

l

ηκ
k/2

0 ≤ C
∑k/2
l=0 κ

l

exp
(

2(log log t)κk/2
)

(3.7.12)

≤ 1

2
exp

(
B(log log t)κk/2

)
,

for a constant B ≥ 2 large enough.
For the second term in (3.7.11), we use the induction hypothesis to obtain

k/2∑

i=1

C
∑i−1
l=0 κ

l

ηκ
i−1

k−2i+1(log ηk−2i+1)
κi−1

1−γ (3.7.13)

≤
k/2∑

i=1

C
∑i−1
l=0 κ

l

exp
(
B(log log t)κ(k−1)/2

) [
B(log log t)κ(k−2i+1)/2

]κi−1

1−γ
.

We can write

exp
(
B(log log t)κ(k−1)/2

)

= exp
(
B(log log t)κk/2

)
exp

(
B(log log t)κk/2

(√
1/κ− 1

))
.

Since
√

1/κ− 1 < 0, for k = O(log log t) we can take B large enough such that

k/2∑

i=1

C
∑i−1
l=0 κ

l

exp
(
B(log log t)κk/2

(√
1/κ− 1

))
(3.7.14)

×
[
B(log log t)κ(k−2i+1)/2

]κi−1

1−γ
<

1

2
.

We can now sum the bounds in (3.7.12) and (3.7.13)–(3.7.14) to obtain

ηk ≤
(1

2
+

1

2

)
exp

(
B(log log t)κk/2

)
,

as required. This completes the proof of Lemma 3.7.5.

Now we are ready to complete the proof of Proposition 3.4.9:
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3.7. Bound on distances between periphery vertices in PAM: proof of Proposition 3.4.9

Proof of Proposition 3.4.9. Recall the definition of k̄t in (3.4.21). By (3.4.26),

P(distPAt(x, y) ≤ k̄t) ≤
k̄t∑

k=1

gk−1∑

l=1

fk,t(x, l) +

k̄t∑

k=1

gk−1∑

l=1

fk,t(y, l) (3.7.15)

+

2k̄t∑

k=1

t∑

l=gbk/2c

fbk/2c,t(x, l)fdk/2e,t(y, l).

We start with the first two sums, which are equal except that x is replaced by y in the
second. We use (3.7.6), together with the fact that l ≤ gk − 1, to obtain

k̄t∑

k=1

gk−1∑

l=1

fk,t(x, l) ≤
k̄t∑

k=1

αk

gk−1∑

l=1

l−γ .

Since γ ∈ (1/2, 1), there exists a constant b such that

k̄t∑

k=1

αk

gk−1∑

l=1

l−γ ≤ b
k̄t∑

k=1

αk(gk − 1)1−γ .

We use the definition of gk to bound

b

k̄t∑

k=1

αk(gk − 1)1−γ < b

k̄t∑

k=1

6

π2k2(log t)2
≤ b

(log t)2
,

as required. The term with y replacing x is identical.

We next consider now the third sum in (3.7.15), we again use the bound in (3.7.6)
as well as the fact that k 7→ gk is non-increasing, while k 7→ αk, βk are non-decreasing,
to obtain

2k̄t∑

k=1

t∑

l=gbk/2c

(αbk/2cl
−γ + βbk/2cl

γ−1)(αdk/2el
−γ + βdk/2el

γ−1) (3.7.16)

≤
2k̄t∑

k=1

t∑

l=gdk/2e

(αdk/2el
−γ + βdk/2el

γ−1)2 ≤ 2

2k̄t∑

k=1

t∑

l=gdk/2e

(
α2
dk/2el

−2γ + β2
dk/2el

2γ−2
)

= 2

2k̄t∑

k=1

t∑

l=gdk/2e

α2
dk/2el

−2γ + 2

2k̄t∑

k=1

t∑

l=gdk/2e

β2
dk/2el

2γ−2.

This leads to two terms that we bound one by one. For the first term in (3.7.16), we
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3.8. Technical bounds on exploration trees in PAM: Proof of Lemmas 3.6.4 and 3.6.6

can write

2

2k̄t∑

k=1

t∑

l=gdk/2e

α2
dk/2el

−2γ ≤ 2b′
2k̄t∑

k=1

α2
dk/2eg

1−2γ
dk/2e = 2b′

2k̄t∑

k=1

α2
dk/2eg

2−2γ
dk/2eηdk/2e

1

t
.

By definition of gk,

αdk/2eg
1−γ
dk/2e ≤ 21−γαdk/2e(gdk/2e − 1)1−γ ≤ 6(1− γ)

π2(k/2)2(log t)2
.

Therefore,

2b′

t
ηk̄t

2k̄t∑

k=1

α2
dk/2eg

2−2γ
dk/2e ≤

2b′22(1−γ)

t
ηk̄t

2k̄t∑

k=1

( 24(1− γ)

π2k2(log t)2

)2

(3.7.17)

≤ C

t
ηk̄t

1

(log t)4
= o

(
(log t)−4

)
,

since ηk̄t = o(t) by the definition of k̄t in (3.4.21) and Lemma 3.7.5: in fact, γ =

m/(2m + δ) and consequently κ = γ/(1 − γ) = (1 + δ/m)−1, that is κ = 1/(τ − 2)

(recall that τ = 3 + δ/m).
For the second term in (3.7.16), we use that 2− 2γ ∈ (0, 1) to compute

2

2k̄t∑

k=1

t∑

l=gdk/2e

β2
dk/2el

2γ−2 ≤ 2b′′
2k̄t∑

k=1

β2
dk/2et

2γ−1.

By definition of αk, we have βk ≤ αk+1t
1−2γ , which means that

k̄t∑

r=1

β2
r t

2γ−1 ≤
k̄t∑

r=1

α2
r+1t

2−4γt2γ−1 =

k̄t∑

r=1

α2
r+1t

1−2γ ≤ 1

t
η2−2γ

k̄t

k̄t∑

r=1

α2
r+1g

2−2γ
r+1 ,

which is o((log t)−4) as in (3.7.17). We conclude that there exists a constant p such
that

P(distPAt(x, y) ≤ 2k̄t) ≤ p(log t)−2,

as required. This completes the proof of Proposition 3.4.9.

3.8. Technical bounds on exploration trees in PAM: Proof of
Lemmas 3.6.4 and 3.6.6

3.8.1. Proof of Lemma 3.6.4
We adapt the proof of [59, Lemma A.4]. We design a Pólya urn experiment to

bound the probability that a fixed vertex i ∈ [t/2] \ Coret accumulates too many
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3.8. Technical bounds on exploration trees in PAM: Proof of Lemmas 3.6.4 and 3.6.6

edges from the vertices t/2 + 1, . . . , t.
Let us fix i ∈ [t/2]. We consider one urn containing blue balls and containing red

balls. For every edge that we add to the graph from t/2 + 1 to t (which means mt/2
edges), we need to keep track of the number of edges attached to i. To give an upper
bound, we can assume that Di(t/2) = (log t)σ . Let Rk and Bk denote the number of
red and blue balls after k draws, so that R0 = (log t)σ and B0 = m(t/2) − (log t)σ .
Thus,R0 is the maximal degree of vertex i at time t/2, whileB0 is the minimal degree
of all vertices unequal to i at time t/2. We consider two linear weight functions for
the number of balls in each urn,

W (r)

k = k + δ, and W (b)

k = k + δ(t/2− 1). (3.8.1)

At time k ≥ 0, let Rk and Bk denote the number of red and blue balls after k draws.
Then we draw a ball colored red or blue according to the weights W (r)

Rk
and W (b)

Bk
.

Here W (r)

Rk
represents the weight of the vertex i and W (b)

Bk
is the weight of the rest of

the graph. Naturally,Rk+Bk = m(t/2)+k is deterministic, as it should be in a Polyá
urn, and also W (r)

Rk
+W (b)

Bk
= (m+ δ)t/2 + k is deterministic.

We consider mt/2 draws, and at every one, we pick a red ball with probability
proportional to W (r)

Rk
and a blue ball with probability proportional to W (b)

Bk
, respec-

tively. We add one ball of the same color as the selected color (next to the drawn
ball, which we put back). Recalling (3.1.10), one could notice that at every draw we
should add 1+δ/m to the weight of the blue balls since the weight of the graph (with
i excluded) is always increasing due to the fact that the new edge is attached to a new
vertex (that is not equal to i). However, 1+δ/m ≥ 0 and thus ignoring this effect only
increases the probability of choosing i. This suffices for our purposes, since we are
only interested in an upper bound.

We denote by (Xn)
mt/2
n=1 a sequence of random variables, whereXn = 1 whenever

the n-th extraction is a red ball (a new edge is attached to i). As a consequence,

P
(
Di(t) ≥ (1 +B)(log t)σ | Di(t/2) < (log t)σ

)
≤ P

(mt/2∑

n=1

Xn ≥ B(log t)σ
)
.

As the reader can check, the sequence of random variables (Xn)
mt/2
n=1 is exchangeable,

so we can apply De Finetti’s Theorem, and obtain that

P
(mt/2∑

n=1

Xn ≥ B(log t)σ
)

= E [P (Bin(mt/2, U) ≥ B(log t)σ | U)] , (3.8.2)

where U is a distribution on [0, 1]. In the case of the Polyá urn with two colors and
linear weights, as discussed in Section 4.4, U has a Beta distribution with parameters
given by

αt = (log t)σ + δ, and βt =
t

2
(2m+ δ)− ((log t)σ + δ) .
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3.8. Technical bounds on exploration trees in PAM: Proof of Lemmas 3.6.4 and 3.6.6

We call
ψ(u) = P (Bin(mt/2, u) ≥ B(log t)σ) ≤ 1.

By the classical Chernoff bound

P(Bin(n, u) ≥ k) ≤ e−nIu(k/n), where Iu(a) = a(log(a/u)− 1) + u

is the large deviation function of a Pois(u) random variable, see [85, Corollary 2.20].
For a ≥ 8u we can bound Iu(a) ≥ a(log 8− 1) ≥ a, hence

ψ(u) ≤ e−B(log t)σ whenever 4mtu ≤ B(log t)σ.

Define
g(t) =

B(log t)σ

4mt
.

Using g and ψ in (3.8.2), we have

E [P (Bin(mt/2, U) ≥ B(log t)σ | U)] ≤ e−B(log t)σ + P (U > g(t)) . (3.8.3)

Note that e−B(log t)σ = o(1/t) since σ > 1 and for B large enough. What remains
is to show that also the second term in the right-hand side of (3.8.3) is o(1/t). Since
U has a Beta distribution, its density fU (u) = Γ(αt+βt)

Γ(αt)Γ(βt)
uαt−1(1 − u)βt−1 attains its

maximum at the point ūt = αt−1
αt+βt−2 . Since g(t) ≥ ūt (which can easily be checked,

for B large enough), we have

P (U > g(t)) ≤ Γ(αt + βt)

Γ(αt)Γ(βt)
(1− g(t))

βt g(t)αt−1. (3.8.4)

We next bound each of these terms separately. Firstly, asymptotically as t → ∞ and
since δ < 0,

Γ(αt + βt)

Γ(βt)
≤ (αt + βt)

αt = (mt(1 + δ/2))
αt ≤ (mt)αt . (3.8.5)

Secondly,

g(t)αt =

(
B(log t)σ

4mt

)αt
= (B/4)αt

( (log t)σ

mt

)αt
. (3.8.6)

Thirdly, since 1− x ≤ e−x,

(1− g(t))βt =

(
1− B(log t)σ

4mt

)βt
≤ exp (−cB(log t)σ) , (3.8.7)

for some c ∈ (0,∞). Finally, by Stirling’s formula Γ(αt) ≥ (αt/e)αt , so that

Γ(αt)
−1 ≤ (e/αt)

αt . (3.8.8)
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3.8. Technical bounds on exploration trees in PAM: Proof of Lemmas 3.6.4 and 3.6.6

Substituting (3.8.5), (3.8.6), (3.8.7) and (3.8.8) into (3.8.4), we obtain

P (U > g(t)) ≤ exp (−cB(log t)σ)

g(t)

(Be(log t)σ

4αt

)αt
≤ t exp (−cB(log t)σ/2) = o(1/t),

for B large enough and using that (log t)σ/αt ≤ 1 − δ/αt = 1 + O(1/αt). This com-
pletes the proof of the lemma.

3.8.2. Proof of Lemma 3.6.6
For i = 0, . . . , k, we denote byNi the number of vertices in the k-exploration graph

at distance i from v; the set of such vertices will be called “level i”. Clearly, N0 = 1

because the only vertex at level 0 is v. Plainly, if there are no collisions between level
i − 1 and level i, then Ni = mNi−1. The number of collisions li between level i − 1

and level i is then given by
li := mNi−1 −Ni , (3.8.9)

and the total number of collisions is, by assumption,

l̄k := l1 + . . .+ lk ≤ l .

The assumption that no vertex has only self-loops implies that Ni ≥ 1 for every i, because it
ensures that the youngest vertex at level i − 1 has at least one “descendant” at level
i. Therefore

li ≤ mNi−1 − 1 . (3.8.10)

For later purposes, it is convenient to start with N0 ≥ 1 vertices (even though we
are eventually interested in the case N0 = 1). Rewriting (3.8.9) as Ni = mNi−1 − li, a
simple iteration yields

Nk = mkN0 −mk−1l1 −mk−2l2 + . . .−mlk−1 − lk . (3.8.11)

This yields Nk ≥ mkN0 −mk−1(l1 + l2 + . . .+ lk), that is

Nk ≥ (mN0 − l̄k)mk−1 . (3.8.12)

This lower bound is only useful if l̄k < mN0, otherwise the right hand side is negative.
To deal with the complementary case, we now show by induction the following useful
bound:

Nk ≥ m−
l̄k−(mN0−1)

m−1 mk−2 when l̄k ≥ mN0 − 1 . (3.8.13)

The case k = 1 is easy: since l̄1 = l1 ≤ mN0 − 1 by (3.8.10), we only need to
consider the extreme case l̄1 = mN0 − 1, when (3.8.13) reduces to N1 ≥ 1

m , which
holds since N1 ≥ 1. Next we fix k ≥ 1 and our goal is to prove (3.8.13) for k + 1,
assuming that it holds for k.

The crucial observation is that, iterating relation Ni = mNi−1 − li (that is (3.8.9))
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3.8. Technical bounds on exploration trees in PAM: Proof of Lemmas 3.6.4 and 3.6.6

from i = k + 1 until i = 2, we get an analogue of (3.8.11), that is

Nk+1 = mkN1 −mk−1l2 −mk−2l3 + . . .−mlk − lk+1 .

This means thatNk+1 coincides withNk in (3.8.11) where we replaceN0 byN1 and (l1, . . . , lk)

by (l2, . . . , lk+1) (therefore l̄k is replaced by l̄k+1− l1). As a consequence, by the inductive
assumption, we can apply (3.8.13) which yields

Nk+1 ≥ m−
(l̄k+1−l̄1)−(mN1−1)

m−1 mk−2 when (l̄k+1 − l̄1) ≥ mN1 − 1 . (3.8.14)

For later use, we note that, analogously, relation (3.8.12) gives

Nk+1 ≥ (mN1 − (l̄k+1 − l1))mk−1 . (3.8.15)

By (3.8.9) and (3.8.10), which yield N1 = mN0 − l1 and l1 ≤ mN0 − 1, we can write

(l̄k+1− l1)− (mN1− 1) = l̄k+1−m2N0 + (m− 1)l1 + 1 ≤ l̄k+1− (mN0− 1)− (m− 1),

which plugged into (3.8.14) gives

Nk+1 ≥ m−
l̄k+1−(mN0−1)

m−1 mk−1 when (l̄k+1 − l̄1) ≥ mN1 − 1 . (3.8.16)

This is precisely the analogue of (3.8.13) for k + 1, which is our goal, except for the
“wrong” restriction (l̄k+1 − l̄1) ≥ mN1, instead of l̄k+1 ≥ mN0. We are thus left
with showing that the inequality in (3.8.16) still holds if (l̄k+1 − l̄1) < mN1 − 1 and
l̄k+1 ≥ mN0−1, but this is easy, because these two conditions, together with (3.8.15),
imply

Nk+1 ≥ (mN1 − (l̄k+1 − l1))mk−1 ≥ mk−1 ≥ m−
l̄k+1−(mN0−1)

m−1 mk−1 .

We are ready to conclude. The bounds (3.8.12) and (3.8.13), forN0 = 1 and lk ≤ l,
yield

Nk ≥ m−
l

m−1 mk−1 = s(m, l)mk , where s(m, l) := m−1− l
m−1 ,

which is what we wanted to prove.
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3.8. Technical bounds on exploration trees in PAM: Proof of Lemmas 3.6.4 and 3.6.6
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4
Treelike property and local weak

limit of PAMs

Content and structure of the chapter

In this chapter, we formalize the heuristic idea that PAMs are locally
treelike, using the notion of local weak convergence. We move from the
analysis made by Berger et al. [21], which was stated for τ ≥ 3, and we
extend it to τ > 2. In particular, we use the interpretation of PAMs as
Pólya urn scheme, where the number of balls in each urn represents the
degree of a vertex. We extend this argument to many different versions
of PAMs, in particular looking at those models that form ≥ 2 are defined
from the tree setting (m = 1) through a collapsing procedure.

The chapter is structured as follows: In Section 4.1 we introduce local
weak convergence, giving the rigorous construction. In Section 4.2 we
state the main results of the chapter, namely the local weak convergence
of general PAMs (Theorem 4.2.1) and the specialized statement about
PAMs obtained through collapsing (Theorem 4.2.2). In Section 4.3 we
list the different versions of PAMs that we consider in this chapter. In
Section 4.4 we present the general theory of Pólya urn schemes, showing
how we can use this to represent the PAM model (e) of Section 4.3, and
in Section 4.6 we extend this construction to other PAMs. Section 4.7
contains the sketch of the proof of the original result in [21], that is useful
in order to understand the extension to Theorem 4.2.1. In Section 4.9 we
prove our main results. The content of this chapter is based on a work
in preparation [71].
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4.1. Preliminaries: local weak convergence

4.1. Preliminaries: local weak convergence
We present the definition of LWC for undirected graphs. As mentioned in Sec-

tion 1.7, we will extend this construction to directed graphs in Chapter 6. In the
present section, we only present the construction for undirected graphs.

We start by defining what a rooted graph is:

Definition 4.1.1 (Rooted graph). LetG be a locally finite graph with vertex set V (G) (finite
or countable), and edge set E(G). Fix a vertex ∅ ∈ G and call it the root. The pair (G,∅) is
called a rooted graph.

We are not interested in the labeling of the vertices, but only in the graph structure.
For this, we define isomorphisms between rooted graphs as follows:

Definition 4.1.2 (Isomorphism). An isomorphism between two rooted graphs (G,∅) and
(G′,∅′) is a bijection γ : V (G)→ V (G′) such that

(1) (j, i) ∈ E(G) if and only if (γ(j), γ(i)) ∈ E(G);
(2) γ(∅) = ∅′.

We write (G,∅) ∼= (G′,∅′) to denote that (G,∅) and (G′,∅′) are isomorphic rooted graphs.

Denote the space of all rooted graphs (up to isomorphisms) by G?. Formally, G?
is the quotient space of the set of all locally-finite rooted graphs with respect to the
equivalence relation given by isomorphisms.

For a rooted graph (G,∅) ∈ G?, we let U≤k(∅) denote the subgraph of G of all
vertices at graph distance at most k away from∅. Formally, this means thatU≤k(∅) =

(V (U≤k(∅)), E(U≤k(∅))), where

V (U≤k(∅)) = {i : dG(i,∅) ≤ k} , E(U≤k(∅)) = {{j, i} : j, i ∈ V (U≤k(∅))} .

We call U≤k(∅) the k-neighborhood around ∅. We use this notion to define the dis-
tance between two rooted graphs:

Definition 4.1.3 (Local distance). The function dloc((G,∅), (G′,∅′)) = 1/(1+κ), where

κ = inf
k≥1
{U≤k(∅) 6∼= U≤k(∅′)} ,

is called the local distance on the space of rooted graphs G?.
It is possible to prove that dloc is an actual distance on the space of rooted graphs.

In particular, the space (G?, dloc) is a Polish space (see [68, Appendix A] for the proof
for an equivalent definition of a distance). The function dloc measures how distant
two rooted graphs are from the point of view of the root. In many graphs though, there is
no vertex that can be naturally chosen as a root, for instance in configuration models
or Erdős-Rényi random graph. For this reason, it is useful to choose the root at random.
Define, for any graph G,

P(G) =
1

n

∑

i∈[n]

δ(G,i). (4.1.1)
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4.1. Preliminaries: local weak convergence

Given a graph G of size n, P(G) is a probability measure that assigns the root uni-
formly at random among the n vertices. When we consider a sequence of graphs
(Gn)n∈N, we denote P(Gn) simply by Pn. With this notion, we are ready to define
LWC for undirected deterministic graphs:
Definition 4.1.4 (Local weak convergence). Consider a deterministic sequence of locally
finite graphs (Gn)n∈N. We say that (Gn)n∈N converges in the local weak sense to a (pos-
sibly) random element (G,∅) of G? with law P , if, for any bounded continuous (with respect
to the topology induced by dloc) function f : G? → R,

EPn [f ] −→ EP [f ],

where EPn and EP denote the expectation with respect to Pn and P , respectively.
In particular, this means that probabilities of open sets in the topology converge.

Fix (H, y) finite, then

BR(H, y) = {(G,∅) ∈ G? : dloc((H, y), (G,∅)) ≤ R}
=
{

(G,∅) ∈ G? : U≤b1/Rc(∅) ∼= (H, y)
}
.

(4.1.2)

Elements in this open ball are determined by the neighborhood of the root up to
distance b1/Rc. As a consequence, the probability Pn of the ball BR(h, y) is given by

Pn(BR(h, y)) =
1

n

∑

i∈[n]

1
{
U≤b1/Rc(i) ∼= (H, y)

}
.

This implies that it suffices to consider the local structure of the neighborhood of a
typical vertex to obtain the probability Pn of any open ball. We now state a criterion
for a sequence of deterministic graphs to converge in the LW sense as in Definition
4.1.4:
Theorem 4.1.5 (Criterion for local weak convergence). Let (Gn)n∈N be a sequence of
graphs. Then Gn converges in the local weak sense to (G,∅) with law P when, for every
finite rooted graph (H, y),

Pn(H) =
1

n

∑

i∈[n]

1 {U≤k(i) ∼= (H, y)} −→ P (U≤k(∅) ∼= (H, y)) . (4.1.3)

The proof Theorem 4.1.5 can be found in [86, Section 1.4]. Notice that for (H, y) ∈
G?, the functions 1{U≤k(∅) ∼= (H, y)} are continuous with respect to the local weak
topology and uniquely identify the limit.

So far we have considered sequences of deterministic graphs. Whenever we con-
sider a random graph Gn, we have two sources of randomness. First, we have the
randomness of the choice of the root, and then the randomness of the graph itself.
For this reason, it is necessary to specify the randomness we take expectation with re-
spect to, giving rise to different ways of convergence. We specify this in the following
definition:
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4.1. Preliminaries: local weak convergence

Definition 4.1.6 (Local weak convergence). Consider a sequence of random graphs (Gn)n∈N,
and a probability P on G?. Denote by Pn the probability associated to Gn as in (4.1.1).

. We say that Gn converges in distribution in the local weak sense to P if, for any
bounded continuous function f : G? → R,

E [EPn [f ]] −→ EP [f ] ; (4.1.4)

. We say that Gn converges in probability in the local weak sense to P if, for any
bounded continuous function f : G? → R,

EPn [f ]
P−→ EP [f ] ; (4.1.5)

. We say that Gn converges almost surely in the local weak sense to P if, for any
bounded continuous function f : G? → R,

EPn [f ]
P−a.s.−→ EP [f ] . (4.1.6)

Notice that the left-hand term in (4.1.5) is a random variable, while the right-
hand side is deterministic. In fact, (4.1.5) implies (4.1.4), but the opposite is not true.
Similarly, (4.1.6) implies (4.1.5).

Similarly to Theorem 4.1.5, we can give a criterion for the convergence of a se-
quence of random graphs:

Theorem 4.1.7 (Criterion for local weak convergence of random graphs). Consider a
sequence of random graphs (Gn)n∈N, and a distribution P on G?. Then, as n→∞,

(1) Gn converges in distribution in the LW sense to P if, for every fixed k ∈ N and finite
directed marked rooted graph (H, y),

E
[

1

n

∑

i∈[n]

1 {U≤k(i) ∼= (H, y)}
]
−→ P (U≤k(∅) ∼= (H, y))

(2) Gn converges in probability in the LW sense to P if, for every fixed k ∈ N and finite
directed marked rooted graph (H, y),

1

n

∑

i∈[n]

1 {U≤k(i) ∼= (H, y)} P−→ P (U≤k(∅) ∼= (H, y)) ;

(3) Gn converges almost surely in the LW sense to P if for every fixed k ∈ N and finite
directed marked rooted graph (H, y),

1

n

∑

i∈[n]

1 {U≤k(i) ∼= (H, y)} P−a.s.−→ P (U≤k(∅) ∼= (H, y)) ,
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4.2. Convergence of PAMs: main result

where P denotes the law of the random sequence (Gn)n∈N.

Proof. The proof of Theorem 4.1.7 follows immediately from Theorem 4.1.5.

4.2. Convergence of PAMs: main result
The main results we prove in the present chapter are the two theorems stated in

this section. The first Theorem is about the convergence of all the different versions
of PAMs defined in Section 4.3:

Theorem 4.2.1 (Universality of LW limit). PAMs (a)-(g) defined in Section 4.3 converge
in probability in the LW sense to the Pólya point tree for all δ > −m.

For models (d), (f) and (g) the result is proven in [21] Models (d), (f) and (g) are de-
fined by a mixtures of PA function depending on the degree (f(k) = k) and a uniform
choice of attachment (an edge is attached to a vertex chosen uniformly at random).
For a more precise description, we refer to Section 4.3 (in particular, see (4.3.4)). This
mechanism is equivalent to considering δ ≥ 0.

The original proof in [21] makes extensive use of Pólya urn schemes (see Sec-
tion 4.4). In simple words, a Pólya urn schemes consists of an urn with balls of two
colors (red and blue). At every time step, we draw a ball, and we put it back in the
urn with an additional ball of the same color as the one we have chosen. Notice that
the probability of choosing a ball of a color is propostional to the number of balls of that color.
This is similar to PAMs, where vertices are chosen proportionally to their degree. We
extend this construction using affine urn schemes, a generalized construction where we
choose balls according to an affine function of the number of balls in the urn (sim-
ilarly to affine PA functions). We define a new class of random graphs called unit
graphs, that link affine urn schemes with PAMs with affine PA function. In this way,
we are able to extend the result in [21] to values all values δ > −m.

The last model defined in Section 4.3, called model (h), does not converge in the
LW sense to the Pólya point tree. As shown by Dereich and Mőrters [54, 55, 56], model
(h) converges to an inhomogeneous multi-type branching processes called idealized
random tree. This random tree has similar features as the Pólya point tree, but it is not
the same rooted tree. In particular, this implies that Model (h) belongs to a different
universality class as the other versions of PAM in Section 4.3.

The second theorem of this chapter consists in the LWC of Model (a) in Section 4.3.
This particular version of PAM for m ≥ 2 is defined in terms of the model for m = 1

through the collapsing procedure defined in Chapter 2. More precisely, for every t ∈
N, PA(a)

t (m, δ) is defined by PA(a)

mt(1, δ/m), where vertices are grouped together by
groups of m.

We can formulate a general statement:

Theorem 4.2.2 (Collapsing PAMs). Let (PAt(m, δ,G0))t≥1 be a PAM with parameters
m ≥ 1 and δ > −m, with initial graph G0. Assume that PAt(m, δ,G0) can be defined
by PAmt(1, δ/m, Ḡ0), for some initial graph Ḡ0, through the collapsing procedure. Then, if
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4.3. Variations of PAMs and Pólya point tree

PAt(1, δ/m, Ḡ0) converges locally weakly to the Pólya point tree with parameters 1 and δ/m,
then PAt(m, δ,G0) converges locally weakly to Pólya point tree with parameters m and δ.

Theorem 4.2.2 shows that the properties of PAMs defined through collapsing are
determined by the underlying tree model. In particular, the initial graph is irrelevant
for the convergence result. In other words, for PAMs with m ≥ 2 defined through
collapsing, a sufficient condition for the LW convergence to the Pólya point tree is the
convergence of the corresponding model with m = 1 to the Pólya point tree (with
different parameters).

4.3. Variations of PAMs and Pólya point tree
There exists several definitions of PAMs, each one defined by slightly different

attachment probabilities. Here we make a list of what we consider.

Model (a). Model (a) is taken from [85, Model (a)]. This model is considered in
Chapter 3 when we investigate the diameter of PAMs. For the precise definition,
we refer to Definition 3.1.4. Here we just recall that the model for m ≥ 2 is defined
through collapsing, and every edge in the graph is allowed to be a self-loop. Multiple
edges are allowed.

Model (b). Model (b) is taken from [85, Model (b)]. Model (b) for m = 1 is a tree
without self-loops. In particular, we start with with PA(b)

2 (1, δ) consisting of two ver-
tices with two edges between them. Then, the attachment probabilities for t ≥ 3 are
given by

P
(
t→ i | PA(b)

t−1(1, δ)
)

=
Di(t− 1) + δ

(t− 1)(2 + δ)
for i ∈ [t− 1]. (4.3.1)

When m ≥ 2, we obtain a graph where edges are added sequentially with interme-
diate degree updates, but the first edge of every new vertex is not allowed to form
a self-loop. This means that PA(m,δ)

1 (b) consists of a single vertex with m self loops.
Then, for t ≥ 2,

P
(
t
j→ i | PA(m,δ)

t−1 (b)
)

=
Di(t− 1, j − 1) + δ

(t− 1)(2m+ δ) + (j − 1)(2 + δ/m)
, (4.3.2)

where we point out that Dt(t− 1, j − 1) = 0 if j = 1, and for j ≥ 2, Dt(t− 1, j − 1) is
equal to j plus the number of self-loops of vertex t after the (j − 1)-st edge has been
attached.

Model (b’). Model (b’) is a modification of model (b). We modify the starting graph
by assuming that PA(1,δ)

2 (b) consists of two vertices with only one edge. Then, model
(b’) is exactly the discrete-time version of a continuous-time branching process tree
(individual 1 does not have a self-loop, where vertex 1 in model (b) has one). When
m ≥ 2, PA(m,δ)

t (b′) is a collapsed branching process of size t, as introduced in [70]. The
reason why (b) and (b’) are different lies in the normalization constants in (4.3.1) and
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4.3. Variations of PAMs and Pólya point tree

(4.3.2), since we start with one edge less in PA(1,δ)

2 (b′). The normalization constants
are now

c′t,j =

{
2(t− 2) + (t− 1)δ if m = 1 and t ≥ 3,
(t− 1)(2m+ δ)− 2 + (j − 1)(2 + δ/m) if m ≥ 2, t ≥ 3 and j ∈ [m].

(4.3.3)
Notice that the difference between the constants (4.3.3) and the normalization con-
stants in (4.3.1) and (4.3.2) is −2, given by the fact that we start with one edge less.

Model (c). Model (c) is taken from [85, Model (c)]. We again let the graph at time 2
consist of two vertices with two edges between them. We fix α ∈ [0, 1]. Then, we first
draw a Bernoulli random variable It+1 with success probability 1 − α. The random
variables (It)t≥1 are independent. When It+1 = 0, then we attach the (t + 1)st edge
to a uniform vertex in [t]. When It+1 = 1, then we attach the (t+ 1)st edge to vertex
i ∈ [t] with probability Di(t)/(2t). No self-loops are allowed when m = 1. When
m ≥ 2 the graph is again defined by collapsing. As a consequence, only the first edge
of every vertex is not allowed to be a self loop. We have

P
(
t→ i | PA(c)

t−1(1, δ)
)

= (1− α)
1

t− 1
+ α

Di(t− 1)

2(t− 1)

=
Di(t− 1) + 2(1− α)/α

2(t− 1)/α
=
Di(t− 1) + δ̂

2(t− 1)/α
, r (4.3.4)

where δ̂ = 2(1− α)/α > 0.

Model (d). Model (d) is taken from [21, Model 3]. In the tree case, it coincides with
model (c). For m ≥ 2, edges are again assigned interpolating uniformly and degree-
biased choice with intermediate updating of degrees, but no self loops are allowed,
so attachment probabilities are similar to (4.3.4). In this model, the graph case is not
defined by the tree case through collapsing.

Model (e). Model (e) is a modification of model (d), made to extend the ”no-self-
loops” regime to negative values of δ. This model is called the sequential model in [21].
Definition 4.3.1 in the form below is given in [86], where the graph is defined for any
δ > −m. We give a proper definition of this model, since we use it as the starting
point of our analysis:

Definition 4.3.1 (Model (e)). Fix m ≥ 1, δ > −m. Then (PA(e)

t (m, δ))t≥2 is a sequence
of random graphs defined as follows:

. for t = 2, PA(e)

2 (m, δ) consists of two vertices with m edges between them;

. for t ≥ 3, PA(e)

t (m, δ) is constructed recursively as follows: conditioning on the graph
at time t−1, we add a vertex t to the graph, withm new edges. Edges start from vertex t
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4.3. Variations of PAMs and Pólya point tree

and, for j = 1, . . . ,m, they are attached sequentially to vertices Et,1, . . . , Et,m chosen
with the following probabilities: for j ∈ [m],

P
(
Et,j = i | PA(e)

t−1,j−1(m, δ)
)

=
Di(t− 1, j − 1) + δ

2m(t− 2) + (j − 1) + (t− 1)δ
. (4.3.5)

In (4.3.5), Di(t− 1) denotes the degree of i in PA(e)

t−1(m, δ), while Di(t− 1, j − 1) denotes
the degree of vertex i after the first j− 1 edges of vertex t have been attached. Here we assume
that PA(e)

t−1,−1 = PA(e)

t−1.

To keep notation light, we write PAt instead of PA(e)

t (m, δ). The normalization
constants in (4.3.5) depends on the fact that, when t− 1 vertices are present and j− 1

edges have been attached, the total degree of the first t − 1 vertices in PAt−1,j−1 is
2m(t− 2) + (j − 1). The term (t− 1)δ comes from the fact that we can attach to t− 1

vertices. We do not allow self-loops, but we allow multiple edges.

Model (f). Model (f) is taken from [21, Independent model]. In this model, the
graph starts as two vertices with m edges between each other. Fix α ∈ [0, 1]. Then, at
every step t ≥ 3, a new vertex is added to the graph withm edges. Each edge j ∈ [m]

is attached to a vertex i ∈ [t− 1] as follows: with probability α, i is chosen uniformly
in [t− 1], while with probability 1− α it is chosen according to

P
(
Et,j = i | PA(f)

t−1(m, δ)
)

=
Di(t− 1)

Z(t− 1)
,

where Z(t− 1) is the normalization constant. In particular, the m edges are attached
(conditionally) independently of each other, without intermediate degree updates, in con-
trast for instance with Model (a) and Model (e). In this case, no self-loops are allowed.

Model (g). Model (g) is taken from [21, Conditional model], and it is defined as
Model (f), with the difference that, for every t ∈ N, the m edges of vertex t are con-
ditioned to be attached to distinct vertices, thus generating a simple graph, so no self-
loops and multiple edges are allowed. Notice that to be consistent, we start with a
complete graph on m+ 1 vertices (so that every vertex has degree m).

Model (h). Model (h) is investigated in a series of papers by Dereich and Mőrters
[54, 55, 56], where the authors call it the PAM with conditionally independent edges. In
this model, we consider PA functions f : N→ (0,∞) that satisfy that f(k+1)−f(k) <

1 for every k ≥ 0, with the additional assumption that f(0) ≤ 1. Then, every edge
comes into the graph and it is connected to vertex i ∈ [t − 1] for every i ∈ [t − 1],
conditionally independently of the other vertices, with probability

P
(
Et,j = i | PA(h)

t−1(m, δ)
)

=
f(Di(t− 1))

t− 1
. (4.3.6)
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4.3. Variations of PAMs and Pólya point tree

Thus self-loops and multiple edges are not allowed in this model. In particular, this
model is sometimes called Bernoulli PAM since the number of original edges incident
to a vertex, instead being a fixed numberm, is the sum of (conditionally) independent
Bernoulli random variables. In the present paper, we consider f(k) = ck + δ, for
c ∈ (0, 1) and δ < 1.

4.3.1. The Pólya point tree
The Pólya point tree (PPT) is an infinite multi-type rooted random tree constructed as

follows. Let m ≥ 1, δ > −m be given and define

. χ = (m+ δ)/(2m+ δ), φ = (1− χ)/χ;

. Γin denote a Gamma distribution with parameters m+ δ and 1;

. Γ′in denote a Gamma distribution with parameters m+ δ + 1 and 1.

Vertices in the graph have five characteristics:

. a label i in the Ulam-Harris set N (recall Definition 2.1.3);

. a position x ∈ [0, 1];

. a positive number γ called strength;

. a type: younger denoted by Y and older denoted by O, with the exception of the
root ∅ that does not have a type;

. an integer mout that is either m if the vertex is of type O or m − 1 if the vertex
is of type Y;

Then, the Pólya point graph is constructed as follows:

(1) Assign to∅ a position x∅ = Uχ, whereU is a uniform random variable on [0, 1];
(2) Assign to ∅ an out-degree mout

∅ = m and strength γ∅ ∼ Γin;
(3) SampleU1, . . . , Um, independent of the rest, uniform random variables on [0, x∅];

to vertices ∅1, . . . ,∅m assign the positions U1, . . . , Um and type O;
(4) To vertices ∅(m+1), . . . ,∅(m+d(in)

∅ ) assign positions x∅(m+1), . . . , x∅(m+d
(in)
∅ )

,
that are the points given by the Poisson point process on [x∅, 1] defined by the
intensity

ρ∅(x) = γ∅
φxφ−1

xφ∅
,

where din∅ is the total number of points of of this process;
(5) Label ∅ as explored and vertices ∅1, . . . ,∅(m+ d(in)

∅ ) as unexplored.

Then, recursively over the elements in the set of unexplored vertices:

(1) Let i denote the current unexplored vertex;
(2) Assign to i two values:

m(out)

i ∼
{
m− 1 if xi is of type Y,
m if xi is of type O, (4.3.7)
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4.4. Affine urn schemes

γi ∼
{

Γin if xi is of type Y,
Γ′in if xi is of type O;

(4.3.8)

(3) Samplem(out)

i points xi1, . . . , xim(out)
i

independently from all the previous steps
and from each other, uniformly on [0, xi]. Assign to i1, . . . , im(out)

i type O and
set them unexplored;

(4) Let x
i(m

(out)
i +1)

, . . . , x
i(m

(out)
i +d

(in)
i )

be the random d(in)

i points given by an inde-
pendent Poisson process on [xi, 1] with intensity

ρi(x) = γi
φxφ−1

xφi
. (4.3.9)

Assign to i(m(out)

i + 1), . . . , i(m(out)

i + d(in)

i ) type Y and set them unexplored;
(5) Draw an edge between i and each one of the vertices i1, . . . , i(m(out)

i + d(in)

i );
(6) Set i as explored.

This inhomogeneous random tree is the LW limit of the sequential PAM in Defi-
nition 4.3.1, as stated in the following theorem:

Theorem 4.3.2 (LWC - Sequential model). Consider a PAt with parameters m and δ as
in Definition 4.3.1. Then, (PAt)t∈N converges locally weakly in probability to the Pólya
point tree with the same parameters.

The original proof of Theorem 4.3.2 is given for δ ≥ 0 in [21, Theorem 3], while
[86, Chapter 4] contains a sketch of the proof for all δ > −m, by indicating how the
Pólya urn description (see Section 4.4) can be extended to all values of δ. In Section 4.7
we explain the structure of the proof, highlighting the main steps.

4.4. Affine urn schemes
In this section, we present the theory of Pólya urn schemes with affine weight

functions. We follow the structure given in [86, Section 4.1].

4.4.1. Two-urn schemes
An urn scheme consists of an urn, with blue balls and red balls. At every time

step, we draw a ball from the urn and we replace it with two balls of the same color
of the one drawn. We start with B0 = b0 blue balls and R0 = r0 red balls.

The so-called weighted urn process is defined as follows: consider two weight func-
tions:

Wb(k) = ab + k, and Wr(k) = ar + k. (4.4.1)

Conditionally on the number of blue balls Bn and red balls Rn, at time n + 1 the
probability of drawing a blue ball (and then adding an additional one) is equal to

Wb(Bn)

Wb(Bn) +Wr(Rn)
.
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4.4. Affine urn schemes

Then, the general result on the Pólya urn scheme ((Bn, Rn))n∈N is the following:

Theorem 4.4.1 (Affine urn scheme). Let ((Bn, Rn))n∈N be a Pólya urn scheme with weight
functions as in (4.4.1). Then, as n→∞,

Bn
Bn +Rn

P−a.s.−→ ψ, (4.4.2)

where ψ has a Beta distribution with parametersB0 +ab andR0 +ar, and, for every n ∈ N,

P (Bn = B0 + k) = E [P (Bin(n, ψ) = k|ψ)] . (4.4.3)

Theorem 4.4.1 can be found in [86, Theorem 4.2], and the proof is based on De
Finetti’s theorem on exchangeable random variables. Sometimes we call the random
variable ψ the intensity or strength of the blue balls in the urn. Conditionally on ψ,
the number of blue balls in the urn at step n is then a Binomial distribution with n
attempts and probability of success ψ. Notice that the parameters of the distribution
ψ are completely determined by the initial weights of the process, i.e., B0 + ab and
R0 + ar.

We can equivalently see the urn process as in Theorem 4.4.1 as two different urns,
one containing only blue balls and the other only red balls, and we choose an urn
proportionally to the number of balls in the urns. In this case, the result is the same,
but we can say that ψ is the strength of the blue balls urn and 1−ψ is the strength of
the red balls urn.

4.4.2. More than one urn
The previous one urn experiment can be generalized to a number t ≥ 3 of urns.

With two urns, we already mentioned that a one-urn experiment can be seen as a
two-urns experiment, by assuming that every urn contains balls of the same color,
and we pick the urns according to the total weight of the balls inside each urn.

For t ≥ 3, we assume to have a single urn with t colors, or equivalently, t urns
where every urn contains balls of a different color. Denote the number of balls of each
color at time n by (Ci(n))n∈Ni∈[t], where i ∈ [t] denotes the color, and n ∈ N denotes the
number of extractions already made. Similarly to the single-urn case, we pick a ball of
a color (or equivalently, an urn) with probability proportionally toWi(n) = Ci(n)+ai,
and we put back the picked ball with another one of the same color. We assume that
i ∈ [t] starts with ki balls in the urn.

We start by observing that the number of balls of color 1 and the number of balls
of the other colors can be seen as a two-colors urn experiment, thus by Theorem 4.4.1
we have

C1(n)

n

P−a.s.−→ ψ1, (4.4.4)

where ψ1 is a Beta random variable with parameters a1 + k1 and
∑t
j=2 aj + kj . In

particular, ψ1 gives the asymptotic fraction of balls with color 1. This means that the
fraction 1− ψ1 is made by balls of the remaining t− 1 colors.
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4.4. Affine urn schemes

When one of the colors 2, . . . , t is drawn, we have that color 2 and colors 3, . . . , t

can again be seen as a two-colors urn experiment, so

C2(n)

n

P−a.s.−→ ψ2(1− ψ1), (4.4.5)

where ψ2 is a Beta random variable independent of ψ1, with parameters a2 + k2 and∑t
j=3 aj + kj . We can see the right-hand side of (4.4.5) as follows: conditionally on

picking one of the colors 2, . . . , t, the restriction of the urn experiment to this color
evolve as a two-urn experiment. Thus, the fraction of color 2 balls converges to ψ2,
but by (4.4.4) we know that ψ1 fraction of the total is made by color 1 balls, thus the
fraction of balls made by color 2 balls converges to ψ2(1−ψ1) of the total. In general,
the fraction of balls of color i ∈ [t] satisfies

Ci(n)

n

P−a.s.−→ ψi

i−1∏

j=1

(1− ψj), (4.4.6)

where (ψj)j∈[i] are independent Beta random variables, andψj has parameters aj+kj
and

∑t
l=j+1 al + kl.

4.4.3. Model (e) as a Pólya urn graph
The sequential model in Definition 4.3.1 can be interpreted as an experiment with

t urns, where the number of balls in each urn represents the degree of a vertex in the
graph. First, we introduce a random graph model:

Definition 4.4.2 (Pólya urn graph). Fix m ≥ 1 and δ > −m. Let t ∈ N be the size of the
graph. Let ψ1 = 1, and consider ψ2, . . . , ψt independent random variables, where

ψk
d
= Beta (m+ δ,m(2k − 3) + (k − 1)δ) . (4.4.7)

Define

ϕ(t)

j = ψj

t∏

i=j+1

(1− ψi), S(t)

k =

k∑

j=1

ϕj , I(t)

k = [S(t)

k−1, S
(t)

k ). (4.4.8)

Conditionally on ψ1, . . . , ψt, let (Uk,j)
j=1,...,m
k=2,...,t be independent random variables, with U (t)

k,j

uniformly distributed on [0, S(t)

k−1]. Then, the corresponding Pólya urn graph PU is the graph
of size t where, for u < v, the number of edges between u and v is equal to the number of
variables U (t)

v,j in Iu, for j = 1, . . . ,m (multiple edges are allowed).

The Beta distributions in Definition 4.4.2 come from the Pólya urn interpretation
of the sequential model, using urns with affine weight functions, as introduced above.
Notice the similarity between (4.4.6) and the expressions of (ϕ(t)

j )j∈[t]. In particular,
since

∑t
j=1 ϕ

(t)

j = 1, ϕ(t)

j represents the asymptotic fraction of edges received by ver-
tex j among the first t vertices, when the size of the graph diverges.
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4.5. Equivalence of Pólya urn graph and model (e): proof of Theorem 4.4.3

S(5)

0 ≡ 0 S(5)

5 ≡ 1S(5)

1 S(5)

2 S(5)

3 S(5)

4

U1,1 U2,1 U1,2 U4,1 U2,2U3,2U3,1 U4,2 U5,1 U5,2

1

2

3

4

5

Figure 4.1: Example of Pólya urn graph as in Definition 4.4.2 of size 5 where
m = 2. At every uniform random variable corresponds an edge in the graph,
as highlighted in green in the figure. The relative age i/t of vertex i ∈ [t] is
represented as the position S(t)

i , or, equivalently, as the position of the interval
I(t)

i in the interval [0, 1]. The more the point S(t)

i is close to zero, the older the
vertex i is among the t vertices of the graph.

The Pólya urn graph is an equivalent formulation of the sequential model, as
proven in the following theorem:

Theorem 4.4.3 (Equivalence of formulations). Fixm ≥ 2 and δ > −m. For every t ∈ N,
PA(e)

t (m, δ) and PUt(m, δ) have the same distribution.

The proof can be found in [21, Theorem 2.1] for δ ≥ 0, while [86, Theorem 4.8]
gives the sketch of the proof for general δ. We give the formal proof for general values
of δ in Section 4.5. The advantage of the formulation in Definition 4.3.1 is that there
are no self-loops, thus the corresponding Pólya urn experiment is easier to define. We
explain how self-loops affect the definition of the Pólya urn graph in Section 4.6.1.

4.5. Equivalence of Pólya urn graph and model (e): proof of
Theorem 4.4.3
In this section, we give a rigorous proof of Theorem 4.4.3, following the sketch

given in [86, Theorem 4.8]. The proof is divided in two steps: First, we prove a pre-
liminary lemma on consistency of Pólya urn experiments in model (e), then we give
the general proof of the result.

We recall the notation introduced in Chapter 2 that we used to denote individuals
during collapsing. For m ≥ 1, we write (k, j) = m(k − 1) + j, for k ∈ N and j ∈ [m].
We now can start state a preliminary lemma:

155



4

Tr
ee

lik
e

pr
op

er
ty

an
d

lo
ca

l
w

ea
k

lim
it

of
PA

M
s

4

Tr
ee

lik
e

pr
op

er
ty

an
d

lo
ca

l
w

ea
k

lim
it

of
PA

M
s

4

Tr
ee

lik
e

pr
op

er
ty

an
d

lo
ca

l
w

ea
k

lim
it

of
PA

M
s

4

Tr
ee

lik
e

pr
op

er
ty

an
d

lo
ca

l
w

ea
k

lim
it

of
PA

M
s

4

Tr
ee

lik
e

pr
op

er
ty

an
d

lo
ca

l
w

ea
k

lim
it

of
PA

M
s

4.5. Equivalence of Pólya urn graph and model (e): proof of Theorem 4.4.3

Lemma 4.5.1 (Consistency of Pólya urns in model (e)). Fix m ≥ 1 and δ > −m, and
let (PA(e)

t (m, δ))t∈N be the corresponding PAM model (e). For k ≥ 2, denote by Dk(t) and
D<k(t) the degree of vertex k and the total degree of [k − 1] respectively. Define θ0 = km

and, for n > m+ 1:

θn := {(h, j) > (k,m) : (h, j) is the nth edge attached to [k]}, (4.5.1)

i.e., (θn)n≥mk is the sequence of the indices of the edges in model (e) that are attached to the
first [k] vertices. Then, (Dk(θn), D<k(θn))n≥km is a two-urn Pólya urn experiment in the
sense of Section 4.4. As a consequence,

Dk(θn)

Dk(θn) +D<k(θn)

a.s.−→ ψk,

where ψk is a Beta random variable with parameter m+ δ and m(2k − 3) + (k − 1)δ.

Proof. Fix k ≥ 2. We consider the evolution of the degree of vertex k, Dk(t), and the
degree of the union of the first k − 1 vertices D<k(t). We start at time i = k, that
coincides with θ0 = (k,m) (recall (4.5.1)). At this time, we have just added the m
original edges of vertex k to the graph, so Dk(θ0) = m and D<k(θ0) = m(2k − 3).

For every edge (t, j) such that θ0 < (t, j) < θ1, the degree of the first k does not
change by definition of the sequence (θn)n∈N. At time (t, j) = θ1, the edge (t, j) is
attached to one of the first k vertices. In particular,

P(t
j→ [k] | PA(e)

t,j−1(m, δ)) =
Dk(t, j − 1) +D<k(t, j − 1) + kδ

m(2t− 2) + tδ + j − 1
.

As a consequence, conditionally on {t j→ [k]} and PA(e)

t,j−1(m, δ),

P(t
j→ k | PA(e)

t,j−1(m, δ), t
j→ [k]) =

P(t
j→ k, t

j→ [k] | PA(e)

t,j−1(m, δ))

P(t
j→ [k] | PA(e)

t,j−1(m, δ))

=
Dk(t, j − 1) + δ

Dk(t, j − 1) +D<k(t, j − 1) + kδ
,

(4.5.2)

and similarly

P(t
j→ [k − 1] | PA(e)

t,j−1(m, δ), t
j→ [k]) =

D<k(t, j − 1)

Dk(t, j − 1) +D<k(t, j − 1)
. (4.5.3)

In particular, we obtain (4.5.2) and (4.5.3) since the normalization constants in the
attachment probabilities are the same for all the events {t j→ [k − 1]}, {t j→ k} and
{t j→ [k]}.

Notice that the right-hand side of (4.5.2) and (4.5.3) are depending only onDk(θ0)

and D<k(θ0). In the same way we can prove that (4.5.2) and (4.5.3) hold for θn, con-
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4.5. Equivalence of Pólya urn graph and model (e): proof of Theorem 4.4.3

ditionally on Dk(θn−1) and D<k(θn−1). In particular,

P(Dk(θn) = Dk(θn−1) + 1 | Dk(θn−1), D<k(θn−1))

=
D<k(θn−1) + δ

Dk(t, j − 1) +D<k(t, j − 1) + kδ
.

(4.5.4)

Equation (4.5.4) represents the evolution of a two-urns Pólya urn experiment, where
the two urns have initial weight m+ δ and m(2k − 3) + (k − 1)δ. This completes the
proof.

We use Lemma 4.5.1 to prove Theorem 4.4.3:

Proof of Theorem 4.4.3. Fix t ≥ 2. We want to prove that PA(e)

t (m, δ) and PUt(m, δ)

have the same distribution. Let (Xn)n∈N be the vertex receiving the nth edge of the
graph. In particular, we havem(t−1) edges in the graph of size t (recall that we start
with G0 being a graph with two vertices and m edges between them).

To keep notation light, we denote Pt(·) = P(· | ψ1, . . . , ψt). For n = 1, . . . ,m,
X1 ≡ · · · ≡ Xm = 1, since vertex 1 deterministically receives all the m edges of
vertex 2. For n = m + 1, . . . , 2m, Xm+1, . . . , X2m can either be equal to 1 or 2. By
Lemma 4.5.1, the evolution of the degrees of vertex 1 and 2 can be described as a
two-urn Pólya urn model, with intensities 1 − ψ2 and ψ2. In this case, ψ2 is a Beta
random variable with parameters m+ δ and m+ δ.

When 2m+ 1 ≤ n ≤ 3m, Xn can take three values. In this case we have

Pt(Xn ∈ [2]) = 1− ψ3, and Pt(Xn = 3) = ψ3, (4.5.5)

where 1−ψ3 and ψ3 are the intensities of the two-urns experiment corresponding to
the evolution of the degree of vertex 3 and the union of vertices {1, 2}. In particular,
ψ3 is a Beta random variable with parameters m + δ and 3m + 2δ. Conditionally on
Xn < 3, by Lemma 4.5.1 the degrees of vertex 1 and 2 again evolve as a two-urns
model. This implies that

Pt(Xn = 1 | Xn ∈ [2]) = 1− ψ2 and Pt(Xt = 2 | Xt ∈ [2]) = ψ2. (4.5.6)

Using (4.5.6) in (4.5.5), we obtain

Pt(Xn = 1) = (1− ψ3)(1− ψ2),

Pt(Xn = 2) = ψ2(1− ψ3), (4.5.7)
Pt(Xn = 3) = ψ3,

as required. Recursively, we can extend (4.5.7) to all k ∈ [t]. In fact, we can look at the
indices m(k − 1) + 1, . . . ,mk, i.e., the indices such that Xm(k−1)+1, . . . , Xmk are the
vertices selected by them edges of vertex k+1 (remember that vertex 1 has no edges,
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4.6. Generalization of Pólya urn graphs

thus the total number of edges in the graph will bem(t− 1)). Then, by Lemma 4.5.1,

Pt(Xn ∈ [k − 1]) = 1− ψk, and Pt(Xn = k) = ψk. (4.5.8)

Then, for every h ∈ [k − 1], similarly to (4.5.6),

Pt(Xn ∈ [h] | Xn ∈ [k − 1])

=

h∏

`=k−1

Pt(Xn ∈ [h] | Xn ∈ [`])Pt(Xn ∈ [`] | Xn ∈ [k − 1])

= ψk

h∏

`=k−1

(1− ψ`).

This completes the proof.

Remark 4.5.2 (Relation between models (d) and (e)). Theorem 4.4.3 was originally
stated in [21, Theorem 2] for model (d). The main difference between model (e) and
model (d), lies in the interpretation of the attachment mechanisms, and the corre-
sponding Pólya urn experiment that represents the graph. Model (d) is defined by
a mixture of a uniform PA function (vertices are chosen uniformly among existing
ones) and an affine PA function where δ = 0. This mechanism allows is equivalent
to consider an affine PA function with δ̂ = 2(1 − α)/α > 0 (recall (4.3.4) and the de-
scription given in Section 4.3). Model (e) instead is defined using urns with weight
functions as in 4.4. In this setting, we can consider affine weights functions for any
value δ > −m. Notice that the initial weight of an urn is then m+ δ > 0. This allows
us to directly extend the results in [21] stated for model (d) to model (e).

4.6. Generalization of Pólya urn graphs

4.6.1. Different urn evolution
In this section, we show the universality of the Pólya urn construction of PAMs.

In particular, we show that all the PAMs defined in Section 4.3 can almost be defined
as Pólya urn graphs. Here we use the word ”almost” to indicate that all the small
differences in the definitions of the models in Section 4.3 make the Pólya urn graph
construction not immediate as in Definition 4.4.2, but a close definition is possible.

There are two elements that generate differences between the models in Section 4.3:
the presence of self-loops, the initial state of the models, and whether edges are updated
intermediately. As it turns out, the sequential model in Definition 4.3.1, with no self-
loops and as a starting graph a single vertex with no edges turns out to be the model
for which the corresponding Pólya urn graph is the easiest to define.

From Definition 4.4.2, it is possible to see that the parameters of the sequence
(ψk)k∈[t] depend on the initial number of balls in the urns when the graph has k vertices.
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4.6. Generalization of Pólya urn graphs

More precisely, the random variable ψk has parameters ak and bk given by

ak = m+ δ, bk = m(2k − 3) + (k − 1)δ. (4.6.1)

Notice that the attachment probabilities as in (4.3.5) for t = k + 1, and j = 1, are
exactly given by ak/(ak + bk) for i = k and bk/(ak + bk) for the union of the vertices
[k − 1].

In general, all the versions of PAMs in Section 4.3 can be defined using sequences
of Beta random variables (ψk)k∈N, where the parameters (4.6.1) satisfy

ak = m+ δ, bk = (2m+ δ)k + c, (4.6.2)

for some constant c that does not depend on k. In particular, c depends on the initial
state of the graph and on the presence of self-loops.

In Definition 4.4.2, for k ∈ N and j ∈ [m], the random variable U (t)

k,j is uniform
on [0, S(t)

k−1]. In particular, Uk,j ∈ I(t)
v , for some v < k, thus creating an edge between

vertex k and vertex v. Notice that self-loops are not allowed. We can define the urn
graphs in a different way, assuming that Uk,j is uniform on [0, S(t)

k ], thus allowing for
self-loops. This complicates the Pólya urn scheme, since now the edges of vertex k
can increase the degree of k itself. More precisely, the intensity ψk has parameters ak
and bk as in (4.6.1), where bk is the total weight of the first k − 1 vertices when we
start attaching the edges of the vertex k + 1.

For this, it is sufficient to distinguish between the initial weight of an urn before
or after starting attaching edges. Consider m = 1, k ∈ N, and assume that we con-
sider model (a) in Section 4.3. Then, the intensity ψk obeys a Beta distribution with
parameters

ak = 1 + δ, bk = (2 + δ)(k − 1),

where now ak and bk represent the initial weight of vertex k and the first k−1 vertices
respectively before attaching the edge of vertex k. In this case, the random variableUk,1 is
uniform on [0, S(t)

k ]. More precisely, model (a) allows for self-loops, thusUk is uniform
on [0, S(t)

k ]. In particular, the parameters of ψk are 1 + δ and (2 + δ)(k − 1), that are
exactly the tonal weight of k and [k−1] before attaching the edge of k. In model (e) this
does not happen, and the edge of k is surely attached to [k − 1]. As a consequence,
the parameters of ψk are 1 + δ and (2k − 3) + (k − 1)δ, that are the total weight of k
and [k − 1] after attaching the edge of vertex k.

So far, we have considered m = 1. When m ≥ 2, this setting can be further
complicated by the differences between edges. For example, model (b) in Section 4.3
does allow for self-loops, with the exception of the first edge of every vertex (thus
forcing the graph to be connected). In this case, we have a mixed situation, since, for
every vertex, the first edge cannot be a self-loop (similar to model (e)), but the others
are allowed to be self-loops (similarly to model (a)).

The consequence of these problems is that not every PAM defined in Section 4.3
can be directly defined as a Pólya urn graph. Some models can be defined as a urn
graph for every m ≥ 1, while others can be defined as a Pólya urn graph only for
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4.6. Generalization of Pólya urn graphs

m = 1, followed by a collapsing procedure.

4.6.2. Unit graphs
In this section, we define a general framework that allows to describe all versions

of PAMs, with the exception of model (h), with a similar formulation to the urn graph
in Section 4.4.2. First of all, we define a new class of random graphs:

Definition 4.6.1 (Unit graph). Fix m ≥ 1, and define the following:

. Let (Uk,j)
j∈[m]
k∈N be a sequence of i.i.d. random variables, whereU1,1 is a uniform random

variable in [0, 1];

. Let (ψk,j)
j∈[m]
k∈N be a sequence of random variables with support in [0, 1], such that

P(ψk,j = 1) = 0 for all k ≥ 1 and j ∈ [m], but ψ1,1 ≡ 1;

. Let t ∈ N be the size of the graph.

Then, for every k ∈ [t], define S(t)

0 = 0, S(t)

t,m = 1, and, for j ∈ [m],

S(t)

k,j = ψk,j

m∏

l=j+1

(1− ψk,l)
t∏

h=k+1

m∏

l=1

(1− ψh,l).

Denote S(t)

k = S(t)

k,m. Define the intervals

I(t)

k = [S(t)

k−1, S
(t)

k ).

Then, we call UGt the unit graph of size t defined as follows: The jth edge of vertex k is
attached to vertex u ∈ [k] if and only if

Uk,jS(t)

k,j−1 ∈ I(t)

u , (4.6.3)

and we label the graph NSL (no self-loops). The unit graph UGt is labeled SL (self-loops) if
the condition (4.6.3) is replaced by

Uk,jS(t)

k,j ∈ I(t)

u . (4.6.4)

When m = 1, we call this model unit tree, and we denote it by UTt.

The labels SL and NSL are purely technical. We are aware that this notation can be
confusing. In fact, in a NSL graph an edge can still generate a self-loop. The labels SL
and NSL coincide with the possibility that an edge can create a self-loop only when
m = 1. Whenm ≥ 2, the difference between (4.6.3) and (4.6.4) is that in the latter, the
random variable Uv,j is rescaled on S(t)

k,j , while in (4.6.3) it is rescaled on S(t)

k,j−1. The
meaning of this notation will be clear when we adapt it to PAMs.

Notice that in a unit graph, the starting graph is a single vertex with no self-loops.
Intuitively, we can start from any fixed graphG0 on t0 ≤ t vertices, and use (4.6.3) and
(4.6.4) to define the edges of the remaining t − t0 vertices. In this case, the random
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4.6. Generalization of Pólya urn graphs

variables associated to the first t0 vertices can be arbitrarily determined, or kept as
random variables. In general, in PAMs the random values associated to the starting
graph are assumed to be deterministic. The initial graph does not influence the LWC
result, since it involves a finite number of vertices t0 that does not grow with t.

Observe that the graph satisfies a generalized recursive property: it is possible to
define UGt such that UGt−1 ⊆ UGt as a subgraph. In fact, for any k ∈ N and j ∈ [m],

S(t)

k,j =





S(t−1)

k,j

m∏

j=1

(1− ψt,j) for k < t,

ψt,j

m∏

l=j+1

(1− ψt,l) for k = t and j < m,

ψt,m = 1 for k = t and j = m.

(4.6.5)

In simple words, (4.6.5) states that we can take the values (S(t−1)

k,j )
j∈[m]
k∈[t−1] and rescale

them to obtain the values (S(t)

k,j)
j∈[m]
k∈[t] . The first point is always 0, and the last one is

always 1, so that the graph is always related to the complete interval [0, 1].
Notice that in this way UGt−1 ⊆ UGt, or, in other words, we can recursively con-

struct UGt from UGt−1, where both have the distribution of a unit graph of size t and
t − 1 respectively. In particular, the law of UGt−1 is independent of the vertex t and its
attributes. We call this fact the recursive property of unit graphs. In particular, the inter-
val I(t)

k that determines whether an edge is attached to k is determined by its endpoints,
namely S(t)

k−1 and S(t)

k . The intermediate points S(t)

k,1, . . . ,S(t)

k,m−1 are not relevant for
the probability of receiving an edge. These intermediate points allow the random
variables Uk,1, . . . , Uk,m to be rescaled on slightly different intervals, thus allowing
for different distribution of the m edges of vertex k.

We remark the similarity of the notation between the endpoints of the intervals
in Definition 4.6.1 of a unit graph and Definition 4.4.2 of a Pólya urn graph. In fact,
unit graphs are a way to generalize the Pólya urn graph, in a way to include all pos-
sible versions of PAMs. First of all, we start showing that the Pólya urn graph in
Definition 4.4.2 is a unit graph:

Lemma 4.6.2 (Pólya-unit graph). Fix m ≥ 1 and δ > −m. Then, the Pólya urn graph in
Definition 4.4.2 is a unit graph in the sense of Definition 4.6.1 with the following parameters:

. for every k ≥ 2, ψk,1 is a Beta random variable with parameters ak and bk as in (4.6.1),
and for j ≥ 2, ψk,j ≡ 0;

. (ψk,1)k≥2 are independent of each other;

. for every k ≥ 2 and j ∈ [m], the jth edge of k is labeled NSL.

The proof of Lemma 4.6.2 is immediate, since Definitions 4.4.2 and 4.6.1 coincide
for the parameters given in the statement. In particular, for every k ∈ N, since we set
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4.6. Generalization of Pólya urn graphs

ψk,j ≡ 0 for j ≥ 2, we have that

S(t)

k,1 ≡ S(t)

k,2 ≡ · · · ≡ S(t)

k,m = ψk,1

t∏

h=k+1

(1− ψh,1), (4.6.6)

where the expression in (4.6.6) equals the definition of S(t)

k given in (4.4.8).
The nice property of the unit graph class is that we can describe all versions of

PAMs as in Section 4.3 as a unit graph, just specifying the distributions of the random
variables (ψk,j)

j∈[m]
k∈N and the choice of the label NSL or SL.

4.6.3. The case m = 1
We start by considering the tree models, i.e., m = 1, thus δ > −1. This setting

turns out to be the easiest one, since all edges are allowed to be self-loops or not,
so there are no mixed situations as mentioned above. As it turns out, many of the
models defined in Section 4.3 coincide in the tree setting. In fact:

. Models (b) and (b’) evolve with the same rules. For m = 1 the only difference
is given by the initial graph;

. Models (e) and model (b’) evolve with the same rules for m = 1;

. Models (c) and (d) coincide with model (e) with the restriction that δ ≥ 0;

. Model (a) allows for every edge to be a self-loop.

For models (b’)-(c)-(d)-(e) there is nothing to prove, since they coincide and, by Lemma 4.6.2,
we know that the corresponding Pólya urn graph is a unit graph. We just need to
prove that models (a) and (b) are unit graphs:

Lemma 4.6.3 (Unit graphs - Models (a) and (b)). For m = 1 and δ > −1, PAMs models
(a) and (b) are both unit graphs, where

(a) ψk,1 is a Beta random variable with parameters 1 + δ and (2 + δ)(k− 1), and ψk,j ≡ 0

for every j ≥ 2. The graph is labeled SL;
(b) ψk,1 is a Beta random variable with parameters 1 + δ and (2 + δ)(k − 1) + 1, and

ψk,j ≡ 0 for every j ≥ 2. The graph is labeled NSL.

Proof. The proof consists in showing that models (a) and (b) can be described as Pólya
urn experiments. For model (b) the proof is immediate, since model (b) is equal to
model (b’) with an extra edge between the first two vertices. Replacing the sequence
(ψk)k∈N of model (b’) with (ψ′k)k∈N, where ψ′k is a Beta random variable with param-
eters 1 + δ and (2 + δ)(k − 1) + 1, completes the proof.

In model (a) we do allow for self-loops, thus we have to rescale the uniform ran-
dom variables that determine the edges to different intervals and look at the weight
of every vertex before attaching the edges, as mentioned in Section 4.6.1.

For k ≥ 2, we have that the edge of vertex k is attached to k with probability
proportional to 1+δ and to one of the first k−1 with probability proportional to (2+
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4.7. LWC of model (e): structure of the proof of Theorem 4.3.2

δ)(k−1). Thus, choosing (ψk)k≥2 whereψk is a Beta random variable with parameters
1 + δ and (2 + δ)(k − 1), and labeling all edges as SL, the proof is complete.

4.6.4. The case m ≥ 2
When we consider m ≥ 2, we can distinguish two classes of models: the collapsed

class, i.e., the class of models where the casem ≥ 2 can be defined through collapsing
from the tree model, and the non-collapsed class, where the model with m ≥ 2 cannot
be directly obtained as a collapsed version of the case m = 1. For instance, model (a)
belongs to the first class, model (e) belongs to the second.

We now present the procedure to collapse unit graphs:

Definition 4.6.4 (Collapsing unit graphs). Let (ψk)k∈N and (Uk)k∈N be the two sequences
defining a unit tree (with the corresponding graph label SL/NSL). Then, fix m ≥ 2. Define
the two sequences, for k ∈ N and j ∈ [m],

ψ′k,j = ψm(k−1)+j , U ′k,j = Um(k−1)+j .

Then, the collapsed unit graph is the unit graph defined by the sequences (ψ′k,j)
j∈[m]
k∈N and

(U ′k,j)
j∈[m]
k∈N , where the graph label is the same as the corresponding unit tree.

We can use the collapsed unit graph in Definition 4.6.4 to describe PAMs that,
when m ≥ 2, are defined by collapsing from the tree setting. In particular, since the
label is maintained, the attachment probabilities of every edge in a collapsed unit
graph is the same as the one in the collapsed PAM. In fact, if the graph is labeled as
SL, then ψk,j has parameters ak,j and bk,j that are equal to the weights of the vertex
itself and older vertices respectively, thus giving the same distribution.

This explains why the class of unit graphs has been introduced. The main differ-
ence between collapsed and non-collapsed unit graphs is the fact that, in a collapsed
graph, an interval I(t)

k is associated to a vertex k ∈ N that determines which edges are
attached to k, but we need internal points to maintain the law of the graph. In other
words, the fact that a vertex in the collapsed unit graph is obtained by m different
vertices is reflected by the fact that the corresponding interval can be divided in m
sub-intervals.

4.7. LWC of model (e): structure of the proof of Theorem 4.3.2
The proof of Theorem 4.3.2 is based on a coupling argument. In other words,

the proof consists in constructing a coupling between the neighborhood of a uniform
vertex in PUt and the neighborhood of the root ∅ of a Pólya point tree.

The LWC in distribution is proven by constructing the coupling for the neighbor-
hood of a single uniformly chosen vertex Vt. For the LWC in probability, the coupling
is constructed between two neighborhoods of two uniformly chosen vertices V 1

t and V 2
t

and two Pólya point trees simultaneously. By the second moment method the results
then follow.

163



4

Tr
ee

lik
e

pr
op

er
ty

an
d

lo
ca

l
w

ea
k

lim
it

of
PA

M
s

4

Tr
ee

lik
e

pr
op

er
ty

an
d

lo
ca

l
w

ea
k

lim
it

of
PA

M
s

4

Tr
ee

lik
e

pr
op

er
ty

an
d

lo
ca

l
w

ea
k

lim
it

of
PA

M
s

4

Tr
ee

lik
e

pr
op

er
ty

an
d

lo
ca

l
w

ea
k

lim
it

of
PA

M
s

4

Tr
ee

lik
e

pr
op

er
ty

an
d

lo
ca

l
w

ea
k

lim
it

of
PA

M
s

4.7. LWC of model (e): structure of the proof of Theorem 4.3.2

In this section, we state several lemmas and propositions that are used in proof of
Theorem 4.3.2. We claim then that the proof of convergence for the versions of PAMs
defined in Section 4.3 holds, assuming that the preliminary lemmas in this section
hold even for those different definitions of PAMs.

All the proofs of the results stated in this section are proven in [21], where these
argument were first stated for δ ≥ 0, and in [86, Chapter 4], for the precise PAM
version of Definition 4.3.1, that holds for any δ > −m. [86, Chapter 4] contains only
a sketch of the proof. In this chapter, the structure of the proof of the convergence of
model (e) is presented to explain what are the tehcnical ingredients that are necessary.
Once the Pólya urn graph representing model (e) is defined (recall Remark 4.5.2), the
proof is identical to the proof for model (d) in [21].

4.7.1. Properties of Pólya urn graph
The formulation of the sequential model as the Pólya urn graph in Definition 4.3.1

has immediate consequences on the evaluation of the probability of attachments. In
fact, conditionally on the sequence of intensities (ψk)k∈[t], it follows that, for k ∈ [t],
the probability that the jth edge of vertex k is attached to v is equal to

P (Uk,j ∈ Iv | ψ1, . . . , ψt) = ψv
S(t)
v

S(t)

h−1

= ψv

k−1∏

h=v+1

(1− ψh). (4.7.1)

In addition, we recall that the random variables (Uk,j)
j∈[m]
k∈[t] are independent of each

other. The proof of (4.7.1) follows immediately from the definition of the Pólya urn
graph and the fact that we can easily prove by induction on k ∈ [t] that

S(t)

k =

t∏

h=k+1

(1− ψh). (4.7.2)

(4.7.1) gives an alternative expression for the probability of existence of an edge in
the graph. This formulation comes from the fact that in a Pólya urn experiment the
number of balls in an urn evolves as a binomial random variable with probability of
success ψ. Notice that the probability in (4.7.1) is independent of the random vari-
ables ψk, . . . , ψt.

A direct consequence of (4.7.1) is that, once we average over the uniform random
variables (Uk,j)

j∈[m]
k∈[t] , the properties of the graph are determined by the sequence of

intensities (ψk)k∈[t].
We now state two preliminary results involving (ψk)k∈[t]. The first one is about

the concentration of the positions (S(t)

k )k∈[t] around deterministic values:

Lemma 4.7.1 (Positions concentrate in PUt). Consider a Pólya urn graph as in Definition
4.4.2. Let χ = (m + δ)/(2m + δ). Then, for every ε, ω > 0 there exists N0 ∈ N such that,
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4.7. LWC of model (e): structure of the proof of Theorem 4.3.2

for every t ≥ N0,

P
( t⋂

i=N0

{ ∣∣∣∣S
(t)

i −
(
i

t

)χ∣∣∣∣ ≤ ω
(
i

t

)χ})
≥ 1− ε, (4.7.3)

and, for t large enough,

P
(

max
i∈[t]

∣∣∣∣S
(t)

i −
(
i

t

)χ∣∣∣∣ ≥ ω
)
≤ ε. (4.7.4)

As a consequence, as t→∞,

max
i∈[t]

∣∣∣∣S
(t)

i −
(
i

t

)χ∣∣∣∣
P−→ 0. (4.7.5)

Lemma 4.7.1 is originally formulated in [21, Lemma 3.2]. Lemma 4.7.1 implies that
S(t)

k is roughly (k/t)χ. This can give intuition behind the intensities of the Poisson
processes in the definition of the Pólya point graph. Heuristically, if we identify a
vertex k with its position S(t)

k . When we have more and more vertices as t → ∞,
the positions of vertices become closer and closer, thus obtaining the intensities in
Definition 4.3.1.

The second preliminary result on the sequence of intensities of the Pólya urn
scheme is about the convergence in distribution of such sequence, and a coupling
between (ψk)k∈N and a sequence of Gamma random variables:

Lemma 4.7.2 (Beta-Gamma coupling). Consider the sequence (ψk)k∈N as in Definition 4.3.1.
Then, as k →∞, kψk

d→ Γ, where Γ has a Gamma distribution with parameters m+ δ and
2m+ δ.

More precisely, take hk(x) such that P(ψk ≤ hk(x)) = P(χk ≤ x), where χk has a
Gamma distribution with parameters m+ δ and 1 (so that Γ

d
= χk/(2m+ δ) for all k ∈ N).

For every ε > 0 there exists K = Kε ≥ 1 sufficiently large such that, for all k ≥ Kε and
x ≤ (log k)2,

1− ε
k(2m+ δ)

x ≤ hk(x) ≤ 1 + ε

k(2m+ δ)
x. (4.7.6)

Further, with probability at least 1− ε, χk ≤ (log k)2 for all k ≥ Kε.

Lemma 4.7.2 is formulated and proved in [21, Lemma 3.3]. As mentioned, the
proof of Theorem 4.3.2 is based on a coupling argument. Lemma 4.7.2 is then crucial,
since it gives a link between the intensities in the Pólya urn graph and the strengths
in the Pólya point tree, that are Gamma random variables.

Both Lemma 4.7.1 and Lemma 4.7.2 are based on the fact that, for every k ∈ N, the
two parameters ak and bk of the Beta random variableψk are such that ak ≡ a = m+δ

and bk = m(2k−3)−(k−1)δ) = (2m+δ)k−3m+δ, i.e., ak ≡ m+δ is constant and bk
is affine in k. Notice that in Lemma 4.7.2, the limiting distribution Γ has parameters
a and 2m+ δ, that is the slope of bk.
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4.7. LWC of model (e): structure of the proof of Theorem 4.3.2

4.7.2. Coupling argument
We state the coupling argument that proves Theorem 4.3.2 in the following propo-

sition:

Proposition 4.7.3 (Coupling k-neighborhoods). Fix ε > 0 and k ∈ N. Let Vt be a
uniformly chosen vertex in [t]. Let {vi : i ∈ U} be the vertices that are at most distance k from
Vt, ordered such that the edge {vi, vij} was created before the edge {vi, vi(j+1)}.

Then, there exists ν ∈ (0, 1) andK = K(ε) <∞ such that, the k-neighborhood U≤k(Vt)

in PAt, together with (S(t)
vi )|i|≤k, and the k-neighborhood Û≤k(∅) of a Pólya point tree, to-

gether with its positions (xi)|i|≤k, can be coupled such that, with probability at least 1− ε,

(1) U≤k(Vt) ∼= Û≤k(∅);
(2) |Û≤k(∅)| ≤ K;
(3) |xi − S(t)

vi | ≤ ν for all i ∈ Û≤k(∅);
(4) (vi)i∈Û≤k(∅) are all distinct and vi ≥ νt for all vi ∈ Û≤k(∅);

(5) γi ≤ K for all i ∈ Û≤k(∅).

Proposition 4.7.3 proves the convergence in distribution of the sequential PAM to
the Pólya point tree. More precisely, statement (1) in Proposition 4.7.3 is sufficient for
the proof of the LWC. In fact, we can construct a coupling in a way that, with high
probability, the two neighborhoods in U≤k(Vt) in the PAM and Û≤k(∅) in the Pólya
point tree are isomorphic.

Proposition 4.7.3 gives more information than just the topological structure of the
neighborhood of a uniformly chosen vertex in PAM. For example, statement (3) as-
sures us that the positions (xi)i∈Û≤k(∅) of the vertices in the Pólya point tree are close
to the points (Svi)i∈Û≤k(∅) that defines the intervals corresponding to the vertices in
U≤k(Vt).

Before explaining the structure of the proof, we state a regularity lemma:

Lemma 4.7.4 (Regularity of PPT). Fix k ≥ 1 and ε > 0. Then there exist constants η > 0

and K <∞ such that, with probability at least 1− ε,

. |Û≤k(∅)| ≤ K;

. xi ≥ η for all i ∈ Û≤k(∅);

. γi ≤ K, ρi(·) ≤ K for all i ∈ Û≤k(∅);

. mini,i′∈Û≤k(∅) |xi − xi′ | ≥ η.

Lemma 4.7.4 states that, with high probability, the k-neighborhood of the root∅ is
composed by finitely many verticesK. This constantK also bounds all the strengths
of the vertices in Û≤k(∅). The positions of every vertex in Û≤k(∅) are separated by a
constant η > 0, and are at least η.
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4.7. LWC of model (e): structure of the proof of Theorem 4.3.2

As the reader can notice, the properties of the PPT listed in Lemma 4.7.4 are simi-
lar to the statements listed in Proposition 4.7.3. The idea of the coupling is to use the
random variables that are assigned to the vertices of the PPT, such as the positions
and the strengths, to define the k-neighborhood in the Pólya urn graph.

We now explain the coupling for the 1-neighborhood, this is enough to give the
intuition behind the technicalities of the proof of Proposition 4.7.3. In addition, the
1-neighborhood contains all the delicate points that are necessary to be checked to
extend the LWC result to the other PAM definitions in Section 4.3.

4.7.3. The 1-neighborhood
Consider the position of the root x∅ = Uχ∅ of the PPT, where U∅ is uniform on

[0, 1], and the positions x∅1, . . . , x∅m+d
(in)
∅

of the m + d(in)

∅ children of the root. We
choose the vertex Vt = dU∅te, that is indeed a uniformly chosen vertex in [t].

We start exploring the m neighbors of ∅ of type O, that correspond to the m ver-
tices found by exploring them original edges of Vt. For i ∈ [m], we take v∅i such that

S(t)

v∅i−1 ≤
x∅i
x∅

S(t)

v∅ ≤ S
(t)

v∅i
. (4.7.7)

Notice that the indices v∅1, . . . , v∅m in (4.7.7) might not be distinct. By definition,
the sequence x∅1/x∅, . . . , x∅m/x∅ is a collection of m i.i.d. random variables with
uniform distribution on [0, 1].

Given ε > 0 we can take η > 0 and K > 0 such that Lemma 4.7.4 holds for k = 1.
By Lemma 4.7.1, for t large enough,

|S(t)

v∅j
− x∅j | ≤ η,

for all j = 0, . . . ,m, where ∅0 = ∅, with probability larger than 1 − 2ε. As a conse-
quence, v∅i ∈ t[x∅i − η, x∅i + η].

In particular, since we have applied Lemma 4.7.4, all the indices v∅0, . . . , v∅m are
distinct, since the positions in the PPT are all at distance at least η. From the PAM
perspective, this implies that with high probability, them edges of a uniformly chosen
vertex Vt do not create self-loops.

We have now explored the neighbors of type O of the root ∅. We still have to ex-
plore the remaining d(in)

∅ neighbors of type Y. By (4.7.1) we know that, conditionally on
ψ1, . . . , ψt, every vertex k > v∅ can be connected to v∅ with m edges, independently
of each other. Let Xk,j denote the vertex that is chosen by the jth edge of k. Then all
the events ({Xk,j = v∅})j∈[m]

k>v∅
, conditioning on (ψk)k∈[t] and v∅, are independent of

each other with probability of success given by

Pk→v∅ = ψv∅
S(t)
v∅

S(t)

k−1

. (4.7.8)
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4.7. LWC of model (e): structure of the proof of Theorem 4.3.2

We can then define, for y ∈ (U∅, 1],

Wv∅(y) =

dyte∑

v=v∅+1

m∑

j=1

1{Xk,j = v∅}. (4.7.9)

The process in (4.7.9) represents the evolution of the degree of vertex v∅ from time
v∅ + 1 to time dyte. Equation (4.7.9) shows that the degree of a vertex can be written
as a sum of Bernoulli random variables that, conditionally on (ψk)k∈[t] and v∅, are
independent of each other with probability of success given by (4.7.8).

The following step of the proof is to show that, conditionally on U∅, the pro-
cess (Wv∅(y))y∈(U∅,1] converges as t → ∞ to an inhomogeneous Poisson process
on [U∅, 1], whose intensity is the function ρ∅(·) in the definition of PPT. As men-
tioned, since the degree of vertex v∅ is written as a sum of conditionally independent
Bernoulli random variables, it is sufficient to prove that, as t → ∞, the probabilities
of success given in (4.7.8) converge to the intensity ρ∅(·).

For this, we define a process (Ŵv∅(y))y∈(U∅,1] as sum of independent Bernoulli
random variables, with different probabilities of success. We use Lemma 4.7.2, so
with probability larger than 1 − ε and for every k ≥ K(ε), ψk = hk(χk), where
(χk)k∈N is a sequence of Gamma random variables with parameters 1 and m + δ.
Then, Lemmas 4.7.1 and 4.7.2 give that

(1− ω)P̂k→v∅ ≤ Pk→v∅ ≤ (1 + ω)P̂k→v∅ , (4.7.10)

where
P̂k→v∅ =

χv∅
(2m+ δ)t

t

v∅

(v∅
k

)χ
. (4.7.11)

We can then define

Ŵv∅(y)) =

dyte∑

v=v∅+1

m∑

j=1

X̂k,j ,

where (X̂k,j)
j∈[m]
k>v∅

is a sequence of conditionally independent Bernoulli random vari-
ables with probability of success given by (4.7.11). We can couple (Ŵv∅(y))y∈(U∅,1]

to a Poisson random variable with parameter

χv∅
(2m+ δ)U∅

∫ y

0

(U∅
s

)χ
ds. (4.7.12)

Denoting φv∅ = Γ∅ as in Section 4.3.1, it is possible to prove that Ŵv∅(xγ) converges
in distribution to a Poisson point process on [U∅, 1] with intensity Γ∅φxφ−1/Uχ∅ =

ρ∅(x) as in the definition of PPT.

The fact that all the vertices in the 1-neighborhood are distinct (and their positions
are close to the ones in the PPT as in statement (2) in Proposition 4.7.3) follows from
the concentration result in Lemma 4.7.1 and the regularity Lemma 4.7.4 on the PPT.
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4.7. LWC of model (e): structure of the proof of Theorem 4.3.2

4.7.4. Difference with larger radius
We have just described the proof of Proposition 4.7.3 for the 1-neighborhood. The

proof for k ≥ 2 is based on induction over the radius k. Assuming that Proposi-
tion 4.7.3 holds for k − 1, for every vertex vi, for i ∈ U at distance k from Vt the
induction hypothesis is that:

(1) the m (or m− 1) unexplored edges of vi identify m (or m− 1) distinct vertices,
whose position is almost uniform on [0, S(t)

vi ];
(2) the younger vertices found exploring edges that are attached to vi are all dis-

tinct, and their positions have distribution close to a Poisson process with in-
tensity ρi(·) as in Section 4.3.1.

It is necessary though to be careful once we explore radius larger than 1. First of all,
given a vertex vi, this vertex can be of two types: O if the ancestor vl of vi in the tree
is such that vl > vi, otherwise vi is of type Y. This influences the number of edges we
have to explore starting from vi: in fact, if vi is of type Y , we can explore only m− 1

of its original edges, since one edge has already been used to find vi itself (recall that
PAt is defined as an undirected graph).

Also, if vi is of type O, this implies that we have to condition on the fact that
we know vi has at least one edge attached to it, thus increasing the probability of vi
receiving more edges (recall the rich-get-richer effect).

Consider then a vertex vi at distance k from v∅. Denote by mi the original m or
m−1 unexplored original edges of vi. Thesemi edges are determined bymi uniform
random variables on [0, S(t)

vi ]. Since we have already explored the neighborhood of v∅
up to distance k − 1, we have to condition on the fact that the mi edges of vi cannot
be attached to vertices already found in the exploration process, since otherwise vi
would not be at distance k from v∅.

We have a similar problem for the younger neighbors of vi. In fact, similarly to
(4.7.9), it seems natural to define the process, for y ∈ (xvi , 1],

Wvi(y) =

dyte∑

v=vi+1

m∑

j=1

1{Xk,j = vi}, (4.7.13)

but this is not feasible. The difference between (4.7.9) and (4.7.13) is that, while in
(4.7.9) the sum can be taken over all indices from v∅ to dyte, in (4.7.13) this is not
possible. In fact, we might have used some of the edges of the vertices vi+1, . . . , dyte
to construct the (k − 1)-neighborhood.

Here, implication (4) of Proposition 4.7.3 comes in handy. In fact, we know that
the (k− 1)-neighborhood of Vt is finite, that the strengths of its vertices are bounded
by the same constant, and that all vertices have separate positions. In other words,
we can define the process in (4.7.13) by ignoring at most a finite number of indices,
that are the ones used in the exploration up to radius k − 1.

With these observations, it is easy to understand that the processWvi(y) converges
to a Poisson process on [xχi , 1], similarly to the radius 1 case, since we are ignoring
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4.8. Properties of the Pólya urn graph: proof of Lemma 4.7.1 and Lemma 4.7.2

only a finite number of terms in (4.7.13), and, as t→∞, this is a negligible effect. The
intensity of this Poisson process is obtained by similar calculations as (4.7.12) and it
is given by the intensity ρi(·) as in Section 4.3.1.

Remark 4.7.5 (Two neighborhoods). So far we have discussed about the LWC in dis-
tribution. For the convergence in probability, the proof is based on the second moment
method. Instead of looking at the probability that the k-neighborhood of Vt is dis-
tributed as a PPT, it is sufficient to prove that the k-neighborhoods of two uniformly
chosen vertices V 1

t and V 2
t are distributed as two independent copies of the PPT. The

proof consists of a coupling argument similar to Proposition 4.7.3. It is not hard to
see that, since Proposition 4.7.3 is based on Lemmas 4.7.1 and 4.7.2 (regarding the
sequence (ψk)k∈[t]) and Lemma 4.7.4 (regarding the Pólya point tree), and the fact
that, at every step, we condition on a finite number of edges, constructing one or two
neighborhoods simultaneously is not very different.

4.8. Properties of the Pólya urn graph: proof of Lemma 4.7.1
and Lemma 4.7.2

4.8.1. Proof of Lemma 4.7.2
We start with the first part of the statement. Fix x ≥ 0. We compute that

P(kψk ≤ x) =
Γ(m(2k − 2) + kδ)

Γ(m+ δ)Γ(m(2k − 3) + (k − 1)δ)

×
∫ x/k

0

um+δ−1(1− u)(m(2k−3)+(k−1)δ)−1du

= (1 + o(1))
km+δk−(m+δ)

Γ(m+ δ)

∫ x

0

um+δ−1(1− u/k)(m(2k−3)+(k−1)δ)−1du.

For every u > 0, as k → ∞, (1 − u/k)(m(2k−3)+(k−1)δ)−1 → e−u(2m+δ), so that domi-
nated convergence implies that

P(kψk ≤ x)→
∫ x

0

um+δ−1

Γ(m+ δ)
e−u(2m+δ)du,

as required. This proves the convergence in distribution as in the statement. The
second part of the proof follows verbatim from [21, Lemma 3.4].

4.8.2. Proof of Lemma 4.7.1
Fix ω, ε > 0, and let ω̄ = | log(1 + ω)|. We use the formulation (4.7.2) to bound

the distance between S(t)

i and (i/t)χ. For every i ∈ [t], S(t)

i is the product of t− i− 1

independent terms that are functions of independent Beta distributions. It is easy to
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4.8. Properties of the Pólya urn graph: proof of Lemma 4.7.1 and Lemma 4.7.2

show by induction that, for i ∈ [t− 1],

S(t)

i =

t∏

k=i+1

(1− ψk) = exp

(
t∑

k=i+1

log(1− ψk)

)
, (4.8.1)

while S(t)
t ≡ 1. We can just look at the argument of the exponential in (4.8.1), ignoring

S
(t)
t . Notice that

Var(log(1− ψk)) ≤ E
[
log2(1− ψk)

]
≤ E

[
ψ2
k

(1− ψk)2

]
, (4.8.2)

By (4.8.2) and Kolmogorov’s inequality we can bound

P
(

max
i∈[t−1]

∣∣∣
t∑

k=i+1

log(1− ψk)− E
[ t∑

k=i+1

log(1− ψk)
]∣∣∣ ≥ ω̄/2

)
(4.8.3)

≤ 4

ω̄2

t∑

i=2

E
[

ψ2
i

(1− ψi)2

]
.

Equation (4.8.3) shows that the maximum of the fluctuations of the argument in
(4.8.1) can be bounded by the variances of the singles terms. By properties of the
Beta distribution, and recalling that ψi ∼ β(m + δ, 2m(i − 2) + m + (i − 1)δ), for
i = 1, . . . , t, we can write, for i ≥ 2,

E
[

ψ2
i

(1− ψi)2

]
(4.8.4)

=
(m+ δ)(m+ 1 + δ)

(2m(i− 2) +m+ (i− 1)δ − 2)(2m(i− 2) +m+ (i− 1)δ − 1)
= O(i−2).

Equation (4.8.4) assures us that the sum on the right-hand side of (4.8.3) is finite as t→
∞. Therefore, we can fix N1(ω̄) ∈ N such that

∑∞
i=N1

≤ (εω̄2)/4. As a consequence,
bounding the sum in (4.8.3) by the tail of the series, for t ≥ N1, we have that

P
(

max
i=N1,...,t−1

∣∣∣
t∑

k=i+1

log(1− ψk)− E
[ t∑

k=i+1

log(1− ψk)
]∣∣∣ ≥ ω̄/2

)
(4.8.5)

≤ 4

ω̄2

∞∑

i=N1

E
[

ψ2
i

(1− ψi)2

]
≤ ε.

Now we want to show that the expectations of such terms are converging to the se-
quence of the expectations of ψ1, . . . , ψt. Using the fact that, for x ∈ (0, 1),

|log(1− x)− x| ≤ (x2)/(1− x),
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4.8. Properties of the Pólya urn graph: proof of Lemma 4.7.1 and Lemma 4.7.2

we write, for N1 ≤ i ≤ t,
∣∣∣∣∣E
[

t∑

k=i+1

log(1− ψk)

]
−

t∑

k=i+1

E[ψk]

∣∣∣∣∣ ≤
t∑

k=i+1

E
[

ψ2
k

1− ψk

]
. (4.8.6)

By the properties of Beta distribution,

E [ψk] =
m+ δ

2m(k − 1) + iδ
=

m+ δ

2m+ δ

1

k
(1 +O(k−1)) =

χ

k
(1 +O(k−1));

E
[

ψ2
k

1− ψk

]
=

(m+ δ)(m+ 1 + δ)

(2m(k − 1) + iδ)(2m(k − 2) +m+ (k − 1)δ − 2)
= O(i−2);

(4.8.7)

Now, fix N2 ∈ N such that, for every t ≥ N2, we have that
∑∞
t=N2

E
[
ψ2
i

1−ψi

]
< ω̄/2.

Using the bounds in (4.8.7) in (4.8.6) we have that, for every N2 ≤ i ≤ t, that
∣∣∣∣∣E
[

t∑

k=i+1

log(1− ψk)

]
−

t∑

k=i+1

E[ψk]

∣∣∣∣∣ ≤
t∑

k=i+1

χ

k
(1 +O(k−1)) + ω̄/2

= χ log(i/t) +O(i−1) + ω̄/2.

As a consequence, for t ≥ N2,

max
i=N2,...,t

∣∣∣∣∣E
[

t∑

k=i+1

log(1− ψk)

]
− χ log(i/t)

∣∣∣∣∣ ≤ ω̄/2. (4.8.8)

Let N0 = max{N1, N2}. By (4.8.8) and (4.8.5), then we have that for t ≥ N0

P

(
max

i=N0,...,t

∣∣∣∣∣
t∑

k=i+1

log(1− ψk)− χ log(i/t)

∣∣∣∣∣ ≥ ω̄
)
≤ ε. (4.8.9)

Now, recalling that log(S(t)

i ) =
∑t
k=i+1 log(1 − ψk), we can rewrite that, for every

i = N0, . . . , t, we have

−ω̄+χ log(i/t) ≤ logS(t)

i ≤ ω̄+χ log(i/t)⇐⇒ e−ω̄
(
i

t

)χ
≤ S(t)

i ≤ eω̄
(
i

t

)χ
. (4.8.10)

Recall then we have defined ω̄ as | log(1+ω)|. This means that the right hand condition
in (4.8.10) becomes

1

1 + ω

(
i

t

)χ
≤ S(t)

i ≤ (1 + ω)

(
i

t

)χ
.

Since (i/t)χ ≤ 1 and 1/(1 + ω) ≥ 1− ω, we have that, for every i = N0, . . . , t,

(1− ω)

(
i

t

)χ
≤ S(t)

i ≤ (1 + ω)

(
i

t

)χ
. (4.8.11)
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4.9. Extension of LWC result: proof of Theorem 4.2.1

Combining (4.8.9) and (4.8.11) we obtain that

P
( t⋂

i=N0

{ ∣∣∣∣S
(t)

i −
(
i

t

)χ∣∣∣∣ ≤ ω
(
i

t

)χ})
≥ 1− ε,

which proves (4.7.3). To prove (4.7.4), we observe that, for fixed ω/4 > 0 and ε > 0,
by (4.7.3) S(t)

N0
(ω/4, ε) converges to 0 as t grows. Since S(t)

i ≤ S(t)

N0
for every i ≤ N0,

we can take t large enough such that

max
i=1,...,N0

∣∣∣∣S
(t)

i −
(
i

t

)χ∣∣∣∣ ≤ S
(t)

N0

(
N0

t

)χ
≤ ω

2
+

(
N0

t

)χ
≤ ω. (4.8.12)

This completes the proof.

4.9. Extension of LWC result: proof of Theorem 4.2.1
In this section, we prove Theorem 4.2.1. We divide the proof into two parts: first

we prove Theorem 4.2.1 whenm = 1. Then we extend the proof tom ≥ 2, focusing in
particular on model (a), which is the standard collapsed model. The proof for model
(a) is easily adapted to models (b) and (b’).

4.9.1. Sufficient conditions for convergence
We presented the structure of the proof of convergence of model (e) as presented

in [21] and [86, Chapter 4], highlighting the main steps. In particular, it is easy to
check that for any unit graph the convergence holds when the necessary ingredients,
such as Lemmas 4.7.1 and 4.7.2 hold:

Proposition 4.9.1 (Convergence conditions for unit graphs). Fix m ≥ 1 and δ > −m.
Then a unit graph (UGt(m, δ))t∈N converges locally weakly in probability to the PPT if:

(1) the sequence (ψk,m)k∈N consists of Beta random variables with parameters ak and bk,
where ak = m+ δ, and bk = (2m+ δ)k + c, for some model-dependent constant c;

(2) Lemma 4.7.1 holds;
(3) Lemma 4.7.2 holds;
(4) a bound of the form given in (4.7.10) and (4.7.11) holds for the attachment probabilities.

Proof. The proof of this proposition is immediate. We observe that Lemmas 4.7.1
and 4.7.2 do not depend on the structure of a unit graph, but only on the parameters
of the sequence (ψk,m)k∈N. In particular, the intermediate points S(t)

k,1, . . . ,S(t)

k,m−1

are not relevant, since the attachment probabilities depend on the boundaries of the
intervals (I(t)

k )k∈N. Notice that the value χ = (1 + δ)/(2 + δ) is exactly the scaling
constant for which Lemma 4.7.1 holds. For a more precise argument, we refer to [21,
Lemma 3.2] and [86, Chapter 4].

Statement (4) is a consequence of (1)-(3) and the fact that the degree of a vertex in a
unit graph can be written as the sum of conditionally independent Bernoulli random
variables, as in (4.7.9).
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4.9. Extension of LWC result: proof of Theorem 4.2.1

Proposition 4.9.1 proves Theorem 4.2.1 for all models in Section 4.3 form ≥ 1 and
any value of δ > −m. Proposition 4.9.1 can be specialized to collapsed unit graphs,
as stated in the following proposition:

Proposition 4.9.2 (Convergence conditions for collapsed unit graphs). Fix m ≥ 2 and
δ > −m. Then a collapsed unit graph (UGt(m, δ))t∈N converges locally weakly in probability
to the PPT if the corresponding unit tree (UTmt(1, δ/m))t∈N satisfies conditions (1)-(4) in
Proposition 4.9.1.

Proposition 4.9.2 proves Theorem 4.2.2. In particular, Proposition 4.9.2 shows that
for collapsed PAMs, the convergence for m ≥ 2 is determined by the convergence of
the tree setting. This fact underlines the relevance of the tree setting in PAMs.

4.9.2. Proof of Proposition 4.9.2
To prove Proposition 4.9.2 it is sufficient to show that, in the case of a collapsed

unit graph, conditions (1)-(4) are satisfied. Condition (1) is trivial, since it follows
directly from the definition of a unit graph. Condition (2) and (3) are general results
on sequences of Beta random variables, thus they are still true for the collapsed unit
graph.

What is left to prove is condition (4), i.e., the bound on the conditional attachment
probabilities, similarly to (4.7.10) and (4.7.11). First, we need the analytic expression
for the conditional attachment probabilities:

Lemma 4.9.3 (Conditional attachment probability). Consider u, v ∈ [t], with u ≤ v and
j ∈ [m]. Then, in a collapsed unit graph, conditionally on (ψ(k,j))

j∈[m]
k∈[t] :

P
(
v

j→ u | (ψ(k,j))
j∈[m]
k∈[t]

)
=





S(t)

(u,m)

S(t)

(v,j−1)

(
1−

m∏

i=1

(1− ψ(u,i))

)
for u < v,

1−
j∏

i=1

(1− ψ(u,i)) for u = v.

(4.9.1)

Proof. We prove the result assuming that the graph has label SL. This does not change
the result, since this implies the presence of an extra term in (4.9.1) that is not present
in the case of NSL graphs. This extra term comes from the different rescaling of the
uniform random variables that determine edges in the graph (recall (4.6.3) and (4.6.4)
in the definition of unit graphs).

We start proving (4.9.1) for u < v. We can write

{v j→ u} =
{
U(v,j)S(t)

(v,j−1) ∈ I
(t)

(u,1) ∪ · · · ∪ I
(t)

(u,m)

}
,
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4.9. Extension of LWC result: proof of Theorem 4.2.1

as a consequence, conditioning on (ψ(n,j))
j∈[m]
n∈[t] ,

P
(
v

j→ u | (ψ(n,j))
j∈[m]
n∈[t]

)
=
|I(t)

(u,1) ∪ · · · ∪ I
(t)

(u,m)|
S(t)

(v,j)

=
1

S(t)

(v,j)

m∑

i=1

S(t)

(u,i) − S
(t)

(u,i−1) =
S(t)

(u,m) − S
(t)

(u−1,m)

S(t)

(v,j)

.

By the fact that S(t)

(k,j) =
∏t
h=m(k−1)+j+1(1− ψh),

S(t)

(u,m) − S
(t)

(u−1,m)

S(t)

(v,j)

=

( (v,j)∏

h=(u,m)+1

(1− ψh)

)(
1−

m∏

i=1

(1− ψ(u,i))

)

=
S(t)

(u,m)

S(t)

(v,j)

(
1−

m∏

i=1

(1− ψ(u,i))

)
,

(4.9.2)

and (4.9.2) coincides with (4.9.1) for u < v. When u = v, we have a self-loop. In this
case, the fraction in the left-hand side of (4.9.2) is equal to

S(t)

(u,j) − S
(t)

(u−1,m)

S(t)

(u,j)

=
S(t)

(u,j)

S(t)

(u,j)

(
1−

j∏

i=1

(1− ψ(u,i))

)
= 1−

j∏

i=1

(1− ψ(u,i)), (4.9.3)

which coincides with (4.9.1) for u = v. Notice that (4.9.3) reduces to ψ(u,1) whenever
u = v and j = 1.

With Lemma 4.9.3 in hand, we can prove the bound on the conditional attachment
probabilities, thus showing that condition (4) in Proposition 4.9.1 holds for collapsed
unit graphs:

Lemma 4.9.4 (Bound on attachment probabilities). Fix m ≥ 2 and δ > −m. Let χ =

(m + δ)/(2m + δ). For t ∈ N, consider v ∈ [t]. Then, for every ε > 0 there exists ω > 0

such that, with probability larger than 1− ε, for every k ≥ v,

(1− ω)
χ̂v

(2m+ δ)v

(v
k

)χ
≤ P

(
k → v | (ψh,j)j∈[m]

h∈[t]

)
≤ (1 + ω)

χ̂v
(2m+ δ)v

(v
k

)χ
,

where χ̂v is a Gamma random variable with parameters m+ δ and 1.

Proof. Fix t ∈ N, and consider the unit tree UT(t)

mt(1, δ/m). Fix v ∈ [t]. In UT(t)

mt(1, δ/m),
the vertex v corresponds tom distinct elements (v, 1), . . . , (v,m). For k ≥ v, the prob-
ability that k attaches its jth edge to v is given by Lemma 4.9.3, so

P
(
k

j→ v | (ψh,j)j∈[m]
h∈[t]

)
=
S(mt)

(v∅,m) − S
(mt)

(v−1,m)

S(mt)

(k,j)

=
S(mt)

(v,m)

S(mt)

(k,j)

(
1−

m∏

i=1

(1−ψ(v,i))

)
. (4.9.4)
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4.9. Extension of LWC result: proof of Theorem 4.2.1

Now, the fraction in the last term of (4.9.4) is related to the unit tree, since the random
variables S(mt)

(v,m) and S(mt)

(k,j−1) are defined from a tree model with parameters 1 and
δ/m.

Fix ε > 0. Since we assume that Lemma 4.7.1 holds for the unit tree, we have that,
with probability larger than 1− ε, for some ω > 0,

∣∣∣
S(mt)

(v,m)

S(mt)

(k,j)

−
( mv

m(k − 1) + j

)χ∣∣∣ ≤ ω
( mv

m(k − 1) + j

)χ
, (4.9.5)

where the value χ comes from the tree model, so

χ =
1 + δ/m

2 + δ/m
=

m+ δ

2m+ δ
.

Notice that in (4.9.5), we can approximate (mv)/(m(k − 1) + j) by v/k. We are left
with the product inside the expectation in (4.9.4). Here we notice that we can rewrite
such a product as

1−
m∏

i=1

(1− ψ(v,i)) =

m∑

i=1

ψ(v,i) + Em(v). (4.9.6)

We start considering the sum in the right-hand side of (4.9.6). By the assumptions,
we can apply Lemma 4.7.2 to the unit tree. As a consequence, for i ∈ [m],

[m(v) + (i− 1)]ψ(v,i) ≈
χ(v,i)

2 + δ/m
,

where (χh)h∈N is a sequence of independent Gamma random variables with param-
eters 1 + δ/m and 1. We can then rewrite the sum in (4.9.6) as

m∑

i=1

ψ(v,i) ≈
1

2 + δ/m

m∑

i=1

χ(v,i)

m(v) + (i− 1)
(4.9.7)

=
1

2m+ δ

m∑

i=1

χ(v,i)

v + (i− 1)/m
≈ 1

(2m+ δ)v

m∑

i=1

χ(v,i)
d
=

χ̂v
(2m+ δ)v

,

where χ̂v has a Gamma distribution with parameters
∑m
i=1 1 + δ/m = m + δ and 1,

since the random variables χ(v,1), . . . , χ(v,m) are independent.
The term Em(v) in (4.9.6) is given by the terms in the product in (4.9.4) where we

have at least the product of 2 (not necessarily distinct) ψ(v,i1)ψ(v,i2). Using the same
arguments as in (4.9.7), we can easily show that m(v) = O(1/v2).
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5
Subgraphs in PAMs

Content and structure of the chapter
In this chapter, we investigate the number of subgraphs in PAMs. Due
to the dynamic nature of PAMs, we focus our attention on the expected
number of occurrences of ordered subgraphs, i.e., subgraphs that can be
constructed by adding vertices sequentially, as in PAMs. We associate
to every ordered subgraph H an optimization problem, that allows us
to find the most likely configuration H , thus identifying the ages of the
vertices that createH . As a consequence, we are ble to obtain the scaling
of the expected number of occurrences of H as a function of the size
of the graph. This approach has limitations, since we are not able to
compute precise constants. To show why this is the case, we investigate
triangles further, identifying the precise constant.
The chapter is structured as follows: In Section 5.1 we introduce the
optimization problem and we state the main results of the chapter. In
Section 5.2 we prove a key lemma, based on Pólya urns as in Chap-
ter 4, on the probability of a finite set of edges being present in the
graph. Section 5.3 contains the proof of Theorem 5.1.2, the main result
on scaling. In Section 5.4 we prove the main result on triangles (Theo-
rem 5.1.5), highlighting the main technical difficulties that we encounter
while studying more complex subgraphs. The content of this chapter is
based on a joint work with Stegehuis [74].

5.1. Main results
In this section, we present our results on the number of directed subgraphs in

the preferential attachment model. In this chapter we consider model (e) as defined
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5.1. Main results

in Definition 4.3.1.
As mentioned in Section 1.5, we count occurrences of labeled subgraphs (recall Fig-

ure 1.11). We first define subgraphs in more detail. LetH = (VH , EH) be a connected,
directed graph. Let π : VH 7→ 1, . . . , |VH | be a one-to-one mapping of the vertices of
H to 1, . . . , |VH |. In the PAM, vertices arrive one by one. We let π correspond to the
order in which the vertices in H have appeared in the PAM, that is π(i) < π(j) when
vertex iwas created before vertex j. Thus, the pair (H,π) is a directed graph, together
with a prescription of the order in which the vertices of H have arrived. We call the
pair (H,π) an ordered subgraph.

In PAMs, it is only possible for an older vertex to connect to a younger vertex but
not the other way around. This puts constraints on the types of subgraphs that can
be formed. We call the ordered subgraphs that can be formed in the PAM attainable.
The following definition describes all attainable subgraphs:

Definition 5.1.1 (Attainable subgraphs). Let (H,π) be an ordered subgraph with adja-
cency matrix Aπ(H), where the rows and columns of the adjacency matrix are permuted by
π. We say that (H,π) is attainable if Aπ(H) defines a directed acyclic graph, where all
out-degrees are less than or equal to m.

We now investigate how many of these subgraphs are typically present in the
PAM. As we have discussed in Section 1.5, to an ordered subgraph (H,π), we asso-
ciate the optimization problem

B(H,π) = max
s=0,1,...,k

−s+

k∑

i=s+1

[
τ − 2

τ − 1
(d(in)

H (π−1(i))− d(out)

H (π−1(i)))− d(in)

H (π−1(i))

]

:= max
s=0,1,...,k

−s+

k∑

i=s+1

β(π−1(i)), (5.1.1)

where d(out)

H and d(in)

H denote the in- and the out-degree in the subgraph H respec-
tively. Let Nt(H,π) denote the number of times the connected graph H with order-
ing π occurs as a subgraph of a PAM of size t. The following theorem studies the
scaling of the expected number of directed subgraphs in the PAM, and relates it to
the optimization problem (5.1.1):

Theorem 5.1.2. LetH be a directed subgraph on k vertices with ordering π such that (H,π)

is attainable and such that there are r different optimizers to (5.1.1). Then, there exist 0 <

C1 ≤ C2 <∞ such that

C1 ≤ lim
t→∞

E [Nt(H,π)]

tk+B(H,π) logr−1(t)
≤ C2. (5.1.2)

Theorem 5.1.2 gives the asymptotic scaling of the number of subgraphs where the
order in which the vertices appeared in the PAM is known. The total number Nt(H)

of copies of H for any ordering can then easily be obtained from Theorem 5.1.2:
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5.1. Main results

Corollary 5.1.3. LetH be a directed subgraph on k vertices with Π 6= ∅ the set of orderings
π such that (H,π) is attainable. Let

B(H) = max
π∈Π

B(H,π), (5.1.3)

and let r∗ be the largest number of different optimizers to (5.1.1) among all π ∈ Π that
maximize (5.1.3). Then, there exist 0 < C1 ≤ C2 <∞ such that

C1 ≤ lim
t→∞

E [Nt(H)]

tk+B(H) logr
∗−1(t)

≤ C2. (5.1.4)

Note that from Corollary 5.1.3 it is also possible to obtain the undirected number
of subgraphs in a PAM, by summing the number of all possible directed subgraphs
that create some undirected subgraph when the directions of the edges are removed.

Advantages of the optimization problem. We already gave an heuristic interpre-
tation of the optimization problem in (5.1.1) in Section 1.5. Briefly, we have that
that the probability that an attainable subgraph is present on vertices with indices
u1 < u2 < · · · < uk scales as ∏

i∈[k]

u
β(i)
i , (5.1.5)

with β(i) as in (5.1.1). The coefficients β(1), . . . , β(k) depend on τ and the structure if
H . Looking at the order of magnitude of the indices of the vertices, namely ui ∝ tα(i)

for some α(i) ∈ [0, 1], the optimization problem in (5.1.1) is linear in α(1), . . . , α(k).
In particular we identify the most likely configuration of ages (and equivalently, of
degrees) of the realization of (H,π). When the optimum is not unique, several max-
imizers contribute equally to the number of subgraphs. In other words, when the
optimizer is not unique, some if the indices are free to vary from O(1) to O(t), thus
introducing the extra logarithmic factors in (5.1.2).

Fluctuations of the number of subgraphs. In Theorem 5.1.2 we investigate the ex-
pected number of subgraphs, which explains the average number of subgraphs over
many PAM realizations. Another interesting question is what the distribution of the
number of subgraphs in a PAM realization behaves like. In this chapter, we mainly
focus on the expected value of the number of subgraphs, but here we argue that the
limiting distribution of the rescaled number of subgraphs may be quite different for
different subgraphs.

In Chapter 4 we discussed a Pólya urn interpretation of PAMs. In particular, we
have used model (e) as example of PAM that can be directly interpreted in terms
of Pólya urn experiment with multiple urns. In this section, we make use of the
sequence of random independent Beta random variables (ψv)v∈[t] associated to the
vertices of the PAM, as in Definition 4.3.1. Once we condition on ψ1, . . . , ψt, the edge
statuses of the graph are independent of each other. Furthermore, the degree of a
vertex v depends on the index v and ψv . The higher ψv is, the higher Dv(t) is. Thus,
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5.1. Main results

Figure 5.1: The order of magnitude of this subgraph containing two merged
copies of the subgraph of Figure 1.13q is t

4
τ−1 , so that the condition in Propo-

sition 5.1.4 is not satisfied for the subgraph in Figure 1.13q.

in this chapter, we can interpret ψv as a hidden weight associated to the vertex v.
Using this representation of the PAM we can view the PAM as a random graph

model with two sources of randomness: the randomness of the ψ-variables, and then
the randomness of the conditionally independent edge statuses determined by the
ψ-variables. Therefore, we can define two levels of concentration for the number
of ordered subgraphs Nt(H,π). Denote Eψt [Nt(H,π)] := E[Nt(H,π) | ψ1, . . . , ψt].
Furthermore, let Nψt(H,π) denote the number of ordered subgraphs conditionally
on ψt = ψ1, . . . , ψt. Then, the ordered subgraph (H,π) can be in the following three
classes of subgraphs:

. Concentrated: Nψt(H,π) is concentrated around its conditional expectation, i.e.,
as t→∞,

Nψt(H,π)

Eψt [Nt(H,π)]

P−→ 1, (5.1.6)

and as t→∞,
Eψt [Nt(H,π)]

E[Nt(H,π)]

P−→ 1. (5.1.7)

. Conditionally concentrated: condition (5.1.6) holds, and as t→∞

Nt(H,π)

E[Nt(H,π)]

d−→ X (5.1.8)

for some random variable X .

. Non-concentrated: condition (5.1.6) does not hold.

For example, it is easy to see that the number of subgraphs as shown in Fig-
ure 1.12d satisfies N(H)/t

P−→ m(m − 1)/2, so that it is a subgraph that belongs
to the class of concentrated subgraphs. Below we argue that the triangle belongs to
the class of conditionally concentrated subgraphs. We now give a criterion for the
conditional convergence in (5.1.6) in the following proposition:

Proposition 5.1.4 (Criterion for conditional convergence). Consider a subgraph (H,π)

such that E[Nt(H,π)] → ∞ as t → ∞. Denote by Ĥ the set of all possible subgraphs
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5.1. Main results

composed by two distinct copies of (H,π) with at least one edge in common. Then, as t→∞,

∑

Ĥ∈Ĥ

E[Nt(Ĥ)] = o
(
E[Nt(H,π)]2

)
=⇒ Nψt(H,π)

Eψt [Nt(H,π)]

P−→ 1. (5.1.9)

Proposition 5.1.4 gives a simple criterion for conditional convergence for a sub-
graph (H,π), and it is proved in Section 5.5. The condition in (5.1.9) is simple to
evaluate in practice. We denote the subgraphs consisting of two overlapping copies
of (H,π) sharing at least one edge by Ĥ1, . . . , Ĥr. To identify the order of magnitude
of E[Ĥi], we apply Corollary 5.1.3 to Ĥi or, in other words, we apply Theorem 5.1.2
to all possible orderings π̂ of Ĥi. Once we have all orders of magnitude of (Ĥi, π̂)

for all orderings π̂, and for all Ĥi, it is immediate to check whether hypothesis of
Proposition 5.1.4 is satisfied.

There are subgraphs where the condition in Proposition 5.1.4 does not hold. For
example, merging two copies of the subgraph of Figure 1.13q as in Figure 5.1 violates
the condition in Proposition 5.1.4. We show in Section 5.5 that this subgraph is in the
class of non-concentrated subgraphs.

(a) τ < 5/2:
t

5−2τ
τ−1 log2(t)

(b) τ > 5/2: con-
stant

(c) τ < 5/2:
t

5−2τ
τ−1 log(t)

(d) τ > 5/2: con-
stant

(e) τ < 5/2:
t

5−2τ
τ−1

(f) τ > 5/2: con-
stant

(g) t
3−τ
τ−1 (h) t

3−τ
τ−1 (i) t

6−2τ
τ−1 (j) τ > 5/2: con-

stant

(k) τ < 5/2:
t

5−2τ
τ−1 log(t)

(l) τ > 5/2: con-
stant

(m) τ < 5/2:
t

5−2τ
τ−1

(n) t
3−τ
τ−1

Figure 5.2: Order of magnitude ofNt(Ĥ) for all merged triangles on 3 and 4 ver-
tices and for τ ∈ (2, 3). Vertices with degree proportional to a constant are light
green, vertices with free degrees are light blue, and vertices of degree propor-
tional to t1/(τ−1) are red.
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5.1. Main results

5.1.1. Exact constants: triangles
Theorem 5.1.2 allows us to identify the order of magnitude of the expected num-

ber of subgraphs in the PAM. In particular, for a subgraph H with ordering π, it as-
sures the existence of two constants 0 < C1 ≤ C2 <∞ as in (5.1.2). A more detailed
analysis is necessary to prove a stronger result than Theorem 5.1.2 of the type

lim
t→∞

E [Nt(H,π)]

tk+B(H,π) logr−1(t)
= C,

for some constant 0 < C <∞. In other words, given an ordered subgraph (H,π), we
want to identify the constant C > 0 such that

E [Nt(H,π)] = Ctk+B(H,π) logr−1(t)(1 + o(1)). (5.1.10)

We prove (5.1.10) for triangles to show the difficulties in the evaluation of the pre-
cise constant C for general subgraphs. The following theorem provides the detailed
scaling of the expected number of triangles:

Theorem 5.1.5 (Phase transition for the number of triangles). Let m ≥ 2 and δ > −m
be parameters for (PAt)t≥1. Denote the number of labeled triangles in PAt by 4t. Then, as
t→∞,

(1) if τ > 3, then

E[4t] =
m2(m− 1)(m+ δ)(m+ δ + 1)

δ2(2m+ δ)
log(t)(1 + o(1));

(2) if τ = 3, then

E[4t] =
m(m− 1)(m+ 1)

48
log3(t)(1 + o(1));

(3) if τ ∈ (2, 3), then

E[4t] =
m2(m− 1)(m+ δ)(m+ δ + 1)

δ2(2m+ δ)
t(3−τ)/(τ−1) log(t)(1 + o(1)).

Theorem 5.1.5 in the case δ = 0 coincides with [31, Theorem 14]. For δ > 0 we
retrieve the result in [61, Proposition 4.3], noticing that the additive constant β in the
attachment probabilities in the Móri model considered in [61] coincides with (4.3.1)
for β = δ/m.

The proof of Theorem 5.1.5 in Section 5.4 shows that to identify the constant
in (5.1.10) we need to evaluate the precise expectations involving the attachment
probabilities of edges. The equivalent formulation of the PAM given in Section 4.4.3
simplifies the calculations, but it is still necessary to evaluate rather complicated ex-
pectations involving products of several terms as in (4.7.1). For a more detailed dis-
cussion, we refer to Remark 5.4.1.
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(a) t = 105
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(b) t = 106
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(c) t = 5 · 106

Figure 5.3: Density approximation of the number of triangles in 104 realizations
of the preferential attachment model with τ = 5/2 and various values of t.

The distribution of the number of triangles. Theorem 5.1.5 shows the behavior of
the expected number of triangles. The distribution of the number of triangles across
various PAM realizations is another object of interest. We prove the following result
for the number of triangles4t:

Corollary 5.1.6 (Conditional concentration of triangles). For τ ∈ (2, 3), the number of
triangles4t is conditionally concentrated in the sense of (5.1.6).

Corollary 5.1.6 is a direct consequence of Proposition 5.1.4, and the atlas of the
order of magnitudes of all possible realizations of the subgraphs consisting of two
triangles sharing one or two edges, presented in Figure 5.2. Figure 5.3 shows a density
approximation of the number of triangles obtained by simulations. These figures
suggest that the rescaled number of triangles converges to a random limit, since the
width of the density plots does not decrease in t. Thus, while the number of triangles
concentrates conditionally, it does not seem to converge to a constant when taking the
random ψ-variables into account. This would put the triangle subgraph in the class
of conditionally concentrated subgraphs. Proving this and identifying the limiting
random variable of the number of triangles is an interesting open question.

5.2. The probability of a subgraph being present
In this section, we prove the main ingredient for the proof of Theorem 5.1.2, the

probability of a subgraph being present on a given set of vertices. The most difficult
part of evaluating the probability of a subgraph H being present in PAt is that the
PAM is constructed recursively.

We consider triangles as an example. We write the event of a labeled triangle being
present by {u j1← v, u

j2← w, v
j3← w}, where {u j← v} denotes the event that the jth

edge of vertex v is attached to vertex u. Notice that in this way we express precisely
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5.2. The probability of a subgraph being present

which edges we consider in the triangle construction. Then,

P
(
u
j1← v, u

j2← w, v
j3← w

)

= E
[
P
(
u
j1← v, u

j2← w, v
j3← w | PAt−1,j3−1

)]

= E
[
1{u j1← v, u

j2← w} Dv(w − 1, j3 − 1) + δ

2m(w − 2) + (j3 − 1) + (w − 1)δ

]
.

(5.2.1)

In (5.2.1), the indicator function 1{u j1← v, u
j2← w} and Dv(w − 1, j3 − 1) are not

independent, therefore evaluating the expectation on the right-hand side of (5.2.1)
is not easy. A possible solution for the evaluation of the expectation in (5.2.1) is to
rescale Dv(w − 1, j3 − 1) with an appropriate constant to obtain a martingale, and
then recursively use the conditional expectation. For a detailed explanation of this,
we refer to [33, 158] and [85, Section 8.3]. This method is hardly tractable due to the
complexity of the constants appearing (see Remark 5.4.1 for a more detailed expla-
nation).

In Chapter 3 we have introduced the notion of factorizable events (see Definition 3.4.4).
This approach is hardly tractable as the martingale approach just mentioned, since
in this case we have to keep track of the evolution of the degree of all vertices in the
subgraph H at every time.

We use a different approach to evaluate of the expectation in (5.2.1) using the
interpretation of the PAM as a Pólya urn graph, focusing mainly on the the age (the in-
dices) of the vertices, and not on precise constants. We give a lower and upper bound on
the probability of having a finite number of edges present in the graph, as formulated
in the following lemma:

Lemma 5.2.1 (Probability of finite set of labeled edges). Fix ` ∈ N. For vertices u` =

(u1, . . . , u`) ∈ [t]` and v` = (v1, . . . , v`) ∈ [t]` and edge labels j` = (j1, . . . , j`) ∈ [m]`,
consider the corresponding finite set of ` distinct labeled edges M`(u`,v`, j`). Assume that
the subgraph defined by the set M`(u`,v`, j`) is attainable in the sense of Definition 5.1.1.
Define χ = (m+ δ)/(2m+ δ). Then the following holds:

(1) There exist two constants c1, c2 > 0 such that, for t large enough,

c1
∏̀

l=1

uχ−1
l v−χl ≤ P

(
M`(u`,v`, j`) ⊆ E(PAt)

)
≤ c2

∏̀

l=1

uχ−1
l v−χl . (5.2.2)

(2) Define the set

J(u`,v`) =
{
j` ∈ [m]` : M`(u`,v`, j`) ⊆ E(PAt)

}
. (5.2.3)
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5.2. The probability of a subgraph being present

Then, there exist two constants ĉ1, ĉ2 > 0 such that, for t large enough,

ĉ1
∏̀

l=1

uχ−1
l v−χl ≤ E[|J(u`,v`)|] ≤ ĉ2

∏̀

l=1

uχ−1
l v−χl . (5.2.4)

Formula (5.2.2) in the above lemma bounds the probability that a subgraph is
present on vertices u` and v` such that the jith edge from ui connects to vi. Notice
that (5.2.2) is independent of the precise edge labels (j1, . . . , j`). To be able to count all
subgraphs, and not only subgraphs where the edge labels have been specified, (5.2.4)
bounds the expected number of times a specific subgraph is present on vertices u`
and v`. This number is given exactly by the elements in the set J(u`,v`) as in (5.2.3).
Note that the expectation in (5.2.4) may be larger than one, due to the fact that the
PAM is a multigraph.

Lemma 5.2.1 gives a bound on the probability of the presence of ` ∈ N distinct
edges in the graph as a function of the indices (u1, v1), . . . , (u`, v`) of the endpoints of
the ` edges. Due to the properties of PAM, the index of a vertex gives an indication
of its degree, due to the old-get-richer effect. Lemma 5.2.1 is a stronger result than
[59, Corollary 2.3], which gives an upper bound of the form in (5.2.2) only for self-
avoiding paths.

The proof of Lemma 5.2.1 is based on the interpretation of the PAM in Defini-
tion 4.3.1 as an urn experiment as discussed in Chapter 4. We refer to Section 4.4 for
a detailed discussion of Pólya urn models and the definition of the Pólya urn graph
(Definition 4.4.2).

Proof of Lemma 5.2.1. We start with the proof of (5.2.2). Fix u`,v`, j`. In the proof, we
denoteM`(u`,v`, j`) simply byM` to keep notation light. We use Theorem 4.4.3, that
shows that the Pólya urn graph PUt and PAt have the same distribution and evaluate
P (M` ⊆ E(PUt)). We consider ` distinct labeled edges, so we can use (4.7.1) to write

P (M` ⊆ E(PUt) | ψ1, . . . , ψt) =
∏̀

l=1

ψul
Sul
Svl−1

. (5.2.5)

Now fix ε > 0. Define Eεt := {maxi∈[t]

∣∣Si −
(
i
t

)χ∣∣ ≤ ε}. By (4.7.5), and the fact that
the product of the random variables in (5.2.5) is bounded by 1,

E
[∏̀

l=1

ψul
Sul
Svl−1

]
= E

[
1Eεt

∏̀

l=1

ψul
Sul
Svl−1

]
+ o(1). (5.2.6)

On the event Eεt , we have, for every l ∈ [`],

(1− ε)
(
ul
vl

)χ
≤ Sul
Svl−1

≤ (1 + ε)

(
ul
vl

)χ
, (5.2.7)

where in (5.2.7) we have replaced vl − 1 with vl with a negligible error. Notice that
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5.2. The probability of a subgraph being present

since vl is always the source of the edge, this implies vl ≥ 2, therefore this is allowed.
Using (5.2.7) in (5.2.6) we obtain

(1− ε)`
∏̀

l=1

(
ul
vl

)χ
E
[
1Eεt

∏̀

l=1

ψul

]
≤ P (M` ⊆ E(PUt))

≤ (1 + ε)`
∏̀

l=1

(
ul
vl

)χ
E
[
1Eεt

∏̀

l=1

ψul

]
.

(5.2.8)

Even though ψ1 . . . , ψt depend on Eεt , we can ignore 1Eεt . In fact, since the random
variables ψu1

, . . . , ψu` are bounded by 1, we can write

∣∣∣E
[∏̀

l=1

ψul

]
− E

[
1Eεt

∏̀

l=1

ψul

]
| = E

[
1(Eεt )c

∏̀

l=1

ψul

]
≤ 1− P(Eεt ) = o(1), (5.2.9)

since P(Eεt ) = 1 − o(1) by Lemma 4.7.1. Notice that the bound in (5.2.9) depends
on ε through the event Eεt , but not on the choice of M`. As a consequence, for some
constant c1, c2 and t large enough, from (5.2.8) and (5.2.9) we obtain that

c1
∏̀

l=1

(
ul
vl

)χ
E
[∏̀

l=1

ψul

]
≤ P (M` ⊆ E(PUt)) ≤ c2

∏̀

l=1

(
ul
vl

)χ
E
[∏̀

l=1

ψul

]
. (5.2.10)

What remains is to evaluate the expectation in (5.2.10). We have assumed to have
` distinct edges, however that does not imply that the vertices u1, v1, . . . , u`, v` are
distinct. The expectation in (5.2.10) depends only on the receiving vertices of the `
edges, namely u1, . . . , u`.

Let ū1, . . . , ūk denote the k ≤ ` distinct elements that appear among u1, . . . , u`.
For h ∈ [k], the vertex ūh appears in the product inside the expectation in (5.2.10)
with multiplicity d(in)

h , which is the degree of vertex ūk in the subgraph defined by
M`. As a consequence, we can write

E
[∏̀

l=1

ψul

]
= E

[ k∏

h=1

ψ
d

(in)
h
ūh

]
=

k∏

h=1

E
[
ψ
d

(in)
h
ūh

]
, (5.2.11)

where in (5.2.11) we have used the fact that ψ1, . . . , ψt are all independent. Notice
that E[ψd1 ] = 1 for all d ≥ 0, since ψ1 ≡ 1. Therefore, if ūh = 1 for some h ∈ [k],
E[ψdūh ] = 1 and the terms depending on the first vertex contribute to the expectation
in (5.2.11) by a constant.

For the terms where ūh ≥ 2, recall that, ifX(α, β) is a Beta random variable, then,
for any integer d ∈ N,

E[X(α, β)d] =
α(α+ 1) · · · (α+ d− 1)

(α+ β)(α+ β + 1) · · · (α+ β + d− 1)
.
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5.2. The probability of a subgraph being present

Since ψūh is Beta distributed with parameters m+ δ and 2(ūh − 3) + (ūh − 1)δ,

E
[
ψ
d

(in)
h
ūh

]
=

(m+ δ) · · · (m+ δ + d(in)

h − 1)

[m(2ūh − 2) + ūhδ] · · · [m(2ūh − 2) + ūhδ + d(in)

h − 1]
(5.2.12)

= ū
−d(in)

h

h

(m+ δ) · · · (m+ δ + d(in)

h − 1)

[2m+ δ − (2m)/ūh] · · · [2m+ δ + (d(in)

h − 1− 2m)/ūh]
.

Notice that if ūh ≥ 2, uniformly in t and the precise choice of the ` edges,

(m+δ)−` ≤
(

[2m+δ− (2m)/ū] · · · [2m+δ+(d(in)

h −1−2m)/ū]

)−1

≤ (2m+δ+ `)−`.

As a consequence, we can find two different constants c1, c2 (for simplicity we keep
the same name) such that

c1

k∏

h=1

ū
−d(in)

h

h ≤
k∏

h=1

E
[
ψ
d

(in)
h
ūh

]
≤ c2

k∏

h=1

ū
−d(in)

h

h . (5.2.13)

We now use (5.2.13) in (5.2.10) to obtain

c1
∏̀

l=1

(
ul
vl

)χ k∏

h=1

ū
−d(in)

h

h ≤ P (M` ⊆ E(PUt)) ≤ c2
∏̀

l=1

(
ul
vl

)χ k∏

h=1

ū
−d(in)

h

h . (5.2.14)

Since d(in)

h is the multiplicity of vertex ūh as receiving vertex, we can write

k∏

h=1

ū
−d(in)

h

h =
∏̀

l=1

u−1
l .

Combining this with (5.2.14) completes the proof of (5.2.2).

The proof of (5.2.4) follows immediately from (5.2.2) and the definition of the set
J(u`,v`) in (5.2.3). In fact, we can write

E[|J(u`,v`)|] =
∑

j`∈[m]`

P (M`(u`,v`, j`) ⊆ E(PAt)) .

Recall that P (M`(u`,v`, j`) ⊆ E(PAt)) is independent of the labels j`. For a fixed set of
source and target verticesu` and v`, there is only a finite combination of labels j` such
that the subgraph defined by M`(u`,v`, j`) is attainable in the sense of Definition
5.1.1. In fact, the number of such labels j` is larger than one (since the corresponding
subgraph is attainable), and less thanm` (the total number of elements of [m]`). As a
consequence, taking ĉ1 = c1 and ĉ2 = c2m

` proves (5.2.4).
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5.3. Scaling of expectation: proof of Theorem 5.1.2

5.3. Scaling of expectation: proof of Theorem 5.1.2
To prove Theorem 5.1.2, we write the expected number of subgraphs as multiple

integrals. W.l.o.g. we assume throughout this section that π is the identity permuta-
tion, so that the vertices of H are labeled as 1, . . . , k, and therefore drop the depen-
dence of the quantities on π. We first prove a lemma that states that two integrals
that will be important in proving Theorem 5.1.2 are finite:

Lemma 5.3.1. LetH be a subgraph such that the optimum of (5.1.1) is attained by s1, . . . , sr.
Then,

A1(H) :=

∫ ∞

1

u
β(1)
1

∫ ∞

u1

u
β(2)
2 · · ·

∫ ∞

us−1

uβ(s1)
s1 dus1 · · · du1 <∞, (5.3.1)

A2(H) :=

∫ 1

0

u
β(k)
k

∫ uk

0

u
β(k−1)
k−1 · · ·

∫ usr+1

0

u
β(sr+1)
sr+1 dusr+1 · · · duk <∞. (5.3.2)

Proof. The first integral is finite as long as

z +

s1∑

i=s1−z
β(i) < 0 (5.3.3)

for all z ∈ [s1]. Suppose that (5.3.3) does not hold for some z∗ ∈ [s1]. Then, the
difference between the contribution to (5.1.1) for s̃ = s1 − z∗ and s1 is

−(s1 − z∗) +

k∑

i=s1−z∗
β(i) + s1 −

k∑

i=s1

β(i) = z∗ +

s1∑

i=s1−z∗
β(i) ≥ 0,

which would imply that s1−z∗ is also an optimizer of (5.1.1), which is in contradiction
with s1 being the smallest optimum. Thus, (5.3.3) holds for all r ∈ [s] andA1(H) <∞.

The second integral is finite as long as

z − sr +

z∑

i=sr+1

β(i) > 0

for all z ∈ {sr+1, . . . , k}. Suppose that this does not hold for some z∗ ∈ {sr+1, . . . , k}.
Set s̃ = z∗ > sr. Then, the difference between the contribution to (5.1.1) for s̃ = z∗

and sr is

−z∗ + sr −
z∗∑

i=sr+1

β(i) ≥ 0,

which is a contradiction with sr being the largest optimizer. Therefore, A2(H) <∞,
and the proof is complete.

We now use this lemma to prove Theorem 5.1.2:
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5.3. Scaling of expectation: proof of Theorem 5.1.2

Proof of Theorem 5.1.2. Again, we assume that π is the identity mapping, so that we
may drop all dependencies on π. Suppose that the optimal solution to (5.1.1) is at-
tained by s1, s2, . . . , sr for some r ≥ 1. Let the ` edges of H be denoted by (ul, vl)

for l ∈ [`]. LetNt(H, i1, . . . , ik) denote the number of times subgraphH is present on
vertices i1, . . . , ik. We then use Lemma 5.2.1, which proves that, for some 0 < C <∞,

E [Nt(H)] =
∑

i1<···<ik∈[t]

E [Nt(H, i1, . . . , ik)]

≤ C
∑

i1<···<ik∈[t]

∏̀

l=1

iχ−1
ul

i−χvl = C
∑

i1<···<ik∈[t]

k∏

q=1

iβ(q)
q .

(5.3.4)

We then bound the sums by integrals as

E [Nt(H)] ≤ C̃
∫ t

1

u
β(1)
1 · · ·

∫ t

uk−1

u
β(k)
k duk · · · du1

≤ C̃
∫ ∞

1

u
β(1)
1 · · ·

∫ ∞

us−1

uβ(s1)
s1 dus1 . . . du1 (5.3.5)

×
∫ t

1

u
β(s1+1)
s1+1

∫ ∞

us1+1

u
β(s1+2)
s1+2 · · ·

∫ t

us2−1

uβ(s2)
s2 dus2 . . . dus1+1

×
∫ t

1

u
β(s2+1)
s2+1

∫ ∞

us2+1

u
β(s2+2)
s2+2 · · ·

∫ t

us3−1

uβ(s3)
s3 dus3 . . . dus2+1 × · · ·

×
∫ t

1

u
β(sr−1+1)
sr−1+1

∫ ∞

usr−1+1

u
β(sr−1+2)
sr−1+2 · · ·

∫ t

usr−1

uβ(sr)
sr dusr . . . dusr−1+1

×
∫ t

0

u
β(sr+1)
sr+1

∫ t

sr+1

u
β(sr+2)
sr+2 · · ·

∫ t

uk−1

u
β(k)
k duk · · · dusr+1,

for some 0 < C̃ <∞. The first set of integrals is finite by Lemma 5.3.1 and indepen-
dent of t. For the last set of integrals, we obtain
∫ t

0

u
β(sr+1)
sr+1

∫ t

usr+1

u
β(s+2)
sr+2 · · ·

∫ t

uk−1

u
β(k)
k duk · · · dusr+1 (5.3.6)

= tk−sr+
∑k
i=sr+1 β(i)

∫ 1

0

w
β(sr+1)
sr+1

∫ 1

wsr+1

w
β(sr+2)
sr+2 · · ·

∫ 1

wk−1

w
β(k)
k dwk · · · dwsr+1

= Ktk+B(H),

for some 0 < K < ∞, where we have used the change of variables w = u/t and
Lemma 5.3.1. For r = 1, this finishes the proof, because then the middle integrals
in (5.3.5) are empty. We now investigate the behavior of the middle sets of integrals
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5.3. Scaling of expectation: proof of Theorem 5.1.2

for r > 1. Because the optimum to (5.1.1) is attained for s1 as well as s2,

−s1 +

k∑

i=s1+1

β(i) + s2 −
k∑

i=s2+1

β(i) = s2 − s1 +

s2∑

i=s1+1

β(i) = 0. (5.3.7)

Therefore, when s2 = s1 + 1, the second set of integrals in (5.3.5) equals
∫ t

1

u−1
s1 dus1 = log(t).

Now suppose that s1 < s2 + 1. Then, any s̃ ∈ [s1 + 1, s2−1] is a non-optimal solution
to (5.1.1), and therefore

−s2 +

k∑

i=s2+1

β(i) + s̃−
k∑

i=s̃+1

β(i) = s̃− s2 −
s2∑

i=s̃+1

β(i) > 0,

or
s2∑

i=s̃+1

β(i) < s2 − s̃. (5.3.8)

This implies that
∫ t

1

u
β(s1+1)
s1+1

∫ ∞

us1+1

u
β(s1+2)
s1+2 · · ·

∫ t

us2−1

uβ(s2)
s2 dus2 . . . dus1+1

= K̃

∫ t

1

u
∑s2
i=s1+1 β(i)+s2−s1−1

s1+1 dus1+1 (5.3.9)

= K̃

∫ t

1

u−1
s1+1dus1+1 = K̃ log(t),

for some 0 < C < ∞. A similar reasoning holds for the other integrals, so that
combining (5.3.5), (5.3.6) and (5.3.9) yields

lim
t→∞

E [Nt(H)]

tk+B(H) logr−1(t)
≤ C2, (5.3.10)

for some 0 < C2 <∞.

We now proceed to prove a lower bound on the expected number of subgraphs.
Again, by Lemma 5.2.1 and lower bounding the sums by integrals as in (5.3.4), we
obtain that, for some 0 < C <∞

E [Nt(H)] ≥ C
∫ t

1

u
β(1)
1 · · ·

∫ t

uk−1

u
β(k)
k duk · · · du1. (5.3.11)

Fix ε > 0. We investigate the contribution where vertices 1, . . . , s1 have indices in
[1, 1/ε], vertices s1 + 1, . . . , s2 have indices in [1/ε, εt1/r], vertices s2 + 1, . . . , s3 have
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5.3. Scaling of expectation: proof of Theorem 5.1.2

indices in [t1/r, εt2/r] and so on, and vertices sr+1, . . . , sk have indices in [εt, t]. Thus,
we bound

E [Nt(H)]

≥ C
∫ 1/ε

1

u
β(1)
1

∫ 1/ε

u1

u
β(2)
2 · · ·

∫ 1/ε

us1−1

uβ(s)
s1 dus1 . . . du1

×
∫ εt1/r

1/ε

u
β(s1+1)
s1+1

∫ us1+1/ε

us1+1

u
β(s1+2)
s1+2 · · ·

∫ us2−1/ε

us2−1

uβ(s2)
s2 dus2 . . . dus1+1

×
∫ εt2/r

t1/r
u
β(s2+1)
s2+1

∫ us2+1/ε

us2+1

u
β(s2+2)
s2+2 · · ·

∫ us3−1/ε

us3−1

uβ(s3)
s3 dus3 . . . dus2+1 (5.3.12)

×
∫ εt(r−1)/r

t(r−2)/r

u
β(sr−1+1)
sr−1+1

∫ usr−1+1/ε

usr−1+1

u
β(sr−1+2)
sr−1+2 · · ·

∫ usr−1/ε

usr−1

uβ(sr)
sr dusr . . . dusr−1+1

×
∫ t

εt

u
β(sr+1)
sr+1

∫ t

usr+1

u
β(sr+2)
sr+2 · · ·

∫ t

uk−1

u
β(k)
k duk . . . dusr+1

The first set of integrals equals A1(H) plus terms that vanish as ε becomes small by
Lemma 5.3.1. For the last set of integrals, we use the change of variables w = u/t to
obtain
∫ t

εt

u
β(sr+1)
sr+1

∫ t

usr+1

u
β(sr+2)
sr+2 · · ·

∫ t

uk−1

u
β(k)
k duk . . . dusr+1 (5.3.13)

= tk−sr+
∑k
i=sr+1 β(i)

∫ 1

ε

w
β(sr+1)
sr+1

∫ 1

wsr+1

w
β(sr+2)
sr+2 · · ·

∫ 1

wk−1

w
β(k)
k dwk . . . dwsr+1

= tk+B(H)(A2(H)− h1(ε)),

for some function h1(ε). By Lemma 5.3.1 h1(ε) satisfies limε→0 h1(ε) = 0. Again, if
r = 1, the middle sets of integrals in (5.3.12) are empty, so we are done.

We now investigate the second set of integrals in (5.3.12) for r > 1. Using the
substitution ws1+1 = us1+1 and wi = ui/ui−1 for i > s1 + 1, we obtain

∫ εt1/r

1/ε

u
β(s1+1)
s1+1

∫ us1+1/ε

us1+1

u
β(s1+2)
s1+2 · · ·

∫ us2−1/ε

us2−1

uβ(s2)
s2 dus2 . . . dus1+1x

=

∫ εt1/r

1/ε

w
s2−s1−1+

∑s2
i=s1+1 β(i)

s1+1 dws1+1 (5.3.14)

×
∫ 1/ε

1

w
s2−s1−2+

∑s2
i=s1+2 β(i)

s1+2 dws2+1 · · ·
∫ 1/ε

1

wβ(s2)
s2 dws2 .
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5.4. Exact constant for triangles: proof of Theorem 5.1.5

The first integral equals by (5.3.7)

∫ εt1/r

1/ε

w−1
s1+1dws1+1 =

1

r
log(t) + log(ε2).

The integrand in all other integrals in (5.3.14) equals wγii for some γi < −1 by (5.3.8).
Therefore, these integrals equal a constant plus a function of ε that vanishes as ε
becomes small so that

∫ εt1/r

1/ε

u
β(s1+1)
s1+1

∫ us1+1/ε

us1+1

u
β(s1+2)
s1+2 · · ·

∫ us2−1/ε

us2−1

uβ(s2)
s2 dus2 . . . dus1+1

=

(
1

r
log(t) + log(ε2)

)
(K + h2(ε)) , (5.3.15)

for some 0 < K <∞ and some h2(ε) such that limε→0 h2(ε) = 0. The other integrals
in (5.3.12) can be estimated similarly.

Combining (5.3.12), (5.3.13) and (5.3.15) we obtain

lim
t→∞

E [Nt(H)]

tk+B(H) logr−1(t)
≥ C1 + h(ε),

for some constant 0 < C1 < ∞ and some function h(ε) such that limε→0 h(ε) = 0.
Taking the limit for ε ↓ 0 then proves the theorem.

5.4. Exact constant for triangles: proof of Theorem 5.1.5
Fix m ≥ 2 and δ > −m. The first step of the proof consists of showing that

E[4t] =
τ − 2

τ − 1

m2(m− 1)(m+ δ)(m+ δ + 1)

(2m+ δ)2

×
t−2∑

u=1

[(u− (2m)/(2m+ δ))(u− (2m− 1)/(2m+ δ))]−1

× Γ(u+ 2− (2m)/(2m+ δ)

Γ(u+ 2− (3m+ δ)/(2m+ δ))

Γ(u+ 2− (2m− 1)/(2m+ δ))

Γ(u+ 2− (3m+ δ − 1)/(2m+ δ))

×
t−1∑

v=u+1

(v − (3m+ δ − 1)/(2m+ δ))−1 (5.4.1)

×
t∑

w=v+1

Γ(w − (3m+ δ)/(2m+ δ))

Γ(w − (2m)/(2m+ δ))

Γ(w − (3m+ δ − 1)/(2m+ δ))

Γ(w − (2m− 1)/(2m+ δ))
.

192



5

Su
bg

ra
ph

s
in

PA
M

s

5

Su
bg

ra
ph

s
in

PA
M

s

5

Su
bg

ra
ph

s
in

PA
M

s

5

Su
bg

ra
ph

s
in

PA
M

s

5

Su
bg

ra
ph

s
in

PA
M

s

5

Su
bg

ra
ph

s
in

PA
M

s

5.4. Exact constant for triangles: proof of Theorem 5.1.5

We can write

4t :=

t−2∑

u=1

t−1∑

v=u+1

t∑

w=v+1

∑

j1∈[m]

∑

j2,j3∈[m]

1{u j1← v, u
j2← w, v

j3← w}. (5.4.2)

Since there are m2(m− 1) possible choices for the edges j1, j2, j3,

E[4t] = m2(m− 1)

t−2∑

u=1

t−1∑

v=u+1

t∑

w=v+1

E
[
ψu

Su
Sv−1

ψu
Su
Sw−1

ψv
Sv
Sw−1

]
. (5.4.3)

Recalling (4.7.1), we can write every term in the sum in (5.4.3) as

E
[(
ψu

v−1∏

h=u+1

(1− ψh)

)(
ψu

w−1∏

k=u+1

(1− ψk)

)(
ψv

w−1∏

l=v+1

(1− ψl)
)]
. (5.4.4)

Since the random variables ψ1, . . . , ψt are independent, we can factorize the ex-
pectation to obtain

E[ψ2
u]E[ψv(1− ψv)]

w−1∏

k=u+1,k 6=v
E[(1− ψk)2] (5.4.5)

= E[ψ2
u]
E[ψv(1− ψv)]
E[(1− ψv)2]

w−1∏

k=u+1

E[(1− ψk)2].

Recall that, for a Beta random variable X(α, β), we have

E[X] =
α

α+ β
,

E[X(1−X)] =
αβ

(α+ β)(α+ β + 1)
,

E[X2] =
α(α+ 1)

(α+ β)(α+ β + 1)
,

(5.4.6)

and 1−X(α, β) is distributed asX(β, α). Using (5.4.6), we can rewrite (5.4.5) in terms
of the parameters of ψ1, . . . , ψt. Since ψk has parameters α = m + δ and β = βk =

m(2k − 3) + (k − 1)δ, the first term in (5.4.5) can be written as

E[ψ2
u]

(m+ δ)(m+ δ + 1)

(m(2u− 2) + uδ)(m(2u− 2) + uδ + 1)

=
(m+ δ)(m+ δ + 1)

(2m+ δ)2

[
(u− 2m/2m+ δ)(u− (2m− 1)/(2m+ δ))

]−1

.

(5.4.7)
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5.4. Exact constant for triangles: proof of Theorem 5.1.5

For the second term, we have

E[ψv(1− ψv)]
E[(1− ψv)2]

=
m+ δ

m(2v − 3) + (v − 1)δ
=
τ − 2

τ − 1
(v−(3m+δ−1)/(2m+δ))−1. (5.4.8)

The last product in (5.4.5), for k = u+ 1, . . . , w − 1 results in

E[(1− ψk)2] =
(m(2k − 3) + (k − 1)δ)(m(2k − 3) + (k − 1)δ + 1)

(m(2k − 2) + kδ)(m(2k − 2) + kδ + 1)

=
k − (3m+ δ)/(2m+ δ)

k − 2m/(2m+ δ)

k − (3m+ δ − 1)/(2m+ δ)

k − (2m− 1)/(2m+ δ)
.

(5.4.9)

Using the recursive property Γ(a+ 1) = aΓ(a) of the Gamma function,

w−1∏

k=u+1

E[(1− ψk)2] (5.4.10)

=
Γ(u+ 2− (2m)/(2m+ δ)

Γ(u+ 2− (3m+ δ)/(2m+ δ))

Γ(u+ 2− (2m− 1)/(2m+ δ))

Γ(u+ 2− (3m+ δ − 1)/(2m+ δ))

× Γ(w − (3m+ δ)/(2m+ δ))

Γ(w − (2m)/(2m+ δ))

Γ(w − (3m+ δ − 1)/(2m+ δ))

Γ(w − (2m− 1)/(2m+ δ))
.

Equation (5.4.3) follows by combining (5.4.5), (5.4.7), (5.4.8), (5.4.9) and (5.4.10).
The last step of the proof is to evaluate the sum in (5.4.3), and combining the result

with the multiplicative constant in front in (5.4.3). By Stirling’s formula

Γ(x+ a)

Γ(x+ b)
= xa−b(1 +O(1/x)).

As a consequence, recalling that χ = (m + δ)/(2m + δ), the sum in (5.4.3) can be
written as

t−2∑

u=1

u2χ−2(1 +O(1/u))

t−1∑

v=u+1

v−1(1 +O(1/v))

t∑

w=v+1

w−2χ(1 +O(1/w)). (5.4.11)

We can approximate the sum in (5.4.11) with the corresponding integral using Euler-
Maclaurin formula, thus obtaining

∫ t

1

u2χ−2du

∫ t

u

v−1dv

∫ t

v

w−2χdw. (5.4.12)

As t → ∞, the order of magnitude of the integral in (5.4.12) is predicted by Theo-
rem 5.1.2. If we evaluate the integral, then we obtain that the coefficient of the dom-
inant term in (5.4.12) is (2m+ δ)2/δ2 for τ > 2, τ 6= 3, and 1/6 for τ = 3.

Putting together these coefficients with the constant in front of the sum in (5.4.1)
completes the proof of Theorem 5.1.5.
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5.5. Conditional convergence: proof of Proposition 5.1.4

Remark 5.4.1 (Constant for general subgraphs). In the proof of Theorem 5.1.5, the
hardest step is to prove (5.4.2), i.e., to find the expectation of the indicator functions
in (5.4.1). This is the reason why for a general ordered subgraph (H,π) on k vertices
it is hard to find the explicit constant as in (5.1.10). In fact, as we have done to move
from (5.4.3) to (5.4.4), it is necessary to identify precisely, for every v ∈ [t], how many
times the terms ψv and (1 − ψv) appear in the product inside the expectations in
(5.4.3). This makes the evaluation of such terms complicated.

Typically, as it shown in (5.4.5), (5.4.7), (5.4.8), (5.4.9) and (5.4.10), the product of
the constants obtained by evaluating the probability of an ordered subgraph (H,π)

being present can be written as ratios of Gamma functions. The same constants can be
found using the martingale approach as in [33, 158] and [85, Section 8.3], even though
in this case constants are obtained through a recursive use of conditional expectation.

We remark that our method and the martingale method are equivalent. We fo-
cused on the Pólya urn interpretation of the graph since it highlights the dependence
of the presence of edges on the age of vertices, that is directly related to the order of
magnitude of degrees.

5.5. Conditional convergence: proof of Proposition 5.1.4
In the previous sections, we have considered the order of magnitude of the ex-

pectation of the number of occurrences of ordered subgraphs in the PAM. In other
words, for an ordered subgraph (H,ψ) we are able to identify the order of magnitude
h(t) of the expected number of occurrences Nt(H,π), so that E[Nt(H,π)] = Θ(h(t)).
We now show how these orders of magnitude of the expected number of subgraphs
determines the conditional convergence given in (5.1.6).

5.5.1. Bound with overlapping subgraphs
The Pólya urn graph in Definition 4.4.2 consists of a function of uniform random

variables (Uv,j)
j∈[m]
v∈[t] and an independent sequence of Beta random variables (ψv)v∈[t].

We can interpret the sequence (ψv)v∈[t] as a sequence of intensities associated to the
vertices, where a higher intensity corresponds to a higher probability of receiving a
connection. The sequence (Uv,j)

j∈[m]
v∈[t] determines the attachment of edges. In partic-

ular, conditionally on the sequence (ψv)v∈[t], every edge is present independently (but
with different probabilities).

For t ∈ N, denote Pψt(·) = P( · |ψ1, . . . , ψt), and similarly Eψt [·] = E[ · |ψ1, . . . , ψt].
Furthermore, letNψt(H,π) denote the number of times subgraph (H,π) appears con-
ditionally on the ψ-variables. We now apply a conditional second moment method
to Nψt(H,π). We use the notation introduced in Section 5.2, so that every possible
realization of H in PAM corresponds to a finite set of edges M`(u`,v`, j`), where ` is
the number of edges in H such that vh

jh→ uh, i.e., uh is the receiving vertex, and jh is
the label of the edge. For simplicity, we denote the set M`(u`,v`, j`) by M . For ease
of notation, we assume that π is the identity map and drop the dependence on π. We
prove the following result:
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5.5. Conditional convergence: proof of Proposition 5.1.4

Lemma 5.5.1 (Bound on conditional variance). Consider an ordered subgraph (H,π).
Then, P-a.s.,

Varψt(Nt(H,π)) ≤ Eψt [Nt(H,π)] +
∑

Ĥ∈Ĥ

Eψt [Nt(Ĥ)],

where Ĥ denotes the set of all possible attainable subgraphs Ĥ that are obtained by merging
two copies of (H,π) such that they share at least one edge.

Lemma 5.5.1 gives a bound on the conditional variance in terms of the conditional
probabilities of observing two overlapping of the subgraph (H,π) at the same time.
Notice that we require these copies to overlap at at least one edge, which is differ-
ent than requiring that they are disjoint (they can share one or more vertices but no
edges).

Proof of Lemma 5.5.1. We prove the bound in Lemma 5.5.1 by evaluating the condi-
tional second moment of Nt(H) as

Eψt [Nt(H,π)2] = Eψt
[ ∑

M,M ′

1{M⊆E(PAt)}1{M ′⊆E(PAt)}
]

=
∑

M,M ′

Pψt
(
M ⊆ E(PAt), M

′ ⊆ E(PAt)
)
,

where M and M ′ are two sets of edges corresponding to two possible realizations
of the subgraph (H,π). Notice that M and M ′ are not necessarily distinct. We then
have to evaluate the conditional probability of having both the sets M and M ′ si-
multaneously present in the graph. As a consequence, we conditional variance in
Lemma 5.5.1 can be written as

∑

M 6=M ′
Pψt

(
M ⊆ E(PAt), M

′ ⊆ E(PAt)
)

(5.5.1)

− Pψt(M ⊆ E(PAt))Pψt(M
′ ⊆ E(PAt)).

We define

M :=
{

(M,M ′) : ∃ (u, v, j) : (u, v, j) ∈M, (u, v, j) ∈M ′,

M 6= M ′, (M ∪M ′) defines an attainable subgraph
}
. (5.5.2)

We then consider two different cases, i.e., whether (M,M ′) is inM or not. If (M,M ′) 6∈
M, then one of the three following situations occurs:

B M∪M ′ defines a subgraph that is not attainable (for instance,M andM ′ require
that the same edge is attached to different vertices);

B M ∪ M ′ defines a subgraph that is attainable, M and M ′ are disjoint sets of
labeled edges (they are allowed to share vertices);
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5.5. Conditional convergence: proof of Proposition 5.1.4

B M and M ′ define the same attainable subgraph (so M = M ′, thus labels of
edges coincide).

When M = M ′ we have that

Pψt
(
M ⊆ E(PAt), M

′ ⊆ E(PAt)
)

= Pψt(M ⊆ E(PAt)),

so that the corresponding contribution in the sum in (5.5.1) is

Pψt(M ⊆ E(PAt))− Pψt(M ⊆ E(PAt))
2 ≤ Pψt(M ⊆ E(PAt)),

and the sum over M gives the term Eψt [Nt(H,π)] in the statement of Lemma 5.5.1.
WhenM 6= M ′ andM ∪M ′ is attainable and their sets of edges are disjoint it follows
directly from the independence of (Uv,j)

j∈[m]
v∈[t] and (ψv)v∈[t] that

Pψt
(
M ⊆ E(PAt), M

′ ⊆ E(PAt)
)

= Pψt(M ⊆ E(PAt))Pψt(M
′ ⊆ E(PAt)).

Thus, in this situation the corresponding contribution is zero. When (M,M ′) is not
attainable the corresponding contribution is negative. When (M,M ′) ∈Mwe bound
the corresponding terms in (5.5.1) by Pψt

(
M ⊆ E(PAt), M

′ ⊆ E(PAt)
)

, thus obtain-
ing

Varψt(Nt(H,π)) ≤ Eψt [Nt(H,π)] +
∑

(M,M ′)∈M
Pψt

(
M ∪M ′ ⊆ E(PAt)

)
,

We then rewrite this as

Varψt(Nt(H,π)) ≤ Eψt [Nt(H,π)] +
∑

Ĥ∈Ĥ

Eψt [Nt(Ĥ)],

which proves the lemma.

5.5.2. Criterion for conditional convergence
We now prove Proposition 5.1.4 using Lemma 5.5.1 and Lemma 5.5.3:

Proof of Proposition 5.1.4. It sufficient to show that for every fixed ε > 0,

P (|Nt,ψ(H,π)− Et[Nt(H,π)] > εE[Nt(H,π)]) = o(1).

We now apply Chebychev inequality to write

P
(
|Nψt(H,π)− Eψt [Nt(H,π)] > εE[Nt(H,π)]

)
≤ E

[
Varψt(Nt(H,π))

]

ε2E[Nt(H,π)]2
.
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5.5. Conditional convergence: proof of Proposition 5.1.4

We can then apply Lemma 5.5.1, which yields

E
[
Varψt(Nt(H,π))

]

ε2E[Nt(H,π)]2
≤

E
[
Eψt [Nt(H,π)] +

∑
Ĥ∈Ĥ Eψt [Nt(Ĥ)]

]

ε2E[Nt(H,π)]2

=
E[Nt(H,π)] +

∑
Ĥ∈Ĥ E[Nt(Ĥ)]

ε2E[Nt(H,π)]2
= o(1).

As an example, we consider triangles. Theorem 5.1.5 identifies the expected num-
ber of triangles, and by Theorem 5.1.2 we can show that E[42

t ] = Θ(E[4t]2), so we
are not able to apply the second moment method to 4t. Figure 5.3 suggests that
4t/E[4t] converges to a limit that is not deterministic, i.e., in (5.1.8) the limitingX is
a random variable.

However, we can prove that 4t is conditionally concentrated, as stated in Corol-
lary 5.1.6. The proof of Corollary 5.1.6 follows directly from Proposition 5.1.4, the
fact that E[4t] = Θ(t(3−τ)/(τ−1) log(t)) as given by Theorem 5.1.5, and Figure 5.2,
that contains the information on the subgraphs consisting of two triangles sharing
one or two edges.

5.5.3. Non-concentrated subgraphs
We now show that for most ψ-sequences, the other direction in Proposition 5.1.4

also holds. That is, if there exists a subgraph composed of two merged copies of H
such that the condition in Proposition 5.1.4 does not hold, then for most ψ-sequences,
H is not conditionally concentrated.

Proposition 5.5.2. Consider a subgraph (H,π) such that E [Nt(H,π)] → ∞ as t → ∞.
Suppose that there exists a subgraph Ĥ , composed of two distinct copies of (H,π) with at
least one edge in common such that E

[
Nt(Ĥ)

]
/E [Nt(H,π)] 9 0 as t→∞. Then, for any

ε > 0, there exists η > 0 such that

P

(
Varψt(Nt(H,π))

E [Nt(H,π)]
2 > η

)
≥ 1− ε. (5.5.3)

To prove Proposition 5.5.2, we need Lemma 4.7.2, that gives a coupling between
the sequence (ψk)k∈N and a sequence of Gamma random variables. For the precise
statement, we refer to Chapter 4. We now state the lemma we need to prove Propo-
sition 5.5.2:

Lemma 5.5.3 (Maximum intensity). For every ε > 0 there exists ω = ω(ε) ∈ (0, 1) such
that, for every t ∈ N,

P
(

max
i∈2,...,t

ψi < ω
)
≥ 1− ε.
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5.5. Conditional convergence: proof of Proposition 5.1.4

Proof. Fix ε > 0, and consider K(ε/2) as given by Lemma 4.7.2. For every ω ∈ (0, 1),
we can write

P
(

max
i∈2,...,t

ψi < ω
)

= P
(

max
i∈2,...,K

ψi < ω
)
P
(

max
i∈[t]\[K]

ψi < ω
)
, (5.5.4)

where we have used the independence of ψ2, . . . , ψt. If t > K the second term in
the right-hand side of (5.5.4) is well defined, otherwise we only have the first term.
Define

ω1 =

{
(logK)2

(2m+δ)K if t > K,

0 if t ≤ K.

Notice that, since the function k 7→ (log k)2

(2m+δ)k is decreasing, it follows that

P
(

max
i∈[t]\[K]

ψi < ω1

)
≥ 1− ε/2. (5.5.5)

Define the random variable XK = maxi∈2,...,K ψi, denote its distribution function by
FK and the inverse of its distribution function by F−1

K . Consider ω2 = F−1
K (1− ε/2),

that implies
P
(

max
i∈[K]

ψi < ω2

)
= 1− ε/2. (5.5.6)

Consider then ω = max{ω1, ω2}. Using a(5.5.5) and (5.5.6) with ω in (5.5.4), it follows
that

P
(

max
i∈2,...,K

ψi < ω
)
P
(

max
i∈[t]\[K]

ψi < ω
)
≥ (1− ε/2)2 ≥ 1− ε,

which completes the proof.

Proof of Proposition 5.5.2. We use the expression of the conditional variance of (5.5.1).
We first study the term in the conditional variance corresponding to Ĥ . Let M̃ denote
the set of labeled edgesM,M ′ that together form the subgraph Ĥ . Let the edges that
M and M ′ share be denoted by Ms. Furthermore, let M̃1 denote the set of labeled
edges M,M ′ that together form subgraph Ĥ that do not use vertex 1.

The, we can then write a term in the sum in (5.5.1) as

Pψt
(
M ⊆ E(PAt), M

′ ⊆ E(PAt)
)
− Pψt(M ⊆ E(PAt))Pψt(M

′ ⊆ E(PAt))

= Pψt (M ∪M ′ ⊆ E(PAt)) (1− Pψt (Ms ⊆ E(PAt))). (5.5.7)

In fact, the difference between the first term and the second term in in (5.5.7) is given
by the fact that in the second term we count the probability of the presence of edges
in Ms twice, thus generating the term Pψt (Ms ⊆ E(PAt)). As a consequence, using
(5.5.7) in (5.5.1), we can write

Varψt(Nt(H,π)) =
∑

M,M ′∈M̃
Pψt (M ∪M ′ ⊆ E(PAt)) (1− Pψt (Ms ⊆ E(PAt)))
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5.5. Conditional convergence: proof of Proposition 5.1.4

≥
∑

M,M ′∈M̃1

Pψt (M ∪M ′ ⊆ E(PAt)) (1− ψmax)

= (1− ψmax)Eψt
[
Nt(Ĥ)

]

where the inequality uses (4.7.1), and ψmax = maxi∈2,...,t ψi. Note that here we ex-
cluded vertex 1 from the number of subgraphs with negligible error. By Lemma 5.5.3
there exists ω such that with probability at least 1− ε, ψmax < ω < 1.

By the assumption on Ĥ , E
[
Nt(Ĥ)

]
≥ C̃E [Nt(H,π)]

2 for some C̃ > 0. We then

use that Eψt
[
Nt(Ĥ)

]
= OP(E

[
Nt(Ĥ)

]
). Thus, for t sufficiently large, we can bound

the contribution from subgraph Ĥ to the conditional variance from below with prob-
ability at least 1− ε by

∑

M,M ′∈M̃
Pψt (M ∪M ′ ⊆ E(PAt)) (1− Pψt (Ms ⊆ E(PAt))) ≥ CEψt [Nt(H,π)]

2
,

for some C > 0.
Note that the only terms that have a negative contribution to (5.5.1) are the terms

where M ∪M ′ is a non-attainable subgraph. In that situation,

Pψt
(
M ⊆ E(PAt), M

′ ⊆ E(PAt)
)

= 0.

Furthermore,
∑

M,M ′∈M̃
Pψt(M ⊆ E(PAt))Pψt(M

′ ⊆ E(PAt) ≤ Eψt [Nt(H,π)]
2
/t2,

since the two subgraphs share at least two vertices. Therefore, the negative terms in
the conditional variance scale as most as Eψt [Nt(H,π)] /t2. We therefore obtain that
with probability at least 1− ε,

Varψt(Nt(H,π)) ≥ ηEψt [Nt(H,π)]
2
,

for some η > 0, which proves the proposition.
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6
Local weak convergence for

PageRank

Content and structure of the chapter
The motivation of this chapter is in finding general conditions for the
existence of an asymptotic PageRank distribution. We prove the con-
vergence (in distribution and/or in probability) of PageRank for a large
class of models, by adapting the notion of local weak convergence (LWC)
to directed graphs. Our results also shed light on the power-law hy-
pothesis. When the limit is a branching tree, this directly implies the
power-law hypothesis, based on mentioned results in the literature (see
Section 1.7). When the limit is different, e.g., the tree generated by a
continuous-time branching process, proving the power-law hypothesis
remains an open problem. Our results imply however that it is sufficient
to study PageRank on the limiting object, which hopefully is simpler
since the graph-size asymptotics no longer interfere.
The chapter is structured as follows: In Section 6.1 we give the formal
definition of PageRank on graphs. In Section 6.2 we state the main re-
sult. In Section 6.3 we define directed LWC. In Section 6.2.2 we give
a high-level structure of the proof of Theorem 6.2.1, that we prove in
Section 6.4. In Section 6.5 we explain how our results can be extended
to generalized PageRanks. Section 6.6 contains the proof of the directed
LWC for directed continuous-time branching processes, directed config-
uration models and directed PAMs, showing the generality of our argu-
ment. Proposition 6.6.8 together with Remark 6.2.2 prove a lower bound
for the power-law PageRank hypothesis in PAMs. Novel results of this
chapter are based on [72].
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6.1. Formal definition of PageRank

6.1. Formal definition of PageRank
Consider a finite directed (multi-)graph G of size n. We write [n] = {1, . . . , n}.

Let ej,i be the number of directed edges from j to i. Denote the in-degree of vertex
i ∈ [n] by d(in)

i and the out-degree by d(out)

i . Fix a parameter c ∈ (0, 1), which is
called the damping factor, or teleportation parameter. PageRank is the unique vector
π(n) = (π1(n), . . . , πn(n)) that satisfies, for every i ∈ [n],

πi(n) = c
∑

j∈[n]

ej,i

d(out)

j

πj(n) +
1− c
n

. (6.1.1)

PageRank has the natural interpretation as the invariant measure of a random walk
with restarts on G. With probability c the random walk takes a simple random walk
step onG, while with probability (1− c) it moves to a uniformly chosen vertex. Here
by simple random walk we mean the random walk that chooses, at every step, an
outgoing edge from the current position uniformly at random. When d(out)

j > 0 for
all j ∈ [n], the invariant measure of this random walk is given exactly by (6.1.1). The
interpretation is easily extended to the case when some vertices j have d(out)

j = 0 by
introducing a random jump from such vertices; in this case the stationary distribution
will be the solution of (6.1.1) renormalized to sum up to one [108].

We consider the graph-normalized version of PageRank, which is the vector defined
as R(n) = nπ(n). We call both the algorithm and the vector R(n) PageRank, the
meaning will always be clear from the context. The graph-normalized version of
(6.1.1) is the unique solutionR(n) to

Ri(n) = c
∑

j∈[n]

ej,i

d(out)

j

Rj(n) + (1− c). (6.1.2)

PageRank has numerous generalizations. For example, after a random jump, the ran-
dom walk might not restart from a uniformly chosen vertex, but rather choose vertex
i with probability bi, where

∑n
i=1 bi = 1. Equation (6.1.1) then becomes

Ri(n) = c
∑

j∈[n]

ej,i

d(out)

j

Rj(n) + (1− c)bi. (6.1.3)

This generalized version of PageRank is sometimes called topic-sensitive [83] or person-
alized. We note that the term personalized PageRank often refers to the case when the
vector b = (b1, . . . , bn) has one of its coordinates equal to 1, and the rest equal to zero,
so that the random walk always restarts from the same vertex. One can generalize fur-
ther, e.g., allow the probability c to be random as well. The literature [45, 101, 110, 162]
usually studies the following graph-normalized equation:

Ri(n) =
∑

j:ej,i≥1

AjRj(n) +Bi, i ∈ [n], (6.1.4)
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6.2. Main result

where (Ai)i∈[n] and (Bi)i∈[n] are values assigned to the vertices in the graph. For
simplicity of the argument, we will focus on the basic model (6.1.2) and then, in Sec-
tion 6.5, extend the results to the more general model (6.1.4) with Aj = Cj/d

(out)

j ,
where Cj ’s are random variables bounded by c < 1, and (Bi)i∈[n] are i.i.d. across
vertices.

6.2. Main result
For any deterministic graph, PageRank is a deterministic vector. We are interested

in the PageRank associated to random graphs. In particular, we want to investigate the
asymptotic behavior of the PageRank value of a uniformly chosen vertex Vn, as the
size of the graph grows. In this case we have two sources of randomness: the choice
of the vertex and the randomness of the graph itself. Our main result is the following:

Theorem 6.2.1 (Existence of asymptotic PageRank distribution). Consider a sequence
of directed random graphs (Gn)n∈N. Then, the following hold:

(1) IfGn converges in distribution in the local weak sense, then there exists a limiting
distribution R∅, with E[R∅] ≤ 1, such that

RVn(n)
d−→ R∅;

(2) If Gn converges in probability in the local weak sense, then there exists a limiting
distribution R∅, with E[R∅] ≤ 1, such that, for every r > 0,

1

n

∑

i∈[n]

1{Ri(n) > r} P−→ P (R∅ > r) .

Theorem 6.2.1 establishes that, whenever a sequence of directed random graphs
converges in the local weak sense, then the distribution RVn(n) admits a limit in dis-
tribution, R∅. This limit has the interpretation of PageRank on the (possibly infinite)
limiting graph. Theorem 6.2.1 can be extended to personalized PageRank defined in
(6.1.4) under additional conditions on the random variables (Ai)i∈N and (Bi)i∈N. The
precise formulation, that requires more notation, is given in Theorem 6.5.1.

Remark 6.2.2 (Stochastic lower bound for PageRank). Theorem 6.2.1 gives a rough
lower bond on the tail of the asymptotic PageRank distribution for a graph sequence.
In simple words, we can write

R∅ ≥ (1− c)
(

1 + c

D
(in)
∅∑

i=1

1

m(out)

i

)
, (6.2.1)

where ∅ is a vertex called root in the local weak limit of the graph sequence (Gn)n∈N,
D(in)

∅ is the graph limiting in-degree distribution, andm(out)

i represent the out-degree
in the LW limit. All the notation in (6.2.1) is introduced in Sections 6.3 and 6.4. In

203



6

Lo
ca

l
w

ea
k

co
nv

er
ge

nc
e

fo
r

Pa
ge

Ra
nk

6

Lo
ca

l
w

ea
k

co
nv

er
ge

nc
e

fo
r

Pa
ge

Ra
nk

6

Lo
ca

l
w

ea
k

co
nv

er
ge

nc
e

fo
r

Pa
ge

Ra
nk

6

Lo
ca

l
w

ea
k

co
nv

er
ge

nc
e

fo
r

Pa
ge

Ra
nk

6

Lo
ca

l
w

ea
k

co
nv

er
ge

nc
e

fo
r

Pa
ge

Ra
nk

6

Lo
ca

l
w

ea
k

co
nv

er
ge

nc
e

fo
r

Pa
ge

Ra
nk

6

Lo
ca

l
w

ea
k

co
nv

er
ge

nc
e

fo
r

Pa
ge

Ra
nk

6.2. Main result

particular, (6.2.1) implies that a.s.R∅ > 1−c. Sincem(out) represents the limiting out-
degree distribution, it follows that, if (Gn)n∈N has out-degrees uniformly bounded by
a constant A <∞,

R∅ ≥ (1− c)
(

1 +
c

A
D(in)

∅

)
.

As a consequence, if the limiting in-degree distribution obeys a power law, then the
tail of the distribution R∅ is bounded from below by a multiple of the tail of the in-
degree. This establishes a power-law lower bound for R∅. This is a partial solution
of the power-law hypothesis mentioned in Chapter 1.

6.2.1. Local weak convergence for directed graphs
Theorem 6.2.1 is based on local weak convergence (LWC), that we have introduced

in Chapter 4. The notion of LWC in Chapter 4 is defined for undirected graphs. Since
we want to investigate PageRank, that is naturally defined on directed graphs, we
need to extend the definition of LWC to directed graphs.

LWC is defined by looking at neighborhoods of vertices in a graph. For undirected
graphs, this is not a problem since the exploration process is well defined. In directed
graphs, such exploration of neighborhoods is not uniquely defined. Indeed, in the
exploration process (rigorous definition is given in Definition 6.3.3), motivated by the
PageRank problem, we naturally explore directed edges only in their opposite direction.
In other words, a directed edge (j, i) is only explored from i to j. Clearly, since edges
are not explored in both directions, starting from the root we might not be able to
explore all the graph. Heuristically, from the point of view of the root ∅, only part
of the graph influences the incoming neighborhood of ∅. This is very different from the
undirected case, where the exploration process continues until the entire graph is
explored (when the graph is connected). We resolve this by introducing so-called
marks to track the explored and not-explored out-edges in the graph. The precise
definition of LW convergence in directed graphs is given in Section 6.3.

We point out that our construction is one of many possible ways to define LW con-
vergence for directed graphs. For instance, Aldous and Steele [5] allow edge weights.
This might be sufficient to define an inclusion of directed graphs in the space of undi-
rected graphs with edge weights, and use the notion for undirected graphs to define
an exploration process for directed graphs. The advantage of our construction is that
it requires the minimum amount of information, sufficient to prove the convergence
of PageRank, which is the main problem we aim to resolve.

Definition 6.3.9 below, together with Theorem 6.3.10, gives a criterion for the con-
vergence of a sequence of directed random graphs, that can be presented as marked
graphs by just assigning marks equal to out-degrees. The precise formulation requires
heavy notation that we have not introduced yet, therefore we do not state it here.

The advantage of having a LW limit (G,∅) is that a whole family of local proper-
ties of the graph sequence can pass to the limit, and the limit is given by a local property
of (G,∅) itself. More precisely, in the construction of LW convergence, one defines
a distance between (marked directed) rooted graphs (see Definition 4.1.3). Then, any
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6.2. Main result

function h from the space of rooted graphs to R that is bounded and continuous with
respect to the distance function can pass to the limit, i.e., for Vn a uniformly chosen
vertex in Gn,

lim
n→∞

E [h(Gn, Vn)] = E [h(G,∅)] .

This can be rather useful in understanding the asymptotic behavior of local properties
of a graph sequence. As a toy example, in the undirected setting, take the function
h(G,∅) = 1{d∅ = k}. It is easy to show, using Definition 4.1.3, that h is a continuous
function. Assume that a sequence of graphs Gn → (G,∅) locally weakly, where
(G,∅) is random rooted graph. Then, for every n ∈ N,

E [f(Gn, Vn)] =
1

n

∑

i∈[n]

P (di = k) = P (dVn = k) ,

i.e., h evaluated on a random root is just the probability that a uniformly chosen ver-
tex has degree k. As a consequence, the sequence (Gn)n∈N has a limiting degree
distribution given by

lim
n→∞

P (dVn = k) = P (d∅ = k) ,

where ∅ is the root of G. Other examples of continuous functions in the undirected
setting are the nearest-neighbor average degree of a uniform vertex, the finite-distance
neighborhood of a uniform vertex and the average pressure per particle in the Ising
model. In our directed setting, it follows that, if Gn → (G,∅,M(G)),

(m(out)

Vn
, d(in)

Vn
)

d−→ (m(out)

∅ , d(in)

∅ ),

where M(G) is the set of marks of the limiting graph, (m(out)

Vn
, d(in)

Vn
) are the mark and

the in-degree of a uniformly chosen vertex Vn, and (m(out)

∅ , d(in)

∅ ) are the mark and the
in-degree of the root ∅ in the limiting directed graph G. The notation m(out) hints
on the relation between marks and out-degrees. When marks are assigned that are
equal to the out-degree, this implies the convergence of the in- and out-degree of a
uniformly chosen vertex. One of the surprises in our version of LW convergence is
that in the limiting graph, the mark of the root m(out)

∅ is not necessarily equal to the
out-degree of the root.

6.2.2. Application of LW convergence to PageRank
The proof of Theorem 6.2.1 is given in Section 6.4. Here we describe the struc-

ture of the proof, explaining why the LW convergence for directed graphs is useful.
Schematically, the structure of our proof of Theorem 6.2.1 is presented in Figure 6.1.
The implication (A), denoted by the dashed red arrow, is the one we aim to prove.
We split it in three steps (a), (b), (c), denoted by the solid black arrows. We will now
explain each step.
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6.2. Main result

R(N)

Vn
(n)

RVn
(n)

R(N)

∅

R∅

(a
)

fi
n

it
e
N

(b) n→∞

(c
)
N
→
∞

(A) n→∞

Figure 6.1: Structure of the proof of Theorem 6.2.1. The (A) convergence is what
we are after, the convergence in distribution ofRVn(n) to a limiting random vari-
able. To prove that, we need the three different steps (a), (b), (c) given by the
other arrows.

Step (a): Finite approximations. It is well known [8, 13, 23, 45] that PageRank can
be written as

Ri(n) = (1− c)


1 +

∞∑

k=1

ck
∑

`∈pathi(k)

k∏

h=1

e`h,`h+1

d(out)

`h


 ,

where pathi(k) is the set of directed paths of k steps that end at i. In other words,
Ri(n) is a weighted sum of all the directed paths that end at i. In particular, we can write
finite approximations for PageRank as

R(N)

i (n) = (1− c)


1 +

N∑

k=1

ck
∑

`∈pathi(k)

k∏

h=1

e`h,`h+1

d(out)

`h


 ,

where now the sum is taken over all paths of length at most N ∈ N. We use the se-
quence of finite approximations

(
R(N)

Vn
(n)
)
n∈N to estimate the PageRank of a random

vertex with exponentially small precision by its finite approximations. We prove that,
for any ε > 0,

P
(
|RVn(n)−R(N)

Vn
(n)| ≥ ε

)
≤ cN+1

ε
.

Notice that the bound is independent of the graph size that we consider. This bound is
true for any directed graph of any size, so it does not require any assumption on the
graph sequence.
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6.2. Main result

Step (b): LW convergence. The finite approximations of PageRank are continuous
with respect to the local weak topology. Indeed, by definition, theN th approximation
of PageRank depends only on the incoming neighborhood of a vertex up to distance
N . Note that Ri(n) and R(N)

i (n) are not bounded. However, for any r ≥ 0, the func-
tion 1{R(N)

Vn
> r} is a continuous and bounded function on marked directed rooted

graphs, therefore we can pass to the limit for any N ∈ N. It follows that

lim
n→∞

E
[
1{R(N)

Vn
> r}

]
= lim
n→∞

P
(
R(N)

Vn
(n) > r

)
= P

(
R(N)

∅ > r
)
,

where in the last term ∅ is the root of the limiting random marked directed rooted
graph (G,∅,M(G)). As a consequence, every term of the sequence (R(N)

Vn
(n))n∈N

converges in distribution. Notice that similar arguments apply for Theorem 6.2.1(b).

Step (c): Finite approximations on the limiting graph. On the limiting random
marked directed rooted graph (G,∅,M(G)), the sequence (R(N)

∅ )N∈N is a monotoni-
cally increasing sequence of random variables. Therefore, there exists an almost sure
limiting random variableR∅. Using the fact that (G,∅,M(G)) is a local weak limit of
a sequence of random directed graphs, and E[RVn ] = 1 for every n ≥ 1, it is possible
to prove that E[R∅] ≤ 1, so that P (R∅ <∞) = 1.

Remark 6.2.3. We emphasize that the above strategy is meant just to give the intuition
behind the proof. In particular, in the proof it is necessary to be careful and specify
with respect to which randomness we take expectations. In fact, when we consider
local weak convergence of random graphs, we have two sources of randomness: the
choice of the root and the randomness of the graphs. All these are made rigorous in
Section 6.4.

6.2.3. Examples
We consider examples of directed random graphs, for which we prove LWC and

find the limiting random graph. Thus, PageRank in these models converges to PageR-
ank on the limiting graph. The following theorem makes this precise for several ran-
dom graph models that have been studied in the literature. For precise definitions of
the models, as well as the proof, we refer to Section 6.6.

Theorem 6.2.4 (Examples of convergence). The following models converge in the directed
local weak sense:

(1) the directed configuration model converges in probability;
(2) the continuous-time branching processes converge almost surely;
(3) the directed preferential attachment model converges in probability.

As a consequence, for these models there exists a limiting PageRank distribution, and the
convergence holds as specified.
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6.3. Directed local weak convergence

Remark 6.2.5 (Power-law lower bound). The directed preferential attachment model
and continuous-time branching processes both have constant out-degree. Therefore,
they satisfy the condition in Remark 6.2.2. Thus, their limiting PageRank distribu-
tions are stochastically bounded from below by a multiple of the limiting in-degree
distributions. The directed configuration model satisfies Remark 6.2.2 whenever the
out-degree distribution has bounded support.

The proof of Theorem 6.2.4 is divided into three propositions, respectively Propo-
sition 6.6.2 for the directed configuration model, Proposition 6.6.5 for continuous-
time branching processes and Proposition 6.6.8 for the directed preferential attach-
ment model.

6.3. Directed local weak convergence
The construction of local weak convergence for directed graphs is similar to the

undirected case (see Section 4.1). It is necessary though to define an exploration pro-
cess to construct the neighborhood of the root and keep track of in- and out-degrees
of vertices. To keep notation as simple as possible, we use the same notation as in
Section 4.1, while here we refer to directed graphs. We start giving the definition of
rooted marked directed graphs:

Definition 6.3.1 (Rooted marked directed graph). Let G be a directed graph with vertex
set V (G) and edge set E(G). Let ∅ ∈ V (G) be a vertex called the root. Assume that for
every i ∈ V (G), the in-degree d(in)

i and the out-degree d(out)

i of the vertex i are finite. Assign
to every i ∈ V (G) an integer value m(out)

i called a mark, such that d(out)

i ≤ m(out)

i < ∞.
Denote the set of marks by M(G) = (m(out)

i )i∈V (G). We call the triplet (G,∅,M(G)) a
rooted marked directed graph.

To simplify notation in Definition 6.3.1, we will specify the marks only when nec-

1

2

3

4 1

2

3

4

Figure 6.2: Two examples of rooted marked directed graphs. The graph on the
left is considered with marks equal to the out-degree, while in the example on the
right we have assigned marks larger than the out-degree. The difference between
the mark and the out-degree of a vertex can be visualized as the number of arrows
starting at the vertex and pointing nowhere.
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6.3. Directed local weak convergence

essary. In simple words, a rooted marked directed graph is a locally finite directed
graph where one of the vertices is marked as root, and to every vertex we assign a
mark, which is larger than the out-degree of the vertex. If m(out)

i = d(out)

i we keep i

intact, and if m(out)

i − d(out)

i > 0 then we attach to i exactly m(out)

i − d(out)

i outgoing
arrows pointing nowhere. This is illustrated in Figure 6.2. We call a directed graph
with marks, without specifying the root, a marked graph.

Every directed graph can be seen as a rooted marked directed graph, with marks
equal to the out-degrees and a root picked from the set of vertices. In what follows,
sometimes we specify the marks, and sometimes we specify the out-degree and the
number of edges pointing nowhere.

As in the undirected case, we are not interested in the precise labeling of the ver-
tices. This leads us to define the notion of isomorphism, including the presence of
marks:

Definition 6.3.2 (Isomorphism of rooted marked directed graphs). Two rooted marked
directed graphs (G,∅,M(G)) and (G′,∅′,M(G′)) are isomorphic if and only if there exists
a bijection γ : V (G)→ V (G′) such that

(1) (i, j) ∈ E(G) if and only if (γ(i), γ(j)) ∈ E(G′);
(2) γ(∅) = ∅′;
(3) for every i ∈ V (G), m(out)

i = m(out)

γ(i) .

We write (G,∅,M(G)) ∼= (G′,∅′,M(G′)) to denote that the two marked rooted graphs
(G,∅,M(G)) and (G′,∅′,M(G′)) are isomorphic.

Notice the similarity with Definition 4.1.2. Denote the space of rooted marked
directed graphs by G?, which is again a quotient space with respect to the equivalence
given by isomorphisms. We now define the exploration process that identifies the
neighborhood of the root, see Figure 6.3 for an example.

Definition 6.3.3 (Directed root neighborhood). Consider a rooted marked directed graph
(G,∅,M(G)). Fix k ∈ N. The k-neighborhood of root ∅ is a rooted marked directed
graph (U≤k(∅),∅,M(U≤k(∅))) constructed as follows:

B for k = 0, U≤k(∅) is a graph with a single vertex ∅, no edges, and mark m(out)

∅ ;

B for k > 0, consider ∅ as active, and proceed recursively as follows, for h = 1, . . . , k:

(1) for every vertex active at step h− 1, explore the incoming edges to the vertices in
the opposite direction, finding the source of the edges;

(2) label the vertices that were active to be explored, and label the vertices just found
as active, but only if they were not already found in the exploration process;

(3) for every vertex i (explored or active), assign the mark m(out)

i to it, that is equal
to the mark in the original graph (G,∅,M(G)). In addition, draw every edge
between two vertices that are already found in the exploration process;

(4) if there are no more active vertices, then stop the process.
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6.3. Directed local weak convergence

1

2

3

4

5

6

7

1 3

4

56

3 5 6

Figure 6.3: Example of two root neighborhoods in the same graph above, where
we have assigned marks equal to the out-degrees, with a different choice of the
root. The root on the left is vertex 4, and vertex 3 on the right. We explore the
root neighborhood up to the maximum possible distance. Notice that the graph
is only partially explored in this example.

In this way we explore the incoming neighborhood of the root. As stated in Defini-
tion 6.3.3, we explore edges in the opposite direction: if (j, i) ∈ E(G) is a directed
edge, then the exploration process goes from vertex i to vertex j. Notice that it is
possible that we do not explore the entire graph in this process, because we do not
explore edges in all directions. This is different to the undirected case, where, for k
large enough, we always explore the entire graph (if connected).

We can define a local distance dloc on G? as in but this time for rooted marked
directed graphs, using Definitions 6.3.2 and 6.3.3. Next we define a local distance on
G∗:

Definition 6.3.4 (Local distance). For any two rooted marked directed graphs (G,∅,M(G))

and (G′,∅′,M(G′)), define

dloc ((G,∅,M(G)), (G′,∅′,M(G′))) =
1

1 + κ
,

where

κ = inf {k ≥ 0: (U≤k(∅),∅,M(U≤n(∅))) 6∼= (U≤n(∅′),∅′,M(U≤k(∅′)))} ,
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6.3. Directed local weak convergence

and the inf of the empty set is defined as +∞. The function dloc is called local distance on
G∗.

As in the undirected setting (see Definition 4.1.3), the function dloc tells us up to
what distance the neighborhoods of two roots in two different rooted marked directed
graphs are isomorphic. However, in the directed setting the function dloc is not a
metric on G?, but it is a pseudonorm. We can prove the following result:

Lemma 6.3.5 (Pseudonorm). The space (G∗, dloc) is complete and separable.

Proof. The function dloc is positive by definition, and obviously symmetric. It is not
hard to prove that it satisfies the triangle inequality. In fact, consider three elements
(G1,∅1), (G2,∅2), (G3,∅3) ∈ G∗, where we omit for simplicity the sets of marks.
Then, assume that, for i, j ∈ {1, 2, 3}, i 6= j,

dloc((Gi,∅i), (Gj ,∅j)) =
1

1 +Ni,j
,

where N1,2, N2,3, N1,3 are integer numbers (possibly∞). Then we need to show that

1

1 +N1,3
≤ 1

1 +N1,2
+

1

1 +N2,3
.

Without loss of generality, suppose N1,2 ≤ N2,3. This implies

U≤N1,2
(∅1) ∼= U≤N1,2

(∅2) ∼= U≤N1,2
(∅3),

which implies that U≤N1,2(∅1) ∼= U≤N1,2(∅3), by composition of isomorphisms. As
a consequence, N1,3 ≥ N1,2, which means

dloc((G1,∅1), (G3,∅3)) ≤ 1

1 +N1,2

≤ dloc((G1,∅1), (G2,∅2)) + dloc((G2,∅2), (G3,∅3)),

which is the triangular inequality. Notice that this holds even when N1,2 =∞.
We now have to prove that every Cauchy sequence in (G∗, dloc) has a limiting

point. We use a modification of an argument in [68, Appendix A, Proposition 2].
Consider a Cauchy sequence (Gn,∅n)n∈N ⊆ G∗. We need to prove that there exists
(G,∅) ∈ G∗ such that

dloc ((Gn,∅n), (G,∅))→ 0.

In this case, since dloc is a pseudometric, the limit is not unique. At first consider a
subsequence (Gni ,∅ni)i∈N such that

dloc
(
(Gni ,∅ni), (Gni+1

,∅ni+1
)
)
≤ 2−i. (6.3.1)

Assume that
dloc

(
(Gni ,∅ni), (Gni+1

,∅ni+1
)
)

211



6

Lo
ca

l
w

ea
k

co
nv

er
ge

nc
e

fo
r

Pa
ge

Ra
nk

6

Lo
ca

l
w

ea
k

co
nv

er
ge

nc
e

fo
r

Pa
ge

Ra
nk

6

Lo
ca

l
w

ea
k

co
nv

er
ge

nc
e

fo
r

Pa
ge

Ra
nk

6

Lo
ca

l
w

ea
k

co
nv

er
ge

nc
e

fo
r

Pa
ge

Ra
nk

6

Lo
ca

l
w

ea
k

co
nv

er
ge

nc
e

fo
r

Pa
ge

Ra
nk

6

Lo
ca

l
w

ea
k

co
nv

er
ge

nc
e

fo
r

Pa
ge

Ra
nk

6

Lo
ca

l
w

ea
k

co
nv

er
ge

nc
e

fo
r

Pa
ge

Ra
nk

6.3. Directed local weak convergence

is not definitively zero with respect to i, otherwise there is nothing to prove, since a
limiting (G,∅) is given by the equivalence class of the neighborhood of the root. We
can assume that dloc

(
(Gni ,∅ni), (Gni+1 ,∅ni+1)

)
> 0 for every i ∈ N. If it is not, then

we can restrict ourselves to a subsequence of (ni)i∈N where this is true.
For every δ > 0 there exists i0 = i0(δ) andN0 = N0(δ) such that, for every i, j ≥ i0,

U≤N0
(∅ni) ∼= U≤N0

(∅nj ). In fact, fix δ > 0 such that
∑∞
i=i0

2−i ≤ δ. Then, by the
triangle inequality, assuming i < j,

dloc
(
(Gni ,∅ni), (Gnj ,∅nj )

)
≤

j∑

h=i

dloc
(
(Gnh ,∅nh), (Gnh+1

,∅nh+1
)
)

≤
j∑

h=i

2−h ≤
∞∑

h=i0

2−h ≤ δ.

This means that there exists N0 > −1 + 1/δ such that, for any i, j > i0,

U≤N0(∅ni) ∼= U≤N0(∅nj ). (6.3.2)

We can construct the limiting (G,∅) up to radius N as follows: fix δ > 0 such that
N0(δ) > N . Then, define U≤N (∅) as U≤N (∅ni0+1

). Clearly, for N ′ > N , by this
definition we have U≤N (∅) ⊆ U≤N ′(∅) in the subgraph sense (compatibly with the
marks). In particular, we can define (G,∅) up to any radius N from the root.

Fix now ε > 0. By definition, there exists i0(ε) andN(ε) such that, for every i > i0,
we have U≤N (∅) ∼= U≤N (∅ni), which implies that dloc ((G,∅), (Gni ,∅ni)) < ε. This
proves that for the subsequence (ni)i∈N we have a limit in G∗.

We can finish proving that the whole sequence converges. Fix ε > 0. Then there
exists n0(ε) such that dloc ((Gn,∅n), (Gm,∅m)) < ε/2 for every n,m > n0, and there
exists i0(ε) such that, for every i > i0, ni > n0 and dloc ((G,∅), (Gni ,∅ni)) < ε/2. As
a consequence for any n > n0 and i > i0, by the triangle inequality,

dloc ((G,∅), (Gn,∅n)) ≤ dloc ((G,∅), (Gni ,∅ni))
+ dloc ((Gn,∅n), (Gni ,∅ni)) < ε.

The reason that dloc is not a metric is that two rooted marked directed graphs can
be at distance 0 without being isomorphic. This is due to the fact that the edges can
be explored only in one direction, possibly leaving parts of the graph unexplored,
as mentioned above. If the explorable parts or incoming neighborhoods of two graphs
from the roots are isomorphic, then the two rooted marked directed graphs are at
distance zero, while these graphs still might not be isomorphic. An example is given
in Figure 6.4.

Knowing that (G∗, dloc) is a complete pseudometric space, we can give the follow-
ing definition:
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6.3. Directed local weak convergence
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Figure 6.4: Example of two rooted marked directed graphs that are at distance
zero, but are not isomorphic. The distance between the two graphs is zero since
the explorable parts of the graphs from vertex 4 (including vertices 1–6) are iso-
morphic, but there exists no isomorphisms between the two graphs.

Definition 6.3.6 (Space G̃∗). Define the equivalence relation ∼∗ on G∗ as follows: two ele-
ments (G1,∅1,M(G1)) and (G2,∅2,M(G2)) are ∼∗-equivalent if and only if

dloc((G1,∅1,M(G1)), (G2,∅2,M(G2))) = 0.

Denote the quotient space by G̃∗.

On the space G̃∗, dloc is a metric. As a consequence, (G̃∗, dloc) is a Polish space. We
point out that by (G,∅,M(G)) ∈ G̃∗ we denote an equivalence class of the relation
given by ∼∗. Denote the explorable neighborhood of the root by U∞(∅), i.e., the
(possibly infinite) subgraph of a rooted marked directed graph that it is possible to
explore from the root. Then

dloc((G1,∅1,M(G1)), (G2,∅2,M(G2))) = 0 ⇐⇒ U∞(∅1) ∼= U∞(∅2).

Any equivalence class in G̃∗ is composed by directed marked rooted graphs whose
neighborhoods of the root are isomorphic. Heuristically, everything that it is in the
part of the graph that is not explorable from the root does not have any influence on the
incoming neighborhood of the root. This means that any function on G̃∗ is well defined if
and only if it is a function of the neighborhood of the root.

As in the undirected sense, we denote

P(G) =
1

|V (G)|
∑

i∈V (G)

δ(G,i,M(G)). (6.3.3)

When we consider a sequence of marked graphs ((Gn,M(Gn)))n∈N, we denoteP(Gn)

by Pn. From the definition, we have that P(G) is a probability on G̃?, that assigns a
uniformly chosen root to the marked directed finite graph. Notice that the mark set
is fixed. In fact, the triplet (G, i,M(G)) is mapped to the equivalence class of the
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6.3. Directed local weak convergence

explorable neighborhood U∞(i) of i in G with the same set of marks.

Definition 6.3.7 (Local weak convergence - directed). Consider a sequence of marked
directed graphs (Gn,M(Gn))n∈N. We say that (Gn,M(Gn)) converges in the directed
local weak sense to a probability P on G̃∗ if, for any bounded continuous function f : G̃∗ →
R,

EPn [f ] −→ EP [f ],

where EPn and EP denote the expectation with respect to Pn and P .

This definition is similar to Definition 4.1.4 in the undirected case. As the next
step, we will give a criterion for the convergence of a sequence of marked directed
graphs:

Theorem 6.3.8 (Criterion for directed LWC). Let (Gn)n∈N be a sequence of directed graphs.
For every n ∈ N, assign to Gn marks equal to the out-degrees. Then, Gn converges in the
directed LW sense to P if, for every fixed k ∈ N and finite directed rooted marked graph
(H, y,M(H)),

Pn (U≤k(∅n) ∼= (H, y,M(H)))

=
1

n

∑

i∈[n]

1 {U≤k(i) ∼= (H, y,M(H))} −→ P (U≤k(∅) ∼= (H, y,M(H))) .

Proof. The proof follows the same argument as in Theorem 4.1.5. For (H, y,M(H)) ∈
G̃∗, the functions 1{U≤k(∅) ∼= (H, y,M(H))} uniquely identify the explorable part
of the marked directed rooted graphs we are considering, which implies we identify
the equivalence class that forms the limiting element in G̃∗.

The reader can observe that, once the notion of exploration process and isomor-
phisms in the directed case are introduced, the construction of the definition of local
weak convergence for directed graphs is the same as in the undirected case. With the
presence of marks we are able to keep track of the out-degree of vertices, while we
explore the incoming edges.

We define now the notion of convergence for random graphs. Notice that, con-
sidering marked graphs, the marks can be random as well as the graph:

Definition 6.3.9 (Directed LWC (random graphs)). Consider a sequence of directed graphs
with vertex marks (Gn,M(Gn))n∈N. Let P be a probability on G̃∗. Then:

(1) We say that (Gn,M(Gn))n∈N converges in distribution in the directed LW sense
to P if, for any bounded continuous function f : G̃∗ → R,

E [EPn [f ]] −→ EP [f ] ;

(2) We say that (Gn,M(Gn))n∈N converges in probability in the directed LW sense
to P if, for any bounded continuous function f : G̃∗ → R,

EPn [f ]
P−→ EP [f ] ;
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6.4. Convergence of PageRank

(3) We say that (Gn,M(Gn))n∈N converges almost surely in the directed LW sense
to P if, for any bounded continuous function f : G̃∗ → R,

EPn [f ]
P−a.s.−→ EP [f ] ,

where EPn denotes the expectation with respect the random choice of the root, EP the expec-
tation with respect to P and E the expectation with respect to the randomness of the graph
sequence.

Since we are interested in sequences of random graphs, we give the definition of
LW convergence only for random graphs:

Similarly to the undirected case, we want to state a criterion for the convergence of
random graphs. Again, we consider a sequence of directed random graphs (Gn)n∈N,
where we assign marks equal to the out-degrees:

Theorem 6.3.10 (Criterion of convergence for random graphs). Consider a sequence of
directed random graphs (Gn)n∈N, and assign marks equal to the out-degrees. Then,

(1) Gn converges in distribution in the directed LW sense to P if, for every fixed k ∈ N
and finite directed marked rooted graph (H, y,M(H)),

E
[

1

n

∑

i∈[n]

1 {U≤k(i) ∼= (H, y,M(H))}
]
−→ P (U≤k(∅) ∼= (H, y,M(H))) ;

(2) Gn converges in probability in the directed LW sense to P if, for every fixed k ∈ N
and finite directed marked rooted graph (H, y,M(H)),

1

n

∑

i∈[n]

1 {U≤k(i) ∼= (H, y,M(H))} P−→ P (U≤k(∅) ∼= (H, y,M(H))) ;

(3) Gn converges almost surely in the directed LW sense to P if for every fixed k ∈ N
and finite directed marked rooted graph (H, y,M(H)),

1

n

∑

i∈[n]

1 {U≤k(i) ∼= (H, y,M(H))} P−a.s.−→ P (U≤k(∅) ∼= (H, y,M(H))) ,

where P denotes the law of the random sequence (Gn)n∈N.

The proof of Theorem 6.3.10 follows from Theorem 6.3.8.

6.4. Convergence of PageRank
The main result on PageRank is Theorem 6.2.1. It states that, for a locally weakly

convergent sequence of directed random graphs (Gn)n∈N, there exists a random vari-
able R∅ such that the PageRank value of a uniformly chosen vertex RVn(n) satisfies

RVn(n)
d−→ R∅.
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6.4. Convergence of PageRank

The random variable R∅ is defined in Proposition 6.4.3 below. Notice that, even
though local weak convergence is defined in terms of local properties of the graph,
it is sufficient for the existence of the limiting distribution for a global property such
as PageRank.

The existence ofR∅ for a sequence (Gn)n∈N is assured by the convergence in distri-
bution in the local weak sense. If (Gn)n∈N converges in probability (or almost surely),
then the fraction of vertices whose PageRank value exceeds a fixed value r > 0 con-
verges in probability (or almost surely) to a deterministic value.

6.4.1. Finite approximation of PageRank
Consider a directed graph Gn, and define the matrix Q(n), where Q(n)i,j =

ei,j/d
(out)

i , for ei,j the number of directed edges from i to j. For c ∈ (0, 1], the PageR-
ank vector π(n) = (π1, . . . , πn) is the unique solution of

π(n) = π(n) [cQ(n)] +
1− c
n

1n and
n∑

i=1

πi = 1, (6.4.1)

where c ∈ (0, 1) and 1n is the vector of all ones of size n. We are interested in the
graph-normalized version of PageRank, soR(n) = nπ(n), which is just the PageRank
vector rescaled with the size of the graph. The vectorR(n) satisfies

R(n) = R(n) [cQ(n)] + (1− c)1n. (6.4.2)

Denote Idn the identity matrix of size n. We can solve (6.4.2) to obtain the well-known
expression [8, 13, 23, 45]

R(n) = (1− c)1n [Idn − cQ(n)]
−1
. (6.4.3)

In practice, the inversion operation on the matrix Idn− cQ(n) is inefficient, therefore,
power expansion is used to approximate the matrix in (6.4.3) (see e.g. [8]), as

[Idn − cQ(n)]
−1

=

∞∑

k=0

ckQ(n)k.

Notice that Q(n)ki,j > 0 if and only if there exists a path of length exactly k from i to
j, possibly with repetition of vertices and edges. Define, for k ∈ N,

pathi(k) = {directed path ` = (`0, `1, `2, . . . , `k = i)} .

With this notation, we can write, for i ∈ [n],

Ri(n) = (1− c)


1 +

∞∑

k=1

ck
∑

`∈pathi(n)

k∏

h=1

e`h,`h+1

d+
`h


 , (6.4.4)
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6.4. Convergence of PageRank

while the N th finite approximation of PageRank is

R(N)

i (n) = (1− c)


1 +

N∑

k=0

ck
∑

`∈pathi(n)

k∏

h=1

e`h,`h+1

d+
`h


 . (6.4.5)

Heuristically, the PageRank formulation in (6.4.4) includes paths of every length,
while the N th approximation in (6.4.5) discards the paths of length N + 1 or higher.
In particular, for every i ∈ [n], R(N)

i (n) ↑ Ri(n). One can write the difference between
the PageRank and its finite approximation as

∣∣Ri(n)−R(N)

i (n)
∣∣ = (1− c)1n

∞∑

k=N+1

(cQ(n))ki . (6.4.6)

We can prove that we can approximate the PageRank value of a randomly chosen ver-
tex by a finite approximation with an exponentially small error, that is independent
of the size of the graph:

Lemma 6.4.1 (Finite iterations). Consider a directed graph Gn and denote a uniformly
chosen vertex by Vn. Then,

E
[
RVn(n)−R(N)

Vn
(n)
]
≤ cN+1,

where the bound is independent of n.

Proof. Consider (6.4.6) for a uniformly chosen vertex. We have

E
[
RVn(n)−R(N)

Vn
(n)
]

=
1− c
n

n∑

i=1

∞∑

k=N+1

[
1n(cQ(n))k

]
i
. (6.4.7)

We writeQ(n)kj,i to denote the element (j, i) of the matrixQ(n)k. We write

[
1n(cQ(n))k

]
i

= ck
n∑

j=1

Q(n)kj,i. (6.4.8)

Substituting (6.4.8) in (6.4.7), we obtain

E
[
RVn(n)−R(N)

Vn
(n)
]

= (1− c)
∞∑

k=N+1

ck
1

n

∑

i,j

Q(n)kj,i.

SinceQ(n)k is a (sub)stochastic matrix,

n∑

i=1

Q(n)kj,i ≤ 1
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6.4. Convergence of PageRank

for every j ∈ [n]. It follows that

E
[
RVn(n)−R(N)

Vn
(n)
]
≤ (1− c)

∞∑

k=N+1

ck
1

n

n∑

i=1

1 = (1− c)
∞∑

k=N+1

ck = cN+1.

Lemma 6.4.1 means that we can approximate the PageRank value of a uniformly
chosen vertex with an arbitrary precision in a finite number of iterations, that is in-
dependent of the graph size. This is the starting point of our analysis.

6.4.2. PageRank on marked directed graphs
In this section we show how the graph-normalized version of PageRank of a uni-

formly chosen vertex in a sequence of directed graphs (Gn)n∈N admits a limiting
distribution whenever Gn converges in the local weak sense to a distribution P . The
advantage is that such a limiting distribution is expressed in terms of functions of P .

The first step is to write PageRank as functions of marked directed rooted graphs
that are bounded and continuous with respect to the topology given by dloc. In this
way, by the definition of local weak convergence, we can pass to the limit and find
the limiting distribution.

Fix n ∈ N. Consider a marked rooted directed graph (G,∅,M(G)) ∈ G? of size n.
Denote as before, for k ∈ N,

path∅(k) = {directed paths ` = (`0, `1, `2, . . . , `k = ∅)} ,

i.e., the set of directed paths in (G,∅,M(G)) of length exactly k + 1 whose end-
point is the root ∅. It is clear that this set is completely determined by U≤k(∅) in
(G,∅,M(G)).

Consider a directed marked graph (Gn,M(Gn)), where we consider marks equal
to the out-degrees. We have that

R(N)

Vn
(n) =

∑

i∈[n]

1{Vn=i}(1− c)


1 +

N∑

k=1

∑

π∈pathi(k)

k∏

h=1

c
eπh,πh+1

d(out)
πh




=: R(N)[(Gn, Vn,M(Gn))],

(6.4.9)

where the last term in (6.4.9) is a function of a marked rooted graph, evaluated on
(Gn, Vn,M(Gn)), with Vn a uniformly chosen root. In particular, we can see the N th
approximation of PageRank as a function of the marked rooted graph. We call the
function R(N) : G̃? → R the root N -PageRank.

Clearly, the root N -PageRank R(N) is a function of U≤N (∅) only. It depends in
fact on the vertices, edges and marks that are considered when exploring the graph
from the root up to distance N . Notice that, since the dependence on the marked
directed rooted graph is given only by U≤k(∅), the function R(N) is well defined on
any equivalence class in G̃?.
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6.4. Convergence of PageRank

In addition, the functionR(N) is continuous with respect to the topology generated
by dloc. In fact, since R(N) depends only on the root neighborhood up to distance N ,
whenever two elements (G,∅,M(G)) and (G′,∅′,M(G′)) are at distance less than
1/(1 + N), their roots neighborhoods are isomorphic up to distance N + 1, which
implies that R(N)[(G,∅,M(G))] = R(N)[(G′,∅′,M(G′))].

The problem is that R(N) is not bounded, so LWC does not assure that we can pass
to the limit. To resolve this, we introduce a different type of function:

Definition 6.4.2 (Root N -PageRank tail). Fix N ∈ N. For r > 0, define Ψr,N : G̃? →
{0, 1} by

Ψr,N [(G,∅,M(G))] := 1 {R(N) [(G,∅,M(G))] > r} .
We call the function Ψr,N the root N -PageRank tail at r.

The function Ψr,N is clearly bounded, and it depends only on the neighborhood
of the root ∅ up to distance N through the function R(N). This means that, for any
r > 0, Ψr,N is continuous.

Since the rootN -PageRank on G̃? represents theN th approximation of PageRank
on directed graphs, it follows that

EPn [Ψr,N ] =
1

n

∑

i∈[n]

1
{
R(N)

i (n) > r
}
,

i.e., EPn [Ψr,N ] is the empirical fraction of vertices inG such that theN th approxima-
tion of PageRank exceeds r. In particular, for every r ≥ 0, if Gn → P in distribution,

P
(
R(N)

Vn
(n) > r

)
= E


 1

n

∑

i∈[n]

1
{
R(N)

i (n) > r
}

 −→ P

(
R(N)

∅ ≥ r
)
, (6.4.10)

while for convergence in probability (or almost surely), the limit in (6.4.10) exists in
probability (or almost surely). Consider the sequence of random variables (R(N)

∅ )N∈N,
where

R(N)

∅ := R(N)[(G,∅,M(G))],

where (G,∅,M(G)) is a random directed rooted graph with law P . From (6.4.10), it
follows that R(N)

Vn
(n)→ R(N)

∅ in distribution.
We have just proved that, for a sequence of directed graphs (Gn)n∈N that con-

verges locally weakly to P , any finite approximation of the PageRank value of a uni-
formly chosen vertex converges in distribution to a limiting random variable, which
is given by a function of P .

6.4.3. The limit of finite root ranks
Assume that the sequence (Gn)n∈N of directed graphs converges to a directed

rooted marked graph (G,∅,M(G)) with law P . In principle, (G,∅,M(G)) can be an
infinite directed rooted marked graph. Because of this, we cannot simply take the
limit as N → ∞ of the sequence (R(N)

∅ )N∈N, where ∅ is the root of (G,∅,M(G)),
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6.4. Convergence of PageRank

because the PageRank algorithm is not defined on an infinite graph. Nevertheless, if
P is a LW limit of some sequence of directed graphs, it admits a such limit:

Proposition 6.4.3 (Existence of limiting root rank). Let P be a probability on G̃?. If P is
the LW limit in distribution of a sequence of marked directed graphs (Gn)n∈N, then there exists
a random variable R∅ with EP [R∅] ≤ 1, such that P-a.s. R(N)

∅ → R∅. As a consequence,
P(R∅ <∞) = 1.

Proof. Clearly, the sequence (R(N)

∅ )N∈N is P-a.s. increasing. Therefore, the almost
sure limit R∅ = limN→∞R(N)

∅ exists. This is independent of the fact that P is a LW
limit.

By LW convergence, we know that R(N)

Vn
(n) → R(N)

∅ in distribution. For every
N ∈ N, by Fatou’s Lemma we can bound

EP
[
R(N)

∅
]
≤ lim inf

n∈N
E
[
R(N)

Vn
(n)
]
≤ lim inf

n∈N
E [RVn(n)] = 1,

where the second bound comes from the fact that any N -finite approximation of
PageRank is less than the actual PageRank value, and the fact that the graph-normalized
PageRank has expected value 1. Since (R(N)

∅ )N∈N is increasing, we conclude that there
exists z ≤ 1 such that

EP [R∅] = lim
N→∞

EP
[
R(N)

∅
]

= z.

6.4.4. Proof of Theorem 6.2.1
We start with implication (a) of Theorem 6.2.1. We want to prove that RVn(n)

converges to R∅ in distribution. So, for every r ≥ 0 and ε > 0 there exists M(ε) ∈ N
such that, for every n ≥M(ε),

|P (RVn(n) > r)− P (R∅ > r)| ≤ ε. (6.4.11)

We can write, using the triangle inequality,

|P (RVn(n) > r)− P (R∅ > r)| ≤
∣∣P (RVn(n) > r)− E

[
Pn
(
R(N)

∅ > r
)]∣∣

+
∣∣E
[
Pn
(
R(N)

∅ > r
)]
− P

(
R(N)

∅ > r
)∣∣

+
∣∣P
(
R(N)

∅ > r
)
− P (R∅ > r)

∣∣ .
(6.4.12)

We show that (6.4.11) holds by proving that every term in the left hand side of (6.4.12)
can be bounded by ε/3.

By Lemma 6.4.1 we can bound the first term with cN+1 (independently of n).
Therefore, defining N1 = logc(ε/3) and taking N > N1, the first term is bounded
by ε/3.

For the last term, we apply Proposition 6.4.3, so we can findN2 = N2(ε) ∈ N such
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6.4. Convergence of PageRank

that, for every N ≥ N2,
∣∣P
(
R(N)

∅ > r
)
− P (R∅ > r)

∣∣ ≤ ε/3.

SetN0(ε) = max(N1, N2). For anyN ≥ N0, both the first and third terms are bounded
by ε/3. Using LW convergence in distribution, we can find M(N0, ε) ∈ N such that,
for every n ≥ M , the second term is bounded by ε/3. This completes the proof of
statement (a).

For statement (b), we need to show that, for every r > 0, as n→∞,

1

n

n∑

i=1

1{Ri(n) > r} P−→ P (R∅ > r) .

For every N ∈ N ∪ {∞} and r ≥ 0, we denote the empirical fraction of vertices
whose N th approximation of PageRank in Gn exceeds r by

R̄(n; r,N) :=
1

n

n∑

i=1

1{R(N)

i (n) > r}.

IfN =∞, then R̄(n; r,N) = R̄(n; r) is the empirical tail distribution of PageRank. By
LW convergence in probability of (Gn)n∈N, we know that, for everyN ∈ N and r > 0,

R̄(n; r,N)
P−→ P

(
R

(N)
∅ > r

)
. (6.4.13)

Fix r > 0, ε > 0. We need to show that for every δ > 0 there exists n0(δ) ∈ N such
that, for any n ≥ n0, P

(∣∣R̄(n; r)− P(R∅ > r)
∣∣ ≥ ε

)
≤ δ. We can write, for N to be

fixed,

P
(∣∣R̄(n; r)− P(R∅ > r)

∣∣ ≥ ε
)
≤1

ε

[
E[R̄(n; r)− R̄(n; r,N)]

+ E[|R̄(n; r,N)− P(R(N)

∅ > r)|]

+ |P(R(N)

∅ > r)− P(R∅ > r)|
]
.

(6.4.14)

Similarly to (6.4.12), we can find n and N large enough such that every term in the
right-hand side of (6.4.14) is less than δε/3.

For the first term, we apply Lemma 6.4.1, so we can find N1 large enough such
that cN1+1 ≤ δε/3. For the last term, we apply Proposition 6.4.3, so we can find N2

such that the last term is less than δε/3.

Take N0 = max{N1, N2}. Then, by (6.4.13) and the fact that {R̄(n; r,N)}n∈N is
uniformly integrable (since R̄(n; r,N) ≤ 1), we can find n0 big enough such that

E[|R̄(n; r,N)− P(R(N)

∅ > r)|] ≤ δε/3
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6.5. Generalized PageRank

for all n > n0, N > N0. As a consequence, we conclude that, for any n ≥ n0,

P
(∣∣R̄(n; r)− P(R∅ > r)

∣∣ ≥ ε
)
≤ δ,

which proves the convergence in probability.

6.4.5. Undirected graphs
Undirected graphs are in fact a special case of directed graphs, where each link is

reciprocated. Theorem 6.2.1 does not make any assumption concerning link recipro-
cation, and thus it simply holds for undirected graphs as well. In that case, we may
use the standard notion of the LWC for undirected graphs, as described in Section 4.1,
and it is not hard to see that our notion of directed LW convergence reduces to this.

Let us explain why the special case of undirected graphs deserves our attention.
Indeed, usually, undirected graphs are easier to analyze than directed ones. For ex-
ample, the adjacency matrix of an undirected graph is symmetric, which implies
many nice properties. However, PageRank is based on directed paths, and its analysis
is greatly simplified when these paths do not contain cycles, with high probability.

For example, PageRank can be written as a product of three terms, one of which
is the expected number of visits to i, starting from i, by a simple random walk, which
terminates at each step with probability c [14]. Now notice that in undirected graphs,
each edge can be traversed in both directions, hence, a path starting at imay return to
i in only two steps, so the average number of visits to iwill be a random variable that
depends on the entire neighborhood. In contrast, e.g., in the directed configuration
model, returning to i is highly unlikely. This makes PageRank in undirected graphs
hard to analyze, and only few results have been obtained so far (see e.g. [12]).

Our result simultaneously covers the directed and the undirected cases because
we only state the equivalence between the behavior of PageRank on a graph and on its
limiting object. In this setting, the difficulties that arise in the analysis of PageRank
on undirected graphs are, in fact, ‘postponed’ to the (undirected) limiting random
graph.

6.5. Generalized PageRank

6.5.1. Universality of finite approximations
In this section we will show that Theorem 6.2.1 extends to generalized PageRank

as given in (6.1.4). We will assume that Cj ≤ c < 1, j ∈ [n] are bounded away from
one and that the vector Bn = (Bi)i∈[n] consists of i.i.d. random variables that are
independent of the graph Gn, and we let E(B1) = 1 − c to keep the argument close
to the basic case.

In this generalized setting, the proof of Lemma 6.4.1 goes through almost without
changes. Let A be a matrix such that Aij(n) = Cjeji/D

(out)

j . Recall that Qij(n) =
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6.5. Generalized PageRank

eji/D
(out)

j . Since Ci ≤ c < 1 holds for all i ∈ [n],

E
[
RVn(n)−R(N)

Vn
(n)
]

= E
[

1

n

n∑

i=1

∞∑

k=N+1

[
Bn(A(n))k

]

i

]

≤ E
[

1

n

n∑

i=1

∞∑

k=N+1

ck
[
BnQ(n)k

]

i

]

= E
[

1

n

n∑

i=1

∞∑

k=N+1

ck
n∑

j=1

BjQ(n)kj,i

]

=

n∑

j=1

∞∑

k=N+1

ck (1− c) 1

n

n∑

i=1

Q(n)kj,i ≤ cN+1,

where in the final equality we have used the independence of Bj and the graph Gn
(and thusQ(n)).

Furthermore, Proposition 6.4.3 goes through without changes. The only differ-
ence is that additional randomness arises through the random (Ci)i∈[n] and (Bi)i∈[n].
Therefore, for generalized PageRank, the first and the last terms in (6.4.12) and (6.4.14)
can be bounded exactly as before. This is natural because the first and the last terms
approximate the PageRank in, respectively, original graph and the limiting graph,
by finite iterations, and this approximation does not depend on the random (Ci)i∈[n]

and (Bi)i∈[n] under quite general assumptions.
It remains to analyze the second term in (6.4.12) and (6.4.14). This is more tricky

because this term bounds the difference between the finite random graph and the
limiting object. Difficulties arise since (Ci)i∈[n] and (Bi)i∈[n] are associated to vertex
labels in [n]. This information is lost in the LW limit, therefore additional assumptions
are necessary to prove that the second term in (6.4.12) and (6.4.14) is small. We next
discuss two possible settings how LWC can be used in the generalized PageRank
setting.

6.5.2. Independent (Ci)i∈[n] and (Bi)i∈[n]
First, we assume that (Ci)i∈[n] and (Bi)i∈[n] are independent of the graph se-

quence (Gn)n∈N, and (Ci)i∈[n] and (Bi)i∈[n] are each i.i.d. sequences that are indepen-
dent of each other. In this case, on the limiting marked rooted graph (G,∅,M(G))

we assign to every vertex v ∈ V (G) independent samples Cv and Bv . In this case, for
(H, y,M(H)) a finite marked rooted graph, since (Ci)i∈[n] and (Bi)i∈[n] are indepen-
dent of the graph,

1

n

∑

i∈[n]

P
(
R(N)

i (n) > r | U≤N (i) ∼= (H, y,M(H))
)
P (U≤N (i) ∼= (H, y,M(H)))

= P(R̂(N)(H, y,M(H)) > r)
1

n

∑

i∈[n]

P (U≤N (i) ∼= (H, y,M(H))) ,

(6.5.1)
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6.5. Generalized PageRank

where now 1{R̂(N)(H, y,M(H)) > r} is a function of the finite structure given by
(H, y,M(H)), where the randomness is only given by a finite number of (Ci)i∈[n]

and (Bi)i∈[n]. We note that (6.5.1) only assumes that (Ci)i∈[n] and (Bi)i∈[n] are in-
dependent of the graph sequence (Gn)n∈N. In order to be able to define the local-
weak limit, though, we further need the independence and i.i.d. assumptions on
(Ci)i∈[n] and (Bi)i∈[n]. Then, a similar expression to (6.5.1) holds for the limiting
graph (G,∅,M(G)). As a consequence, the second term in (6.4.12) can be written as

∣∣∣E
[
Pn
(
R(N)

∅ > r
)]
− P

(
R(N)

∅ > r
) ∣∣∣

=
∑

(H,y,M(H))

P(R̂(N)(H, y,M(H)) > r)

×
∣∣∣∣E[Pn(U≤N (∅) ∼= (H, y,M(H)))]− P(U≤N (∅)(H, y,M(H)))

∣∣∣∣ (6.5.2)

≤
∑

(H,y,M(H))

∣∣∣∣E[Pn(U≤N (∅) ∼= (H, y,M(H)))]− P(U≤N (∅)(H, y,M(H)))

∣∣∣∣

= 2dTV(EPn,P),

whereEPn is the distribution given byE[Pn(·)], and the last term is the total variation
(TV) distance between P and EPn. Since G̃? is discrete, convergence in distribution
implies convergence in TV distance, so that 2dTV(EPn,P) = o(1). The fact that the
term P(R̂(N)(H, y,M(H)) > r) is the same for the graph sequence and the limit comes
from the fact we are looking at expectations of i.i.d. random variables on a given
structure (H, y,M(H)).

The bound in (6.5.2) is enough to conclude that the generalized PageRank with
(Ci)i∈[n] and (Bi)i∈[n] independent of the graph, and themselves independent i.i.d.
sequences, converges in distribution. Here no further assumptions are made on the
distributions C and B. Such result does not apply to the convergence in probability,
since (6.5.1) is an expectation with respect to the random graph.

In this setting, forN ∈ N, the limiting distributionR(N)

∅ of theN th approximation
of PageRank is again a weighted sum of all paths of length at mostN that ends at the
root ∅. In particular, R(N)

∅ is given by

R(N)

∅ =

N∑

k=0

∑

`∈path∅(k)

B`k

k∏

h=1

C`h
m(out)

`h

.

where now a path ` ∈ path∅(k) contributes with the weight B`k
∏k
h=1 C`h/m

(out)

`h
,

and again, all the appearing (Ci)i≥1 and (Bi)i≥1 are independent i.i.d. sequences.

6.5.3. Extended directed LW convergence
The advantage of (6.5.1) is that, once the structure (H, y,M(H)) is fixed, the prob-

ability that PageRank exceeds r is given by an expectation in terms of (Ci)i∈[n] and
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6.5. Generalized PageRank

(Bi)i∈[n]. Equation (6.5.1) does not extend to convergence in probability, since we are
taking expectations. In fact, when considering convergence in probability, we have
to prove that the second term in (6.4.14) converges to zero in probability. With a sim-
ilar argument as the one that we have used to get (6.5.1), for any (H, y,M(H)) finite
marked directed rooted graph,

1

n

∑

i∈[n]

1{R(N)

i (n) > r, U≤N (i) ∼= (H, y,M(H))}

− P
(
R(N)

∅ > r, U≤N (∅) ∼= (H, y,M(H))
)
.

Here, the convergence in probability of the graph sequence is not enough to conclude
that the sum over all possible finite structures (H, y,M(H)) is small.

In order to prove this convergence in probability, we need to include (Ci)i∈[n] and
(Bi)i∈[n] as additional marks in the definition of directed marked rooted graphs. In
the exploration process described in Definition 6.3.3, to every explored vertex v we
assign a markm(out)

v that is equal to the mark of v in the starting graph. Assuming that
(Ci)i∈[n] and (Bi)i∈[n] take discrete values, we can assign a multi-mark (m(out)

v , Cv, Bv)

to vertices found in the exploration process. Here, we then need no independence
assumptions on (Ci)i∈[n] and (Bi)i∈[n] w.r.t. the graphGn, but beware that the notion
of multi-marked LWC has become significantly stronger.

This leads to an extended definition of local weak convergence on directed multi-
marked rooted graphs, where now the definition of isomorphism (as in Definition
6.3.2) includes the preservation of the multi-marks. More precisely, an isomorphisms
between two directed multi-marked rooted graphs (G,∅,M(G)) and (G′,∅′,M(G′))
is a map γ : G → G′ such that it satisfies Definition 6.3.2 and , for every v ∈ V (G),
Cγ(v) = Cv and Bγ(v) = Bv .

It is easy to verify that the construction of the extended directed local weak conver-
gence is the same as the one presented in Section 6.3, where now instead of marks we
consider multi-marks. As a consequence, the family of functions (1{R(N)

∅ > r})N∈N
is continuous with respect to the topology of the extended directed LW convergence,
therefore (6.4.14) follows immediately. In the next section, we formalize these two
different approaches to LWC.

6.5.4. Formulation of the result for generalized PageRank
We can summarize the results discussed for the generalized PageRank in the fol-

lowing theorem:

Theorem 6.5.1 (Asymptotic generalized PageRank distribution). Let (Gn)n∈N be a se-
quence of directed random graphs. Consider the generalized PageRank as in (6.1.4), where, for
j ∈ [n], Aj = Cj/D

(out)

j , where Cj ’s are random variables bounded by c < 1 and the random
vector (Bi)i∈[n] satisfies E(B1) = 1− c and is independent ofGn. Then, the following holds:

(a) Assume that (Ci)i∈[n] are i.i.d., (Ci)i∈[n] is independent of (Bi)i∈[n],(Ci)i∈[n] and
(Bi)i∈[n] are independent i.i.d. sequences that are independent of Gn. If Gn converges
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6.6. Examples of directed local weak convergence

LW in distribution in the sense of Definition 6.3.9, then there exists a distribution R∅

such that RVn(n)
d→ R∅;

(b) Assume that (Ci)i∈[n] and (Bi)i∈[n] take discrete values. Then, Theorem 6.2.1 holds
for the extended LWC for multi-marked directed graphs defined in Section 6.5.3.

Theorem 6.5.1(a) is given by the independent setting in Section 6.5.2. This method
is simpler, in the sense that it does not require additional constructions than the ones
used to prove Theorem 6.2.1. On the other hand, it gives a weaker result, since the
convergence holds in distribution. Also, we need to assume that (Ci)i∈[n] are i.i.d.
and they are independent of (Bi)i∈[n] and the graph Gn. In this case, it is not clear
what the appropriate conditions are under which LWC in probability holds.

Theorem 6.5.1(b) depends on the extended LWC notion of Section 6.5.3. The re-
formulation of LWC requires less assumptions, in the sense that now we allow the
distribution (D(in), D(out), C,B) to have dependent components. The disadvantage is
that, to incorporate (Ci)i∈[n] and (Bi)i∈[n] in the definition of isomorphism, we re-
quire them to take discrete values, and the notion of LWC is stronger. This might
not be suitable for applications. We next remark about a possible way to avoid this
unnatural discreteness assumption:

Remark 6.5.2 (Weighted rooted graphs). Benjamini, Lyons and Schramm [19] con-
sider undirected LWC in the case of weighted edges. In particular, they define a differ-
ent metric on the space of weighted rooted graphs, that includes the distance between
edge weights. This construction can be extended to vertex weights, and it would lead
to a different approach to investigate generalized PageRank. This requires additional
work, for example due to the fact that the metric in [19] is not a simple extension of
the metrics that we consider in Sections 4.1 and 6.3. We refrain from studying this
further.

6.6. Examples of directed local weak convergence

6.6.1. Directed configuration model
The directed configuration model (DCM) is a version of the configuration model

defined in Section 3.1.1, where half-edges are labeled as in- and out-half-edges. In
this setting, DCMn is a directed graph of size n ∈ N with prescribed in- and out-
degree sequences. We denote the in-degree sequence by D(in)

n = (D(in)

1 , . . . , D(in)
n )

and the out-degree sequence by D(out)

n = (D(out)

1 , . . . , D(out)
n ). We call (D(out)

n ,D(in)

n )

the bi-degree sequence of the graph.
For a precise description of DCM, we refer to [47, 46]. The graph is defined as

follows: let n ∈ N be the size of the graph, and fix a bi-degree sequence (D(out)

n ,D(in)

n ).
The graph is generated by fixing a free outgoing half edge and we pair it uniformly
at random with a free incoming half edge. In this process, self loops and multiple
edges are allowed. Until the pairing is made uniformly, it is not relevant in which
order we choose the free outgoing half-edge. In this setting, the total in-degree and
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6.6. Examples of directed local weak convergence

the out-degree of the graph have to be equal. In the case of random in- and out-
degrees, this is a rare event. The algorithm presented in [47] generates an admissible
bi-degree sequence in a finite number of steps, and approximates the initial degree
distributions.

Condition 6.6.1 (Bi-degree regularity conditions). Let (D(out)

n ,D(in)

n ) be a bi-degree se-
quence. Then, the bi-degree regularity conditions are as follows:

(a) There exists a distribution (p(h, l))h,l∈N such that, for every h, l ∈ N, as n→∞,

1

n

∑

i∈[n]

1{D(out)
i =h,D

(in)
i =l} −→ p(h, l); (6.6.1)

(b) Denote by (D(out),D(in)) a pair of random variables with distribution (p(h, l))h,l∈N as
in (6.6.1). Then, as n→∞,

1

n

∑

i∈[n]

h1{D(out)
i =h} −→ E [D(out)] ,

1

n

n∑

i=1

l1{D(in)
i =l} −→ E [D(in)] , (6.6.2)

and E [D(in)] = E [D(out)];

(c) For Ln = D(out)

1 + · · ·+D(out)
n , as n→∞,

1

n

∑

i∈[n]

h

Ln
1{D(out)

i =h,D
(in)
i =l} −→

k

E[D(out)]
p(h, l) =: p?(h, l). (6.6.3)

Denote by (D?(out),D(in)) a pair of random variable with distribution (p?(h, l))h,l∈N.

Condition 6.6.1(a) implies that the empirical bi-degree distribution converges to
a limiting distribution given by (p(h, l))h,l∈N as in (6.6.1). Condition 6.6.1(b) implies
that both the in- and out-degree distributions have finite first moment, equal to the
one of (p(h, l))h,l∈N. Condition 6.6.1(c) implies that the out-degree size-biased distri-
bution converges to a limiting distribution (p?(h, l))h,l∈N as in (6.6.3).

With Condition 6.6.1, we are ready to state the convergence result on DCM:

Proposition 6.6.2. Consider a directed configuration model DCMn such that the bi-degree
sequence (D(out)

n ,D(in)

n ) satisfies Condition 6.6.1. Then, DCMn converges in probability
in the directed LW sense to the law P of a marked Galton-Watson tree, where

(1) edges are directed from children to parents;
(2) the mark and the in-degree of the root are distributed as (D(out),D(in)) as in (6.6.1);
(3) the mark and the in-degree of any other vertex are independent across the tree vertices,

and are distributed according to (D?(out),D(in)) as in (6.6.3).

The proof of Proposition 6.6.2 is an adaptation of the proof for the undirected case
as presented in [87, Section 2.2.2]. The proof is divided in two parts. First, we use a
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6.6. Examples of directed local weak convergence

coupling argument to prove that DCMn converges in distribution to the prescribed
limit. The second part consists in the application of the second moment method on
the number of vertices in DCMn with a fixed finite neighborhood structure, to prove
that the number of such vertices is concentrated around its mean.

We start with the coupling argument:

Lemma 6.6.3 (LW convergence of DCM in distribution). Fix a finite marked rooted tree
(H, y,M(H)). Under the assumptions of Proposition 6.6.2 there exists a marked Galton-
Watson tree GW(n) such that

P
(
U≤k(Vn) ∼= (H, y,M(H))

)
= P

(
GW

(n)
≤k
∼= (H, y,M(H))

)
+ o(1), (6.6.4)

where GW
(n)
≤k denote the first k generations of GW(n). Further, GW(n) → P locally weakly

in distribution, where P is the limit in Proposition 6.6.2. As a consequence, DCMn → P
locally weakly in distribution.

Proof. We prove that, for every finite k ∈ N and n large enough, the k-neighborhood
of a uniform chosen vertex in DCMn has approximately the same distribution as the
first k generations of a marked Galton-Watson tree GW(n), where marks and offspring
distributions in GW(n) depends on n. Define (pn(h, l))h,l∈N and (p?n(h, l))ih,l∈N by

pn(h, l) =
1

n

∑

i∈[n]

1{D(out)
i =h,D

(in)
i =l},

p∗n(h, l) =
1

n

∑

i∈[n]

h

Ln
1{D(out)

i =h,D
(in)
i =l},

(6.6.5)

where Ln = D(out)

1 + · · ·+D(out)
n .

The coupling is constructed as follows: the mark and the degree of the root both
in U≤k(Vn) and in GW(n) are chosen according to the distribution pn as in (6.6.5).
Therefore, U≤0(Vn) and the 0-generation of GW(n) (which both consist only of the
root and its mark) are the same.

We have to construct U≤k(Vn) and GW
(n)
≤k at the same time. Conditioning on

U≤k−1(Vn) and GW
(n)
≤k−1, the new exploration step from U≤k−1(Vn) to U≤k(Vn) is

made as follows: assuming that during the exploration up to distance k − 1 we have
created t edges, take the first unpaired incoming half-edge xt+1, that we pair to a
uniformly chosen outgoing half-edge that is not paired yet. We choose this outgoing
half-edge yt+1 uniformly at random among all outgoing half-edges, independently
from the previously matched half-edges.

Let Wt+1 be the vertex in DCMn to which yt+1 is incident. Then, in GW
(n)
≤k we

assign to a new vertex mark and in-degree equal to (D(out)

Wt+1
, D(in)

Wt+1
). Notice that in

this case the pair (D(out)

Wt+1
, D(in)

Wt+1
) is distributed as p?n given in (6.6.5).

In U≤k−1(Vn) we have to be careful since the half-edge yt+1 might have already
been paired. If yt+1 has not been paired yet, then we pair xt+1 to yt+1 to create an
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6.6. Examples of directed local weak convergence

edge. If yt+1 has already been paired, then we draw a new outgoing half-edge y′t+1

chosen uniformly from the unpaired ones.
We do this procedure for every ingoing half-edge xt+1, . . . , xt+s, where s is the

number of unpaired ingoing half-edges in U≤k−1(Vn). We can have differences be-
tween the exploration process in DCMn and GW(n). Differences can happen in two
ways:

(1) the outgoing half-edge that we select to create a new edge has already been
paired;

(2) the outgoing half-edge that we select to create a new edge has not been paired
yet, but it is incident to a vertex already found in the exploration process.

These two contributions have small probability. In fact, after creating t edges, the
probability that we select an outgoing half-edge that is already used is equal t/Ln,
where Ln is the total number of outgoing edges. This means that the probability that
in the first s steps we use the same out-going half-edge twice is bounded by

s∑

t=0

t

Ln
=
s(s+ 1)

2Ln
. (6.6.6)

Thanks to Condition 6.6.1(b),Ln is of ordern, so the expression in (6.6.6) is o(1) when-
ever s = o(

√
n). The probability of selecting a vertex i when choosing an outgoing

half-edge is D(out)

i /Ln. Then, the probability that a vertex i is selected at least twice
when t edges are created is bounded by

t(t+ 1)

2

(D(out)

i )2

L2
n

(6.6.7)

Using (6.6.7) and the union bound, the probability that a vertex is selected twice when
T edges are created is bounded by

t(t+ 1)

2

n∑

i=1

(D(out)

i )2

L2
n

≤ t(t+ 1)

2Ln
D(out)

max, (6.6.8)

where D(out)
max is the maximum out-degree in the bi-degree sequence. In this case, the

expression in (6.6.8) is o(1) when s = o(
√
n/D(out)

max). Further, D(out)
max under Condition

6.6.1 is o(n).
The two bounds in (6.6.6) and (6.6.8) together holds for s = s(n), with s(n)→∞

sufficiently slowly. Since any finite tree H is made by a finite number of edges S,
we can take n large enough such that s(n) ≥ S. This implies (6.6.4). Note that from
(6.6.4) it directly follows that

P
(
U≤k(Vn) ∼= GW

(n)
≤k

)
= 1− o(1).

Finally, since the distributions pn and p?n converge respectively to p and p? as defined
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6.6. Examples of directed local weak convergence

in Condition 6.6.1, and (6.6.4) holds for any finite marked rooted tree (H, y,M(H)),
we have proved that DCMn converges locally weakly in distribution to P .

Next we prove the convergence in probability, using the second moment method
on the number of vertices in DCMn with a prescribed neighborhood (H, y,M(H)).
Lemma 6.6.4 (Second moment method). Fix k ∈ N and a finite structure (H, y,M(H))

for the root neighborhood. Let Nk(H, y,M(H)) be the number of vertices i in DCMn such
that U≤k(i) ∼= (H, y,M(H)). Then, as n→∞,

1

n2
E
[
Nk(H, y,M(H))2

]
−→ P (U≤k(∅) ∼= (H, y,M(H)))

2
. (6.6.9)

Proof. We can rewrite

E
[
Nk(H, y,M(H))2

]

n2
= P

(
U≤k(V 1

n ) ∼= (H, y,M(H)), U≤k(V 2
n ) ∼= (H, y,M(H))

)
,

where V 1
n and V 2

n are two vertices chosen uniformly at random in DCMn. Since we
fix k ∈ N, we can take n large enough such that, with high probability, V 2

n is not a
vertex found in the exploration up to distance 2k from V 1

n . Then we can rewrite the
probability in the right-hand side of (6.6.9) as

P
(
U≤k(V 1

n ) ∼= (H, y,M(H)), U≤k(V 2
n ) ∼= (H, y,M(H)), V 2

n 6∈ U≤2k(V 1
n )
)

+ o(1),

where the factor 2k comes from the fact that we look at the structure (H, y,M(H)) for
the two neighborhoods when they are disjoint. With a similar argument to the one
just used, since k is fixed,

P
(
U≤k(V 1

n ) ∼= (H, y,M(H)),V 2
n 6∈ U≤2k(V 1

n )
)
−→

P
(
U≤k(∅) ∼= (H, y,M(H))

)
. (6.6.10)

We now use the fact that, conditioning on the existence of a tree in DCMn, the prob-
ability to have a second tree disjoint from the first one is equal to have a tree in a
different configuration model with different size and bi-degree distribution. More
precisely, conditioning on {U≤k(V 1

n ) ∼= (H, y,M(H)), V 2
n 6∈ U≤2k(V 1

n )}, we want to
evaluate the probability of having a second tree U≤k(V 2

n ) ∼= (H, y,M(H)), disjoint
from U≤k(V 1

n ) ∼= (H, y,M(H)). We have that

P
(
U≤k(V 2

n ) ∼= (H, y,M(H))
∣∣U≤k(V 1

n ) ∼= (H, y,M(H)), V 2
n 6∈ U≤2k(V 1

n )
)

= P
(
Û≤k(V̂ 2

n ) ∼= (H, y,M(H)), ĵ 6∈ Û≤k(V̂ 2
n )
)
,

(6.6.11)

where Û≤k(V̂ 2
n ) is the k-neighborhood of a vertex V̂ 2

n chosen uniformly at random in
a different configuration model D̂CMn, and ĵ is a particular vertex in D̂CMn whose
characteristics are specified below.
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6.6. Examples of directed local weak convergence

The vertices set and bi-degree sequence of D̂CMn are defined as follows:

(1) if i 6∈ U≤k(V 1
n ), then i is a vertex in D̂CMn with the same in- and out-degree

(D(out)

i , D(in)

i );
(2) if i ∈ U≤k(V 1

n ), then i is not present in D̂CMn;
(3) define an additional vertex ĵ in D̂CMn, with in- and out-degree (D̂(out)

j , D̂(in)
j),

where D̂(out)
j equals the sum of the unpaired outgoing half-edges in U≤k(V 1

n ),
and D̂(in)

j equals the number of unpaired ingoing half-edges in U≤k(V 1
n ). We

point out that Û≤k(V̂ 2
n ) needs to avoid ĵ.

Notice that the unpaired incoming half-edges inU≤k(V 1
n ) are incident only to vertices

at distance k from the root, while the unpaired outgoing half-edges are incident to all
vertices in U≤k(V 1

n ). We have that D̂CMn is a graph with n− |U≤k(V 1
n )|+ 1 vertices,

and a different bi-degree sequence.
The graph D̂CMn is then created by pairing an incoming half-edge to a uniformly

chosen outgoing half-edge, as usual as in the regular DCMn. The probability to ob-
serve a structure in D̂CMn that is disjoint from the vertex ĵ is exactly the same as in the
regular DCMn, conditioning on the structure of U≤k(V 1

n ). This explain the equality
in (6.6.11).

It is immediate to verify that the bi-degree sequence of D̂CMn satisfies Condition
6.6.1, since we modify a negligible fraction of vertices (recall that k is fixed). As a
consequence,

P
(
Û≤k(V̂ 2

n ) ∼= (H, y,M(H))
)
−→ P

(
U≤k(∅) ∼= (H, y,M(H))

)
. (6.6.12)

Using together (6.6.10) and (6.6.12), we complete the proof of (6.6.9).

DCM with independent in- and out-degrees. In [46] the limiting distribution of
PageRank in DCM has been obtained when the size-biased in- and out-degrees are
independent:

p?(h, l) =
h

E[D(out)]
P (D?(out) = h)P (D(in) = l) .

Notice that D(out) and D(in) can, in general, be dependent, that is, D(in) may have a
different distribution conditioned on the event {D(out) 6= 0}, because the vertices with
zero out-degrees do not contribute in PageRank of other vertices.

The local weak convergence for this case follows from [46, Lemma 5.4], hence,
our Theorem 6.2.1 provides an alternative argument for the existence of the limiting
PageRank distribution. It has been proved in [46], under some technical assumptions,
that in the limit the PageRank is distributed as

R d
=

N∑

i=1

c

D?(out)

i

R?i + (1− c), (6.6.13)
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6.6. Examples of directed local weak convergence

where R? are independent realizations of the endogenous solution of the stochastic
fixed-point equation

R? d
=

N?∑

i=1

c

D?(out)

i

R?i + (1− c). (6.6.14)

The recursion (6.6.14) has been studied in a number of papers, see [101, 162], and
further references in [46]. The argument in [46] is more general, in fact the authors
consider generalized PageRank as solution of a more general equation than (6.6.14),
where the (1−c) is replaced by a random variable B. In particular, ifD(in) is regularly
varying with a tail heavier than the tail of B, then the limiting PageRankR follows a
power law with the same exponent as the in-degree D(in).

6.6.2. Inhomogeneous random graphs
In the directed inhomogeneous random graphs, each vertex i receives an in-weight

W (in)

i and an out-weightW (out)

i . There is a directed edge from vertex i to vertex j with
probability w(n)

ij , which depends on W (out)

i and W (in)

j . Lee and Olvera-Cravioto [110]
study PageRank in the class of inhomogeneous random graphs that satisfy the as-
sumption

w
(n)
ij = min

{
1,
W (out)

i W (in)

j

θ n
(1 + φij(n))

}
,

where φij(n) satisfies some technical conditions, and is in fact vanishing as n → ∞
for most natural models. This formulation includes Erdős-Rényi model, the Chung-
Lu model, the Poissonian random graph and the generalized random graph. For a
detailed analysis of the properties of such directed graphs we refer to [39].

LWC for this class of graphs follows directly from [110, Theorem 3.6] under gen-
eral conditions, including that the in- and out-weights are allowed to be dependent.
Hence, our results imply that PageRank converges in this model as well, to the PageR-
ank of the limiting random graph.

In the case when the in- and out-weights are asymptotically independent, it is
proved in [110] that the PageRank converges to the attracting endogenous solution
of stochastic recursion (6.6.14). In particular, a power-law distribution of in-weights
implies the power-law distribution of PageRank.

6.6.3. Directed CTBP trees
CTBPs, as defined in in Section 2.1, are typically seen as undirected trees. The

trees defined by CTBPs can be easily seen as directed trees, by assuming that edges
are directed from children to parents. With this remark we can formulate the conver-
gence result:

Proposition 6.6.5 (LWC for CTBPs trees). Consider a supercritical and Malthusian birth
process (ξt)t≥0. Denote the corresponding CTBP by ξ. Let T (t) be the directed random tree
defined by ξ at time t, where edges are directed from children to parents. Then, on the event
{|T (t)| → ∞}, T (t) converges P-a.s. in the LW sense to the law of T (Tα∗), where
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6.6. Examples of directed local weak convergence

(1) all marks are 1;
(2) edges are directed from children to parents;
(3) Tα∗ is an exponentially distributed random variable with parameterα∗ (the Malthusian

parameter of the CTBP).

Proof. First of all, at every t ∈ R+, T (t) is a directed finite tree. We can equivalently
prove the result on the discrete sequence (Tn)n∈N, where Tn = T (τn), for (τn)n∈N the
sequence of birth times of the CTBP.

Denote the vertices in Tn by their birth order, which means that the root of Tn in
the sense of CTBP is vertex 1. First of all, notice that, for every i ∈ [n] and N ∈ N,
theN neighborhood U≤N (i) in the directed marked rooted graphs (Tn, i, 1) is just the
subtree rooted at i composed by the descendants of i only up to generation N (from
i). Notice that every vertex has out-degree 1 except for vertex 1 since it has out-degree
0.

What we need to prove is that, for any finite directed rooted tree (H, y) of depth
N and with mark 1 for every vertex, we have, as n→∞,

1

n

∑

i∈[n]

1 {U≤N (i) ∼= (H, y)} P−a.s.−→ P (U≤N (∅) ∼= (H, y)) , (6.6.15)

where U≤N (∅) is the N -neighborhood of the root ∅ in the random tree T (Tα∗). For
every i ∈ [n] the indicator function inside the expectation satisfies the definition of
random characteristic, since it is a bounded function that, for every individual i in
the branching population, depends only on the birth time τi and on the randomness
associated to i and its descendants. As a consequence, the result follows by (2.1.4).

This result resembles the subtree counting result in [152, Theorem 2]. Notice that
the limiting rooted graph in Proposition 6.6.5 is finite with probability 1. This is rather
different than the undirected settings, where typically the limiting rooted graph is
infinite when considering a sequence of graphs with growing size.

Remark 6.6.6 (Non-recursive property of PageRank). the behavior of PageRank is
often investigated starting from the recursive distributional equation in (6.1.4). In
particular, the solution of (6.1.4) is constructed using a weighted Galton-Watson tree.
This construction is based on the fact that the subtree rooted at every vertex is again
a Galton-Watson tree with the same distribution.

In some cases, the construction is adapted to allow the root to have different de-
gree and mark, but all other vertices have i.i.d. characteristics. As an example, we
refer to [46], where PageRank on directed configuration model is investigated (in the
independent case, see Section 6.6.1).

When we consider CTBPs, we have proved that the graph-normalized PageRank
converges to the PageRank value of the root in a tree with distribution T (Tα∗). In par-
ticular, the processes {(ξt)xt≥0}x∈U that define T (Tα∗) are i.i.d., but they are evaluated
at random dependent times (Tα∗ − τx)x∈U . Thus, the solution based on a weighted
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6.6. Examples of directed local weak convergence

Galton-Watson tree does not apply to the PageRank in CTBPs, as the CTBP is inho-
mogeneous.

6.6.4. Preferential attachment model
We can split PAMs in two cases, according to the fact that we assumem = 1 orm >

1. In the case m = 1, we can use embedding birth processes as in Definition 2.1.14
(see also Remark 2.1.15) to interpret a CTBP as the continuous-time version of the
PAM with out-degree 1, then the directed local weak limit is given by Proposition
6.6.5.

For m ≥ 2, PAM is no longer a tree, so we have to use the knowledge of the
undirected LW limit as in Chapter 4. In fact, we can define a directed version of LW
limit of PAMs, the Pólya point tree. The directed version of the Pólya point tree is the
following:

Definition 6.6.7 (Directed Pólya point tree). The directed Pólya point tree is an infinite
marked rooted random tree constructed as follows: let m ≥ 1 and δ > −m be parameters for
a preferential attachment model (PAt(m, δ))t∈N. Let

(a) χ = (m+ δ)/(2m+ δ), φ = (1− χ)/χ;
(b) Γin denote a Gamma distribution with parameters m+ δ and 1;

Vertices in the graph have three characteristics:

(a) a label i in the Ulam-Harris set;
(b) a position x ∈ [0, 1];
(c) a positive number γ called strength;

In addition, every vertex has markm (in the sense of Definition 6.3.3). Assign to ∅ a position
x∅ = Uχ, where U is a uniform random variable on [0, 1], and a strength γ∅ ∼ Γin. Set ∅
as unexplored. Then, recursively over the elements in the set of unexplored vertices, according
to the shortlex order:

(1) let i denote the current unexplored vertex;
(2) assign to i a strength value γi ∼ Γin;
(3) let ui1, . . . , uiD(in)

i
be the randomD(in)

i points given by an independent Poisson process
on [ui, 1] with density

ρi(x) = γi
φxφ−1

xφi
.

(4) draw an edge from each one of the vertices i1, . . . , id(in)

i to i;
(5) set xi1, . . . , xid(in)

i
unexplored and i as explored.

Definition 6.6.7 is obtained by the definition of the undirected Pólya point tree in
Section 4.3.1, where the exploration of the neighborhood of a vertex is limited to the
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6.6. Examples of directed local weak convergence

exploration of younger vertices. In other words, the exploration from a vertex i is made
only over vertices with index j > i.

With the definition of the directed Pólya point tree, we can state the directed LWC
result for PAMs:

Proposition 6.6.8 (LW limit of directed PAM). Fixm ≥ 1 and δ > −m. Let (PAt(m, δ))t∈N
be a PAM (of any type (a)-(f) listed in Section 4.3). Denote by (DPAt(m, δ))t∈N the di-
rected version of (PAt(m, δ))t∈N, where edges are directed from young to old vertices. Then,
DPAt(m, δ) converges in probability in the directed LW sense to the directed Pólya point
tree as in Definition 6.6.7.

The proof of Proposition 6.6.8 follows immediately from [21, Theorem 2.2] and
the fact that the exploration process in DPAt corresponds to exploring only younger
vertices.

Remark 6.6.9 (Non-recursive property of PageRank). Similarly to Remark 6.6.6 about
CTBPs, we point out that the PageRank value of the root of a directed Pólya point tree
does not satisfy the recursive property that is necessary to consider it as a solution of
(6.1.4). Notice that the Poisson point process assigned to vertex i in Definition 6.6.7
is defined on the interval [xi, 1], where the position xi depends on the ancestors (in
the Ulam-Harris sense) of i.

Another way to interpret this is that the family of Poisson point process in Defi-
nition 6.6.7 is composed by i.i.d. processes parametrized by the positions of vertices,
that are dependent random variables. This suggests that the positions in the Pólya
point tree play the same role as the birth times in CTBPs.
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6.6. Examples of directed local weak convergence
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7
Fitness and aging in PA trees

Content and structure of the chapter
This chapter is mainly focused on the condition under which a continuous-
time branching process (CTBP) can generate a random tree where the
in-degree distribution obeys a power law. In particular, moving from
observations of citation networks as discussed in Section 1.8, we focus
our attention on the setting where the rate at which an individual pro-
duces children depends on the number of previous children, the age of
the individual itself and an individual characteristic that we call fitness.
In particular, we identify the conditions that are necessary to generate
power-law distributions.
The chapter is structured as follows: in Section 7.1 we describe our set-
ting and we introduce the main results of the chapter, i.e., the character-
ization of in-degree limiting distributions of CTBPs. More precisely, in
Section 7.1.1 we describe the model, in Section 7.1.2 we describe the re-
sult in the presence of age-dependence but no fitness, and Section 7.1.3
the result with both age-dependence and fitness. Section 7.2 contains a
discussion about necessary conditions on the fitness distribution. Sec-
tion 7.3 contains the proof of the existence of the limiting degree distri-
bution for a CTBP. In Section 7.4.1 and Section 7.4.3 a detailed asymptotic
analysis of the limting degree distributions are presented. The novel re-
sults in this chapter are based on [73].

7.1. Introduction and main results
In this chapter we introduce the effect of aging and fitness in CTBP populations,

giving rise to directed trees. Our model is motivated by the study of citation networks,
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7.1. Introduction and main results

which can be seen as directed graphs. Trees are the simplest case in which we can
see the effects of aging and fitness.

Previous works have shown that PAMs can be obtained from PA trees by col-
lapsing, and their general degree structure can be quite well understood from those
in trees. For example, PAMs with fixed out-degree m ≥ 2 and affine PA function
f(k) = k + δ can be defined through a collapsing procedure, where a vertex in the
multigraph is formed by m ∈ N vertices in the tree (see [85, Section 8.2]). In this
case, the limiting degree distribution of the PAM preserve the structure of the tree
case ([85, Section 8.4], [22, Section 5.7]). In Chapter 2 we have shown that this rela-
tion between the tree case and m ≥ 2 holds also in continuous-time. This explains
the relevance of the tree case results for the study of the effect of aging and fitness in
PAMs.

7.1.1. A CTBP model
The starting idea of our model of citation networks is that, given the history of the

process up to time t, the rate λ(i, k, t) of an individual i of age t and k children is

λ(i, k, t) = ηifkg(t), (7.1.1)

where fk is a non-decreasing PA function of the degree, g is an integrable function of
time, and η is a positive random variable called fitness. Therefore, the likelihood to
generate children increases by having many children and/or a high fitness, while it
is reduced by age.

Recalling Figure 1.22, we assume that the PA function f is affine, so fk = ak + b.
In terms of a PA scheme, this implies

P (a paper cites another with past k citations | past) ≈ n(k)(ak + b)

A
,

where n(k) denotes the number of papers with k past citations, and A is the normal-
ization factor. Such behavior has already been observed by Redner [147] and Barabási
et al. [102].

In general we assume that the aging function g is integrable. In fact, we start
with the fact that the age of cited papers is lognormally distributed (recall Figure
1.23). By normalizing such a distribution by the average increment in the number
of citations of papers in the selected time window, we identify a universal function
g(t). Such function can be approximated by a lognormal shape with field-dependent
parameters. In particular, from the procedure used to define g(t), we observe that

g(t) ≈ number of references to year t
number of papers of age t

total number of papers considered
total number of references considered ,

which means in terms of PA mechanisms that

P (a paper cites another of age t | past) ≈ n(t)g(t)

B
,
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7.1. Introduction and main results

where B is the normalization factor, while this time n(t) is the number of papers of
age t. This suggests that the citing probability depends on age through a lognormal
aging function g(t), which is integrable. This is one of the main assumptions in our
model, as we discuss in Section 1.9.2.

The presence of fitness assures that the behavior of the degree (number of cita-
tions) of individuals is different from individual to individual (recall Figure 1.21).
In particular, as it is clear in the sequel, we will find that the most suitable case to
model citation networks is to consider fitnesses with unbounded support. In the cita-
tion networks perspective, viewing fitnesses as intrinsic potential of papers, there is
no maximum value for fitnesses, i.e., there is no maximum value to the potential attrac-
tiveness of a paper.

Goal and structure of the chapter. It is known from the literature [9, 22, 151, 152]
that CTBPs show power-law limiting degree distributions when the infinitesimal
rates of jump depend only on a sequence (fk)k∈N that is asymptotically linear. Our
main aim is to investigate whether power-laws can also arise in branching processes
that include aging and fitness.

The results in the present chapter are organized as follows. In Section 7.1.2, we
discuss the results for CTBPs with aging in the absence of fitness. In Section 7.1.3,
we present the results with aging and fitness. In Section 7.1.4, we specialize to fitness
with distributions with exponential tails, where we show that the limiting degree
distribution is a power law with a dynamic power-law exponent.

7.1.2. Results with aging without fitness
In this section, we focus on aging in PA trees in the absence of fitness. The aging

process can then be viewed as a time-changed stationary birth process (see Definition
2.1.14). A stationary birth process is a stochastic process (ζt)t≥0 such that, for h small
enough,

P (ζt+h = k + 1 | ζt = k) = fkh+ o(h).

In general, we assume that k 7→ fk is increasing. The affine case arises when fk =

ak + b with a, b > 0. By our observations in Figure 1.22, as well as related works
[102, 147], the affine case is a reasonable approximation for the attachment rates in
citation networks.

For a stationary birth process (ζt)t≥0, under the assumption that it is supercrit-
ical and Malthusian, the limiting degree distribution (pk)k∈N of the corresponding
branching process is given by

p(1)

k =
α∗

α∗ + fk

k−1∏

i=0

fi
α∗ + fi

.

For a more detailed description, we refer to Section 2.1.2. Branching processes de-
fined by stationary processes (with no aging effect) have a so-called old-get-richer ef-
fect, i.e, old vertices have high degree that keeps increasing. As this is not what we ob-

239



7

Fi
tn

es
s

an
d

ag
in

g
in

PA
tr

ee
s

7

Fi
tn

es
s

an
d

ag
in

g
in

PA
tr

ee
s

7

Fi
tn

es
s

an
d

ag
in

g
in

PA
tr

ee
s

7

Fi
tn

es
s

an
d

ag
in

g
in

PA
tr

ee
s

7

Fi
tn

es
s

an
d

ag
in

g
in

PA
tr

ee
s

7

Fi
tn

es
s

an
d

ag
in

g
in

PA
tr

ee
s

7

Fi
tn

es
s

an
d

ag
in

g
in

PA
tr

ee
s

7

Fi
tn

es
s

an
d

ag
in

g
in

PA
tr

ee
s

7.1. Introduction and main results

serve in citation networks (recall Figure 1.21), we want to introduce aging in the repro-
duction process of individuals. The aging process arises by adding age-dependence
in the infinitesimal transition probabilities:
Definition 7.1.1 (Aging birth processes). Consider a non-decreasing PA sequence (fk)k∈N
of positive real numbers and an aging function g : R+ → R+. We call a stochastic process
(ζ̄t)t≥0 an aging birth process (without fitness) when

(1) ζ̄0 = 0, and ζ̄t ∈ N for all t ∈ N;
(2) ζ̄t ≤ Ns for every t ≤ s;
(3) for fixed k ∈ N and t ≥ 0, as h→ 0,

P
(
ζ̄t+h = k + 1 | ζ̄t = k

)
= fkg(t)h+ o(h).

Aging processes are time-rescaled versions of the corresponding stationary pro-
cess defined by the same sequence (fk)k∈N. In particular, for any t ≥ 0, ζ̄t has the
same distribution as ζG(t), where G(t) =

∫ t
0
g(s)ds. For this reason, we denote an

aging birth process as (ζG(t))t≥0, assuming that G(t) =
∫ t

0
g(s)ds.

In general, we assume that the aging function is integrable, which means that
G(∞) :=

∫∞
0
g(s)ds < ∞. This implies that the number of children of a single in-

dividual in its entire lifetime has distribution ζG(∞), which is finite in expectation.
In terms of citation networks, this assumption is reasonable since we do not expect
papers to receive an infinite number of citations ever (recall Figure 1.20). Instead, for
the stationary process (ζt)t≥0 in Definition 2.1.14, we have that P-a.s. ζt →∞, so that
also the aging process diverges P-a.s. when G(∞) =∞.

For aging processes, the main result is the following theorem, proven in Section
7.3. In its statement, we rely on the Laplace transform of a function. For a precise
definition of this notion, we refer to Section 2.1:
Theorem 7.1.2 (Limiting distribution for aging branching processes). Consider an in-
tegrable aging function g and a PA sequence (fk)k∈N. Denote the corresponding aging birth
process by (ζG(t))t≥0. Then, assuming that (ζG(t))t≥0 is supercritical and Malthusian, the
limiting degree distribution of the branching process ζG defined by the birth process (ζG(t))t≥0

is given by

p(1)

k =
α∗

α∗ + fkL̂g(k, α∗)

k−1∏

i=0

fiL̂g(i, α∗)
α∗ + fiL̂g(i, α∗)

, (7.1.2)

whereα∗ is the Malthusian parameter of ζG. Here, the sequence of coefficients (L̂g(k, α∗))k∈N
appearing in (7.1.2) is given by

L̂g(k, α∗) =
L(P

(
ζG(·) = k

)
g(·))(α∗)

L(P
(
ζG(·) = k

)
)(α∗)

, (7.1.3)

where, for h : R+ → R, L(h(·))(α) denotes the Laplace transform of h.
Further, considering a fixed individual in the branching population, the total number of chil-
dren in its entire lifetime is distributed as ζG(∞), where G(∞) is the L1-norm of g.
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Figure 7.1: Examples of limiting degree distribution defined by a stationary
process (ζt)t≥0 with affine PA sequence (red lines), and two aging processes
(ζG1(t))t≥0 and (ζG2(t))t≥0 defined by the same PA sequence and two different
aging functions g1 and g2. Aging functions are the same as in Figure 1.24.

The limiting degree distribution maintains a product structure as in the stationary
case (see (2.1.10) for comparison). Unfortunately, the analytic expression for the prob-
ability distribution (p(1)

k )k∈N in (7.1.2) given by the previous theorem is not explicit.
In the stationary case, the form reduces to the simple expression in (2.1.10).

In general, the asymptotics of the coefficients (L̂g(k, α∗))k∈N is unclear, since it
depends both on the aging function g as well as the PA sequence (fk)k∈N itself in
an intricate way. In particular, we have no explicit expression for the ratio in (7.1.3),
except in special cases. In this type of birth process, the cumulative advantage given
by (fk)k∈N and the aging effect given by g cannot be separated from each other.

Numerical examples in Figure 7.1 show how aging destroys the power-law degree
distribution. In each of the two plots, the limiting degree distribution of a stationary
process with affine PA function gives a power-law degree distribution, while the pro-
cess with two different integrable aging functions does not.

In the examples we have used g(t) = e−λt and g(t) = (1 + t)−λ for some λ > 1,
and we observe the insensitivity of the limiting degree distribution with respect to
g. The distribution given by (7.1.2) can be seen as the limiting degree distribution of
a CTBP defined by the sequence (fkL̂g(k, α∗))k∈N. This suggests that fkL̂g(k, α∗) is
not asymptotically linear in k.

In Section 7.5.2, we investigate the two examples in Figure 7.1, showing that the
limiting degree distribution has exponential tails, a fact that we know in general just
as an upper bound (see Lemma 7.4.3).

In order to apply the general CTBP result in Theorem 2.1.11 below, we need to
prove that an aging process (ζG(t))t≥0 is supercritical and Malthusian. We show in
Section 7.3 that, for an integrable aging function g, the corresponding process is su-
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7.1. Introduction and main results

percritical if and only if

lim
t→∞

E
[
ζG(t)

]
= E

[
ζG(∞)

]
> 1. (7.1.4)

Condition (7.1.4) heuristically suggests that the process (ζG(t))t≥0 has a Malthusian
parameter if and only if the expected number of children in the entire lifetime of a
fixed individual is larger than one, which seems quite reasonable. In particular, such
a result follows from the fact that if g is integrable, then the Laplace transform is
always finite for every α > 0. In other words, since ζTα∗ has the same distribution as
ζG(Tα∗ ), E[ζTα∗ ] is always bounded by E[ζG(∞)]. This implies thatG(∞) cannot be too
small, as otherwise the Malthusian parameter would not exist, and the CTBP would
die out P-a.s..

The aging effect obviously slows down the birth process, and makes the limiting
degree distribution have exponential tails for affine PA function. One may wonder
whether the power-law degree distribution could be restored when (fk)k∈N grows
super-linearly instead. Here, we say that a sequence of (fk)k∈N grows super-linearly
when

∑
k≥1 1/fk < ∞ (see Definition 7.2.1). In the super-linear case, however, the

branching process is explosive, i.e., for every individual the probability of generating
an infinite number of children in finite time is 1. In this situation, the Malthusian
parameter does not exist, since the Laplace transform of the process is always infinite.
One could ask whether, by using an integrable aging function, this explosive behavior
is destroyed. The answer to this question is given by the following theorem:

Theorem 7.1.3 (Explosive aging branching processes for super-linear PA function).
Consider a stationary process (ζt)t≥0 defined by a super-linear sequence (fk)k∈N. For any
aging function g, the corresponding non-stationary process (ζG(t))t≥0 is explosive.

The proof of Theorem 7.1.3 is rather simple, and is given in Section 7.3.2. We inves-
tigate the case of affine PA function fk = ak+ b in more detail in Section 7.4.1. Under
a hypothesis on the regularity of the integrable aging function, in Proposition 7.4.2,
we give the asymptotic behavior of the corresponding limiting degree distribution.
In particular, as k →∞,

p(1)

k = C1
Γ(k + b/a)

Γ(k + 1)
e−C2kG(k, g)(1 + o(1)),

for some positive constants C1, C2. The term G(k, g) is a function of k, the aging
function g and its derivative. The precise behavior of such term depends crucially on
the aging function. Apart from this, we notice that aging generates an exponential
term in the distribution, which explains the two examples in Figure 7.1. In Section
7.5.2, we prove that the two limiting degree distributions in Figure 7.1 indeed have
exponential tails.

In addition to the general result on the degree distribution of CTBPs with affine f
and integrable g, we prove that such CTBPs satisfy the hypothesis of Theorem 2.2.2
(and Theorem 2.3.2) we presented in Chapter 2. We formulate the result as follows:
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7.1. Introduction and main results

Corollary 7.1.4 (Aging CBPs). Fix m ≥ 2, δ > −m, and define the sequence (k + 1 +

δ/m)k∈N. Denote the corresponding embedding birth process by (ξt)t≥0. Let g be an aging
function as in Definition 7.1.1, such that g(t) ≤ ḡ for some constant ḡ > 0 and for every
t ≥ 0. Assume that limt→∞ E[ξG(t)] > 1. Then, the CBP obtained by the CTBP defined by
the aging process satisfies Theorem 2.2.2 (and Theorem 2.3.2). As a consequence, the limiting
degree distribution (p(m)

k )k∈N satisfies

p(m)

k =
Γ(k +m+ δ)

Γ(k + 1)
e−Ck(1 + o(1)), (7.1.5)

where C = | log(1− e−
∫∞
0
g(t)dt)|.

In particular, it is possible to show that the transition probabilities of the discrete-
time version (CBP(m)

τ(n,j)
)n∈N,j∈[m] of a CBP defined by an aging process satisfies

P
(
n
j+1→ i | CBP(m)

τ(n,j)
, τ(n,j+1)

)
≈ (Di(τ(n,j)) + δ)g(τ(n,j+1) − τ(i,1))∑n

h=1(Dh(τ(n,j)) + δ)g(τ(n,j+1) − τ(h,1))
, (7.1.6)

where Di(t) denotes the total degree of vertex i in CBP(m)

t and the approximation
is due to the fact that we consider τ(i,1) as the birth time of all the m individuals
collapsed to generate vertex i. The expression in (7.1.6) for the attachment rule in the
presence of aging resembles the ones given in other works about aging in PAMs [75,
168, 173].

7.1.3. Results with aging and fitness
The analysis of birth processes becomes harder when we also consider fitness.

First of all, we define the birth process with aging and fitness as follows:

Definition 7.1.5 (Aging birth process with fitness). Consider a birth process (ζt)t≥0. Let
g : R+ → R+ be an aging function, and η a positive random variable. The process ζ̄t :=

ζηG(t) is called a birth process with aging and fitness.

Definition 7.1.5 implies that the infinitesimal jump rates of the process (ζηG(t))t≥0

are as in (7.1.1), so that the birth probabilities of an individual depend on the PA
function, the age of the individual and on its fitness. Assuming that the process
(ζηG(t))t≥0 is supercritical and Malthusian, we can prove the following theorem:

Theorem 7.1.6 (Limiting degree distribution for aging and fitness). Consider a process
(ζηG(t))t≥0 with integrable aging function g, fitnesses that are i.i.d. across the population,
and assume that it is supercritical and Malthusian with Malthusian parameter α∗. Then, the
limiting degree distribution for the corresponding branching process is given by

p(1)

k = E

[
α∗

α∗ + fkηL̂(k, α∗, η)

k−1∏

i=0

fiηL̂(i, α∗, η)

α∗ + fiηL̂(i, α∗, η)

]
.

For a fixed individual, the distribution (qk)k∈N of the number of children it generates over its
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7.1. Introduction and main results

entire lifetime is given by
qk = P

(
ζηG(∞) = k

)
.

Similarly to Theorem 7.1.2, the sequence (L̂(k, α∗, η))k∈N is given by

L̂(k, α∗, η) =

(
L(P

(
ζuG(·) = k

)
g(·))(α∗)

L(P
(
ζuG(·) = k

)
)(α∗)

)

u=η

,

where again L(h(·))(α) denotes the Laplace transform of a function h. Notice that in
this case, the presence of the fitness η, this sequence is no longer deterministic but
random instead. We still have the product structure for (p(1)

k )k∈N as in the stationary
case, but now we have to average over the fitness distribution.

We point out that Theorem 7.1.2 is a particular case of Theorem 7.1.6, when we
consider η ≡ 1. We state the two results as separate theorems to improve the logic
of the presentation. We prove Theorem 7.1.6 in Section 7.3.1. In Section 7.3.2 we
show how Theorem 7.1.2 can be obtained from Theorem 7.1.6, and in particular how
Condition (7.1.4) is obtained from the analogous Condition (7.1.7) stated below for
general fitness distributions.

With affine PA function, in Proposition 7.4.5, we can identify the asymptotics of
the limiting degree distribution we obtain. This is proved by similar techniques as
in the case of aging only, even though the result cannot be expressed so easily. In
particular, we prove that

p(1)

k =
Γ(k + b/a)

Γ(b/a)Γ(k + 1)

2π√
det(kHk(tk, sk))

× e−kΨk(tk,sk)P (N1 ≥ −tk,N2 ≥ −sk) (1 + o(1)),

where the function Ψk(t, s) depends on the aging function, the density µ of the fitness
and k. The point (tk, sk) is the absolute minimum of Ψk(t, s), Hk(t, s) is the Hessian
matrix of Ψk(t, s), and (N1,N2) is a bivariate normal vector with covariance matrix
related to Hk(t, s). We do not know the necessary and sufficient conditions for the
existence of such a minimum (tk, sk). However, in Section 7.4.4, we consider two
examples where we can apply this result, and we show that it is possible to obtain
power-laws for them.

In the case of aging and fitness, the supercriticality condition in (7.1.4) is replaced
by the analogous condition that

E
[
ζηG(t)

]
<∞ for every t ≥ 0 and lim

t→∞
E
[
ζηG(t)

]
> 1. (7.1.7)

Borgs et al. [35] and Dereich [53, 58] prove results on stationary CTBPs with fit-
ness. In these works, the authors investigate models with affine dependence on the
degree and bounded fitness distributions. This is necessary since unbounded distri-
butions with affine PA function are explosive and thus do not have Malthusian param-
eter. We refer to Section 7.2 for a more precise discussion of the conditions on fitness

244



7
Fi

tn
es

s
an

d
ag

in
g

in
PA

tr
ee

s

7
Fi

tn
es

s
an

d
ag

in
g

in
PA

tr
ee

s

7
Fi

tn
es

s
an

d
ag

in
g

in
PA

tr
ee

s

7
Fi

tn
es

s
an

d
ag

in
g

in
PA

tr
ee

s

7
Fi

tn
es

s
an

d
ag

in
g

in
PA

tr
ee

s

7
Fi

tn
es

s
an

d
ag

in
g

in
PA

tr
ee

s

7
Fi

tn
es

s
an

d
ag

in
g

in
PA

tr
ee

s

7
Fi

tn
es

s
an

d
ag

in
g

in
PA

tr
ee

s

7.1. Introduction and main results

distributions.
In the case of integrable aging and fitness, it is possible to consider affine PA func-

tion, even with unbounded fitness distributions, as exemplified by (7.1.7). In partic-
ular, for fk = ak + b,

E[ζt] =
b

a

(
eat − 1

)
.

As a consequence, Condition (7.1.7) can be written as

∀t ≥ 0 E
[
eaηG(t)

]
<∞ and lim

t→∞
E
[
eaηG(t)

]
> 1 +

a

b
. (7.1.8)

The expected value E
[
eaηG(t)

]
is the moment generating function of η evaluated in

aG(t). In particular, a necessary condition to have a Malthusian parameter is that the
moment generating function is finite on the interval [0, aG(∞)). As a consequence,
denoting E[esη] by ϕη(s), we have effectively moved from the condition of having
bounded distributions to the condition

ϕη(x) < +∞ on [0, aG(∞)), and lim
x→aG(∞)

ϕη(x) >
a+ b

a
. (7.1.9)

Condition (7.1.9) is weaker than assuming a bounded distribution for the fitness η,
which means we can consider a larger class of distributions for the aging and fit-
ness birth processes. Particularly for citation networks, it seems reasonable to have
unbounded fitnesses, as the relative popularity of papers varies substantially.

7.1.4. Dynamical power-laws for exponential fitness and integrable
aging
In Section 7.4.4 we introduce three different classes of fitness distributions, for

which we give the asymptotics for the limiting degree distribution of the correspond-
ing CTBP.

The first class is called heavy-tailed. Recalling (7.1.9), any distribution η in this class
satisfies, for any t > 0,

ϕη(t) = E
[
etη
]

= +∞. (7.1.10)

These distributions have a tail that is thicker than exponential. For instance, power-
law distributions belong to this first class. Similarly to unbounded distributions in the
stationary regime, such distributions generate explosive birth processes, independent
of the choice of the integrable aging functions.

The second class is called sub-exponential. The density µ of a distribution η in this
class satisfies

∀ β > 0, lim
s→+∞

µ(s)eβs = 0. (7.1.11)

An example of this class is the density µ(s) = Ce−θs
1+ε , for some ε, C, θ > 0. For

such density, we show in Proposition 7.4.7 that the corresponding limiting degree
distribution has a thinner tail than a power-law.

The third class is called general-exponential. The density µ of a distribution η in
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7.1. Introduction and main results

this class is of the form
µ(s) = Ch(s)e−θs, (7.1.12)

where h(s) is a twice differentiable function such that, as s→∞,

h′(s)/h(s)→ 0, and h′′(s)/h(s)→ 0,

and C is a normalization constant. For instance, exponential and Gamma distri-
butions belong to this class. From (7.1.9), we know that in order to obtain a non-
explosive process, it is necessary to consider the exponential rate θ > aG(∞). We
will see that the limiting degree distribution obeys a power law as θ > aG(∞) with
tails becoming thinner when θ increases.

For a distribution in the general exponential class, as proven in Proposition 7.4.6,
the limiting degree distribution of the corresponding CTBP has a power-law term,
with slowly-varying corrections given by the aging function g and the function h. We
do not state Propositions 7.4.6 and 7.4.7 here, as these need notation and results from
Section 7.4.1. For this reason, we only state the result for the special case of purely
exponential fitness distribution:

Corollary 7.1.7 (Exponential fitness distribution). Let the fitness distribution η be expo-
nentially distributed with parameter θ, and let g be an integrable aging function. Assume
that the corresponding birth process (ζηG(t))t≥0 is supercritical and Malthusian. Then, the
limiting degree distribution (p(1)

k )k∈N of the corresponding CTBP ζηG is

p(1)

k = E

[
θ

θ + fkG(Tα∗)

k−1∏

i=0

fiG(Tα∗)

θ + fiG(Tα∗)

]
.

The distribution (qk)k∈N of the number of children of a fixed individual in its entire lifetime
is given by

qk =
θ

θ +G(∞)fk

k−1∏

i=0

G(∞)fi
θ +G(∞)fi

.

Using exponential fitness makes the computation of the Laplace transform and
the limiting degree distribution easier. We refer to Section 7.4.5 for the precise proof.
In particular, the sequence defined in Corollary 7.1.7 is very similar to the limiting
degree distribution of a stationary process with a bounded fitness. Let (ζηt )t≥0 be a
birth process with defined by (fk)k∈N and fitness ηwith bounded support. As proved
in [58, Corollary 2.8], and as we show in Section 7.2, the limiting degree distribution
of the corresponding branching process, assuming that (ζηt )t≥0 is supercritical and
Malthusian, has the form

p(1)

k = E

[
α∗

α∗ + ηfk

k−1∏

i=0

ηfi
α∗ + ηfi

]
= P

(
ζηTα∗ = k

)
.

We notice the similarities with the limiting degree sequence given by Corollary 7.1.7.
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7.1. Introduction and main results

When g is integrable, the random variable G(Tα∗) has bounded support. In particu-
lar, we can rewrite the sequence of the Corollary 7.1.7 as

p(1)

k = P
(
ζ
G(Tα∗ )
Tθ

= k
)
.

As a consequence, the limiting degree distribution of the process (ζηG(t))t≥0 equals
that of a stationary process with fitness G(Tα∗) and Malthusian parameter θ.

In the case where η has exponential distribution and the PA function is affine, we
can also investigate the occurrence of dynamical power laws. In fact, with (ζηG(t))t≥0

such a process, the exponential distribution η leads to

Pk[ζηG](t) = P
(
ζηG(t) = k

)

=
θ

θ + fkG(t)

k−1∏

i=0

fiG(t)

θ + fiG(t)

=
θ

aG(t)

Γ((b+ θ)/(aG(t))

Γ(aG(t))

Γ(k + b/(aG(t)))

Γ(k + b/(aG(t)) + 1 + θ/(aG(t)))
.

(7.1.13)

Here, ζηG(t) describes the number of children of an individual of age t. In other words,
(P(ζηG(t) = k))k∈N is a distribution such that, as k →∞,

Pk[ζηG](t) = P
(
ζηG(t) = k

)
= k−(1+θ/aG(t))(1 + o(1)).

This means that for every time t ≥ 0, the random variable ζηG(t) has a power-law
distribution with exponent τ(t) = 1 + θ/aG(t) > 2. In particular, for every t ≥ 0,
ζηG(t) has finite expectation. We call this behavior where power laws occur that vary
with the age of the individuals a dynamical power law. This occurs not only in the
case of pure exponential fitness, but in general for every distribution as in (7.1.12), as
shown in Proposition 7.4.6 below.

Further, we see that when t → ∞, the dynamical power-law exponent coincides
with the power-law exponent of the entire population. Indeed, the limiting degree
distribution equals

p(1)

k =E
[
θ/(aG(Tα∗)))

Γ(θ/(aG(Tα∗)) + b/(aG(Tα∗))

Γ(b/(aG(Tα∗)))

× Γ(k + b/(aG(Tα∗)))

Γ(k + b/(aG(Tα∗)) + 1 + θ/(aG(Tα∗)))

]
.

(7.1.14)

In Figure 1.25 we compare a numerical example of the dynamical power-law, for
a process with exponential fitness distribution and affine PA function, and the de-
gree distribution in citation networks. When time increases, the power-law exponent
monotonically decreases to the limiting exponent τ ≡ τ(∞) > 2, which means that
the limiting distribution still has a finite first moment.

When t → ∞, the power-law exponent converges, and also ζηG(t) converges in
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7.2. The Malthusian parameter

distribution to a limiting random distribution ζηG(∞) given by

qk = P
(
ζηG(∞) = k

)

=
θ

aG(∞)

Γ((b+ θ)/(aG(∞))

Γ(b/(aG(∞)))

Γ(k + b/(aG(∞)))

Γ(k + b/(aG(∞)) + 1 + θ/(aG(∞)))
.

(7.1.15)

ζηG(∞) has a power-law distribution, where the power-law exponent now is

τ = lim
t→∞

τ(t) = 1 + θ/(aG(∞)) > 2.

In particular, since τ > 2, a fixed individual has finite expected number of children
also in its entire lifetime, unlike the stationary case with affine PA function. In terms
of citation networks, this type of processes predicts that papers do not receive an
infinite number of citations after they are published (recall Figure 1.20), but papers
receiving enormously many citations do exist.

Figure 7.1 shows the effect of aging on the stationary process with affine PA func-
tion, where the power-law is lost due to the aging effect. Thus, aging slows down the
stationary process, and it is not possible to create the amount of high-degree vertices
that are present in power-law distributions. Fitness can speed up the aging process
to gain high-degree vertices, so that the power-law distribution is restored. This is
shown in Figure 1.24, where aging is combined with exponential fitness for the same
aging functions as in Figure 7.1.

In the stationary case, it is not possible to use unbounded distributions for the
fitness to obtain a Malthusian process if the PA function f is affine. In fact, using
unbounded distributions, the expected number of children at exponential time Tα is
not finite for any α > 0, i.e., the branching process is explosive. The aging effect allows
us to relax the condition on the fitness, and the restriction to bounded distributions
is relaxed to a condition on its moment generating function.

7.2. The Malthusian parameter
The existence of the Malthusian parameter is a necessary condition to have a

branching process growing at exponential rate. In particular, the Malthusian param-
eter does not exist in two cases: when the process is subcritical and grows slower
than exponential, or when it is explosive. In the first case, the branching population
might either die out or grow indefinitely with positive probability, but slower than at
exponential rate. In the second case, the population size explodes in finite time with
probability one. In both cases, the behavior of the branching population is different
from what we observe in citation networks (Figure 1.17). For this reason, we focus on
supercritical processes, i.e., on the case where the Malthusian parameter exists.

Denote by (ζt)t≥0 a stationary birth process defined by the sequence (fk)k∈N. In
general, we assume that fk →∞. Denote the sequence of jump times by (Tk)k∈N. As
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7.2. The Malthusian parameter

we quote in Section 2.1.2, the Laplace transform of a birth process (ζt)t≥0 is given by

L(Eζ(d·))(α) = E

[∑

k∈N
e−αTk

]
= E [ζTα ] =

∑

k∈N

k−1∏

i=0

fi
α+ fi

.

This expression comes from the fact that, in the stationary regime, Tk is the sum of k
independent exponential random variables. We can write

∑

k∈N
exp

(
−
k−1∑

i=0

log

(
1 +

α

fi

))
=
∑

k∈N
exp

(
−α

k−1∑

i=0

1

fi
(1 + o(1))

)
.

The behavior of the Laplace transform depends on the asymptotic behavior of the
PA function f . We now define the terminology we use:

Definition 7.2.1 (Superlinear PA function). Consider a PA sequence (fk)k∈N. We say that
the sequence f is superlinear if

∑∞
i=0 1/fi <∞. Equivalently, we say that the PA function

f is superlinear.

As a general example, consider fk = akq + b, where q > 0. In this case, the
sequence is affine when q = 1, superlinear when q > 1 and sublinear when q < 1.

When f is superlinear, since C =
∑∞
i=0 1/fi <∞, we have

∑

k∈N
exp

(
−α

k−1∑

i=0

1

fi
(1 + o(1))

)
≥
∑

k∈N
exp (−αC) = +∞. (7.2.1)

This holds for every α > 0. As a consequence, the Laplace transform L(Eζ(d·))(α) is
always infinite, and there exists no Malthusian parameter. In particular, if we denote
by T∞ = limk→∞ Tk, then T∞ < ∞ a.s.. This means that the birth process (ζt)t≥0

explodes in a finite time.
When f is at most linear, the bound in (7.2.1) does not hold anymore. In fact, con-

sider as example affine PA function fk = ak+b. We have that
∑k−1
i=0

1
fi

= (1/a) log k(1+

o(1)). As a consequence, the Laplace transform can be written as
∑

k∈N
exp

(
−α
a

log k(1 + o(1))
)

=
∑

k∈N
k−

α
a (1 + o(1)). (7.2.2)

In this case, the Laplace transform is finite for α > a. For the sublinear case, for which∑k−1
i=0 1/fi = Ck(1−q)(1 + o(1)), we obtain

∑

k∈N
exp

(
−Cαk1−q) .

This sum is finite for any α > 0.

Remark 7.2.2. Consider the process (ζt)t≥0 defined by the sequence (fk)k∈N as in Section
2.1.2. For u ∈ R+ we denote by (ζut )t≥0 the process defined by the sequence (ufk)k∈N. It is
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7.2. The Malthusian parameter

easy to show that
L(Eζu(d·))(α) = L(Eζ(d·))(α/u).

The behavior of the degree sequence of (ζut )t≥0 is the same as that of the process ζt.

Remark 7.2.2 shows a sort of monotonicity of the Laplace transform with respect
to the sequence (fk)k∈N. This is very useful to describe the Laplace transform of a
birth process with fitness, which we define now:

Definition 7.2.3 (Stationary fitness birth processes). Consider a birth process (ζt)t≥0

defined by a sequence (fk)k∈N. Let η be a positive random variable. We call the process
(ζηt )t≥0 a stationary fitness birth processes defined by the random sequence (ηfk)k∈N, i.e.,
conditionally on η,

P
(
ζηt+h = k + 1 | ζηt = k, η

)
= ηfkh+ o(h).

By Definition 7.2.3, it is obvious that the properties of the process (ζηt )t≥0 are re-
lated to the properties of (ηt)t≥0. Since we consider a random fitness η independent
of the process (ζt)t≥0, from Remark 7.2.2, it follows that

L(Eζη(d·))(α) = E [L(Eζu(d·))(α)u=η] = E

[∑

k∈N

k−1∏

i=0

ηfi
α+ ηfi

]
. (7.2.3)

For affine PA functions f the fitness distribution needs to be bounded, as discussed
in Section 7.1.4. In this section we give a qualitative explanation of this fact. Consider
the sum in the expectation in the right hand term of (7.2.3). We can rewrite the sum
as

∑

k∈N

k−1∏

i=0

ηfi
α+ ηfi

=
∑

k∈N
exp

(
−
k−1∑

i=0

log

(
1 +

α

ηfi

))

=
∑

k∈N
exp

(
−α
η

k−1∑

i=0

1

fi
(1 + o(1))

)
.

(7.2.4)

The behavior depends sensitively on the asymptotic behavior of the PA function. In
particular, a necessary condition for the existence of the Malthusian parameter is that
the sum in (7.2.3) is finite on an interval of the type (α̃,+∞). In other words, since
the Laplace transform is a decreasing function (when finite), we need to prove the
existence of a minimum value α̃ such that it is finite for every α > α̃. Using (7.2.4) in
(7.2.3), we just need to find a value α such that the right hand side of (7.2.4) equals 1.

In the case of an affine PA function fk = ak + b, we have
∑k−1
i=0

1
fi

= C log k(1 +

o(1)), for a constant C. As a consequence, (7.2.4) is equal to

E

[∑

k∈N
exp

(
−Cα

η
log k

)]
= E

[∑

k∈N
k−Cα/η

]
. (7.2.5)
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7.2. The Malthusian parameter

The sum inside the last expectation is finite only on the event {η < Cα}. If η has
an unbounded distribution, then for every value of α > 0, we have that {η ≥ Cα}
is an event of positive probability. As a consequence, for every α > 0, the Laplace
transform of the birth process (ζηt )t≥0 is infinite, which means that there exists no
Malthusian parameter. This is why a bounded fitness distribution is necessary to
have a Malthusian parameter using affine PA function.

The situation is different in the case of sublinear PA functions. For example, con-
sider fk = (1 + k)q , where q ∈ (0, 1). Then, the difference to the affine case is that
now

∑k−1
i=0 1/fi = Ck1−q(1 + o(1)). Using this in (7.2.4), we obtain

E

[∑

k∈N
exp

(
−Cα

η
k(1−q)

)]
.

In this case, since both α and η are always positive, the last sum is finite with proba-
bility 1, and the expectation might be finite under appropriate moment assumptions
on η.

Assume now that the fitness η satisfies the necessary conditions, so that the pro-
cess (ζηt )t≥0 is supercritical and Malthusian with parameter α∗. We can evaluate the
limiting degree distribution. Conditioning on η, the Laplace transform of Eζη(dx) is

∑

k∈N

k−1∏

i=0

ηfi
α+ ηfi

,

so, as a consequence, the limiting degree distribution of the branching processes is

p(1)

k = E

[
α∗

α∗ + ηfk

k−1∏

i=0

ηfi
α∗ + ηfi

]
. (7.2.6)

It is possible to see that the right-hand side of (7.2.6) is similar to the distribution of
the simpler case with no fitness given by (2.1.10). We still have a product structure for
the limiting distribution, but in the fitness case it has to be averaged over the fitness
distribution. This result is similar to [58, Theorem 2.7, Corollary 2.8].

Considering an affine PA function fk = ak + b, we can rewrite (7.2.6) as

p(1)

k = E
[

Γ((α∗ + b)/(aη))

Γ(b/(aη))

Γ(k + b/(aη))

Γ(k + b/(aη) + 1 + α∗/(aη))

]
.

Asymptotically in k, the argument of the expectation in the previous expression is
random with a power-law exponent τ(η) = 1+α∗/(aη). For example, averaging over
the fitness distribution, in this case it is possible to obtain power laws with logarithmic
corrections (see eg [22, Corollary 32]).
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7.3. Existence of limiting distributions

7.3. Existence of limiting distributions
In this section, we give the proof of Theorems 7.1.2, 7.1.3 and 7.1.6, proving that

the branching processes defined in Section 7.1 do have a limiting degree distribution.
As mentioned, we start by proving Theorem 7.1.6, and then explain how Theorem
7.1.2 follows as special case.

Before proving the result, we do need some remarks on the processes we consider.
Birth process with aging alone and aging with fitness are defined respectively in Def-
inition 7.1.1 and 7.1.5. Consider then a process with aging and fitness (ζηG(t))t≥0 as
in Definition 7.1.5. Let (Tk)k∈N denote the sequence of birth times, i.e.,

Tk = inf
{
t ≥ 0: ζηG(t) ≥ k

}
.

It is an immediate consequence of the definition that, for every k ∈ N,

P (Tk ≤ t) = P
(
T̄k ≤ ηG(t)

)
, (7.3.1)

where (T̄k)k∈N is the sequence of birth times of a stationary birth process (ζt)t≥0 de-
fined by the same PA function f .

Consider then the sequence of functions (Pk[ζ](t))k∈N associated with the station-
ary process (ζt)t≥0 defined by the same sequence (fk)k∈N (see Proposition 2.1.16). As
a consequence, for every k ∈ N, P(ζηG(t) = k) = E[Pk[ζ](ηG(t))], and the same holds
for an aging process just considering η ≡ 1. Formula (7.3.1) implies that the aging
process is the stationary process with a deterministic time-change given by G(t). A
process with aging and fitness is the stationary process with a random time-change
given by ηG(t).

Assume now that g is integrable, i.e. limt→∞G(t) = G(∞) < ∞. Using (7.3.1)
we can describe the limiting degree distribution (qk)k∈N of a fixed individual in the
branching population, i.e., the distribution ζG(∞) (or ζηG(∞)) of the total number of
children an individual will generate in its entire lifetime. In fact, for every k ∈ N,

lim
t→∞

P
(
ζG(t) = k

)
= lim
t→∞

Pk[ζ](G(t)) = P
(
ζG(∞) = k

)
. (7.3.2)

With fitness,

lim
t→∞

P
(
ζηG(t) = k

)
= lim
t→∞

E[Pk[ζ](ηG(t))] = P
(
ζηG(∞) = k

)
.

For example, in the case of aging only, this is rather different from the stationary case,
where the number of children of a fixed individual diverges as the individual gets old
(see e.g [9, Theorem 2.6]).

7.3.1. Proof of Theorem 7.1.6
Birth processes with continuous aging effect and fitness are defined in Definition

7.1.5. We now identify conditions on the fitness distribution to have a Malthusian
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7.3. Existence of limiting distributions

parameter:

Lemma 7.3.1 (Condition (7.1.7)). Consider a stationary process (ζt)t≥0, an integrable ag-
ing function g and a random fitness η. Assume that E[ζt] < ∞ for every t ≥ 0. Then the
process (ζηG(t))t≥0 is supercritical if and only if Condition (7.1.7) holds, i.e.,

E
[
ζηG(t)

]
<∞ for every t ≥ 0 and lim

t→∞
E
[
ζηG(t)

]
> 1.

Proof. For the if part, we need to prove that

lim
α→0+

E
[
ζηG(Tα∗ )

]
> 1 and lim

α→∞
E
[
ζηG(Tα∗ )

]
= 0.

As before, (T̄k)k∈N are the jump times of the process (ζηG(t))t≥0. Then

E
[
ζηG(Tα∗ )

]
=
∑

k∈N
E
[
e−αT̄k/η

]
.

When α→ 0, we have E
[
e−αT̄k

]
→ P

(
T̄k/η <∞

)
. Now,

∑

k∈N
P
(
T̄k <∞

)
= lim
t→∞

∑

k∈N
P
(
T̄k/η ≤ t

)
= lim
t→∞

E
[
ζηG(t)

]
> 1.

For α→∞, ∫ ∞

0

αe−αtE
[
ζηG(t)

]
dt =

∫ ∞

0

e−uE
[
ζηG(u/α)

]
du.

When α →∞ we have E
[
ζηG(u/α)

]
→ 0. Then, fix α0 > 0 such that E

[
ζηG(u/α)

]
< 1

for every α > α0. As a consequence, e−uE
[
ζηG(u/α)

]
du ≤ e−u for any α > α0. By

dominated convergence,

lim
α→∞

∫ ∞

0

αe−αtE
[
ζηG(t)

]
dt = 0.

Now suppose Condition (7.1.7) does not hold. This means that E[ζηG(t0)] = +∞ for
some t0 ∈ [0, G(∞)) or limt→∞ E[ζηG(t0)] ≤ 1.

If the first condition holds, then there exists t0 ∈ (0, aG(∞)) such that E
[
ζηG(t)

]
=

+∞ for every t ≥ t0 (recall that E
[
ζηG(t)

]
in an increasing function in t). As a conse-

quence, for every α > 0, we have E
[
ζηG(Tα)

]
= +∞, which means that the process is

explosive.
If the second condition holds, then for every α > 0 the Laplace transform of the

process is strictly less than 1, which means there exists no Malthusian parameter.

Lemma 7.3.1 gives a weaker condition on the distribution η than requiring it to
be bounded. Now, we want to investigate the degree distribution of the branching
process, assuming that the process (ζηG(t))t≥0 is supercritical and Malthusian. De-
note the Malthusian parameter by α∗. The above allows us to complete the proof of
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7.3. Existence of limiting distributions

Theorem 7.1.6:

Proof of Theorem 7.1.6. We start from

p(1)

k = E [Pk[ζ](ηG(Tα∗))] . (7.3.3)

Conditioning on η and integrating by parts in the integral given by the expectation
in (7.3.3), gives

−fkη
∫ ∞

0

e−α
∗tPk[ζ](ηG(t))g(t)dt+ fk−1η

∫ ∞

0

e−α
∗tPk−1[ζ](ηG(t))g(t)dt.

Now, we define

L̂(k, α∗, η) =

(
L(P

(
ζuG(·) = k

)
g(·))(α∗)

L(P
(
ζuG(·) = k

)
)(α∗)

)

u=η

(7.3.4)

Notice that the sequence (L̂(k, α∗, η))k∈N is a sequence of random variables. Multi-
plying both sides of the equation by α∗, on the right hand side we have

−fkηL̂(k, α∗, η)E [Pk[ζ](uG(Tα∗))]u=η+fk−1ηL̂(k−1, α∗, η)E [Pk−1[ζ](uG(Tα∗))]u=η ,

while on the left hand side we have

α∗E [Pk[ζ](uG(Tα∗))]u=η .

As a consequence,

E [Pk[ζ](uG(Tα∗))]u=η =
fk−1ηL̂(k − 1, α∗, η)

α∗ + fkηL̂(k, α∗, η)
E [Pk−1[ζ](uG(Tα∗))]u=η . (7.3.5)

We start from p0, that is given by

E [P0[ζ](uG(Tα∗))]u=η =
α∗

α∗ + f0ηL̂(0, α∗, η)
.

Recursively using (7.3.5), gives

E [Pk[ζ](uG(Tα∗))]u=η =
α∗

α∗ + fkηL̂(k, α∗, η)

k−1∏

i=0

fiηL̂(i, α∗, η)

α∗ + fiηL̂(i, α∗, η)
.

Taking expectation on both sides gives

p(1)

k = E

[
α∗

α∗ + fkηL̂(k, α∗, η)

k−1∏

i=0

fiηL̂(i, α∗, η)

α∗ + fiηL̂(i, α∗, η)

]
.
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7.3. Existence of limiting distributions

Now the sequence (L̂(k, α∗, η))k∈N creates a relation among the PA function, the
aging function and the fitness distribution, so that these three ingredients are deeply
related.

7.3.2. Proof of Theorems 7.1.2 and 7.1.3
As mentioned, Theorem 7.1.2 follows immediately by considering η ≡ 1. The

proof in fact is the same, since we can express the probabilities P(ζG(t) = k) as func-
tion of the stationary process (ζt)t≥0 defined by the same PA function f .

Condition (7.1.4) immediately follows from Condition (7.1.7). In fact, considering
η ≡ 1, Condition (7.1.7) becomes

E
[
ζG(t)

]
<∞ for every t ≥ 0 and lim

t→∞
E
[
ζG(t)

]
> 1. (7.3.6)

The first inequality in general true for the type of stationary process we consider (for
instance with f affine). The second inequality is exactly Condition (7.1.4).

The expression of the sequence (L̂g(k, α∗))k∈N is simpler than the general case
given in (7.3.4). In fact, in (7.3.4), the sequence (L̂(k, α∗, η))k∈N is actually a sequence
of random variables. In the case of aging alone,

L̂g(k, α∗) =
L(P

(
ζG(·) = k

)
g(·))(α∗)

L(P
(
ζG(·) = k

)
)(α∗)

,

which is a deterministic sequence.

Remark 7.3.2. Notice that L̂g(k, α∗) = 1 when g(t) ≡ 1, so thatG(t) = t for every t ∈ R+

and there is no aging, and we retrieve the stationary process (ζt)t≥0.

Unfortunately, the explicit expression of the coefficients (L̂g(k, α∗))k∈N is not easy
to find, even though they are deterministic.

Theorem 7.1.3, which states that even if g is integrable, the aging does not affect
the explosive behavior of a birth process with superlinear PA function, is a direct
consequence of (7.3.2):

Proof of Theorem 7.1.3. Consider a birth process (ζt)t≥0, defined by a superlinear se-
quence P (fk)k∈N (in the sense of Definition 7.2.1), and an integrable aging function
g. Then, for every t > 0, P

(
ζG(t) =∞

)
> 0. Since this holds for every t > 0, the

process (ζG(t))t≥0 is explosive. As a consequence, for any α > 0, E
[
ζG(Tα)

]
= ∞,

which means that there exists no Malthusian parameter.
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7.4. Affine PA sequence and adapted Laplace method

7.4. Affine PA sequence and adapted Laplace method

7.4.1. Aging and no fitness
In this section, we consider affine PA functions, i.e., we consider fk = ak+ b. The

main aim is to identify the asymptotic behavior of the limiting degree distribution
of the branching process with aging. Consider a stationary process (ζt)t≥0, where
fk = ak+b. Then, for any t ≥ 0, it is possible to show by induction and the recursions
in (2.1.8) and (2.1.9) that

Pk[ζ](t) = P (ζt = k) =
1

Γ(b/a)

Γ(k + b/a)

Γ(k + 1)
e−bt

(
1− e−at

)k
. (7.4.1)

We omit the proof of (7.4.1). As a consequence, since the corresponding aging process
is (ζG(t))t≥0, the limiting degree distribution is given by

p(1)

k = P
(
ζG(t) = k

)
=

Γ(k + b/a)

Γ(b/a)Γ(k + 1)

∫ ∞

0

α∗e−α
∗te−bG(t)

(
1− e−aG(t)

)k
dt. (7.4.2)

We can obtain an immediate upper bound for p(1)

k , in fact

p(1)

k =
Γ(k + b/a)

Γ(b/a)Γ(k + 1)

∫ ∞

0

α∗e−α
∗te−bG(t)

(
1− e−aG(t)

)k
dt

≤ Γ(k + b/a)

Γ(b/a)Γ(k + 1)
(1− e−aG(∞))k,

which implies that the distribution (p(1)

k )k∈N has at most an exponential tail. A more
precise analysis is hard. Instead we will give an asymptotic approximation, by adapt-
ing the Laplace method for integrals to our case.

The Laplace method states that, for a function f that is twice differentiable and
with a unique absolute minimum x0 ∈ (a, b), as k →∞,

∫ b

a

e−kΨ(x)dx =

√
2π

kΨ′′(x0)
e−kΨ(x0)(1 + o(1)). (7.4.3)

In this situation, the interval [a, b] can be infinite. The idea behind this result is that,
when k � 1, the major contribution to the integral comes from a neighborhood of x0

where e−kΨ(x) is maximized. In the integral in (7.4.2), we do not have this situation,
since we do not have an integral of the type (7.4.3). Defining

Ψk(t) :=
α∗

k
t+

b

k
G(t)− log

(
1− e−aG(t)

)
, (7.4.4)
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7.4. Affine PA sequence and adapted Laplace method

we can rewrite the integral in (7.4.2) as

I(k) :=

∫ ∞

0

α∗e−kΨk(t)dt. (7.4.5)

The derivative of the function Ψk(t) is

Ψ′k(t) =
α∗

k
+
b

k
g(t)− ag(t)e−aG(t)

1− e−aG(t)
. (7.4.6)

In particular, if there exists a minimum tk, then it depends on k. In this framework,
we cannot directly apply the Laplace method. We now show that we can apply a
result similar to (7.4.3) even to our case:

Lemma 7.4.1 (Adapted Laplace method 1). Consider α, a, b > 0. Let the integrable aging
function g be such that

(1) for every t ≥ 0, 0 < g(t) ≤ A <∞;
(2) g is differentiable on R+, and g′ is finite almost everywhere;
(3) there exists a positive constant B <∞ such that g(t) is decreasing for t ≥ B;
(4) assume that the solution tk of Ψ′k(t) = 0, for Ψ′k(t) as in (7.4.6), is unique, and also

g′(tk) < 0.

Then, for σ2
k = (kΨ′′k(tk))−1, there exists a constant C such that, as k →∞,

I(k) = C
√

2πσ2
ke−kΨk(tk)

(
1

2
+ P

(
N (0, σ2

k) ≥ tk
))

(1 + o(1)),

where N (0, σ2
k) denotes a normal distribution with zero mean and variance σ2

k.

Since Lemma 7.4.1 is an adapted version of the classical Laplace method, we move
the proof to Section 7.6. We can use the result of Lemma 7.4.1 to prove:

Proposition 7.4.2 (Asymptotics - affine sequence, aging, no fitness). Consider the affine
PA function fk = ak + b, an integrable aging function g, and denote the limiting degree
distribution of the corresponding branching process by (p(1)

k )k∈N. Then, under the hypotheses
of Lemma 7.4.1, there exists a constant C > 0 such that, as k →∞,

p(1)

k =
Γ(k + b/a)

Γ(k + 1)

(
Cg(tk)− g′(tk)

g(tk)

)1/2

e−α
∗tk(1−e−aG(∞))kDk(g)(1+o(1)), (7.4.7)

where

Dk(g) =
1

2
+

1

2
√
π

∫ Ck(g)

−Ck(g)

e−
u2

2 du,

and Ck(g) = tk

(
Cg(tk)− g′(tk)

g(tk)

)1/2

.
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7.4. Affine PA sequence and adapted Laplace method

7.4.2. Proof of Corollary 7.1.4
Here we prove the result on aging processes stated in Corollary 7.1.4. The result

follows immediately from the proof of Corollary 2.2.3 and the definition of the aging
process. In fact, an aging process is defined as (ξG(t))t≥0, where (ξt)t≥0 is an embed-
ding process defined by the sequence (k+ 1 + δ/m)k∈N. As a simple consequence of
the chain rule, from Proposition 2.1.16 it follows that

d

dt
Pk[ξ](G(t)) =

[
− (k + 1 + δ/m)Pk[ξ](G(t)) + (k + δ/m)Pk−1[ξ](G(t))

]
g(t).

Assuming that the aging function g is bounded almost everywhere, Condition 2.3.1
is satisfied for ` = k supt≥0 |g(t)|. The condition limt→∞ E[ξG(t)] > 1 is necessary and
sufficient for the existence of the Malthusian parameter α∗ (see [73, Lemma 4.1]).

Since the sum of m processes ξ1
t + · · · + ξmt is distributed as a single embedding

process defined by the sequence (k + m + δ)k∈N, it follows that ξ1
G(t) + · · · + ξmG(t) is

distributed as a single aging process with the same aging function g and sequence
(k +m+ δ)k∈N. (7.1.5) is then a consequence of Proposition 7.4.2.

7.4.3. Aging and fitness case
In this section, we investigate the asymptotic behavior of the limiting degree dis-

tribution of a CTBP, in the case of affine PA function. The method we use is analogous
to that in Section 7.4.1.

We assume that the fitness η is absolutely continuous with respect to the Lebesgue
measure, and we denote its density function by µ. The limiting degree distribution
of this type of branching process is given by

p(1)

k = P
(
ζηG(Tα∗ ) = k

)

=
Γ(k + b/a)

Γ(b/a)Γ(k + 1)

∫

R+×R+

α∗e−α
∗tµ(s)e−bsG(t)

(
1− e−asG(t)

)k
dsdt.

(7.4.8)

We immediately see that the degree distribution has exponential tails when the fit-
ness distribution is bounded:

Lemma 7.4.3 (Exponential tails for integrable aging and bounded fitnesses). When
there exists γ such that µ([0, γ]) = 1, i.e., the fitness has a bounded support, then

p(1)

k ≤
Γ(k + b/a)

Γ(b/a)Γ(k + 1)

(
1− e−aγG(∞)

)k
.

In particular, p(1)

k has exponential tails.

Proof. Obvious.

Like in the situation with only aging, the explicit solution of the integral in (7.4.8)
may be hard to find. We again have to adapt the Laplace method to estimate the
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7.4. Affine PA sequence and adapted Laplace method

asymptotic behavior of the integral. We write

I(k) :=

∫

R+×R+

e−kΨk(t,s)dsdt, (7.4.9)

where

Ψk(t, s) :=
α∗

k
t+

b

k
sG(t)− 1

k
logµ(s)− log(1− e−saG(t)). (7.4.10)

As before, we want to minimize the function Ψk. We state here the lemma:

Lemma 7.4.4 (Adapted Laplace method 2). Let Ψk(t, s) as in (7.4.10). Assume that

(1) g satisfies the assumptions of Lemma 7.4.1;
(2) µ is twice differentiable on R+;
(3) there exists a constant B′ > 0 such that, for every s ≥ B′, µ is monotonically decreas-

ing;
(4) (tk, sk) is the unique point where both partial derivatives are zero;
(5) (tk, sk) is the absolute minimum for Ψk(t, s);
(6) the hessian matrix Hk(tk, sk) of Ψk(t, s) evaluated in (tk, sk) is positive definite.

Then,

I(k) = e−kΨk(tk,sk) 2π√
det(kHk(tk, sk))

P (N1(k) ≥ −tk,N2(k) ≥ −sk) (1 + o(1)),

where (N1(k),N2(k)) := N (0, (kHk(tk, sk))−1) is a bivariate normal distributed vector
and 0 = (0, 0).

The proof of Lemma 7.4.4 can be found in Section 7.6.1. Using Lemma 7.4.4 we
can describe the limiting degree distribution (p(1)

k )k∈N:

Proposition 7.4.5 (Asymptotics - affine sequence, aging, fitness). Consider affine PA
function fk = ak + b, an integrable aging function g and a fitness distribution density µ.
Assume that the corresponding branching process is supercritical and Malthusian. Under the
hypotheses of Lemma 7.4.4, the limiting degree distribution (p(1)

k )k∈N of the corresponding
CTBP satisfies

p(1)

k =
kb/a−1

Γ(b/a)

2π√
det(kHk(tk, sk))

e−kΨk(tk,sk)P (N1 ≥ −tk,N2 ≥ −sk) (1 + o(1)).

7.4.4. Three classes of fitness distributions
Proposition 7.4.5 in Section 7.4.3 gives the asymptotic behavior of the limiting de-

gree distribution of a CTBP with integrable aging and fitness. Lemma 7.4.4 requires
conditions under which the function Ψk(t, s) as in (7.4.10) has a unique minimum
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7.4. Affine PA sequence and adapted Laplace method

point denoted by (tk, sk). In this section we consider the three different classes of
fitness distributions that we have introduced in Section 7.1.4.

For the heavy-tailed class, i.e., for distributions with tail thicker than exponential,
there is nothing to prove. In fact, (7.1.8) immediately implies that such distributions
are explosive.

For the other two cases, we apply Proposition 7.4.5, giving the precise asymptotic
behavior of the limiting degree distributions of the corresponding CTBPs. Proposi-
tions 7.4.6 and 7.4.7 contain the results respectively on the general-exponential and
sub-exponential classes. The proof of these propositions are moved to Section 7.7.

Proposition 7.4.6. Consider a general exponential fitness distribution as in (7.1.12). Let
(ζηG(t))t≥0 be the corresponding birth process. Denote the unique minimum point of Ψk(t, s)

as in (7.4.10) by (tk, sk). Then

(1) for every t ≥ 0, ζηG(t) has a dynamical power law with exponent τ(t) = 1 + θ
aG(t) ;

(2) the asymptotic behavior of the limiting degree distribution (p(1)

k )k∈N is given by

p(1)

k = e−α
∗tkh(sk)

(
C̃ − α∗ g

′(tk)

g(tk)

)−1/2

k−(1+θ/(aG(∞)))(1 + o(1)),

where the power law term has exponent τ = 1 + θ/aG(∞);
(3) the distribution (qk)k∈N of the total number of children of a fixed individual has a power

law behavior with exponent τ = 1 + θ/aG(∞).

By (7.1.9) it is necessary to consider the exponential rate θ > aG(∞) to obtain a
non-explosive process. In particular, this implies that, for every t ≥ 0, τ(t), as well as
τ , are strictly larger than 2. As a consequence, the three distributions (E[Pk[ζ](ηG(t))])k∈N,
(p(1)

k )k∈N and (qk)k∈N have finite first moment. Increasing the value of θ leads to
power-law distributions with exponent larger than 3, so with finite variance.

A second observation is that, independently of the aging function g, the point
sk is of order log k. In particular, this has two consequences. First the correction to
the power law given by h(sk) is a power of log k. Since h′(s)/h(s) → 0 as s → ∞.
Second the power-law term k−(1+θ/(aG(∞))) arises from µ(sk). This means that the
exponential term in the fitness distribution µ not only is necessary to obtain a non-
explosive process, but also generates the power law.

The third observation is that the behavior of (E[Pk[ζ](ηG(t))])k∈N, (p(1)

k )k∈N and
(qk)k∈N depends on the integrability of the aging function, but does only marginally de-
pends on its precise shape. The contribution of the aging function g to the exponent of
the power law in fact is given only by the value G(∞). The other terms that depend
directly on the shape of g are e−α

∗tk and the ratio g′(tk)/g(tk). The ratio g′/g does
not contribute for any function g whose decay is in between power law and expo-
nential. The term e−α

∗tk depends on the behavior of tk, that can be seen as roughly
g−1(1/ log k). For any function between power law and exponential, e−α

∗tk is asymp-
totic to a power of log k.
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7.4. Affine PA sequence and adapted Laplace method

The last observation is that every distribution in the general exponential class
shows a dynamical power law as for the pure exponential distribution, as shown in
Section 7.4.5. The pure exponential distribution is a special case where we consider
h(s) ≡ 1. Interesting is the fact that τ actually does not depend on the choice of
h(s), but only on the exponential rate θ > aG(∞). In particular, Proposition 7.4.6
proves that the limiting degree distribution of the two examples in Figure 1.24 have
power-law decay.

We move to the class of sub-exponential fitness. We show that the power law is
lost due to the absence of a pure exponential term. We prove the result using densities
of the form

µ(s) = Ce−s
1+ε

, (7.4.11)

for ε > 0 and C the normalization constant. The result is the following:

Proposition 7.4.7 (Sub-exp fitness). Consider a sub-exponential fitness distribution as
in (7.4.11). Let (ζηG(t))t≥0 be the corresponding birth process. Denote the minimum point of
Ψk(t, s) as in (7.4.10) by (tk, sk). Then

(1) for every t ≥ 0, Mt satisfies

P
(
ζηG(t) = k

)
= k−1(log k)−ε/2e

− θ

(aG(t))1+ε (log k)1+ε

(1 + o(1));

(2) the limiting degree distribution (p(1)

k )k∈N of the CTBP has asymptotic behavior given
by

p(1)

k = e−α
∗tkk−1

(
C1 − sεk

g′(tk)

g(tk)

)
e
− θ

(aG(∞))1+ε (log k)1+ε

(1 + o(1));

(3) the distribution (qk)k∈N of the total number of children of a fixed individual satisfies

qk = k−1(log k)−ε/2e
− θ

(aG(∞))1+ε (log k)1+ε

(1 + o(1)).

In Proposition 7.4.7 the distributions (E[Pk[ζ](ηG(t))])k∈N, (p(1)

k )k∈N and (qk)k∈N
decay faster than a power law. This is due to the fact that a sub-exponential tail for
the fitness distribution does not allow the presence of sufficiently many individuals in
the branching population whose fitness value is sufficiently high to restore the power
law.

In this case, we have that sk is roughly c1 log k − c2 log log k. Hence, as first ap-
proximation, sk is still of logarithmic order. The power-law term is lost because there
is no pure exponential term in the distribution µ. In fact, in this case µ(sk) generates
the dominant term e−θ(log k)1+ε .

7.4.5. The case of exponentially distributed fitness: Proof of Corol-
lary 7.1.7
The case when the fitness η is exponentially distributed turns out to be simpler.

In this section, denote the fitness by Tθ, where θ is the parameter of the exponential
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7.5. Limiting distribution with aging effect, no fitness

distribution. First of all, we investigate the Laplace transform of the process. In fact,
we can write

E
[
ζηG(Tα)

]
=

∫ ∞

0

θe−θsE
[
ζsG(Tα)

]
ds,

which is the Laplace transform of the stationary process (ζsG(Tα))s≥0 with bounded
fitness G(Tα) in θ. As a consequence,

E
[
ζηG(Tα)

]
=
∑

k∈N
E

[
k−1∏

i=0

fiG(Tα)

θ + fiG(Tα)

]
.

Suppose that there exists a Malthusian parameter α∗. This means that, for fixed
(fk)k∈N, g and θ, α∗ is the unique value such that E

[
ζηG(Tα∗ )

]
= 1. As a consequence,

if we fix (fk)k∈N, g and α∗, θ is the unique value such that

∑

k∈N
E

[
k−1∏

i=0

fiG(Tα)

θ + fiG(Tα)

]
= 1.

Therefore θ is the Malthusian parameter of the process (VsG(Tα))s≥0. We are now
ready to prove Corollary 7.1.7:

Proof of Corollary 7.1.7. We have to evaluate the Laplace transform of P
(
ζsG(t) = k

)

in θ. Using (7.4.1) the first part follows immediately by simple calculations. For the
second part, we just need to take the limit as t → ∞. For the sequence (p(1)

k )k∈N, the
result is immediate since p(1)

k = E[Pk[ζ](ηG(Tα∗))].

The case of affine PA function fk = ak + b is particularly nice. As already men-
tioned in Section 7.1, the process (ζηG(t))t≥0 has a power-law distribution at every
t ∈ R+ and (7.1.13) follows immediately. Further, (7.1.14) and (7.1.15) follow di-
rectly.

7.5. Limiting distribution with aging effect, no fitness
In this section, we analyze the limiting degree distribution (p(1)

k )k∈N of CTBPs with
aging but no fitness. In Section 7.5.1 we prove the adapted Laplace method for the
general asymptotic behavior of p(1)

k . In Section 7.5.2 we consider some examples of
aging function g, giving the asymptotics for the corresponding distributions.

7.5.1. Proofs of Lemma 7.4.1 and Proposition 7.4.2
Proof of Lemma 7.4.1. First of all, we show that tk is actually a minimum. In fact,

lim
t→0

d

dt
Ψk(t) = −∞, and lim

t→∞
d

dt
Ψk(t) =

α

k
> 0.
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7.5. Limiting distribution with aging effect, no fitness

As a consequence, tk is a minimum. Then,

lim
k→∞

g(tk)

(
α∗

k

1− e−aG(∞)

ae−aG(∞)

)−1

= lim
k→∞

g(tk)
ak

α∗(eaG(∞) − 1)
= 1. (7.5.1)

In particular, g(tk) is of order 1/k. Then, since tk is the actual minimum, and g is
monotonically decreasing for t ≥ B,

Ψ′′k(tk) =
b

k
g′(tk) + g(tk)2 a

2e−aG(tk)(2− e−aG(tk))

(1− e−aG(tk))2
− g′(tk)

ae−aG(tk)

1− e−aG(tk)
> 0. (7.5.2)

We use the fact that we are evaluating the second derivative in the point tk where the
first derivative is zero. This means

g(tk)
ae−aG(tk))

1− e−aG(tk)
=
α

k
+
b

k
g(tk).

We use this in (7.5.2) to obtain

kΨ′′k(tk) = bg′(tk) + g(tk)
a(2− e−aG(tk))

1− e−aG(tk)
(α+ bg(tk))− g′(tk)

g(tk)
(α+ bg(tk))

= g(tk)
a(2− e−aG(tk))

1− e−aG(tk)
(α+ bg(tk))− αg

′(tk)

g(tk)
.

(7.5.3)

Now, we use Taylor expansion around tk of Ψk(t) in the integral in (7.4.5). Since we
use the expansion around tk, which is the minimum of Ψk(t), the first derivative of
Ψk is zero. As a consequence, we have

I(k) =

∫ ∞

0

e−k(Ψk(tk)+ 1
2 Ψ′′k (tk)(t−tk)2+o((t−tk)2))dt.

First of all, notice that the contribution of the terms with |t− tk| � 1 is negligible. In
fact, we have

e−kΨk(t) ≤ e−α
∗t(1− e−aG(∞))k,

which means that such terms are exponentially small, so we can ignore them. Now
we make a change of variable u = t− tk. Then

I(k) =

∫ ∞

−tk
e−k(Ψk(tk)+ 1

2 Ψ′′k (tk)u2+o(u2))du.

In particular, since the term e−kΨk(tk) does not depend on u, we can write

I(k) = e−kΨk(tk)

∫ ∞

−tk
e−k(

1
2 Ψ′′k (tk)u2+o(u2))du.
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7.5. Limiting distribution with aging effect, no fitness

We use the notation kΨk(tk) = 1
σ2
k
, which means we can rewrite the integral as

e−kΨk(tk)
√

2πσ2
k

∫ tk

−∞

1√
2πσ2

k

e
− u2

2σ2
k dt = e−kΨk(tk)

√
2πσ2

kP
(
N (0, σ2

k) ≤ tk
)
.

Since the distribution N (0, σ2
k) is symmetric with respect to 0, for every k ∈ N,

P
(
N (0, σ2

k) ≤ tk
)

=
1

2

[
1 +

1√
π

∫ tk/σk

−tk/σk
e−

u2

2 du

]
. (7.5.4)

The behavior of the above integral depends on the ratio tk/σk, which is bounded
between 0 and 1. As a consequence, the term P

(
N (0, σ2

k) ≤ tk
)

is bounded between
1/2 and 1.

Using Lemma 7.4.1, we can prove Proposition 7.4.2:

Proof of Proposition 7.4.2. Recall that σ2
k = (kΨ(tk)′′)−1. Using (7.5.3), the fact that g is

bounded almost everywhere, and g′(tk) < 0, we can write

kΨ(tk)′′ = α

(
a(2− e−aG(∞))

1− e−aG(∞)
g(tk)− g′(tk)

g(tk)

)
(1 + o(1)). (7.5.5)

Notice that in (7.5.5) the terms g(tk) − g′(tk)
g(tk) are always strictly positive, since g(t)

is decreasing and tk → ∞ as k → ∞. As a consequence, we can replace the term
√

2π/σ2
k by

(
Cg(tk)− g′(tk)

g(tk)

)1/2

, for C = a(2−e−aG(∞))
1−e−aG(∞) . We also have that

e−kΨk(tk) = exp
[
−α∗tk − bG(tk) + k log

(
1− e−aG(tk)

)]

= e−α
∗tk(1− e−aG(∞))k(1 + o(1)),

since G(tk) converges to G(∞). For the term in (7.5.4), it is easy to show that it is
asymptotic to Dk(g). This completes the proof.

7.5.2. Examples of aging functions
In this section, we analyze two examples of aging functions, in order to give exam-

ples of the limiting degree distribution of the branching process. We consider affine
PA function fk = ak + b, and three different aging functions:

g(t) = e−λt, g(t) = (1 + t)−λ, and g(t) = λ1e−λ2(log(t+1)−λ3)2

.

We assume that in every case the aging function g is integrable, so we consider λ > 0

for the exponential case, λ > 1 for the power-law case and λ1, λ2, λ3 > 0 for the
lognormal case. We assume that g satisfies Condition (7.1.4) in order to have a super-
critical process.
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7.5. Limiting distribution with aging effect, no fitness

We now apply (7.4.7) to these three examples, giving their asymptotics. In general,
we approximate tk with the solution of, for c1 = ae−aG(∞)

1−e−aG(∞) ,

α∗

k
+
b

k
g(t)− c1g(t) = 0. (7.5.6)

We start considering the exponential case g(t) = e−λt. In this case, from (7.5.6) we
obtain that, ignoring constants,

tk = log k(1 + o(1)). (7.5.7)

As we expected, tk →∞. We now use (7.5.5), which gives a bound on σ2
k in (7.5.1) in

terms of g and its derivatives. As a consequence,

(
g(tk)− g′(tk)

g(tk)

)−1/2

=
(
e−λtk + λ

)1/2 ∼ λ1/2(1 + o(1)).

Looking at e−kΨk(tk), it is easy to compute that, with tk as in (7.5.7),

exp
[
−α∗ log k + bG(tk) + k log(1− e−aG(tk))

]
= k−α

∗
(1 + o(1)).

Since tk/σk →∞, then P
(
N (0, σ2

k) ≤ tk
)
→ 1, so that

p(1)

k =
Γ(k + b/a)

Γ(b/a)

1

Γ(k + 1)
C1k

−α∗e−C2k(1 + o(1)),

which means that p(1)

k has an exponential tail with power-law corrections.

We now apply the same result to the power-law aging function, so g(t) = (1+t)−λ,
and G(t) = 1

λ−1 (1 + t)1−λ. In this case

(1 + tk) =

(
α∗

c1k

)−1/λ

(1 + o(1)).

We use again (7.5.1), so

(
g(tk)− g′(tk)

g(tk)

)
=

(
α∗

c1k
+ λ

(
c1k

α∗

)1/λ
)1/2

∼ kα∗/2λ(1 + o(1)).

In conclusion,

p(1)

k =
Γ(k + b/a)

Γ(b/a)

1

Γ(k + 1)
kα
∗/2λe

−α∗
(
α∗
c1k

)−1/λ
−C2k(1 + o(1)),

which means that also in this case we have a power-law with exponential truncation.
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7.6. Limiting distribution with aging and fitness

In the case of the lognormal aging function, (7.5.6) implies that

[log(tk + 1)− λ3]2 ≈ +
1

λ2
log
( c1
α∗
k
)
.

By (7.5.1) we can say that
(
g(tk)− g′(tk)

g(tk)

)
=

(
λ1 log

( c1
α∗
k
)

+ 2λ2
log(tk + 1)

tk + 1

)
(1 + o(1))

= λ1 log
( c1
α∗
k
)

(1 + o(1)).

We conclude then, for some constant C3 > 0,

p(1)

k =
Γ(k + b/a)

Γ(b/a)

1

Γ(k + 1)

(
λ1 log

( c1
α∗
k
))1/2

e−α
∗e

(log(
c1
α∗ k))1/2

e−C3k(1 + o(1)).

7.6. Limiting distribution with aging and fitness
In this section, we consider birth processes with aging and fitness. We prove

Lemma 7.4.4, used in the proof of Proposition 7.4.5. Then we give examples of lim-
iting degree distributions for different aging functions and exponentially distributed
fitness.

7.6.1. Proofs of Lemma 7.4.4 and Proposition 7.4.5
Proof of Lemma 7.4.4. We use again second order Taylor expansion of the function
Ψk(t, s) centered in (tk, sk), where the first order partial derivatives are zero. As a
consequence we write

exp [−kΨk(t, s)] = exp

[
−kΨk(tk, sk) +

1

2
xT (kHk(tk, sk))x+ o(||x||2)

]
,

where

x =

[
t− tk
s− sk

]
, and Hk(tk, sk) =




∂2Ψk

∂t2
(tk, sk)

∂2Ψk

∂s∂t
(tk, sk)

∂2Ψk

∂s∂t
(tk, sk)

∂2Ψk

∂s2
(tk, sk)


 .

As for the proof of Lemma 7.4.1, we start by showing that we can ignore the terms
where ||x||2 � 1. In fact,

e−kΨk(t,s) ≤ exp (−α∗t− bsG(t) + k log(µ(s))) .

Since µ is a probability density, µ(s) < 1 for s� 1. As a consequence, log(µ(s)) < 0,
which means that the above bound is exponentially decreasing whenever t and s are
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7.6. Limiting distribution with aging and fitness

very large. As a consequence, we can ignore the contribution given by the terms
where |t− tk| � 1 and |s− sk| � 1.

The term e−kΨk(tk,sk) is independent of t and s, so we do not consider it in the
integral. Writing u = t− tk and v = s− sk, we can write

∫

R+×R+

e−
1
2x

T (kHk(tk,sk))xdsdt =

∫ ∞

−tk

∫ ∞

−sk
e−

1
2y

T (kHk(tk,sk))ydudv,

where this time yT = [u v]. As a consequence,
∫ ∞

−tk

∫ ∞

−sk
e−

1
2y

T (kHk(tk,sk))ydudv

× =
2π√

det(kHk(tk, sk))
P (N1(k) ≥ −tk,N2(k) ≥ −sk) ,

(7.6.1)

provided that the covariance matrix (kHk(tk, sk))−1 is positive definite.

As a consequence, we can use (7.6.1) to obtain that, for the corresponding limiting
degree distribution of the branching process (p(1)

k )k∈N, as k →∞,

p(1)

k =
Γ(k + b/a)

Γ(b/a)

1

Γ(k + 1)

2π√
det(kHk(tk, sk))

× e−kΨk(tk,sk)P (N1(k) ≥ −tk,N2(k) ≥ −sk) (1 + o(1)).

This results holds if the point (tk, sk) is the absolute minimum of Ψk, and the Hessian
matrix is positive definite at (tk, sk).

7.6.2. The Hessian matrix of Ψk(t, s)
First of all, we need to find a point (tk, sk) which is the solution of the system

∂Ψk

∂t
=
α∗

k
+
b

k
sg(t)− sag(t)e−saG(t)

1− e−saG(t)
= 0, (7.6.2)

∂Ψk

∂s
=
b

k
G(t)− 1

k

µ′(s)
µ(s)

− aG(t)e−saG(t)

1− e−saG(t)
= 0. (7.6.3)

Denote the solution by (tk, sk). Then

∂2Ψk

∂t2
=
b

k
sg′(tk) + g(tk)2 s2a2e−asG(tk)

(1− e−asG(tk))2
− g′(tk)

ase−asG(tk)

1− e−asG(tk)
,

∂2Ψk

∂s2
= −1

k

µ′′(s)µ(s)− µ′(s)2

µ(s)2
+
a2G(t)2e−saG(t)

(1− e−saG(t))2
,

∂2Ψk

∂s∂t
=
b

k
g(tk) +

(
1− 1

ask

)(
b

k
G(tk)− 1

k

µ′(sk)

µ(sk)

)(
α∗

k
+
b

k
skg(tk)

)
.
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7.6. Limiting distribution with aging and fitness

From (7.6.2) and (7.6.3) we know

α∗

k
+
b

k
skg(tk) =

skag(tk)e−skaG(tk)

1− e−skaG(tk)
,

b

k
G(tk)− 1

k

µ′(sk)

µ(sk)
=
aG(tk)e−skaG(tk)

1− e−skaG(tk)
.

(7.6.4)

Using (7.6.4) in the expressions for the second derivatives,

∂2Ψk

∂t2
=
b

k
skg
′(tk) +

askg(tk)

(1− e−askG(tk))

(
α

k
+
b

k
skg(tk)

)
− g′(tk)

g(tk)

(
α

k
+
b

k
skg(tk)

)

=
askg(tk)

(1− e−askG(tk))

(
α

k
+
b

k
skg(tk)

)
− α

k

g′(tk)

g(tk)
,

∂2Ψk

∂s2
= −1

k

µ′′(sk)µ(sk)− µ′(sk)2

µ(sk)2
+

aG(tk)

1− e−askG(tk)

(
b

k
G(tk)− 1

k

µ′(sk)

µ(sk)

)

= −1

k

µ′′(sk)

µ(sk)
+

1

k

(
µ′(sk)

µ(sk)

)2

− 1

k

µ′(sk)

µ(sk)

aG(tk)

1− e−askG(tk)
+

1

k

abG(tk)2

1− e−askG(tk)
.

In conclusion, the matrix kHk(tk, sk) is given by

(kHk(tk, sk))1,1 =
askg(tk)

(1− e−askG(tk))
(α+ bskg(tk))− αg

′(tk)

g(tk)
; (7.6.5)

(kHk(tk, sk))2,2 = −µ
′′(sk)

µ(sk)
+

(
µ′(sk)

µ(sk)

)2

− µ′(sk)

µ(sk)

aG(tk)

1− e−askG(tk)
+

abG(tk)2

1− e−askG(tk)
;

(kHk(tk, sk))2,1 = bg(tk) +

(
1− 1

ask

)(
b

k
G(tk)− 1

k

µ′(sk)

µ(sk)

)
(α∗ + bskg(tk)) .

We point out that, solving (7.6.3) in terms of s, it follows that

s =
1

aG(t)
log


1 + k

aG(t)

bG(t)− µ′(s)
µ(s)


 . (7.6.6)

As a consequence,

skg(tk) = α∗G(tk)
µ(sk)

µ′(sk)
. (7.6.7)

We use (7.6.6), (7.6.7) and the expressions for the elements of the Hessian matrix given
in (7.6.5) for the examples in Section 7.6.3. We also use the formulas of this section in
the proof of Propositions 7.4.6 and 7.4.7 given in Section 7.7.
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7.7. Dynamical power law: proof of propositions 7.4.6 and 7.4.7

7.6.3. Examples of aging functions
Here we give examples of limiting degree distributions. We consider the same

three examples of aging functions we considered in Section 7.5.2, so

g(t) = e−λt, g(t) = (1 + t)−λ, and g(t) = λ1e−λ2(log(t+1)−λ3)2

.

We consider exponentially distributed fitness, so µ(s) = θe−θs. In order to have a
supercritical and Malthusian process, we can rewrite Condition (7.1.9) for exponen-
tially distributed fitness as aG(∞) < θ < (a+ b)G(∞).

In general, we identify the minimum point (tk, sk), then use (7.7.6). For all three
examples, replacing G(t) by G(∞) and using (7.6.6), it holds that

sk ≈
1

aG(∞)
log

(
k

aG(∞)

bG(∞) + θ

)
,

and skg(tk) ≈ α∗G(∞)θ. For the exponential aging function, using (7.6.7), it follows
that e−λtk ≈ log k. In this case, since g′(t)/g(t) = −λ, the conclusion is that, ignoring
the constants,

p(1)

k = k−(1+λθ/a)(log k)α
∗/λ(1 + o(1)).

For the inverse-power aging function tk ≈ (log k)1/λ, which implies (ignoring
again the constants) that

p(1)

k = k−(1+(λ−1)θ/a)e−α
∗(log k)1/λ

(1 + o(1)),

where we recall that, for g being integrable, λ > 1. For the lognormal case,

tk ≈ e(log k)1/2

,

which means that

p(1)

k = k−(1+θ/aG(∞))e−α
∗e(log k)1/2

(1 + o(1)).

7.7. Dynamical power law: proof of propositions 7.4.6 and 7.4.7
In the present section, we prove Propositions 7.4.6 and 7.4.7. These proofs are

applications of Proposition 7.4.5, and mainly consist of computations. In the proof of
the two propositions, we often refer to Appendix 7.6.2 for expressions regarding the
Hessian matrix of Ψk(t, s) as in (7.4.10).
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7.7. Dynamical power law: proof of propositions 7.4.6 and 7.4.7

7.7.1. Proof of Proposition 7.4.6
We start by proving the existence of the dynamical power-law. We already know

that

P (Mt = k) =
Γ(k + b/a)

Γ(b/a)Γ(k + 1)

∫ ∞

0

µ(s)e−bsG(t)
(

1− e−asG(t)
)k
ds. (7.7.1)

We write
J(k) =

∫ ∞

0

e−kψk(s)ds, (7.7.2)

where
ψk(s) =

bG(t)

k
s− 1

k
log(µ(s))− log

(
1− e−asG(t)

)
. (7.7.3)

In order to give asymptotics on J(k) as in (7.7.2), we can use a Laplace method
similar to the one used in the proof of Lemma 7.4.1, but the analysis is simpler since in
this case ψk(s) is a function of only one variable. The idea is again to find a minimum
point sk for ψk(s), and to use Taylor expansion inside the integral, so

ψk(s) = ψk(sk) +
1

2
ψ′′k(sk)(s− sk)2 + o((s− sk)2).

We can ignore the contribution of the terms where (s − sk)2 � 1, since e−kψk(s) ≤
e−bsG(t), so that the error is at most exponentially small. As a consequence,

J(k) =

√
π

ψ′′k(sk)
e−kψk(sk)(1 + o(1)).

The minimum sk is a solution of

dψk(s)

ds
=
bG(t)

k
− 1

k

µ′(s)
µ(s)

− aG(t)e−saG(t)

1− e−asG(t)
= 0.

In particular, sk satisfies the following equality, which is similar to (7.6.6):

sk =
1

aG(t)
log

(
1 + k

aG(t)

bG(t)− µ′(sk)/µ(sk)

)
.

When µ(s) = Ch(s)e−θs,

µ′(s)
µ(s)

=
h′(s)e−θs − θh(s)e−θs

h(s)e−θs
= −θ

(
1− h′(s)

θh(s)

)
≈ −θ.

In particular, this implies

sk =
1

aG(t)
log

(
1 + k

aG(t)

bG(t) + θ

)
(1 + o(1)).
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7.7. Dynamical power law: proof of propositions 7.4.6 and 7.4.7

Similarly to the element (kHk(tk, sk))2,2 in (7.6.5),

k
d2ψk(sk)

ds2
= −µ

′′(sk)

µ(sk)
+

(
µ′(sk)

µ(sk)

)2

− µ′(sk)

µ(sk)

aG(t)

1− e−askG(t)
+

abG(t)2

1− e−askG(t)
.

For the general exponential class, the ratio

µ′′(sk)

µ(sk)
=
h′′(s)
h(s)

− 2θ + θ2.

As a consequence, k d
2ψk(s)
ds2 converges to a positive constant, which means that sk is

an actual minimum. Then J(k) = c1e−kψk(sk)(1 + o(1)). Using this in (7.7.1) and
ignoring the constants,

P (Mt = k) =
Γ(k + b/a)

Γ(b/a)Γ(k + 1)
e−skbG(t)µ(sk)(1 + o(1))

= k−1k−b/akb/ah(sk)k−θ/aG(t)(1 + o(1))

= h(sk)k−(1+θ/aG(t))(1 + o(1)),

which is a power-law distribution with exponent τ(t) = 1 + θ/aG(t), and minor
corrections given byh(sk). This holds for every t ≥ 0. In particular, consideringG(∞)

instead ofG(t), with the same argument we can also prove that the distribution of the
total number of children obeys a power-law tail with exponent τ(∞) = 1+θ/aG(∞).

We now prove the result on the limiting distribution (p(1)

k )k∈N of the CTBP, for
which we apply directly Proposition 7.4.5, using the analysis on the Hessian matrix
given in Section 7.6.2. First of all, from (7.6.6) it follows that

sk =
1

aG(tk)
log

(
1 + k

aG(tk)

bG(tk) + θ

)
(1 + o(1)), (7.7.4)

and by (7.6.7)

skg(tk)
k→∞−→ α

G(∞)

θ
. (7.7.5)

For the Hessian matrix, using (7.7.4) and (7.7.4) in (7.6.5), for any integrable aging
function g we have

(kHk(tk, sk))2,2 = C2 + o(1) > 0, and (kHk(tk, sk))2,1 = o(1),

but (kHk(tk, sk))1,1 behaves according to g′(tk)/g(tk). If this ratio is bounded, then
(kHk(tk, sk))1,1 = C1 + o(1) > 0, while (kHk(tk, sk))1,1 → ∞ whenever g′(tk)/g(tk)

diverges. In both cases, (tk, sk) is a minimum. In particular, again ignoring the mul-
tiplicative constants and using (7.7.4) and (7.7.5) in the definition of Ψk(t, s), the lim-
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7.7. Dynamical power law: proof of propositions 7.4.6 and 7.4.7

iting degree distribution of the CTBP is asymptotic to

k−(1+θ/(aG(tk)))h(sk)e−α
∗tk

(
C̃ − α∗ g

′(tk)

g(tk)

)−1/2

, (7.7.6)

where the term
(
C̃ − α∗ g

′(tk)
g(tk)

)−1/2

, which comes from the determinant of the Hes-
sian matrix, behaves differently according to the aging function. With this, the proof
of Proposition 7.4.6 is complete.

7.7.2. Proof of Proposition 7.4.7
This proof is identical to the proof of Proposition 7.4.6, but this time we consider

a sub-exponential distribution. First, we start looking at the distribution of the birth
process at a fixed time t ≥ 0. We define ψk(s) and J(k) as in (7.7.3) and (7.7.2). We
use again (7.7.1), so

sk =
1

aG(t)
log

(
1 + k

aG(t)

bG(t)− µ′(sk)/µ(sk)

)
.

In this case, we have
µ′(s)
µ(s)

= −θ(1 + ε)sε. (7.7.7)

Then sk satisfies

sk =
1

aG(t)
log

(
1 + k

aG(t)

bG(t) + θ(1 + ε)sεk

)
.

By substitution, it is easy to check that sk is approximately c1 log k − c2 log log k =

log k(1− log log k
log k ), for some positive constants c1 and c2. This means that as first order

approximation, sk is still of logarithmic order. Then,

µ′′(s)
µ(s)

= θ2(1 + ε)2s2ε − θ(1 + ε)εsε−1. (7.7.8)

Using (7.7.7) and (7.7.8), we can write

k
d2ψk(s)

ds2
=θ(1 + ε)εsε−1

k + θ(1 + ε)sεk
aG(t)

1− e−askG(t)
+

abG(t)2

1− e−askG(t)

=θ(1 + ε)εsε−1
k + θ(1 + ε)

sεk
k

(bG(t) + θ(1 + ε)sεk)

+
bG(t)

k
(bG(t) + θ(1 + ε)sεk).
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7.7. Dynamical power law: proof of propositions 7.4.6 and 7.4.7

The dominant term is c1sεk, for some constant c1. This means k d
2ψk(s)
ds2 is of order

(log k)ε. Now,

J(k) =

(
k
d2ψk(s)

ds2

)−1/2

Ce−bG(t)sk−θs1+ε
k +k log(1−e−aG(t)sk )(1 + o(1))

= (log k)−ε/2k−b/ae−θ(log k)1+ε

(1 + o(1)).

As a consequence,

P (Mt = k) = k−1(log k)−ε/2e−θ(log k)1+ε

(1 + o(1)),

which is not a power-law distribution. Again using similar arguments, we show that
the limiting degree distribution of the CTBP does not show a power-law tail. In this
case

sk =
1

aG(tk)
log

(
1 + k

aG(tk)

bG(tk) + θ(1 + ε)sεk

)
,

and
skg(tk) =

αG(tk)

θ(1 + ε)sεk
=
αG(tk)

logε k
(1 + o(1))→ 0.

The Hessian matrix elements are

(kHk(tk, sk))1,1 =
aα2G(tk)

sεk
− aαg

′(tk)

g(tk)
+ o(1),

(kHk(tk, sk))2,2 = θ(1 + ε)εsε−1
k + θsεkaG(∞) + abG(∞)2 + o(1),

(kHk(tk, sk))1,2 = o(1).

This implies that

det (kHk(tk, sk)) = C1 − sεk
g′(tk)

g(tk)
+ o(1) > 0.

As a consequence, (tk, sk) is an actual minimum. Then using the definition of Ψk(t, s),

p(1)

k = e−α
∗tkk−1+b/ak−b/aµ(sk)

= e−α
∗tkk−1

(
C1 − sεk

g′(tk)

g(tk)

)
e
− θ

(aG(∞))1+ε (log k)1+ε

(1 + o(1)).

This completes the proof.

273



7

Fi
tn

es
s

an
d

ag
in

g
in

PA
tr

ee
s

7

Fi
tn

es
s

an
d

ag
in

g
in

PA
tr

ee
s

7

Fi
tn

es
s

an
d

ag
in

g
in

PA
tr

ee
s

7

Fi
tn

es
s

an
d

ag
in

g
in

PA
tr

ee
s

7

Fi
tn

es
s

an
d

ag
in

g
in

PA
tr

ee
s

7

Fi
tn

es
s

an
d

ag
in

g
in

PA
tr

ee
s

7

Fi
tn

es
s

an
d

ag
in

g
in

PA
tr

ee
s

7

Fi
tn

es
s

an
d

ag
in

g
in

PA
tr

ee
s

7.7. Dynamical power law: proof of propositions 7.4.6 and 7.4.7
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8
Conclusions and open problems

In this thesis, we have discussed mathematical models for complex networks. We
have focused our analysis on PAMs, since they are dynamic models that can represent
the evolution over time of networks. With a simple mechanism, we are able to generate
graphs with asymptotic properties that resembles most of the ones that we observe
in real-world networks.

In this last chapter, we briefly summarize the results of this thesis, and we discuss
some questions, open problems and possible future research topics related to our
results.

8.1. Collapsed branching processes
Real-world networks often show power-law degree distributions. PAMs are known

to be scale free whenever the PA function is affine, i.e., of the form f(k) = k + δ, for
some constant δ that allows to tune the power-law exponent τ . In the case of fixed
m ≥ 1, and δ > −m, we have that τ = 3 + δ/m.

In Chapter 2 we have defined collapsed branching processes (CBPs), that are multi-
graph models in continuous-time. The main property of CBPs is that they extend the
continuous-time embedding of PAMs to the casem ≥ 2 (form = 1, this was a known
result on continuous-time branching processes (CTBPs) [9, 10, 22, 152]). In particu-
lar, we prove that we can describe the limiting degree distribution of a CBP using the
properties of the birth process that defines the underlying CTBP. This general result
is stated in Theorem 2.2.2.

We show that we can describe PA model (b’) (see Section 4.3) as a CBP, that is
the result is given in Theorem 2.2.4. We obtain an alternative expression for the de-
gree distribution. In fact, (2.2.2) in Theorem 2.2.2, when applied to the CBP in Corol-
lary 2.2.3, coincides with the known degree distribution of many PAMs as introduced
in (1.3.1).
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8.1. Collapsed branching processes

Theorem 2.2.2 is rather general, and it can be applied to other PA functions, and
not only the affine case. In Corollary 2.2.5 we investigate the degree distribution of the
random recursive graph (the extension of the random recursive tree to the case m ≥ 2).
A relevant extension of Theorem 2.2.2 is given in Corollary 7.1.4, where we investigate
the degree distribution of a PAM where the PA function depends on the degree and
the age of a vertex, partially extending to m ≥ 2 the analysis we make in Chapter 7 on
generalized PA functions.

We want to underline that the properties of a CBP we have described resemble
the properties of the CTBP that defines the CBP itself (recall Theorem 2.1.11). More
precisely, the proof of Theorem 2.2.2 is based on the more technical Theorem 2.3.2.
The statement of Theorem 2.3.2 resembles Theorem 2.1.11. Notice in fact the similar-
ities between, for example, (2.1.3) and (2.3.1) (the exponential growth of the size of a
CTBP and a CBP respectively), or between (2.1.4) and (2.3.2) (a CTBP evaluated with
a random characteristic and the number of vertices with a fixed degree in CBP).

Neighborhoods in CBP. We might ask what topological properties of a CBP we can
describe using properties of the underlying CTBP. For example, we might want to in-
vestigate the local structure of neighborhoods as investigated in Chapter 4, where we
discuss the local weak convergence (LWC) of PAMs. Since PAMs are locally treelike
graphs, as shown in Chapter 4, we can ask the question whether this is true because

7

65

4321

(a) CBP

77

6655

44332211

(b) CTBP

Figure 8.1: An example of minimally-2-connected neighborhood in the sense
of Definition 3.4.2 in a CBP with m = 2, and a realization of the correspond-
ing structure in CTBP that generates it. Notice that different realizations in the
CTBP can generate the same graph in CBP. The difficulty here lies in the fact
that, similarly to the analysis of the degree of a vertex in CBP, this construction
is not a random characteristics in the sense of CTBP theory.
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8.1. Collapsed branching processes

PAMs can be defined as CBPs.
For example, a minimally-k-connected vertex v as in Definition 3.4.2 in CBP is gen-

erated by chains of individuals in the corresponding CTBP. Proposition 3.4.6 proves
that for a suitable sequence k∗t →∞, the number of minimally-k∗t -connected vertices
diverges, thus implying that this also holds for any fixed k ∈ N. In terms of the CTBP,
it is necessary to look for structures similar to the one in Figure 8.1. It would be in-
teresting to investigate the topological properties of the neighborhoods of vertices in
CBP from the CTBP perspective, to see whether and, if so, how they depend on the
corresponding CTBP.

CBPs and Pólya point tree. In the same line as the observations above, it would
also be interesting to compare the local structure of CBPs with the Pólya point tree
introduced in Section 4.3.1. In particular, it would be interesting to check if it is possi-
ble to prove the LWC of CBPs that embed PAMs to the Pólya point tree using CTBPs
techniques. We already know that PAMs converge locally weakly in probability to the
Pólya point tree, and so does the corresponding CBP. We might wonder if this conver-
gence can be checked without using discrete-time PAMs, but directly in continuous-
time.

The situation is different when we look at the directed LWC that we define in Chap-
ter 6. In fact, in Theorem 6.2.4 we prove that CTBPs and PAMs converge in the di-
rected LW sense. In Proposition 6.6.5 we prove that a CTBP converges almost surely in
the directed local weak sense to the law of itself at the random time Tα∗ , where α∗ is
the Malthusian parameter of the CTBP, and Tα∗ is an exponentially distributed ran-
dom variable with mean 1/α∗. For any m ≥ 1, instead, Proposition 6.6.8 shows that
a PAM converges in probability in the directed LW sense to the directed version of the
Pólya point tree.

For m = 1 an embedded CTBP and a directed PAM have the same distribution,
thus they must converge LW to the same limit (recall that the directed LWC, as well
as the undirected one, is defined on a Polish space). Form ≥ 2, though, an embedded
CBP and the corresponding PAM also have the same distribution. The almost-sure
convergence though is stronger than the convergence in probability, thus raising the
question whether the almost-sure convergence is limited to the m = 1 case, or it can
be extended to any m ≥ 2.

Random out-degree. An interesting extension of the present work is the case of
random out-degree graphs. Instead, our CBP have fixed out-degree m ≥ 2. However,
the collapsing procedure is well defined for any sequence of out-degrees (mn)n∈N,
both deterministic or random. Results are known for PAM with random out-degree
(see [52]), suggesting that CBPs with random out-degree are the continuous-time
versions of PAMs with random out-degrees.

More general PA functions and fitnesses. When collapsing, the degree D(in)
n (t) of

a vertex n in CBP is distributed as the sum of m independent birth process (ξt)t≥0.
When we consider an affine PA function of the type f(k) = ak + b, with a ≥ 0 and
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8.2. Ultra-small diameter

b > 0, the sum of themweights corresponding to them individuals becomes a(D1 +

. . . + Dm) + mb, i.e., the collapsed individuals become indistinguishable. This is still
true when we consider an affine PA function f and aging g, because of the linearity
of f and the fact that the error given by the difference of birth times is negligible.

This is no longer true when the PA function is not affine and/or in the presence of
multiplicative fitness. In multiplicative fitness models every individual x is assigned
an independent realization ηx from a fitness distribution, and it produces children ac-
cording to the sequence of PA weights (ηxf(k))k∈N (see [22, 24, 35, 73]). In this case,
individuals with different fitness values are not indistinguishable anymore. Assign-
ing the same fitness value to m different individuals would define a process that is
not a CTBP in the sense of Definition 2.1.4.

In the case of additive fitness, i.e., the weight of an individual x isD(in)
x (t) + ηx, the

problem has an immediate solution. In fact, for m different individuals x1, . . . , xm,
we have that the corresponding collapsed vertex v has weight

m∑

j=1

D(in)

xj + ηxj = D(in)

v (t) + η̂v, where η̂v =

m∑

j=1

ηxj .

In other words, the additive fitness of vertex v is the sum of the m fitnesses of the m
individuals that generated it. Notice that in this case the weight of vertex v is still
affine with respect to the degree D(in)

v (t).
To overcome the problem in the multiplicative fitness case, a possible solution can

be a modification of the collapsing procedure. In the case of discrete-valued fitnesses,
we might collapse individuals according to their fitness values and not according to
their birth order. This might be applied also to CTBPs with fitness and aging as in-
troduced in Chapter 7, where, as discussed, problems are depending on the presence
of fitness and not aging.

8.2. Ultra-small diameter
Real-world networks are typically small worlds, so distances between vertices in

the networks are small compared to the size of the network itself. Mathematically,
this has been formalized by saying that a graph of size n is a small world when its
typical distances and diameter are of order log n, and ultra-small world when they
are of order log log n.

PAMs can be small or ultra-small worlds, according the value of the power-law
exponent τ . We focus our analysis on the diameter of PAM model (a) of Section 4.3
when m ≥ 2 and δ ∈ (−m, 0), thus obtaining τ ∈ (2, 3) (finite-mean and infinite-
variance degree).

More precisely, in Chapter 3 we prove that the diameter of PAM model (a) and CM
scales as log log t (recall (1.4.1)), identifying the constant defined in (1.4.2). Remark-
ably, the proofs of the two convergence results, namely Theorem 3.1.3 for CM and
Theorem 3.1.5 for PAM, consist of the same high-level steps, as shown in Section 3.2.
This shows some universality property of our argument.
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8.2. Ultra-small diameter

1

2

6 9

3

4

7 12

5

8 10 11

(a) CBP

1

2

3

4 5

6

(b) CTBP

Figure 8.2: An example of randomized collapsing, according to fitness values.
In this figure, colors represent the value of the fitness assigned to individuals.
Individuals are divided in groups by fitness value, then within each group indi-
viduals are collapsed m by m according to birth order. For example, individuals
6,9 and 10 all have the same fitness value, so they are collapsed together (in this
case, m ≥ 3). If m = 2, in this case individuals 6 and 9 would be collapsed
together, while 10 would be collapsed with the next individual with the same
fitness value.

The constant in (1.4.2), that is model-dependent, consists of two terms: one com-
ing from the exploration of the periphery of the graph, and one depending on the
core of the graph.

The periphery constant is a function of the minimum degree of the graph. More
precisely, we obtain this constant by performing an exploration process starting at
vertices with low degree. We use the fact that this exploration process is a tree up to
a log log t distance (both for the upper and lower bound).

The core constant depends on the power-law exponent of the degree distribution.
It is obtained by performing a lazy exploration of high-degree vertices, starting at the
boundary of the exploration process just mentioned above. At every step we increase
the degree of the vertex along a path, thus reaching the hubs of the graph. We show
that connecting the two boundaries takes log log t steps again.

Truncated degrees. In [92], van der Hofstad and Komjáthy investigate typical dis-
tances for configuration models and τ ∈ (2, 3) in great generality, extending the re-
sults in [91] beyond the setting of i.i.d. degrees. Interestingly, they also investigate the
effect of truncating the degrees at nβn for values of βn → 0. It would be of interesting
to also extend our diameter results to this setting.

Fluctuations. An interesting open problem is the study of fluctuations of the diam-
eters in CMn and PAt around the asymptotic mean, i.e., the study of the difference
between the diameter of the graph and the asymptotic behavior (for these two mod-
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8.3. Urns and local weak convergence

els, the difference between the diameter and the right multiple of log logn).
In the literature results on fluctuations for the diameter of random graph mod-

els are rare. Bollobás in [28], and, later, Riordan and Wormald in [148] give precise
estimates on the diameter of the Erdős-Renyi random graph.

In [90], the authors prove that in graphs with i.i.d. power-law degrees with τ ∈
(2, 3), the difference ∆n between the typical distance and the asymptotic behavior
2 log log n/| log(τ − 2)| does not converge in distribution, even though it is tight (i.e.,
for every ε > 0 there is M < ∞ such that P(|∆n| ≤ M) > 1 − ε for all n ∈ N). These
results have been significantly improved in [92].

Conditional diameter. In the Pólya urn interpretation of PAMs presented in Chap-
ter 4 we assign an intensity ψv to every vertex v ∈ [t] related to the urn experiment.
As already mentioned, we can see the random variables (ψv)v∈[t] as hidden weights
associated to the vertices. This procedure somehow resembles the construction of
rank-1 inhomogeneous random graphs (see Section 1.2).

Similarly to Chapter 5, we can see the graph as a stochastic process with two levels
of randomness: one given by the weights, and one given by the assignment of edges.
In Section 5.1 we have introduced the idea of conditional convergence of the number
of subgraphs in PAMs, and we can do something similar for the diameter.

In other words, we can look at the law of PAM model (a) conditioning on the se-
quence (ψv)v∈[t]. In this case the edges are inserted in the graph according to the value
of (conditionally) independent Bernoulli random variables, similarly to the rank-1 in-
homogeneous random graphs, or the Erdős-Rényi random graph.

The diameter of the inhomogeneous random graphs has been investigated. Bol-
lobás, Janson and Riordan [30] prove that the diameter of a broad class of inhomoge-
neous random graphs is of logarithmic order. We might investigate the reasons why
this is different and whether there exists any setting where the conditional diameter
of PAMs and inhomogeneous random graphs can be similar.

8.3. Urns and local weak convergence
Real-world networks are highly clustered. In general, small subgraphs occur fre-

quently. This is not true for PAMs, since they are locally treelike. This is formalized
in terms of local weak convergence, and PAMs converge locally-weakly (LW) to an
inhomogeneous random rooted tree called the Pólya point tree.

PAMs can be interpreted as Pólya urn experiments, where balls represent the de-
gree of vertices in the graph. More precisely, the graph of size t is represented as a
Pólya urn experiment with t urns, where the balls in urn i ∈ [t] represent the degree
of vertex i.

We extend the LWC result of Berger, Borgs, Chayes and Saberi [21] to many differ-
ent versions of PAMs (listed in Section 4.3). We give a sketch of the proof structure in
Section 4.7, identifying the necessary conditions that a PAM has to satisfy to converge
LW to the Pólya point tree. We list these conditions in Proposition 4.9.1.

In particular, to adapt the argument in [21] to PAMs in Section 4.3, we generalize
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8.3. Urns and local weak convergence

the construction of Pólya urns (so the Pólya point graph in Definition 4.4.2) to unit
graphs, defined in Definition 4.6.1.

We show that, for a version of PAMs defined through collapsing, if for m = 1 it
converges LW to the Pólya point tree with parameters 1 and δ/m, then the same PAM
for m ≥ 2 converges to the Pólya point tree with parameters m and δ. To resembles
the results of Chapter 2 about CBPs, since we are able to express properties of the
case m ≥ 1 in terms of the case m = 1.

Random initial degrees. Models (a)-(g) listed in Section 4.3 differ for minor modifi-
cations, such as the presence of self-loops and the initial graph. Other modifications
are possible. For example, we can consider PAMs where the number of initial con-
nections can follow a prescribed distribution M [52]. This would lead to a change in
the urn definitions, but we believe that the exchangeability property still holds in this
case, if we condition on the sequence of initial degrees (mt)t∈N.

If the distribution M of the initial degrees is regular enough, then we can use
the law of large numbers and/or central limit theorem to have regularity of the pa-
rameters of the distribution of the Beta random variables as in Definition 4.4.2. In
fact, the urn version of PAMs is defined in terms of Beta random variables (ψk)k∈N,
where ψk is a Beta random variable with parameters ak = m+ δ and bk ≈ (2m+ δ)k.
In case of random initial degrees (mt)t∈N, we would have that ak = mk + δ and
bk ≈ (2

∑k−1
j=1 mj) + delta(k − 1). If M is regular enough, then bk would approxi-

mately be (2E[M ] + δ)k, as in the Pólya urn graph in Definition 4.4.2.
The corresponding LW limit in this case would not be precisely the Pólya point

tree defined in Section 4.3.1. In fact, every vertex n ∈ U has m or m − 1 children of
type O according to its own type. In the case of random initial degree, every vertex
n ∈ U would have a random number of children of type O, distributed asM orM−1

according to the type ofn. It is still not clear to us what would be the precise definition
of the LW limit, but we believe that the definition would be similar to the one given
in Section 4.3.1.

Additive fitness. We can consider a PA function where the parameter δ is a random
variable. More precisely, assume that we fix a distribution δ, and then instead of
considering the same value of δ for every vertex, we consider an i.i.d. sequence (δt)t∈N
sampled from the distribution δ.

Similarly to the random initial degree setting just discussed, we believe that the
PAM still satisfies the exchangeability property required to apply De Finetti’s Theo-
rem. In this case, for k ∈ N, the random variable ψk would have a Beta distribution
with parameters ak = m+ δk and bk ≈ m(2k− 3) + (k− 1)E[δ]. Also in this case, we
believe that the LW limit would be a modification of the Pólya point tree, but we do
not precisely know its definition.

The conditionally independent model. Model (h) in Section 4.3 is called PAM with
conditional independent edges. Here, conditional independence has a different mean-
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8.4. Subgraph occurrences

ing than, for instance, the conditional convergence of subgraph occurrences of Chap-
ter 5.

Model (h), investigated by Dereich and Mörters in a series of papers [54, 55, 56], is
called the conditionally independent model because every vertex t ∈ N, conditionally
on PA(h)

t−1, is connected to possibly all vertices [t − 1] independently of each other.
In this case, the initial degree of vertex t is a sum of (conditionally) independent
Bernoulli random variables with different probabilities of success.

Results in [54, 55, 56] establish that, for any PA function f that satisfies some reg-
ularity conditions, PA(h)

t (f) converges LW to an inhomogeneous random tree, that is
not the Pólya point tree. Remarkably, in contrast with the results in Chapter 4, based
on affine urn schemes as in Section 4.4, these results hold for any (admissible) func-
tion f . We might wonder whether we can establish a relation between the LW limit
of model (h) and the Pólya point tree.

8.4. Subgraph occurrences
Even though PAMs are locally treelike, in contrast of real-world networks, we

might still want to compute the number of occurrences of small subgraphs in PAMs.
Since PAMs are constructed recursively by adding vertices one at a time, we have to
considered ordered subgraphs, where we specify the order according to which the
vertices appear in the graph.

In Chapter 5 we investigate the expected number of times a graph H appears as
a subgraph of a PAM for any degree exponent τ . We find the scaling of the expected
number of such subgraphs in terms of the graph size t and the degree exponent τ by
defining an optimization problem that finds the optimal structure of the subgraph in
terms of the ages of the vertices that form subgraphH and by using the interpretation
of the PAM as a Pólya urn graph given in Chapter 4.

We derive the asymptotic scaling of the number of subgraphs in Theorem 5.1.2.
This result, as (5.1.2) suggests, is rather weak, in the sense that in principle (5.1.2)
does not imply the existence of such a limit. This is a consequence of the fact that
the optimization problem in 5.1.1 is defined to identify the order of magnitude (as
function of t) of the indices of vertices.

We do not have precise constants, but we are able to make a step forward, defin-
ing the conditional convergence for the number of occurrences of subgraphs, seeing
the intensities of the Pólya urn graph as hidden weights associated to the vertices of
the graph. Proposition 5.1.4 gives a criterion to establish whether a subgraph H is
conditionally concentrated, based on the number of occurrences of the overlapping
but distinct copies of H .

Since the triangle is the most studied subgraph, we use it as an example of the
technical difficulties that the identification of the precise scaling constant in (5.1.2)
presents. We obtain more precise asymptotics in Theorem 5.1.5, that extend the
known results for τ ≥ 3 to τ > 2.
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8.4. Subgraph occurrences

Precise asymptotics. As we did for triangles, it would be interesting to obtain pre-
cise asymptotics of the expected number of other types of subgraphs as well. In par-
ticular, this is necessary to compute the variance of the number of subgraphs, which
may allow us to derive laws of large numbers for the number of subgraphs. We show
that different subgraphs may have significantly different concentration properties.
Therefore, identifying the distribution of the number of rescaled subgraphs for any
type of subgraph remains a challenging open problem.

Extension to other PAMs. Another interesting extension would be to investigate
whether our result still holds for other types of PAMs, for example models that al-
low for self-loops, or models that include extra triangles. We believe that the results
of Chapter 5 should hold also for the PAMs (a)-(g) listed in Section 4.3. More pre-
cisely, a particular version of PAM has to satisfy a bound of the type (5.2.2) (or equiv-
alently (5.2.4)) given by Lemma 5.2.1, that links a subgraph H to the optimization
problem (5.1.1).

Different class of subgraphs. We prove results for the number of subgraphs of fixed
size k, while the graph size tends to infinity. It would also be interesting to let the sub-
graph size grow with the graph size, for example by counting the number of cycles
of a certain length that grows in the graph size. Another example of such subgraphs
would be the minimally-k∗t -connected neighborhoods defined in Chapter 3. Propo-
sition 3.4.6 shows that the number of such subgraphs diverges with t, but we do not
know the scaling constant.

Also, we investigate the number of times thatH appears as a subgraph of a PAM.
It is also possible to count the number of times H appears as an induced subgraph
instead, forbidding edges that are not present in H to be present in the larger graph.
It would be interesting to see whether the optimal subgraph structure is different
from the optimal induced subgraph structure.

Hierarchical PAMs. As shown, PAMs are locally treelike and subgraphs such as
triangles or small cliques do not occur frequently. As mentioned in Section 1.5 ,
Prokhorenkova et al. [139, 140, 141] obtained a linear number of triangles in PAMs
by modifying the attachment probabilities and the number of edges in the graph.

A different way of increasing the number of triangles and cliques in PAMs would
be to introduce these small subgraphs artificially. In a series of papers [93, 94, 156, 157]
van der Hofstad, van Leeuwaarden and Stegehuis work on a modification of the
configuration model, where they introduced communities. More precisely, they fix
a shape for a community, like a small complete graph, and they fix the number of
edges that go outside from each community. Then, edges across communities are
generated by pairing half-edges incident to communities, as in the standard config-
uration model. This creates a graph with scale-free degree distribution but with a
higher number of small subgraphs.

We can think of a similar mechanism for PAMs. More precisely, we can fix the
community shape, for instance a complete graph on k vertices. Then we can define a
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8.5. Limiting PageRank distribution

sequence of graphs (HPAt(m, k, δ))t∈N called hierarchical PA model as follows: HPA1

consists of a single community (so HPA1 has size k). Recursively, for t ≥ 2, a new com-
munity Ct appears with m outgoing edges. Then, the jth edge of the Ct is attached
to an existing community Ci that is chosen according to the following probability:

P(Ct
j→ Ci | HPAt−1) =

DCi(t− 1, j − 1) + kδ

Z(t− 1, j − 1)
, (8.4.1)

whereDCi(t− 1, j− 1) is the total degree of Ci after the (j− 1)th edge of Ct has been
attached, and Z(t− 1, j − 1) is a normalization constant. Once an edge is attached to
a community, then it is assigned to a uniformly chosen vertex in that community, so
that we obtain a graph. Notice that the chosen vertex inside the community does not
modify the probabilities in (8.4.1).

The hierarchical PAM has some flexibility in terms of the type of communities,
and the parametersm and δ, and by definition, it shows more subgraphs than a stan-
dard PAM. Apart from this, we do not know any other property of hierarchical PAM.
This would be an interesting object to investigate.

8.5. Limiting PageRank distribution
The PageRank hypothesis claims that if a complex network shows a power-law

(in-)degree distribution, then the graph-normalized PageRank distribution obeys a
power-law distribution with the same exponent as the (in-)degree. In order to avoid
finite-dimension problems, in Chapter 6 we extend the notion of LWC to directed
graphs, in order to investigate the limiting PageRank distribution of PAMs.

Our argument, stated in Theorem 6.2.1, is rather general, and shows that for any
sequence of directed random graphs that converge in the directed LW sense, the lim-
iting PageRank distribution can be retrieved by looking at the directed LW limit. This
helps because it allows us to avoid the difficulties arising by the finite size of a graph.
To show that our construction is applicable to many models, we prove that the di-
rected CM (and consequently, directed inhomogeneous random graphs) and directed
CTBPs converge LW also in the directed case. This convergence results are stated in
Theorem 6.2.4.

In particular, the limiting PageRank distribution R∅ of PAMs is given by a func-
tion of the neighborhood of the root ∅ in the directed LW limit. The random variable
R∅ is defined in Proposition 6.4.3. A direct consequence of Theorem 6.2.1 and the
definition R∅ is that, as stated in Remark 6.2.2, for PAMs the tail of the distribution
R∅ is bounded from below by a multiple of the tail of the in-degree, which indeed
obeys a power-law. This gives a lower bound that partially proves the power-law
PageRank hypothesis for PAMs.

Extension to exploration of outgoing edges. Since we are motivated by the interest
in PageRank algorithms on random graphs, we build our definition on the exploration
of incoming edges in their opposite direction, i.e., an edge (i, j) is explored from i to
j. The outgoing edges are considered as marks and we do not explore them. In the
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8.5. Limiting PageRank distribution

same way, it is possible to define the exploration process according to the natural
direction of the edges. In this case, we consider outgoing neighborhoods instead. The
definition of LW convergence would just be a consequence of symmetry. This second
interpretation might be useful, for instance, in the study of diffusion processes on
graphs, such as epidemic spreads. An interesting and more complex extension would
be to explore the incoming and outgoing neighborhoods at the same time.

PageRank on limiting graphs. We are able to prove that, under relatively general
assumptions, a sequence of random directed graphs admits a limiting distribution
for the PageRank of a uniformly chosen vertex. In this way, we have moved the anal-
ysis of a graph’s PageRank distribution from a whole sequence of graphs to a single
(possibly infinite) rooted directed marked graph. Note that we prove the existence
of this distribution, but we do not always have a convenient description of it. It will
be interesting to investigate the behavior of this limiting distribution. In particular,
it is interesting to investigate the conditions under which the rank of the root in the
limiting graph shows a power-law tail, and thus confirm the power-law hypothesis.

Stochastic fixed point equations. In the case of the directed CM, much more de-
tailed asymptotics are known on the tail of R∅. In our setting, the directed CM con-
verges to a marked Galton-Watson tree (see Proposition 6.6.2). On the limiting tree,
R∅ satisfies a recursive distributional equation, also called a stochastic fixed point

∅

C1 C2

C(1,1) C(2,1) C(2,2) C(2,3)

C(1,1,1) C(1,1,2) C(2,2,1) C(2,3,1)

Figure 8.3: Example of solution to the SFPE constructed on an infinite branching
tree. To every vertex n ∈ U (the Ulam-Harris set) of the tree we assign a weight
Cn, and the solution R is the sum over all the self-avoiding paths ending at the
root ∅ of the product of the weights along the path. Notice that this construction
is very similar to the formulation of PageRank in terms of weighted sum of paths.
For example, the weight corresponding to the green path is C(1,1,2)C(1,1)C1. In the
case of the Pólya point tree, the construction is the same but the tree is finite.
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8.6. Modeling citation networks

equation (SFPE).
An equation of the type (1.7.2) has a solution R that can be constructed using a

Galton-Watson tree with weights (we refer to [162] for the precise construction). The
idea is briefly explained in Figure 8.3. In this setting, under suitable hypothesis, if
D(in) obeys a power law with exponent τ , so doesR.

In Remark 6.6.9 we explain that this no longer applies to the directed Pólya point
tree. This is due to the fact that the corresponding equation, in this case, we should
consider i.i.d. copies of the time-dependent processR·, but they are evaluated at dif-
ferent times. In simpler words, any subtree in the directed Pólya point tree has a
distribution that depends on the birth time of its sub-root, thus they are not identi-
cally distributed.

It would certainly be interesting to study whether the construction of the solution
of the SFPE in (1.7.2) using tree can be extended to the case of the Pólya point tree,
i.e., to the case of finite branching trees.

PageRank in undirected graphs. As mentioned in Section 6.4.5, our convergence
result based on the directed LWC can be immediately extended to PageRank defined
on undirected graphs. In this case, due to the fact that we now look at a weighted sum
of undirected paths, the analysis of PageRank is even harder than the directed setting.
Our methodology might simplify the study of PageRank in undirected graphs if, for
example, the corresponding LW limit is simple (for example, a Galton-Watson tree).

8.6. Modeling citation networks
Different complex networks can be represented by different models. This might

imply that a PA mechanism depending only on the degree of vertices might not be
feasible to describe different networks.

Because of this, we consider citation networks in more detail, in order to investi-
gate what factors should have influence on the PA function in order to obtain a graph
model with similar characteristics as the ones that we observe in the data. We refer
to Section 1.8 for a more detailed qualitative analysis of citation networks data.

We generalize the construction of PA tree to general PA functions. In particular,
we define PA functions depending on three main factors: the degree (number of cita-
tions), the age of a vertex (how much time has passed since a paper was published),
and a fitness (representing intrinsic potential of a paper).

We start by investigating PA trees with aging but without fitness. We prove in
Proposition 7.4.2 (particular case of Theorem 7.1.2) that any integrable aging function
g destroys the power-law degree distribution of the PA tree, independently of the
particular shape of g. The assumption about the integrability of g is crucial if we want
to represent the fact that we expect papers to receive a finite number of citations.

In order to restore the power law, we have to assign fitnesses to the vertices in
the tree. We make a detailed analysis on the necessary assumptions on the fitness
distribution that are necessary to obtain a power-law in-degree distribution. Of the
three general classes of distributions we define in Section 7.1.4, we show that the right

286



8
Co

nc
lu

sio
ns

an
d

op
en

pr
ob

lem
s

8
Co

nc
lu

sio
ns

an
d

op
en

pr
ob

lem
s

8
Co

nc
lu

sio
ns

an
d

op
en

pr
ob

lem
s

8
Co

nc
lu

sio
ns

an
d

op
en

pr
ob

lem
s

8
Co

nc
lu

sio
ns

an
d

op
en

pr
ob

lem
s

8
Co

nc
lu

sio
ns

an
d

op
en

pr
ob

lem
s

8
Co

nc
lu

sio
ns

an
d

op
en

pr
ob

lem
s

8
Co

nc
lu

sio
ns

an
d

op
en

pr
ob

lem
s

8
Co

nc
lu

sio
ns

an
d

op
en

pr
ob

lem
s

8.6. Modeling citation networks
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Considered graph
Real references
References covered by WOS

Figure 8.4: Plot of the average out-degree in the Astrophysics dataset. Notice
that Web of Science does not cover all the references contained in the papers that
we have selected to be part of the dataset. In addition, the way that we have con-
structed the dataset considering only references between Astrophysics papers
ignores some of the references, even though they are covered by WoS.

one is the class of distributions with exponential tail. This class also has the additional
property of the dynamical power law, as we observe in the data.

Beyond the tree setting. Chapter 7 contains results only on the tree setting, which
is clearly unrealistic for citation networks. However, the analysis of PAMs made, for
example, in Chapters 2 and 4 has shown that the qualitative features of the degree
distribution for PAMs are identical to those in the tree setting.

We already have discussed the randomized collapsing procedure, i.e., the collaps-
ing of vertices with same fitness values. We believe this can be a way to overcome the
fact that the simple collapsing does not work in this setting, due to the presence of
fitness. Of course, in order to do this, we should assign discrete-valued fitnesses with
exponential tail, for example sampling from a geometric distribution.

Fitting the data. We started our analysis from citation network data. It would be
natural to check how accurate our model is in describing the data. In other words,
we might want to produce simulations of our model to match the data not only qual-
itatively, but also quantitatively.

To do this, we should find a way to estimate the right parameters from the data.
This is actually a hard problem, due to the complicated nature of our model, the fact
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Figure 8.5: Example of incompleteness of data. In this figure, we have the loglog
plot of the in-degree distribution tail of the number of citations in PS dataset.
The light green line is the distribution obtained using the complete PS dataset
we have. The dark green line is the distribution obtained by using the data cor-
responding to papers published after 2000. We observe that the two distributions
clearly have a different power-law exponent. Data from Web of Science.

that we do not have a theoretical description of the case where m ≥ 1, and the fact
that the data is not complete.

Unfortunately, there exists no database that covers all the publications ever made
in all scientific fields. When we start looking at the data, we have to pick a database
and restrict ourselves to a part of it. This creates different problems. For instance,
what is a good definition of a scientific field? Our selection of fields within Web of
Science made us ignore part of the data. An example of this is given in Figure 8.5.

The fact that data is incomplete also has another consequence. Assume that we
have a way to estimate the power-law exponent from the data (this is already highly
non-trivial). We would like to produce a graph with that same exponent. Figure 8.5
shows that the power-law exponent changes according to the starting point in time
that we consider for our data. Since our data starts in 1980 anyway (thus we ignore
everything before that), we might be trying to produce a citation distribution with
the wrong power-law exponent. How to approach this is still an open and difficult
problem.
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Summary

Preferential attachment models for dynamic networks

The theory of complex networks and graphs gained a lot of attention in the last
two decades. It has been observed that many real-world networks show common
features, even though the networks represent completely different systems. Since
real–world networks can be rather large, mathematical models are useful to describe
and explain the features observed in complex networks.

Random graphs turn out to be a very powerful tool in network science, and they
can be divided in two large classes: static and dynamical graph. The first class is
composed by random graph models where the number of vertices is fixed, and con-
nections are created between existing vertices. Dynamical random graphs are math-
ematical models where the number of vertices increases over time.

In this dissertation, we focus on preferential attachment mechanisms in dynam-
ical random graphs. Preferential attachment models are dynamical networks that
grow obeying a relatively simple rule: at every time-step, a new vertex appears in
the graph, and it connects to one (or more) existing vertices, chosen with probability
proportional to some function of the degree of the vertices. We can then have ran-
dom trees (when new vertices connect to only one old vertex) or graphs (when new
vertices have more than one connection). This dynamic has been generalized in the
literature. We focus on the so-called affine preferential attachment model, where the
attachment probabilities are proportional to the degrees plus a constant. This addi-
tive constant turns out to affect the graph tremendously, and thus allows us to tune
properties of the network.

The aim of the dissertation is to compare features observed in real-world networks
with properties of preferential attachment models. In particular we focus on the fol-
lowing features: degree distributions, distances, subgraph frequency and PageRank
distributions.

Affine preferential attachment models are known to show power-law degrees (the
fraction of vertices with degree k decreases as an inverse power of k), similarly to
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real-world networks. We develop new techniques that allows us to prove results in
affine preferential attachment models. In particular, we extend the embedding in
continuous time of preferential attachment models, that was known only for the tree
setting. We are able to extend this to graphs, with the advantage that our technique
applies to more general preferential attachment functions.

We prove that preferential attachment models are ultra-small worlds when the
degrees have infinite variance. We define the distance between two vertices as the
minimum number of edges that creates a connecting path, and the diameter of the
graph is then the maximum of all distances. We prove that, with high probability,
the diameter of a preferential attachment model with infinite-variance degrees is a
constant times the loglog the size of the graph, and we identify the precise constant.

We further describe the subgraph frequencies in preferential attachment models.
We prove that the expected subgraph occurrence of any subgraph scales as a function
of the size of the graph. The precise function is a solution of an optimization problem
that depends on the internal structure of the subgraph. In particular we prove that
the number of triangles in preferential attachment models is sublinear, thus these
models are not clustered, in contrast with real-world networks.

The relatively low occurrence of subgraphs with cycles is called the treelike-property.
Using the notion of local weak convergence, we formalize this concept and we prove
that different versions of preferential attachment models with affine preferential at-
tachment functions converge locally weakly to the same inhomogeneous multi-type
branching process called the Pólya Point Tree.

PageRank is a well-known algorithm to rank vertices in a network. It is observed
that in real-world networks the degree distribution and the PageRank distribution
show a remarkably similar power-law behavior. We develop a technique based on
local weak convergence that allows us to investigate the asymptotic PageRank distri-
bution in directed random graphs. In particular, we apply this to preferential attach-
ment models, showing that in this case the PageRank distribution tail is at least as
large as that of the degrees.

After investigating the affine preferential attachment model, we consider appli-
cations of such models to citation networks. Citation networks are networks where
scientific papers are vertices and references are directed edges. We focus our attention
to observable properties that can give information about the preferential attachment
mechanism in these networks, based on data obtained from Web of Science. We ob-
serve that a simple affine preferential attachment mechanism is not suitable to model
citation networks.

Starting from the data analysis, we define a generalized preferential attachment
model, where the probability of choosing a paper not only depends on the degree
(highly cited papers are more likely to be cited again), but also on the age of the paper
(old papers are less cited than new papers) and an intrinsic potential, that reflects the
high inhomogeneity of papers (some papers are forgotten quickly, while other are
cited even after decades). In particular, we identify the conditions that are necessary
to generate a power-law degree distribution in this generalized setting, as observed
in citation networks data.
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